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PREFACE.

In this thesis I have considered the representation, in trigonometric series,

of a function of a real variable only.

Since this subject has already been so fully treated I could hardly expect

to obtain many new results. Accordingly it has been my special aim, after

carefully examining the work of others, to investigate independently certain

phases of the question, and thereby to obtain if possible a simpler development
of the subject. To some extent my efforts have been rewarded, since, in several

cases, I have arrived at results by methods considerably shorter than those

which others have employed.
The first two sections of this paper are introductory. Section 1 is purely

historical, giving a brief account of the origin of the question and an outline of

the principal work done upon it up to the present time.* In section 2 is pre-

sented the theorem of du Bois-Eeymond which gives directly the form of the

coefficients in the trigonometric series and proves for all cases the uniqueness
of the development.

In the next two sections I have shown that the convergence of this develop-
ment of an integrable function / (x) to /(#„), for x= x

, depends only upon the

behavior of the function in the vicinity of x . This is followed in sections 5

and 6 by a proof that the series thus converges tof(x ):

1°. When f(x), in the neighborhood of x0> is finite, possesses only a finite

number of discontinuities and only a finite number of maxima and minima.

2°. When it satisfies the very general condition

lim r-|/(*o±2r)-,/>t ±o) |

<=oJo y

This condition I have compared with other conditions and have shown its

application to an important class of functions in modern analysis, viz., to func-

tions having an infinite number of maxima and minima, or an infinite number
of discontinuities in a finite region. In section 7 I have given an illustration

of a function of this kind whose trigonometric development diverges for one

*For a more complete historical treatment see the papers of Riemann (Math. Werke,

p. 213
; found also in Bulletin des Sci. Math., Vol. V, 1873, p. 20), Sachse (Bulletin des Sci.

Math., 1880, p. 43), and Gibson (Proceedings of the Edinburgh Math. Society, Vol. XI, p. 137.)
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value of the variable. Finally, in the last section, I have discussed the nature

of the convergence of the series, treating especially the question of uniform con-

vergence.

I desire here to express my acknowledgment to Professor Craig, who sug-

gested to me the subject of this thesis and who has had general supervision

over its preparation, and also to Professor Franklin, who, by his advice and

suggestions, has afforded me valuable assistance on several points.

Baltimore, April 3, 1894.
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ON THE REPRESENTATION OF A FUNCTION BY A
TRIGONOMETRIC SERIES.

1. The question as to the possibility of representing an arbitrary function

of a real variable by means of a trigonometric series, first suggested nearly a

century and a half ago, has received considerable attention. Much has been

written upon it, for it is important, not only in pure analysis, but also in the

practical applications of mathematics to problems in physics and astronomy.
The question arose from a comparison of two different forms of solution

of the partial differential equation for a vibrating chord, viz :

a<
2 — c

dx
2 [ }

Integrals of this equation were obtained in the form of a general solution

containing an arbitrary function and in the form of a trigonometric series.

The general solution, subjected to the condition that the extremities of the

chord are at rest, becomes

?==/(«+ C*)—f(ct— »),

where f is an arbitrary function having for a period the double length of the

chord. This general solution was first obtained by d'Alembert,* who, however,

supposed that,/ was of such a nature that it could always be represented by a

continuous curve, this being the idea conveyed to mathematicians of that time

by the expression "arbitrary function." But Euler, who in the following year
took up the question,f recognized the fact that /"could be perfectly arbitrary
and said that d'Alembert had imposed an unnecessary restriction .J

In the same article, as a special case, Euler gave, for the first time, a solu-

tion in the form of a trigonometric series. § He showed that if the initial

position was expressed by
. tzx

, n . 2ttx
, . 3nx

,

y=asin— +0sm— + r sin— + . . .
,

*Memoires de VAcad. de Berlin, 1747, p. 214. t Ibid., 1748, p. 69.

%Ibid., 1748, p. 70. (See also Mimoires, 1753, §§ III, V, IX, pp. 197-200.) In this

way the broader conception of an arbitrary function which we have at the present time
was first introduced.

§M6moire& de VAcad. de Berlin, 1748, p. 85.



where a is the length of the chord and a, /9, y ,
. . . are any constants, the form

of the chord after a time t would be given by the equation

. 7tx itv , n , 2rcx 2tcv . . 3jtx Sttv
, ,_.

v= «sm cos f- P Sln cos r T Sln cos !-•••> (2)
CI CL €L CL Cb CL

where v is a constant multiplied by t. (It is readily seen that if v= ct, (2) is a

solution of the differential equation (1).) This solution Bernoulli, who next

took up the subject, claimed was perfectly general,* and later Lagrange, from a

comparison of the two different forms of solution, was led to believet that a

given analytical function could always be represented by a trigonometric series.

Not much progress was made in the discussion of this question until the

time of Fourier, who in 1807 made to the French Academy of Sciences the

announcement :

Every arbitrary function of a variable, whether simple or composed of any
number of different parts defined by different laws, can be represented by a trigo-

nometric series.

The well known method by which Fourier obtained the coefficients an ,
bn

of the trigonometric development

f(x) = X (
an sin nx -f- bn cos nx)

n=

was by multiplying this equation by sin nx and cos nx respectively and inte-

grating from — rt to tt.% In this way is obtained readily

1 [
n i p If"'

6 =r—-
\f[d)da; an =.— /(«) sin na da; bn =z — /(«) cos na da. (3)

This method, however, is not due to Fourier. His merit lies principally in the

fact that he was the first to recognize the possibility of representing a completely

arbitrary function by a trigonometric series. §

Fourier did not prove generally that the series obtained converged to the

value of the function. He showed, however, in several examples that this was

so, and he considered that in the actual application of the development to any

particular case the proof of the convergence would be easy.

The first important contribution to the theory of trigonometric series after

Fourier's work upon this subject, was Dirichlet's memoir, published in Crelle's

* Memoirea de VAcad. de Berlin, 1753, p. 157, § XIII.

t Miscellanea Taurinensia, Vol. Ill, Pars Math., p. 221, Art. XXV.
% Fourier first obtained the coefficients by integrating from to * {Theory of Heat,

Arts. 219-221). Afterwards he showed that they might be obtained by integrating from
— 7T to n (Art. 231).

