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TRANSLATOR'S NOTE.

nnHE aim of this translation is to reproduce, as far as

possible, the ideas and style of the original in idiomatic

English, rather than to give a literal rendering of its contents.

Even the verbal deviations, however, are few in number. So

little has been written in English on the subject that a

standard set of technical terms as yet hardly exists. Where

there was any choice between equivalent words, I have followed

the usage of Dr Forsyth in his recently published work on the

Theory of Functions. A Glossary of the principal technical

terms is appended, giving the original German word together

with the English adopted in the text.

Prof. Klein had originally intended to revise the proofs, but

owing to his absence in America he kindly waived his right to

do so, in order not to delay the publication. The proofs have

therefore not been submitted to him, though it was with

considerable reluctance that I determined to publish without

this final revision.

My thanks are due to Miss C. A. Scott, D.Sc., Professor of

Mathematics in Bryn Mawr College, for many valuable sugges-

tions in difficult passages and for her interest in the progress
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of the translation, and also for help in the reading of the

proof-sheets. I must also express my thanks to Mr James

Harkness, M.A., Associate Professor of Mathematics in Bryn

Mawr College, for helpful advice given from time to time
;

and to Miss P. G. Fawcett, of Newnham College, Cambridge,

for reading over in manuscript the earlier parts which deal

more especially with the subject of Electricity.

FRANCES HARDCASTLE.

BRYN MAWR COLLEGE,

PENNSYLVANIA,
June 1, 1893.
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PREFACE.

THE pamphlet which I here lay before the public, has grown
from lectures delivered during the past year*, in which,

among other objects, I had in view a presentation of Biemann's

theory of algebraic functions and their integrals f. Lectures on

higher mathematics offer peculiar difficulties; with the best will

of the lecturer they ultimately fulfil a very modest purpose.

Being usually intended to give a systematic development of the

subject, they are either confined to the elements or are lost

amid details. I thought it well in this case, as previously in

others, to adopt the opposite course. I assumed that the

ordinary presentation, as given in text-books on the elements of

Riemann's theory, was known ; moreover, when particular points

required to be more fully dealt with, I referred to the funda-

mental monographs. But to compensate for this, I devoted

great care to the presentation of the true train of thought, and

endeavoured to obtain a general view of the scope and efficiency

of the methods. I believe I have frequently obtained good
results by these means, though, of course, only with a gifted

audience; experience will show whether this pamphlet, based on

the same principles, will prove equally useful.

*
Theory of Functions treated geometrically. Part i, Winter-semester 1880

81, Part n, Summer-semester 1881.

t I denote thus the contents of the investigations with which Kiemann was

concerned in the first part of his Theory of the Abelian Functions. The

theory of the 0-functions, as developed in the second part of the same treatise,

is in the first place, as we know, of an essentially different character, and

is excluded from the following presentation as it was from my course of

lectures.



X PREFACE.

A presentation of the kind attempted is necessarily very

subjective, and the more so in the case of Riemann's theory,

since but scanty material for the purpose is to be found

explicitly given in Riemann's papers. I am not sure that I

should ever have reached a well-defined conception of the whole

subject, had not Herr Prym, many years ago (1874), in the course

of an opportune conversation, made me a communication which

has increased in importance to me the longer I have thought
over the matter. He told me that Riemann's surfaces originally

are not necessarily many-sheeted surfaces over the plane, but that,

on the contrary, complex functions of position can be studied on

arbitrarily given curved surfaces in exactly the same way as on

the surfaces over the plane. The following presentation will

sufficiently show how valuable this remark has been to me. In

natural combination with this there are certain physical con-

siderations which have been lately developed, although restricted

to simpler cases, from various points of view*. I have not

hesitated to take these physical conceptions as the starting-

point of my presentation. Riemann, as we know, used

Dirichlet's Principle in their place in his writings. But I have

no doubt that he started from precisely those physical problems,
and then, in order to give what was physically evident the

support of mathematical reasoning, he afterwards substituted

Dirichlet's Principle. Anyone who clearly understands the

conditions under which Riemann worked in Gottingen, anyone
who has followed Riemann's speculations as they have come
down to us, partly in fragments f, will, I think, share my
opinion. However that may be, the physical method seemed

the true one for my purpose. For it is well known that

Dirichlet's Principle is not sufficient for the actual foundation

of the theorems to be established; moreover, the heuristic

element, which to me was all-important, is brought out far more

prominently by the physical method. Hence the constant

introduction of intuitive considerations, where a proof by
analysis would not have been difficult and might have been

*
Cf. C. Neumann, M,,th. Ann., t. x., pp. 569571. Kirchhoff, Berl.

1875, pp. 487497. Topler, Pogg. Ann., t. CLX., pp. 375388.
t Get. Wtrke, pp. 494 et teq.
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simpler, hence also the repeated illustration of general results

by examples and figures.

In this connection I must not omit to mention an important
restriction to which I have adhered in the following pages. We
all know the circuitous and difficult considerations by which, of

late years, part at least of those theorems of Riemann which are

here dealt with have been proved in a reliable manner*. These

considerations are entirely neglected in what follows and I thus

forego the use of any except intuitive bases for the theorems to

be enunciated. In fact such proofs must in no way be mixed

up with the sequence of thought I have attempted to preserve ;

otherwise the result is a presentation unsatisfactory from all

points of view. But they should assuredly follow after, and I

hope, when opportunity offers, to complete in this sense the

present pamphlet.
For the rest, the scope and limits of my presentation speak

for themselves. The frequent use of my friends' publications

and of my own on kindred subjects had a secondary purpose

important to me for personal reasons: I wished to give my
audience a guide, to help them to find for themselves the

reciprocal connections among these papers, and their position

with respect to the general conception put forth in these pages.

As for the new problems which offer themselves in great number,

I have only allowed myself to investigate them as far as seemed

consistent with the general aim of this pamphlet. Nevertheless

I should like to draw attention to the theorems on the con-

formal representation of arbitrary surfaces which I have worked

out in the last Part
;
I followed these out the more readily that

Riemarm makes a remarkable statement about this subject at

the end of his Dissertation.

One more remark in conclusion to obviate a misunder-

standing which might otherwise arise from the foregoing words.

*
Compare in particular the investigations on this subject by C. Neumann

and Schwarz. The general case of closed surfaces (which is the most important

for us in what follows) is indeed, as yet, nowhere explicitly and completely dealt

with. Herr Schwarz contents himself with a few indications with respect to

these surfaces (Berl. Monatsber., 1870, pp. 767 et seq.) and Herr C. Neumann

only considers those cases in which functions are to be determined by means of

known values on the boundary.
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Although I have attempted, in the case of algebraic functions

and their integrals, to follow the original chain of ideas which I

assumed to be Riemann's, I by no means include the whole of

what he intended in the theory of functions. The said functions

were for him an example only, in the treatment of which, it is

true, he was particularly fortunate. Inasmuch as he wished to

include all possible functions of complex variables, he had in

mind far more general methods of determination than those we

employ in the following pages ;
methods of determination in

which physical analogy, here deemed a sufficient basis, fails us.

Compare, in this connection, 19 of his Dissertation, compare
also his work on the hypergeometrical series. With reference

to this, I must explain that I have no wish to draw aside

from these more general considerations by giving a presenta-

tion of a special part, complete in itself. My innermost

conviction rather is that they are destined to play, in the

developments of the modern Theory of Functions, an important
and prominent part.

BORKUM,
Oct. 7, 1881.



PART I.

INTRODUCTORY REMARKS.

1. Steady Streamings in the Plane as an Interpretation

of the Functions of x + iy.

The physical interpretation of those functions of x + iy
which are dealt with in the following pages is well known*.
The principles on which it is based are here indicated, solely
for completeness.

Let w=u + iv, z=x + iy, w =f(z). Then we have, primarily,

xjv
du _dv du _ dv

and hence

/ox dzu d2u
(2) 1

=
,

and also, for v,

In these equations we take u to be the velocity-potential,

so that -, are the components of the velocity of a fluid

moving parallel to the xy plane. We may either suppose this

fluid to be contained between two planes, parallel to the xy

* In particular, reference should be made to Maxwell's Treatise on Electricity

and Magnetism (Cambridge, 1873). So far as the intuitive treatment of the

subject is concerned, his point of view is exactly that adopted in the text.

K. 1



2 INTRODUCTORY REMARKS. [PART I.

plane, or we may imagine it to be itself an infinitely thin

homogeneous sheet extending over this plane. Then equation

(2) and this is the chief point in the physical interpretation

Allows that the streaming is steady. The curves u = const.

are called the equipotential curves, while the curves v = const.,

which, by (1), are orthogonal to the first system, are the stream-

lines. For the purposes of this interpretation it is of course

indifferent of what nature we may imagine the fluid to be, but

for many reasons it will be convenient to identify it here with

the electric fluid ; u is then proportional to the electrostatic

potential which gives rise to the streaming, and the apparatus
of experimental physics provide sufficient means for the pro-

duction of many interesting systems of streamings.

Moreover, if we increase u throughout by a constant the

streaming itself remains unchanged, since the differential co-
*j

~l

efficients =-
, ^-

alone appear explicitly ;
this is also true of v.

Hence the function u + iv, whose physical interpretation is in

question, is thus determined only to an additive constant pres,
a fact which requires to be carefully observed in what follows.

