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Part  II. 

On  the  hydrogen  spectrum. 

§  1.    The  simple  theory  of  the  series  spectrum  of  hydrogen. 
As  well  known,  the  frequencies  of  the  lines  of  the  series  spectrum  of  hydrogen 

may,  if  we  look  apart  from  the  fine  structure  of  the  single  lines  revealed  by  instru- 
ments of  high  dispersive  power,  be  represented  by  the  formula 

K{~-i,y  (35) 
where  K  is  a  constant,  and  n'  and  n"  a  set  of  two  entire  numbers,  different  for  the 
different  lines  of  the  spectrum.  According  to  the  general  principles  of  the  quantum 
theory  of  line  spectra  discussed  in  the  first  section  of  Part  I,  we  shall  therefore 

expect  that  this  spectrum  is  emitted  by  a  system  which  possesses  a  series  of  sta- 

tionary states  in  which  the  numerical  value  of  the  energy  in  the  /i'^  state,  omit- 
ting an  arbitrary  constant,  with  a  high  degree  of  approximation  is  given  by 

\En\--^,  (36) 

where  h  is  Planck's  constant  which  enters  in  the  fundamental  relation  (1). 

Now  according  to  Rutherford's  theory  of  atomic  structure,  a  neutral  hydrogen 
atom  must  be  expected  to  consist  of  an  electron  and  a  positive  nucleus  of  a  mass 

very  large  compared  with  that  of  the  electron,  which  move  under  the  influence  of 

a  mutual  attraction  inversely  proportional  to  the  square  of  the  distance  apart.  As- 
suming that  the  motion  in  the  stationary  states  may  be  determined  by  ordinary 

mechanics,  and  neglecting  for  the  moment  the  small  modifications  claimed  by  the 

theory  of  relativity,  we  find  that  each  of  the  particles  will  describe  an  elliptical 
orbit  with  their  common  centre  of  gravity  at  one  of  the  foci,  and  from  the  well 

known  laws  for  a  Keplerian  motion  we  have  that  the  frequency  of  revolution  (o 

and  the  major  axis  2  a  of  the  relative  orbit  of  the  particles,  quite  independent  of 

the  degree  of  eccentricity  of  this  orbit,  are  given  by 

where  W  is  the  work  necessary  to  remove  the  electron  to  infinite  distance  from  the 

nucleus,  while  Ne  and  M  are  the  charge  and  the  mass  of  the  nucleus,  and  — e  and 
m  the  charge  and  the  mass  of  the  electron. 
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As  explained  in  Part  I,  there  will  in  general  be  no  simple  connection  between 

the  motion  of  a  system  in  the  stationary  states  and  the  spectrum  emitted  during 
transitions  between  these  states;  such  a  connection,  however,  must  be  expected  to 

exist  in  the  limit  where  the  motions  in  successive  stationary  states  differ  compara- 

tively little  from  each  other,  hi  the  present  case  this  connection  claims  in  the  first 

place  that  the  frequency  of  revolution  tends  to  zero  for  increasing  n.  According  to 

(36)  and  (37)  we  may  therefore  put  the  value  of  W  in  the  n"'  stationary  state  equal  to 

W„  =  ̂   .  (38) 

Moreover,  since  (35)  can  be  written  in  the  form 

it  is  seen  to  be  a  necessary  condition  that  the  frequency  of  revolution  for  large 

values  of  n  is  asymptotically  given  by 

^<>n  ̂   -^ ,  (39) 

if  we  wish  that  the  frequency  of  the  radiation  emitted  during  a  transition  between 

two  stationary  states,  for  which  the  numbers  n'  and  n"  are  large  compared  with 
their  difference  /?' —  n",  shall  tend  to  coincide  with  one  of  the  frequencies  of  the 
spectrum  which  on  ordinary  electrodynamics  would  be  emitted  from  the  system  in 
these  states.  But  from  (37)  and  (38)  it  will  be  seen  that  (39)  claims  the  fulfilment 
ot  the  relation 

h^lM^ni)   ~  Ir^il-fm/M)'  ^     ̂ 

As  shown  in  previous  papers,  this  relation  is  actually  found  to  be  fulfilled 

within  the  limit  of  experimental  errors  if  we  put  N  =  1  and  for  e,  m,  and  h  in- 
troduce the  values  deduced  from  measurements  on  other  phenomena;  a  result 

which  may  be  considered  as  affording  a  strong  support  for  the  validity  of  the 

general  principles  discussed  in  Part  I,  as  well  as  for  the  reality  of  the  atomic  model 
under  consideration.  Further  it  was  found  that,  if  in  formula  (35)  for  the  hydrogen 

spectrum  the  constant  K  is  replaced  by  a  constant  which  is  four  times  larger,  this 

formula  represents  to  a  high  degree  of  approximation  the  frequencies  of  the  lines  of  a 

spectrum  emitted  by  helium,  when  this  gas  is  subject  to  a  condensed  discharge.  This 

was  to  be  expected  on  Rutherford's  theory,  according  to  which  a  neutral  helium 
atom  contains  two  electrons  and  a  nucleus  of  a  charge  twice  that  of  the  nucleus 

of  the  hydrogen  atom.  A  helium  atom  from  which  one  electron  is  removed  will 

thus  form  a  dynamical  system  perfectly  similar  to  a  neutral  hydrogen  atom,  and 

may  therefore  be  expected  to  emit  a  spectrum  represented  by  (35)  if  in  (40)  we  put 

N  =  2.  Moreover  a  closer  comparison  of  the  helium  spectrum  under  consideration 
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with  the  hydrogen  spectrum  has  shown  that  the  value  of  the  constant  K  in  the 

former  spectrum  \vas  not  exactly  four  times  as  large  as  that  in  the  latter,  but  that 

the  ratio  between  these  constants  within  the  limit  of  experimental  errors  agreed 

with  the  value  to  be  ex[)ected  from  (40),  when  regard  is  taken  to  the  ditTerent  masses 

of  the  nuclei  of  the  atoms  of  hydrogen  and  helium  corresponding  to  the  different 

atomic  weights  of  these  elements ' ). 

Introducing    the   expression  for  A'  given  by  (40)    in  the  formulae  (37)  and  (38), 
we  find  for  the  values  of  W,  to  and  '2a  in  the  stationary  states 

_    1    2:z'N'e'Mm  _    1    4^r^/VVMm  .,h\M^m) 

^"  ~  n'   hHM[^  m)  '  '""  ~    n'   hHM  +  m)  '  ̂""^  '"^  ''^ 2j:-'Ne'Mm  '  *'^^* 

Now  for  a  mechanical  system  as  that  under  consideration,  for  which  every  motion 

is  periodic  independent  of  the  initial  conditions,  we  have  that  the  value  of  the  total 

energy  will  be  completely  determined  by  the  value  of  the  quantity  /,  defined 

by  equation  (5)  in  Part  I.  As  mentioned  this  follows  directly  from  relation  (8), 

which  shows  at  the  same  time  that  for  a  system  for  which  every  motion  is  periodic 

the  frequency  will  be  com|)letely  determined  by  /  or  by  the  energy  only.  For  the 

value  of  /  in  the  stationary  states  of  the  hydrogen  atom  we  get  by  means  of  (8) 

from  (37)  and  (41),  since  in  this  case  /  will  obviously  become  zero  when  W  be- 
comes infinite. 

l   (l\V 

\       OJ *     2(M-\-m)    \  »    WniM -}- m) 

This  result  will  be  seen  to  be  consistent  with  condition  (24)  which,  as  mentioned 

in  Pari  I,  presents  itself  as  a  direct  generalisation  to  periodic  systems  of  several 
degrees  of  freedom  of  condition  (10)  which  determines  the  stationary  states  of  a 

system  of  one  degree  of  freedom,  and  which  again  on  Ehrexfest's  principle  of 
the  mechanical  transformability  of  the  stationary  states  forms  a  rational  generalisation 

of  Planck's  fundamental  formula  (9)  for  the  possible  values  of  the  energy  of  a 
linear  harmonic  vibrator. 

In  this  connection  it  will  be  observed,  that  the  relation  discussed  above  between 

the  hydrogen  spectrum  and  the  motion  of  the  atom  in  the  limit  of  small  frequen- 
cies is  completely  analogous  to  the  general  relation,  discussed  in  §  2  in  Part  I, 

between  the  spectrum  which  on  the  quantum  theory  would  be  emitted  by  a  system 

of  one  degree  of  freedom,  the  stationary  states  of  which  are  determined  by  (10),  and 
the  motion  of  the  system  in  these  states.  It  will  at  the  same  time  be  noted  that,  in 

case  of  hydrogen,  this  relation  implies  that  the  motion  of  the  particles  in  the 

stationary  states  of  the  atom  will  not  in  general  be  simply  harmonic,  or  in  other 

words  that  the  orbit  of  the  electron  will  not  in  general  be  circular.  In  fact  if  the 

motion  of  the  particles  were  simply  harmonic,  as  the  motion  of  a  Planck's  vibrator, 

')  For  the  litteraturc  on  this  subject  the  reader  is  referred  to  the  papei's  cited  in  the  introduction. 

6* 
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we  should  expect  on  the  considerations  in  Part  I  that  no  transition  between  two 

stationary  states  of  the  atom  would  be  possible  for  which  n'  and  n"  ditTer  by  more 
than  one  unit;  but  this  would  obviously  be  inconsistent  with  the  observations, 

since  for  instance  the  lines  of  the  ordinary  Balmer  series,  according  to  the  theory, 

correspond  to  transitions  for  which  n"  =  2  while  n'  takes  the  values  3,  4,  5,  .  .  . 
In  connection  with  this  consideration  it  may  be  remarked  that,  adopting  a  termino- 

logy well  known  from  acoustics,  we  may  from  the  point  of  view  of  the  quantum 

theory  regard  the  higher  members  of  the  Balmer  series  (n'  =  4,  5,  .  .  .)  as  the 
"harmonics"  of  the  first  member  (n'  =  3),  although  of  course  the  frequencies  of 
the  former  lines  are  by  no  means  entire  multipla  of  the  frequency  of  the  latter  line. 

While  in  the  above  way  it  was  possible  to  obtain  a  simple  interpretation  of 

certain  main  features  of  the  hydrogen  spectrum,  it  was  not  found  possible  in  this  way 

to  account  in  detail  for  such  phenomena  in  which  the  deviation  of  the  motion  of 

the  particles  from  a  simple  Keplerian  motion  plays  an  essential  part.  This  is  the 

case  in  the  problem  of  the  fine  structure  of  the  hydrogen  lines,  which  is  due  to 
the  effect  of  the  small  variation  of  the  mass  of  the  electron  with  its  velocity,  as 

well  as  in  the  problems  of  the  characteristic  effects  of  external  electric  and  magnetic 

fields  on  the  hydrogen  lines.  As  mentioned  in  the  introduction,  a  progress  of 

fundamental  importance  in  the  treatment  of  such  problems  was  made  by  Sommer- 
FELD,  who  obtained  a  convincing  explanation  of  the  fine  structure  of  the  hydrogen 

lines  by  means  of  his  theory  of  the  stationary  stales  of  central  systems,  in  which 

Ihe  single  condition  I  -=  nh  was  replaced  by  the  two  conditions  (16);  and  the 
theory  was  further  developed  by  Epstein  and  Schwarzschild,  who  on  this  line 
established  the  general  theory,  based  on  the  conditions  (22),  of  the  stationary  states 

of  a  conditionally  periodic  system  for  which  the  equations  of  motion  may  be 

solved  by  means  of  separation  of  variables  in  the  Hamilton-Jacobi  partial  differential 
equation.  If  the  hydrogen  atom  is  exposed  to  a  homogeneous  electric  or  to  a 

homogeneous  magnetic  field,  the  atom  forms  a  system  of  this  class,  and,  as  shown 

by  .Epstein  and  Schwarzschild  as  regards  the  Stark  eft'ect  and  by  Sommerfeld  and 
Debye  as  regards  the  Zeeman  effect,  the  theory  under  consideration  leads  to  values 

for  the  total  energy  of  the  atom  in  the  stationary  states,  which  together  with  rela- 
tion (1)  lead  again  to  values  for  the  frequencies  of  the  radiations  emitted  during 

the  transitions  between  these  states,  which  are  in  agreement  with  the  measured  fre- 

quencies of  the  components  into  which  the  hydrogen  lines  are  split  up  in  the  pre- 
sence of  the  fields.  As  pointed  out  in  Part  I,  it  is  possible  moreover  lo  throw  light 

on  the  question  of  the  intensities  and  polarisations  of  these  components  on  the 

basis  of  the  necessary  formal  relation  between  the  quantum  theory  of  line  spectra 
and  the  ordinary  theory  of  radiation  in  the  limit  where  the  motions  in  successive 

stationary  stales  differ  very  little  from  each  other.  In  the  following  sections  the 

mentioned  problems  will  be  discussed  in  detail.  As  regards  the  fixation  of  the 

stationary  states  we  shall  not,  however,  follow  the  same  procedure  as  used  by  the 

authors  just  mentioned,  which  rests  upon  the  immediate  application  of  the  conditions 
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(22),  but  it  will  be  shown  how  the  conditions  which  fix  the  stationary  states  of 

the  perturbed  atom  may  be  obtained  by  a  direct  examination  of  the  small  deviations 

of  the  motion  of  the  electron  from  a  simple  Keplerian  motion.  In  this  way  it 

seems  possible  to  obtain  a  more  direct  illustration  of  the  princii)les  discussed  in 

Parti;  and  we  shall  see  moreover  that  the  treatment  in  question  may  be  used  also 

in  cases  where  the  method  of  separation  of  variables  cannot  be  applied. 

In  Part  III  the  problem  of  the  series  spectra  of  other  elements  will  be  treated 
from  a  similar  point  of  view.  As  pointed  out  by  the  waiter  in  an  earlier  paper,  a 

simple  explanation  of  the  pronounced  analogy  between  these  spectra  and  the  hy- 
drogen spectrum  is  offered  by  the  fact,  that  the  atomic  systems,  involved  in  the 

emission  of  the  spectra  under  consideration,  in  a  certain  sense  may  be  regarded  as 

a  perturbed  hydrogen  atom.  On  the  other  hand,  a  clue  to  the  interpretation  of  the 

characteristic  difference  between  the  hydrogen  spectrum  and  the  spectra  of  other 

elements  was  first  obtained  by  Sommehpeld's  theory  of  the  stationary  states  of  cen- 
tral systems  referred  to  above.  As  shown  by  Sommerfeld,  it  is  possible  on  this 

theory  to  account  in  general  outlines  for  the  well  known  laws  governing  the  fre- 
quencies of  the  series  spectra  of  the  elements;  and,  as  it  will  be  shown  in  Part  III,  it 

is  also  possible,  on  the  basis  of  the  formal  relation  between  the  quantum  theory  and 

the  ordinary  theory  of  radiation,  in  this  way  to  obtain  a  simple  interpretation  of  the 
laws  governing  the  remarkable  differences  in  the  intensities  with  which  the  various 

series  of  lines  appear,  which  on  the  combination  principle  would  constitute  the 
complete  spectra  under  consideration.  As  regards  the  detailed  discussion  of  these 

spectra,  however,  it  is  necessary  to  bear  in  mind  that  the  part  played  by  the  inner 

electrons  in  the  atoms  of  the  elements  in  question  forms  a  far  more  intricate  pro- 
blem than  the  perturbing  effect  of  a  fixed  external  field  on  the  hydrogen  atom. 

For  the  treatment  of  this  problem  the  theory  of  conditionally  periodic  systems 
based  on  the  conditions  (22)  does  not  seem  to  suffice,  while,  as  it  will  be  shown 

in  Part  III,  it  appears  that  the  method  of  perturbations  exposed  in  the  following 
lends  itself  naturally  also  to  this  case. 

§  2.    The  Stationary  states  of  a  perturbed  periodic  system. 
In  Part  I  it  was  shown  that  the  problem  of  the  fixation  of  the  stationary 

states  of  a  periodic  system  of  several  degrees  of  freedom,  which  is  subject  to  the 

perturbing  influence  of  a  small  external  field,  cannot  be  treated  directly  on  the  basis 

of  the  general  principle  of  the  mechanical  transformability  of  the  stationary  states 

by  considering  the  influence,  which  on  ordinary  mechanics  a  slow  establishment 

of  the  external  field  would  exert  on  the  motion  of  some  arbitrarily  chosen  statio- 
nary state  of  the  undisturbed  system  (see  Part  I,  p.  23).  This  is  an  immediate 

consequence  of  the  fact,  mentioned  in  the  former  section,  that  the  stationary  states 
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of  the  perturbed  system  are  characterised  by  a  greater  nuni!)er  of  extra-mechanical 
conditions  than  the  stationary  states  of  the  undisturbed  system.  On  the  other  hand, 
we  were  led  to  assume  from  the  general  formal  relation  between  the  quantum  theory 

of  line  spectra  and  the  ordinary  theory  of  radiation,  that  it  is  possible  to  obtain 
information  about  the  stationary  states  of  the  perturbed  system  from  a  direct 

consideration  of  the  slow  variations  which  the  periodic  orbit  undergoes  as  a 

consequence  of  the  mechanical  effect  of  the  external  field  on  the  motion.  Thus,  if 
these  variations  are  of  periodic  or  conditionally  periodic  type,  we  may  expect  that, 

in  the  presence  of  the  external  field,  the  values  for  the  additional  energy  of  the 

system  In  the  stationary  states  are  related  to  the  small  frequency  or  frequencies  of 

the  perturbations,  in  a  manner  analogous  to  the  relation  i)et\veen  energy  and  frequency 
in  the  stationary  states  of  an  ordinary   periodic  or  conditionally  periodic  system. 

If  the  equations  of  motion  for  the  perturbed  system  can  be  solved  by  means 

of  separation  of  variables,  it  is  easily  seen  that  the  relation  in  question  is  fulfilled 
if  the  stationary  states  are  determined  by  the  conditions  (22).  Consider  thus  a  system 

for  which  every  orbit  is  periodic,  and  let  us  assume  that  in  the  presence  of  a  given 

small  external  field  a  separation  of  variables  is  possible  in  a  certain  set  of  coordi- 
nates Qi,  ...  qs.    For   the    undisturbed    system  we  have  then,  according  to  equation 

(23),   that  the   quantity  I,  defined    by  (5),   is   equal  to   x^Ii-\-   -\-xsIs,  where 
1 1,  ...  Is  are  defined  by  (21)  and  calculated  with  respect  to  the  set  of  coordinates 
just  mentioned,  and  where  the  xs  are  a  set  of  entire  positive  numbers  without  a 

common  divisor.  For  simplicity  let  us  assume  that  at  least  one  of  the  x's,  say  Xg, 
is  equal  to  one,  and  that  consequently,  as  mentioned  on  page  22,  the  number  ;j  in 

(24),  which  characterises  the  stationary  states  of  the  undisturbed  system,  may  take 

all  positive  values.  This  condition  will  be  fulfilled  in  case  of  all  the  applications  to 

spectral  problems  discussed  below;  it  will  be  seen,  however,  that  the  extension  to 

problems  where  this  condition  is  not  fulfilled  will  only  necessitate  small  modifica- 
tions in  the  following  considerations.  By  use  of  (29)  we  get  now  for  the  difference 

in  the  total  energy  of  two  slightly  different  states  of  the  perturbed  system 

S  S  S   1 

SE  =  ̂    ioi- 3 Ik  ̂   iOs  ̂    xk oh  - r  X  ,  ^'^^'^  —  ̂ ^ ''^*)  ̂^'^' (42) 

Since  for  the  undisturbed  system  (Ok  =  xk(Os,  the  differences  ojk  —  xi-ojs  appearing 
in  the  last  term  will,  for  the  perturbed  system,  be  small  quantities  which  will  just 
represent  the  frequencies  of  the  slow  variations  which  the  orbit  undergoes  in  the 

presence  of  the  external  field.  These  quantities  will  in  the  following  be  denoted  by 
s 

o/c-  Consider  now  the  multitude  of  states  of  the  perturbed  system  for  which  Ixuh 

is  equal  to  /j/i,  where  n  is  a  given  entire  positive  number.  This  multitude  will  be 

seen  to  include  all  possible  stationary  states  of  the  perturbed  system,  which  satisfy 

(22),  and  the  motion  of  which  differs  at  any  moment  only  slightly  from  some 

stationary  motion  of  the  undisturbed  system,  satisfying  (24)  for  the  given  value  of 
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n.  Denoting  the  value  of  the  energy  of  the  undisturbed  system  in  such  a  state  by 

En,  and  the  value  of  the  energy  of  the  perturbed  system  in  a  state  belonging  to 

the  multitude  under  consideration  by  En  +  ̂ ,  ̂ve  get  from  (42) 
■SI 

^Okdh  (43) 

for  the  energy  difference  between  two  neighbouring  states  of  this  multitude.  Since 

this  relation  has  the  same  form  as  (29),  we  see  consequently  that  by  putting  Z^,  ...  h-i 

equal  to  entire  multipla  of  h,  as  claimed  by  the  conditions  (22),  we  obtain  exactly 

the  same  relation  between  the  additional  energy  iX  and  the  small  frequencies  Oa-, 

impressed  on  the  system  by  the  external  field,  as  that  which  holds  between  the 

total  energy  and  the  fundamental  frequencies  in  the  stationary  states  of  a  condi- 

tionally periodic  system  of  s  —  1  degrees  of  freedom. 

As  a  simple  illustration  of  these  calculations  let  us  consider  the  system  consisting 
of  a  particle  moving  in  a  plane  and  sut)ject  to  an  attraction  from  a  fixed  point,  which  varies 
projjortional  to  the  (Ustance  ajiart.  If  undisturljed,  the  motion  of  this  system  will  be  periodic 
independent  of  the  initial  conditions,  and  the  particle  will  descrihe  an  elliptical  orbit  witli  its 
centre  at  the  fixed  i)()int.  Moreover  the  equations  of  motion  of  the  undisturbed  system  may 
be  solved  by  means  of  separation  of  variables  in  polar  coordinates,  as  well  as  in  any  set  of 

rectangular  coordinates.  In  the  first  case  we  have,  taking  for  q^  the  length  of  the  radius  vec- 
tor from  the  fixed  ])oint  to  the  i)article  and  for  (/g  the  angular  distance  of  this  radius  vector 

from  a  fixed  direction,  x^  =  2  and  Zg  =  1,  while  in  the  second  case  we  have  x^  =  x^  =  1.  In 
tlie  presence  of  an  external  field  the  orbit  will  in  general  not  remain  periodic,  but  will  in  the 
course  of  time  eover  a  continuous  extension  of  the  i)lane.  If  the  external  field  is  sufficiently 
small,  liowever,  tlie  orbit  will  at  any  moment  only  (litter  little  from  a  closed  elliptical  orbit, 
but  in  the  course  of  time  the  lengths  and  directions  of  the  i)rincipal  axes  of  this  ellipse  will 
undergo  slow  variations.  In  general  the  perturbed  system  will  not  allow  of  separation  of 
variables,  jjut  two  cases  obviously  present  themselves  in  which  such  a  separation  is  still 
possible;  in  tlie  first  case  the  external  field  is  central  with  the  fixed  point  as  centre,  and  a 
sei)aralion  is  possible  in  polar  coordinates;  in  the  second  case  the  external  field  of  force  is 
perpendicular  to  a  given  line  and  varies  as  some  function  of  the  distance  from  this  line,  and 

sei)aration  is  possible  in  a  set  of  rectangular  coordinates  with  the  axes  parallel  and  per- 
l)endicular  to  the  given  line.  In  the  first  case  the  perturbations  will  not  affect  the  lengths  of 
the  principal  axes  of  the  elliptical  orbit  and  will  only  produce  a  slow  uniform  rotation  of 
the  directions  of  these  axes,  while  in  the  second  case  the  lengths  of  the  principal  axes  as  well 
as  their  directions  will  perform  slow  oscillations.  It  will  consequently  be  seen  that,  by  fixing 
the  stationary  states  of  the  perturbed  system  by  means  of  the  conditions  (22),  the  cycles  of 
shapes  and  ])ositions  wliich  the  orbit  of  the  particle  will  pass  through  in  the  stationary  states 
will  be  entirely  different  in  the  two  cases.  In  botli  cases,  however,  it  will  be  seen  that  the 
frequency  o  =  w^  —  z^  wg  will  be  equal  to  the  frequency  with  which  the  orbit  at  regular 
intervals  re-assumes  its  shape  and  position.  By  fixing  the  stationary  states  by  (22)  we  obtain 
therefore,  as  seen  from  (43),  in  both  cases  that  the  relation  between  this  frequency  and  the 
additional  energy  of  the  system  due  to  the  presence  of  the  field  will  be  the  same  as  the 
relation  between  energy  and  frequency  in  the  stationary  states  of  a  system  of  one  degree  of 
freedom;  and  it  will  be  seen  that  the  above  considerations  offer  a  dynamical  interpretation 
of  the  characteristic  discontinuity  involved  in  the  application  of  the  method  of  separation  of 

variables  to  the  fixation  of  the  stationary  states  of  perturbed  periodic  systems'). 

')  hi  tills  connection  it  may  be  of  interest  to  note  tliat  the  possibifity  of  a  rational  interpretation  of 
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In  general  it  will  not  be  possible  to  solve  the  equations  of  motion  of  the  per- 

turbed system  by  means  of  separation  of  variables  in  a  fixed  set  of  positional  coor- 

dinates, but  we  shall  see  that  the  problem  of  the  fixation  of  the  stationary  states 

of  the  perturbed  system  may  be  attacked  by  a  direct  examination  of  the  additional 

energy  of  the  system  and  its  relation  to  the  slow  variations  of  the  orbit,  on  the 

basis  of  the  usual  theory  of  perturbations  well  known  from  celestial  mechanics. 

Consider  a  system  for  which  every  orbit,  if  undisturbed,  is  periodic  independent  of 
the  initial  conditions,  and  let  us  assume  that  the  equations  of  motion  for  some  set 

of  coordinates  q^,  q^,  . .  .  qs  are  solved  by  means  of  the  Hamilton-Jacobi  partial 
differential  equation,  given  by  formula  (17)  in  Part  1.  The  motion  of  the  system  is 

then  determined  by  the  equations  (18),  and  the  orbit  is  characterised  by  means  of 

the  constants  ai,...as,  J9j^,  .  .  .  j3s.  If  now  the  system  is  subject  to  some  small 
external  field  of  force,  the  motion  will  no  more  be  periodic,  but,  defining  in  the 

usual  way  the  osculating  orbit  at  a  given  moment  as  the  periodic  orbit  which 

would  result  if  the  external  forces  vanished  suddenly  at  this  moment,  we  find  that 

the  constants  a^,  ...  as,  ̂ i,  ■  ■  ■  /?«,  characterising  the  osculating  orbit,  will  vary 
slowly  with  the  time.  Assuming  for  the  present  that  the  external  forces  possess  a 

constant  potential  ii  given  as  a  function  of  the  q's,  we  have  according  to  the  theory 
of  perturbations  that  the  rates  of  variation  of  the  orbital  constants  of  the  osculating 

orbit  will  be  given  by ') 

dau  _        diJ       d^k  _  8^      (J.  _   ■,  „N  (AA) 

~dr~"8^u^     dt^^au'^  '--^  ^     ̂ 
where  Q  is  considered  as  a  function  of  «i,  ...  «,,  /?^,  ■  ■  ■  ̂s  and  t,  obtained  by 

introducing  for  the  q-'s  their  expressions  as  functions  of  these  quantities  obtained 
by  solving  (18).  The  equations  (44)  allow  to  follow  completely  the  perturbing 
effect  of  the  external  field  on  the  motion  of  the  system.  For  the  problem  under 

consideration,  however,  a  detailed  examination  of  the  perturbations  is  not  neces- 
sary. In  fact,  we  shall  not  be  concerned  with  the  small  deformation  of  the  orbit 

characterised  by  the  small  oscillations  of  the  orbital  constants  within  a  time  inter- 
val of  the  same  order  of  magnitude  as  the  period  of  the  osculating  orbit,  but  only 

the  discontinuity  in  qnestion  would  seem  to  be  essentially  connected  with  the  form  of  the  principles 

of  the  quantum  theory  adopted  in  this  paper.  If  for  instance  the  quantum  theory  is  taken  in  the 

form  proposed  by  Planck  in  his  second  theory  of  temperature  radiation,  the  consequent  development 

to  periodic  systems  of  several  degrees  of  freedom  would  seem  to  involve  a  serious  difficult}'  as  regards 
the  question  of  the  necessary  stability  of  the  temperature  equilibrium  among  a  great  number  of  systems 

for  small  variations  of  the  external  conditions.  In  fact,  in  connection  with  the  development  of  his  theorj' 

of  the  "physical  structure  of  the  phase  space",  mentioned  in  Part  I  on  page  18,  in  which  conditions 
of  the  same  type  as  (22)  are  established,  Planck  has  deduced  expressions  for  the  total  energy  of  a 

great  number  of  systems  in  temperature  equilibrium,  which,  if  applied  to  systems  of  the  same  kind 

as  those  considered  in  the  above  example,  show  a  dependency  of  this  energy  on  the  temperature  whicli 

is  different,  according  to  whether  polar  coordinates  or  rectangular  coordinates  are  used  as  basis  for  the 
structure  of  the  phase  space. 

1)  See  f.  inst.  C.  V.  L.  Charlier,  Die  Mechanik  des  Himmels,  Bd   I,  Abt.  1,  §  10. 
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with  the  socalled  "secuhir  peiiurbations"  of  the  orbit,  characterised  by  the  total 
variation  of  these  constants  taken  over  a  time  interval  long  compared  with  the 

period  of  the  osculating  orbit.  As  we  shall  see  below,  these  variations  may,  with 

an  approximation  sufficient  for  our  purpose,  be  obtained  directly  by  taking  mean 

values  on  both  sides  of  the  equations  (44).  Before  entering  on  these  calculations, 

however,  it  may  be  observed  that  the  part  played  by  the  constants  a^  and  /?j  differs 

essentially  from  that  played  by  the  other  orbital  constants  a^,  ...as,  /?2?  •  ̂s- 

Thus  from  the  formulae  (17)  and  (18)  on  page  19,  it  follows  that  Qj  is  the  total 

energy  corresponding  to  the  osculating  orbit,  while  /?i  will  represent  the  moment 

in  which  the  system  would  pass  some  distinguished  point  in  this  orbit.  If  for  in- 
stance we  consider  the  perturbations  of  a  Keplerian  motion,  we  may  for  /?^  take 

the  so  called  time  of  perihelium  passage.  When  discussing  the  secular  perturba- 
tions of  the  shape  and  position  of  the  orbit,  we  see  therefore  in  the  first  place  that 

the  variations  of  ̂ 9,  may  be  left  out  of  consideration.  Further,  it  follows  from  the 

principle  of  conservation  of  energy,  that  «j  -^  i^  will  remain  constant  during  the 
motion,  and  that  consequently  during  the  perturbations  a^  will  change  only  by 

small  quantities  of  the  same  order  as  Aa^,  where  /  denotes  a  small  constant  of  the 
same  order  of  magnitude  as  the  ratio  between  the  external  forces  and  the  internal 

forces  of  the  system.  Moreover,  since  the  period  a  of  the  undisturbed  motion  de- 
pends on  «j  only,  it  follows  that  the  period  of  the  osculating  orbit  will  remain 

constant  during  the  perturbations,  with  neglect  of  small  quantities  of  the  same 

order  as  ).(t.  On  the  other  hand  it  follows  from  (44)  that,  in  a  time  interval  of  the 

same  order  as  '^U,  the  constants  a.^,  .  .  .  a^,  t^.^,  /?<,  will  in  general  undergo  varia- 
tions of  the  same  order  of  magnitude  as  the  values  of  these  constants  themselves. 