§See in regard to this Arnold Sachse's memoir, Bulletin des 8ci. Math., 1880, p. 47.



Journal in 1829.* In this memoir he demonstrated rigorously for the first

time the possibility of representing by trigonometric series functions which, in

the interval under consideration, fulfil the three conditions, known as Dirich-

let's conditions, of being finite, possessing only a finite number of points of dis-

continuity and only a finite number of maxima and minima. His demonstra-

tion was based upon the proof that the following two equations

n*^^fto^*3P=* [0<,<W1] (4)

are satisfied whenever f fulfils the above conditions. His demonstration

showed that whenever/ satisfies these two equations the trigonometric develop-
ment is applicable. A few years later (1837) he showedf that the function

might become infinite for isolated points between zero and h provided that the

integral ns

/(/?)#= JF09)
Jo

remain finite and continuous as
/9

varies from zero to h.

The next important memoir published on this subject was that of Lip-
schitz which appeared in Crelle's Journal in 1864.J In this paper he made an

important extension to the class of functions which satisfy equations (4), and to

which therefore Fourier's development can be applied. He presented a theorem§
which was, in effect, as follows :

If the functionf (ft) is of such a nature that

l/(/5)l<-4
=

g<P<h

0<g<h<
Tl

tmi£i±J^mi<B [,<*<»], (5).

where A, B ,
a denote finite positive constants, then

fe=oo Jflr sin/9
r

equals -~-/(0) or zero according as g>0.

The theorem thus stated is not quite accurate, however, since simple con-

tinuity of the function at the lower limit of the integral is not sufficient, as is

shown by the illustration given on page 21 of this paper. In fact, Lipschitz's

* Vol. IV, p. 157 ; Werke, Vol. I, p. 117.

t Crelle's Journal, XVII, p. 54
; Werke, Vol. I, p. 305.

% Vol. LXIII, p. 296. >^"\"«'* **^S
§P. 301. jT

*' ***

f I



demonstration requires that the difference/ (0 -4- d)
—

/(0) when d tends to zero

approach zero with a certain degree of rapidity,* a point which he apparently
overlooked. This defect, however, is removed at once by making the condition

(5) include the limits.f The class of functions satisfying this condition includes

many functions having an infinite number of maxima and minima which would

be excluded by Dirichlet's conditions.

In 1867 Riemann's well known work upon trigonometric series was pub-

lished.;}: After an historical sketch he considered the question : What must be

the properties of a function which is supposed to be already represented by
Fourier's series ? From this point of view Riemann arrived at the important

conclusion§ that the convergence of the series for any particular value of the

variable depends only upon the behavior of the function in the vicinity of that

value.

Attention was now directed more particularly to the nature of the con-

vergence of Fourier's series, and to the question as to whether the development
was unique. Heine first demonstrated in 1870|| that a function satisfying

Dirichlet's conditions possesses a development uniformly convergent in each

interval comprised within the interval (
—

tt, tt) and containing no point of

discontinuity for the function. He also showed that there can be only one such

development by showing that a uniformly convergent development representing

zero except for a finite number of points cannot exist, that each coefficient must

be identically zero.

Shortly afterwards Cantor proved** the more general theorem that any

trigonometric series of the form
n =co

2 (cn sin ruc-f- dn cos nx), (6)
n =0

* See the first two of his inequalities on the top of page 307. For his proof it is

necessary that lim ^i^ log 2m= .

a+u a+ /* 1 (2rmr\o.
fit can then be easily shown that lim —

g- log 2m= 0. For —
g
—

<-g B\ % 1

and, if we write */k=m + ff [0 < <r < 1] ,
we have

t (m\
a

i i- logm log mhm
Ufc)

log *= lim
pr+ >zma+ ay

=^-^T= ° •

\
m

>

% Abhandlungen der Getelhchaft der WissenscJiaft zu Oottingen, 1867, Math. Glasse, p. 87.

It is also published in Riemann's Werke, p. 213, and Bulletin des Sci. Math., 1873, Vol. V,

p. 20. Although not published until 1867, it had been written for some time, having been

presented by Riemann in 1854 for admission to the Faculty of Philosophy at the Uni-

versity of Gottingen.

§ Werke, p. 239
;
Bulletin des Sci. Math., 1873, Vol. V, p. 82.

|
Crelle's Journal, LXXI, p. 353, §§ 7, 8, 9.

**Crelle's Journal, LXXII, p. 139; LXXIII, p. 294.
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convergent and representing zero, except for a finite number of values of x
,

cannot exist. This theorem Cantor soon extended* still further to the case

where the series represents zero except for values of x corresponding to the

points of a system of points P of the u
th

speciesf comprised within the interval.

Finally in 1875 du Bois-Reymond| completed this part of the theory very

satisfactorily by showing that whenever a function / can be represented by a

series of the form (6), the coefficients must always have the definite form (3), thus

showing that the development is unique.

Some other interesting results, which I will briefly mention, have been

obtained more recently in other directions. In the Comptes rendus for 1881,

p. 228, M. Camille Jordan has shown that functions having limited oscillation

satisfy Dirichlet's equations (4) and hence are developable in Fourier's series.

He also showed by an example that the class of functions possessing the property

of limited oscillation includes some functions having an infinite number of dis-

continuities scattered all along over a finite interval.

In the same volume of the Comptes rendus,% du Bois-Reymond gives an

account of the results of his researches upon integrals similar to Dirichlet's, but

more general. He obtained as a sufficient condition that equations similar to

(4) be satisfied,

limf

e

^-mod[/(«)-/(0)]
= 0.

e= 0J() a

Du Bois-Reymond has also investigated functions of the form

cos <p (x)

pW*
where p (x) and <p (x) tend to infinity as x tends to zero, /> (x) being always posi-

tive. He has shown that there are functions of this kind which cannot be

represented by Fourier's series at the point x= .

Holder, Kronecker, Weierstrass and some others have also written upon
the subject, but it is not necessary to dwell upon their work here. Kronecker

||

* Malhematische Annalen, V, p. 123
;
Acta Mathematica, II, p. 336.

t If P comprises an infinite number of points, then there must be one or more points,

called point limits, in the neighborhood of which there are an infinite number of the

points of P. The aggregate of these point-limits is called the first derived system of P
and is denoted by P. The first derived system of P is called the second derived system
of P and is denoted by P", and so on. If P^ is the last derived system which P admits,

i. e., if P^ comprises only a finite number of points, P is said to be of the vth-

species.

