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1. Introduction

In [29], Mas-Colell showed the existence of a Cournot-Nash

equilibrium distribution for games with a compact metric space of

actions and with continuous payoffs. Mas-Colell ?
s result was

generalized in [22] to situations where the space of actions is not

necessarily metric, and hence not necessarily separable, and where the

payoffs need only be upper semicontinuous in the individual actions.

The economics of this problem go back to Cournot [7]. A player is

characterized by his action set A and his payoff function u( * ) which

depends not only on the action taken but also on the probability

distribution of the actions taken by everybody else. In equilibrium,

each player, in choosing his best action, leads to the same distribution

on the (common) action space on which his choice is conditioned. Thus,

the problem of finding a Cournot-Nash equilibrium distribution is a

natural fixed point problem though the original formulation of Cournot

predated the discovery of fixed point theorems.

Stripped of their economic motivation, the results constitute an

interesting application of the Ky Fan, Glicksberg fixed point theorem

[11,13] to a problem that is without an explicit linear structure and,

as such, essentially topological. The data of the problem consists of

a compact Hausdorff space A; the space /^(A) of Radon probability

measures endowed with the topology of weak * convergence (as in [34] or

[37]); the space LC, of continuous real valued functions on A x fVl(A)
A

endowed with the sup-norm topology (as in [29]); and a Radon probability

measure y on vL.« The problem is to find a Radon probability measure

t on A x U~
k such that the raarginal of t on C(.k> T , equals u and

A' u.
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such that t gives full measure to the set {(a,u) e (A x Uc A
): u(a,x.) >

u(x,t ) for all x e A}, a set which, it bears emphasis, is conditioned
A

on T. and hence on t.
A

In this paper, we present a reformulation of this basic problem by

(i) dispensing with payoff functions and focussing instead on

preference relations;

(ii) allowing strategy or action sets to depend on the distribution

of actions.

In terms of (i), we consider two classes of preference relations, one

in which preferences are reflexive, transitive and continuous, though

not necessarily complete, and the other in which transitivity is

replaced by a suitable convexity assumption. In equilibrium theory,

Schmeidler [32] was the first to work with incomplete but transitive

preferences while incomplete and non-transitive preferences date to

Mas-Colell [28]; also see [13] and [35]. It should be noted that our

second setting departs from [29] and [22] and explicitly brings in a

linear topological structure on the action space A. The motivation for

extension (ii) goes back at least to Debreu's 1952 paper [8].

Important as these extensions are from an economic point of view,

they also add to the technical diversity of our problem. Under our

reformulation, the question we pose involves the interplay between the

compact Hausdorff space A, the space /VL(A) , the hyperspace J~t(A x A)

of closed subsets of A x A endowed with a "suitable" topology, the

space of continuous functions ^O (A) from Vfl_(A) to a subspace of ~J~1

(A x A) endowed with a suitable topology, and finally a Radon measure
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on (A). Our search for a suitable topology on a particular subspace

of the hyperspace Irr (A x A) leads us to "neighboring" economic agents

as formalized by Kannai [19], Debreu [9], Hildenbrand [16,17], Grodal

[15], Chichilnisky [5] and Back [2]. Moreover, the setup of our

problem leads us to formalize "neighboring" economic agents in the

presence of externalities.

The plan of the paper is as follows. Section 2 is devoted to the

formalization of neighboring economic agents in the presence of

externalities. In this section, we motivate our formalization by

relating it to previous work. Section 3 is devoted to mathematical

preliminaries. This section enables us to develop the necessary

terminology and notation and presents the mathematical results on which

our formulations depend. Section 4 presents the model and results and

Section 5 collects separately two results on the existence of maximal

elements in compact sets. These are essential ingredients in the proofs

which follow in Section 6. References and proofs for the technical

results in Section 3 are presented in Section 7.

2. Neighboring Economic Agents in the Presence of Externalities

In a pioneering paper circulated in 1964, Kannai [19] gave a

formalization of the intuitive idea that one economic agent is

"similar" or "close" to another. Since an economic agent is

characterized by his preferences and endowments, this formalization

amounted, in particular, to endowing the space of preference relations

with a topology. Kannai considered a setting in which each agent's

preference relation > is defined on the non-negative orthant of n-

diraensional Euclidean space and that there is enough structure on >
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that it can be represented by a utility function u(>,*) on R . He

could then define "closeness" of two preference relations > ,
>' by the

metric d where

|u(>,x)-u(>' , x)|

d(>,>') = Max =
.

x E R^ 1 + |x|
2

An alternative way of viewing Kannai's work is to say that he endows

the space of monotonic preference relations CK. with the weakest

Hausdorff topology making the set {(x,y,>) e r" x r" x 0\ : x > y}

closed.