As  mentioned  above,  the  total  variations  of  the  constants  «2,  •  •  «s,  /?2>  •  •  •  l^s, 
which  characterise  the  sec  ular  pert  u  rba  tions  of  the  shape  and  position  of 

the  orbit,  may  be  obtained  by  taking  mean  values  on  both  sides  of  the  equations 

(44).  Introducing  a  function  '/'  of  the  «'s  and  /9's,  equal  to  the  mean  value  of  the 
potential  IJ  taken  over  a  period  rr  of  the  motion  of  the  undisturbed  system  and 

defined  by  the  formula 

IP 

r  =  ̂   \  i?  dl,  (45) 

it  is  easily  seen,  since  <t  depends  only  on  «j,  that  the  mean  values  of  the  partial 

differential  coefficients  of  !J  with  respect  to  a.^,  ...  Og,  f^o,  ■  -  ■  l^s,  taken  over  an  ap- 
proximate period  of  the  perturbed  motion,  may,  if  we  look  apart  from  small 

quantities  proportional  to  /-',  be  replaced  by  the  values  of  the  corresponding  partial 
differential  coefficients  of  '/'  at  some  moment  within  this  period.  With  the  approx- 

imation mentioned  we  get  therefore 

D.  K-  D.  Vidensk.  Selsk.  Skr.,  natuividensk.  of5  niatheni.  Aid.,  8.  Riekke,  IV.  \.  ^ 
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where  the  differential  symbols  on  the  left  sides  are  written  to  indicate  mean  values 

of  the  rates  of  variation  of  the  orbital  constants  during  an  approximate  period  of 

the  perturbed  motion.  From  the  definition  of  '/'  it  follows  that  this  quantity  in 
general  will  depend  on  «j  as  well  as  on  a^,  .  .  .  «s,  t^^,  ■  ■  ■  fig,  but  that  it  will  not 

depend  upon  /9i.  From  the  above  considerations  it  foUow^s  further  that,  with  the 
approximation  in  question,  «j  may  be  considered  as  a  constant  in  the  expressions 
on  the  right  sides  of  (46),  while  for  a^,  .  .  .  Ug,  fi^,  .  .  .  /?..  we  may  take  a  set  of  values 

corresponding  to  some  moment  within  the  period  to  which  the  mean  values  on  the 
left  sides  refer. 

It  will  be  seen  that  the  equations  (46)  allow  to  follow  the  secular  perturbations 

during  a  time  interval  sufficiently  long  for  the  external  forces  to  produce  a  con- 
siderable change  in  the  shape  and  position  of  the  original  orbit,  if  in  the  total 

variations  of  the  orbital  constants  a^,  .  .  .  Ug,  /Jg  •  .  . /?«  we  look  apart  from  small 

quantities  of  the  same  order  as  the  small  oscillations  of  these  constants  within  a 

single  period.  As  a  consequence  of  the  secular  variations,  the  orbit  will  pass  through 

a  cycle  of  sliapes  and  positions,  which  will  depend  on  its  original  shape  and  posi- 
tion and  on  the  character  of  the  perturbing  field,  but  not  on  the  intensity  of  this 

field,  hi  fact,  as  seen  from  (46),  the  variations  in  the  shape  and  position  of  the  orbit 

will  remain  tlie  same  if  ̂ '  is  multiplied  by  a  constant  factor,  which  will  only  in- 
fluence the  rate  at  which  these  variations  are  performed.  It  will  further  be  observed 

that  the  problem  of  determining  the  secular  perturbations  by  means  of  (46)  con- 
sists in  solving  a  set  of  equations  of  the  same  type  as  the  Hamiltonian  equations 

of  motion  for  a  system  of  s — 1  degrees  of  freedom.  In  these  equations  the  quantity 
¥  plays  formally  the  same  part  as  the  total  energy  in  the  usual  mechanical  problem, 

and  in  analogy  with  the  principle  of  conservation  of  energy  it  follows  directly  from 

(46)  that,  with  neglect  of  small  quantities  proportional  to  /-,  the  value  of  '/will 
remain  constant  during  the  perturbations,  even  if  the  external  forces  act 

through  a  time  interval  of  the  same  order  as  <^lk.  In  fact,  with  neglect  of  small 

quantities  proportional  to  /•',  we  have 

DJ  ̂ ^  idJF  Dak   I    5jr  Dpj,\    _   V^  /       5  y  5  '/•       5  '/'  djn   _ 

Dt    ~^    U«it    Df^d/Sk    Dt  )  ~~^    \      dah  di3k'^  dju  daj   ̂      " 

Since  at  any  moment  '/'"  will  differ  only  by  small  quantities  proportional  to  A^ 
from  the  mean  value  of  the  potential  of  the  external  forces  taken  over  an  approx- 

imate period  of  the  perturbed  motion,  it  follow^s  from  the  above  that,  with  neglect 
of  small  quantities  of  this  order,  also  the  mean  value  of  the  inner  energy  a^  of  the 

perturbed  system,  taken  over  an  approximate  period,  will  remain  constant  during 

the  perturbations,  even  if  the  perturbing  forces  act  through  a  time  interval  long 

enough  to  produce  a  considerable  change  in  the  shape  and  position  of  the  orbit. 

In  the  special  case,  where  the  perturbed  system  allows  of  separation  of  variables, 
this  last  result  may  be  shown  to  follow  directly  from  formula  (28)  in  Part  I. 

Taking    for    the   time  interval  d   in  this  formula   the   period  o   of   the   undisturbed 
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motion,  we  get  N^  =  xk^  where  X]^,  .  .  .  Xg  are'  the  numbers  entering  in  formula 
(23).  Comparing  a  given  perturbed  motion  of  the  system  with  some  undisturbed 
motion  of  which  it  may  be  regarded  as  a  small  variation,  we  get  therefore  from 

(28),  with  neglect  of  small  quantities  proportional  to  the  square  of  the  intensity 
of  the  external  forces, 

dEdl  =^xudh.  (47) 

where  the  /'s  are  calculated  with  respect  to  a  set  of  coordinates  in  which  a  separa- 
tion can  be  obtained  for  the  perturbed  motion,  and  where  o  E  is  the  difference 

between  the  total  energy  of  the  undisturbed  motion  and  the  energy  which  the 

system  would  possess  in  its  perturbed  state,  if  the  external  forces  vanished  suddenly 
at  the  moment  under  consideration,  and  which  in  the  above  calculations  was 

denoted  by  «,.  Now  the  energy  E  of  the  undisturbed  motion  is  determined  com- 
pletely by  the  value  of  /  =  l!xiJk.  If  therefore  the  perturbed  motion  is  all  the 

time  compared  with  a  neighbouring  undisturbed  motion  of  given  constant  energy, 

it  follows  directly  from  (47),  that,  with  neglect  of  small  quantities  of  the  same  order 

as  the  square  of  the  external  forces,  the  integral  on  the  left  side,  taken  over  an 

approximate  period  of  the  perturbed  motion,  will  remain  unaltered  during  the  per- 
turbations through  any  time  interval,  however  long. 

Before  proceeding  with  the  applications  of  the  equations  (46)  which  apply  to 

the  case  of  a  constant  perturbing  field,  it  will  be  necessary  to  consider  the  effect 
of  n  slow  and  uniform  establishment  of  the  external  field.  Let  us 

assume  that,  within  the  interval  0  <  /  <  H  where  t/  denotes  a  quantity  of  the  same 

order  as  '^  /,  the  intensity  of  the  external  field  increases  uniformly  from  zero  to  the 
value  corresj)onding  to  the  potential  iL  Since  the  variation  in  the  perturbing  field 

during  a  single  period  will  only  be  a  small  quantity  of  the  same  order  as  /^,  we 

see  in  the  first  place  that  the  secular  variations  of  the  constants  a,,  ■  •  •  «s,  /3*2'  •  •  l^s, 
with  the  same  approximation  as  for  a  constant  field,  will  be  given  by  a  set  of  equa- 

tions of  the  same  form  as  (46),   with  the  only  difference   that  '/'is  replaced  by    ̂'J'. 
Moreover  it  may  be  shown  that  in  these  equations  the  quantity  a^  may  be  con- 

sidered as  constant,  just  as  in  the  equations  which  hold  for  a  constant  perturbing 

field.  In  fact  the  total  variation  in  a^  at  any  moment  t  will  be  equal  to  the  total 

work  performed  by  the  external  forces  since  the  beginning  of  the  establishment 

of  the  perturbing  field,  and  will  therefore  be  given  by 

'''"■- -J'l  2^  «l*''"  =  iS''"""^''" 

(48) 

where  the  expression  on  the  right  side  is  obtained  by  partial  integration;  but,  since  both 

terms  in  this  expression  are  of  the  same  order  of  magnitude  as  Xa^,  we  see  that  the 
7* 
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total  variation  in  a^  within  the  interval  in  question  will,  just  as  in  case  of  a  con- 
stant perturbing  field,  be  only  a  small  quantity  of  this  order.  We  get  therefore 

the  result,  that,  for  the  same  shape  and  position  of  the  original  orbit,  the  cycle  of 

shapes  and  positions  passed  through  by  the  orbit  during  the  increase  of  the  external 
field  Nvill  be  the  same  as  that  which  would  appear  for  a  constant  perturbing  field, 

and  that,  with  neglect  of  small  quantities  proportional  to  /^,  the  value  of  the 

function  '/"  will  consequently  remain  constant  during  the  establishment  of  the  field. 
With  this  approximation  we  get  therefore  from  (48),  putting  t  =  ̂ , 

'9 

i\''
 

which  shows  that  the  change  in  the  total  energy  of  the  system,  due  to  the  slow  and 

uniform  establishment  of  the  external  field,  is  just  equal  to  the  value  of  the  func- 

tion '/■  and  consequently  equal  to  the  mean  value  of  the  potential  of  the  external 
forces  taken  over  an  approximate  period  of  the  perturbed  motion.  This  result  may 

also  be  expressed  by  stating,  that,  with  neglect  of  small  quantities  proportional  to  the 
square  of  the  external  forces,  the  mean  value  of  the  inner  energy  taken  over  an 

approximate  period  of  the  perturbed  motion  will  be  equal  to  the  energy  possessed 

by  the  system  before  the  establishment  of  the  perturbing  field. 
Returning  now  to  the  problem  of  the  fixation  of  the  stationary  states  of  a 

periodic  system  subject  to  the  influence  of  a  small  external  field  of  constant  potential, 
we  shall  l)ase  our  considerations  on  the  fundamental  assumption  that  these  states 

are  distinguished  between  the  continuous  multitude  of  mechanically  possible  states 

by  a  relation  between  the  additional  energy  of  the  system  due  to  the  presence  of 

the  external  field  and  the  frequencies  of  the  slow  variations  of  the  orbit  produced 

by  this  field,  which  is  analogous  to  the  relation  discussed  on  page  42  in  the  special  case 

in  which  the  perturbed  system  allows  of  separation  of  variables  in  a  fixed  set  of 

coordinates.  On  this  assumption  we  shall  expect  in  the  first  place  that,  apart  from 

small  quantities  proportional  to  /,  the  cycles  of  shapes  and  positions  of  the  orbit 

belonging  to  the  stationary  states  of  the  perturbed  system  will  depend  only  on  the 

character  of  the  external  field,  but  not  on  its  intensity.  Since  now,  as  shown  above, 

such  a  cycle  will  remain  unaltered  during  a  slow  and  uniform  increase  of  the  in- 

tensity of  the  external  field  if  the  efl'ect  of  the  external  forces  is  calculated  by  means 
of  ordinary  mechanics,  w^e  are  therefore,  with  reference  to  the  principle  of  the 
mechanical  transformability  of  the  stationary  states,  led  to  the  conclusion  that  it  is 

possible  by  direct  application  of  ordinary  mechanics,  not  only  to  follow  the  secular 

perturbations  of  the  orbit  in  the  stationary  states  corresponding  to  a  constant  ex- 
ternal field,  but  also  to  calculate  the  variation  in  the  energy  of  the  system  in  the 

stationary  states  which  results  from  a  slow  and  uniform  change  in  the  intensity  of 

this  field.  If  we  denote  the  energy  in  the  stationary  states  of  the  perturbed  system 

by  En  -\-  t^,  where  En  is  the  value  of  the  energy    in   the  stationary  state  of  the  un- 
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disturbed  system  characterised  by  a  given  entire  value  of/?  in  the  condition  I  =  nh, 

we  may  therefore  conclude  from  the  above  that  the  additional  energy  ©  in 

the  stationary  states  of  the  perturbed  system  will  be  equal  to  the 

value  in  these  states  of  the  function  V  defined  by  (45),  it  we  look 

apart  from  small  quantities  proportional  to  the  square  of  the  in- 
tensity of  the  external  forces.  It  will  be  seen  that  this  result  is  equivalent 

to  the  statement,  that  the  mean  value  of  the  inner  energy  taken  over  an  approximate 

period  of  the  perturbed  motion  will  be  equal  to  the  value  £„  of  the  energy  in  the 

corresponding  stationary  state  of  the  undisturbed  system.  In  case  of  the  perturbed 
system  allowing  of  separation  of  variables  in  a  fixed  set  of  coordinates,  this  result 

may  be  simply  shown  to  be  a  direct  consequence  of  the  fixation  of  the  stationary 

states  by  means  of  the  conditions  (22).  In  fact,  if  we  assume  that  the  undis- 
turbed motion,  considered  in  (47),  corresponds  to  some  stationary  state,  satisfying  (24) 

for  a  given  value  of  n,  and  that  the  perturbed  motion  is  also  stationary  and  satis- 
fies (22),  we  see  that  the  right  side  of  (47)  will  be  zero,  and  we  get  the  result  that 

the  mean  value  ot  the  inner  energy  in  the  stationary  states  of  the  system,  with  the 

approximation  mentioned,  will  not  be  altered  in  the  presence  of  the  external  field. 

Due  to  the  above  result  that  the  additional  energy  (i  in  the  stationary  states 

of  the  perturbed  system,  with  neglect  of  small  quantities  proportional  to  /^,  may 

be  taken  equal  to  the  value  in  these  states  of  the  function  '/'"  entering  in  the 
ecjualions  (46)  which  determine  the  secular  perturbations  of  the  orbits,  we  arc 
now  able  to  draw  further  conclusions  from  the  fact,  mentioned  above,  that  these 

equations  are  of  the  same  type  as  the  Hamiltonian  equations  of  motion  for  a 

mechanical  system  of  .s  —  1  degrees  of  freedom.  In  fact,  we  see  that  the  fixation 

of  the  stationary  states  of  the  perturbed  system  is  reduced  to  a  pro- 
blem which  is  formally  analogous  to  the  fixation  of  these  states  for 

a  mechanical  system  of  less  degrees  of  freedom.  As  it  will  appear  from 

the  following  a])plications  this  problem  may,  quite  independent  of  the  possibility  of 

separation  of  variables  for  the  perturbed  system,  be  treated  directly  on  the  basis  ol' 
the  fundamental  relation  between  energy  and  frequency  in  the  stationary'  states  of 
periodic  or  conditionally  periodic  systems,  discussed  in  Part  I,  if  only  the  solution 

of  the  equations  (46)  is  of  a  periodic  or  conditionally  periodic  character.  In  this  con- 
nection it  may  once  more  be  emphasised  that  these  equations,  according  to  the 

manner  in  which  they  were  deduced,  allow  to  follow  the  secular  perturbations  only 

through  a  time  interval  of  the  same  order  of  magnitude  as  that  sufficient  for  the 

external  forces  to  produce  a  finite  alteration  in  the  shape  and  position  of  the  orbit. 
With  reference  to  the  necessary  stability  of  the  stationary  states  of  an  atomic  system, 

it  seems  justified,  however,  to  conclude  that  any  possible  small  discrepancy  between 

the  motion  to  be  expected  from  a  rigorous  application  of  ordinary  mechanics  and  that 
determined  by  a  calculation  of  the  secular  perturbations,  based  on  the  equations 

(46),  cannot  cause  a  material  change  in  the  character  of  the  stationary  states  as 

fixed   i)y  a  consideration  of  the  periodicity  properties  of  these  perturbations.  On  the 
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other  hand,  from  the  point  of  view  of  the  general  formal  relation  between  the 

quantum  theory  and  the  ordinary  theory  of  radiation,  we  must  be  prepared  to  find 
that  the  motion  and  the  energy  in  the  stationary  states  of  a  perturbed  periodic 

system,  for  which  we  only  know  that  the  secular  perturbations  as  determined  by 
(46)  are  of  conditionally  periodic  type,  will  not  be  as  sharply  defined  as  the  motion 
and  the  energy  in  the  stationary  states  of  a  conditionally  periodic  system  for  which 

the  equations  of  motion  allow  of  a  rigorous  solution  by  means  of  the  method  of 

separation  of  variables.  Thus,  if  we  consider  a  large  number  of  similar  atomic 

systems  of  the  type  in  question,  we  may  be  prepared  to  find  that  the  values  of  the 

additional  energy  in  a  given  stationary  state  will  for  the  difi'erent  systems  deviate 
from  each  other  by  small  quantities;  but  it  must  be  expected  that  the  values  of 

the  additional  energy  for  the  large  majority  of  systems  will  differ  from  the  value 

of  ¥,  as  determined  by  the  method  indicated  above,  only  by  small  quantities  pro- 

portional to  /^,  and  that  only  for  a  small  fraction  (at  most  of  the  same  order  as 

/^)  of  the  systems  the  values  of  the  additional  energy  will  show  deviations  from 

this  value  of  '/''  which  are  of  the  same  order  as  ?.. 

As  to  the  application  of  the  preceding  considerations  to  special  problems,  it  will 

be  seen  in  the  first  place  that  in  case  of  a  perturbed  periodic  system  pos- 
sessing two  degrees  of  freedom,  as  for  instance  that  considered  in  the  example 

on  page  43,  the  problem  of  the  fixation  of  the  stationary  states  of  the  perturbed 

system  in  the  presence  of  a  small  external  field  allows  of  a  general  solution  on 

the  basis  of  the  method  developed  above,  because  in  this  case  the  secular  per- 
turbations will  in  general  be  simply  periodic.  In  fact,  in  this  case  the  shape  and 

position  of  the  orbit  are  characterised  by  two  constants  «,  and  ̂ ^,  and  from  the 

equations  (46),  which  will  be  analogous  to  the  equations  of  motion  of  a  system  of 

one  degree  of  freedom,  it  follows  directly  that  during  the  perturbations  a.,  will  be 

a  function  of  ft.^  and  that  in  general  these  quantities  will  be  periodic  functions  of 

the  time  with  a  period  ̂   which,  besides  on  a^,  will  depend  on  the  value  of  ¥  only. 

Considering  two  slightly  different  states  of  the  perturbed  system  for  which  the 
corresponding  states  of  the  undisturbed  system  (i.  e.  the  states  which  would  appear 
if  the  external  forces  vanished  at  a  slow  and  uniform  rate)  possess  the  same  energy 
and  consequently  the  same  value  for  the  quantity  /  defined  by  (5),  we  get  therefore 
by  a  calculation  completely  analogous  to  that  leading  to  relation  (8)  in  Part  I,  which 
was  deduced  directly  from  the  Hamiltonian  equations,  for  the  difference  in  the 
values  of  the  function  V'  for  these  two  states 

d¥=od^,  (49) 

where  o  =  -  is  the  frequency  of  the  secular  perturbations,  and  where  the  quantity 
3  is  defined  by 

ni^,,  (50) 
C^«  = S:->''\'- 
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where  the  hitler  integral  is  taken  over  a  complete  oscillation  of  /J,.  In  order  to  fix 

the  stationary  states,  it  will  now  be  seen  in  the  first  place  that,  among  the  multi- 

Inde  of  states  of  the  perturbed  system  for  which  the  value  of/  in  the  corresponding 
states  of  the  undisturbed  system  is  equal  to  nh  where  n  is  a  given  positive  integer, 

the  state  for  which  ̂ s  =  0  must  beforehand  be  expected  to  be  a  stationary  state.  In 
fact,  for  this  value  of  ̂ ,  the  shape  and  position  of  the  orbit  will  not  undergo  secular  per- 
lurbations  but  will  remain  unaltered  for  a  constant  external  field  as  well  as  during  a  slow 

and  uniform  establishment  of  this  field.  In  contrast  to  what  in  general  will  take  place 
during  a  slow  establishment  of  the  external  field,  we  may  therefore  expect  that,  for 

this  special  shape  and  position  of  the  orbit,  a  direct  application  of  ordinary  mechanics 
will  be  legitimate  in  calculating  the  effect  of  the  establishment  of  the  field,  since 

there  will  in  this  case  obviously  be  nothing  to  cause  the  coming  into  play  of  some 

non -mechanical  process,  connected  with  the  mechanism  of  a  transition  between 
two  stationary  states  accompanied  by  the  emission  or  absorption  of  a  radiation  of 

small  fre(iuency.  With  reference  to  relation  (49)  we  see  therefore  that,  by  fixing  the 

stationary  states  of  the  perturbed  system  by  means  of  the  condition 

S  —  nh,         .  (51) 

whcMe  11  is  an  entire  number,  we  obtain  a  relation  between  the  additional  energy 

ii"  V  of  the  system  in  the  presence  of  the  field  and  the  frequency  o  of  the  secular 
perlurbations,  which  is  exactly  of  the  same  type  as  that  which  holds  betw'een  the  energy 
and  fre(|uency  in  the  stationary  states  of  a  system  of  one  degree  of  freedom,  and 

which  is  expressed  by  (8)  and  (10),  By  means  of  (51)  it  is  possible,  with  neglect  of 

small  quantities  proportional  to  the  square  of  the  perturbing  forces,  directly  to 

determine  the  value  of  the  additional  energy  in  the  stationary  states  of  a  periodic 

system  of  two  degrees  of  freedom  subject  to  an  arbitrarily  given  small  external  field 

of  force,  and  consequently  with  this  approximation,  by  use  of  the  fundamental  rela- 
tion (1),  to  determine  the  effect  of  this  field  on  the  frequencies  of  the  spectrum  of  the 

undisturbed  periodic  system.  In  general  this  efiect  will  consist  in  a  splitting  up  of 
each  of  the  spectral  lines  into  a  number  of  components  which  are  displaced  from 

I  he  original  position  of  the  line  by  small  quantities  proportional  to  the  intensity  of 
the  external  forces. 

When  we  i)ass  to  perturbed  periodic  systems  of  more  than  two  degrees 

of  freedom,  the  general  problem  is  more  complex.  For  a  given  external  field, 

how^ever,  it  may  be  possible  to  choose  a  set  of  orbital  constants  a^,  ...  ««, 

/9.,,  •  •  •  /3*.v  in  such  a  way,  that  during  the  motion  every  of  the  «'s  will  depend  on 

the  corresponding  /9  only,  while  every  of  the  ;5's  will  oscillate  between  two  fixed 
limits.  From  analogy  with  the  theory  of  ordinar\  conditionally  periodic  systems 
whioh  allow  of  separation  of  variables,  the  perturbations  may  in  such  a  case  be 

said  to  be  conditionally  periodic,  and,  from  a  calculation  quite  analogous  to 

that  leading  to  equation  (29)  in  Part  I  which  is  based  entirely  on  the  use  of  the 

Hamiltonian  equations,  we  get  for  the  diflerence  in  '/'for  two  slightly  different  states 
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of  the  perturbed  system,  lor  which  the  value  of  /  in  the  corresponding  states  of  the 

undisturbed  system  is  the  same, 

dtp- 

=^d,<?Sa-.  (52) 

where  Oa-  is  the  mean  frequency  of  oscillation  of /?a- + 1  between  its  limits,  and  where 

the  quantities  ̂ va-  are  defined  by 

Sfc  =  *!«A-+i/)/9/c  +  i,      (A^  =  l,....s-l)  (53) 

where  the  integral  is  taken  over  a  complete  oscillation  of /?a  + 1.  In  analogy  with 

the  expression  (31)  for  the  displacements  of  the  particles  of  an  ordinary  condition- 

ally periodic  system  which  allows  of  separation  of  variables,  we  get  further  in  the 

present  case  that  every  of  the  a's  and  /9's  may  be  expressed  as  a  function  of  the 
time  by  a  sum  of  harmonic  vibrations  of  small  frequencies 

«1 

==  2'(s t. . . .  t,„ ,  cos  2  ;r  { (t^  o,  +  .  .  .  t^  - 1  o,  _  i)  /  ̂   Ct„ . .  .t,_ ,  } ,  (54) 

where  the  S's  and  c's  are  constants,  the  former  of  which,  besides  on  /,  depend  on 

the  S's  only,  and  where  the  summation  is  to  be  extended  over  all  positive  and 

negative  entire  values  of  the  t's.  If  therefore  the  secular  perturbations  are  con- 
ditionally periodic,  we  may  conclude  that  the  stationary  states  of  the  perturbed 

system,  corresponding  to  a  given  stationary  state  of  the  undisturbed  system,  will  be 

characterised  by  the  s  —  1  conditions 

»;t  =  H/c/j,       {k  =  1,  ...s-l)  (55) 

where  itj,  .  . .  ii^  i  form  a  set  of  entire  numbers.  In  fact,  as  seen  from  (52),  we  obtain 
in  this  way  a  relation  between  the  additional  energy  and  the  frequencies  of  the 

secular  perturbations  of  exactly  the  same  type  as  that  holding  for  the  energy  and 

frequencies  of  ordinary  conditionally  periodic  systems  and  expressed  by  (22)  and 
(29);  moreover  we  may  conclude  beforehand  that  the  state  in  which  every  of  the 

quantities  Zk-,  defined  by  (53),  is  equal  to  zero  must  belong  to  the  stationary  states  of  the 
perturbed  system,  because  in  this  case  the  orbit  will  not  undergo  secular  perturbations 
for  a  constant  external  field,  nor  during  a  slow  and  uniform  establishment  of  this 

iield.  Since  the  conditions  (55),  with  neglect  of  small  quantities  proportional  to  the 
square  of  the  intensities  of  the  external  forces,  allow  to  determine  the  additional 

energy  of  the  system  due  to  the  presence  of  the  external  field,  we  see  therefore  that 

the  effect  of  this  field  on  the  spectrum  of  the  undisturbed  system,  if  the  secular 

perturbations  are  conditionally  periodic,  will  consist  in  a  splitting  up  of  each  spec- 
tral line  in  a  number  of  components,  in  analogy  with  the  effect  of  a  perturbing 

field  on  the  spectrum  of  a  periodic  system  of  two  degrees  of  freedom.  In  general, 

however,   the   perturbations,  which    a   periodic  system   of  more  than  two  degrees  of 
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freedom  undergoes  in  the  presence  of  a  given  external  field,  cannot*  be  expected 
to  be  conditionally  periodic  and  to  exhibit  periodicity  properties  of  the  type  ex- 

pressed by  formula  (54).  In  such  cases  it  seems  impossible  to  define  stationary 
states  in  a  way  which  leads  to  a  complete  fixation  of  the  total  energy  in  these 
states,  and  we  are  therefore  led  to  the  conclusion,  that  the  etlect  of  the  external 

field  on  the  spectrum  will  not  consist  in  the  splitting  up  of  the  spectral  lines  of  the 
original  system  into  a  number  of  sharp  components,  but  in  a  diffusion  of  these 

lines  over  spectral  intervals  of  a  width  proportional  to  the  intensity  of  the  external 
forces. 

In  special  cases  in  which  the  secular  perturbations  of  a  perturbed  periodic 

system  of  more  than  two  degrees  of  freedom  are  of  conditionally  periodic  type,  it 
may  occur  that  these  perturbations  are  characterised  by  a  number  of  fundamental 

frequencies,  which  is  less  than  s  —  1.  In  such  cases,  in  which  the  perturbed  periodic 
system  from  analogy  with  the  terminology  used  in  Part  I  may  be  said  to  be 
degenerate,  the  necessary  relation  between  the  additional  energy  and  the  frequencies 

of  the  secular  perturbations  is  secured  by  a  number  of  conditions-  less  than  that 
given  by  (55),  and  the  stationary  states  are  consequently  characterised  by  a  number 
of  conditions  less  than  s.  With  a  typical  example  of  such  systems  we  meet  if,  for 

a  perturbed  periodic  system  of  more  than  two  degrees  of  freedom,  the  secular  per- 
turbations are  simply  periodic  independent  of  the  initial  shape  and  position  of 

the  orbit.  In  direct  analogy  to  what  holds  for  perturbed  periodic  systems  of  two 

degrees  of  freedom,  the  diflerence  between  the  values  of  ̂ '  in  two  slightly  different 
states   of  the   perturbed   system,  corresponding   to   the   same   value  of  /,  will  in  the 
present  case  be  given  bv 

d(f'=  od2,  (56) 

where  o  is  the  frequency  of  the  secular  perturbations,  and  where  ̂   is  defined  by 

3=\    >  «.^t'".  (5') 

where  y  =  Vq  is  the  period  of  the  perturbations.  We  may  therefore  conclude  that 

the  stationary  states  of  the  perturbed  system,  corresponding  to  a  given  stationary 

state  of  the  undisturbed  system,  will  be  characterised  by  the  single  condition 

S  =  n/1,  (58) 

in  which  u  is  an  entire  number,  and  which  will  be  seen  to  be  completely  analogous 

to  the  condition  which  fixes  the  stationary  states  of  ordinary  periodic  systems  of 
several  degrees  of  freedom. 