%Beweis class die Coefflcienten, etc., Abhandl. d. k. bayer Akad. d. W., 1875, Vol. XII,

pp. 117-167.

§ Pages 915, 962; see also his memoir, TJntersuchungen uber die Convergenz und Diver-

gem der Fourierschen Darstellungsformeln, Abhandl. d. k. bayer Akad., Vol. XII, p. 1.

|| Sitzungsberichte der Ak. der W. zu Berlin, 1885, p. 641.
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obtained in a number of different forms, conditions that equations (4) be satisfied,

and in the course of his paper showed that his forms included many of the con-

ditions which had already been given by others.

2. In considering the development of a function f(x) in trigonometric series

going according to the sines and cosines of increasing multiples of re, it is

natural to consider first what form, if f{x) is thus developable, the coefficients

of the sines and cosines will take. With this question naturally arises another,

viz : Can the coefficients take more than one form ? i. e. Is the development

unique ? As these questions are answered very satisfactorily by an important
theorem published by du Bois-Reymond in 1875,* I will give that theorem here.

In whatever manner a functionf (x) can be developed in the series

f{x) = X («» sin nx -f- bn cos nx) , (7)
n =

holding within the interval
(
—

7r, tt) }
whose coefficients an) bn become infinitely smallf

with —
,
the coefficients have always theform

If" 1 r" If"
b = ^- I f{a) da ; an z=:— / (a) sin na da

;
bn =z — / (a) cos na da

,

&X)— n K
J— jr

7T J— 7T

provided that the integrals have sense.%

The proof of this theorem is as follows:

Form the function

rpr \ i x2
"^T an sin nx 4- bn cos nx /Q \

F(x)= bQ
—— 2 22

J_» (8)
Li n = 1 IV

derived from (7) by two successive integrations. The function F(x) possesses

the following properties :§

1°. It is uniformly convergent for every value of #.

2°. lim
F

(
x+ £

) + F&— £
)
—

21?0c) —
f^x ) except for values of x which

e= £~

make the series (7) divergent or discontinuous.

* Abhandl. der k. bayer Akad. d. W., Vol. XII, 1875, pp. 117-167, Beweis dass die Co-

efficienten, etc. As I have not had access to du Bois-Reymond' s memoir, I follow here

Sachse's presentation of the proof {Bulletin des Sei. Math., 1880, p. 104). Since this is

rather condensed, I have expanded it a little in a few places. In particular, I have

given a proof for the case where the function becomes infinite, du Bois-Reymond's treat-

ment of which Sachse has omitted.

tThis will be the case if they will have a form like that given in the theorem, as is

shown in the footnote on page 8.

X This requires of course that/(a) be integrable in the interval (
— tt

, n) .

§ Shown in Riemann's Math. Werke, pp. 231-34 : Bull, des Sci. Math., Vol. V, 1873, pp.

41-45 ; Picard, Traite d'Analyse, Vol. I, pp. 240-44.
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3°. lim F{x+ e)+F(z-*)-2F(x) = Q for yalue of^
e = £

Let us consider first a function f(x) which is finite and continuous and

does not have an infinite number of maxima and minima. We must have

necessarily for every value of x between — re and -f- rt
,

^\
X

dafe(P)dp==f(x).
(9)

Form the expression

0{x)= F(x)— Pda
[/(/?) d/3.

J IT * — It

From the property 2° and from (9) it follows that

lim 0(* + e)-20(*)+0(*-g) =lim 4*0 {x) _ Q
«= o e

2
e=o s

2

and therefore

0(x)=ZCo -\-C1X.

Hence

F{x)= [*d« f>(/9) dp+ c + ^r. (10)
» — ir « — it

If now, according to the method employed by Fourier, we multiply (8) by
sin nx and cos nx successively, and integrate from — rz to -\-tt ,we will get

IF* 1

flT .

yjS
Ctt

F(a) da =: -K- &o> -^(°0 s^11 wa ^a=
J— It " J_„-

J>(«)
cos n« da=-^f +(-!)»

In these equations substitute for F(a) its value given in (10) and integrate

by parts.

[V (a;) <&>=
[* {^da[f{P)dp+Co+<w\dx', f

"da fda
f/(/9)dj8J T J— JT V J IT J IT J J— IT J— It J— It

= x
[da |>(/3) d/9l- Hwte

[>(/?) d^
J— it J— 7r —'— it J— it J— it

=
^j>^)dp]^-^|V(a)d«-^J>(/9)d/9]^+ \\^f{x)

dx

=
~2){

71— aff (
a
) da > I (°o+ G&) dx= 2ttc .

\[{n-aff{a)da + 2r:c,= ^-b,. (12)

Hence

*
Integrating by parts, it is readily seen that

[
n

x* 2k f xH

-5- cos na; da:= (— l)
n —r ,

— sin na; da;= ,

J-1T Z n
J— * 2



j
F(a) sin na da= I sin na d« \ da /(£) dp -f- c + cy/ >

=
{
i- cos na

[|
d«

J> (/?)^+ c + *«] }

*

+
-i-j

ow na
[J/(0) d£ + ClJ

da

= (:=^T1&fc»^+
(
~

1)nr 27rCl

-^f/Wrinnaci,

" J— IT -1— 7T " , J— IT

T" r / (a ) sin wa da .