In a subsequent contribution, Debreu [9] exploited the observation

that continuous preference relations can be injectively mapped into the

space of closed subsets of the product space and hence, in the context

of a metric space of commodities, can be endowed with the topology

induced by the Hausdorff metric. Debreu also observed that a

uniformity, rather than a metric, would suffice for his results.

This identification of a preference relation with a closed subset

of the product of the underlying commodity space prompts one to consider

any topology on the space of closed subsets of a topological space, the

hyperspace of that topological space, as potentially relevant to the

problem of defining "neighboring" economic agents. The relative merit

of one topology as opposed to another would then depend on the economic

problem that was being studied. Accordingly, in [16], Hildenbrand

worked with the topology of closed convergence. He was motivated, in

part, by the fact that the Hausdorff metric topology proposed by Debreu

is not separable whereas the topology of closed convergence is not only

separable but also metrizable. Moreover, on the space of monotonic
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preferences, this topology coincides with that proposed by Kannai.

Hildenbrand allowed consumption sets to differ among agents but stayed

within the context of n-dimensional Euclidean space. On all of this,

see [17, Section 1.2] for details. Hildenbrand' s work was extended by

Grodal [15], and more recently by Back [2], but both remain in R .

Chichilnisky [5], on the other hand, was motivated in part by a

search for a topology that was sensitive to the Borel measure of the

"lower contour set" of a preference relation. Accordingly, she

formalized the idea of "neighboring" economic agents through the use of

the order topology on the space of closed subsets of the product of a

connected, normal space. She showed, in particular, that her formal-

ization led to a topology on the space of agents that was strictly

finer than that provided both by the Hausdorff metric as well as the

closed convergence topologies in the setting of a compact metric space

of commodities.

None of this literature allows for "externalities" in consumption.

Put another way, it does not allow consumption sets and preference

relations to respond to changes in the "actions" of other economic

agents. Such dependence is, of course, an essential aspect of the

Cournot-Nash problem as can be seen in the original formulations of

Nash [30] and Debreu [8]. Nash and Debreu, however, considered games

with a finite set of players and, in such a setting, allowed each

player's strategy set and payoff function to depend continuously on

the action of each and every other player. In the context of games

with a continuum of players, the situation is much less straightforward,

We turn to this.
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One can discern four distinct formulations of "externalities" in

games with a continuum of players. Two of these go back to Schmeidler

[33] in the context of a measure of space of players. Under the first

formulation, Schmeidler allows each player's payoff function to depend

on the actions taken by almost all players as embodied in the equivalence

class of measurable functions from the space of players to a common

strategy set in R . Schmeidler' s formulation has been the object

of extensive work; see, for example, [20], [21], [25], [38] and their

references. Under the second formulation, Schmeidler specializes to a

situation under which each player's payoff is made to depend on the

"average response" of the other players. This average response is

formalized as an integral of the "actions" or "plays" of the other

players. This formulation has also been extended to situations when

the payoffs are represented by preference relations over strategy sets

that are subsets of a Banach space, see [20] and the references therein.

The third formulation is due to Mas-Colell [29]. Unlike Schmeidler's

first formulation, Mas-Colell also limits himself to dependence on the

"average response" but formalizes this response as a distribution
,

rather than an integral, of the actions of the other players. Thus, if

A denotes the common strategy set and /^-(A) , the space of probability

measures on A, the payoff functions in Mas-Colell are continuous real-

valued functions on A x /vL(A).

In [22.] , the payoff functions of Mas-Colell are viewed in a

different way and this gives us our fourth formulation. Under this

formulation, a continuous real-valued function on A x/H_(A) is viewed

as a family of continuous real-valued functions on A and parameterized
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by elements of /yL(A), i.e., as a function from /HlA) into R . We

shall use this alternative viewpoint to present the formulation of

externalities and dependence that is studied in this paper. This

can now be used to generalize the work of Kannai , Debreu, Hildenbrand

and Chichilnisky to situations with externalities.

An economic agent or a player is now characterizated as a continuous

function from /fl(A) to the space of preference relations on A, ^(A).

Thus, for any f e s£(k) and any t e /tA_(A) , f (t) gives a strategy

set and a preference relation defined on that strategy set. Two

economic agents or players, f and g, are considered to be "close" if f

and g are "close." Our formulation thus proceeds in two distinct

steps. In the first place, using the topology on A, we endow the space <J

(A) with a topology. This could be any of the topologies discussed in

the first part of this section. Next, and dependent on the topology on

j7"(A), we endow the space of continuous functions from /H.(A) to \j

(A) with a suitable topology. This typically involves the compact-open

topology and another topology that we introduce and that seems more

natural for our problem. However, a discussion of these necessarily

involves a more formal exposition.