In  the  following  sections  we  shall  apply  the  preceding  considerations  to  the 

problem  of  the  fixation  of  the  stationary  states  of  the  hydrogen  atom, 

when  the  relativity  modifications  are  taken  into  account,  and  when  the  atom  is  ex- 

posed to  small   external   fields.    In   this  discussion  we  shall    for  the  sake  of  simpli- 
D.  K.  D.  Vidensk.  Selsk.  Ski.,  naturvitlensk.  og  mathem.  Afd.,  8.  Ra;kke,  IV.  1 .  S 
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city  consider  the  mass  of  the  nucleus  as  infinite  in  the  calculations  of  the  pertur- 
bations of  the  orbit  of  the  electron.  This  involves,  in  the  expression  for  the  additional 

energy  of  the  system,  the  neglect  of  small  terms  of  the  same  order  as  the  product 

of  the  intensity  of  the  external  forces  with  the  ratio  between  the  mass  of  the  elec- 
tron and  the  mass  of  the  nucleus,  but  due  to  the  smallness  of  the  latter  ratio 

the  error  introduced  by  this  simplification  will  be  of  no  importance  in  the  com- 

parison of  the  results  with  the  measurements.  Since  in  the  case  under  consideration 

the  system  possesses  three,  degrees  of  freedom,  the  equations  which  determine  the 

secular  perturbations  of  the  orbit  of  the  electron  will  correspond  to  the  equations 

of  motion  of  a  system  of  two  degrees  of  freedom,  and  it  will  therefore  not  be  pos- 

sible to  give  a  general  treatment  of  the  problem  of  the  stationary  states.  Thus,  for 

any  given  external  field,  w^e  meet  with  the  question  whether  the  perturbations  are 

conditionally  periodic  and,  if  so,  in  what  set  ot  orbital  constants  this  periodicity 

may  be  conveniently  expressed.  Now,  in  many  spectral  problems,  the  external  field 

possesses  axial  symmetry  round  an  axis  through  the  nucleus,  and  in  this 

case  it  is  easily  shown  that  the  problem  of  the  fixation  of  the  stationary  states 

allows  of  a  general  solution.  A  choice  of  orbital  constants  which  is  suitable  for  the 
discussion  of  this  problem,  and  which  is  well  known  from  the  astronomical  theory 

of  planetary  perturbations,  is  obtained  by  choosing  for  (u  the  total  angular  momentum 

of  the  electron  round  the  nucleus  and  for  a^  the  component  of  this  angular  mo- 

mentum round  the  axis  of  the  field.  For  the  set  of  ̂ 's,  corresponding  to  this  set  of 

a's,  we  may  take  /92  equal  to  the  angle,  which  the  major  axis  makes  with  the  line 
in  which  the  plane  of  the  orbit  cuts  the  plane  through  the  nucleus  perpendicular 

to  the  axis  of  the  field,  and  /Jg  equal  to  the  angle  between  this  line  and  a  fixed 

direction  in  the  latter  plane.  For  the  problem  under  consideration  it  will  be  seen 

that,  with  this  choice  of  constants,  the  mean  value  ̂ '  of  the  potential  of  the  per- 
turbing field  will,  besides  on  «^,  generally  depend  on  (u  and  p'g  as  well  as  on  a^, 

but  due  to  the  symmetry  round  the  axis  it  will  obviously  not  depend  on  ̂ ^  In 

consequence  of  this,  the  equations  (46),  w^hich  determine  the  secular  perturbations, 
will  possess  the  same  form  as  the  Hamiltonian  equations  of  motion  for  a  particle 

moving  in  a  plane  and  subject  to  a  central  field  of  force.  Thus  corresponding  to  the 

conservation  of  angular  momentum  for  central  systems,  we  get  in  the  first  place 

from  (46)  that  a^  will  remain  unaltered  during  the  perturbations.  Next  corresponding 

to  the  simple  periodicity  of  the  radial  motion  in  central  systems,  we  see  from  (46), 

if  ag  as  well  as  a^  is  considered  as  a  constant,  that  during  the  perturbations  a^  will 

be  a  function  of  ̂ ^  and  vary  in  a  simple  periodic  way  w^th  the  time.  The  per- 
turbations of  the  orbit  of  the  electron  produced  by  an  external  field  which  pos- 

sesses axial  symmetry  will  therefore  always  be  of  conditionally  periodic  type, 

quite  independent  of  the  possibility  of  separation  of  variables  for  the  perturbed 

system.  As  regards  the  form  of  the  conditions  which  fix  the  stationary  states,  it  may 

be  noted,  however,  that  with  the  choice  of  orbital  constants  under  consideration 

the  /i's  will   not,   as  it  was  assumed    for  the   sake  of  simplicity   in  the  general  dis- 
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cussion  on  page  o2,  oscillale  between  fixed  limits,  but  it  will  De  seen  that  ji^  (hiring 
the  perturbations  may  either  oscillate  between  two  such  limits  or  increase  (or  de- 

crease) continuously,  while  /?,  will  always  vary  in  the  latter  manner.  This  con- 
stitutes, however,  only  a  formal  difficulty  of  the  same  kind  as  that  mentioned  in 

Fart  I  in  connection  with  the  discussion  of  the  conditions  (IG),  which  fix  the 

stationary  states  of  a  system  consisting  of  a  particle  moving  in  a  central  field  of 

force.  Thus  from  a  simple  consideration  it  will  be  seen  that,  in  comj)lete  analogy 

to  the  relations  (52)  and  (5;^),  we  get  in  the  present  case  for  the  difference  between 

the  energy  of  two  slightly  dilferent  states  of  the  perturbed  system,  which  correspond 
to  the  same  value  of  /, 

<?'/•=  Oi<?rvj  +  o,oTs,,  (59) 

where  v\  is  the  frequency  with  which  the  shape  of  the  orbit  and  its  jjosition  rela- 

tive to  the  axis  of  the  field  repeats  itself  at  regular  intervals  and  which  is  charac- 
terised by  the  variation  of  o..,  and  [i.^,  while  o^  is  the  mean  frequency  of  rotation  of 

the  plane  of  the  orbit  round  this  axis  characterised  by  the  variation  of  /9., ,  and 

where  C^i  and  ̂ 2  '^'e  defined  by  the  equations 

i^^i,  %    =    \«:!^>'/5:5    ̂     27ia^.  (60) 

In  case  ,i.y  varies  in  an  oscillating  manner  with  the  time,  the  first  integral  must  be 

taken  over  a  complete  oscillation  of  this  orbital  constant,  while,  if  /P,  during  the 

perturbations  increases  or  decreases  continuously,  the  integral  in  the  expression  for 

5$i  must  be  taken  over  an  interval  of  2;r,  just  as  the  integral  in  the  expression 

for  ̂ 2-  ̂ y  fi>^ing  the  stationary  states  of  the  perturbed  system  by  means  of  the  two 

conditions') 
3j  =  iii/j,       ̂ 2  =  "2/^  (61) 

where  n,  and  ii,  are  entire  numbers,  it  will  therefore  be  seen  that  we  obtain  the  right 

relation  between  the  additional  energy  (S  =  '/'  of  the   perturbed  atom  and  the  fre- 

M  Quite  apart  from  the  problem  of  perturbed  periodic  sj'stems,  the  second  of  tliese  conditions 
would  also  follow  directly  from  certain  interesting  considerations  of  Epstein  (Ber.  d  D.  Phys.  Ges.  XIX. 

p.  116  (1917))  about  the  stationary  states  of  systems  which  allow  of  what  may  be  called  "partial  separa- 

tion of  variables  '.  In  this  case  it  is  possible  to  choose  a  set  of  positional  coordinates  q-^,  .  .  .  qs  \n  such 
a  way  that,  for  some  of  the  coordinates,  the  conjugated  momenta  may  be  considered  as  functions  of 

the  corresponding  q's  only,  so  that,  for  these  coordinates,  quantities  /  may  be  defined  by  f21)  in  the 
same  way  as  for  systems  for  which  a  complete  separation  of  variables  can  be  obtained.  From  analogy 

with  the  theory  of  the  stationary  states  of  the  latter  sj'stems,  Epstein  proposes  therefore  the  assump- 
tion, that  some  of  the  conditions  to  be  fulfilled  in  the  stationary  states  of  the  systems  in  question  may 

be  obtained  by  putting  the  /'s  thus  defined  equal  to  entire  multipla  of  h.  It  will  be  seen  that,  in  case 
of  systems  possessing  an  axis  of  symmetry,  this  leads  to  the  second  of  the  conditions  (61),  which  ex- 

presses the  condition  that  in  the  stationary  states  the  total  angular  momentum  round  the  axis  must 

be  equal  to  an  entire  multiple  of  /j/2n-.  As  pointed  out  in  Part  I  on  page  34,  this  condition  would  also 
seem  to  obtain  an  independent  support  from  considerations  of  conservation  of  angular  momentum 

during  a  transition  between  two  stationary  states. 

8*
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queiicies  of  Ihc  secular  perlurl)ations  of  the  orbit  of  the  electron.  It  will  moreover  be 
seen  that  a  state  in  which  the  electron  moves  in  a  circular  orbit  perpendicular  to 

the  axis  of  the  field,  and  which  beforehand  must  be  expected  to  belong  to  the 

stationary  states  of  the  perturbed  atom  since  this  orbit  will  not  undergo  secular 

perturbations  during  a  uniform  establishment  of  the  external  field,  will  be  included 
among  the  states  determined  by  (61).  In  fact,  if  n  is  the  number  which  characterises 

the  corresponding  stationary  state  of  the  undisturbed  system,  this  state  of  the 

perturbed  system  will  correspond  to  iij  =  0,  n^  =  n  or  to  n^  =  n,  ii,  =  n,  according 
to  whether  /?2  during  the  perturbations  oscillates  between  fixed  limits,  or  increases 
(or  decreases)  continuously.  As  regards  the  application  of  the  conditions  (61)  it  is 

of  importance  to  point  out  that,  from  considerations  of  the  invariance  of  the  a-priori 

probability  of  the  stationary  states  of  an  atomic  system  during  continuous  trans- 
formations of  the  external  conditions  (see  Part  I,  page  9  and  27),  it  seems  necessary 

to  conclude  that  no  stationary  state  exists  corresponding  to  112  =  0.  For  this  value 
of  Hg  the  motion  of  the  electron  would  take  place  in  a  plane  through  the  axis, 

but  for  certain  external  fields  such  motions  cannot  be  regarded  as  physically 
realisable  stationary  states  of  the  atom,  since  in  the  course  of  the  perturbations  the 

electron  w^ould  collide  with  the  nucleus  (compare  page  68). 
A  special  case  of  an  external  field  possessing  axial  symmetry,  in  which  the 

secular  perturbations  are  very  simple,  presents  itself  if  the  external  forces  form 
a  central  field  wath  the  nucleus  at  the  centre.  In  this  case  the  solution 

of  the  problem  of  the  fixation  of  the  stationary  states  is  given  by  Sommerfeld's 
general  theory  of  central  systems,  discussed  i  Part  1,  which  rests  upon  the  fact  that 
these  systems  allow  of  separation  of  variables  in  polar  coordinates.  In  connection 

with  the  above  considerations  it  may  be  of  interest,  how^ever,  to  consider  the  problem 

in  question  directly  from  the  point  of  view^  of  perturbed  periodic  systems,  because 
it  presents  a  characteristic  example  of  a  degenerate  perturbed  system.  In  the  present 

case  ̂ ' will,  besides  on  a^,  depend  on  a^  only,  and  from  the  equations  (46)  we  get 
therefore  the  w^ell  known  result,  that  the  angular  momentum  of  the  electron  and  the 

plane  of  its  orbit  will  not  vary  during  the  perturbations,  and  that  the  only  secular 
effect  of  the  perturbing  field  will  consist  in  a  slow  uniform  rotation  of  the  direction 

of  the  major  axis.  For  the  frequency  of  this  rotation  we  get  from  (46) 

1    i)/?2  _    1    g  r 

27:    Dt         In  da^' 
(62) 

from  which  we  get  directly  for  the  difference  between  the  values  of  ¥  for  two  neigh- 
bouring states  of  the  perturbed  system,  for  which  the  corresponding  value  of  /  is  the 

^^"'^'  d¥=  2noda^.  (63) 
This  relation,  which  corresponds  to  (56),  is  seen  to  coincide  with  (59),  since  in  the 
present  case  Og  =  0  and  %  =  ̂ na^.  From  (63)  it  follows  that  the  necessary  rela- 

tion between  the  additional  energy  of  the  atom  and  the  frequency  of  the  perturba- 
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lions  is  secured  if  the  stationary  states  in  the  presence  of  a  small  external  central 
field  are  characterised  by  the  condition 

S  =  2;r«2  =  n/i,  (B4) 

where  ii  is  an  entire  number.  This  condition,  which  is  equivalent  with  the  second 

of  Sommerfeld's  conditions  (16),  corresponds  to  (58)  and  is  seen  to  coincide 
with  the  first  of  the  conditions  (61),  while  the  second  of  the  latter  conditions  in  the 

special  case  under  consideration  looses  its  validity  corresponding  to  the  fact  that 
the  orientation  of  the  plane  of  the  orbit  in  space  is  obviously  arbitrary.  Since,  for 
a  Keplerian  motion,  the  major  axis  of  the  orbit  depends  on  the  total  energy  only 
while  the  minor  axis  is  proportional  to  the  angular  momentum,  it  will  be  seen  from 

(64)  that  the  presence  of  a  small  external  field  imposes  the  restriction  on  the  motion 
of  the  atom  in  the  stationary  states,  that  the  minor  axis  ot  the  orbit  of  the  electron 

must  be  equal  to  an  entire  multiple  of  the  n"'  part  of  the  major  axis,  which  was 
given  by  2a„  in  (41).  This  result  has  been  pointed  out  by  Sommerfeld  as  a  con- 

sequence of  the  application  of  the  conditions  (16). 

In  the  preceding  it  has  been  shown  how  it  is  possible  to  attack  the  problem 

of  the  stationary  states  of  a  perturbed  periodic  system  by  an  examination  of  the 
secular  perturbations  of  the  shape  and  position  of  the  orbit,  and  to  fix  these  states 

if  the  perturbations  are  of  periodic  or  conditionally  periodic  type.  While  these  con- 

siderations allow  to  determine  the  possible  values  for  the  total  energy  of  the  per- 
turbed system  and  thereby  the  frequencies  of  the  components  into  which  the 

lines  of  the  spectrum  of  the  undisturbed  system  are  split  up  in  the  presence  of  the 
external  field,  it  is  necessary,  however,  for  the  discussion  of  the  intensities  and 

polarisations  of  these  components  to  consider  more  closely  the  motion  of  the 

particles  in  the  |)erturbed  system  and  the  relation  of  the  total  energy  of  this  system 

to  the  fundamental  frequencies  which  characterise  the  motion.  In  the  first  place  it 

will  be  seen  that,  if  the  secular  perturbations  as  determined  by  the  equations  (46) 

are  of  conditionally  periodic  type,  the  disi)lacements  of  the  particles  of  the  system 

in  any  given  direction  may,  with  neglect  of  small  quantities  proj)ortional  to  the 
intensity  of  the  external  forces,  be  represented,  within  a  time  interval  sufficiently 

large  for  these  forces  to  produce  a  considerable  change  in  the  shape  and  position 

of  the  orbit,  as  a  sum  of  harmonic  vibrations  by  expressions  of  the  type: 

g  =    2'Ct,  ti,  .  .  .   t,_  ,  cos  2  TT  {  (zojp  +  ti  Oj  —  •  •  •  ts-1  Lls_i)  /  -f  Ct,  t^,  ...  t^_ ,  } ,      (65) 

where  the  summation  is  to  be  extended  over  all  positive  and  negative  entire  values 

of  r,  tj,  ...  ts-i,  and  where  the  C's  and  c's  are  two  sets  of  constants,  the  former  of 
which  depend  only  on  the  values  of  the  quantities  3^,  ...  3s  i  defined  by  (53)  and 
on  the  value  of  the  quantity  /,  which  characterises  the  corresponding  state  of  the 

undisturbed  system  which  would  appear  if  the  external  field  vanished  at  a  slow  and 

uniform  rate.  While  the  quantities  i\,  ...  Oj-i  are  the  same  as  those  which  appear 
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in  the  formula  (54),  and  represent  the  small  frequencies  of  the  secular  perturbations 

of  the  shape  and  position  of  the  orbit,  the  quantity  ojj,  may  be  considered  as 

representing  the  mean  frequency  of  revolution  of  the  particles  in  their  approximately 

periodic  orbit.  As  regards  the  total  energy  of  the  perturbed  system,  it  may  next  be 

proved  that,  looking  apart  from  small  quantities  proportional  to  the  square  of  the 

intensity  of  the  external  forces,  the  dilTerence  in  the  total  energy  in  twa  slightly 

difTerent  states  of  the  perturbed  system,  for  which  the  values  of /,  Sj,  .  .  .  ̂Ss-i  ditfer 

by  ol,  o3i,  ...  oCss-iiespectively,  is  given  by  the  relation.^) 

£  -1 

dE    =    (Oj>dI+^     Ll/,(JS/o (66) 

which  coincides  with  (52)  if  J/  =  0,  and  which  will  be  seen  to  be  completely 

analogous  with  formula  (29)  in  Part  I,  holding  fori  an  ordinary  conditionally  periodic 

system  which  allows  of  separation  of  variables  in  a  fixed  set  of  positional  coordinates; 

just  as  (65)  is  analogous  to  formula  (31)  representing  the  displacements  of  the  par- 

')  From  a  comparison  with  formula  (8),  holding  for  the  energy  difference  between  two  neighbouring 
states  of  the  undisturbed  system,  and  with  formula  (52),  it  will  be  seen  that  (66)  implies  the  condition 

(Up  =  w  -\-  dU'idl,  where  oj  is  the  frequency  of  revolution  in  the  corresponding  state  of  the  undisturbed 

system  characterised  by  the  given  value  of  /,  and  where,  in  the  partial  differential  coefficient,  '1'  is  con- 
sidered as  a  function  of  I  and  3i,  .  ..  '^^  —  v  ̂'"^  relation  can  be  verified  by  means  of  a  consideration 

based  on  the  perturbation  equations  (44),  which  takes  into  account  the  simple  relation  between  a^  and 
/  for  the  undisturbed  system,  as  well  as  the  relation  between  the  mean  rate  of  variation  of  /Jj  with 

the  time  and  the  difference  between  Wp  and  w.  We  shall  not  enter,  however,  on  the  details  of  the 
rather  intricate  calculations  involved  in  such  a  consideration,  since  the  problems  in  question  allow  of 

a  more  elegant  treatment  by  means  of  another  analytical  method.  Thus  it  will  be  shown  by  Mr.  H.  A. 

Kramers,  in  the  paper  mentioned  in  the  end  of  §  4,  that,  quite  independent  of  the  possibility  of  separa- 
tion of  variables  for  the  perturbed  system  in  a  fixed  set  of  positional  coordinates,  the  theory  of  secular 

perturbations  exposed  in  this  section  offers  —  if  these  perturbations  as  determined  by  (46)  are  of  con- 

ditionall}"  periodic  type  —  a  means  of  disclosing  a  set  of  angle  variables,  which  may  be  used  to 
describe  the  motion  of  the  perturbed  system  with  the  same  degree  of  approximation  as  that  involved 

in  the  preceding  calculations.  According  to  the  definition  of  angle  variables,  mentioned  in  the  Note  on 

page  29  in  Part  I,  this  means  that  it  is  possible,  in  stead  of  the  positional  coordinates  qfj,  .  .  q^  of  tlie 
perturbed  system  and  their  conjugated  momenta  ja^,  ■ .  Pg^  to  introduce  a  new  set  of  s  variables  in 

such  a  wa^',  that  the  q\  and  /j's  are  periodic  in  every  of  the  new  variables  with  period  1,  when  they  are 
considered  as  functions  of  these  variables  and  of  their  canonically  conjugated  momenta.  These  momenta 

will  just  coincide  with  the  quantities  denoted  above  by  /,  3n  ■  3s  — i'  ̂ "^  ̂ ^^  corresponding  angle 

variables  may  conveniently  be  denoted  by  w,  \\\,  ..  .  hi^_j  respectively.  Introducing  the  new  variables, 
the  total  energy  of  the  perturbed  system  will  be  a  function  of  /,  3ii  •  3s_l  only,  if  we  look  apart 

from  small  quantities  proportional  to  /.-.  With  this  approximation  we  get  consequently  by  a  calculation, 

analogous  to  that  given  in  the  Note  referred  to,  that  the  angle  variables  iv,  \\\,  ...  W^  ̂   may  be  repre- 
sented as  linear  functions  of  the  time  within  an  interval  of  the  same  order  as  tr/;.  Denoting  the  rates 

of  variation  of  n»,  uij,  ...  lUs_j  by  wp,  0^,  ...  0^  ̂   respectively,  the  formulae  (65)  and  (66)  are  there- 
fore directly  obtained,  just  as  the  corresponding  formulae  (31)  and  (29)  in  Part  I.  In  this  connection  it 

will  be  observed  that,  due  to  the  possibility  of  introduction  of  angle  variables,  the  conditions  (67)  appear 

in  the  same  form  as  that  in  which  the  conditions,  which  fix  the  stationary  states  of  ordinary  condition- 

all}^  periodic  systems  which  allow  of  separation  of  variables,  have  been  formulated  by  Schwarzschild  , 
and  which,  as  mentioned  in  the  Note  in  Part  1,  has  already  been  applied  by  Burgers  to  certain  systems 
for  which  such  a  separation  cannot  be  obtained. 
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tides   for   such    a    system.    Since    moreover,   in   complete   analogy   to  the  conditions 
(22),  the  stationary  states  of  the  perturbed  system  are  characterised  by 

I  =  nh,        3/c  =  %./j,        (A-  =  1,  ...  s— 1)  (67) 

we  see  consequently  that,  for  sufficiently  small  intensity  of  the  external  forces,  we 

obtain  in  the  region  of  large  values  of  n  and  of  the  ii's  a  connection  between  the 
frequencies  of  the  components  of  the  spectral  lines,  determined  on  the  quantum  theory 

by  means  of  relation  (1),  and  those  to  be  expected  on  ordinary  electrodynamics, 
which  is  of  exactly  the  same  type  as  the  analogous  connection,  discussed  in  Part  I, 

in  case  of  ordinary  conditionally  periodic  systems  which  allow  of  separation  of 
variables.  In  perfect  analogy  with  the  general  considerations  in  Part  I,  we  are 
therefore  led  directly  to  certain  simple  conclusions  as  regards  the  intensities  and 

polarisations  of  the  components  into  which  the  lines  of  the  spectrum  of  the  undis- 
turbed periodic  system  are  sj)lit  up  in  the  presence  of  the  external  field.  Thus  we 

shall  expect  thai  there  will  exist  an  intimate  connection  between  the  probability  of 

spontaneous  transition  between  two  stationary  states  of  the  perturbed  system,  for 

which  n  =  n',  it^.  =  ii^  and  /?  =^  /j",  n^  =  iij'  respectively,  and  the  values  in  these 
slates  of  the  coefficient  Cr,  tj,  . .  t^  j  in  the  expressions  for  the  displacements  of  the 

particles,  for  which  r  =  n  — n"  and  t^.  =  iij.  —  \.  If  for  instance,  for  a  certain  set 
of  values  of  r  and  t^,  .  ..  t^.  ̂   the  coefficient  Cr.  ti,  .  tg_i  in  the  expressions  for  the 

displacements  in  every  direction  will  be  equal  to  zero  for  all  motions  of  the  per- 
turbed system,  we  shall  expect  that  the  corresponding  transitions  between  two 

stationary  states  will  be  impossible  in  the  presence  of  the  given  external  field;  and 

if  this  coefficient  is  zero  for  the  displacements  of  the  particles  in  a  certain  direc- 
tion only,  we  shall  expect  that  the  corresponding  transitions  will  give  rise  to  the 

emission  of  a  radiation  which  is  polarised  in  a  plane  perpendicular  to  this  direction. 

With  a  characteristic  example  of  these  considerations  we  meet  in  the  case  of 

the  spectrum  of  a  hydrogen  atom  exposed  to  an  external  field  of  force  which  pos- 
sesses axial  symmetry  round  an  axis  through  the  nucleus.  In  analogy  with  the 

resolution  of  the  motion  of  an  ordinary  conditionally  periodic  system  which  pos- 
sesses an  axis  of  symmetry  in  its  constituent  harmonic  vibrations,  discussed  in 

Part  I  on  page  33,  it  follows  from  the  discussion  of  the  general  character  of  the 

secular  perturbations  on  page  54  that  the  motion  of  the  electron  in  the  perturbed  atom 
in  this  case  can  be  resolved  in  a  number  of  linear  harmonic  vibrations  parallel  to 

the  axis  with  frequencies  j  rwp  -j-  tj  l\  and  in  a  number  of  circular  harmonic  rotations 

perpendicular  to  the  axis  with  frequencies  rtop  ~h  t^  o^  +  Og  .  In  complete  analogy  with 
the  considerations  in  Part  I,  we  are  therefore  led  to  conclude  that  in  the  present 

case  only  two  types  of  transitions  between  the  stationary  states  of  the  perturbed 

atom  are  possible.  In  the  transitions  of  the  first  type  n^  will  remain  unaltered  and 
the  emitted  radiation  will  give  rise  to  components  of  the  hydrogen  lines  which  will 

show  linear  polarisation  parallel  to  the  axis.  In  the  transitions  of  the  second  type 

11,  will  change  bv  one  unit  and  the  emitted  radiation  will  show  circular  polarisa- 
tion  when    viewed    in    the    direction   of  the   axis.    Remembering    that,   according  to 
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the  conditions  (61),  the  angular  momentum  of  the  system  round  the  axis  in  the 

stationary  states  is  equal  to  u^ ./  ,  it  will  be  seen  moreover  that,  also  in  the  present 

case,  these  conclusions  obtain  an  independent  support  from  a  consideration  of  con- 

servation of  angular  momentum  during  the  transitions  (Compare  Part  I  page  34)  •)• 

In  the  following  we  will  meet  with  applications  of  these  considerations  when  dis- 

cussing the  effect  of  electric  and  magnetic  fields  on  the  hydrogen  lines.  In  the  latter 

case,  however,  the  preceding  considerations  need  some  modifications  due  to  the 

fact,  that  the  external  forces  acting  on  the  electron  cannot  be  derived  from  a 

potential  expressed  as  a  function  of  its  positional  coordinates;  to  this  point  we  shall 
come  back  in  §  5. 

Before  leaving  the  general  theory  of  perturbed  periodic  systems  we  shall  still 

consider  the  problem  of  the  effect  on  the  spectrum  of  a  periodic  system,  under- 

going secular  perturbations  of  conditionally  periodic  type  under  the  influence  of  a 

given  small  external  field,  if  this  system  is  further  subject  to  the  influence  of 

a  second  external  field  which  is  small  compared  with  the  first  field, 

but  the  perturbing  effect  of  which  is  yet  large  compared  with  the  small  elfects 

on  the  motion,  proportional  to  the  square  of  the  intensity  of  the  first  perturb- 

ing field,  which  were  neglected  in  the  preceding  calculations.  This  problem  is 

closely  analogous  to  the  problem,  briefly  discussed  in  Part  I,  of  the  effect  of  a 

small  perturbing  field  on  the  spectrum  of  an  ordinary  conditionally  periodic 

system  which  allows  of  separation  of  variables.  As  mentioned  on  page  34,  we  have 

in  this  case,  quite  independent  of  the  possibility  of  separation  of  variables  for  the 

perturbed  system,  that  in  general  the  motion  under  the  influence  of  the  external 

field  may  still  be  represented  as  a  sum  of  harmonic  vibrations  by  a  formula  of 

the  type  (31),  if  we  look  apart  from  small  terms  proportional  to  the  square  of  the 

perturbing  forces.  Corresponding  to  this  we  have  in  the  case  under  consideration 

that,  independent  of  the  nature  of  the  second  external  field,  the  resultant  secular 

perturbations  may  in  general  be  expressed  as  a  sum  of  harmonic  vibrations  of  small 

frequencies  of  the  type  (54),  if  we  look  apart  from  small  terms  of  the  same  order 

as  the  product  of  the  secular  perturbations  produced  by  the  first  external  field  with 
the  square  of  the  ratio  between  the  intensities  of  the  forces  due  to  the  first  and 
those  due  to  the  second  external  field.  Let  us  denote  this  ratio  by  ii  and  let,  as 

above,  /  represent  a  small  constant  of  the  same  order  as  the  ratio  between  the  ex- 

^)  Note  added  during  the  proof.  In  an  interesting  paper  by  A.  Rubinowicz  (Phys.  Zeitschr. 
XIX,  p.  441  and  p.  465  (1918))  which  has  just  been  published,  a  similar  consideration  of  conservation 

of  angular  momentum  has  been  used  to  draw  conclusions,  as  regards  the  possibility  of  transitions 
between  the  stationary  states  of  a  conditionally  periodic  system  possessing  an  axis  of  symmetry,  and 

as  regards  the  character  of  the  polarisation  of  the  radiation  accompanying  these  transitions.  In  this  way 
Rubinowicz  has  arrived  at  several  of  the  results  discussed  in  the  present  paper;  in  this  connection, 

however,  it  may  be  remarked  that,  from  a  consideration  of  conservation  of  angular  momentum,  it  is 

not  possible,  even  for  systems  possessing  axial  symmetry,  to  obtain  as  complete  information,  as  regards 

the  number  and  polarisation  of  the  possible  components,  as  from  a  consideration  based  on  the  resolu- 
tion of  the  motion  of  the  electron  in  harmonic  vibrations. 
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ternal  iorces  due  lo  the  first  Held  and  the  internal  i'orces  of  the  system.  On  the 
basis  of  the  general  relation  between  energy  and  frequency  in  the  stationary  states, 

we  may  then  expect  that  it  is  possible  to  fix  the  motion  in  these  states  for  the  per- 
turbed periodic  system  in  the  presence  of  both  external  fields  with  neglect  of  small 

terms  of  the  same  order  as  the  largest  of  the  quantities  ti-  and  /,  and  to  fix  the 
corresponding  values  for  the  energy  with  neglect  of  small  terms  of  the  same  order 

as  the  hirgest  of  the  quantities  aix^  and  P^')  In  general,  however,  the  effect  on  the 
spectrum  of  the  perturbed  system,  produced  by  the  second  external  field,  may  be 
calculated  without  considering  the  perturbing  etfect  of  this  field  in  detail.  In  fact,  it 

is  in  general  possible,  by  means  of  the  principle  of  the  mechanical  transformability 

of  the  stationary  states,  with  the  approximation  mentioned  to  determine  the  altera- 
tion of  the  energy  of  the  system,  due  to  the  presence  of  the  second  external 

field,  directly  from  the  character  of  the  secular  perturbations  produced  by  the  first 
external  field  only.  Thus  let  us  assume  that  the  second  field  is  slowly  established 

at  a  uniform  rate  within  a  time  interval  of  the  same  order  of  magnitude  as 

that  in  which  tiie  system  will  i)ass  approximately  through  any  state  belonging 
to  the  cycle  of  shapes  and  positions,  which  the  orbit  passes  through  in  the 

stationary  states  in  the  presence  of  the  first  external  field  only.  Denoting  a  time 
interval  of  this  order  by  t/  and  the  potential  of  the  first  perturbing  field  by  ii  and 

that  of  the  second  by  JU,  we  get  then,  by  a  calculation  quite  analogous  to  that 

given  in  Part  I  on  page  11  for  the  alteration  in  the  mean  value  of  the  energy  of  a 

periodic  system  during  a  slow  establishment  of  a  small  external  field,  that  the 

alteration  in  the  mean  value  of  a^  -^  Q  taken  over  a  time  interval  of  the  same 
order  as  h,  due  to  the  establishment  of  the  second  external  field,  will  be  a 

small  quantity  of  the  same  order  of  magnitude  as  3^  {JfJY;  but  with  the  notation 

used  above  this  means,  in  general,  a  small  quantity  of  the  same  order  as  k/i".  It 
follows  consequently  that,  with  this  approximation,  the  alteration  in  the  energy  in 
a  given  stationary  state,  due  to  the  presence  of  the  second  perturbing  field,  is  equal 

to  the  mean  value  of  the  potential  of  this  field  taken  over  the  cycle  of  shapes  and 

positions,  which  tlie  orbit  would  pass  through  in  the  corresponding  stationary  state 
of  the  perturbed  system  under  the  influence  of  the  first  external  field  only.  In 

general,  the  etYect  on  the  spectrum  will  therefore  consist  in  a  small  displacement  of 

the  original  components  proportional  to  the  intensity  of  the  forces  due  to  the  second 

perturbing  field;  and  as  regards  the  degree  of  approximation  with  which  these  dis- 
placements are  defined,  it  will  be  seen  from  the  above  that,  if  «  is  smaller  than  ]//, 

the  fixation  of  the  energy  in  the  stationary  states  in  the  presence  of  the  second  ex- 
ternal field,  and  therefore  also  the  determination   of  the  frequencies  of  the  spectral 

^)  In  analogy  with  tlie  considerations  on  page  50  it  may  be  expected,  however,  that  these  limits 
for  the  definition  of  the  energy  in  the  stationary  states  will  hold  only  for  the  great  majority  among 

a  large  number  of  atomic  systems.  Tiius  in  the  present  case  we  must  be  prepared  to  find  that  for  a  small 

fraction  of  the  systems  of  the  same  order  as  //-  I  if  /j.^>A)  the  energy  will  differ  from  that  fixed  by 
the  method  under  consideration  by  small  quantities  of  the  same  order  as  /j.L 

I),  K.  ».  Vidensk.  Selsk.  Skr.,  natiuvidensk.  og  matheni,  Afd..  S.  Raekke,  1\'.  1.  9 
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lines  by  means  of  (1),  allow  of  the  same  degree  of  approximation  as  the  fixation 

of  the  energy  in  the  stationary  states  of  the  original  perturbed  periodic  system. 