Hence

Therefore

(_^n
+ l

^ |y (^^_ |*^w^ + 2
^-|
__^^^ nada=__W. (13)

.F(a) cos nadaz= cos na da *! da 1/ (/3) d,3 -f~ Co -f- cyz >

=
{ ~n~

Sin naU^" \l^^ + co + c
i«] } _

—
{ W C°S na

LJ/f
^^ + C

l] } _
—

^2-j
/(«) C08 W« d«'

^j/j
a) da- -w\ha) cos wa da=- h

f + (
-

i)n IF •
(
14)

From the three equations (12), (13), (14) we can readily obtain the values

of c
, Ci, 6

,
an ,bn , by remembering that these equations are true for all integer

values of n greater than zero, and that an) bn and the integrals

|V fir

/(a) sin na da, f(a) cos na da
J— It J— IT

tend to zero with * Thus from equation (14) by making n tend to infinity

*That these integrals tend to zero whenever/(a:) is integrable is proved by the same

method as the theorem given on page 14. In the integral f(a) sin na da, f{a) takes

the place of the function • in the proof of that theorem. For the integral

/(«) cos nada it is only necessary in that proof to make the subdivision of the interval
J-* 7T

(
—

7T, »r) in such a way that each small interval equals #~and the points of subdivision

are integer multiples of -g .



we see first that

b
°=itr\ha)da '

and that then we obtain the value of bn for any value of n. The results which

we obtain from the three equations are

fc=4^j/(«)["§ (
7r— a

f~\
da

> *=j£/W(*—*)«ki

If" i pf, if"'
6 =: -^-^/(ajda, aM=— I /'(«) sin nada, bn=— \f(a) cos na da .

If now, however, supposing that f (x) is finite, we subject it to the single

additional condition of being integrable, the above proof that (P (x)= c -\- c
x
x

will not hold. We must make another investigation for this case. f{x) will

not have necessarily at each point a determinate limit, but its value will lie

between a superior and an inferior limit. Let us designate the half-sum of

these two limits by S (x) ,
the half-difference by D (x). We can evidently give

to the function the form S (x) -fjD (x) ,
where j denotes a real number lying

between — 1 and -j- 1 . Let us now, according to the method employed by

Biemann, find an expression for lim —-^-^ . Put
e =

X («n sin nx -f- bn cos nx)
— S (x) -j- a\ •

»=o

Taking 3 an arbitrary small quantity, we can fiud a value of m such that

|

am
|<D (x) -|- d . We can now write*

J2

F{x) -,.,
.2 =/» +

sin (n— 1)
-
(

sin n
-jr-

2^

Taking e sufficiently small to have m -^ <[ tt
,
let us divide this series into

three parts. In the first let n increase from 1 torn; in the second from m -\- 1

to s, the greatest integer in -=—
,
and in the third from s -j- 1 to infinity. The

first part will tend to zero as e diminishes. The second part will be less in

absolute value than

* Riemann, Math. Werke, p. 223
; Bui. des

d'Analyse, Vol. I, p. 241.

4. Math., 1873, p. 43; Picard, Traiti
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The third part will be less in absolute value than

Now passing to the limit we see that the first of these expressions will tend to

D (x) -f 8
,
and the second to (* +—) (D (x) -f 8) . Hence

ta^^^/sf(«)+i(i+-y + -i-)p>W+fl [— i<i<i].

Putting

F1
(x)z=\

X

da\f^)d^• — IT J— It

we have that

lim -^-' = S(z) +jxD (x) [- 1 <j,
<

1] .

But (x)=F (x)
— Fx (x) ,

and hence, neglecting the arbitrary small quantity

8
,
the modulus of the greatest value which lim ^ can take is

e= £

(a
+ ^r + T>W-

We can now, by making use of the condition that/" (x) is integrable, show

that <P (x) is a linear function of x . Let us divide the interval (x ,
x -f- a) into

smaller intervals limited by the points x
,
# -f- ^ ,

x + ^i + <^ >
• • •

>
# "h ^i

-{-... -f<5ft_i ,
a; -}- a and form the sum

d
lD(z+ PldJ+ dtD{z+ 3

l+pA) + ... + 8J)(x+ 8i+l+.--+pM, (15)

where the quantities p are positive fractions. This sum, in virtue of the con-

dition of integrability, must tend to zero with 8. Hence when the <5's become

infinitely small and e tends to zero, the limit of

J>[d10(x+ p1d1) + d90{x + 31 + pA)+> • .+8n 4>{x + 8
1 + • - -+ftA)]

? '

which in absolute value cannot exceed the sum (15) multiplied by f 2 -f- —$- -\
J,

must be zero. That is, we must have

a

0(x + a)da= Q.lim —y
e = £

It follows therefore that

\ (x -\- a) da= c„ -\- CxX . ^V
Jo
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But since F(x) and Fx (x) are continuous functions of a; ,* <P{x), = F(x%£~Fx (x)

is continuous also. Hence, employing the theorem of means, we can write

<P(x + a)da= a0(x + aJ [0<«1 <a].
Jo

Consequently

Now let a tend to zero. The first member will tend to a definite limit, and

therefore the second member will also, •'. e.,
— and — will tend to fixed quan-
a a

tities c
' and c/'. We have then

4>(x)= c
' + Gl'x,

and the demonstration can be completed as before.

Suppose now that /"(a) becomes infinite in the interval
(
— tz

, tz) ,
but still

satisfies the condition of integrability. Over each portion of the interval con-

taining no infinite point fovf{x) (x) is a linear function of x by the above

proof. Hence since (P (x) is continuous in the interval
(
— tz

, tz), the curve

y=0(x),&sx varies from — tz to tz
,

if it does not represent a straight line, at

least represents a continuous broken line, the corners corresponding to values

of x which makey(.r) infinite. We will show that the line is straight.

Writing
\"A?W= rW ,

it is easy to show that ?F (a) is continuous in the interval
(
— tz

, tz)
. For

V(a + d)-¥{a)=
^f{P)dp

can evidently be made less than any assigned small quantity s by choosiug d

sufficiently small since, if,/ (x) becomes infinite for x=zx
,
the condition of

integrability requires that

lim
[/•(/?) d^= 0, lim f/t/3)W=

Employing the theorem of means, and remembering that $'(a) is con-

tinuous, we get at once

lim -ife) — lim
-~|V (a) da =z lim

i-[ [*¥*( a) da
— fV (a) da]

= .

*Fi {x) is continuous whenever / is integrable, since JFVis the integral from — -
to x

of a finite function.
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But since by property 3°, p. 7, lim ^' =
,
we must have

e= *

That is, Hm 0(x + *)—0(x) = Hm 0(x)-0(x-e)

which tells us that the directions of the two straight lines meeting at any vertex

are the same. Hence, for values of x in the interval
(
— tt

, tt) , y z=z (x) repre-
sents a single straight line, and we can write

(x)= c + dx

and complete the demonstration as in the first case.