3. Mathematical Preliminaries

Let A be a compact Hausdorff space and J-f(k) denote the space of

closed subsets of A. Note that the empty set
<J>

is an element of ^//(A).

We shall say that P e Jj (A x A) is reflexive if (a, a) e P for all a e

c c
A and that P is complementedly transitive if (a,b) e P , (b,c) e P

c c
implies (a,c) e P where P represents the complement of P in A x A and
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a,b,c are arbitrary elements in A. Any (x,y) e P can be read as "x is

preferred to y" and alternatively denoted x > y. Analogously, any

(x,y) e P can be read as "y is preferred or indifferent to x" and

alternatively denoted y > x. For any B e Crf(A)
t
B t

<f>,
let

Jrn(A) = {P e >-/(B x B) : P is reflexive and complementedly

transitive}

,

(A) - LJ 9R
(A).

Be #(A)

M B * <j>

^(A) represents the space of preference relations and we shall view

it as a subspace of J-f (A x A) endowed with one of two possible

topologies.

The first topology we consider is the topology of closed

convergence which was first applied in equilibrium theory by

Hildenbrand [16] and proposed by Mertens (see [17, page 108]). This

topology has as its sub-base sets of the following form

{F e ^(A x A) : FO K =
<j> } and {F e J"/ (A x A) : F r\ G *<J>}

where K and G are respectively compact and open subsets of A x A. For

more details into this topology, the reader is referred to [17,26] and

their references. We shall need the following preliminary result.

Theorem 3.1 . If A is a compact Hausdorff space, then Jr ( A ) is a compact

Hausdorff space in the topology of closed convergence .

The second topology that we consider is the order topology first

applied in equilibrium theory by Chichilnisky [5]. Consider the subset

J-i (A x A) of 5/(A x A) given by

J/ (A x A) =
( B e J/(A x A) : B = cl Int(B)}
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where cl and Int denote closure and interior respectively. The space

h
~U (A x A) can be endowed with an order structure > under which for

any X,Y in 7/ (A x A)
o

X "> Y if and only if Y C Int(X).

Following [5, especially footnote 10],
r

%\ (A x A) can be endowed with

a topology, the order topology, which has its sub-base sets of the

following form:

{X e 3J (A x A) : X> Y) and (X e 7"/ (A x A) : Y > X}

for any Y in 3-\ (A x A). Let 5 (A) = M (A x A) (~\ ?(A).J o o o

We can state

Theorem 3.2 . If A is a compact Hausdorff space, then j-j (A x A)

endowed with the order topology is a completely regular space and hence

the relative topology on jr (A) is completely regular .

In [5], it is shown that the order topology is finer than the

topology of closed convergence in the case when A is compact metric.

Our next result offers a generalization of this to a non-metric setting.

Theorem 3.3 . If A is a compact Hausdorff space, then the order

topology on j\ (A x A) is finer than the topology of closed convergence

on ~U (A x A).— o

Next, we consider the space of Radon probability measures defined

on Qj(A), the Borel a-algebra on A. Denote this space by n\.(A) and

endow it with the relative weak * (or narrow) topology (see [34] or

[37] for details). We can now state the following preliminary result.
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Theorem 3.4 . If A Is a compact Hausdorff space , /W(A) is a compact

Hausdorff space in the (relative) narrow topology .

Our final set of preliminary concepts concerns the space of

continuous functions from /Vt(A) into the space of preference relations.

When the space of preference relations jf (A) is endowed with the

topology of closed convergence, we shall denote the space of continuous

functions from nA~(A) into \7(A) by ,<>(A) . When the space of

preference relations is chosen from J-f (A x A) and endowed with the

order topology, we shall use the notation J^. (A) for the space of

continuous functions from ^-(A) into ^r (A). We shall endow the

spaces s\_^(A) and aZ> (A) with one of two possible topologies.

The first topology that we consider on ^O(A) is the graph topology.

This is the relativization of the topology of closed convergence on

nA^(A) x nJCA) to the space consisting of the graphs of the elements in

A^,(k). Accordingly, we shall say that a net {f } chosen from •-C-(A)

converges to an element f in ^o-(A) if and only if the graph of f
,

v
Grf , converges in the topology of closed convergence to Grf . , Since

f and f are continuous functions and their range is a Hausdorff space,

their graphs are closed subsets of /HlA) x >j(A). Moreover, given

Theorems 3.1 and 3.4, /^L(A) x vj (A) is compact and hence the topology

is well defined (see [23]). Indeed, one can say more.