If  //  is  larger  than  ]/k,  however,  the  stationary  states  will  in  general  not  be  as  well 
defined  as  for  the  original  system,  and  from  relation  (1)  we  may  therefore  expect 

that  the  components  will  be  diffuse,  although,  as  long  as  a  remains  small  com- 
pared with  unity,  the  width  of  the  components  wmH  remain  small  compared  with  the 

displacements  from  their  positions  in  the  presence  of  the  first  external  field  alone. 

Only  when  //  becomes  of  the  same  order  as  unity,  the  simultaneous  elTect  of  both 

perturbing  fields  may  be  expected  to  consist  in  a  diffusion  of  the  lines  of  the  un- 
disturbed periodic  system;  unless  of  course  the  secular  perturbations  due  to  the 

simultaneous  presence  of  both  fields  are  still  of  conditionally  periodic  type,  as  it 

may  happen  in  special  j)roblems.  In  certain  cases  the  second  external  field  will  not 

only  give  rise  to  small  displacements  of  the  original  components  but  also  to  the 

appearance  of  new^  components  of  small  intensities  proportional  to  ii'^.  This  occurs 
if  for  the  original  perturbed  periodic  system,  due  to  some  pecularity  of  the  motion, 

some  of  the  coefficients  Cr,  tj,  . . .  t^_-^  in  the  expressions  (65)  for  the  displacements 

of  the  particles  as  a  sum  of  harmonic  vibrations,  corresponding  to  certain  com- 
binations of  the  numbers  r,  t^,  .  .  .  t^  _],  are  equal  to  zero,  while  in  the  presence 

of  the  second  external  field  these  coefficients  are  small  quantities  proportional  to  « 

(Compare  Part  I,  page  34).^)  In  the  preceding  considerations  it  has  been  assumed 
fliat  the  perturbed  system  in  the  i)resence  of  the  first  external  field  is  non- 

degenerate.  In  case,  however,  this  system  is  degenerate,  it  is  obviously  impos- 
sible, by  a  direct  application  of  the  principle  of  the  mechanical  transformability  of  the 

stationary  states,  to  determine  the  alteration  in  the  energy  in  the  stationary  states 

of  the  system,  which  will  be  due  to  the  presence  of  a  second  external  field  small 

compared  with  the  first  field;  because,  as  mentioned,  the  stationary  states  of  the 

system,  in  the  presence  of  this  field  only,  will  be  determined  by  a  number  of  condi- 
tions which  is  less  than  the  number  s  of  degrees  of  freedom,  and  that  consequently 

the  cycles  of  shapes  and  positions,  which  the  orbit  will  pass  through  in  these  states, 

will  not  be  completely  determined.  For  the  calculation  of  the  energy  in  the  stationay 

states  it  will  therefore  be  necessary  to  consider  the  secular  perturbing  effect  of  the 

second  external  field  on  these  cycles.  In  the  special  case  where  the  secular  perturba- 

tions due  to  the  first  field  are  simply  periodic,  it  wall  in  this  way  be  seen  that  the 

problem  of  the  fixation  of  the  stationary  states  in  the  presence  of  the  second  ex- 

ternal field,  by  means  of  the  method  exposed  in  this  section,  may  be  reduced  to 

the  problem  of  the  fixation  of  the  stationary  states  of  a  system  of  s  — 2  degrees  of 
freedom.  If,  as  in  the  applications  considered  below,  s  is  equal  to  3,  this  problem 
allows  of  a   general   solution,   and  we  must   therefore   expect   that   in   this  case  the 

*)  As  regards  the  degree  of  definition  with  which  the  positions  of  the  new  components  will  he 
determined,  we  must  be  prepared  to  find  that  the  frequencies  of  these  components  are  only  defined 

with  neglect  of  small  quantities  proportional  to  XtL.  Compare  the  detailed  discussion  of  the  example 
in  §  5  on  page  97. 
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effect  on  the  spectrum  of  the  perturbed  system  produced  by  an  arbitrary  second 
external  field,  which  is  small  compared  with  the  first,  will  consist  in  the  splitting 
up  of  every  component  into  a  number  of  separate  components,  just  as  the  effect  of 
an  arbitrary  small  external  field  on  the  lines  of  the  spectrum  of  a  simple  periodic 
system  of  two  degrees  of  freedom.  We  will  meet  with  applications  of  the  above 

considerations  when  considering  the  effect  on  the  hydrogen  spectrum  of  the  com- 
bined action  of  difTerent  external  fields  and  when  considering  the  effect  of  an  ex- 

ternal field  on  the  spectra  of  other  elements,  which  latter  problem  will  be  dis- 
cussed in  Part  III, 

§  3.    The  fine  structure  of  the  hydrogen  lines. 

An  instructive  application  of  the  calculations  in  the  last  section  may  be  made 
in  connection  with  the  fine  structure  of  the  hydrogen  lines,  which,  according  to 

Sommerfeld's  theory  mentioned  in  Part  I  on  page  18,  may  be  explained  by  taking  into 
account  the  small  variation  of  the  mass  of  the  electron  with  its  velocity,  claimed  by 
the  theory  of  relativity,  hi  this  connection  it  must  first  of  all  be  remarked  that  all 

the  general  considerations  in  the  preceding  sections,  as  regards  relations  between 

energy  and  frequency  and  as  regards  the  mechanical  transformability  of  the  sta- 
tionary states,  hold  unaltered  if  the  relativity  modifications  are  taken  into  account. 

This  follows  from  the  fact  that  the  Hamiltonian  equations  (4),  which  are  taken 

as  a  basis  for  all  the  previous  calculations,  may  be  used  to  describe  the  motion 

also  in  this  case.  If,  when  the  relativity  modifications  are  taken  into  account,  the 

motion  of  the  sj'stem  is  simply  periodic  independent  of  the  initial  conditions,  we 
shall  consequently  expect  that  the  stationary  states  are  characterised  by  the  condi- 

tion /  =  nh  only,  and  that  the  energy  and  frequency  are  the  same  for  all  states 

corresponding  to  a  given  value  of  n  in  this  equation.  F'urther  the  stationary  states 
will  also  in  the  relativity  case  be  fixed  by  (22),  if  the  system  is  conditionally 

j)eriodic  and  allows  of  separation  of  variables;  while  the  stationary  states  of  a 

perturbed  periodic  system,  also  in  the  relativity  case,  will  be  characterised  by  the 

conditions  ((57j,  if  the  secular  perturbations  are  of  conditionally  periodic  type. 

Now,  when  the  relativity  modifications  are  taken  into  account,  the  motion  of 

the  particles  in  the  hydrogen  atom  will  not,  as  assumed  in  §  1,  be  exactly  periodic,  but 
the  orbit  of  the  electron  will  be  of  the  same  type  as  that,  which  would  appear  on 

ordinary  Newtonian  mechanics,  if  the  law  of  attraction  between  the  particles  differed 

slightly  from  that  of  the  inverse  square.  If,  for  the  moment,  we  consider  the  mass 
of  the  nucleus  as  infinite,  the  system  will  allow  of  a  separation  of  variables  in  polar 

coordinates,  and  the  stationary  states  may  consequently  be  fixed  by  the  conditions 

(16).  In  this  way  Sommerfeld  obtained  an  expression  for  the  total  energy  in  the 

stationary  states,  which,  with  neglect   of  small  quantities  of  higher  order   than   the 

9* 
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square    of  the   ratio   of  the  velocity   of  the   electron  and  the  velocity   of  light  c,  is 

eiven  by  ' )  , 
c'hHn,^n,y (68) 

where,  as  in  the  calculations  in  §  1,  the  charge  and  the  mass  of  the  electron  are 

denoted  by  —e  and  in,  and  for  sake  of  generality  the  charge  of  the  nucleus  by  Ne. 

Further  n^  and  n^  are  the  integers  appearing  on  the  right  side  of  the  conditions 

(16)  as  factors  to  Planck's  constant.  While  n^  may  take  the  values  0,  1,  2,  ...,  it 
will  be  seen  that  n.^  can  only  take  the  values  1,  2,  ...,  because  in  the  present  case 

there  will  obviously  not  correspond  any  stationary  state  to  n^  =  0,  since  in  such 
a  state  the  electron  would  collide  with  the  nucleus.  Introducing  the  experimental 

values  for  e,  h  and  c,  it  is  found  that  e-;/,c  is  a  small  quantity  of  the  same  order  as 

10-3;  and,  unless  N  is  large  number,  the  second  term  within  the  bracket  on  the 
right  side  of  (68)  will  consequently  be  very  small  compared  with  unity.  Putting 

Hj  H-  Hg  =  77,  it  will  further  be  seen  that  the  factor  outside  the  bracket  will  coin- 
cide Math  the  expression  for  Wn  given  by  (41)  in  J^  ̂,  if  we  look  apart  from  the 

small  correction  due  to  the  finite  mass  of  the  nucleus.  Due  to  the  presence  of  the 

second  term  within  the  bracket,  we  thus  see  that,  for  any  value  of  n,  formula  (68)  gives 

a  set  of  values  for  E  which  differ  slightly  from  each  other  and  from  —Wn-  Sommer- 

feld's  theory  leads  therefore  to  a  direct  explanation  of  the  fact,  that  the  hydrogen 
lines,  when  observed  by  instruments  of  high  dispersive  power,  are  split  up  in  a 

number  of  components  situated  closely  to  eacii  other;  and,  by  means  of  formula 

(68)  in  connection  with  relation  (1),  it  was  actually  found  possible,  within  the  limits 

of  experimental  errors,  to  account  for  the  frequencies  of  the  components  of  this 

socalled  fine  structure  of  the  hydrogen  lines.  Moreover  the  theory  was  supported 

in  the  most  striking  way  by  Paschen's'^)  recent  investigation  of  the  fine  struc- 
ture of  the  lines  of  the  analogous  helium  spectrum,  the  frequencies  of  which  are 

represented  approximately  by  formula  (35),  if  in  the  expression  for  K,  given  by  (40), 

we  put  N  =  2.  As  it  should  be  expected  from  (68),  the  components  of  these  lines 
were  found  to  show  frequency  differences  several  times  larger  than  those  of  the 

hydrogen  lines,  and  from  his  measurements  Paschen  concluded,  that  it  was  possible 

on  Sommerfeld's  theory  to  account  completely  for  the  frequencies  of  all  the  com- 
ponents observed. 

We  shall  not  enter  here  on  the  details   of  the  calculation  leading  to  (68),  but 

shall  only   show   how   this   formula   may    be  simply   interpreted  from  the  point  of 

')  A.  SoMMERFELD,  Aiiii.  d.  Phys.  LI,  p.  53  (1916).  Compare  also  P.  Debve,  Phys.  Zeitschr.,  XVII,  p.  512 
(1916).  In  the  special  case  of  circular  orbits  (Oj  =  0),  this  expression  coincides  with  an  expression 
previously  deduced  by  the  writer  (Phil.  Mag.  XXIX  p.  332  (1915)),  by  a  direct  application  of  the  condition 
/  =:  n/i  to  these  periodic  motions. 

'-)  F.  Paschen,  Ann.  d.  Phys.  L,  p.  901  (1916).  See  also  E.  J.  Evans  and  C.  Croxson.  Nature,  XCVll, 
p.  56  (1916). 
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view  of  i)eitiiil)ed  periodic  systems.  Thus,  by  a  sirajjle  application  of  reiativistic 
meciianics,  it  is  found  that,  if  the  equation  of  a  Keplerian  ellipse  in  polar  co- 

ordinates is  given  by  r  =  /"(<>),  the  equation  of  the  orbit  of  the  electron  in  the 
case  under  consideration  will    be   given    by  /■  =  f(yd^)  where  y  is  a  constant  given 

^^y  /'"^  =  1  —  (  /  c  )  '  '"  "^^'Jiich  expression  p  denotes  the  angular  momentum  of  the 
electron  round  the  nucleus.  ̂ )  Now  in  the  stationary  states  the  quantity  in  the 
bracket,  which  is  of  the  same  order  of  magnitude  as  the  ratio  between  the  velocity 
of  the  electron  and  the  velocity  of  light,  will  be  very  small,  unless  A^  is  a  large 
number,  and  it  will  therefore  be  seen  that  the  orbit  of  the  electron  can  be  described 

as  a  periodic  orbit  on  which  a  slow  uniform  rotation  is  superposed.  Denoting  the 

frequency  of  revolution  in  the  periodic  orbit  by  w  and  the  frequency  of  the  super- 
posed rotation  by  o/f,  we  have,  with  neglect  of  small  quantities  of  higher  order 

than  the  s(|uare  of  the  ratio  between  the  velocity  of  the  electron  and  the  velocity 
of  light, 

(69) 

C<)mj)aring  this  formula  with  equation  (62)  and  remembering  that,  with  the  approx- 
imation in  question,  p  may  be  replaced  by  the  quantity  denoted  in  ,§  2  by  «.,,  we 

see  that  the  frequency  of  the  secular  rotation  of  the  orbit  will  be  the  same  as 

that  which  would  appear,  if  the  variation  of  the  mass  of  the  electron  was  neglected, 
but  if  the  atom  was  subject  to  a  small  external  central  force  the  mean  value  of 

the  potential  of  which,  taken  over  a  revolution  of  the  electron,  was  equal  to 

^'=--|7/-  (70) 

This  is  simply  shown,  however,  to  be  equal  to  the  expression  for  '/"  corres})onding 
to  a  small  attractive  force  varying  as  the  inverse  cube  of  the  distance.  In  fact,  let 

the  potential  of  such  a  force  be  given  by  iJ  =  Clr^,  where  C  is  a  constant  and  /■ 
the  length  of  the  radius  vector  from  the  nucleus  to  the  electron.  By  means  of 

the  relation  Uo  -=  lurii,  where  S  is  the  angular  distance  of  the  radius  vector  from 
a  fixed  line  in  the  plane  of  the  orbit,  we  get  then 

,/^  _2;^^;
«C 

which  expression  is  seen  to  coincide  with  (70),  if  C  =  — ^-^ — . 

If  the   relativity    modifications   are   taken  into  account,   and   if  for  a  moment 

we   would   imagine    that    the   nucleus,   in    addition    to   its  usual   attraction,   exerted 

')  See  f.  iiist.  A.  Sommerkeld,  loc.  cit.  p.  47. 
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a  small  repulsion  on  the  electron,  proportional  to  the  inverse  cube  of  the  distance 

and  equal  and  opposite  to  the  attraction  just  mentioned,  we  would  therefore  ob- 
tain a  system  for  which,  with  neglect  of  small  quantities  of  higher  order  than 

the  square  of  the  ratio  between  the  velocity  of  the  electron  and  the  velocity  of 

light,  every  orbit  would  be  periodic  independent  of  the  initial  conditions,  and  for 

which  consequently  the  stationary  states  would  be  fixed  by  the  single  condition 

/  =  ;j/i.  Now  the  actual  hydrogen  atom  may  obviously  be  considered  as  a  per- 
turbed system,  formed  by  this  periodic  system,  when  it  is  exposed  to  a  small 

central  field  for  which  the  value  of  '/'  is  given  by  (70).  With  the  approximation 
mentioned,  we  get  therefore  for  the  total  energy  in  the  stationary  states  of  the  atom 

E  ̂   E:,-^''!^ -I ,  (71) 

where  E'  is  the  energy  in  the  stationary  states  of  the  periodic  system  just  mentioned, 
and  where  the  last  term  is  obtained  by  introducing  in  (70)  the  value  of  a^  given 

by  (64)  and  the  value  of  co^  given  by  (41),  neglecting  the  small  correction  due  to 

the  finite  mass  of  the  nucleus.  Remembering  that  in  our  notation  n^-^  n^  ̂ =  n 
and  71.,  =  11,  it  will  be  seen  that,  as  regards  the  small  differences  in  the  energy  of 
the  different  stationary  states  corresponding  to  the  same  value  of  /?,  formula  (71) 

gives  the  same  result  as  Sommerfeld's  formula  (68).  In  fact,  comparing  (68)  and 
(71),  we  get 

E'
 

2n"N'e'm   /.       37r-^iV^'e* 

h'n' 

('-wif). 
which  is  seen  to  be  a  function  of /j  only.  This  expression  might  also  have  been  deduced 

directly  from  the  condition  /  =  nh  by  considering,  for  instance,  a  circular  orbit, 
in  which  case  the  calculation  can  be  very  simply  performed. 

In  connection  witli  the  above  calculations,  it  may  be  remembered  that  the  fixation 

of  the  .stationary  states,  leading  to  the  formulae  (68)  or  (71),  is  based  on  the  assump- 
tion, that  the  motion  of  the  electron  can  be  determined  as  that  of  a  mass  point 

which  moves  in  a  conservative  field  of  force,  according  to  the  laws  of  ordinary 

relativistic  mechanics,  and  that  we  have  looked  apart  from  all  such  forces  which, 

according  to  the  ordinary  theory  of  electrodynamics,  would  act  on  an  accellerated 
charged  particle,  and  which  constitute  the  reaction  from  the  radiation  which  on  this 

theory  would  accompany  the  motion  of  the  electron.  Some  procedure  of  this  kind, 

which  means  a  radical  departure  from  the  ordinary  theory  of  electrodynamics,  is 

obviously  necessary  in  the  quantum  theory  in  order  to  avoid  dissipation  of  energy 

in  the  stationary  states.  Since  we  are  entirely  ignorant  as  regards  the  mechanism 
of  radiation,  we  must  be  prepared,  however,  to  find  that  the  above  treatment  will 
allow  to  determine  the  motion  in  the  stationary  states,  only  with  an  approximation 
which  looks  apart  from  small  quantities  of  the  same  order  as  the  ratio  between 

the  radiation  forces  in  ordinary  electrodynamics  and  the  main  forces  on  the  electron 
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due  lo  Ihe  allraclion  Iroiii  the  nucleus,  i)  Now  it  is  easily  shown  Ihal  this  ratio 

will  be  a  small  quantity  of  the  same  order  of  magnitude  as  iV^  (^  )  ,  and  it  would 
therefore  beforehand  seem  justified  in  the  expression  for  the  total  energy  in  the 
stationary  states  to  retain  small  terms  of  the  same  order  as  the  second  term  in 
(71),  while  at  the  same  time  it  might  appear  highly  questionable,  whether,  in  the 
complete  expression  for  the  total  energy  in  the  stationary  states  deduced  by  Sommkr- 
FELD  and  Debye  on  the  basis  of  the  conditions  (16),  it  has  a  physical  meaning  to 
retain  terms  of  higher  order  than  those  retained  in  formula  (68);  unless  iV  is  a  large 
number,  as  in  the  theory  of  the  Rontgenspectra  to  be  discussed  in  Part  III. 

While  the  preceding  considerations,  which  deal  with  the  determination  of  the 

energy  in  the  stationary  states  of  the  hydrogen  atom,  allow  to  determine  the  fre- 

(juency  of  the  radiation  which  would  be  emitted  during  a  transition  between 

two  such  states,  they  leave  quite  untouched  the  problem  of  the  actual  occurrence 
of  these  transitions  in  the  luminous  gas,  and  therefore  give  no  direct  information 

about  the  number  and  relative  intensities  of  the  components  into  which 

the  hydrogen  lines  may  be  expected  to  split  up  as  a  consequence  of  the  relativity 

modifications.  This  problem  has  recently  been  discussed  by  Sommeri  eld  ̂ '),  M'ho  in 
this  connection  emphasises  the  importance  of  the  different  a-priori  probabilities  of 

the  stationary  states,  characterised  by  different  sets  of  values  of  the  /j's  in  the  con- 
ditions (1()).  Thus  SoNnuiRFELD  attempts  to  obtain  a  measure  for  the  relative  in- 

tensities of  the  components  of  the  fine  structure  of  a  given  line,  by  comparing  the 

intensities  observed  with  the  products  of  the  values  of  the  a-priori  probabilities  of 
the  two  states,  involved  in  the  emission  of  the  components  under  consideration;  and  he 

tries  in  this  connection  to  test  different  expressions  for  these  a-priori  probabilities 
(See  Part  I,  pag.  26).  In  Ihis  way,  however,  it  was  not  found  possible  to  account 

in  a  satisfactory  manner  for  the  observations;  and  the  difficulty  in  obtaining  an  ex- 
|)lanation  of  the  intensities  on  this  basis  was  also  strikingly  brought  out  by  the 

fact,  thai  the  number  and  relative  intensities  of  the  components  observed  varied  in 

a  remarkable   way  with    the   experimental    conditions   under  which    the   lines  were 

')  Compare  I^art  I,  p.  0.  It  may  in  this  councctioii  be  noted  that  the  degree  of  approximation,  involved 
in  tlie  determination  of  the  frequencies  of  an  atomic  system  by  means  of  relation  (1)  if  in  the  fixation 

of  the  stationary  states  we  look  apart  from  small  forces  of  the  same  order  of  magnitude  as  the  radia- 

tion forces  in  ordinary'  electrodynamics,  would  appear  to  be  intimately  connected  with  the  limit  of 
sharpness  of  the  spectral  lines,  which  depends  on  the  total  number  of  waves  contained  in  the 
radiation  emitted  during  the  transition  between  two  stationary  states.  In  fact,  from  a  consideration 

based  on  the  general  connection  between  the  quantum  theor\;  and  the  ordinary  theory  of  radiation,  it 
seems  natural  to  assume  that  the  rate,  at  which  radiation  is  emitted  during  a  transition  between  two 

stationary  states,  is  of  the  same  order  of  magnitude  as  the  rate,  at  which  radiation  would  be  emitted 

from  the  system  in  these  states  according  to  ordinary  electrodynamics.  But  this  will  be  seen  to  imply 
that  the  total  number  of  waves  in  question  will  just  be  of  the  same  order  as  the  ratio  between  the 

main  forces  acting  on  the  particles  of  the  system  and  the  reaction  from  the  radiation  in  ordinary 
electrodynamics. 

'-')  A.  SoMMEUKELD,  Ber.  .^kad.  Miinchen,  1917,  p.  88. 
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excited.  Thus  Paschen  loiind  a  greater  number  of  components  in  the  fine  structure 

of  the  helium  lines,  mentioned  above,  when  the  gas  was  subject  to  a  condensed 

interrupted  discharge,  than  when  a  continuous  voltage  was  applied.  Il  would  seem,  how- 
ever, that  all  the  facts  observed  obtain  a  simple  interpretation  on  the  basis  of  the 

general  considerations  about  the  relation  between  the  quantum  theory  of  line  spectra 

and  the  ordinary  theory  of  radiation  discussed  in  Part  I.  According  to  this  relation, 
we  shall  assume  that  the  probability,  for  a  transition  between  two  given  stationary 

states  to  take  place,  will  depend  not  only  on  the  a-priori  probability  of  these  states, 
which  is  determining  for  their  occurrence  in  a  distribution  of  statistical  equilibrium, 

but  will  also  depend  essentially  on  the  motion  of  the  particles  in  these  states, 

characterised  by  the  harmonic  vibrations  in  which  this  motion  can  be  resolved. 
Now,  in  the  absence  of  external  forces,  the  motion  of  the  electron  in  the  hydrogen 

atom  forms  a  special  simple  case  of  the  motion  of  a  conditionally  periodic  system 

possessing  an  axis  of  symmetry,  and  may  therefore  be  represented  by  trigonometric 

series  of  the  type  deduced  for  such  motions  in  Part  I.  Taking  a  line  through  the 

nucleus  perpendicular  to  the  plane  of  the  orbit  as  r-axis,  we  get  from  the  calcula- 
tions on  page  32 

z  ̂   const, 
and 

X  =  IXt  cos  'It:  {  {zco^  -{-  w^)  /  -f  Cr  },    ±  J/  =  -^'^^  ̂ i"  2;r  {  {tcd^  -f-  co.^)  t  -{-  Cr  ) ,    (73) 

where  w^  is  the  frequency  of  the  radial  motion  and  oj^  is  the  mean  frequency  of 

revolution,  and  where  the  summation  is  to  be  extended  over  all  positive  and  negative 

entire  values  of  r.  It  will  thus  be  seen  that  the  motion  may  be  considered  as  a 

superposition  of  a  number  of  circular  harmonic  vibrations,  for  w^hich  the  direction 
of  rotation  is  the  same  as,  or  the  opposite  of,  that  of  the  revolution  of  the  electron 

round  the  nucleus,  according  as  the  expression  rco^  -|-  (o^  is  positive  or  negative 
respectively.  From  the  relation  just  mentioned  between  the  quantum  theory  of  line 

spectra  and  the  ordinary  theory  of  radiation,  we  shall  therefore  in  the  present  case 

expect  that,  if  the  atom  is  not  disturbed  by  external  forces,  only  such  transitions 

between  stationary  states  will  be  possible,  in  which  the  plane  of  the  orbit  remains 

unaltered,  and  in  which  the  number  n.^  in  the  conditions  (16)  decreases  or  increases 

by  one  unit;  i.  e.  w^here  the  angular  momentum  of  the  electron  round  the  nucleus 

decreases  or  increases  by  /'  2-  From  the  relation  under  consideration,  we  shall 
further  expect  that  there  will  be  an  intimate  connection  between  the  probability  of 

a  spontaneous  transition  of  tliis  type  between  two  stationary  states,  for  which  /i^  is 

equal  to  n[  and  n'^  respectively,  and  the  intensity  of  the  radiation  of  frequency 

(n[  —  /?")  oj^^oj^,  which  on  ordinary  electrodynamics  would  be  emitted  by  the 
atom  in  these  states,  and  which  would  depend  on  the  value  Cr  of  the  amplitude 

of  the  harmonic  rotation,  corresponding  to  r  =  ±  {n[  —  n"),  which  appears  in  the 
motion  of  the  electron.  Without  entering  upon  a  closer  examination  of  the  numerical 

values  of  these  amplitudes,  it  will  directly  be  seen  that  the  amplitudes  of  the 
harmonic  rotations,  which  have  the  same  direction  as  the  revolution  of  the  electron. 
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in  general,  are  considerably  larger  than  the  amplitudes  of  the  rotations  in  the  opposite 
direction,  and  we  shall  accordingly  expect  that  the  probability  of  spontaneous 
transition  will  in  general  be  much  larger  for  transitions,  in  which  the  angular 
momentum  decreases,  than  for  transitions  in  which  it  increases.  This  expectation 

is  verified  by  Paschen's  observations  of  the  fine  structure  of  the  helium  lines, 
which  show  that,  for  a  given  line,  the  components  corresponding  to  the  transitions 

of  the  former  kind  are  by  far  the  strongest.  On  Paschen's  photographs,  how- 
ever, especially  in  the  case  of  the  application  of  a  condensed  discharge  to  the 

vacuum  tube  containing  the  gas,  there  appear,  in  addition  to  the  main  com- 
ponents corresponding  to  transitions  for  which  the  angular  momentum  changes  by 

It  2t:,  a  number  of  weaker  components,  corresponding  to  transitions  for  which  the 
angular  momentum  remains  unchanged  or  changes  by  higher  multipla  of  ̂   2;t.  This 
fact  obtains  a  simple  interpretation  on  the  considerations  in  Part  I  on  page  34 

about  the  influence  of  small  external  forces  on  the  spectrum  of  a  conditionally 
periodic  system.  Thus,  in  the  presence  of  small  perturbing  forces,  the  motion  will 
generally  not  remain  in  a  plane,  and  in  the  trigonometric  series  representing 
the  displacement  of  the  electron  in  space,  there  will  occur  small  terms  corres- 

ponding to  frequencies  (jioj^  ~\-  t^oj^),  where  t^  may  be  different  from  one.  In 
the  presence  of  such  forces,  we  shall  therefore  expect  that,  in  addition  to  the  regular 
probabilities  of  the  above  mentioned  main  transitions,  there  will  appear  small 

probabilities  for  other  transitions.')  A  detailed  discussion  of  these  problems  will  be 
given  in  a  later  paper  by  Mr.  H.  A.  Kramers,  who  on  my  proposal  has  kindly 
undertaken  to  examine  the  resolution  of  the  motion  of  the  electron  in  its  constituent 

harmonic  vibrations  more  closely,  and  who  has  deduced  explicite  expressions  for 
the  amplitudes  of  these  vibrations,  not  only  for  the  motion  of  the  electron  in  the 
undisturbed  atom,  but  also  for  the  perturbed  motion  in  the  presence  of  a  small 

external  homogeneous  electric  field.  As  it  will  be  shown  by  Kramers,  these  calcula- 
tions allow  to  account  in  particulars  for  the  observations  of  the  relative  intensities 

of  the  components  of  the  fin»  structure  of  the  hydrogen  lines  and  the  analogous 
helium  lines,  as  well  as  for  the  characteristic  way  in  which  this  phenomenon  is 

influenced  by  the  variation  of  the  experimental  conditions. 