The theorem just proved shows that whenever /"(a;) is integrable and can

be represented by a development of the form (7), the coefficients an and bn in

this development must always be of the form originally given by Fourier. But

the integrals giving these coefficients are perfectly determinate quantities. It

follows therefore that a given function can be developed in a trigonometric

series of the nature mentioned in only one way, or, in other words, that the

development (7) must be unique.
We have considered above a development available in the interval

(
— re t 1?) . If, however, we had desired to obtain the form of the coefficients in

a development holding for some other interval of 2~
, say [m- , (m -f- 2) ;:]

where m is an integer, the method of obtaining them would have been precisely

the same except that instead of integrating over the interval (
— -, -), as on

page 7, we would have integrated over the interval [mr: , (m -|- 2) tt] . If we

should do this, getting first equations similar to (11), and then after partial

integration equations similar to (12), (13) and (14), we would find that while

the expressions for c and c, would be different, 6
,
an and bn would be the same

as before (p. 9), except that the field of integration would be [m~ , (m -j- 2) ;r] .*

3. We have seen that if a functionf (x) is capable of being represented by

a trigonometric series of the form (7), this development must be

f(x)=^f(a)da
sin x \f{a) sin a da-\- sin 2x \f{a) sin 2a da -\-. . .

+ — {
J -'r }~ n

} . (16)

i + cos x \f{a) cos a da-\- cos 2x !/"(«) cos 2ada-\- . . .

J

Evidently also a development of/ (x) t
available in the neighborhood of any point

a
,

is at once obtained by developing f(a + x) , regarded as a new function of x
,
in the

ordinary manner. The two developments, holding for the interval [rmr , (r» + 2) t] ,

obtained by the two methods are easily shown to be identical.
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We need then to consider under what conditions this series will converge to the

value of the function f(x). The sum of the first n terms, Sn say, gives us

1 F
8n =z — [|+ cos («

—
x) -f cos 2 («

—
x) -\- . . . -f- cos n (a

—
x)\f (a) da

" J— ir

*
f(a) sin (2ro + 1) %-? da

2 sin
a— x

Let us find to what limit 8n tends when n increases indefinitely. By making
a change of variable Sn can be written

s - 1
p*<—

*>
/(a? + 2r) sin (2n +1) 7 <fr

+

J_f*('-*)/(a; + 2/') sin(2n+l)rc?r
7T J sin p

jj^
rt (* +

*)f(x_ 2r) sin (2n + 1
) r <*r

7T Jo sin
t'

(17)

where — tt<^x<^k . This form of expressing Sn leads one very naturally

to consider the limit for k =. oo of the following integral, known as Dirichlet's

integral,
(> ?(r)smkr

dr [0<i< ,T],
I"JO;o sin y

where
<p (y) has been put for/" (x± 2y) . We will consider under what circum-

stances

(18)Hm p yQQBinMr _ lim JL . M .

fc=ocJo sin y e =r0 2

For if (18) holds for all values of h lying between and iz
,
then when n

increases indefinitely, Sn will tend to the limit

lim *[/(*+ &) +/(*- 2*)],
6=

i. e., to y(») unless /* has a point of discontinuity at the point x, and in this

case to a mean between the two values taken byf at the point.

It is only necessary, however, to consider 0</t< -^- ,
for if (18) holds for

such values of h, it will hold also when ~ <^h<^7r. In order to see this,

suppose (18) is true when < h < -& • This will evidently require that
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If now
-jj- < h< z

,
then

f* eg (r) sin &r ^ __ f »
<p (y) sin fr

d<<
,

(
h
<p(r)

sin kr d
Jo sin?-

'

Jo sin-/-
'

J, sin y

In the case where h is an odd integer, h= 2n -{- 1
,
the second integral in the

right-hand member of this last equation will be zero, for, on changing y into
~ —

y, it will become
ir

p <p (tt
—

y) sin ky dy

iv-h sin?-

which is zero by (19), provided that, over the interval, tp (tc
—

y) fulfil the con-

ditions required of
<p by equation (19).

4. We have shown in the last section that the question of the convergence
of the trigonometric series (16) to the value f{x) reduces to the consideration of

the circumstances under which

Km p
y(r)*»*r<fr lim

*
()

r < h
«n

. (20)
&=Jo sinr e=0 2 Yyj L ^ 2 J

We will now show that it is only necessary to consider what conditions
<p
must

fulfil in order that (20) be satisfied when A is a quantity greater than zero, but

as small as we please. This can be seen at once from the following theorem :

Whenever
<p (y) is integrable over the interval (e, h) and

(p (s)
is finite,

lim
[

V(r) sin hdy= r0<e<A < *n
k=J e Biny L ^ ^ 2 J

To show this let us divide the interval (e , h) into n parts d1} d2) . . . dn ,

making the points of division odd integer multiples of
--^j- ,

distant from each

other by an amount equal to --.- . Let us also take s itself an odd integer mul-

tiple of-KT-, so that we shall have

flj
= o2

== ds= . . . = on _! =
-j-

> 3n .

We will now seek the limit of

(
h
<p(y) sin ley dy ^

} ( smy

as k tends to infinity. Let yp denote the value of y, in the interval 3P) for

which
<p (y) approaches nearest to zero, and in each interval dp let

sin

(r)_ y(rP), jrf(r)i
u y sin yp

' Lsin y]
'
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We can evidently express the integral (21) as the following sum of integrals,

Tt^£**] +f*'i^**+f >*£?* (22)

where ^ -~ = £
,
)H+ x

= J,+ 2
, /„ -^

= A— on . But since, in virtue of the

condition of integrability,

<P Op) $p

****

the first term of (22) is zero because

8111^^=— np"J
=»•

Now let fc increase indefinitely. The first term of (22) will continue to be zero.

As for the second term we have always

4my^ dH^m^A d<'n&^u
Lsm yj

' '

|
\| e Lsm y.

which tends to zero from the condition of integrability. Finally, for the last

term of (22), since
S1

.

n
J varies always in the same sense from h— dn to h, we

have, from Bonnet's theorem, that

[
h

P(r)sinfer ,,

]h — in sin
7-

is not greater in absolute value than one of the two quantities

sin (A- K)fa* dr > «*(k-aJ\?V>*r [h-3.<e<h}.