Further, we may observe that equations (1) (3) remain

unaltered if we replace u by v, and v by
- u. Corresponding to

this we get a second system of streamings in which v is the

velocity-potential and the curves u = const, are the stream-

lines
;
in the sense explained above this represents the function

v iu. It is often of use to consider this new streaming as

well as the original one in which u was the velocity-potential ;

we shall speak of it, for brevity, as the conjugate streaming. It

is true that the name is somewhat inaccurate, since u bears the

same relation to v, as v does to - u, but it is sufficiently intelli-

gible for our purpose.

The differential equations (1) (3), and hence also the whole

preceding discussion, apply in the first place solely to that

portion of the plane (otherwise an arbitrary portion) in which
u + iv is uniform and in which neither u + iv nor its differential-

coefficients become infinite. In order then that the corre-

g physical conditions maybe clearly comprehended, a
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region of this kind must be marked off and then by suitable

appliances on the boundary the steady motion within its limits

must be preserved.

In a bounded region of this description points z at which
^\

the differential coefficient =- vanishes call for special attention
oz

To be perfectly general, I will assume at once that ~-
, 5 ,

CZ GZ

up to are all zero as well. To determine the course of the

equipotential curves, or of the stream-lines in the vicinity of

such a point, let w be expanded in a series of ascending powers
of z z Q ;

in this series, the term immediately after the constant

term is the term in (z z )
a+1

. Transforming to polar-co-

ordinates we obtain the following result: at the point z0) a + 1

curves u = const, intersect at equal angles, while the same

number of curves v const, are the bisectors of these angles.

In consequence of this property I call such a point a cross-

point, and moreover a cross-point of multiplicity a.

The following figure (which is of course only diagrammatic)
illustrates this for a = 2, and explains, in particular, how a cross-

point makes its appearance in the orthogonal system formed by
the curves u = const, v = const.

The stream-lines v = const, are the heavy lines in the

figure and the direction of motion in each is indicated by an

12



INTRODUCTORY REMARKS. [PART i.

arrow: the
iMjiii potential curves are given by dotted lines.

We see how the fluid flows in towards the cross-point from

three directions, and flows out again in three other directions,

this being possible because the velocity of the streaming is zero

at the cross-point, or, as we may say, by analogy with known

occurrences, because the fluid is at a standstill, the expression

|-'

Further, it is useful to consider a cross-point of multiplicity

o as the limiting case of a simple cross-points. The analytical

treatment shows this to be permissible. For at an a-ple

cross-point the equation
- = has an a-ple root and this is

caused, as we know, by the coalescence of a simple roots. The

following figures sufficiently explain this view :

for the velocity being A/(^)"
+
(-)'

.

Fig. 2.
Fig. 3.

For simplicity, I have here drawn the stream -lines only.
On the left we have the same cross-point of multiplicity two as

in Fig. 1 ; on the right we have a streaming with two simple
cross-points close together. It is at once evident that the one

figure is produced by continuous changes from the other.

Throughout the foregoing discussion it has been tacitly
assumed that the region in question does not extend to infinity.
It is true that no fundamental difficulties present themselves
wli.-n \\-r lake the point z = oo into account exactly as we take
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any other point z = ZQ ;
instead of the expansion in ascending

powers of z ZQ) we obtain, by known methods, an expansion in

ascending powers of -
;
there is an a-ple cross-point at z x

z

when the term immediately following the constant term in this

/]\a+l
expansion is the term in (

-
J

. Bat we need dwell no further

on the geometrical relations corresponding to a streaming of

this kind, for the separate treatment of z oo
,
which here

presents itself, will be obviated once and for all by a method to

be explained shortly, and for this reason the point z oo will

be left out of consideration in the following sections ( 2 4),

although, if a complete treatment were desired, it ought to be

specially mentioned.

2. Consideration of the Infinities ofw=f (z).

We now further include in this region points z at which

w=f(z) becomes infinite. But, since we are about to consider

only a special class of functions, we restrict ourselves in this

direction by the following condition, viz.: the differential

coefficient ~ must have no essential singularities, or, in other

words, w is to be infinite only in the same manner as an expres-

sion of the followingform :

in which v is a determinate finite quantity.

Corresponding to the various forms which this expression

assumes, we say that at Z ZQ different discontinuities are

superposed; a logarithmic infinity, an algebraic infinity of order

one, etc. For simplicity we here consider each separately, but

it is also a useful exercise to form a clear idea of the result of

the superposition in individual examples.

In the first instance, let z = ZQ be a logarithmic infinity ;
we

then have :

* ) + ft + Ci
-

*o) + ^ (z
~

z)- + .......
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Here A is that quantity which when multiplied by 2iV is

called, in Cauchy's notation, the residue of the logarithmic

infinity, a term which will be occasionally employed in what

follows. In the investigation of a streaming in the vicinity of

the discontinuity it is of primary importance to know whether

A is real, imaginary, or complex. The third case can obviously

be regarded as a superposition of the first two and may
therefore be neglected. There are then only two distinct

possibilities to be considered.

(1) If A is real, let CQ
= a + ib. Then, to a first approxi-

mation, we have, writing w = u + iv, z z = re**,

u = A log r + a, v =
a</> + b.

Thus the curves u = const, are small circles round the infinity,

and the curves v = const, radiate from it in all directions

according to the variable values of
<f>.

The motion is such that

z = z is a source of a certain positive or negative strength. To
calculate this strength, multiply the element of arc of a small

circle described about the discontinuity with radius r, by the

proper velocity and integrate this expression round the circle.

v'
1

*

coincides to a first approximation with
^- , that is with

,
we

obtain for the strength the expression

P*A =
J r

The strength is therefore equal to the residue, divided by i ; it is

positive or negative with A.

(2) Let A be purely imaginary, equal to iA. Then, with
the same notation as before, we have to a first approximation,

u = - A0 + 6, v = A log r + b.

The parts played by the curves u = const., v - const, are thus

exactly interchanged ;
the equipotential curves now radiate

from z = z
, while the stream-lines are small circles round the

infinity. The fluid circulates in these curves round the
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point z = z
;

I call the point a vortex-point for this reason.

The sense and intensity of the circulation are measured by A.

Since the velocity

/fiuv
is, to a first approximation, equal to

^r ,
the circulation is

clockwise or counter-clockwise according as A is positive or

negative. We may call the intensity of the vortex-point 2 ATT,

it is then equal and opposite to the residue of the infinity in

question.

Further, bearing in rnind the definition in the last section

of a conjugate streaming and the ambiguity of sign attached

to it, we may say : If one of two conjugate streamings has a

source of a certain strength at 2 = ZQ ,
the other has, at the same

point, a vortex-point of equal, or equal and opposite, intensity.

Next, consider algebraic discontinuities. The general cha-

racter of the streaming is independent of the nature of

the coefficient of the first term of the power-series, be it

real, imaginary or complex. Let

Z ZQ

To a first approximation, writing

z ZQ = re**, A 1
=

w C = -
{cos (^ $) H- * sin (>|r <)).

Let us first consider the real part on the right. When r is

very small,
- cos (ty </>) may still, by proper choice of

(f>,
be

made to assume any given arbitrary value; the function u

therefore assumes every value in the immediate vicinity of the

discontinuity. For more exact determination, let us, for the

moment, consider r and
</>

as variables and write

- cos (\lr <f>)
= const.

;

r
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We obtain a pencil of circles, all touching the fixed line

and becoming smaller as the modulus of the constant increases.

Then, in the vicinity of the discontinuity, the curves u = const, are

of a similar description, and, in particular, for very large

positive or negative values of the constant they take the form of
NH i all, closed, simple ovals.

A similar discussion applies to the imaginary part on the

right and hence to the curves v = const., but the line touched

by all the curves in this case is
</>
=

^/r.
The following figure,

in which the equipotential curves are, as before, dotted lines

and the stream-lines heavy lines, will now be intelligible.

An analogous discussion gives the requisite graphic repre-
sentation of a j/-ple algebraic discontinuity. It is sufficient

merely to state the result : Every curve u = const, passes v times

through the discontinuity and touches v fixed tangents, intersect-

ing at equal angles. Similarly with the curves v = const. For

very great positive or negative values of the constant both systems

Fig. 5.
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ofcurves are closed in the immediate vicinity of the discontinuity.

For illustration the figure is given for v = 2.

These higher singularities, as may be surmised, can be

derived from those of lower order by proceeding to the limit.

I postpone this discussion, however, to the next section, since a

certain class of functions will then easily supply the necessary

examples.

3. Rational Functions and their Integrals. Infinities of

higher Order derivedfrom those of lower Order.

The foregoing sections have enabled us to picture to our-

selves the whole course of such functions as have no infinities

other than those we have just considered and are with these

exceptions uniform over the whole plane. These are, as we

know, the rational functions and their integrals. I briefly state,

without figures, the theorems respecting the cross-points and

infinities of these functions, and, for reasons already stated, I

confine myself to the cases in which z = co is not a critical

point. This limitation, as was before pointed out, will after-

wards disappear automatically.

(1) The rational function about to be considered presents
itself in the form

*<*)'
where

</>
and ty are integral functions of the same order which

may be assumed to have no common factor. If this order is n,

and if every algebraic infinity is counted as often as its

order requires, we obtain, corresponding to the roots of ty
=

0,

n algebraic discontinuities. The cross-points are given by

^(j>
f

ty'<t>
= 0, an equation of degree 2n 2. The sum of the

orders of the cross-points is then 2n 2, where, however, it must

be noticed that every z/-fold root of ^r
= is a (v l)-fold root

of
T/T'
=

0, and hence that every v-fold infinity of the function

counts as a (v l)-fold cross-point.