§  4.    The  effect  of  an  external  electric  field  on  the  hydrogen  lines. 
As  mentioned  in  the  introduction,  a  detailed  theory  of  the  characteristic  effect 

of  an  external  homogeneous  electric  field  on  the  hydrogen  spectrum,  discovered  by 

')  Note  added  during  the  proof.  As  remarked  in  Part  I,  tiiis  consideration  obtains  a  striking 
confirmation  by  the  observation  of  tlie  appearance  of  new  series  of  lines  in  the  ordinary  series  spectra 
of  helium  and  other  elements,  when  the  atoms  are  exposed  to  an  intense  external  electric  field.  As  it 

will  be  discussed  more  closely  in  Part  111,  it  is  possible  in  this  way  to  account  in  detail  for  the  mani- 
fold results,  regarding  the  appearance  of  such  series  in  the  helium  spectrum,  which  have  been  published 

quite  recently  by  J.  Stark  (Ann.  d.  Phys.  LVl,  p.  577  (1918))  and  by  G.  Liebert  (ibid.  LVI,  p.  589  and 

p.  610  (1918)). 

D.  K.  D.  VIdensU.  Selsk.  Ski-.,  nalurvidensk.  og  matheni.  Afd.,  8.  Rsekke,  IV.  1.  10 
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Stakk,  has  been  given  by  Epstkin  and  Schwarzschild  on  Ihe  basis  of  the  general 

theory  of  conditionally  periodic  systems  which  allow  of  separation  of  variables. 

Before  we  enter  on  the  discussion  of  the  results  of  the  calculations  of  these  authors, 

we  shall  first,  however,  show  how  the  problem  may  be  treated  in  a  simple  way 

by  means  of  the  considerations  about  perturbed  periodic  systems,  developed  in  §  2. 

Consider  an  electron  of  mass  m  and  charge  —  e,  rotating  round  a  positive 

nucleus  of  infinite  mass  and  of  charge  Ne,  and  subject  to  a  homogeneous  electric  field 

of  intensity  F,  and  let  us  for  the  present  neglect  the  small  effect  of  the  relativity 

modifications.  Using  rectangular  coordinates,  and  taking  the  nucleus  as  origin  and 

the  z-axis  parallel  to  the  external  field,  we  get  for  the  potential  of  the  system 
relative  to  the  external  field,  omitting  an  arbitrary  constant, 

.Q  =  eFz. 

Calculating  now  the  mean  value  of  i2  over  a  period  (t  of  the  undisturbed 

motion,  we  see  at  once,  from  considerations  of  symmetry,  that  this  mean  value  V' 
will  depend  only  on  the  component  of  the  external  electric  force  in  the  direction 

of  the  major  axis  of  the  orbit.  We  have  therefore 

^:=  eFcosf     \  r  cos  l^ (It, 

where  <p  is  the  angle  between  the  z-axis  and  the  major  axis,  taken  in  the  direction 
from  the  nucleus  to  the  aphelium,  and  where  r  is  the  length  of  the  radius-vector 
from  the  nucleus  to  the  electron,  and  H  the  angle  between  this  radius-vector  and 
the  major  axis.     By  means  of  the  well  known  equations  for  a  Keplerian  motion 

r  cos  &  =  a  (cos  «  -f  s) ,     =  (1  -j-  £  cos  ii)  —    , 

where  2a  is  the  major  axis,  a  the  eccentricity  and  u  the  socalled  eccentric  anomaly, 
this  gives 

f»27r 
'/■=  eFcos^       \  a  (cos  H  +  c)  (1 -{-"  £  cos  u)  (///  -=  -saeF  cos  (p.  (74) 2  TT  .1  2 

We  see  thus  that  V''  is  equal  to  the  potential  energy  relative  to  the  external 
field,  which  the  system  would  possess,  if  the  electron  was  placed  at  a  point,  situated 
on  the  major  axis  of  the  ellipse  and  dividing  the  distance  2  s  a  between  the  foci  in 

the  ratio  3:1.  This  point  may  be  denoted  as  the  "electrical  centre"  of  the  orbit. 
From  the  approximate  constancy  of  V  during  the  motion,  proved  in  ̂   2,  it  follows 
therefore  in  the  first  place  that,  with  neglect  of  small  quantities  of  the  same  order 
of  magnitude  as  the  ratio  between  the  external  force  and  the  attraction  from  the 

nucleus,  the  electrical  centre  will  during  the  perturbations  of  the 
orbit  remain  in  a  fixed  plane  perpendicular  to  the  direction  of  the 

external  force.   From  the  considerations  in  §  2  it  follows   further,  that  the  total 
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energy  in  the  slalionary  stales  of  the  system  in  the  presence  of  the  tield,  with  neglect 

of  small  quantities  proportional  to  F-,  will  be  equal  to  En  -r  '/'J  where  E„  is  the  energy 
of  the  hydrogen  atom  in  its  undisturbed  stationary  state.  Since  both  t  and  cos  <p  are 
numerically  smaller  than  one,  we  obtain  therefore  at  once  from  (74)  a  lower  and 

an  upper  limit  for  the  possible  variations  of  the  energy  in  the  stationary  states,  due 
to  the  field.  Introducing  from  (41)  the  values  of  En  and  a^,  and  neglecting,  here 
as  well  as  in  the  following  calculations  in  this  section,  the  small  correction  due 

to  the  finite  mass  of  the  nucleus  —  not  only  in  the  expression  for  the  additional 

energy  but,  for  the  sake  of  brevity,  also  in  the  main  term  —  we  get  for  these  limits 

wiiich  formula  coincides  with  the  expression  previously  deduced  by  the  writer  by 

applying  the  condition  /  =-  nh  to  the  two  (physically  not  realisable)  limiting  cases, 

corresponding  to  s  =  1  and  cos  ̂   =  ±1,  in  which  the  orbit  remains  periodic  in 

the  presence  of  the  field. ') 
In  order  to  obtain  further  information  as  to  the  values  of  the  energy  in  the 

stationary  states  in  the  presence  of  the  field,  it  is  necessary  to  consider  more  closely 

the  variation  of  the  orbit  during  the  perturbations.  Since  the  external  forces  possess 

axial  symmetry,  the  problem  of  the  stationary  states  might  be  treated  by  means  of 

the  procedure  indicated  in  ,§  2  on  page  55.  In  the  present  special  case,  however, 

the  stationary  states  of  the  atom  may  be  very  simply  determined,  due  to  the  fact 

that  the  secular  perturbations  are  simply  periodic  independent  of  the  initial  shape 
and  position  of  the  orbit,  so  that  we  are  concerned  with  a  degenerate  case  of  a 

perturbed  periodic  system.  This  property  of  the  perturbations  follows  already  from 

some  calculations  given  by  Schwarzschild^)  in  a  previous  attempt  to  explain  the 

Stark  eff"ect  of  the  hydrogen  lines,  without  the  help  of  the  quantum  theory,  by 
means  of  a  direct  consideration  of  the  harmonic  vibrations  into  which  the  motion 

may  be  resolved,  according  to  the  analytical  theory  of  conditionally  periodic 

systems.  Starting  from  the  above  result,  that  the  electrical  centre  moves  in  a  plane 

perpendicular  to  the  direction  of  the  external  field,  the  periodicity  of  the  perturba- 
tions may  also  be  proved  in  the  following  way,  by  means  of  a  simple  consideration 

of  the  variation  of  the  angular  momentum  of  the  electron  round  the  nucleus,  due 
to  the  effect  of  the  external  electric  force. 

Usini^  as^ain  rectani^iilar  coordinates  witli  the  nucleus  at  the  origin  and  the  z-axis  parallel 
to  the  direction  of  the  electric  force,  and  calling  the  coordinates  of  the  electrical  centre  c,  r^, 
^,  we   liave  according  to  formula  (74) 

>)  See  N.  Bohr,  Phil.  Mag.  XXVII,  p.  506  (1914)  and  XXX,  p.  394  (1915).  Compare  also  E.  Warburg, 

Verb.  d.  D.  Phys.  Ges.  XV,  p.  1259  (1913),  where  it  was  pointed  out,  for  the  first  time,  that  the  effect  nf 

an  electric  field  on  the  hydrogen  lines  to  be  expected  on  the  quantum  theory  was  of  the  same  order 

of  magnitude  as  the  effect  observed  by  Stark. 

2)  K.  SCHWARZSCHILD,  Verli.  d.  D.  Phys.  Ges.  XVI,  p.  20  (1914). 

10* 
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yi  +  C*  =  (^  £«r,         f  =  const.  (I'' 

Denotiiifi   the  components  parallel  to  the  v,  ij  and  c-axis  of  the  angular  momentum  of  the 

electron'^round  the  nucleus,  considered  as  a  vector,  by  P.v,  P,i  and  Pr,  we  have  next 

p2  j^  pa  ̂   p2  =,  (1  _  £2)  (2;r/7ja2w)^       Pc  =  const.  (2*) 

Since  the  angular  momentum  is  perpendicular  to  the  plane  of  the  orbit,  we  have  further 

$P.v  +  riP,-hCP.  =  0.  (3*) 

Now  we  have  for  the  mean  values  of  the  rates  of  variation  of  Px  and  Py  with  the  time 

From  this  we  get,  differentiating  (1*)  and  (2*)  with  respect  to  the  time,  and  remembering  that  a 
and  w  remain  constant  during  the  perturbations, 

where  j^  __        3  /g*v 

4nmaw' 
On  the  other  hand  we  have,  differentiating  (3*)  and  introducing  (4*), 

P  D^_^p   Dr, P-^t'^^''  Dt  -"' 

which  together  with  (5*)  gives 

from  which  we  get,  by  means  of  (4*), 

DP  —       ̂   ̂  ̂^  '^'    Dt' 
the  solution  of  which  is 

f  =  2tcos27r(o/+ a),   :y  =  53cos27r(o/  + b),  (7*) 

where  2t,  a,  33  and  b  are  constants,  and  where,  introducing  (6*),  we  have 

=  g^^  ̂        3eF 

27r  STt^macu' 

(8* 

During  the  perturbations  the  electrical  centre  will  thus  perform 

slow  harmonic  vibrations  perpendicular  to  the  direction  of  the 

electric  force,  with  a  frequency  which  is  proportional  to  the  intensity  of  the 

electric  field,  but,  for  a  given  value  of  F,  quite  independent  of  the  initial  shape  of 

the  orbit  and  its  position  relative  to  the  direction  of  the  field.  For  the  value  of 

this  frequency  in  the  multitude  of  states  of  the  perturbed  system,  for  which  the 

mean  value  of  the  inner  energy  is  equal  to  the  energy  En  in  a  stationary  state  of 

the  undisturbed  system  corresponding  to  a  given  value  of  n,  we  get  from  the  above 

calculation,  introducing  for  a  and  co  the  values  of  «„  and  con  given  by  (41), 
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Of  =  o    ., ,,        I'.  (76) 

Now  from  the  periodic  motion  of  the  electrical  centre  we  may  conclude  that,  in  the 

presence  of  the  field,  the  system  will  be  able  to  emit  or  absorb  a  radiation  of 

frequency  op,  and  that  accordingly  the  possible  values  of  the  additional  energy  of 

the  system  in  the  presence  of  the  field  will  be  given  directly  by  Planck's  funda- 
mental formula  (9),  holding  for  the  possible  values  of  the  total  energy  of  a  linear 

harmonic  vibrator,  if  in  this  formula  co  is  replaced  by  the  above  frequency  Or.  Since 

further  a  circular  orbit,  perpendicular  to  the  direction  of  the  electric  force,  will  not 

undergo  secular  perturbations  during  a  slow  establishment  of  the  field,  and  there- 
fore must  be  included  among  the  stationary  stales  of  the  perturbed  system,  we  get 

for  the  total  energy  of  the  atom  in  the  presence  of  the  field 

L  =--  E,  +  n^Fh  =  _— -^--H---,-^^— F,  (77) 

where  n  is  an  entire  number  which  in  the  present  case  may  be  taken  positive  as 

well  as  negative.  From  a  comparison  between  (75)  and  (77),  we  see  that  the  presence 

of  the  external  field  imposes  the  restriction  on  the  motion  of  the  atom  in  the  sta- 
tionary states,  that  the  plane  in  which  the  electrical  centre  of  the  orbit  moves 

must  have  a  distance  from  the  nucleus  equal  to  an  entire  multiple  of  the  n"^  part 

of  its  maximum  distance  \^  an. 

The  result,  contained  in  formula  (77),  is  in  agreement  with  the  expression  for 

the  total  energy  in  the  stationary  states,  deduced  by  Epstein  and  Schwarzschild 

by  means  of  the  general  theory  of  conditionally  periodic  systems  based  on  the 
conditions  (22).  The  treatment  of  these  authors  rests  upon  the  fact,  that,  as  mentioned 

in  Part  I,  the  equations  of  motion  for  the  electron  in  the  present  problem  may  be 

solved  by  means  of  separation  of  variables  in  parabolic  coordinates  (compare  page  21). 

Taking  for  7,  and  <j.^  the  parameters  of  the  two  paraboloids  of  revolution,  which 

pass  through  the  instantaneous  position  of  the  electron  and  which  have  their  foci 

at  the  nucleus  and  their  axes  parallel  to  the  direction  of  the  field,  and  for  q.^  the 

angular  distance  between  the  plane  through  the  electron  and  the  axis  of  the  system 

and  a  fixed  plane  through  this  axis,  the  momenta  p^,  p.^,  p.,  will  during  the  motion 

depend  on  the  corresponding  q's  only,  and  the  stationary  states  will  be  fixed  by 
three  conditions  of  the  type  (22).  With  neglect  of  small  quantities  proportional  to 

higher  powers  of  F,  the  final  formula  for  the  total  energy,  obtained  by  Epstein  in 

this  way,  is  given  by 

_  2  n^  N-  e^  m  3  h'^  (n  ̂  +  n^  +  "3)  ("  1  —  "2)  17    n  /78) 
h^n,-\-n^^n,y  Sn'Nem  '     ̂   ^     ̂ 

')  P.  Epstein.  Ann.  d.  Phys.  L,  p.  508  (1916). 
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where  /7i,  /j,^,  n.  are  Ihe  positive  entire  numbers  which  occur  as  factors  to  Planck's 
constant  on  the  right  sides  of  the  mentioned  three  conditions. 

As  regards  the  possible  values  of  the  total  energy  of  the  hydrogen  atom  in 

the  presence  of  the  electric  field,  it  wall  be  seen  that  (78)  coincides  with  (77)  if  we 

put  /Jj  +  "2  +  ̂'3  =  "  ̂ "^  "2  —  "1  ==  "•  ̂ ^  ̂ ^^^  same  time  it  wnll  be  observed, 
however,  that  the  motion  in  the  stationary  states,  as  fixed  by  the  procedure  followed 

by  Epstein,  is  more  restricted  than  w^as  necessary  in  order  to  secure  the  right 

relation  between  the  additional  energy  and  the  frequency  of  the  secular  perturba- 

tions. Thus,  in  addition  to  the  condition  which  fixes  the  plane  in  which  the  elec- 

trical centre  moves,  Epstein's  theory  involves  the  further  condition,  that  the  angular 
momentum  of  the  electron  round  the  axis  of  the  perturbed  system  is  equal  to  an 

entire  multiple  of  ̂ ,'2-;  which  multiple  is  seen  to  be  even  or  uneven,  according  as 
n  -f-  It  is  an  even  or  an  uneven  number  respectively.  This  circumstance  is  intimately 
connected  with  the  fact  that,  although  the  perturbed  system  under  consideration  is 

degenerate  if  we  look  apart  from  small  quantities  proportional  to  the  square  of  the 

intensity  of  the  external  force,  the  degenerate  character  of  the  system  does  not  reveal 

itself  from  the  point  of  view  of  the  theory  of  stationary  states  based  on  the  con- 

ditions (22),  because  the  system  under  consideration  allows  of  separation  of  vari- 
ables only  in  one  set  of  positional  coordinates.  On  the  other  hand,  this  degenerate 

character  of  the  system  has  been  emphasised  by  Schwarzschild^)  on  llie  basis 
of  the  theory  of  stationary  states  based  on  the  introduction  of  angle  variables,  in 

which  the  periodicity  properties  of  the  motion  play  an  essential  part.  In  a  later 

discussion  of  this  point  Epstein""')  calls  attention  to  the  fact  that,  if  small  quantities 
proportional  to  the  square  of  the  electric  force  are  taken  into  account,  the  system 

appears  no  more  as  degenerate;  and  he  finds  therein  a  justification  of  the  fixation  of 

the  stationary  states  by  means  of  (22).  From  the  point  of  view  of  perturbed  systems, 

this  would  mean  that  the  motion  in  the  stationary  states  of  the  system  in  question, 

as  fixed  by  (22),  w^ould  certainly  be  stable  for  infinitely  small  disturbances,  but  that 
we  should  expect  finite  deviations  from  the  motion  in  these  states,  already  if  the 

system  was  exposed  to  a  second  perturbing  field,  the  intensity  of  which  was  only 
of  the  same  order  as  the  product  of  the  external  electric  force  with  the  ratio  between 

this  force  and  the  attraction  from  the  nucleus.  A  closer  consideration,  however,  in 

which  regard  is  taken  to  the  influence  of  the  relativity  modifications,  learns  that 

the  degree  of  stability  of  the  motion  in  the  stationary  states,  as  determined  by  (22), 
actually  is  often  much  higher,  the  order  of  magnitude  of  the  external  force,  necessary 

to  cause  finite  deviations  from  this  motion,  being  of  the  same  order  as  the  product 

of  the  attraction  from  the  nucleus  with  the  square  of  the  ratio  of  the  velocity  of 

the  electron  and  the  velocity  of  light.  To  this  point  we  shall  come  back  at  the  end 

of   this    section,  when    considering    the    simultaneous  perturbing   influence    on   the 

^)  K.  SCHWARZSCHILD,  BcF.  Akad.  Berlin,  1916,  p.  548. 

-)  P.  Epstein,  Ann.  d.  Phys.  LI,  p.  168  (1916). 
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molioii    of  the  election    in  the   hydrogen   atom,   due  to  the  relativity   modifications 
and  an  external  electric  lieid. 

In  the  deduction  of  formula  (78)  there  is  looked  apart,  not  only  from  the  effect 
on  the  motion  of  the  electron  due  to  the  small  modifications  in  the  laws  of  mechanics 

claimed  by  the  theory  of  relativity,  but  also  from  the  effect  of  possible  forces 

which  might  act  on  the  electron,  corresponding  to  the  reaction  from  the  radiation 
in  ordinary  electrodynamics.  If,  however,  for  the  moment  we  exclude  all  stationary 

states  for  which  the  angular  momentum  round  the  axis  of  the  system  would  be 

equal  to  zero  [n^  =  0),  the  total  angular  momentum  of  the  electron  round  the 

nucleus  will  during  the  perturbations  always  remain  larger  than  or  equal  to  ft/2-, 
just  as  in  the  stationary  stales  considered  in  the  theory  of  the  fine  structure;  and, 

according  to  the  considerations  on  page  66,  we  shall  therefore  expect  that  the  effect 

of  the  neglect  of  possible  "radiation"  forces  will  be  small  compared  with  the  effect 
of  the  relativity  modifications.  On  the  other  hand,  if  the  intensity  of  the  electric  field  is 

ot  the  same  order  of  magnitude  as  that  applied  in  Stark's  experiments,  the  elfect  of 
these  modifications  must  again  be  expected  to  be  very  small  compared  with  the 

total  effect  of  the  electric  force  on  the  hydrogen  lines,  since  the  perturbing  effect 

of  this  force  on  the  Keplerian  motion  of  the  electron  will  be  very  large  com- 
pared with  the  corresponding  effects  of  the  relativity  modifications.  If,  on  the 

contrary,  we  would  consider  a  state  of  the  atom  for  which  n.^  was  equal  to  zero, 

the  orbit  would  be  plane  and  would  during  the  perturbations  assume  shapes,  for 
which  the  total  angular  momentum  round  the  nucleus  was  very  small,  and  in  which 

the  electron  during  the  revolution  would  pass  within  a  very  short  distance  from 
the  nucleus.  In  such  a  state  the  effect  of  the  relativity  modifications  on  the  motion  of 

the  electron  would  be  considerable,  but  quite  apart  from  this  a  rough  calculation  shows 

that  the  amount  of  energy,  which,  on  ordinary  electrodynamics,  would  be  emitted 

during  the  intervals  in  which  the  angular  momentum  during  the  perturbations  of 

the  orbit  remains  small,  is  so  large  that  it  would  hardly  seem  justifiable  to  calculate 

the  motion  and  the  energy  in  these  states  by  neglecting  all  forces  corresponding  to 

the  radiation  forces  in  ordinary  electrodynamics.  We  need  not,  however,  enter  more 

closely  on  these  difficulties,  because,  on  the  general  considerations  in  Part  I  about 

the  a-priori  probability  of  the  different  stationary  states,  we  are  forced  to  conclude 

that,  for  any  value  of  the  external  electric  field,  no  state  which  would  corres- 
pond to  /i.j  =  0  will  be  physically  possible;  since  any  such  state  might  be 

transformed  continuously,  and  without  passing  through  a  degenerate  system,  into 

a  state  which  obviously  cannot  represent  a  physically  realisable  stationary  state 

(compare  pag.  27).  In  fact,  if  we  imagine  that  an  external  central  field  of  force, 

varying  as  the  inverse  cube  of  the  distance  from  the  nucleus,  is  slowly  established, 

it  would  be  possible  to  compensate  the  secular  effect  of  the  relativity  modifica- 

tions and  to  obtain  orbits  in  which  the  electron  would  pass  within  any  given,  how^- 

ever  small,  distance  from  the  nucleus.    As    regards  the  other  stationary  states  fixed 
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by  (22),  which  correspond  to  n^>  },  we  shall  according  to  the  considerations  in  Part  I 

expect  that  their  a-priori  probabilities  are  all  equal.  ̂ ) 
As  regards  the  comparison  between  the  theory  and  the  experiments,  it  will  be 

remembered  that  Stark  found  that  every  hydrogen  line  in  the  presence  of  an 

electric  field  was  split  up  in  a  number  of  polarised  components,  in  a  way  different 
for  the  different  lines.  When  viewed  parallel  to  the  direction  of  the  field,  there  appeared 

a  number  of  components  polarised  parallel  to  the  field  and  a  number  of  com- 
ponents polarised  perpendicular  to  the  field;  when  viewed  in  the  direction  of  the 

field,  only  the  latter  components  appeared,  but  without  showing  characteristic 

polarisation.  Apart  from  the  marked  symmetry  of  the  resolution  of  every  line, 
the  distances  between  successive  components  and  their  relative  intensities  varied 

in  an  apparently  irregular  way  from  component  to  component.  As  pointed  out  by 
Epstein  and  Schwarzschild,  however,  it  is  possible  by  means  of  (78),  in  connection 

with  relation  (1),  to  account  in  a  convincing  way  for  Stark's  measurements  as  regards 
the  frequenci  es  of  the  components.  Especially  a  closer  examination  of  these  measure- 

ments showed  that  all  the  differences  between  the  frequencies  of  the  components 

were  equal  to  entire  multipla  of  a  certain  quantity,  which  was  the  same  for  all  lines 

in  the  spectrum  and,  within  the  limits  of  experimental  errors,  equal  to  the  theoretical 

value  o    .7.7 — .  On  the  other  hand,  the  theories  of  Epstein  and  Schwarzschild  save 
o7i^  N  em  ^ 

no  direct  information  as  regards  the  question  of  the  polarisation  and  intensity 

of  the  different  components.  Comparing  formula  (78)  with  Stark's  observations, 

Epstein  pointed  out,  however,  that  the  polarisation  of  the  diff"erent  components 
observed  could  apparently  be  accounted  for  by  the  rule:  that  a  transition  between 

two  stationary  states  gives  rise  to  a  component  polarised  parallel  to  the  field,  if  /?., 

remains  unchanged  or  is  changed  by  an  even  number  of  units;  while  a  component, 
corresponding  to  a  transition  in  which  n.^  is  changed  by  an  uneven  number  of  units, 

1)  By  a  simple  enumeration  it  follows  from  this  result,  that  the  total  number  of  different  stationary 
states  of  the  hydrogen  atom,  subject  to  a  small  homogeneous  electric  field,  which  corresponds  to  a  sta- 

tionary states  of  the  undisturbed  atom,  characterised  by  a  given  value  of  n  in  the  condition  /  =  nh, 

is  equal  to  n  {n  -^  1).  This  expression  is  directly  obtained,  if  we  remember  that  n  =  rtj^ -{-  n^  +  iig 
and  if  we  count  each  state,  characterised  by  a  given  combination  of  the  positive  integers  n^,  /iji  "3.  as 
double,  corresponding  to  the  two  possible  opposite  directions  of  rotation  of  the  electron  round  the  axis 
of  the  field.  With  reference  to  the  necessary  stability  for  a  small  variation  of  the  external  conditions 
of  the  statistical  distribution  of  the  values  of  the  energy  among  a  large  number  of  atoms  in  tempera- 

ture equilibrium  (see  Note  on  page  43),  it  will  be  seen  that  the  expression  n  (n  +  1)  may  be  taken  as 
a  measure  for  the  relative  value  of  the  a-priori  probability  of  the  different  stationary 
states  of  the  undisturbed  hydrogen  atom,  corresponding  to  different  values  of  n.  The  problem  of 
the  determination  of  this  a-priori  probability  has  been  discussed  by  K.  Herzfeld  (Ann.  d.  Phys. 
LI,  p.  261  (1916))  who,  by  an  examination  of  the  volumes  of  the  different  extensions  in  the  phase  space 
which  might  be  considered  as  belonging  to  the  different  stationary  states  of  the  hydrogen  atom,  has 
arrived  at  an  expression  for  the  a-priori  probability  of  these  states  which  differs  from  the  above.  From 
the  point  of  view,  as  regards  the  principles  of  the  quantum  theory,  taken  in  the  present  paper,  a  con- 

sideration of  this  kind,  however,  does  not,  as  explained  in  Part  I  on  page  26,  afford  a  rational  means 
of  determining  the  a-priori  probability  of  the  stationary  states  of  an  atomic  system. 
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is  polarised  perpendicular  lo  the  field.  This  result  may  be  simply  interpreted  on 
the  basis  oi  the  general  formal  relation  between  the  quantum  theory  of  line 
spectra  and  the  ordinary  theory  of  radiation.  In  fact,  it  was  shown  in  Part  I 
that,  for  a  conditionally  periodic  system  possessing  an  axis  of  symmetry,  we 
sliall  expect  only  two  types  of  transitions  to  be  possible.  In  transitions  of  the 

lirst  type  7J3  remains  unchanged,  and  the  emitted  radiation  is  polarised  parallel  to 

the  axis  of  symmetry,  while  the  transitions  of  the  second  type,  in  which  7?3  varies 

by  one  unit,  give  rise  to  a  radiation  of  circular  polarisation  in  a  plane  perpendicular 
to  this  axis  (see  page  34).  In  order  to  show  that  this  agrees  with  the  empirical  rule 

of  Epstein,  it  may  be  noted  in  the  first  place  that,  for  any  component  which  might 
be  ascribed  to  a  certain  transition  in  which  n.,  changes  by  a  given  entire  number 
of  units,  there  exists  always  another  transition  which  will  give  rise  to  a  radiation 

of  the  same  frequency  but  in  which  773  remains  unchanged  or  changes  by  one 
unit,  according  to  whether  the  given  number  is  even  or  uneven.  Next  it  will  be 

seen  that,  in  case  of  the  effect  of  an  electric  field  on  the  hydrogen  spectrum,  we 
cannot  detect  by  means  of  direct  observations  the  circular  polarisation  of  the 

radiation  corresponding  to  transitions  of  the  second  type;  because,  for  each  transi- 
tion giving  rise  to  a  radiation  of  circular  polarisation  in  one  direction,  there  will 

exist  another  transition  giving  rise  to  a  radiation  which  possesses  the  same  fre- 
(juency  but  is  polarised  in  the  opposite  direction.  Besides  on  the  problem  of  the 
polarisations  of  the  different  components  into  which  the  hydrogen  lines  are  split  up 

in  the  presence  of  the  electric  field,  the  general  considerations  in  Part  I  allow  also  to 

throw  light  on  the  question  of  the  relative  intensities  of  these  components,  by 
considering  the  harmonic  vibrations  into  which  the  motion  of  the  electron  in  the 

stationary  states  can  be  resolved.  Compared  with  the  problem  of  the  relative  in- 

tensities of  the  components  of  the  fine  structure  of  the  hj^drogen  lines,  the  present 
problem  is  simpler  in  that  respect,  that  the  stationary  states  may  be  assumed  to 

be  a-priori  equally  probable.  Since  the  different  components,  into  which  a  given 
hydrogen  line  is  split  up  in  the  electric  field,  correspond  to  transitions  between  pairs  of 

states  which  for  all  components  have  very  nearly  the  same  values  for  the  total  energy, 

these  states  may  therefore  be  expected  to  be  of  approximately  equal  occurrence  in 

the  luminous  gas.  According  to  the  considerations  in  Part  I,  we  shall  consequently 

assume  that  for  a  given  hydrogen  line  the  relative  intensities  of  the  different  Stark 

effect  components,  corresponding  to  transitions  between  different  pairs  of  stationary 

states  characterised  by  n^  =  n[,  n^  =  77'^,  n.,  =  n'^  and  77^  =  77",  n^  =  n'^,  n^  =  77" 
respectively,  will  be  intimately  connected  with  the  intensities  of  the  radiations  of 

frequency  (n[— n'^)  (o^-{-  (n'.,— iQ  (o.-,~\-  (n'^—iQ  (o^,  which  on  ordinary  electro- 
dynamics would  be  emitted  by  the  atom  in  the  two  states  involved  in  the  transition 

in  question;  (o^,  cu^  and  co^  being  the  fundamental  frequencies  entering  in  the  ex- 

pression (31)  for  the  displacement  of  the  electron.  In  order  to  test  how  far  such 

a  connection  is  actually  brought  out  by  the  observations,  it  is  necessary  to  determine 

the  numerical  values  of  the  amplitudes   of  the  harmonic  vibrations  into  which  the 
D.  K.  I)   Vidensk.  Selsk   Skr.,  luiturviilensk.  og  matliem.  Afd.,  8.  K;ekke,  IV.  1.  11 
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motion  of  the  electron  can  be  resolved.  The  examination  of  this  problem  has  been 

undertaken  by  Mr.  H.  A.  Kramers,  who  has  deduced  complete  expressions  for  these 

amplitudes,  by  means  of  which  it  was  found  possible,  for  each  of  the  hydrogen 

lines  Ha,  H^,  Hy  and  Hd,  to  account  in  a  convincing  way  for  the  apparently  capricious 

laws  which  govern  the  intensities  of  the  components  observed  by  Stark.^)  This  agree- 
ment offered  at  the  same  time  a  direct  experimental  support  for  the  conclusions 

mentioned  above:  that  there  exist  no  stationary  states  corresponding  to  n^  =  0,  while 

the  stationary  states  corresponding  to  other  values  of  n..  are  a-priori  equally  pro- 

bable; and  that  transitions  can  only  take  place  between  pairs  of  stationary  states 

for  which  /i„  is  the  same  or  differs  by  one  unit.  A  general  discussion  of  these  pro- 

blems will  be  given  by  Kramers  in  the  paper,  mentioned  on  page  69  in  the  last 

section,  in  which  also  the  problem  of  the  intensity  of  the  fine  structure  components 
is  treated  in  detail. 