But each of these approaches zero as h increases indefinitely, even though <p (y)

becomes infinite, because if y is a point at which
<p (y) becomes infinite, the con-

dition of integrability requires that

fYo f
Vo+ «

lim
<p (y) dy= ,

lim
<p (y) dy =z .

a= 0-lyo
— a n= 0Jyo

Hence the sum (22) tends to zero as k becomes infinite, and we have

lim

'h
<f{y)sinkydy_

sin y
* *r

[
U ITV
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This conclusion is very important, for (see equation (17), p. 13) it shows

that if a function f{x) is to be developed in Fourier's series, it only needs

to satisfy the condition of integrability except for a region as small as we

please on each side of the point at which the development is to be made, or in

other words, that the convergence of the series for any particular value of x

depends only upon the behavior of the function in the vicinity of that value.

A particular case of the above theorem is when
<p (y) is a constant, say

unity. The theorem will then become

lim
\

h s™ krdr = r <s<><4
* = «, J e sin y L 2

This can also be shown very readily by partial integration.*

(23)

5. The theorem proved in the preceding section reduces our problem to the

consideration of the conditions which
<p (j) must satisfy in order that

Hm f-?(r)sWr= ]im
n

((J)
= n

{ say> m
k =« Jo sin

7* <r=:0 ^ z

where £ denotes a quantity as small as we please but greater than zero.

Now, k being an odd integer,

sin y

and hence from (23) we must have

7.

P*" sin ky , n .

Jo isry^T^

lim p™fedr= 7

Jo smrfc=ooJo sin y 2

Accordingly we may write

lim P y fr) sin kr dr- lim ['
<> fr)

~ ? (+ °)] Sin hr dr + g
r (+ 0)

*=oj sin?' fc=»J sin y 2

Equation (24) will therefore be satisfied if

lim
[

e
l> (r)

-
<P (+ 0)1 sin kydy _ n

(26)
jfc=ooj sin y

*
Ch sin ky JL_ coaky~\ h

l_ f*

J e
sin y

dy-~ k
sin>J e

k
] t

1 fa cos ky cos y dy
sin" y

which tends to zero with
-j—

f This follows at once from the equation

sin(2?t+ l)a;

:
_

1 + 2cos2a!+2co84a;+ _ + 2cos2tw;
sin x



Let us first suppose that
<p

is a function possessing the property of limited

oscillation or limited variation, as Jordan has defined it,* in the interval (0, e).

It can then be written in the form

<p (y)= <p(+0) + Py
-N

y ,

where Py represents the sum of the positive oscillations of
<p
from zero to y ,

and Ny represents the sum of the negative oscillations. In this case the left

hand member of (25) will take the form

lim HPv-^) sini^r ,

fc=ooj sin y

But from Bonnet's theorem, since Py
is a positive function, never decreasing,

rfT 8JnMr = ftW^ [0<*<«].
Jo smy ]t sin y ,

Suppose now that we divide the interval (
,
~

)

into the partial intervals

(0, ~f)' \T" "*/' \T' ~V)''''\T' ¥)'

r being the largest number of times that ~ is contained in -J- . We can write
k 2

7i [z sin ky j , , ,,._

where

^ sin ky dy \ \n ^2 1 r -, „ n

W)- sm
IT

This gives at once

Px<
sm

^ 2 . -
. 2

(26)

and hence whatever value $ takes in the interval
(

0<?*£*<"+-*
J sm

j'
2 -

But since
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It follows therefore that

Similarly

Hence

lim
fc= oo

lim
k = oo

lim

£
Py sin ky

siny
dy

tN
y 8in kr

dr
sin r

<

<\*..

rJO
{Py -N

y )
sin ky dy

sin y
<r:M,

where M is the largest of the quantities P( and N€ . It follows therefore that

(24) will be satisfied provided that P£ and Ne tend to zero with e. This will

evidently be the case under the following circumstances :

1°. If the function is continuous and has only a finite number of maxima
and minima.

2°. If the function has a finite number of discontinuities,* but is finite,

and has only a finite number of maxima and minima.

These conditions are precisely those of Dirichlet, and hence we see that for

functions satisfying Dirichlet's conditions we must have

limf
6 ^)sm^r _jr

(
,

Q)>
*= «> Jo sin y 2

6. If the function
<p

is continuous or has a finite number of discontinuities,

but has an infinite number of maxima and minima, it may still be true, when f

possesses the property of limited oscillation in the interval (0, e), that Pe and

Ne tend to zero with e. But for the general case of a function with an infinite

number of maxima and minima (with no discontinuities or a finite number of

them), and also for the case of an infinite number of discontinuities, a different

investigation is necessary. We can, however, derive a very general condition

which it is sufficient for functions of this kind to fulfil in order that the

equation just written be satisfied.

In equation (25) we can replace sin y by y since their ratio is very near

unity when e is very small. Now

Wr) ^(-j-0)] sin kydy

T Jo

f(r)-r(+o) sin kr
r

<!

dy

y(r)
— y(+Q)

r
dy.

* For if the function has a finite number of discontinuities, we can take e so small

that in the interval (0, c) the function will be continuous.
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But e can be taken as small as we please, and hence a sufficient condition that

i8

iimf
I y(r)— y(+Q)i

dr
—

,* (28)

Let us compare this condition with one or two other conditions which

have been given. Lipschitz's condition was

l{m f±±^ZllSll < B, (29)
8= °

where B and a denote any positive finite quantities. His condition is less

general than (28). For if (29) is satisfied we can write

lim
r-

| pfr) -y(+ o)| rfr<Hm f-Brdr
«=oJo «= oJo X

V « Jo

:0J0 «= 0^0

But

which tends to zero with e. Hence (28) is satisfied in this case. But on the

other hand (28) can be satisfied without Lipschitz's condition being fulfilled.

Thus if
<p
was of such a nature that

I!fo(
log d

l \?b+ *)-H> (r) ]
== X,

where Kis a finite constant, Lipschitz's condition would not be fulfilled, since

M K
a=o<*

tt

(logd)
a

The condition (28), however, would be satisfied in this case, for we can write

lim f- k(r)-?(+0) l d UmK i- dr = Bm r_ *_T= .