Theorem 3.5 . If A is a compact Hausdorff space, then ,0-(A) endowed

with the graph topology is Hausdorff and completely regular .

The second topology that we consider on /\^(A) is the compact-open

topology. This has as its sub-base sets of the following form:
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ff e ^(A) : f(K) C U) = (K,U), K compact, U open.

The relationship between the topology of closed convergence and the

compact-open topology is given by the following result.

Theorem 3.6 . If A is a compact Hausdorff space, then the graph topology

and the compact-open topology are identical on ^j{k).

Next, we turn to £, (A). The first point to be noted is that

?* (A) is not necessarily compact but, as established in Theorem
v^ o

3.2, only completely regular. Nevertheless, we can state a result on

which the importance of the compact-open topology is partly based.

Theorem 3.7 . If A is a compact Hausdorff space, then j£, (A) , endowed

with the compact-open topology is a completely regular Hausdorff space .

The question remains as to whether the graph topology has any

relevance for/*(A). A little reflection leads to one to an affirmative,

and somewhat surprising, answer. Since J" (A) is completely regular,

it can be embedded in a compact Hausdorff space n(A); see, for

example, [10, p. 243, paragraph 2]. Furthermore, a continuous function

from >H_(A) into 3/ (A) has a closed (indeed compact) graph in /l\_(k)

x *S (A). This observation allows us to define the graph topology on

jP (A) and to state a generalization of Theorem 3.6.

Theorem 3.8 . If A is a compact Hausdorff space, then the compact-open

topology on aZ, (A) is identical to the relativization on ^£? (A) of the

topology of closed convergence on nAS&) x "] (A) , where K (A) is a

compact Hausdorff space in which j* (A) is imbedded .
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We shall refer to this relative topology on J^ (A) as the induced

graph topology on J^ (A).

4. The Model and Results

We now have all the technical machinery we need to develop the

principal results of this paper. We state a preliminary definition

with the remark that a Radon probability measure on a topological space

is to be understood as being defined on the Borel a-algebra generated

by the topology on that space.

Definition 4.1 . A game on /^(A) is a Radon probability measure on

^(A), i.e., an element of fa\S £?(A)).

It should be noted that Definition 4.1 is not specific as to the

topology on ^(A). The same is true for the definition to follow. It

is only in the statement of our results that we shall specify the

topologies on ^CJ(A).

For any P e ^D (A) , let
D

M(P) = {a e B : V b e B, (b,a) k P°}.

M(P) thus denotes the set of maximal elements in B for the preference

relation P defined on B x B. We can now state our reformulation of a

Cournot-Nash equilibrium distribution.

Definition 4.2 . A Borel probability measure t on A x ^o(A) is a

Cournot-Nash equilibrium distribution of a game y on ^<j.(A) if

(i) the marginal distribution of t on ^o(A), t /» r k\> equals y,

(ii) x(B ) = 1 where B = {(a,f) e A x £, (A) : a e M(f(f
A ))}.

T X l A '
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We can now present

Theorem 4. 1 . If A is a compact Hausdorff space, there exists a

Cournot-Nash equilbrium distribution of a game on ^o(A) if_ J£ (A) is

endowed with the graph topology or equivalently with the compact-open

topology *

Next, we consider the space ^ct(A). We can define a game on

j£ (A) as well as the Cournot-Nash equilibrium distributions of such a

game by substituting /C (A) for x-o(A) in Definitions 4.1 and 4.2.

We can now state

Theorem 4.2 . If A is a compact Hausdorff space, there exists a

Cournot-Nash equilibrium distribution of a game on Xl (A) if ^/?(A)
1 id f Q —-Q

is endowed with the induced graph topology or equivalently with the

compact-open topology .

For our next result, we assume that A is a convex, compact subset

of a topological vector space. We shall say that P z Jn (A x A) is

irref lexivelv convex if for any a e A, a k con {b : (b,a) e P } where

con W denotes the convex hull of a set W. For any B e ~>7 (A) with B

convex, let

yjr°(A) = {P e ?-/ (B x B) : P is irref lexively convex}

£«(A) = U ?f(B).

B convex

/$ CO
In keeping with our earlier notation, we shall let »£, (A) denote

the space of continuous functions from /^\.(A) into ^- (A) when the

latter is endowed with the topology of closed convergence. jP (A)

denotes the space of continuous functions from /rL(A) into a subset of
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^4- ' (A) obtained by considering sets in //(Ax A) and with that

subset endowed with the order topology.