In  the  former  section  and  in  the  present  we  have  seen,  how  the  problems  of 

the  influence  of  the  relativity  modifications  on  the  lines  of  the  hydrogen  spectrum 

and  of  the  influence  of  an  external  electric  field  on  this  spectrum  can  be  treated, 

by  regarding  the  motion  of  the  electron  as  a  perturbed  periodic  motion,  and  by 

fixing  the  stationary  states  on  the  basis  of  the  relation  between  the  energy  and  the 

frequencies  of  the  secular  perturbations.  As  it  was  done  originally  by  Sommerfeld 

and  Epstein,  both  these  problems  can  also  be  treated  by  means  of  the  theory  of 

the  stationary  states  of  conditionally  periodic  systems  which  allow  of  separation 

of  variables  in  a  fixed  set  of  positional  coordinates.  If,  however,  we  consider  the 

problem  of  the  simultaneous  influence  on  the  hydrogen  spectrum  of 
the  relativity  modifications  and  a  homogeneous  electric  field  of  any 

given  intensity,  there  does  not  exist  a  set  of  coordinates  for  which  a  separation  of 

variables  can  be  obtained.  On  the  other  hand  it  is  possible,  also  in  this  case,  to 

apply  the  general  considerations  about  perturbed  periodic  systems  developed  in  the 

preceding.  In  fact,  with  reference  to  the  treatment  given  in  ̂   3  of  the  problem  of 

the  fine  structure  of  the  hydrogen  lines,  it  will  be  seen  that  the  deviations  of  the 

orbit  of  the  electron  from  a  Keplerian  ellipse   in   the    problem  under  consideration 

')  Note  added  during  the  proof.  In  recent  papers  H.  Nyquist  (Phys.  Rev.  X,  p.  226  (1917)) 
and  J.  Stark  (Ann.  d.  Physik,  LVI,  p.  569  (1918))  have  published  measurements  on  the  effect  of  an 

electric  field  on  certain  lines  of  the  helium  spectrum  which  is  given  by  (35),  if  in  (40;  we  put  N  =  2 
As  will  be  seen  from  78),  the  differences  between  the  frequencies  of  the  components  into  which  these 

lines  are  split  up  will,  for  the  same  intensity  of  the  external  electric  field,  be  smaller  than  for  the 

hydrogen  lines.  In  conformity  with  this  it  was  not  possible,  with  the  experimental  arrangement  used 

b3'  the  authors  mentioned,  to  observe  separately  the  numerous  components  to  be  expected  on  the 
theory,  but  only  to  obtain  certain  rough  features  of  the  resolution  of  the  lines  in  question.  For  the 
interpretation  of  these  observations  a  detailed  consideration  of  the  relative  intensities  to  be  expected 

for  the  different  theoretical  components  is  therefore  essential;  and,  as  it  will  be  shown  in  Kramers' 
paper,  it  is  possible,  on  the  basis  of  the  calculation  of  the  amplitudes  of  the  harmonic  vibrations  into 

which  the  motion  of  the  electron  in  the  stationary  states  can  be  resolved,  to  account  satisfactorily  for 

Nyquist's  and  Stark's  results. 
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will  be  the  same  as  the  secular  perturbations  produced  on  a  Keplerian  motion  by 
the  simultaneous  influence  of  an  external  homogeneous  field  of  force  and  an  external 
central  force  proportional  to  the  inverse  cube  of  the  distance  from  the  nucleus. 

Since  these  two  fields  together  form  a  perturbing  field  possessing  axial  symmetry, 
it  follows  therefore  that  the  secular  perturbations,  when  the  relativity  modications 

are  taken  into  account,  will  be  conditionally  periodic  and  that  the  problem  of  the 
stationary  states  may  be  treated  by  means  of  the  method  mentioned  in  .§  2  on 

page  55.  In  this  way  we  obtain  in  the  first  place  the  result,  that,  for  any  value  of 
the  intensity  of  the  external  electric  field,  we  must  expect  that  the  hydrogen  lines 

will  be  split  up  in  a  number  of  sharp  components.  Next,  since  for  any  value  of 

this  intensity  different  from  zero  the  system  will  be  non-degenerate,  it  follows  from 
the  conditions  (61),  that  we  must  assume  that  the  angular  momentum  round  the 

axis  of  the  field  is  always  equal  to  an  entire  multiple  of  ̂   2;r;  in  consistence  with 
the  assumption  of  the  validity  of  the  analogous  condition  involved  in  the  fixation 

of  the  stationary  states  by  means  of  the  method  of  separation  of  variables,  when 

applied  to  an  explanation  of  the  Stark  effect  with  neglect  of  the  relativity  modi- 
fications (compare  page  74).  On  the  basis  of  the  conditions  (61)  it  is  possible  to 

predict  in  detail,  how  the  fine  structure  of  the  hydrogen  lines  will  be  influenced 

by  an  increasing  electric  field  until,  for  a  sufficiently  large  intensity  of  this  field, 

the  phenomenon  develops  gradually  into  the  ordinary  Stark  effect.  The  problem 

of  this  transmutation  will  be  treated  in  a  later  paper  by  Mr.  H.  A.  Kramers^),  who 
has  kindly  drawn  my  attention  to  this  interesting  application  of  the  method  of 

perturbations,  and  has  thereby  given  a  valuable  impetus  to  the  detailed  elaboration 
of  this  method  as  regard  the  treatment  of  more  complicate  problems. 

5J  5.    The  effect  of  a  magnetic  field  on  the  hydrogen  spectrum. 

A  theory  of  the  Zeeman  effect  of  the  hydrogen  fines  based  on  the  quantum 

theory  of  line  spectra  has,  as  mentioned  in  the  introduction,  been  given  indepen- 

dently by  SoMMKRFHLD  and  by  Derye.  The  calculations  of  these  authors  rest  upon 

the  fact,  that  it  is  possible,  also  in  the  presence  of  a  magnetic  field,  to  write  the 

equations  of  motion  of  the  electron  in  the  canonical  Hamiltonian  form  given  by 

(4),  if  the  momenta  ju^,  /j,,  p.^,  which  are  conjugated  to  the  positional  coordinates  of 

the  electron  r/j,  7,,  73,  are  defined  in  a  suitable  way.  In  complete  analogy  to  the 

problem  of  the  fixation  of  the  stationary  states  of  an  atomic  system  when  the  rela- 

tivity modifications  are  laken  into  account,  it  follow  s  therefore  that,  if  these  equations 

>)  Besides  the  discussion  of  this  problem,  the  paper  in  question  will  contain  a  general  treatment 

of  tlie  theory  of  perturbed  periodic  systems  from  the  point  of  view  of  the  possibility  of  describing 

the   motion  by   means  of  angle  variables  (compare  Note  on  page  58). 

11* 
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can  be  solved  by  Ibe  iiietbod  of  separation  of  variables,  we  obtain,  by  fixing  the 

stationary  states  by  means  of  the  conditions  (22),  a  relation  between  the  total  energy 
of  the  atom  in  the  presence  of  a  magnetic  field  and  the  fundamental  frequencies 

characterising  the  motion  of  the  electron,  which  is  exactly  the  same  as  that  holding 

between  the  energy  and  frequencies  in  the  stationary  states  of  an  ordinary  con- 
ditionally periodic  system.  By  a  procedure  analogous  to  that  applied  by  Burgers 

in  his  proof  of  the  mechanical  invariance  of  the  relations  (22)  for  slow  changes  of 
the  external  conditions,  mentioned  in  Part  I  on  page  21,  it  may  further  be  proved 

that  also  in  the  presence  of  a  magnetic  field  these  relations  are  invariant,  when 

regard  is  taken  to  the  effect  of  the  induced  electric  forces  which,  according  to  the 

ordinary  theory  of  electrodynamics,  will  accompanj^  a  variation  of  the  magnetic 
field.  In  the  follownng,  however,  we  shall  not  treat  the  problem  of  the  influence  of 

an  external  magnetic  field  on  the  hydrogen  spectrum  by  means  of  the  method  of 

separation  of  variables,  but  in  analogy  to  the  treatment  of  the  problems  of  the  fine 

structure  and  of  the  Stark  effect  of  the  hydrogen  lines,  given  in  the  preceding 

sections,  we  shall  treat  the  problem  from  the  point  of  view  of  the  theory  of  per- 
turbed periodic  systems.  Before  entering  on  the  detailed  discussion  of  the  necessary 

modifications  to  be  introduced  in  the  general  considerations  in  §  2,  in  order  that 

they  may  be  applied  also  to  the  problem  of  the  fixation  of  the  stationary  states  of 

the  atom  in  the  presence  of  external  magnetic  forces,  we  shall  for  the  sake  of 

illustration  first  show  how  it  is  possible  in  certain  cases  to  treat  the  problem  of 

the  effect  of  a  homogeneous  magnetic  field  on  the  hydrogen  spectrum  in  a  simple 

way,  which  will  be  seen  to  present  a  close  formal  analogy  with  the  theory  originally 
devised  by  Lorentz  on  the  basis  of  the  classical  theory  of  electrons. 

In  these  considerations  we  shall  make  use  of  a  well  known  theorem  of  Larmok, 

which  states  that,  if  we  look  apart  from  small  quantities  proportional  to  the 

square  of  the  intensity  of  the  magnetic  field,  the  motion  of  a  system  of  electrons 

moving  in  a  conservative  field  of  force  possessing  axial  symmetry  round  a  fixed 

axis  will,  in  the  presence  of  an  external  homogeneous  magnetic  field  parallel  to 

this  axis,  dift'er  from  a  mechanically  possible  motion  of  the  system  without  field, 
only  by  a  superposed  uniform  rotation  of  the  entire  system  round  the  axis,  the 
frequency  of  which  is  given  by 

OH  =   .^—H,  (79) 

where  H  is  the  intensity  of  the  magnetic  field  and  c  the  velocity  of  light,  while  — e 

and  m  represent   the   charge   and  the   mass  of  an  electron.')   If  the    magnetic  field 

1)  J.  Lakmok,  Aether  &  Matter,  Cambridge  1900,  p.  341.  This  theorem,  wliich  was  established  in 
connection  with  an  attempt  to  develop  a  general  theory  of  the  Zeeman  effect  based  on  the  ordinary  theory 
of  electrodynamics,  is  directly  proved  by  observing  that,  with  the  degree  of  approximation  in  question, 
the  accellerations  of  the  electrons  due  to  the  presence  of  the  magnetic  field  are  equal  to  the  changes  in 
tlie  accellerations  of  the  particles  due  to  the  superposed  rotation  of  the  system. 
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is  nol  coiislanl,  but  it'  its  intensity  increases  slowly  and  uniformly  from  zero,  it  is 
further  simply  shown  that  the  electric  induction  forces,  which  will  accompany  the 
change  in  the  intensity  of  the  magnetic  force,  will  just  effect  that  a  rotation  as 

that  described  will  be  impressed  on  the  original  motion  of  the  system.^)  Moreover, 

as  regards  the  effect  of  the  magnetic  field  on  the  total  energy  of  the  system,^')  it  will 
be  observed  that  the  superposed  rotation  under  consideration  will  not  affect  the 

mutual  potential  energy  of  the  particles,  while,  with  neglect  of  small  quantities  pro- 

portional  to  //-,   it  will  produce    a   change   in    the   kinetic  energy   equal  to  2/tPoh, 

')  Compare  P.  Langevin,  Ann.  de  Chim  et  de  Phys.  V,  p.  70  (1905),  who  has  deduced  this  result  in 
connection  with  his  well  known  theory  of  the  magnetic  properties  of  atomic  systems  based  on  the 
classical  theory  of  electrons. 

-)  In  an  earlier  paper  (Phil.  Mag.  XXVII,  p.  506  (1914))  the  writer  had  assumed  that  the  total 
energy  in  the  stationary  states  of  the  hydrogen  atom  in  the  presence  of  a  magnetic  field  would  not  be 

different  from  the  energy  in  the  corresponding  states  without  field,  as  far  as  small  quantities  propor- 
tional to  the  intensity  of  the  magnetic  force  are  concerned;  the  effect  on  the  kinetic  energy  of  the  electron 

due  to  the  superposed  rotation  being  assumed  to  be  compensated  by  some  kind  of  "potential"  energy  of 
the  whole  atom  relative  to  the  magnetic  field.  This  assumption  seemed  not  onh'  suggested  b\'  the  ab- 

sence of  paramagnetism  in  many  elementj,  the  atoms  and  molecules  of  which,  according  to  the 

theory  to  be  discussed  in  Part  IV,  must  be  expected  to  possess  a  resultant  angular  momentum,  but  it 

was  especiallj'  thought  to  be  supported  by  the  fact,  that  the  spectrum,  emitted  b}'  hj'drogen  in  the 
presence  of  a  magnetic  Held,  apparently  did  not  form  a  combination  spectrum  of  the  type  which  should 

be  expected,  it  the  frequency  of  the  radiation,  emitted  during  a  transition  between  two  stationary  states 

of  the  atom  in  the  presence  of  the  field,  could  be  calculated  directi}'  from  the  values  of  the  energ3^  in 
these  states  by  means  of  relation  (1).  As  remarked  by  Debye  (Phys.  Zeitschr.  XVII,  p.  511  (1916)),  this 

view,  however,  would  not  be  reconcilable  with  Einstein's  theory  of  temperature  radiation  (see  Part  1, 
page  7)  which  implies  the  general  validity  of  relation  (1);  and,  moreover,  as  will  be  shown  in  the  fol- 

lowing, the  Zeeman  effect  of  the  hj'drogen  lines  rnay  actually  be  considered,  not  as  involving  a  devia- 
tion from  the  combination  principle,  but  rather  as  affording  an  instructive  example  of  a  systematic  dis- 

appearance of  certain  possible  combination  lines,  for  which  a  simple  explanation  can  be  obtained  from 
a  consideration  based  on  the  general  formal  relation  between  the  quantum  theory  of  line  spectra  and 

the  ordinary  tiieory  of  radiation.  Further,  with  reference  to  this  relation  —  and  remembering  that  on 
ordinary  electrodynamics  the  magnetic  field  will  not  directly  infiuence  the  exchange  of  energy  during 

a  process  of  radiation,  since  the  forces  due  to  this  field,  being  always  perpendicular  to  the  direction 

of  the  velocity,  will  not  perform  work  on  the  moving  electron  —  it  seems  also  natural  to  assume  that 
it  is  possible,  simply  from  the  effect  of  the  superposed  rotation  on  the  kinetic  energy  of  the  electron, 
to  determine  the  effect  of  the  magnetic  field,  as  regards  the  differences  between  the  values  of  the 

energy  in  the  different  stationary  states  of  the  atom.  Now,  in  a  discussion  of  the  spectrum  to  be  ex- 
pected on  the  quantum  theory,  we  are  concerned  only  with  these  differences  and  not  with  the 

absolute  values  of  the  additional  energy  of  the  .system  due  to  the  presence  of  the  magnetic  field. 

It  would  therefore  be  possible  to  escape  from  the  difficulty,  mentioned  above,  as  regards  the  absence 

of  paramagnetism,  by  assuming  that  only  the  energy  in  the  socalled  "normal"  state  of  an  atomic 
S3^stem  (i.  e.  the  stationary  state  of  the  S3^stem  which  possesses  the  smallest  value  for  the  total  energy' ; 
see  Part  IV)  is  not  altered  in  the  presence  of  a  magnetic  field,  as  far  as  small  quantities  proportional 

to  the  intensitj'  of  the  magnetic  force  are  concerned.  On  this  view,  the  absence  of  paramagnetism  would 

thus  be  a  special  property  of  the  normal  state,  connected  with  the  impossibility  of  spontaneous  transi 

tions  from  this  state  to  other  stationary  states  of  the  system.  To  this  question  we  shall  come  back  in 

the  following  parts  of  this  paper;  for  the  sake  of  simplicity,  however,  we  shall  not,  in  the  considera- 
tions of  this  section,  enter  more  closely  on  the  consequences  of  the  mentioned  hypothesis,  which  would 

imply  small  modifications  in  the  form  of  the  following  considerations,  but  would  not  affect  the  results. 
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where  P  represents  the  total  angular  momentum  of  the  system  round  the  axis, 

taken  in  the  same  direction  as  that  of  the  superposed  rotation. 

From  these  results  it  follows  that  the  motion  of  the  electron  in  any  stationary 

state  of  a  hydrogen  atom,  which  is  exposed  to  a  homogeneous  magnetic 

field,  will  —  if  we  look  apart  from  small  quantities  proportional  to  the  square 

of  the  intensity  of  the  magnetic  force  and  to  the  product  of  this  intensity  with  the 

ratio  between  the  mass  of  the  electron  and  that  of  the  nucleus  —  differ  from  the 

motion  in  some  stationary  state  of  the  atom  in  the  absence  of  the  field,  only  by 

a  superposed  uniform  rotation  round  an  axis  through  the  nucleus  parallel  to  the 

magnetic  force  with  a  frequency  given  by  (79).  Due  to  the  degenerate  character  of 

the  system  formed  by  the  atom  in  the  absence  of  the  magnetic  field,  it  is  not  pos- 

sible, however,  from  a  consideration  of  the  mechanical  effect  produced  on  the 

motion  of  the  electron  by  a  slow  and  uniform  establishment  of  the  magnetic  field, 

to  fix  the  stationary  states  of  the  perturbed  atom  completely,  but  in  order  to  fix 
these  states  we  must  consider  more  closely  the  relation  between  the  additional 

energy  of  the  system  due  to  the  presence  of  the  magnetic  field  and  the  character 

of  the  secular  perturbations  produced  by  this  field  on  the  orbit  of  the  electron. 

On  the  basis  of  Larmor's  theorem  the  discussion  of  this  problem  is  very  simple. 
In  fact,  since  the  frequency  Oh  is  independent  of  the  shape  and  position  of  the 

orbit,  we  may  proceed  in  a  manner  which  is  completely  analogous  to  that  applied 

in  the  fixation  of  the  stationary  states  of  the  hydrogen  atom  in  the  presence  of  a 

homogeneous  electric  field.  Thus,  looking  apart  from  the  effect  of  the  relativity 

modifications,  we  may  conclude  at  once  that  the  total  energy  in  the  stationary 

states  of  the  atom  will  be  given  by 

E  =  En  +  noHh,  (80) 

where  ii  is  an  entire  number  which  can  be  positive  as  well  as  negative,  while  En 

will  be  equal  to  the  energy  in  the  corresponding  stationary  state  of  the  undis- 
turbed atom,  which  is  given  by  —  Wn  in  (41).  As  in  the  case  of  the  Stark  effect, 

it  will  moreover  be  seen  that  this  formula  includes  the  values  of  the  energy  in 

such  states  of  the  atom,  in  which  the  electron  moves  in  a  circular  orbit  perpendic- 
ular to  the  direction  of  the  field,  and  which  beforehand  must  be  expected  to  be 

included  among  the  stationary  states  of  the  perturbed  system,  since  such  orbits 
during  a  slow  and  uniform  establishment  of  the  external  field  will  not  undergo 

secular  perturbations  as  regards  shape  and  position  (compare  page  73).  In  fact, 

since  in  these  cases  we  have  P  =  ^t:  "^'2:r,  where  n  is  the  entire  number  character- 
ising the  stationary  states  of  the  undisturbed  hydrogen  atom,  it  follows  from  the 

above  that  the  total  energy  in  the  special  stationary  states  under  consideration  will 

just  be  represented  by  the  formula  (80),  if  we  put  ii  ==  ̂   n.  From  this  formula  it 

will  be  seen  at  the  same  time,  that  the  presence  of  the  external  magnetic  field  im- 
poses the  restriction  on  the  motion  in  the  stationary  states  of  the  hydrogen  atom, 

that,  with   neglect   of  small   quantities   proportional   to  H,   the  angular  momentum 
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of  the  electron  round  the  axis  of  the  field  will  be  equal  to  an  entire  multiple 
of  /«/2-. 

As  regards  Ihe  expression  for  the  total  energy  of  the  hydrogen  atom  in  the 
presence  of  the  magnetic  field,  formula  (80)  is  in  agreement  with  the  formulae  ob- 

tained by  SoMMERFELD  «nd  Debye  on  the  basis  of  the  conditions  (22),  holding  for  con- 
ditionally periodic  systems  which  allow  of  separation  of  variables.  As  shown  by  these 

authors,  a  system,  which  consists  of  an  electron  moving  under  the  influence  of 

the  attraction  from  a  fixed  nucleus  and  of  a  homogeneous  magnetic  field,  allows  of 
separation  of  variables  in  polar  coordinates,  if  the  polar  axis  is  chosen  parallel  to 

the  magnetic  field.  Looking  apart  from  the  effect  of  the  relativity  modifications, 
and  choosing  for  q^,  q.,  and  q.^  the  length  of  the  radius  vector  from  the  nucleus  to 

the  electron,  the  angle  between  this  radius  vector  and  the  axis  of  the  system,  and 
the  angle  which  the  plane  through  the  electron  and  this  axis  makes  with  a 

fixed  plane  through  the  axis  respectively,  they  obtain  the  following  expression  for 

the  total  energy:  ') 

where  /j,,  /j^  and  ii.^  are  the  integers  which  appear  as  factors  to  Planck's  constant 
on  the  right  side  of  the  conditions  (22j.  As  mentioned  this  formula  gives  the  same 

result  as  (8Uj;  in  fact,  if  we  put  n  =  n^  -{- n^ -\- n.^  and  if  we  look  apart  from  the 
small  correction  due  to  the  finite  mass  of  the  nucleus,  the  first  term  in  (81)  is  seen 

to  coincide  with  the  expression  for  — Wn  given  by  (41),  while  the  last  term  in  (81) 
coincides  with  the  last  term  in  (80),  if  we  put  u  =  n^.  It  will  be  observed,  however,  that, 

while  in  the  theories  of  Sommeufeld  and  Debye  the  stationary  states  are  charac- 

terised by  three  conditions,  only  two  conditions  were  necessary  on  the  above  con- 
siderations in  order  to  secure  the  right  relation  between  the  energy  and  frequencies 

of  the  system  in  the  stationary  stales.  Thus,  besides  the  conditions  which  prescribe 

the  length  of  the  major  axis  of  the  rotating  orbit  and  the  value  of  the  angular 

momentum  of  the  system  round  the  axis  of  the  field,  the  theories  of  the  mentioned 
authors  involve  the  further  condition,  that  the  value  of  the  total  angular  momentum 

of  the  electron  round  the  nucleus  must  be  equal  to  an  entire  multiple  of  ft/2;r;  and 
that  consequently  the  minor  axis  of  the  orbit  has  the  same  values  as  in  a  hydrogen 

atom  perturbed  by  a  small  external  central  field  (compare  page  57).  This  is  due  to 

the  circumstance,  that  the  perturbed  atom  forms  a  degenerate  system  if  we 

look  apart  from  the  effect  of  the  relativity    modifications,  because   the   secular   per- 

'j  A.  SoMMERFELU,  Pliys.  ZeitscliF.  XVII,  p.  491  (1916)  and  P.  Debye,  Phys.  Zeitschr.  XVII,  p.  507 

(1916).  While  Debye  proceeds  directly  by  tiie  application  of  the  conditions  (22)  in  a  fixed  set  of  posi- 

tional polar  coordinates,  Sommerfeld  detei'inines  the  stationary  states  by  applying  these  conditions  to 

tlie  motion  of  the  system  relative  to  a  set  of  coordinates  which  rotates  uniformly  round  the  polar  axis 

with  the  frequency  o„;  a  procedure  which  in  the  special  case  under  consideration  is  simply  shown  to 

give  the   same  result  as  the  direct  application  of  (22)  to  fixed  polar  coordinates. 
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turbations  are  simply  periodic.  From  tlie  point  of  view  of  separation  of  variables, 

this  degenerate  character  of  the  system  is  in  the  present  case,  in  contrast  to  the 

analogous  case  of  the  Stark  effect,  also  directly  revealed  by  the  fact,  that  a  separa- 

tion can  be  obtained,  not  only  in  polar  coordinates,  but  in  any  set  of  axial  ellip- 
tical coordinates  for  which  one  focus  is  placed  at  the  nucleus  and  the  other  at 

some  point  on  the  axis  of  Ihe  field.  Just  as  in  the  case  of  the  Stark  effect,  how- 
ever, the  system  is  no  more  degenerate  as  soon  as  the  relativity  modifications  are 

taken  into  account,  in  which  case  a  separation  of  variables  will  still  be  possible 

but  only  in  polar  coordinates.    To   this   point  we  shall  come  back  below. 
The  observations  on  the  Zeeman  effect  of  the  hydrogen  lines  show  that,  if  the 

fine  structure  is  neglected,  each  line  is  in  the  presence  of  a  magnetic  field  split  up 

in  a  normal  Lorentz  triplet;  i.e.  each  line  is  resolved  in  three  components  of 

which  ihe  one  is  undisplaced  and  polarised  parallel  to  the  direction  of  the  field, 

while  the  two  other  components  possess  frequencies,  which  differ  from  that  of  the 

original  line  by  Oh,  and  are  circularly  polarised  in  opposite  directions  in  a  plane 

perpendicular  to  the  direction  of  the  field.  As  pointed  out  by  Sommerfeld  and  b)^ 
Debye,  the  frequencies  of  a  Lorentz  triplet  are  included  among  the  frequencies  of  the 

components  deduced  from  (81)  by  application  of  relation  (1).  In  addition  to  the 

observed  components,  however,  we  might  from  (81)  and  (1)  expect  the  appearance 

of  a  number  of  components,  displaced  from  the  original  positions  of  the  lines  by 

higher  multipla  of  O//.  For  the  non-appearance  of  these  components  the  theories  of 
Sommerfeld  and  Debye  offered  no  explanation,  no  more  than  for  the  polarisation  of 

the  components  observed;  except  that  Sommerfeld  in  this  connection  draws  atten- 
tion to  the  fact,  that  the  law  governing  the  observed  polarisations  exhibits  a  certain 

analogy  to  the  emperical  rule  of  Epstein  concerning  the  observed  polarisations  of 
the  components  of  the  Stark  effect  of  the  hydrogen  lines  (see  page  76).  On  the  other 

hand,  just  as  in  case  of  the  latter  elTect,  an  explanation  of  the  number  of  the  com- 
ponents observed  and  their  characteristic  polarisations  is  directly  obtained  on  the 

basis  of  the  general  formal  relation  between  the  quantum  theory  of  line  spectra  and 

the  ordinary  theory  of  radiation.  In  the  first  place  we  have  at  once  from  Larmor's 
theorem,  denoting  the  frequency  of  revolution  of  the  electron  in  a  stationary  state  of 

the  undisturbed  hydrogen  atom  by  co,  that  the  motion  of  the  electron,  in  a  corres- 

ponding stationary  state  of  the  atom  in  the  presence  of  the  field,  may  be  resolved 

in  a  number  of  linear  harmonic  vibrations  parallel  to  the  direction  of  the  magnetic 
force  with  frequencies  zco,  wdiere  r  is  a  positive  integer,  and  in  a  number  of  circular 

harmonic  rotations  perpendicular  to  this  direction  with  frequencies  z(o  +  Oh  or  tco  —  Oh, 

according  as  the  direction  of  rotation  is  the  same  as  or  the  opposite  of  that  of  the 

superposed  rotation.  Next,  with  neglect  of  small  quantities  proportional  to  H\  we 
have  for  the  difference  in  the  total  energy  between  two  neighbouring  states  of  the 
perturbed  system  under  consideration 

SE  =  3E^  +  d(i  =  (odl^OHoZs,      ■  (82) 
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where  £„  and  o)  are  the  values  of  the  energy  and  frequency  and  /  is  the  value  of  the 
quantity  defined  by  (5),  all  corresponding  to  the  state  of  the  undisturbed  system 
which  would  appear  if  the  magnetic  force  vanished  at  a  slow  and  uniform  rate, 
while  (i  is  the  additional  energy  due  to  the  presence  of  the  magnetic  field  and  S 
the  angular  momentum  of  the  system  round  the  axis  of  the  field  multiplied  by  27r 
and  taken  in  the  same  direction  as  that  of  the  superposed  rotation.  Since  (82)  has 
exactly  the  same  form  as  relation  (66),  and  since  in  the  stationary  states  we  have 

/  =  n/i  and  ̂ i  =  u/j,  we  are  therefore  from  a  consideration,  quite  analogous  to 
that  given  in  §  2  on  page  59,  led  to  the  conclusion,  that,  in  the  presence  of 

the  magnetic  field,  only  two  types  of  transitions  between  stationary  states  are 

possible.  For  both  types  of  transitions  the  integer  n  may  change  by  any  number 
of  units,  but  in  transitions  of  the  first  type  the  integer  n  will  remain  constant  and 
the  emitted  radiation  will  be  polarised  parallel  to  the  direction  of  the  field,  while 
in  transitions  of  the  second  type  u  will  decrease  or  increase  by  one  unit  and  the 

emilled  radiation  will  be  circularly  polarised  in  a  plane  perpendicular  to  the  field,  the 

direction  of  the  polarisation  being  the  same  as  or  the  opposite  of  that  of  the  super- 
posed rotation  respectively.  Remembering  that,  with  neglect  of  small  quantities  pro- 

portional to  the  magnetic  force,  the  angular  momentum  of  the  system  round  the 

axis  of  the  field  remains  unaltered  in  transitions  of  the  first  type  and  changes  by 

hl2z  in  transitions  of  the  second  type,  it  will  be  seen  that  this  conclusion  is  in- 
dependently supported  by  a  consideration  of  conservation  of  angular  momentum 

during  the  transitions,  like  that  given  in  Part  I  on  page  34. 

With  reference  to  formula  (80),  it  will  be  seen  that  the  above  results  are  in 

complete  agreement  with  the  experiments  on  the  Zeeman  effect  of  the  hydrogen 

lines,  as  regards  the  frequencies  and  polarisations  of  the  observed  components. 