(2) If the integral of a rational function
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is to be finite at z = oo
,
the degree of <J> must be less by two

than that of ^. It is assumed that <J> and M^ have no

common factor. Then <I> = gives the free cross-points, i.e.

those which do not coincide with infinities. The roots of

=
give the infinities of the integral ; and, moreover, to

a simple root of = corresponds a logarithmic infinity, to a

double root an infinity which is, in general, due to the super-

position of a logarithmic discontinuity and a simple algebraic

discontinuity, etc. If then every infinity is counted as often as

the order of the corresponding factor in "V requires, the sum of
the orders of the cross-points is less by two than the sum of the

orders of the infinities. We must also draw attention to the

known theorem, that the sum of the logarithmic residues of all

the discontinuities is zero.

The foregoing gives two possible methods for the derivation

of discontinuities of higher order from those of lower order.

First and this is the more important method for our purpose
we may start from the integrals of rational functions. In

this case an algebraic discontinuity of order v makes its

appearance when v + 1 factors of become equal, that is, when

v + 1 logarithmic discontinuities coalesce in the proper manner.

It is clear that the sum of the residues of the latter must be

zero, if the resulting infinity is to be purely algebraic. The
two following figures, in which only the stream-lines are drawn,
show how to proceed to the limit in the case of the simple

algebraic discontinuity of Fig. 4.

. Fig. 7.

Two different processes are here indicated
;
in the left-hand

figure two sources are about to coalesce, while in the right-
hand figure these are replaced by vortex-points. Fig. 4 is the
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resulting limiting position after either process. The two

following figures bear the corresponding relation to Fig. 5.

\
Fig. 8. Fig. 9.

The second possible method is suggested by considering the

rational function ^ itself. Logarithmic discontinuities are

thereby excluded. The v-fold algebraic discontinuity now arises

from v simple algebraic discontinuities, for v simple linear

factors of ty in coalescing form a z>-fold factor. But at the same

time a number of cross-points coalesce and the sum of their

orders is vl. For typ <f>\jr'
= has, as was pointed out

before, a (v l)-fold factor at the same instant that a v-fold

factor appears in
-vjr.

The following figure explains the pro-

duction by this method of the two-fold algebraic discontinuity

of Fig. 5.

Fig. 10.

It is of course easy to include these two methods of pro-

ceeding to the limit in one common and more general method.

If v + fi + 1 logarithmic infinities and
/x. cross-points coalesce

successively or simultaneously, a infold algebraic discontinuity

will in every case make its appearance. But this is not the

place to enlarge on the idea thus suggested.
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4. Experimental Production of these Streamings.

We now give a different direction to our investigations

and consider how to bring about the physical production of

those states of motion which are associated, as we have just

seen, with rational functions and their integrals. Let it be

assumed that the principle of superposition may be freely used,

so that we need only consider the simplest cases. From the

theory of partial fractions it follows that each of the functions

in question can be compounded additively of single parts,

which fall under one of the two following types :

A

A\og(z-z ), -J_^Y
But since log (z z^ is discontinuous at z = oo

,
the first type is

unnecessarily specialised, and may be replaced by the more

general one

and this again, as in 2, may be divided into two parts viz.:

% & & ___ ^

writing A = A + iB, we discuss A log
- and iB logz zl z Z-L

separately. Hence there are in all three cases to be distin-

guished.

(1) Corresponding to the type A log
- a source of

z z^

strength 2ATT must be produced at z0t and one of strength 2ATT

at zlm To effect this, conceive the xy plane to be covered with an

infinitely thin, homogeneous conducting film. Then it is clear

that the required state of motion will be produced by placing
the two poles of a galvanic battery of proper strength at ZQ and

z*. The reason that the residue of ZQ must be equal and

opposite to that of zl is now at once evident : the streaming is

to be steady, hence the amount of electricity flowing in at one

point must be equal to that flowing out at the other. There is

obviously an analogous reason for the corresponding theorem

concerning any number of logarithmic infinities, but applying

Bee Kirchhoff'8 fundamental memoir: " Ueber den Durchgang eines

elektriachen Stroraes dutch eine Ebene," Pom/. Aim. t. LXIV. (1845).
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in the first place only to the purely imaginary parts of the

respective residues (these being associated with sources at the

infinities).

(2) In the second case, where iB log
- is given, the

z z

experimental construction is rather more difficult. The sim-

plest arrangement is to join to ^ by a simple arc of a curve

and make this the seat of a constant electromotive force.

A streaming is then set up in the xy plane with vortex-points

at ZQ ,
zlt but otherwise continuous, and from this, by integration,

we obtain as velocity-potential a function whose value is

increased by a certain modulus of periodicity for every circuit

round z^ or zlt We must carefully distinguish between this

velocity-potential and the necessarily one-valued electrostatic

potential. The curve joining z to zl is a curve of discontinuity

for the latter, and this very fact makes the electrostatic poten-

tial one-valued*.

I cannot say whether there are any experimental means of

producing this simplest arrangement. It would appear that

we must go to work in a more roundabout way. Let us first

think of thermo-electric currents. Let the xy plane be covered,

partly with material I, partly with material II, and let the

strength of the films be so arranged that the conductivity shall

be everywhere the same. If we now contrive that the two

parts of the contour separated by z and ^ may be kept at

constant and different temperatures, an electric streaming of

the kind required will be set up. And the electrostatic poten-

tial, by the principles of the theory of thermo-electricity,

exhibits discontinuities on both parts of the said contour. It

would apparently be still more complicated to use electric

currents piroduced by the ordinary galvanic elements. The

plane must then be divided by at least three curves drawn

from ZQ to zlf and two of these parts must be covered by a

* The statements in the text are intimately connected, as we know, with the

theory of "
Doppelbelegungen" for which cf. Helmholtz, Fogg. Ann. (1853)

t. LXXXIX. pp. 224 et seq. (
Ueber einige Gesetze der Vertneilung elektrischer Stri'me

in kfrperlichen Leitern), and C. Neumann's treatise Untersucnungen nber das

Logarithmisctte vnd Newtorfsche Potential (Leipzig, Teubner, 1877).
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metallic film, the other by a conducting liquid film. See

Fig. 1 I

Fig. 11.

Fig. 12.

In all these constructions it is clear, ab initio, that the

vortex-points at z and zl must have equal and opposite inten-

sities. For similar reasons the total intensity of all the vortex-

points must always be zero, and thus the theorem that the

sum of the logarithmic residues must vanish has been placed
on a physically evident basis as regards the real, as well as the

imaginary, parts of these residues.

(3) The states of motion associated with the algebraic

^
types r- can, by the results of 3, be derived from those

\z Zo)

just established, by proceeding to the limit. This is, of course,

only possible to a certain degree of approximation. For ex-

ample, let v + 1 wires, connected with the poles of a galvanic

battery, be placed close together on the xy plane. Then a

streaming is set up which at a little distance from the ends of

the wires sensibly resembles that associated with an algebraic

discontinuity of multiplicity v. At the same time an addi-

tional fact in connection with the above construction is brought
to light. The galvanic battery must be very strong if an

electric streaming of even medium strength is to be originated.

This corresponds to the well-known analytical theorem that

the residues of the logarithmic infinities must increase to an

infinite degree in order that the conjunction of logarithmic
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discontinuities may lead to an algebraic discontinuity. No
further details need be here given as it is only necessary for

what follows that the general principles should be grasped by
means of Figs. 6 9.

5. Transition to the Surface of a Sphere. Streamings on

arbitrary curved Surfaces.

To extend the treatment of finite values of z to infinitely

great values, the use of the surface of a sphere* derived from

the xy plane by stereographic projection is now adopted in all

text-books. The simple geometrical relations involved in this

representation are known*f% and we are also perfectly familiar

with the fact that the infinitely distant parts of the plane are

drawn together to one point of the sphere, the point from

which we project, so that it is no longer merely symbolical to

speak of the point 2 = oo on the sphere. It appears however

to be a matter of far less general knowledge that by means of

this representation the functions of x + iy acquire a significa-

tion on the sphere exactly analogous to that they had on the

plane, and hence, that in the foregoing sections the sphere may
be substituted everywhere for the plane and that thus, from the

outset, there is no question of exceptional conditions for the value

*
Following the example of C. Neumann, Vorlesungen uber Riemann's

Theorie der Abel'schen Integrate, Leipzig, 1865. The introduction of the sphere

is, so to speak, parallel to the substitution for z of the ratio -* of two variables,
Z2

whereby the treatment of infinitely great values of z is, as we know, formally

included in that of the finite values.

t If
, 77, f are rectangular coordinates, let the equation of the sphere be

P+ip + P+ tf-t)'
2^. Project from the point =0, 77=0, f=l, let the plane

of projection be the xy plane, and the opposite tangent-plane the ?; plane.

Then we have

t_ x
;~z2+ 2/

2+ l'
f
-

If ds is the element of arc on the plane, do- that corresponding to it on the

sphere, we have
ds'='

a formula of great importance hereafter, inasmuch as it indicates the conformal

character of the representation.
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z = x *. The propositions of the theory of surfaces from which

this statement follows are now briefly set forth in a form

sufficiently general to serve for certain future purposes.