We can now state analogues of Theorems 4.1 and 4.2 to a setup where

the payoffs are not necessarily generated by transitive relations.

Theorem 4.3 . If A is a compact convex subset of Hausdorff topological

vector space, there exists a Cournot-Nash equilibrium distribution of a

game on
/£^ (A) or on ,^ (A) if these spaces are endowed with their

induced graph topologies or equivalently with their compact-open

topologies .

Note that we have no result on the existence of Cournot-Nash

equilibria in games on Jc, (A) when the latter is endowed with the

graph topology. The reason for this lies in the absence of the

compactness property of J. (A) when the latter is endowed with the

topology of closed convergence; see Grodal [15] for a counter example.

5. On the Existence of Maximal Elements in Compact Sets

In this section we present two results on the existence of maximal

c
elements with respect to P in a compact set. These results constitute

essential ingredients in the proofs of Theorems 4.1 and 4.2 but since

they may have independent interest, we have collected them in a separate

section. It is worth stating, however, that the results themselves are

essentially known in the mathematical economics literature and we detail

this in the accompanying remarks below.

We can now present

Theorem 5. 1 . For any P z JT (A) , M(P) t <j>.
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Corrolary 5.1. Theorem 5.1 is valid for any P e •J'Ah) C\ J-} (A x A)
* *- B o

Next, we present analogous results for the convex non-transitive

case.

Theorem 5.2 . For any P e j-^°(k) , M(P) *
<J>.

Corrolary 5.2 . Theorem 5.2 is valid for any P e J r°( a ) H D") (A x A)

Proof of Theorem 5.1 .

Suppose M(P) =
<J)

and let = {y e B : (x,y) e P } for any x e B.

For any a e B, there exists b e B such that a e 0, . If not, then for

all b e B, a £ . This means that (b,a) £ P
C

, i.e., a e M(P)
b

, a

contradiction to the emptiness of M(P). Also note that for any b e B,

0, , being a projection of an open set, is also open. Hence {0
}

is an open cover of B. Since B is compact, it has a finite subcover.

Pick a finite subcover with the smallest number of elements and let

this number be k. Hence there exists b. e B, i = 1, ..., k such that

k
B C U b

.

i=l i

Next we show that k = 1. Suppose not, i.e., k is an integer greater

than one. Certainly b, £ 0, . Then there exists i < k such that
k \

b, e 0, . Now pick any y e 0, . Then by complemented transitivity of

i k

P, y e 0, . Hence 0, CL 0, and we have contradicted the fact that
b. b, b.
l k i

we had a smallest subcover. Hence B C 0, . But this implies that
b

l

b. e , a final contradiction completes the proof. II

1

Remark 1 . Theorem 5.1 was first stated and proved by Schmeidler [32,

Lemma 2] for the case when X is a subset of R . On comparison, the

reader will find that our proof is slightly different from his.
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Proof of Theorem 5.2 .

For any a e B, let T(a) = con {b e B : (b,a) e P }. Suppose there

exists a e B such that T(a) =
<J>.

Then for all b £ B, (b,a) e P , i.e.,

a e M(P) and the proof is finished. Thus, assume that T(a) * § for

all a e B.

For any a e B, T(a) is a convex set by assumption. Now for any

b e B, consider T (b) {a e B : b e T(a) }
= con (a e B : (b,a) e P° }.

This is precisely the convex hull of the set 0, defined in the proof of
b

Theorem 5.1 and it is open in B; see for example, Lemma 5.1 in [40].

(If 0, is empty, the claim is a trivial one).

Thus all the conditions of Browder's fixed point theorem [4] are

satisfied and there exists a e B such that a e T(a ), i.e., a e con

{b: (b,a ) e P }, an impossibility. Hence we have contradicted our

assumption that T(a) * $ f° r a^ a e B. The proof is finished. II

Remark 2 . Theorem 5.2 goes back to Sonnenschein [36] for the case when

X = R ; also see Anderson [1, Theorem 1]. The most up-to-date

reference is Yannelis-Prabhakar [39].

6. Proofs of the Principal Results

Proof of Theorem 4.1 .

We prove the theorem for the case when /\Z(A) is endowed with the

compact-open topology. The proof for the case when ^J(A) is endowed

with the graph topology then follows from Theorem 3.6.

As in Mas-Colell [29], the proof is an application of the Ky Fan,

Glicksberg fixed point theorem [11,14]; (also see, for example, Berge
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[3, p. 251]). We show in a series of claims that all the conditions

for the applicability of this theorem are satisfied. Let

J= |Te4i( £(A) x A) : t ^ (A)
= y}.