On  the  other  hand,  the  observed  intensities  are  directly  accounted  for,  independent 

of  any  special  theory  about  the  origin  of  the  lines.  In  fact,  from  a  consideration  of 

the  necessary  "stability"  of  spectral  phenomena,  it  follows  that  the  total  radiation  of 
the  components,  in  which  a  spectral  line,  which  originally  is  unpolarised,  is  split  up 

in  the  presence  of  a  small  external  field,  cannot  show  characteristic  polarisation 

with  respect  to  any  direction.  In  case  of  the  Zeeman  effect  of  the  hydrogen  lines,  it 
is  therefore  necessary  beforehand  to  expect  that  the  intensity  of  the  radiation, 
summed  over  all  directions,  corresponding  to  each  of  the  three  components  in 

which  every  line  is  split  up  must  be  the  same.  From  the  point  of  view  of  the 

quantum  theory  of  line  spectra,  it  will  be  seen  that  by  means  of  considerations 

of  this  kind  we  may  inversely  obtain  a  certain  amount  of  direct  quantitative  in- 

formation as  regards  the  probabilities  of  spontaneous  transition  between  different 

sets  of  stationary  states,  holding  also  in  the  region  where  the  integers  characterising 

these  states  are  not  large  and  where  consequently  the  estimate  of  the  values  of 

these  probabilities,  based  on  the  formal  relation  between  the  quantum  theory  and 

the  ordinary  theory  of  radiation,  gives  results  which  are  only  of  an  approximative 

character.  This  point  will  be  discussed  more  closely  in  Kramers'  paper  on  the  relative 
D.  K.  D.  Vidensk.  Selsk.  Skr.,  naturvldensk.  og  mathem.  Afd.  8.  Raekke,  IV.  1.  12 
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intensities  of  the  components  ot  the  fine  structure  and  the  Stark  effect  of  the 

hydrogen  lines. 
A  procedure  quite  analogous  to  that  applied  above  may  be  used  to  treat  the 

problem  of  the  effect  of  a  homogeneous  magnetic  field  on  the  hydrogen  spectrum, 
also  when  the  relativity  modifications  are  taken  into  account,  and  when  the  atoms 

at  the  same  time  are  exposed  to  a  small  external  field  of  force  of  constant  potential, 

which  possesses  axial  symmetry  round  an  axis  through  the  nucleus  parallel  to  the 

magnetic  force;  because  also  in  this  case  we  can  obviously  make  direct  use  of* 
Larmor's  theorem.  We  shall  not,  however,  proceed  in  this  way,  but  shall  come 
back  to  these  questions  when  we  have  shown  how,  by  a  simple  modification 

of  the  general  considerations  of  perturbed  periodic  systems  given  in  §  2,  it  is  pos- 
sible to  represent  the  theory  of  the  stationary  states  of  the  hydrogen  atom  in  the 

presence  of  a  small  magnetic  field  on  a  form,  which  allows  to  discuss  the  effect  on 

the  hydrogen  spectrum  also  if  the  atom  is  exposed  to  a  magnetic  field  which  is 

not  homogeneous,  or  to  discuss  the  effect  of  a  homogeneous  magnetic  field  if  elec- 
tric forces,  which  do  not  possess  axial  symmetry  round  an  axis  through  the  nucleus 

parallel  to  the  magnetic  field,  are  acting  on  the  atom  at  the  same  time. 
In  order  to  examine  the  general  problem  of  the  secular  perturbations  of  the 

orbit  of  the  electron  in  the  hydrogen  atom  which  take  place  if  the  atom  is  ex- 
posed to  small  external  forces  which,  entirely  or  partly,  are  of  magnetic  origin, 

we  shall,  as  in  the  usual  theory  of  planetary  perturbations,  take  our  starting  point 
in  the  equations  of  motion  in  their  canonical  form.  Now  the  equations  of  motion 

of  an  electron  of  charge  — e,  which  besides  by  an  electric  field  of  potential  V  is 
acted  upon  by  a  magnetic  field  of  vector  potential  51  (defined  by  div  5t  =  0  and 

curl  2t  =  §,  where  §  is  the  magnetic  force  considered  as  a  vector),  can  be  written 
in  the  Hamiltonian  form  given  by  (4),  if,  just  as  in  the  absence  of  the  magnetic 

field,  E  is  taken  equal  to  the  sum  of  the  kinetic  energy  T  of  the  electron  and  its 

potential  energy  —  eV  relative  to  the  electric  field,  while  the  momenta  which  are 
conjugated  to  the  positional  coordinates  g^,  q^,  q^  of  the  electron  in  space  are 

defined  by  the  equations^) 

Pk-P^--/-Tp^     (^=  1^2,3)  (83) 

where  the  p's  are  the  momenta  defined  in  the  usual  way  (compare  page  10),  and 
where  (b5l)  represents  the  scalar  product  of  the  velocity  of  the  electron  t)  and  the 

vector  potential  5t,  considered  as  a  function  of  the  g's  and  of  the  generalised  velo- 
cities g^,  ̂ 2,  q^.  If  we  now  assume  that  the  effect  of  the  magnetic  forces  on  the 

motion  of  the  electron  is  so  small  compared  with  the  effect  of  the  electric  forces, 
that  in  the  calculations  we  may  look  apart  from  all  terms  proportional  to  i^-,  it 
is  simply  seen  that  the  energy  function  E  in  (4),  obtained  by  introducing  the 
momenta  defined  by  (83),  will  differ  from   the   corresponding   function,  holding  in 

'j  See  f.  inst.  G.  A.  Schott:  Electromagnetic  Radiation,  App.  F  (Cambridge,  1912). 
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the  absence  of  the  magnetic  field,  only  by  the  addition   of  a  term  which   is  linear 
e 

in    the  momenta  and  equal  to  -  {\)%).   In  fact,  denoting  E  expressed  as  a  function 

of  the  q's  and  p's  by  <p  (p,  q\  we  get  from  (83)  together  with  (4),  with  the  approx- imation under  consideration, 

From  this  it  follows  that,  with  neglect  of  small  quantities  proportional  to  the 
square  of  the  magnetic  forces,  the  perturbations  of  the  orbit  of  the  electron  in  a 
hydrogen  atom,  which  besides  to  a  small  external  electric  field  of  potential  0  is 
exposed  to  a  small  external  magnetic  field  of  vector  potential  2(,  are  given  by  a 

set  of  equations  of  the  same  form  as  (44)  in  §  2,  but  where  the  as  and  /9's  are 

replaced  by  a  set  of  quantities  a[,  «;,  «;,  fi[,  j3'^,  /9;,  which  are  related  to  the  q's 
and  p"s  and  the  time  in  the  same  way  as  the  orbital  constants  a^,  a^,  Us,  ̂ i,  jS^,  i^^ 
for  the  undisturbed  atom  are  related  to  the  q's  and  p's  and  the  time  through  the 

equations  (18),  and  where  i2  is  replaced  by  the  expression  —  e(/)-f  -(b5l),  considered 

as  a  function  of  the  a"s  and  /9"s  and  the  time.  Since  now,  at  any  moment,  the 

quantities  a\,  a',,  a'g,  fi\,  /J^,  fi[  differ  from  the  corresponding  orbital  constants  a^, 
a^,  a,,  /5^,  /Jg,  /j'y  only  by  small  terms  proportional  to  the  intensity  of  the  magnetic 
field,  we  see  therefore  that,  with  neglect  of  small  quantities  of  the  same  order  as 

the  variation  in  the  orbital  constants  within  a  single  period,  the  secular  per- 
turbations of  the  shape  andposition  of  the  orbit  of  the  electron  will 

again  be  given  by  the  equations  (46),  if  in  the  present  case  ̂ "  is  taken  equal 

to  the  sum  of  the  mean  value  ̂ 'e  of  the  potential  energy  — e(P  oi  the  electron 
relative    to    the   external    electric   forces    and   the    mean   value   ¥m    of   the    quantity 

-(t)?l),  both  taken  over  an  osculating  orbit  corresponding  to  some  moment  during 

the  revolution  and  expressed  as  functions  of  a^,  a^,  a^,  /Jg,  /^g.^)  The  latter  mean 
value,  however,  is  easily  seen  to  allow  of  a  simple  interpretation.  In  fact,  we  have 

;[' 
%f  =  l\\{^%)dt=  -^B,  (84) 

where  o)  is  the  frequency  of  revolution  of  the  electron  in  the  osculating  orbit,  and 

where  B  represents   the   total   flux  of  magnetic  force   through   this   orbit,   taken   in 

')  If  the  relativity  modifications  are  taken  into  account,  the  orbit  of  the  electron  in  the  undis- 
turbed atom  is  not  strictly  periodic,  but  it  will  be  seen  that  the  secular  variations  of  this  orbit  are 

still  obtained  from  the  equations  (46),  if  only,  to  the  expression  for  W  as  defined  in  the  text,  a  term  is 

added  which  is  equal  to  the  expression  for  ̂ ' given  by  formula  (70)  in  §  3. 

12* 
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the  same  direction  as  that  of  the  magnetic  force  which  would  arise  from  the  motion 

of  the  electron  according  to  ordinary  electrodynamics. 
From  the  considerations  in  §  2  it  follows  now  in  the  first  place  that,  with 

neglect  of  small  quantities  proportional  to  the  square  of  the  external  forces,  W=  ¥e-\-  ̂ ''m 
will  remain  constant  during  the  perturbations  within  a  time  interval,  sufficiently 

long  for  the  perturbing  forces  to  produce  a  considerable  change  in  the  shape  and 

position  of  the  orbit  of  the  electron;  i.  e.  in  a  time  interval  of  the  same  order  as 
W/1,  if  X,  just  as  in  §  2,  denotes  a  small  quantity  of  the  same  order  as  the  ratio 
between  the  external  forces  acting  on  the  electron  and  the  attraction  from  the  nucleus. 

From  a  consideration  analogous  to  that  given  in  §  2,  we  may  further  conclude  that, 

in  the  stationary  states  of  the  perturbed  system,  the  quantity  ¥  =  ̂ e  +  ̂ "m  may 
be  taken  equal  to  the  additional  energy  of  the  system  due  to  the  presence  of  the 
external  fields.  In  fact,  let  us  imagine  that  these  fields  are  slowly  established  at  a 

uniform  rate  within  a  time  interval  from  /  ̂   0  to  /  ̂   t/,  where  <!/  is  a  quantity 
of  the  same  order  as  W/i.  For  the  total  alteration  in  the  inner  energy  of  the  system 

during  this  process  we  get  then,  with  neglect  of  small  quantities  proportional  to  /^ 

r*d-        3 

where  the  first  term  represents  the  work  done  on  the  system  by  the  slowly  in- 

creasing external  electric  forces,  while  the  second  term  represents  the  work  per- 

formed by  the  induced  electric  forces  which  accompany  the  variation  in  the  in- 
tensity of  the  magnetic  field.  By  partial  integration  of  the  first  term,  we  get  from 

this  equation,  with  the  approximation  under  consideration, 

r*d-  m  ntd- 

4«,-e(^,,  =  _|W<^  +  ̂^BJrff  _  ̂ W'k  +  ̂Mlrff  =^\rrf/.  (85) *^o  t^o  *Jo 

Now  the  expression  on  the  left  side  of  this  equation  is  equal  to  the  change  in  the 
total  energy  of  the  system  due  to  the  establishment  of  the  external  field.  Since  the 

expression  on  the  right  side  is  seen  to  be  a  small  quantity  of  the  same  order  as 

Xa^,  it  follows  therefore  from  (85)  in  the  first  place  that  the  secular  variations  of 

«2>  «3»  ̂ f  /^3  during  the  increase  of  the  fields  will,  just  as  in  the  case  considered 

in  §  2  (see  page  47),  be  given  by  a  set  of  equations  of  the  same  form  as  (46),  where 

9  is  replaced  by  W,  and  where  again  a^  may  be  considered  as  a  constant.  Also  in 

the  present  case  it  follows  therefore  that  ¥  will  remain  constant  during  the  establish- 
ment of  the  external  fields,  and  we  see  consequently  that  the  expression  on  the 

right  side  of  (85)  will  be  simply  equal  to  ¥\  a  result  which,  with  reference  to  the 
principle   of  the  mechanical  transformability   of  the  stationary   states,  leads  to  the 
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conclusion  mentioned  above,  that  the  value  of  the  additional  energy  in  the  sta- 
tionary states  of  the  perturbed  system  is  given  by  the  value  of  r  in  these  states. 

From  the  above  considerations  it  follows  that  the  problem  of  the  stationary 
states  of  the  hydrogen  atom  in  the  presence  of  external  electric  and  magnetic  forces 
may  be  treated  in  a  manner,  which  is  exactly  analogous  to  that  applied  in  §  2 
in  case  of  a  periodic  system  exposed  to  a  small  external  field  of  constant  potential. 
Thus,  if  the  secular  perturbations  as  determined  by  (46)  are  of  conditionally  periodic 
type,  we  shall  expect  that,  with  neglect  of  small  quantities  proportional  to  /,  the 
cycles  of  shapes  and  positions  which  the  orbit  of  the  electron  passes  through 

in  the  stationary  states  of  the  perturbed  system  will  be  characterised  by  the 
conditions  (55),  and  that  the  possible  values  of  the  additional  energy  of  the 
atom  in  the  stationary  states  will  be  fixed  by  these  conditions  with  neglect  of  small 

quantities  proportional  to  P.  We  shall  therefore  conclude  that,  also  in  the  presence 
of  external  magnetic  forces,  the  lines  of  the  hydrogen  spectrum  will,  if  only  the  secular 
perturbations  are  of  conditionally  periodic  type,  be  split  up  in  a  number  of  sharp 
components,  the  frequencies  of  which  are  determined  by  means  of  the  conditions  (67) 

together  with  relation  (1).  As  regards  the  problem  of  the  intensities  and  polarisation 

of  these  components,  we  may  further  proceed  in  a  way  quite  analogous  to  that  fol- 
lowed in  §  2.  In  fact,  if  the  secular  perturbations  are  of  conditionally  periodic  type, 

the  displacement  of  the  electron  in  any  given  direction  may  be  represented  as  a 

sum  of  harmonic  vibrations  by  an  expression  of  the  same  type  as  (65).  Moreover  it 
can  be  proved  that  the  difference  in  the  total  energy  of  two  neighbouring  states 

of  the  perturbed  atom  will  again  be  given  by  the  expression  (66)^).  The  general 
considerations  in  §  2  will  therefore  apply  without  alterations  to  the  problem  of 
the  intensity  and  polarisation  of  the  components  into  which  the  hydrogen  lines 

are  split  up  in  the  presence  of  small  external  forces,  also  if  these  forces  are  entirely 

or  partly  of  magnetic  origin.  Similarly,  it  will  be  seen  that  the  effect  on  the  spec- 
trum of  a  perturbed  hydrogen  atom,  which  will  be  due  to  the  presence  of  a  second 

external  field  small  compared  with  the  first,  also  in  this  case  may  be  discussed 
directly  by  means  of  the  considerations  at  the  end  of  §  2. 

We  meet  with  a  direct  application  of  the  preceding  considerations,  if  the 

hydrogen  atom  is  exposed  to  the  simultaneous  influence  of  an  external 

electric  and  an  external  magnetic  field,  which  possess  axial  sym- 
metry round  a  common  axis  through  the  nucleus.  Introducing  the  same 

set  of  orbital  constants  as  described  in  §  2  on  page  54,  we  get  in  this  case  that 

^M,  as  well  as  ¥e,  and  consequently  the  function  ^''  =  ̂ £  +  ¥m  which  enters  in  the 
equations  (46),  will,  besides  on  a^,  depend  on  a^,  fi^  and  a^  but  not  on  j3y  The  general 
character  of  the  secular  perturbations  of  the  orbit  of  the  electron  will  therefore  be 
the  same  as  in  the  case,  considered  in  §  2,  where   the   atom  is  exposed  only  to  an 

1)  Compare  Note  on  page  58.  Also  in  the  presence  of  small  magnetic  forces,  it  will  be  pos- 
sible to  describe  the  motion  of  the  perturbed  system  by  means  of  a  suitably  chosen  set  of  angle  vari- 

ables, if  only  the  secular  perturbations  are  of  conditionally  periodic  type. 
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electric  field  of  axial  symmetry,  and  the  conditions  which  fix  the  stationary  states  of  the 

perturbed  atom  will  again  be  expressed  by  the  relations  (61).  As  regards  the  question 
of  the  probability  of  spontaneous  transition  between  the  stationary  states,  we  get 
moreover,  just  as  in  §  2,  from  a  consideration  of  the  harmonic  vibrations  into  which 
the  motion  of  the  electron  can  be  resolved,  that  only  two  types  of  transitions  will 

be  possible;  in  transitions  of  the  first  type  n^  remains  unaltered,  and  the  accom- 
panying radiation  is  polarised  parallel  to  the  direction  of  the  common  axis  of  the 

perturbing  fields ;  in  transitions  of  the  second  type  n^  decreases  or  increases  by  one 

unit,  and  the  accompanjdng  radiation  will  be  circularly  polarised  in  a  plane  per- 
pendicular to  this  axis.  In  this  connection  it  may  be  remarked,  however,  that  the 

number  of  components,  into  which  a  given  hydrogen  line  is  split  up  in  the  presence 

of  a  magnetic  field,  will  in  general  be  double  as  large  as  the  number  of  components 

which  appear  in  the  presence  of  an  external  electric  field  of  axial  symmetry.  In 

fact,  in  the  latter  case  the  motions  of  the  electron  in  two  stationary  states  of  the 

perturbed  atom,  corresponding  to  the  same  value  of  n,  will  be  symmetrical  with 
respect  to  a  plane  through  the  axis,  and  these  states  will  possess  the  same  values 

for  the  additional  energy,  if  n^  is  the  same  while  the  values  of  iig  are  numerically 

equal  but  have  opposite  signs.  On  the  other  hand,  if  the  atom  is  exposed  also  to 

a  magnetic  field,  this  will  not  hold,  because  the  value  of  the  function  ¥m,  in  con- 
trast to  the  value  of  ¥e,  will  not  possess  the  same  sign  for  two  orbits  which  have 

the  same  shape  and  position  relative  to  the  axis,  but  for  which  the  direction  of 

revolution  of  the  electron  is  reversed.  Considering  two  states  of  the  perturbed  atom 

for  which  the  values  of  ii^  are  the  same  and  the  values  of  n^  are  numerically  equal 

but  have  opposite  signs,  we  get  therefore,  if  the  atom  is  exposed  only  to  a  magnetic 

field  of  axial  symmetry,  that  the  values  of  the  additional  energy  will  be  equal 

with  exception  of  the  sign;  while,  if  the  atom  is  exposed  to  a  magnetic  as  well 

as  to  an  electric  field,  the  additional  energy  in  two  such  states  will  in  general  differ 

also  as  regards  its  numerical  value.  In  contrast  to  what  in  general  will  take  place 

if  the  atom  is  exposed  to  an  electric  field  of  axial  symmetry,  it  will  thus  be  seen 

that,  if  the  hydrogen  atom  is  exposed  only  to  a  magnetic  field  possessing  axial 

symmetry,  the  ensemble  of  components  into  which  a  given  hydrogen  line  is  resolved 

will  be  completely  symmetrical  with  respect  to  the  position  of  the  original  line,  as 

regards  the  frequencies  as  well  as  the  intensities  and  polarisations.  Moreover  it  fol- 

lows from  the  above,  that  if  we  consider  a  hydrogen  atom  exposed  to  an  electric 

field  of  axial  symmetry  and  imagine  that  an  external  magnetic  field,  which  possesses 

symmetry  round  the  same  axis,  is  gradually  established,  each  component  which 

appears  in  the  presence  of  the  first  field  only  will  split  up  into  two  components, 

in  such  a  way  that  each  component  polarised  parallel  to  the  axis  will  split  up  into 

two  components  of  the  same  polarisation,  while  each  component  polarised  per- 
pendicular to  the  axis,  and  which  originally  showed  no  polarisation  when  viewed 

in  a  direction  parallel  to  the  axis,  will  split  up  into  two  components  showing 
circular  polarisations  in  opposite  directions.   If  the  magnetic  field  is  small,  the  new 
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components  will  be  placed  symmetrically  with  respect  to  the  position  of  the  original 

components  and  their  intensities  will  be  approximately  equal,  but  when  the  per- 
turbing influence  of  the  magnetic  forces  on  the  motion  of  the  electron  becomes  of 

the  same  order  of  magnitude  as  that  of  the  external  electric  forces,  the  components 

in  question  will  in  general  be  placed  unsymmetrically  with  respect  to  their  original 
position,  and  their  intensities  may  differ  considerably. 

An  especially  simple  example  of  a  magnetic  field  which  possesses  axial  sym- 
metry is  afforded  by  the  case  of  a  homogeneous  magnetic  field,  discussed  in  the 

beginning  of  this  section.  In  this  case  we  have  that  the  total  magnetic  flux  offeree 
through  the  orbit  of  the  electron  is  equal  to  the  product  of  the  intensity  H  of  the 

magnetic  field  and  the  area  of  the  projection  of  the  orbit  on  a  plane  perpendicular 

to  this  field.  Since  this  area  is  equal  to  «3/2mw,  we  get  consequently  from  (84) 

^"'  H.  (86) 2cm 

From  the  equations  (46)  it  follows  therefore  that  the  effect  of  a  homogeneous  mag- 
netic field,  which  acts  upon  a  hydrogen  atom  which  at  the  same  time  is  exposed 

to  an  external  electric  field  possessing  axial  symmetry  round  an  axis  through  the 

nucleus  parallel  to  the  magnetic  force,  will  consist  in  a  superposition  of  a  uniform 

rotation  of  the  orbit  round  the  axis  with  a  frequency  equal  to 

1    dni  e       „ 

27r  oa.^         4:7Tmc 

on  the  secular  perturbations  which  would  take  place  in  the  absence  of  the  magnetic 

field.  This  result  follows  also  directly  from  Larmor's  theorem,  on  which  the  simple 
considerations  about  the  effect  of  a  homogeneous  magnetic  field  in  the  beginning 

of  this  section  were  based.  Since  a  superposed  rotation  as  that  in  question  will 

not  influence  the  shape  of  the  orbit  of  the  electron  or  its  position  relative  to  the 

axis,  it  follows  from  (61)  that  the  value  of  ̂ 'e  in  the  stationary  states  of  the  atom 
will  not  be  affected  by  the  presence  of  the  magnetic  field,  and  that  consequently  the 
effect  of  this  field  on  the  additional  energy  of  the  system  will  simply  consist  in  the 
addition  of  a  term  given  by 

^M-«^^H  =  n,o^/i.  (87) 

This  result  was  also  to  be  expected  from  a  simple  consideration  of  the  mechanical 

effect  produced  on  the  motion  by  a  slow  and  uniform  establishment  of  the  mag- 

netic field  (compare  page  81).  With  reference  to  the  above  considerations  as  regards 

the  probability  of  transition  between  stationary  states,  it  will  be  seen  to  follow  from 

(87),  that  the  presence  of  the  homogeneous  magnetic  field  will  leave  the  components 

polarised  parallel  to  the  axis  unaltered,  but  will  cause  every  component,  which  in 

the  absence  of  the  field  was   polarised  perpendicular   to   the   axis,  to  split  up  in  a 
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symmetrical  doublet  the  members  of  which  will  show  circular  polarisation  in  op- 
posite directions,  when  viewed  in  the  direction  of  the  axis,  and  will  be  displaced 

from  the  position  of  the  original  component  bj'^  an  amount  corresponding  to  a 
frequency  difference  equal  to  o,i. 

A  simple  application  of  the  last  result  is  afForded  by  the  problem  of  the 
simultaneous  effect  on  the  hydrogen  lines  of  a  homogeneous  electric 

and  a  homogeneous  magnetic  field  which  have  the  same  direction. 

Thus,  if  the  intensities  of  the  fields  are  so  large  that  we  may  look  apart  from  the 

small  modifications  claimed  by  the  theory  of  relativity,  we  shall  from  the  above  expect 
that  the  effect  in  question  will  differ  from  the  ordinary  Stark  effect  of  the  hydrogen 

lines,  only  therein  that  every  component  polarised  perpendicular  to  the  field  is  split  up 

in  two  symmetrical  components  corresponding  to  the  outer  members  of  a  Lorentz 
triplet.  This  seems  to  agree  with  some  observations  of  the  effect  of  two  such  fields 

on  the  hydrogen  line  Ha,  published  by  Garrasso.  ^)  The  problem  in  question  might 
also  have  been  treated  by  means  of  the  method  of  separation  of  variables,  because, 

as  may  be  easily  shown,  the  perturbed  system  —  if  the  relativity  modifications 

are  neglected  —  allows  of  separation  of  variables  in  parabolic  coordinates,  just  as 
in  the  presence  of  the  electric  field  only.  If,  on  the  other  hand,  the  relativity  modific- 

ations are  taken  into  account,  the  method  of  separation  of  variables  cannot  be  ap- 
plied, but,  with  reference  to  the  considerations  at  the  end  of  the  last  section,  it  will 

be  seen  that  it  is  possible,  also  in  this  case,  to  predict  at  once  the  modification  in 

the  effect  of  an  electric  field  on  the  fine  structure  of  the  hydrogen  lines,  which 

would  result  from  the  simultaneous  presence  of  a  parallel  magnetic  field.  Passing 

to  the  limiting  case  where  the  intensity  of  the  electric  field  is  equal  to  zero,  it  will 

thus  be  seen  at  once  from  the  preceding,  that  the  effect  of  a  homogeneous 

magnetic  field  on  the  fine  structure  of  the  hydrogen  lines  will  consist 

in  the  splitting  up  of  every  component  in  a  normal  Lorentz  triplet.  As  far  as 

the  frequencies  of  the  components  are  concerned,  this  result  has  been  predicted  by 

SoMMERFELD  and  Debye,  who  have  treated  the  problem  under  consideration  by 

means  of  separation  of  variables  in  polar  coordinates  (compare  page  84).  In  con- 
nection with  the  fixation  of  the  stationary  states  in  this  problem,  it  may  be  remarked 

that  we  must  assume  that  no  stationary  state  will  exist  for  which  the  angular 
momentum  round  an  axis  through  the  nucleus  parallel  to  the  magnetic  field  would 

be  equal  to  zero.  In  fact,  as  seen  in  §  4,  we  must  assume  that,  in  case  of  a  hydrogen 

atom  exposed  to  a  homogeneous  electric  field,  no  such  states  will  be  possible;  and 

by  imagining  that  the  electric  field  decreases  slowly  to  zero,  while  at  the  same 

time  a  magnetic  field  parallel  to  the  electric  field  is  slowly  established,  it  would 
be  possible,  without  passing  through  a  degenerate  system,  to  obtain  a  continuous 
transformation  of  the  stationary  states  of  the  perturbed  atom  during  which  the 
angular  momentum  of  the  electron  round   the   axis  would   remain   unaltered.  With 

*)  A.  Garbasso,  Phys.  Zeitschr.  XV,  p.  123  (1914). 
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reference  to  the  invariance  of  the  a-priori  probabihty  of  the  stationary  states  during 

such-  a  transformation  (see  Part  I,  page  9  and  27),  we  must  therefore  conclude  that, 
also  in  the  case  of  a  hydrogen  atom  in  the  presence  of  a  magnetic  field,  no  stationary 
states  exist  for  which  the  angular  momentum  round  the  axis  would  be  equal  to 
zero,  although  these  slates  in  mechanical  respect  do  not  exhibit  singularities  from 
which  we  might  anticipate  that  they  are  physically  unrealisable.^) 

In  case  we  consider  the  general  problem  of  the  effect  on  a  hydrogen  atom  of 
a  small  electric  or  magnetic  field,  which  do  not  possess  axial  symmetry  round  an 
axis  through  the  nucleus,  or  of  the  simultaneous  effect  of  two  such  fields,  which 

do  not  possess  such  symmetry  round  a  common  axis,  we  must  expect  that  the 

secular  perturbations  of  the  orbit  of  the  electron  will  in  general  not  be  of  condi- 

tionally periodic  type.  In  such  a  case  we  cannot  obtain  a  complete  fixation  ot  the 

stationary  states,  and  we  may  conclude  that  the  presence  of  the  external  forces  will 

not  give  rise  to  the  splitting  up  of  the  hydrogen  lines  into  a  number  of  sharp 

components  but  to  a  diffusion  of  these  lines.  With  a  simple  example,  in  which  the 

secular  perturbations  of  the  atom  seem  not  to  be  of  conditionally  periodic  type,  we 

meet  if  we  consider  the  simultaneous  effect  on  the  hydrogen  spectrum  of 
an  external  homogeneous  electric  field  and  a  homogeneous  magnetic 

field,     the    directions   of  which    make    an    angle    with    each    other.     If 

')  Note  added  during  the  proof.  In  a  dissertation  which  has  just  appeared,  J.  M.  Burgers  (Het 
Atoommodel  van  Rutherford-Bohr,  Haarlem  1918)  has  given  a  very  interesting  general  survey  of  the 

applications  of  the  quantum  theory  to  the  problem  of  the  constitution  of  atoms,  and  has  in  this  con- 
nection entered  upon  several  of  the  questions  discussed  in  the  present  paper;  for  instance  on  the 

question  of  the  relation  between  the  spectrum  of  an  atomic  system,  deduced  by  application  of  relation 

il)  from  the  values  of  the  energy  in  the  stationary'  states,  and  the  frequencies  of  the  harmonic  vibra- 
tions into  which  the  motion  in  these  states  can  be  resolved;  and  on  the  question  of  the  determination 

of  the  relative  values  for  the  a-priori  probability  of  the  different  stationary  states  of  an  atomic  system 

by  means  of  Ehrenfest's  principle  of  the  invariance  of  these  values  during  a  continuous  transforma- 
tion of  the  system.  As  an  illustration  of  the  latter  considerations,  Burgers  has  deduced  an  expression 

for  the  relative  values  of  the  a-priori  probability  of  the  different  stationary  states  of  the  undisturbed 

hydrogen  atom,  by  means  of  an  enumeration  of  the  states,  determined  by  the  conditions  (22)  when 

applied  in  connection  with  a  separation  of  variables  in  polar  coordinates,  which  correspond  to  a  sta- 
tionary state  of  the  undisturbed  atom,  characterised  by  a  given  value  of  n  in  the  condition  I  =  nh. 