In the study of fluid motions parallel to the xy plane we

have already had occasion to assume the film of fluid under

investigation to be infinitely thin. The general question of

fluid motion on any surface may obviously be similarly regarded.

An example is afforded by the displacements of fluid-mem-

branes, freely extended in space, over themselves, as may be

particularly well observed in Plateau's experiments.

We shall attempt to define such states of motion also by a

potential and we shall especially enquire what is the case in

steady motion.

The proper extension of our conception of a potential

presents itself at once. Let u be a function of position on the

surface and let the curves u = const, be drawn
;
moreover let

the direction of fluid-motion on the surface at every point be

perpendicular to the curve u = const, passing through that
^

point, and let the velocity be
t
where dn is the element of

arc drawn on the surface normal to the curve. Then u, as in

the plane, is called the velocity-potential.

This streaming, so defined, is now to be steady. To be

definite, let us make use on the surface of a system of curvi-

linear coordinates p, q, and let the expression for the element

of arc in this system be

(1 ) ds* = Edp + ZFdpdq + Odf.

Then by a few simple steps similar throughout to those usually

employed in the plane, we find that if u is to give rise to a

* In connection with this and with the following discussion compare
Beltrami,

" Delle variabili complesse sopra una superficie qualunque," Ann. di

Mat. er. 2, t. i., pp. 329 et seq. The particular remark that surface-potentials
remain such after a conformal transformation is to be found in the treatises

cited in the preface, by C. Neumann, Kirchhoff, and Topler, as well as e.g. in

Haton de la Ooupilliere, "Mdthodes de transformation en GSometrie et en

riiy*i.|in- Matln'imitu|in-." .fnnni. <L' /'/>. />///. t. xxv. 1867, pp. 169 et seq.



SECT. V.] INTRODUCTORY REMARKS. 17

steady streaming, it must satisfy the following differential

equation of the second order :

~ dq dp dp dq

*JEG - F2 ^/EG-F2

^^^^~^^^^^^^" ~T~ ^^^^^^^^~^"" = v/.

A short discussion in connection with this differential equa-
tion will now bring out the full analogy with the results for

the plane. From the form of (2) it follows that for every u

which satisfies (2) another function v can be found having the

known reciprocal relation to u. For, by (2), the following

equations hold simultaneously :

(3)

JEG-
and they define v, save as to a necessarily indeterminate con-

stant. But solving (3) we have

(4)

and hence,

(5)

dv r dv
Jb ~ (T^

dq dp dp

dv
5-
dq

= 0,

dp dq

so that, on the one hand, u bears to v the same relation as v to

u, and on the other hand v, as well as u, satisfies the partial

differential equation (2). At the same time the geometrical

meaning of equations (3) and (4) respectively shows that the

systems of curves u = const., v = const, are in general orthogonal.

K. 2
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As regards the statement at the beginning of this section

with respect to the stereographic projection of the sphere on the

plane, it follows at once from the fact that the equations (2) (5)

are homogeneous in E, F} G, and of zero dimensions*. If two

surfaces can be mapped conformally upon one another, and if

corresponding curvilinear coordinates are employed, the expres-

sion for the element of arc on the one surface differs from that

on the other only by a factor
;
but this factor simply disappears

from equations (2) (5) for the reason just assigned. We have

therefore a general theorem, including, as a special case, the

above statement relating to a sphere and a plane. Forming the

combination u + iv from u and v and calling this a complex

function of position on the surface, this theorem may be stated

as follows :

If one surface is conformally mapped upon another, every

complex function of position which exists on the first is changed
into a function of the same kind on the second.

It may perhaps be as well to obviate a misunderstanding
which might arise at this point. To the same function u + iv

there corresponds a motion of the fluid on the one surface and

on the other
;
it might be imagined that the one arose from the

other by the transformation. This is of course true as regards
the position of the equipotential curves and the stream-lines, but

it is in no wise true of the velocity. Where the element of arc

of one surface is greater than the element of arc of the other,

there the velocity is correspondingly smaller. This is precisely

the reason that the value z = oo loses its critical character on the

sphere. At infinity on the plane, the velocity of the streaming,
as we see at once, is infinitely small of the second order, and if

infinity is a singular point, still the velocity there is less by two

degrees than the velocity at a similar point in the finite part of

the plane. Now let us refer to the formula given in the foot-note

at the beginning of this section :

d<r
1*

* This statement can also be easily verified without the use of formulae
;

reference may be made to the works of C. Neumann and of Topler, already cited.
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giving the element of arc of the sphere in terms of the element

of arc of the plane. Here #2
4- y

2 + 1 is a quantity of precisely
the second order and is cancelled in the transition to the sphere.

6. Connection between the foregoing Theory and the Func-

tions of a complex Argument.

Since we have now obtained the sphere as basis of operations,

the theorems of 3, 4 respecting rational functions and their

integrals must be restated; we hereby gain in generality, the

previously established theorems holding for infinitely great
values of z and being thus valid with no exceptions. This

makes it the more interesting to trace the course of any

particular rational function on the sphere and to consider means

for its physical production*. But another important question

suggests itself during these investigations : the different func-

tions of position on the sphere are at the same time functions

of the argument x + iy\ whence this connection ?

* A good example of not too elementary a character is the Icosahedron

equation (cf. Math. Ann., t. xn. pp. 502 et seq.),

t = (
-

(z + 1) + 228 (z
- z6

)
- 494z10

)
3

1728z5
(z + llz5 -I)

5

which is of the 60th degree in z. The infinities of w are coincident by fives at

each of 12 points which form the vertices of an icosahedron inscribed in the

sphere on which we represent the values of z. Corresponding to the 20 faces of

this icosahedron, the sphere is divided into 20 equilateral spherical triangles.

The middle points of these triangles are given by w = and form cross-points of

multiplicity two for the function w. Hence of the 2 . 60-2 = 118 cross-points,

we already know (including the infinities) 4 . 12 + 2 . 20= 88.

Fig. 13.

The remaining 30 are given by the middle points of the 30 sides of those

20 spherical triangles. The annexed figure is a diagram of one of these 20

triangles with the stream-lines drawn in
;
the remaining 19 are similar.

22
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It must first be noticed that x + iy is itself a complex
function of position on the sphere, for the quantities x and y

satisfy the differential equations already established in 1 for u

and v
;
while working in the plane we may imagine that this

function has an essential advantage over all other functions, but

when the scene of operations is transferred to the sphere there

is no longer any inducement to think so. In fact we are at once

led to a generalisation of the remark which gave rise to this

enquiry. If u + iv and u^ + ivi are both functions of x -f iy,

M! + iv-L is also a function of u + iv ; hence for plane and sphere

we have the general theorem : Of two complex functions of

position, with the usual meaning of this expression in the theory

of functions, each is a function of the other.

But is this a peculiarity of these surfaces alone ? It is

certainly transferable to all such surfaces as can be conformally

mapped upon part of a plane or of a sphere ;
this follows from

the last theorem of the preceding section. But I maintain that

this peculiarity belongs to all surfaces, whereby it is implicitly

stated that a part of any arbitrary surface can be conformally

mapped upon the plane or the sphere.

The proof follows at once, if we take x, yy
the real and

imaginary parts of a complex function of position on a surface,

for curvilinear coordinates on that surface. For then the

coefficients E, F, G, in the expression for the element of arc,

must be such that equations (2) (5) of the preceding section

are identically satisfied when x and y are substituted for p and q
and also for u and v. This, as we see at a glance, imposes the

conditions F = Q, E = G. But then the equations are trans-

formed into the well-known ones,

9^ 3^__ 9w_6v 9w_ 9t>

da? fy
2
~"

'

dx~dy' ty~~fa
y "

and these are the equations by which functions of the argument
x + iy are defined

;
hence u + iv is a function of x + iy, as was

to be shown.

At the same time the statement respecting conformal
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representation is confirmed. For, from the form of the expres-
sion for the element of arc,

it follows at once that the surface can be conformally mapped
upon the xy plane by x + iy- This result may be expressed in

a somewhat more general form, thus :

If two complex functions of position on two surfaces are

known, and the surfaces are so mapped upon one another that

corresponding points give rise to the same values of the functions,

the surfaces are conformally mapped upon each other.

This is the converse of the theorem established at the end

of the last section.

These theorems have all, as far as regards arbitrary surfaces,

a definite meaning only when the attention is confined to small

portions of the surface, within which the complex functions of

position have neither infinities nor cross-points. I have therefore

spoken provisionally of parts of surfaces only. But it is natural

to enquire concerning the behaviour of these relations when the

whole of any closed surface is taken into consideration. This is

a question which is intimately connected with the line of

argument presently to be developed ;
19 21 are specially

devoted to it.

7. Streamings on the Sphere resumed. Riemanns general

Problem.

A point has now been reached from which it is possible to

start afresh and to take up the discussion contained in the

first sections of this introduction in an entirely different

manner
;
this leads us to a general and most important problem,

in fact to Kiemann's problem, the exact statement and solution

of which form the real subject-matter of the present pamphlet.

The most important position in the previous presentation

of the subject has been occupied by the function of x + iy ;
this

has been interpreted by a steady streaming on the sphere, and

characteristics of the function have been recognized in those of

the streaming. Rational functions in particular, and their
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integrals have led to one simple class of streamings one-valued

streamings in which one streaming only exists at every point
of the sphere. Moreover, subject to the condition that no

discontinuities other than those defined in 2 may present

themselves, these are the most general one-valued streamings

possible on a sphere.