Claim 1 : ^J is nonempty .

Since Dirac measures are in n^(A) , certainly we are guaranteed

that /Tl(A) t
<f>.

Since \i e ?K.( 3SA)) , we can now appeal to Theorem

17 in Schwartz [34, p. 63] to assert the existence of a unique Radon

measure X on A x -£(A) such that

(*) X(B x C) = v(B)y(C) for all B e (2>(A), C e 43(/£(A)).

Note that Schwartz states ( ) in his theorem in terms of the essential

outer measure but since we are dealing with probability measures, the

distinction can be neglected. The reason for this is that we have

defined a Radon measure in terms of Definition R_ of Schwartz [34,

p. 13] and from the proof of R = > R. (Schwartz [34, p. 13], we see

that the measure of a set with finite measure equals the essential

outer measure of that set.

From ( ) we obtain

X A(A) (B) = X(A x B) = v ( A >u(B) " y(B) for all B e d& ( 3(A))

Since X(A x ^.(A)) = v(A)u( 3(A)) = 1 and since, by definition,

measures are non-negative, X e J and the proof of the claim is complete.
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iim 2. +U iClaim 2. v7 is convex.

Pick y , y from J and X a real number such that < X < 1. Then

1 O

it is routinely checked that the marginal of Xy + (l-X)y on ^c(A) is

y and that Xy
1
+ (l-X)y

2
e &L ( £(A) x A).

Claim 3 . ^J is compact .

We show first that v_J is tight (equally interiorly regular or

equally tight in the terminology of Schwartz [34, p. 379, Definition 4])

Towards this end, pick any 6 > 0. Since y e M( •o (A)), there exists a

compact set K CL^c(A) such that y(K) > 1 - 6. Since the marginal of y

on /C.(A) for any y e (y Is p, certainly

Y(A x K) = Y^( A )(
K >

= M<K) > 1-5-

Hence we can appeal to Theorem 3 in [34, p. 379] (also see Topsoe [37;

Theorem 9.1]) to assert that U is relatively compact.

All that remains to be shown is that ^J is closed in /KiA x *£.(A).

To show this, pick a net {y } from <l) such that y » y. For any closed

set F in ^.(A), we know by the Portmanteau theorem (Theorem 8.1 in

[37]) that lira sup y (A x F) _< y(A x F) . This can be rewritten as

lira sup T^
(A)

(F) < y^ (A)
(F).

Since y (A x ^£_(A)) = 1 for all a, and y(A x /C(A)) = 1, we conclude

by a second application of the Portmanteau theorem that Y j> f k\ *

y ~ . Since y
a
^£(A)

= U f ° r a11 a
'

Y ^(A)
= V 3nd the pr °° f * S

complete.
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Remark 3 . The proof of Claim 3 offered here is different from that in

Khan [22] which relied on a lemma of Hof fman-Jorgenson [18], rather

than on the relative compactness of a tight subset of a space.

t-r Ax ^ (A)
Claim 4. B : Jj + 2 has a closed graph .

Let t * x, (a ,f ) + (a,f), and (a ,f ) e B . We have to show
T

that (a,f) e B .

v
As in the proof of Claim 3, we can show that x. * T . Furthermore,

A A

since f + f in the compact-open topology, and since VK(A) is compact

Hausdorff by Theorem 3.2, we can appeal to the fact that the evaluation

map is continuous; see, for example, Dugundji [10, Theorem XII. 2. 4, p.

260]. Hence f
V
(^) + f ( T

A
>*

Since (a
V
,f

V
) e B

y
, a

V
e M(f

V
(t^)) and hence (a

V
,
a
V
) z f

V
($.

T

Since f (t ) * f(x ) and (a ,a ) * (a, a), certainly a e D where D e
A A

J-f(A) is such that f(x ) e J (A).

Now suppose a i M(f(x.)). Then there exists b e D such that (b,a)

e (f(t )) . Since D is compact, Hausdorff, certainly D x D is regular.

Hence there exists a neighborhood U of (b,a) and an open set V ZZ>

f(x A
) such that U f\ V =

<f>.
Relying on the definition of the topology

of closed convergence this means that there exist D e J-I(h) such that

f
V
(x"') e 5 < A > and bV

e D
V

and v such (b
V
,a

V
) e (f

V
(x

A

V))° for all v >
A n v "— v v

v. But this is a contradiction to the fact that (a ,f ) e B for all

Claim 5 . For any t e J , B is a closed set in J^ (A) x A.

This is a simple consequence of Claim 4.

Next, we consider the map Q : ^J + 2 such that
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Q(t) - {p e 3 i P(B
T

) - 1}.