Excluding  only  such  states  for  which  the  total  angular  momentum  of  the  electron  round  the  nucleus 

would  be  equal  to  zero.  Burgers  (loc.  cit.  p.  259)  finds  in  this  way  for  the  value  of  the  a-priori  pro- 
bability in  question  (n -|- 1)*  -  1.  In  connection  with  the  analogous  consideration,  given  in  the  Note  on 

page  76  of  the  present  paper,  which  leads  to  a  different  result,  it  may  be  of  interest  to  remark  that 

the  necessary  conformity  between  the  relative  values  for  the  a-priori  probability  of  the  different  sta- 

tionary states  of  the  undisturbed  hydrogen  atom,  deduced  from  an  enumeration  of  the  stationary  states 

of  the  atom  which  appear  in  the  presence  of  a  small  external  electric  field  or  in  the  presence  of  a 

small  magnetic  field  respectively,  cannot  be  obtained  if  in  both  cases  we  would  exclude  only  such 

states  in  which  the  angular  momentum  of  the  electron  round  the  nucleus  is  always  equal  to  zero.  In 

fact,  while  in  case  of  a  magnetic  field  this  would  give  (n  +  1)--  1  different  states  corresponding  to 

a  given  value  of  n,  it  would  in  case  of  an  electric  field  give  only  (n  -f  1)-  —  2  such  states.  On  the  other 

hand,  if  the  possible  stationary  states  are  selected  in  the  manner  explained  in  the  text,  the  conformity 

in  question  will  obviously  be  obtained. 

D.  K.  U.  Vidensk.  SelsU.Skr.,  naturvidensk.  og  niathem.  Afd  ,  8.  Riekke,  IV.  1.  13 
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the   effects  of  the  two  fields   on   the    motion   of  the  electron  are  of  the  same  order 

of  magnitude  we   may   in   this   case    expect   that   the   hydrogen   lines   will   not   be 

resolved    into    sharp    components  but    will   become    diffuse.    From    the    considera- 
tions on  page  60  of  the  effect  on  the  spectrum  of  a  perturbed  periodic  system  due 

to  a  second   external  field,  the  perturbing  effect  of  which  is  small  compared  with 

that  of  the  first,  we  may  conclude,  however,  that,  if  the  effect  of  one  of  the  fields  on 

the  motion  of  the  electron  is  large  compared  with   that  of  the  other,  the  hydrogen 

lines  will  still  show  a  resolution   in  a  number  of  components,  the   spectral  widths 

of  which  are  small  compared  with  the  displacements  which  they  have  undergone  due  to 

the  presence  of  the  weaker  of  the  external  fields.  In  the  discussion  of  this  problem 
we  shall  for  simplicity  neglect  the  influence  of  the  relativity  modifications,  assuming 

that  the  effect  on  the  spectrum  produced  by  each  external   field  separately  is  large 

compared  with   the   inherent  fine   structure  of  the  hydrogen  lines.    Denoting,  as  in 
§  2,  by  fjL  a  small  constant   of  the   same   order   as   the   ratio  between  the  forces  on 
the  electron  due  to  the  weaker  of  the  external  fields  and  those  due  to  the  stronger 

of  these  fields,  and  by  I  a  small  constant  of  the  same  order   as    the  ratio  between 
the  latter  forces  and  the  attraction  from   the   nucleus,  we    have,  as  shown  on  page 

61,  that,  with  neglect  of  small  quantities  of  the  same  order  of  magnitude  as  ̂ ^./i^/) 
the  change  in  the  additional  energy  of  the  atom  due  to  the  presence  of  the  weaker 

field   is,  in  general,  directly  obtained   by   taking   the  mean  value  of  the  function  ̂ j 

corresponding   to  the  weaker  field,  over  the   cycle   of  shapes   and   positions  which 

the  orbit  of  the  electron  passes  through  in  the  stationary  states  of  the  atom  in  the 

presence  of  the  stronger  field  only.    In   the   special  case   under  consideration,  how- 
ever, the  perturbed  system,  formed  by  the  atom  in  the  presence  of  the  stronger  field 

only,  is  degenerate,  the  secular  perturbations  of  the  orbit  of  the  electron  being  of  a 

simple  periodic  character.  The  mean  value  in  question  will  therefore  not  be  completely 
determined,   but   will   be   different   for  the   different  periodic   cycles   of  shapes  and 

positions  of  the  orbit,  which  represent  the  continuous  multitude  of  stationary  motions 
which  the  electron  may  perform    in   each  of  the   stationary  states  of  the   atom  in 

the  presence  of  the  stronger  field  only.    In  order  to  fix  the  stationary  states  in  the 

presence  of  both  fields  and  the  change  in  the  additional  energy  of  the  atom  due  to 

the  presence  of  the   weaker  field,  it  will  thus,  as  mentioned  on  page  62,  be  neces- 
sary to  examine  the  relation  between  the  mean  value  in  question  and  the  frequency 

of  the  slow  periodic  "secular"  variations  which  the  cycles  under  consideration  will 
undergo    under    the    influence   of  the  weaker   of  the   external   fields.    Now,    in   the 

special    case   under   consideration  this  problem    may    be  treated  very  simply,  if  we 
imagine  the  weaker  field  as  composed  of  two  homogeneous  fields  of  which  the  one 

is  parallel  and  the   other  perpendicular  to   the   stronger  field,   and  if  we  consider 

separately  the  secular  effect  due  to  each  of  these  fields.  In  fact,  due  to  the  symmetry 

1)  Rigorously  this  result  holds  with  neglect  of  small  quantities  of  the  same  order  of  magnitude 

as  the  largest  of  the  quantities  X^  and  kp?,  hut  for  the  sake  of  simplicity  it  is  here  and  in  the  following 
assumed  that  //  is  not  smaller  than  Vl  (compare  page  61). 
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with  respect  to  the  axis  of  the  stronger  field,  exhibited  by  the  periodic  cycle  of 
shapes  and  positions  which  the  orbit  of  the  electron  would  pass  through  if  the 
atom  were  exposed  to  this  field  only,  it  is  easily  seen  that  the  contribution,  which 

the  perpendicular  component  of  the  weaker  field  gives  to  the  mean  value  of  ¥ 
corresponding  to  the  latter  field,  will  vanish.  From  this  it  follows  that  the  secular  effect 

of  the  weaker  field,  with  neglect  of  small  quantities  proportional  to  //^  will  be 
the  same  as  if  only  the  parallel  component  of  this  field  was  acting  on  the  atom; 

and  we  see  consequently  that,  in  the  stationary  states  of  the  atom  in  the  presence 

of  both  fields,  the  possible  cycles  of  shapes  and  positions  of  the  orbit  of  the  elec- 
tron will  be  characterised  in  the  same  way  as  if  the  weaker  field  was  parallel  to  the 

stronger.  The  problem,  however,  of  the  fixation  of  the  stationary  states  of  a  hydrogen 

atom  in  the  presence  of  a  homogeneous  electric  field  and  a  homogeneous  magnetic 

field,  which  are  parallel  to  each  other,  is  very  simple.  In  fact,  as  it  appears  from  the 

considerations  on  page  91,  the  stationary  states  will  in  this  case  be  fixed  completely 

by  two  conditions,  of  which  the  one,  in  the  same  way  as  in  the  simple  theory  of 
the  Stark  effect,  defines  the  position  of  the  plane  in  which  the  electrical  centre  of 

he  orbit  of  the  electron  moves,  while  the  other  defines  the  value  of  the  angular 
momentum  of  the  electron  round  the  axis  of  the  fields  in  the  same  way  as  in  the 

simple  theory  of  the  Zeeman  effect.  In  connection  with  the  problem  under  con- 
sideration here,  it  may  be  useful  for  the  sake  of  illustration  to  note,  that,  if  the 

perturbing  effect  of  the  electric  field  is  large  compared  with  that  of  the  magnetic, 

the  second  of  these  conditions  may  be  said  to  be  imposed  on  the  system  b}'  the 
slow  and  uniform  rotation,  which  the  magnetic  field  produces  on  the  periodic  cycle 

of  shapes  and  positions  of  the  orbit  of  the  electron,  which  would  appear  if  the 
atom  was  exposed  to  the  electric  field  only.  If,  on  the  other  hand,  the  etTect  of  the 

magnetic  field  is  large  compared  with  that  of  the  electric  field,  the  first  condition 

may  be  said  to  be  imposed  on  the  system  by  the  slow  periodic  oscillation  in  the 

shape  and  position  relative  to  the  axis,  which  the  electric  field  produces  on  the 

uniformly  rotating  orbit  which  the  electron  would  describe  if  the  atom  was  ex- 
posed to  the  magnetic  field  only. 

If  we  consider  a  hydrogen  atom  which  is  exposed  to  the  simultaneous  in- 
fluence of  a  homogeneous  electric  field  of  intensity  F  and  a  homogeneous  magnetic 

field  of  intensity  H,  the  direction  of  which  makes  an  angle  (p  with  the  direction  of 
the  electric  field,  it  follows  from  the  above  that,  if  the  perturbing  influence  of  the 

electric  field  is  large  compared  with  that  of  the  magnetic  field,  the  main  effect  pro- 
duced by  the  latter  field  on  the  spectrum  may  be  described  as  the  splitting  up  of 

each  Stark  effect  component,  polarised  perpendicular  to  the  axis  of  the  electric  field, 

into  two  circularly  polarised  components,  corresponding  to  the  outer  members  of  a 

LoRENTz  triplet  which  would  be  produced  by  a  magnetic  field  of  intensity // cos  ̂ . 
On  the  other  hand,  if  the  perturbing  effect  of  the  magnetic  field  is  large  compared 
with  that  of  the  electric,  it  follows  that  the  main  effect,  produced  by  the  latter  field 

on  the  spectrum,  may  be  described  as  the  resolution  of  the  middle  component  and 

13* 
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of  each  of  the  outer  components  of  the  normal  Zeeman  effect  into  a  number  of 

components,  corresponding  to  the  parallel  and  perpendicular  components  respectively 

of  a  Stark  effect  produced  by  an  electric  field  of  intensity  F  cos  f. 

The  effects  just  described,  however,  which   are   the  same  as  would  take  place 

if  only  the  parallel    component   of  the  weaker  field  was   acting   on   the  atom,  will 

not   be  the   only  effects  of  the  presence   of  the  weaker  field  on  the  spectrum.    In 

fact,  although  the  perpendicular  component   of  the  weaker  field,  apart  from  small 

quantities  proportional  to  (?,  will  not  have  any  secular  effect  on  the  cycle  of  shapes 

and  positions  which  the  orbit  of  the  electron  would  pass  through  if  the  atom  was 

exposed    to    the   stronger   field    only,  it  will    obviously   produce   alterations   in   the 
motion  of  the  electron  within  this  cycle  which  are  proportional  to  fj..    Thus,  if  the 

weaker  field   was  parallel   to   the  stronger,   the  motion   of  the  electron  in  the  per- 

turbed atom  would  be  composed  of  a  number  of  linear  harmonic  vibrations  parallel 

to  the  direction  of  the  fields,  the  frequencies  of  which  are  of  the  type    riOp-{- ii^i,, 
and  of  a  number  of  circular  harmonic  rotations  perpendicular  to  this  direction,  the 

frequencies  of  which   are    of  the  type  ir^p  +  tiOj  +  Oa     (compare   page  59).   In  the 

general  case,  however,  where  the  weaker  field  is  not  parallel  to  the  stronger,  there 

will,  in  the  expression  for  the  displacement  of  the  electron  in  any  given  direction, 

in  addition  appear  a  number  of  harmonic  vibrations  the   amplitudes  of  which  are 

proportional   to  (i    and  the   frequencies   of  which,   as  a   closer  consideration  of  the 

perturbations  learns,  are  equal  to  the  sum  or  difference  of  the  frequency  of  one  of 
the  harmonic  vibrations,  in  which  the  motion  in  this  direction  could  be  resolved  if 

the  external  fields  were  parallel  to  each  other,  and  one  of  the  small  frequencies  of 

tyP^  ltiOi  +  02  J  which  appear  in  the  expression  for  the  secular  perturbations  of  the 

electron   in   this  case.    A  part   of  these  additional  vibrations  will  again  possess  fre- 

quencies of  the  types  |  -Wp  +  t^  0^  j  and   vwp  -f- 1^  Oj  +  Og  [ ,  and  will  cause  that  the  motion, 
instead    of  consisting   of  vibrations  which   are   exactly   linear   and   exactly  circular 

as  in  the  case  where   the   external   fields  are   parallel  to   each   other,  will  be  com- 

posed   of  elliptical  harmonic  vibrations   which  partly   are   nearly    linear  and   par- 

allel  to  the    direction    of  the   stronger   field    and   partly   nearly   circular  and    per- 
pendicular to  this  direction.    On    account  of  this   we  shall   expect  that,  due  to  the 

presence  of  the   perpendicular  component  of  the  weaker  field,  the    diff"erent  com- 
ponents mentioned  above  will  not   be  sharply  polarised.    Further  there  will,  in  the 

motion  of  the  perturbed  atom,  also  appear  a  number  of  circular  harmonic  rotations 

perpendicular  to  the   stronger   field,   the   amplitudes  of  which  are  small  quantities 

proportional  to  ̂ u,  and  the  frequencies  of  which  are  of  the  type  \xa}p-\-i-^^d^-^2o^\. 
From   this   we   shall   expect  the   appearance   in   the   spectrum   of  a  number  of  new 

weak   components,  corresponding  to   a  type    of  transition   between  stationary  states 
which  would  not  be  possible  if  the  two  external   fields  were  parallel  to  eachother. 

When  considering   more   closely  the    frequencies  of  these  new  components,  it  must 

be  remembered,  however,  that,  as  mentioned  above,  the  present  method  of  treating 

the    problem    of   the    perturbations    assures   us   of   the    conditionally    periodic  cha- 
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racter  of  the  motion  of  the  electron  within  a  time  interval  of  the  same  order  of 

magnitude  as  <^'/.,  only  if  we  look  apart  from  small  quantities  of  the  same  order  as 
f/;  and  we  must  therefore  be  prepared  to  find  that  the  frequencies  of  the  vibra- 

tions of  small  amplitudes  will  not  be  defined  with  the  same  degree  of  approxima- 

tion as  the  frequencies  of  the  vibrations  of  large  amplitudes.  Thus,  while  the  fre- 

quencies of  the  latter  vibrations  are  defined  with  neglect  of  small  quantities  pro- 

portional to  Xa^,  the  frequencies  of  the  small  vibrations  under  consideration  are 
obviously  defined  only  with  neglect  of  small  quantities  proportional  to  Xfx.  In  in- 

timate connection  with  the  general  want  of  definition  of  the  energy  in  the  stationary 

states  for  perturbed  systems  of  the  type  in  question,  we  must  accordingly  be  pre- 
pared to  find  that,  in  contrast  to  the  strong  components,  for  which  we  may  expect 

that  by  far  the  larger  part  of  the  intensity  is  contained  within  a  spectral  interval 

of  a  width  proportional  to  au'-,  the  new  components  will  be  diffused  over  spectral 
intervals  of  a  width  proportional  to  /^. ')  Thus,  in  case  the  effect  of  the  external 
electric  field  is  large  compared  with  that  of  the  magnetic  field,  we  might  expect  at 

first  sight  that,  on  each  side  of  every  of  the  Stark  effect  components  polarised 

parallel  to  the  electric  force,  there  would  appear  a  weak  component  which  would  be 

circularly  polarised  and  be  displaced  from  this  component  by  an  amount  twice  that 

of  the  displacement  of  the  strong  components  into  which  the  perpendicularly 

polarised  Stark  effect  components  are  split  up  as  a  consequence  of  the  small 

magnetic  field.  We  must  be  prepared,  however,  to  find  that  these  weak  components 

will  be  so  diffuse,  that  they  are  not  separated  from  the  weak  perpendicular  com- 
ponent which  has  the  same  frequency  as  the  strong  parallel  components  on  each 

side  of  which  the  weak  components  under  consideration  would  lie,  and  which 

appears  as  a  consequence  of  the  above  mentioned  want  of  sharpness  as  regards  the 

polarisation  of  the  strong  components.  On  the  other  hand,  if  the  effect  of  the  mag- 
netic field  is  large  compared  with  that  of  the  electric  field,  any  weak  component 

of   the    type    under   consideration,   which   corresponds   to   transitions  in  which   the 

')  Compare  Note  on  page  61.  With  reference  to  the  general  validity  of  relation  (1),  it  will  be  seen 
that  the  assumption,  that  tlie  weak  components  possess  this  degree  of  diffusion,  implies  the  assumption, 

that  the  corresponding  transitions  (the  probability'  of  occurrence  of  which  is  very  small  compared  with 
the  probability  of  the  transitions  responsible  for  the  strong  components)  will  generally  take  place 

between  two  states  of  the  perturbed  atom,  which  do  not  botli  belong  to  the  well  defined  ensemble  of 

stationary  states  in  which  at  any  moment  the  great  majority  among  a  large  number  of  atoms  will  be 

present.  Thus,  in  case  the  effect  of  the  external  electric  field  is  large  compared  with  that  of  the  mag- 
netic field,  we  may  expect  that,  in  both  states  involved  in  the  transitions  in  question,  the  positions  of 

the  plane  in  which  the  electrical  centre  moves  will  coincide  with  positions  of  this  plane  in  states 

belonging  to  the  ensemble  just  mentioned,  while  the  angular  momentum  of  the  electron  round  the 
a.\is  of  the  electric  field  will  generally  change  by  an  amount  which  will  not  be  equal  to  an  entire 

multiple  of  h:2-.  On  the  other  hand,  if  the  effect  of  the  magnetic  field  is  the  larger,  the  angular 
momentum  of  the  electron  round  the  axis  of  this  field  will,  in  the  transitions  in  question,  change  by 

two  times  /i'2-,  while  we  may  expect  that  the  plane  in  which  the  electrical  centre  moves  will  generally, 
in  at  least  one  of  the  states  involved  in  these  transitions,  differ  from  the  positions  of  this  plane  in  the 
ensemble  of  stationary  states  referred  to. 
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angular  momentum  of  the  electron  round  the  axis  of  the  magnetic  field  changes 

by  two  times  ft/27r,  will  lie  at  a  distance  from  the  original  hydrogen  line,  which  is 
approximately  twice  as  large  as  that  of  the  outer  components  of  the  normal  Zeeman 
effect,  and  will  therefore  be  distinctly  separated  from  the  strong  components  into 

which  each  of  the  components  of  the  normal  Zeeman  effect  is  split  up  in  the  pre- 
sence of  the  small  electric  field.  We  must  be  prepared,  however,  to  find  that  the 

weak  components  will  not,  as  it  might  be  expected  at  first  sight,  form  two  sets  of 

distinctly  separated  lines,  but  that  they  will  only  appear  as  two  diffuse  lines  of  cir- 

cular polarisation  in  opposite  directions  and  of  a  spectral  width  proportional  to  ///.  ̂) 

§  6.    The  continuous  hydrogen  spectrum. 

We  shall  conclude  the  considerations  of  this  Part  by  a  brief  discussion  of  the 

characteristic  continuous  spectrum  of  hydrogen  in  the  ultra  violet  region,  which  is 

intimately  connected  with  the  series  spectrum  given  by  (35).  This  spectrum  consists 
of  a  radiation,  the  frequencies  of  which  are  continuously  distributed  over  a  spectral 

interval  extending  from  the  head  of  the  Balmer  series  in  the  direction  of  higher 

frequencies.-)  The  existence  of  a  continuous  spectrum  of  this  type  is  just  what 
should  be  expected  from  a  natural  generalisation  of  the  principles  underlying  the 

quantum  theory  of  series  spectra.  ̂ )  Thus  the  spectrum  under  consideration  may  be 
directly  explained  by  application  of  relation  (1),  if  we  assume  that  the  complete 

spectrum,  emitted  by  a  system  consisting  of  a  nucleus  and  of  an  electron,  originates 

not  only  from  radiations,  emitted  during  transitions  between  two  states  belonging 
to  the  multitude  of  stationary  states  in  which  the  electron  describes  a  closed  orbit, 

characterised   by   the   condition  I  =  nh,   but  also   from   radiations  emitted  during 

^)  No  experiments,  which  allow  to  test  the  preceding  results  in  detail,  seem  to  have  been  recorded, 
but  it  would  appear  that  the  above  considerations  afford  an  explanation  of  the  general  character  of  the 

remarkable  deviations  from  a  normal  Zeeman  effect,  observed  by  F.  Paschen  and  E.  Back  (Ann.  d.  Ph3's. 
XXXIX,  p.  897  (1912))  in  experiments  in  which  the  hydrogen  lines  were  excited  by  passing  a  powerful 

condensed  discharge  through  a  capillary  tube  placed  at  right  angles  with  the  direction  of  the  magne- 
tic field.  Besides  the  characteristic  want  of  sharpness  of  the  polarisation  of  the  middle  component, 

exhibited  by  all  the  spectrograms  published  by  Paschen  and  Back,  especially  one  of  their  photographs 

(Tafel  VIII,  Bild  4)  seems  to  suggest  the  presence  of  a  weak,  perpendicularly  polarised,  diffuse  line  on 
each  side  of  the  original  line  and  at  a  distance  from  it  twice  that  of  the  outer  components  of  the 
normal  effect. 

-)  This  spectrum  has  been  observed  as  an  emission  spectrum  in  spectra  of  solar  protuberances 
and  planetary  nebulae  (See  J.  Evershed,  Phil.  Trans.  Roy.  Soc.  197  A,  p.  399  (1901)  and  W.  H.  Wright, 

Lick  Observatory  Bulletin,  No.  291  (1917))  as  well  as  in  direct  laboratory  experiments  on  spectra  ex- 
cited by  positive  ra3's  (See  J.  Stark,  Ann.  d.  Phys.  LII,  p.  255  (1917)).  Further  it  has  been  observed 

as  an  absorption  spectrum  in  the  spectra  of  several  stars  (see  W.  Huggins,  An  Atlas  of  Representative 

Stellar  Spectra,  p.  85  (1899)    and  J.  Hartmann,  Phys.  Zeitschr.  XVIIl  p.  429  (1917)). 

3)  Compare  N.  Bohr,  Phil.  Mag.  XXVI,  p.  17  (1913);  and  also  P.  Debye,  Phys.  Zeitschr.  XVIII,  p. 
428  (1917). 
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transitions  between  two  states,  one  (or  both)  of  which  belong  to  the  multitude  of 

states  in  which  the  electron  possesses  sufficient  energy  to  remove  to  infinite  distance 

from  the  nucleus.  While  the  electron  in  the  states  of  the  type  first  mentioned  may 

be  said  to  be  "bound"  by  the  nucleus  to  form  an  atom,  it  may  in  the  states  of  the 
last  mentioned  type  be  described  as  "free".  In  order  to  account  for  the  appear- 

ance of  the  continuous  spectrum,  it  is  necessary  to  assume  that  the  motions 

in  the  latter  states  are  not  restricted  by  extra-mechanical  conditions  of  the  type 
holding  for  the  former  states,  but  that  all  motions,  which  are  consistent  with  the 

application  of  ordinary  mechanics,  will  represent  physically  possible  states.  This 

assumption  would  also  seem  to  present  itself  naturally  from  the  point  of  view  on 

the  principles  of  the  quantum  theory,  taken  in  the  present  paper.  ̂ )  Thus  it  will  in 
the  first  place  be  observed  that  any  attempt  to  discriminate  between  the  different 

states  of  the  type  in  question,  by  means  of  considerations  of  the  mechanical  stability 

of  stationary  states  for  slow  transformations  of  the  external  conditions,  would  fail 

on  account  of  the  essentially  non-periodic  character  of  the  motion,  which  is  irrecon- 
cilable with  the  idea  of  invariance  of  extra-mechanical  conditions  for  such  trans- 

formations. Next,  with  reference  to  the  formal  analogy  between  the  quantum  theory 

and  the  ordinary  theory  of  radiation,  it  will  be  seen  that  the  fact,  that  the  motion 

of  a  free  electron  in  its  hyperbolic  orbit  cannot  be  resolved  in  a  sum  of  harmonic 

vibrations  of  discontinuously  varying  frequencies  but  can  only  be  represented  by 

a  Fourier  integral  extended  over  a  continuous  range  of  frequencies,  suggests  before- 
hand that  the  free  electron  may  pass,  under  emission  or  absorption  of  radiation,  to 

any  one  among  a  continuous  multitude  of  other  states  corresponding  to  a  continuous 

multitude  of  values  for  the  energy  of  the  system.  From  the  preceding  considerations 

we  may  infer,  by  application  of  (1),  that  the  complete  spectrum  emitted  by  the 

hydrogen  atom  will,  besides  the  series  spectrum  and  the  continuous  ultra-violet 
spectrum  mentioned  above,  which  corresponds  to  transitions  from  a  state  in  which 

the  electron  is  free  to  a  stationary  state  characterised  by  n  ̂   2  in  (41),  contain  a 

set  of  continuous  spectra,  corresponding  to  transitions  from  free  states  to  other  sta- 
tionary states,  and  each  extending  in  the  direction  of  larger  frequencies  from  one 

of  the  values  of  the  frequency,  given  by  (35)  if  we  put  n'  =  oo.  Moreover,  we  may 
expect  the  presence  of  a  weak  continuous  spectrum,  extending  as  a  continuous  back 

ground  over  the  whole  region  of  frequencies,  w^hich  will  correspond  to  transitions 
between  two  different  states  in  both  of  which  the  electron  is  free.  The  relative  intensities 

of  these  different  continuous  spectra,  and  the  law^s  according  to  which  the  intensity 
is  distributed  within  each  of  them,  may  be  expected  to  vary  to  a  large  extent 

according  to  the   different  conditions  under  which   the   radiation  is  excited.    Thus, 

1)  A  view  contrary  to  this  has  been  taken  by  Epstein,  who  in  a  recent  paper  (Ann.  d.  Phys.  L, 

p.  815  (1916V  has  made  an  attempt  to  obtain  an  explanation  of  certain  observations  on  the  photo- 
electric effect  of  liydrogen  occluded  in  metals,  by  applying  conditions  of  the  same  type  as  (22)  to 

states  of  the  hydrogen  atom  in  which  the  electron  describes  a  hyperbolic  orbit,  and  has  tried  in  a 

similar  way  to  develop  a  theory  of  the  characteristic  /5-ray  spectra  of  radioactive  substances. 
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while  the  continuous  spectrum  of  hydrogen,  when  observed  as  emission  spectrum 

in  stars,  shows  a  abrupt  beginning  at  the  head  of  the  Balmer  series,  the  con- 
tinuous spectrum,  observed  by  Stark  in  his  experiments  referred  to  above,  was 

not  sharply  limited  but  showed  a  pronounced  maximum  in  the  spectral  region 

which  corresponds  to  transitions  between  two  states,  in  the  first  of  which  the  velo- 

city of  the  free  electron  relative  to  the  nucleus,  before  the  '"collision"  with  the 
latter,  was  of  the  same  order  of  magnitude  as  the  velocity  of  the  positive  rays  by 
means  of  which  the  spectrum  was  excited. 

Besides  the  series  spectrum  and  the  connected  continuous  spectrum  just  con- 

sidered, there  exists,  as  well  known,  another  hydrogen  spectrum,  the  socalled  many- 
line  spectrum,  which  on  account  of  its  complex  structure  and  its  resemblance  with 

the  band  spectra,  emitted  by  other  elements  and  combinations  of  elements,  is  gener- 
ally ascribed  to  the  hydrogen  molecule  and  not  to  the  atom.  This  assumption  would 

also  seem  to  present  itself  directly  from  the  point  of  view  of  the  quantum  theory, 

according  to  which  the  simple  structure  of  the  series  spectrum  is  directly  con- 
nected with  the  simple  periodic  character  of  the  motion  of  the  particles  in  the 

atom,  while  a  spectrum  of  a  complexity  of  the  order  exhibited  by  the  many-line 
spectrum  must  be  assumed  to  originate  from  a  system  the  motion  of  which  does 

not  show  such  simple  periodicity  properties.  The  problem  of  the  constitution  of  the 

hydrogen  molecule,  to  be  expected  on  the  quantum  theory,  and  the  possible  motions 
of  the  particles  of  this  system  will  be  treated  in  Part  IV.  In  this  connection  we 

shall  also  consider  the  problem  of  dispersion  of  light  in  hydrogen  gas  and  the  pro- 
blem of  the  voltage  necessary  to  produce  the  lines  of  the  series  spectrum  of  hydrogen 

by  an  electric  discharge  in  this  gas. 

Foerdig  fra  Trykkeriet  d.  30.  December  1918. 
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og  Protozoer.     2.  Protozoer;  Organismer  med  usikker  Stilling;  Parasiter  i  Phytoplanktonter.    Med 

4  Figurgrupper  og  7  Tabeller  i  Teksten.     Avec  un  resume  en  franjais.     1916          2.     75. 

3.  Jensen,  J.  L,  W.  V.:   Undersogelser  over  en  Klasse  fundamentale  Uligheder  i  de  analytiske  Funk- 
tioners  Theori.     I.     1916    »  90. 

4  Pedersen,  P.  O.:  Om  Poulsen-Buen  og  dens  Teori.  En  Experimentalundersogelse.  Med  4  Tav- 
ler.    1917    2.  90. 

5.  Juel,  C:  Die  gewundenen  Kurven  vom  Maximalindex  auf  einer  Rcgelflache  zweiter  Ordnung.  1917  »  75. 
6.  Warming,  Eug. :  Om  Jordudlobere.     With  a  Resum^  in  English.     1918    3.  65. 

III,  med  14  Kort  og  12  Tavler,  1917—1919        26.     00. 
1.  Wesenberg-Lund,  C:  Furesostudier.  En  bathymetrisk  Undersogelse  af  Molleaaens  Soer.  Under 

Medvirkning  af  Oberst  M.  J.  Sand,  Mag.  /.  Boye  Petersen,  Fru  A.  Seidelin  Raunkicer  og  Mag.  sc. 

C.  M.  Steenberg.  Med  7  bathymetriske  Kort,  7  Vegetationskort,  8  Tavler  og  ca.  50  i  Texten  trykte 

Figurer.     Avec  un  resume  en  frangais.     1917        22.       » 
2.  Lehmann,  Alfr.:    Stofskifte  ved  sjaelelig  Virksomhed.     With  a  Resume  in  English.     1918          3.     15. 

3.  Kramers,  H.  A.:  Intensities  of  Spectral  Lines.  On  the  application  of  the  Quantum  Theory  to 

the    problem    of  the  relative    intensities  of  the  components  of  the  fine  structure  and  of  the  stark 

effect  of  the  lines  of  the  hydrogen  spectrum.     With  4  plates.     1919          9.     50. 

IV  (under  Pressen). 

1.    Bohr,  N. :  On  the  Quantum  Theory  of  Line-Spectra.    Part  1.    1918          2.     25. 
—  Samme.    Part.  II.    1918          4.     ̂ 0. 

V  (under  Pressen). 

1.  Bjerrum,  Niels  und  Kirschner,  Aage:  Die  Rhodanide  des  Goldes  und  das  freie  Rhodan.     Mit 

einem  Anhang  iiber  das  Goldchlorid.     1918          3.     50. 

2.  Orla-Jensen,  S.:  The  lactic  acid  Bacteria.  With  51  Plates.  1919         46.     00. 

VI  (under  Pressen). 

1.    Christensen,  Carl:  A  Monograph  of  the  genus  Dryopteris.  Part  II.     1920    8.     25. 
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