«=oJo r e=o Jor(logr) .=<>l logr-io

Another condition which has been given is, denoting by D the difference

1P(r + *)
—

?(r),
"

lim 2>log*= 0. (30)
8=

The two conditions (28) and (30) differ from each other in comprehensiveness

very little, but the latter is slightly more general. Thus both can easily be

shown to be satisfied by a function for which

lim D (log dy—K [«>1],
8=

*See page 5. This condition, for integrals similar to Dirichlet's but more general,
was obtained by du Bois-Reymond in another way. See his article, Comptes rendus, 1881,

p. 915.
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where K is a finite constant. But both cease to be satisfied for a < 1 . If,

however, we consider a function for which

lim D log d [log (
—

log <*)]•=K [0<a<l],
«=o

the condition (30) will be satisfied while (28) will not. For

K
But

lim D log d= lim p^-
5 =o

&
5=o[log(— log^)>

=

iim f <k _ Iim r ^[log(-iogr)]
e =o Jo r log r [^g (— log r)]

a
£=0 Jo [log (— log r)Y

~
lim \r~-^[log(— logr)]

1_a
]"=<».

e= o Li — a J

Let us now apply the condition (28) to one or two functions having an

infinite number of maxima and minima in a finite region. The function

f{x)= x sin — becomes zero for x= 0, having at that point an infinite num-

ber of maxima and minima. For this function the left-hand member of (28)

would become, since for #=
<p
becomes/"(i 2f)-=.f{2y),

But

limf
€=0jl

io

siniH<E

2sin-±-c7r.
2r

sin
2r

dT<e.

Hence, since the condition (28) is satisfied, f(x) is capable of being represented

by Fourier's series at the point zero as well as elsewhere.

Again consider the function

/(*)=
(log

For this case we have to consider

x

JtF y
sin4 [*>!]•

sin
2rlim

i
-, J . „

r

Now

sin
2T dy

(*£)'
r
<

sin
2r

( g l0° r

dr< 0Q-
1 — a
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which tends to zero with s if a y> 1 . Hence,/ (a;) is developable in Fourier's

series at the point zero.

7. Although the condition

imposes very little restriction upon the function
<p , yet, as has already been

mentioned,* du Bois-Reymond has shown that there are continuous functions

which cannot be represented by Fourier's series at every point. The following

illustration given by Schwartzf is a special case of functions of this kind dis-

cussed by du Bois-Reymond.J

Recalling the value of the sum of the first n terms of Fourier's series,

8.= U"--/(«+2r)'m h dr+ J_f">
+y (*-2r) sinkr d [i=2n+1]>

Tt Jo sinr 7T Jo sin?-
L J '

and the theorem given on page 14, it is evident that we only need to find an

integrable function,/ such that for some value of x,

lim
\<
f(x+ 2r)smkr dr =: ^

*=°°Jo r

where e is a small quantity greater than zero, and of such a nature over the

interval (x
—

e, x) that the second integral of Sn is finite.

Divide the interval f
—

, OJ
into intervals becoming smaller and smaller,

as follows :

IT' (I)]' L(T)' (|]'-
,

1(T^'(|"]'
,

-'[(^^'(^)J
,

L(^' ]' (31)

where (X)= 1 . 3 . 5 . . . [21 -\- 1] ,
and consider a function which in the X

th

interval is defined by the formula

/(/3)=c,sin(;)A,

where the constants c1} c3 ,
. . . <v +1 are positive and decrease indefinitely to

zero as
ju becomes infinite. When //= oo this function, evidently continuous,

tends to zero with /3, presenting an infinite number of maxima and minima in

* Page 5.

\ Bulletin des Sci. Math., 1880, p. 109. I give here the function given by Schwartz,
but prove the divergence of the series differently.

\ Untersuchungen iiber die Convergenz und Divergenz der Fourierschen Darstellunga-

formeln. Abhandl. d. k. bayer Akad. d. W., II CI., XII Bd., II Abth., §§ 35-37.



22

the region of the point zero. We will assume that for negative values of

fit f (ft)
^8 °f sucn a nature that it fulfils the condition (28). This is allowable

sincef is an arbitrary function.

In order to show that the Fourier series, which for all other values of
ft

represents the function, diverges for
,3
= 0, we need to examine the integral

f'/(2r)smtr d
Jo r

We will show that this integral, with proper choice of the c's, becomes infinite

with h. To do this we will give to h only values of the form
(/j.) ,

where fx

increases indefinitely.* Let us divide the integral into partial integrals cor-

responding to the intervals of (31), beginning with the right, and let /x be the

greatest integer for which ~ > e . Putting
(
xi)

J= nkf{2y) sin (fi)ydy
^

Jo T
we have

J= c>x + i
n^sin(// + l)rsin(//) r dr+

Al

|
1

t7A>

Jo T m

where

t _ f
(A
~

1) s*n M f s*n (aO y dy

w

Over the interval
, j—.\

sin
(fi) y is always positive, and hence applying the

theorem of means, we have

it I _ „ (V> sin(/<+l)r sin {fj)rdr -, f ^sin {^)ydy

Jo Jo

this last integral by equa

lim c^ + i = 0, we must have

TZ 2
But this last integral by equation (27), p. 17, is less than

-^- -| ,
and since

lim J^ + i^O.
ft=O0

•This of course is allowable, because increasing k from («) to (,«+ 1) amounts simply
to adding a large number of the terms of the series at one time instead of taking only

one term additional. Thus putting a equal to the number of terms of the series taken

when k is (/*) ,
and V the number taken when k is C"+ 1) , we have

, _ 1.3.5.7 |>+1]— 1 ,,_ 1.3.5 [2.M+ 1] [2.U+ 3]
— 1a_

g '
A ~

2

Hence a'= a + |> + 1] (u)
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To the integral J\ add and subtract

IT

J TT J

We get readily

(a)

J\ = **[£
- 1 '

coajY^Or—lM^: -- f
(A ~ 1)c°8 C0») r +^rM

(A)

r;
(A»

]•

Integrating by parts we get

(A)

0«)+ WJ_i

•(A-D
sin[(//) r+ (^) r]c?n

< (32)
7T / J

In particular,

(A)

Employing the theorem of means, the second integral of J^ is seen to be less

than

20")[-±r
i)=M^-^=^-^~)>

<*0

2^ +
which tends to zero when //

increases indefinitely, since lim c^z^O. Conse-

quently lim «7M= lim | cM log [2/j -f 1] .