Now it seems possible, ab initio, to reverse the whole order

of this discussion
;

to study the streamings in the first place and

thence to work out the theory of certain analytical functions.

The question as to the most general admissible streamings can

be answered by physical considerations
;

the experimental
constructions of 4 and the principle of superposition giving us,

in fact, means of defining each and every such streaming.

The individual streamings define, to a constant of integration

pres, a complex function of position whose variations can be

thereby followed throughout their whole range. Every such

function is an analytical function of every other. From the

connection between any two complex functions of position

forms of analytical dependence are found, considered initially

as to their characteristics and only afterwards identified to

complete the connection with the usual form of analytical

dependence.

This is all too clear to need a more minute explanation ;
let

us proceed at once to the proposed generalisation. And even

this, after the previous discussion, is almost self-evident. All

the problems just stated for the sphere may be stated in

exactly the same terms if instead of the sphere any arbitrary

closed surface is given. On this surface one-valued streamings
and hence complex functions of position can be defined and their

properties grasped by means of concrete demonstrations. The

simultaneous consideration of various functions of position thus

changes the results obtained into so many theorems of ordinary

analysis. The fulfilment of this design constitutes Riemanns

Theory ; the chief divisions into which the following exposition

falls have been mentioned incidentally.



PART II.

RIEMANN'S THEORY.

8. Classification of closed Surfaces according to the Value

of the Integer p*.

All closed surfaces which can be conformally represented

upon each other by means of a uniform correspondence, are, of

course, to be regarded as equivalent for our purposes. For

every complex function of position on the one surface will be

changed by this representation into a similar function on the

other surface
; hence, the analytical relation which is graphi-

cally expressed by the co-existence of two complex functions on

the one surface is entirely unaffected by the transition to the

other surface. For instance, the ellipsoid may be conformally

represented, by virtue of known investigations, on a sphere, in

such a way that each point of the former corresponds to one

and only one point of the latter; this shows us that the

ellipsoid is as suitable for the representation of rational func-

tions and their integrals as the sphere.

It is of still greater importance to find an element which is

unchanged, not only by a conformal transformation, but by

* The presentation of the subject in this section differs occasionally from

Eiemann's, since surfaces with boundaries are not at first taken into account,

and thus, instead of cross-cuts from one point on the boundary to another,

so-called loop-cuts are used (cf. C. Neumann, Vorlesungen uber Riemann's Theorie

der AbeVschen Integrate, pp. 291 et seq.).
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any uniform transformation of the surface*. Such an element

is Riemann's p, the number of loop-cuts which can be drawn

on a surface without resolving it into distinct pieces. The

simplest examples will suffice to impress this idea on our

minds. For the sphere, p = Q, since it is divided into two

disconnected regions by any closed curve drawn on its surface.

For the ordinary anchor-ring, p = 1
;
a cut can be made along

one, and only one, closed curve though this may have a very

arbitrary form without resolving the surface into distinct

portions.

That it is impossible to represent surfaces having different

p's upon one another, the correspondence being uniform, seems

evident f.

It is more difficult to prove the converse, that the equality

of the p's is a sufficient conditionfor the possibility of a uniform

correspondence between the two surfaces. For proof of this

important proposition I must here confine myself to references

in a foot-note
J.

In consequence of this, when investigating

closed surfaces, we are justified, so long as purely descriptive

general relations are involved, in adopting the simplest possible

type of surface for each p. We shall speak of these as normal

surfaces. For the determination of quantitative properties the

* Deformations by means of continuous functions only are considered here.

Moreover in the arbitrary surfaces of the text certain particular occurrences are

for the present excluded. It is best to imagine them without singular points ;

branch-points and hence the penetration of one sheet by another will be

considered later on ( 13). The surfaces must not be unifacial, i.e. it must not

be possible to pass continuously on the surface from one side to the other

(cf. however 23). It is also assumed as is usual when a surface is completely

given that it can be separated into simply-connected portions by a finite

number of cuts.

t It is not meant, however, that this kind of geometrical certainty needs no

further investigation; cf. the explanations of G. Cantor (Crelle, t. LXXXIV. pp. 242

et seq.). But these investigations are meanwhile excluded from consideration

in the text, since the principle there insisted upon is to base all reasoning

ultimately on intuitive relations.

See C. Jordan :
" Sur la deformation des surfaces," Liouville's Journal,

ser. 2, t. xi. (1866). A few points, which seemed to me to call for elucidation,

are discussed in MHt. Ann., t. vn. p. 549, and t. ix. p. 476.
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normal surfaces are of course insufficient, but even here they

provide a means of orientation.

Let the normal surface for p = be the sphere, for p = l,

the anchor-ring. For greater values of p we may imagine a

sphere with p appendages (handles) as in the following figure

Fig. 14.

There is, of course, a similar normal surface for p = 1
;
the

surfaces being, by hypothesis, not rigid, but capable of under-

going arbitrary distortions.

On these normal surfaces there must now be assigned

certain cross-cuts which will be needed in the sequel. For the

case p = these do not present themselves. For p = 1, i.e. on

the anchor-ring, they may be taken as a meridian A combined

with a curve of latitude B.

Fig. 15.

In general 2p cross-cuts will be needed. It will, I think,

be intelligible, with reference to the following figure, to speak
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of a meridian and a curve of latitude in connection with each

handle of a normal surface.

Fig. 16.

We choose the 2p cross-cuts such that there is a meridian and

a curve of latitude to each handle. These cross-cuts will be

denoted in order by A lt A 2 ,... Ap ,
and Blf B2) ... Bp .

9. Preliminary Determination of steady Streamings on

arbitrary Surfaces.

We have now before us the task of defining on arbitrary

(closed) surfaces, the most general, one-valued, steady stream-

ings, having velocity-potentials, and subject to the condition

that no infinities are admitted other than those named in 2 *.

For this purpose we turn to the normal surfaces of the last

section and once more employ the experimental methods of the

theory of electricity. We imagine the given surface to be

covered with an infinitely thin homogeneous film of a conduct-

ing material, and we then employ those appliances whose use

we learnt in 4. Thus we may place the two poles of a

galvanic battery at any two points of the surface
;
a streaming

is then produced having these two points as sources of equal

and opposite strength. Next we may join any two points on

the surface by one or more adjacent but non-intersecting curves

* These infinities were first defined for the plane (or the sphere) only. But

it is clear how to make the definition apply to arbitrary curved surfaces ;
the

generalisation must be made in such a manner that the original infinities are

restored when the surface and the steady streamings on it are mapped by a

conformal representation upon the plane. This limitation in the nature of the

infinities implies that only a finite number of them is possible in the streamings

in question, but it must suffice to state this as a fact here. Similarly, as I may
point out in passing, it follows from our premises that only a finite number of

cross-points can present themselves in the course of these streamings.
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and make these seats of constant electromotive force, bearing
in mind throughout the remarks made in 4 about the

necessary experimental processes for this case. A steady
motion is then obtained, in which the two points are vortex-

points of equal and opposite intensity. Further, we superpose
various forms of motion and finally, when necessary, allow

separate infinities to coalesce in the limit in order to produce
infinities of higher order. Everything proceeds exactly as on

the sphere and we have the following proposition in any case :

If the infinities are limited to those discussed in 2, and if
moreover the condition that the sum of all the logarithmic
residues must vanish is satisfied, then there exist on the surface

complex functions of position which become infinite at arbitrarily

assigned points and moreover in an arbitrarily specified manner

and are continuous elsewhere over the whole surface.

But for p > the possibilities are by no means exhausted

by these functions. For there can now be found an experi-

mental construction which was impossible on the sphere.

There are closed curves on these surfaces along which they

may be cut without being resolved into distinct pieces. There

is nothing to prevent the electricity flowing on the surface from

one side of such a curve to the other. We have then as much

justification for considering one or more of these consecutive

curves as seats of constant electromotive force as we had in the

case of the curves of 4 which were drawn from one end to the

other.

The streamings so obtained have no discontinuities; they

may be denoted as streamings which are finite everywhere and

the associated complex functions of position as functions finite

everywhere. These functions are necessarily infinitely multi-

form, for they acquire a real modulus of periodicity, propor-

tional to the assumed electromotive force, as often as the given

curve is crossed in the same direction *.

* But this is not to imply that any disposition has herewith been made of the

periodicity of the imaginary part of the function. For if u is given, v is

completely determined, to an additive constant pres, by the differential equations

(1) of p. 1, and hence the moduli of periodicity which v may possess at the

cross-cuts A it Bt cannot be arbitrarily assigned.
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We next enquire how many independent streamings there

may be, so defined as finite everywhere. Obviously any two

curves on the surface, seats of equal electromotive forces, are

equivalent for our purpose when by continuous deformation on

the surface one can be brought to coincidence with the other.

If after the process of deformation parts of the curve are

traversed twice in opposite directions, these may be simply

neglected. Consequently it is shown that every closed curve is

equivalent to an integral combination of the cross-cuts A{, Bi

defined as in the previous section.

Fig. 17. Fig. 18.