Claim 6 . For any t e ^/ , Q(t) * <j>.

The proof of this claim relies on the fact that the Dirac point

measures on a topological measure space are dense in the space of

probability measures on that space. Specifically, Theorem 11.1 in

Topsoe [37, p. 48] assures us of a net {y } converging to y such that

v v
each y has a finite support. Pick a particular y and assume that its

support consists of k elements, f , f ~ , ..., f, . From Theorem 5.1, we

know that M(f.(x.)) * 4>. Let a
s

e M(f.(x.)). Certainly (a.,f.) e A x
l A iiA l i

z£(A). Now for any W e & (A) x <2> ( -£(A)) let

6
V1

(W) = 1 if (a
j[

,f
i
) e W

= otherwise.

It is easy to see that 5 " e t^KA x ^(A)). Since {(a.,f.)| is

a compact set in A x /O (A) , for any W e C£>(A) x ® C^^(A)) and for

any £ > 0, certainly 6 ({a,f.}) > 6 (W) -e. Now define, for any

W e (S(A) x ® ( ^(A)),

k
6
V
(W) = Z 5

V1
(W)y

V
(f.).

i=l
X

Again, it is clear that 6 E &\_(A x ^.(A)).

We now show that the marginal of 6 on ^o(A) is y . Pick any

F e $>( £(A)). Then

k

5
V

^ (A)
(F) = 6

V
(A x F) = I 5

V1
(A x F)y

V
(f.)
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= Z y
V
(f.) where I = {i e (l...k) : f. e F}

, _ i l
1

J

lei

= „
V
(F>.

We can also show that 5 (B ) = 1. To see this, simply note that

k
T

l){a.,f.} is a compact set and this is contained in B .

i = l
v £

T

Next consider the marginal of 5 on A. Since /TV (A) is compact

by virtue of [38, p. 76] (also [34, p. 379]), there exists a subnet 6

such that 67 converges to a limit a in )v\.(A).
A

Given that /O (A) is completely regular by virtue of Theorem 3.5,

and that A, being compact Hausdorff, is also completely regular, we can

appeal to Dugundj i [10; Theorem VII. 7.2, p. 15A] to assert that A x

(A) is completely regular. We can now apply Lemma 5.1 in Hoffman-

Jorgenson [18] to assert the existence of a measure 6 e /7V(A x 'O(A))

such that 6. = a and 5 /* ( \\
=

M ana* such that 5 * <T.

Since B is a closed set by virtue of Claim 4, we can appeal to
T

the Portmanteau theorem in [37] to assert that 5 (B ) > lira sup 5 (B )
t —

T

= 1. Since 5*(A x ^(A)) = y(^(A)) = 1, 6*(B ) = 1. Hence 5* e

Q(t) and the proof of the claim is complete.

Claim 8 . Q is an upper hemicontinuous correspondence .

Since ^j is compact, it suffices to show that Q has a closed graph

(see Berge [3, p. 112, Corollary]). Towards this end, let t + t,

V / V x V
p e Q(t ) and p + p. We have to show that p(B ) = 1. Since p is a

Radon measure, it suffices to show that p(K) = for all compact K d.

B . By Claim 4, we know that lim sup B C B . Hence K cC (lim sup

T

B ) . From Klein-Thompson [26; Proposition 3.2.11], we obtain
T
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k d
( n vj b

Y
> - o ( lj b >'

ctY> a T a Y > <* t

where A denotes the closure of A. Since K is compact, every open cover

has a finite subcover. Hence there exists a' such that

K d. ( VJ B J
Y > a* t

T

By the raonotonicity property of a measure

p(K) <p(( \J B )

Y > a* t
Y

and by the Portmanteau theorem [38] we obtain

p(K) < lira inf p (K) < lira inf p (( l^J B ) )

Y > a' x
Y

Now for any v > a'

.c
B CZ. I 1 B which implies B "T2 ( LJ B )

t y > a 1

t
'

t y > a' t

Hence, by the monotonicity property of a measure,

c v _ v,_c
P (( \^J B ) ) £ p (B ) =>tax T

The proof of the claim in finished.
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Remark 4 . The proof presented here is a simplification of the one

presented for an analogous claim in [22].

We can now apply the Ky Fan, Glicksberg fixed point theorem (see,

for example, Berge [3, p. 251]) to the map Q to complete the proof of

the theorem.