/a =<x /a =00

Applying the theorem of means to (32) we have

(A)

Hence,

<
2*

C*
[(«)
-

(*)
+ W + (/)J

W<
jgj

°A

J0J

'

A, + 1

2 ^A
Aj + 1

< 2
Ca

W 0")
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But this series evidently has zero for its limit, as is seen at once by writing it

in the form

VrJ
|

V^2
2
<" + 1 ~ oArr [> + l]l>- 1]

-
[2/i + l][2/*

—
1]

J>) & + !)
'

(A+l) (a<)

But
*> +i

«^= «^M+ 1 + «^» + 2 «A
ft
— 1

and therefore

lim J= lim J cM log [2// + 1] .

Now since the c's are unrestricted, except that they are positive and lim cM= 0,
fl=0O

it is possible to choose them in such a way that the above product shall become

infinitely great with ft. This will be the case for example if we take

c
1

C*
VlogO + 1]'

It follows, therefore, that with such a choice of the c's, the Fourier series, which

represents the function f (/3) for values of /9 different from zero, diverges for

0=0.

8. Let us determine as far as possible the nature of the convergence of the

trigonometric series

2 («« sin nx -f- bn cos nx)
n=0

which represents the function f(x), say, in the interval (
— n

t 7c). Now

1 fV, \ . , 1 ["/(«) cos nay . 1 f* , ,
an=— / a sinwaaaz: k_i_i -J f (a) cos na da

7i )-„
'

tc L n _]_„. n>Tjl. w
v ;

= tZ^1
[/(?r)

~/(-^~4fe (") Sin na da
>

If* If"
6n =— y(a) cos nada= f (a) sin na da

71 j— „. nTc J _ „•

=^^ [/' (*)
—/' (— *)] +i f/" (a) cos na da .

This shows that, if the first and second derivatives of/* are finite, the wth term

is of the order —
, except when f (

—
7t)=f(7i), and hence that in general
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the series is only semi-convergent. But if,/"(
—

7r)=.f(n), or if the develop-

ment contains only terms of the form bn cos nx
,
the series is absolutely con-

vergent.

The question also arises : Is the series uniformly convergent ? Manifestly,

it cannot be so in any interval containing a point of discontinuity. Let us then

consider the question for any interval (a, 6), comprised within
(
—

Tt, tz), con-

taining no point of discontinuity for the function, and over which the function

has not an infinite number of maxima and minima. We need to show that we

can take n so large that the sum of the first n terms of the series

#«= 1 f* (ir
~

a?) /(a?+2y) sin kydy
Tt Jo sin

7-

+
sin y

[Jfe=2n+1]

A =

shall, for any value of x within the interval (a, 6), differ from,/ (x) by a quan-

tity whose modulus is less than a, where a is an arbitrary small quantity
chosen in advance. Let us put

x Jo sin?" Tt
J sin?-

f{x) under the conditions mentioned above evidently possesses the property of

limited oscillation in the interval (a, 6), and hence we can write

f(x + 2y) =/(*) + P;
-

JV;', /(*- 2y) =zf(x)+ P>'- N<
y>,

as long as x -f- 2y and x— 2y do not pass outside the interval (a, b). Or we
can write

f(x + 2y) +/(*- 2y) = 2f(x) + P - N
y

.

Consequently we have

A= Xyf^dr.smy
Since Py and N

y are positive increasing functions, we get, employing Bonnet's

theorem,

=
-§-/(*>!

rfnfy , P.

o sm y Tt

e sin ky

f sinf
dy

Ne f
e sin JcyNe
psi

Tt L S? sm y
dy

ro<*<n
L0<£'<eJ-

But from (26) and (27), page 17, we must have

<
e smky 7 . n

,
2

j smy
Hence ^L will differ from

-<f
sin ky

$
' sin y

rfr<^ +

2 P sin ky dr =/{x) f/Wjo sm r

by a quantity which is less in absolute value than

4

sin £7-

sin
7"

dy

M(JL +~\2^ <M,
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where M is the largest of the quantities Pe and Nt . But since/ (x) satisfies

Dirichlet's conditions, we can choose £ sufficiently small to have M<^\a.
Having thus chosen £, it follows, from the theorem proved in §4, that we can

choose n =z—— so large that

JL fix) F ^fr dr JL f*

(7r
~

z)/(^+2r)sin^^r
n J J

J t siuy
"

-Je sin r
'

l f*c+") /(g--2r)BiiiJbr dr
(33)x Je sin?-

shall, for any value of x in the interval (a, b), each be less in absolute value

than I a, and consequently we will have Sn differing from /(a:) by a quantity
whose modulus is less than a.

Suppose now that f{x) has an infinite number of maxima and minima in

the interval (a, 6), but satisfies the condition

limp
I
/(»*»)-»)

dr= 0. (28)

We can write A
,
defined as above, in the form

SlD kr
dr 4

1
P^ + 2^ "^frfl sin^

c?r

sin;-
' ~*

7i J siny
i
f
r./>)-/(*-2r)]sinfcr d

7T
J

sin y

Since the condition (28) is satisfied, it is easily seen, by employing the process

used at the beginning of §6, that we can choose £ so small that the last two

terms in this expression for A shall each be less than £ a in absolute value.

Having thus chosen e, we can, as above, now choose n sufficiently large to make

the modulus of each of the expressions in (33) less than \o., and hence we will

have Sn differing from f{x) by a quantity whose modulus is less than a.

We have thus shown that the Fourier series representing a function/fa)
is uniformly convergent in each interval (a, 6), comprised within the interval

(
—

7r, tc) and containing no point of discontinuity for the function:

1°. When /*(») does not possess an infinite number of maxima and minima

in this interval.

2°. When it fulfils the condition

tM

lim \f(x±2T)-f(x) l

dr^ Q
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