For let us trace the course of any closed curve on a normal

surface *
;

for p = 1 the correctness of the statement follows

immediately ;
we need but consider an example as given in the

above figures. The curve drawn on the anchor-ring in Fig. 17

can be brought to coincidence with that in Fig. 18 by deforma-

tion alone
;

it is thus equivalent to a triple description of the

meridian A (cf. Fig. 15) and a single description of the curve of

latitude B.

Further, let p > 1. Then whenever a curve passes through
one of the handles a portion can be cut off, consisting of

deformations of an integral combination of the meridians and

corresponding curves of latitude belonging to the handle in

question. When all such portions have been removed there

remains a closed curve, which can either be reduced at once to

* For another proof see C. Jordan, "Des contours tracds sur les surfaces,"

I.innrille's Journal, ser. 2, t. *! (1866).
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a single point on the surface and then has certainly no effect

on the electric streaming or it may completely surround one

or more of the handles as in Fig. 19. Fig. 20 shows how such

a curve can be altered by deformation
; by continuation of the

Fig. 19. Fig. 20.

process here indicated, it is changed into a curve consisting of

the inner rim of the handle and one of its meridians, but every

portion is traversed twice in opposite directions. Thus this

curve also contributes nothing to the streaming. This con-

clusion might indeed have been reached before, from the fact

that this curve, herein resembling a curve which reduces to a

point, resolves the surface into distinct portions.

Nothing more is therefore to be gained by the consideration

of arbitrary closed curves than by suitable use of the Zp curves

Ai, BI. The most general streaming we can produce which is

finite everywhere is obtained by making the %p cross-cuts seats

of a constant electromotive force. Or, otherwise expressed :

The most general function we have to construct, which is

finite everywhere, is the one whose real part has, at the 2p cross-

cuts, arbitrarily assigned moduli ofperiodicity.

10. The most general steady Streaming. Proof of the

Impossibility of other Streamings.

If we combine additively the different complex functions of

position constructed in the preceding section, we obtain a

function whose arbitrary character we can take in at a glance.

Without explicitly restating the conditions which we assumed

once and for all respecting the infinities, we may say that this
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function becomes infinite in arbitrarily specified ways at arbi-

trarily assigned points, the real part having moreover arbitrarily

assigned moduli ofpei'iodicity at the 2p cross-cuts.

I now say, that this is the most general function to which a

one-valued streaming on the surface corresponds. For proof we

may reduce this statement to a simpler one. If any complex
function of this kind is given on the surface, we have, by what

precedes, the means of constructing another function, which

becomes infinite in the same manner at the same points and

whose real part has at the cross-cuts Ai, BI the same moduli of

periodicity as the real part of the given function. The dif-

ference of these two functions is a new function, nowhere

infinite, whose real part has vanishing moduli of periodicity at

the cross-cuts this function, of course, again defines a one-

valued streaming. It is obvious we must prove that such a

function does not exist, or rather, that it reduces to a constant

The proof is not difficult. As regards the strict demonstra-

tion, I confine myself to the remark that it depends on the

most general statement of Green's Theorem *
;
the following is

intended to make the impossibility of the existence of such a

function immediately obvious. Even if, on account of its in-

definite form, the argument may possibly not be regarded as a

rigorous proof (, it would still seem profitable to examine, by
this method as well, the principles on which that theorem is

based.

Firstly, then, in the particular case p = 0, let us enquire

why a one-valued streaming, finite everywhere, cannot exist on

the sphere. This is most easily shown by tracing the stream-

lines. Since no infinities are to arise, a stream-line cannot

have an abrupt termination, as would be the case at a source

or at an algebraic discontinuity. Moreover it must be remem-

bered that the flow along adjacent stream-lines is necessarily
in the same direction. It is thus seen that only two kinds of

* For this proposition see Beltrami, I.e., p. 354.

t I may remind the reader that Green's theorem itself may be proved

intuitively; cf. Tait, "On Green's and other allied Theorems," Edin. Trans.

1869-70, pp. 69 et eq.
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non-terminating stream -lines are possible ;
either the curve

winds closer and closer round an asymptotic point but this

gives rise to an infinity or the curve is closed. But if one

stream-line is closed, so is the next. They thus surround a

smaller and smaller part of the surface of the sphere; conse-

quently we are unavoidably led to a vortex-point, i.e. once more

to an infinity, and a streaming finite everywhere is an impossi-

bility. It is true that we have here not taken into account

the possibilities involved when cross-points present themselves.

But since these points are always finite in number, as was

pointed out above, there can be but a finite number of stream-

lines through them. Let the sphere be divided by these

curves into regions, and in each individual region apply the

foregoing argument, then the same result will be obtained.

Next, ifp > 0, let us again make use of the normal surfaces

of 8. By what we have just said, the existence on these

surfaces of one-valued streamings which are finite everywhere,

is due to the presence of the handles. A stream-line cannot be

represented on a normal surface, any more than on a sphere,

by a closed curve which can be reduced to a point. But

further, a curve of the form shown in Fig. 19 is not admissible.

For with this curve there would be associated others of the

form shown in Fig. 20, so that ultimately a curve would be

obtained with its parts described twice in opposite directions.

A stream-line must therefore necessarily wind round one or

other of the handles, that is, it may simply pass once through a

handle or it may wind round it several times along the meri-

dians and curves of latitude. In all cases then a portion of a

stream-line can be separated from the remainder, equivalent in

the sense of the last section to an integral combination of the

appropriate meridians and curves of latitude. Now the value

of u, the real part of the complex function defined by the

streaming, increases constantly along a stream-line. Further,

the description of two curves, equivalent in the sense of the

last section, necessarily produces the same increment in u.

There exists then a combination of at least one meridian and

one curve of latitude the description of which yields a non-

vanishing increment of u. This is also necessarily true for the
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meridian or the curve of latitude alone. But the increment

which u receives by the description of the meridian corresponds

to the crossing of the curve of latitude and vice versa. Hence

at one meridian or curve of latitude, at least, u has a non-

vanishing modulus of periodicity, and a one-valued streaming,
finite everywhere, having all its moduli of periodicity equal to

zero, is impossible. Q.E.D.

11. Illustration of the Streamings by means of Examples.

It would appear advisable to gain, by means of examples, a

clear view of the general course of the streamings thus defined,

in order that our propositions may not be mere abstract state-

ments, but may be connected with concrete illustrations*. This

is comparatively easy in the given cases so long as we confine

ourselves to qualitative relations; exact quantitative determina-

tions would of course require entirely different appliances.

For simplicity I confine myself to surfaces with a plane of

symmetry coinciding with the plane of the drawing, and on

these I consider only those streamings for which the apparent

boundary of the surface (i.e. the curve of section of the surface

by the plane of the paper) is either a stream-line or an equi-

potential curve. There is a considerable advantage in this, for

the stream-lines need only be drawn for the upper side of

Fig. 21.

* Such a means of orientation, it may be presumed, in also of considerable

value for the practical physicist.
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the surface, since on the under side they are identically

repeated*.

Let us begin with streamings, finite everywhere, on the

anchor-ring p = 1
;

let a curve of latitude (or several such

curves) be the seat of electromotive force. Then Fig. 21 is

obtained in which all the stream-lines are meridians and no

cross-points present themselves
;
the meridians are there shown

as portions of radii
;

the arrows give the direction of the

streaming on the upper side, on the lower side the direction is

exactly reversed.

In the conjugate streaming, the curves of latitude play the

part of the meridians in the first example ;
this is shown in the

following drawing :

Fig. 22.

The direction of motion in this case is the same on the upper
and lower sides.

Let us now deform the anchor-ring, p = l, by causing two

excrescences to the right of the figure, roughly speaking, to

grow from it, which gradually bend towards each other and

finally coalesce. We then have a surface p = % and on it

*
Drawings similar to these were given in my memoir " Ueber den Verlauf

der Abel'schen Integrale bei den Curven vierten Grades," Math. Ann. t. x.,

though indeed a somewhat different meaning is attached there to the Eiemann's

surfaces, so that in connection with them the term fluid-motion can only be

used in a transferred sense ; cf. the remarks in 18.

K. 3
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a pair of conjugate streamings as illustrated by Figures 23

and 24.

Here, as we may see, two cross-points have presented them-

selves on the right (of which of course only one is on the upper

Fig. 23. Fig. 24.

side and therefore visible). An analogous result is obtained

when we study streamings which are finite everywhere on a

surface for which p > 1. In place of further explanations I give
two more figures with four cross-points in each, relating to the

case p = 3.

Fig. 25.
Fig. 26.

These arise, if on all
" handles

"
of the surface the curves of

latitude or the meridians respectively are seats of electromotive

force. On the two lower handles the directions are the same,
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and opposed to that on the upper handle. Of the cross-points,

two are at a and b, the third at c, and the fourth at the corre-

sponding point on the under side. It is difficult to see the

cross-points at a and b (Fig. 25) merely because foreshortening

due to perspective takes place at the boundary of the figure,

and hence both stream-lines which meet at the cross-point

appear to touch the edge. If the streamings on the under side

of the surface (along which the flow is in the opposite direction)

are taken into account, any obscurity of the figure at this point

will disappear.