Remark 5 . We have provided the proof of Theorem 4.1 with / r̂ (A)

endowed with the compact-open topology. In particular, we used in the

proof of Claim 4, the fact that the evaluation map <h\.{k) x £ (A) *

jf(A) is continuous. If, instead, we had considered the case where

^.(A) is endowed with the graph topology, a direct proof is available.

v v
As in the proof of Claim 3, let x + x and f + f in the graph topology

A A

on /£(A). We shall show £
V
(t

V
k
)+ f(x

A ).A A

Since the net (x.,f (t.)) lies in a compact set, we can find a
a A

subnet, also indexed by v, such that (x ,f (t )) converges to (x ,b)
A A A

where b e 3"(A). Since (t)\f
V
(x^)) e Gr(f

V
), and since Gr(f

V
) +Gr(f),

A A

we obtain that (x,,b) e Gr(f). But f is a function and hence b = f(x.).
A A

Proof of Theorem 4.2 . The proof is identical to that of the proof of

Theorem 4.1 except for the fact that we appeal to Theorem 3.8 to show

the equivalence between the compact-open topology and the induced

graph topology on j£ (A). II

Proof of Theorem 4.3 . Again, we follow the proofs of Theorems 4.1 and

4.2 but with Theorem 5.2 substituted for Theorem 5.1 in the proof of

Claim 6.
II

7. Proofs of Results in Section 3

We begin with a
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Proof of Theorem 3.1 . It is well known that the space of closed

subsets of a locally compact space endowed with the topology of closed

convergence is compact; see, for example, Problem 3 in [17]. Hence,

we have to show that ^(A) is a closed subset of J-/(A x A). Towards

this end, pick a net (P } from 3- (A) such that P * P. We have to
1 v J v

show P e ^(A). Let B e y\ (A) such that P e *£ (A). Since
V V v/ d

V

J-"|(A) is compact, Hausdorff, there exists a subnet, also indexed

by v, such that B > B. We shall show that P e 3\,(A).
v B

We first show that P is an element of -H(BxB) and is reflexive.

Since A is compact, certainly B #
<J>.

Pick any (a,b) e P. There exists

(a ,b ) e P for each v such that (a ,b ) -* (a,b). Since a ,b e B ,
v v

(a,b) BxB, and hence P C BxB. Pick any b e B. By the definition of

closed convergence, we can construct a subnet IB } of JB } and b e° ' l a

'

L v ' a

B such that b + b. Since P e v7B (A), certainly (b ,b ) e P .

a a o o ooo
Since P > P, again by the definition of closed convergence, (b,b) e P.

Next, we show that P is complementedly transitive. In what

follows, we shall take complements of P and P in BxB and

B xB respectively. Suppose (a,b) e P
, (b,c) e P but (a,c) £ P .

Since (a,c) e P and P + P, there exists (a ,c ) e P such that (a
,

v v

V\ / V V
c ) + (a,c). Since B + B, there exists b e B such that b * b.

v v

Hence (a ,b ) » (a,b) and (b ,c ) + (b,c). By [12, Proposition 3.1],

there exists v such that (a ,b ) £ P and (b ,c ) Jt P for all v > v.
v v

V V s V v x
This implies (a ,c ) t P or that (a ,c ) e P , a contradiction.

V . V

The proof of the theorem is complete. II

Proof of Theorem 3.2 . See the proof of Theorem 2 in Khan-Sun [24]. II

Proof of Theorem 3.3. See the proof of Theorem 1 in Khan-Sun [24]. II
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Proof of Theorem 3.4 . See, for example, the Notes to Section 11 in

Topsoe [37, p. 76]. Also Schwartz [34, p. 379]. II

Proof of Theorem 3.5 . Since /H(A) is compact Hausdorff by virtue of

Theorem 3.4 and since J- (A) endowed with the topology of closed

convergence is compact by virtue of Theorem 3.1, /^,(A) endowed with

the graph topology is a subspace of a compact Hausdorff space. Hence

it is normal and therefore completely regular and Hausdorff. Since a

subspace of a completely regular Hausdorff space is completely regular

and Hausdorff (see, for example, [10, VII. 7. 2(1)], we are done. II

Proof of Theorem 3.6 . Since A is compact Hausdorff, v^V(A) is compact

Hausdorff by Theorem 3.4. Furthermore, jr(A), endowed with the

topology of closed convergence, is compact Hausdorff by Theorem 3.1.

We can now apply Corollary 1 in Khan-Sun [23]. II

Proof of Theorem 3.7. Since the range of an element in ^*, (A) is a^o

completely regular Hausdorff space by virtue of Theorem 3.3,

the claim is a direct consequence of Nagata [31, Theorem F, p. 272]. II

Proof of Theorem 3.8 . See the proof of Corollary 2 in Khan-Sun [23]. II
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