Let us now return to the anchor-ring, p=\ t
and let two

logarithmic discontinuities be given on it. The appropriate

figures are obtained if Figs. 23, 24 are subjected to a process of

deformation, which may also be applied, with interesting as well

as profitable results, to more general cases. We draw together

the parts to the left of each figure and stretch out the parts

to the right, so that we obtain, in the first place, the following

figures :

Fig. 27. Fig. 28.

and then we reduce the handle on the left, which has already

become very narrow, until it is merely a curve, when we reject

it altogether. Hence, from the streaming, finite everywhere, on

the surface p = 2, we have obtained on the surface p = l a

streaming with two logarithmic discontinuities. The figures are

now of this form,

32
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TtV

Fig. 29. Fig. 30.

The two cross-points of Figs. 23, 24 remain, m and n are the two

logarithmic discontinuities; and these moreover, in Fig. 29, are

vortex-points of equal and opposite intensity, and. in Fig. 30,

sources of equal and opposite strength. Here, again, it results

from our method of projection that in the second case all the

stream-lines except one seem to touch the boundary at m and n.

If we finally allow m and n to coalesce, giving rise to a

simple algebraic discontinuity, we obtain the following figures,

in which, as may be perceived, the cross-points retain their

original positions.

Fig. 31. Fig. 32.

There is no occasion to multiply these figures, as it is easy to

construct other examples on the same models. But one more

point must be mentioned. The number of cross-points obviously

increases with the p of the surface and with the number of

infinities; algebraic infinities of multiplicity r may be counted
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as r -f 1 logarithmic infinities; then, on the sphere, with p loga-

rithmic infinities, the number of proper cross-points is, in general,

IJL
2. Moreover unit increase in p is accompanied, in accord-

ance with our examples, by an increase of two in the number of

cross-points. Hence it may be surmised that the number of cross-

points is, in every case, p + 2p 2. A strict proof of this

theorem, based on the preceding methods, would present no

especial difficulty* ;
but it would lead us too far afield. The

only particular case of the theorem of which use will be

subsequently made, is known to hold by the usual proofs

of analysis situs; it deals ( 14) with streamings presenting
m simple algebraic discontinuities, giving rise therefore to

2m + 2p 2 cross-points.

12. On the Composition of the most general Function of
Position from single Sammands.

The results of 10 enable us to obtain a more concrete

illustration of the most general complex function of position

existing on a surface by adding together single summands of the

simplest types.

Let us first consider functions finite everywhere. Let

ult u^...u^ be potentials, finite everywhere. These may be

called linearly dependent if they satisfy a relation

o^i -f- a<tii.2 + . . . a^Ufi
= A

with constant coefficients. Such a relation leads to corresponding

equations for the 2p series of
yu,

moduli of periodicity possessed

by ul} u2 ,
... ^v at the 2p cross-cuts of the surface. Conversely,

by the theorem of 10, such equations for the moduli of

periodicity would of themselves give rise to a linear relation in

the us. It. then follows that 2p linearly independent potentials

finite everywhere, ul} u2 ,...u.2p ,
can be found in an indefinite

number of ways, butfrom these evert] other potential, finite every-

where, can be linearly constructed :

U = tt^ + ...... G-Ma + A.

*
It would seem above all necessary for such a proof to be perfectly clear

about the various possibilities connected with the deformation of a given surface

into the normal surface, cf. 8.
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For MJ, M2 ,
... Uyp can e.g. be so chosen that each has a

non-vanishing modulus of periodicity at one only of the 2p
cross-cuts (where, of course, to each cross-cut, one, and only

one, potential is assigned). And in Sa^ the constants al can

be so chosen that this expression has at each cross-cut the same

modulus of periodicity as u. Then u So^ is a constant and

we have the formula just given.

Passing now from the potentials u to the functions u + iv,

finite everywhere, suppose, for simplicity, that coordinates x, y,

employed on the surface ( 6), are such that u and v are con-

nected by the equations

du _ dv du _ dv

dx dy' dy
~

dx'

Now let u^ be an arbitrary potential, finite everywhere. Con-

struct the corresponding vx ;
then i^ and vl are linearly inde-

pendent. For if between uv and v1 there were an equation

C^M! +^ = const.

with constant coefficients, this would entail the following

equations :

whence, by means of the given relations, the following contra-

dictory result would be obtained :

^ = 0, ^ = 0.
dx dy

Further, let u2 be linearly independent of u^, v^ Then we

may take the corresponding v2 and obtain the more general

theorem: The four functions ul} u2) vly v2 ,
are likewise linearly

independent. For from any linear relation

Ojt^ + a^, + bM + 62v2
= const.,

by means of the relations among the u's and the v's, we should

obtain the following equations :

6A) - (oA - oA) + (o, + 6,
1

)
= 0,

(0,0, + 6,6,)
-

(0,6,
-

aj>,)
' + (a, + bf)

= 0,
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from which by integration a linear relation among u^, v l} v2

would follow.

Proceeding thus we obtain finally 2p linearly independent

potentials,
u lt Vi\ u.2 ,v.2 ; Up, vp ,

where each v is associated with the u having the same suffix.

Writing ua + iva = wa and calling the functions wlt w2 ,
... w^

which are finite everywhere, linearly independent if no relation

CiWi + C2W2 + GH.WH C

exists among them, where Cj, ... c^, G are arbitrary complex

constants, we have at once : The p functions w^.. wp finite every-

where, are linearly independent. For if there were a linear

relation we could separate the real and imaginary parts and

thus obtain linear relations among the us and vs.

But, further, it follows that every arbitrary function, finite

everywhere, can be made up from wl} w2 ,
wp in the following

form :

U) = CiWi + C.2W2 + ... CpWp + C.

For by proper choice of the complex constants ca ,
c2 ,

... cp ,
since

u1} ...up ,
vl} ...vp are linearly independent, we can assign to the

real part of the function w defined by this formula, arbitrary

moduli of periodicity at the 2p cross-cuts.

This is the theorem we were to prove in the present section,

in so far as it relates to the construction of functions finite

everywhere. The transition to functions with infinities is now

easily effected.

Let , 2 , Zi*.
be the points at which the function is to

become infinite in any specified manner. Introduce an auxiliary

point rj and construct a series of single functions

each of which becomes infinite, and that in the specified

manner, at one only of the points f, and in addition has, at rj,
a

logarithmic discontinuity whose residue is equal and opposite

to the logarithmic residue of the in question. The sum
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is then continuous at 77, for the sum of all the residues of the

discontinuities f is known to be zero. Moreover, this sum

only becomes infinite at the f's, and there in the specified

manner. It therefore differs from the required function only

by a function which is finite everywhere. The requiredfunction

may thus be written in theform

FI +FS + ...F
IIL
+ clwl + c2ws + ... cpwp + c,

whereby the theorem in question has been established for the

general case.

This result obviously corresponds to the dismemberment of

complex functions on a sphere considered in 4, and there

deduced in the usual way from the reduction of rational

functions to partial fractions.

13. On the Multiformity of the Functions. Special Treat-

ment of uniform Functions.

The functions u -f iv, under investigation on the surfaces

in question, are in general infinitely multiform, for on the one

hand a modulus of periodicity is associated with every loga-

rithmic infinity, and on the other hand we have the moduli of

periodicity at the 2p cross-cuts A{, Bi, whose real parts may be

arbitrarily chosen. I assert that in no other manner can u -f iv

become multiform. To prove this we must go back to the

conception of the equivalence of two curves on a given surface

which was brought forward in 9, primarily for other purposes.
Since the differential coefficients of u and v (or, what is the

same thing, the components of the velocity of the corresponding

streaming) are one-valued at every point of the surface, two

equivalent closed curves not separated by a logarithmic discon-

tinuity yield the same increment in u, and also in v. But we
found that every closed curve was equivalent to an integral
combination of the cross-cuts A{, B^ We further remarked

( 10) that the description of AI produced the same modulus of

periodicity as the crossing of Bit and vice versa. And from this

the above theorem follows by known methods.

It will now be of special interest to consider uniform
functions of position ;

from the foregoing all such functions
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can be obtained by admitting only purely algebraical infinities

and by causing all the 2p moduli of periodicity at the cross-cuts

Ai, Bi to vanish. To simplify the discussion, simple algebraic

discontinuities alone need be considered. For we know from

3 that the y-fold algebraic discontinuity can be derived from

the coalescence of v simple ones, in which case, it should be

borne in mind, cross-points are absorbed whose total multi-

plicity is v 1. Let in points then be given as the simple

algebraic infinities of the required function. We first construct

any m functions of position Z1} ... Zm each of which has a simple

algebraic infinity at one only of the given points but is other-

wise arbitrarily multiform. From these Z*s the most general

complex function of position with simple algebraic infinities at

the given points can be compounded by the last section in the

form

o^Zi + a2 2̂ + . . . amZm + CM + . . . + cpwp + C,

where a^ am are arbitrary constant coefficients. To make
this function uniform the modulus of periodicity for each of

the 2p cross-cuts must be equated to zero
;
but these moduli of

periodicity are linearly compounded, by means of the a's and

c's, of the moduli of periodicity of the z's and w's; there are

thus 2p linear homogeneous equations for the m+p constants a

and c. Assume that these equations are linearly independent*,
this important proposition follows :

Subject to this condition, uniform functions of position with

m arbitrarily assigned simple algebraic discontinuities exist

only if m ^ p + 1 ; and these functions contain mp+l arbi-

trary constants which enter linearly.

Now let the m infinities be moveable, then m new degrees

*
If they are not so, the consequence will be that the number of uniform

functions which are infinite at the m given points will be greater than that given

in the text. The investigations of this possibility, especially Roch's (Crelle,

t. LXIV.), are well known ; cf. also for the algebraical formulation, Brill and

Nother: " Ueber die algebraischen Functionen und ihre Verwendung in der

Geometric," Math. Ann. t. vu. I cannot pursue these investigations in the text,

although they are easily connected with Abel's Theorem as given by Riemann
in No. 14 of the Abelian Functions, and will merely point out with reference

to later developments in the text (cf. 19) that the 2p equations are certainly

not linearly independent if m surpasses the limit 2p- 2.
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of freedom are introduced. Moreover it is clear that m
arbitrary points on the surface can be changed by continuous

displacement into m others equally arbitrary. It may therefore

be stated bearing in mind, however, under what conditions

that the totality of uniform functions with m simple algebraic

discontinuities existing on a given surface forms a continuum of

2m p + 1 dimensions.

Having now proved the existence and ascertained the

degrees of freedom of the uniform functions, we will, as simply
and directly as possible, enunciate and prove another important

property that they possess. The number of their infinities m
is of far greater import than has yet appeared, for I now state

that the function u + iv assumes any arbitrarily assigned value

UQ + iv at precisely m points.

To prove this, follow the course of the curves u = u ,v v

on the surface. It is clear from 2 that each of these curves

passes once through every one of the m infinities. On the

other hand it follows by the reasoning of 10 that every
circuit of each of these curves must have at least one infinity

on it. Hence the statement is at once proved for very great

values of MO ,
v

;
for it was shewn in 2 that the corresponding

curves u = u
,

v = v assume in the vicinity of each infinity

the form of small circles through these points, which necessarily

intersect in one point other than the discontinuity (which last

is hereafter to be left out of account).

Fig. 33.

But from this the theorem follows universally, since, by
continuous variation of u ,

v
,
an intersection of the curves u = u

,

V = VQ can never be lost; for, from the foregoing, this could only
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occur if several points of intersection were to coalesce, sepa-

rating afterwards in diminished numbers. Now the systems of

curves u, v are orthogonal ;
real points of intersection can then

only coalesce at cross-points (at which points coalescence does

actually take place) ;
but these cross-points are finite in number

and therefore cannot divide the surface into different regions.

Thus the possibility of a coalescence need not be considered

and the statement is proved.

It is valuable in what follows to have a clear conception of

the distribution of the values of u + iv near a cross-point. A
careful study of Fig. 1 will suffice for this purpose. For instance,

it will be observed that of the m moveable points of inter-

section of the curves u = u
,
v = v

,
v 4- 1 coalesce at the z/-fold

cross-point.

Considerations similar to those here applied to uniform

functions apply also to multiform functions
;
I do not enlarge

on them, simply because the limitations of the subject-matter

render them unnecessary ;
moreover it is only in the very

simplest case that a comprehensible result can be obtained.

Suffice it to refer in passing to the fact that a complex function

with more than two incommensurable moduli of periodicity can

be made to approach infinitely near every arbitrary value at

every point.

14. The ordinary Riemann's Surfaces over the x + iy

Plane.

Instead of considering the distribution of the values of the

function u + iv over the original surface, the process may, so to

speak, be reversed. We may represent the values of the

function which for this reason is now denoted by a? -f iy in

the usual way on the plane (or on the sphere)* and we may

study the conformal representation of the original surface

which (by 5) is thus obtained. For simplicity, we again

confine our attention to uniform functions, although the con-

* I speak throughout the following discussion of the plane rather than of the

sphere in order to adhere as far as possible to the usual point of view.



44 RIEMANN'S THEORY. [PART n.

sideration of conformal representation by means of multiform

functions is of particular interest*.

A moment's thought shows that we are thus led to the

very surface, many-sheeted, connected by branch-points, extending

over the xy plane, which is commonly known as a Riemanns

surface.

For let m be the number of simple infinities of x + iy on

the original surface
;
then x -f iy, as we have seen, takes every

value m times on the given surface. Hence tJie conformal

representation of the original surface on the x + iy plane covers

that plane, in general, with m sheets. The only exceptional

positions are taken by those values of x + iy for which some of

the m associated points on the original surface coalesce,

positions therefore which correspond to cross-points. To be

perfectly clear let us once more make use of Fig. 1. It follows

from this figure that the vicinity of a y-fold cross-point can be

divided into v -f 1 sectors in such a way that x + iy assumes

the same system of values in each sector. Hence, above the

corresponding point of the x + iy plane, v + 1 sheets of the

conformal representation are connected in such a way that in

describing a circuit round the point the variable passes from one

sheet to the next, from this to a third and so on, a (v 4- l)-fold

circuit being required to bring it back to the starting-point. But

this is exactly what is usually called a branch-point^. The

representation at this point is of course not conformal
;

it is

easily shown that the angle between any two curves which

meet at the cross-point on the original surface is multiplied by

precisely v + 1 on the Riemann's surface over the x + iy plane.

But at tlie same time we recognize the importance of this

many-sheeted surface for the present purpose. All surfaces

*
Cf. Riemann's remarks on representation by means of functions which are

finite everywhere, in No. 12 of his Abelian Functions.

t In 11 the number of cross-points of x + iy was stated without proof to be

2m + 2p
- 2. We now see that this statement was a simple inversion of the

known relation among the number of branch-points (or rather their total

multiplicity), the number of sheets m, and the p of a many-sheeted surface (where

p is the maximum number of loop-cuts which can be drawn on this many-sheeted
surface without resolving it into distinct portions).
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which can be derived from one another by a conformal repre-

sentation with a uniform correspondence of points are equivalent

for our purposes ( 8). We may therefore adopt the m-sheeted

surface over the plane as the basis of our operations instead of

the surface hitherto employed, which was supposed without

singularities, anywhere in space. And the difficulty which

might be feared owing to the introduction of branch-points is

avoided from the first
;
for we consider on the m-sheeted surface

only those streamings whose behaviour near a branch-point

is such that when they are traced on the original surface

by a reversal of the process, the only singularities produced
are those included in the foregoing discussion. To this end

it is not even necessary to know of a corresponding surface

in space ;
for we are only concerned with ratios in the

immediate vicinity of the branch-points, i.e. with differential

relations to be satisfied by the streamings*. And there

is no longer any reason, in speaking of arbitrarily curved

surfaces, for postulating them as free from singularities ; they

may even consist of several sheets connected by branch-points

and along branch-lines. But whichever of the unlimited number

of equivalent surfaces may be selected as basis, we must

distinguish between essential properties common to all equi-

valent surfaces, and non-essential associated with particular

individuals. To the former belongs the integer p; and the

"moduli," which are discussed more fully in 18, also belong

to them; to the latter belong the kind and position of the

branch-points of many-sheeted surfaces. If we take an ideal

surface possessing only the essential properties, then the

branch-points of a many-sheeted surface correspond on this

simply to ordinary points which, generally speaking, are not

distinguished from the other points and which are only notice-

able from the fact that, in the conformal representation leading

from the ideal to the particular surface, they give rise to

cross-points.

* For the explicit statement of these relations cf. the usual text-books, also

in particular C. Neumann : Das Dirichlet'sche Princip in seiner Anwendung auf
die Riemann'schen Flachen. Leipzig, 1865.
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We have then as a final result that a greater freedom of
choice has been obtained among the surfaces on which it is

possible to operate and the accidental properties involved by the

consideration of any particular surface can be at once recognized.

Consequently, many-sheeted surfaces over the x + iy plane are

henceforward employed whenever convenient, but this in no

measure detracts from the generality of the results *.

15. The Anchor-ring, p = 1, and the two-sheeted Surface
over the Plane with four Branch-points.

It was possible in the preceding section to make our ex-

planation comparatively brief as a knowledge of the ordinary
Riemann's surface over the plane with its branch-points could

be assumed. But it may nevertheless be useful to illustrate

these results by means of an example. Consider an anchor-

ring, p = l', on it there exist, by 13, oo 4 uniform functions

with two infinities only ;
each of these, by the general formula

of 11, has four cross-points. The anchor-ring can therefore be

mapped in an indefinite number of ways upon a two-sheeted

plane surface with four branch-points. With a view to those

readers who are not very familiar with purely intuitive

operations, I give explicit formulae for the special case

of this representation which I am about to consider, even

though, in so doing, I partly anticipate the work of the next

section.

Imagine the anchor-ring as an ordinary tore generated by
the rotation of a circle about a non-intersecting axis in its

plane. Let p be the radius of this circle, R the distance of the

centre from the axis, a the polar-angle.

* The interesting question here arises whether it is always possible to trans-

form many-sheeted surfaces, with arbitrary branch-points, by a conformal process

into surfaces with no singular points. This question transcends the limits of

the subject under discussion in the text, but nevertheless I wish to bring it

forward. Even if this transformation is impossible in individual cases, still the

preceding discussion in the text is of importance, in that it led to general ideas

by means of the simplest examples and thus rendered the treatment of more

complicated occurrences possible.
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Take the axis of rotation for axis of Z, the point in the

figure as origin for a system of rectangular co- Z

ordinates, and distinguish the planes through

OZ by means of the angle < which they

make with the positive direction of the axis

of X. Then, for any point on the anchor-

ring, we have,

(1) X -
(R - p cos a) cos

</>,

Y (R p cos a) sin
</>,

Z p sin a.

Hence the element of arc is

(2) ds = *JdX 2 + dY* + dZ* = ^(R-pcos a)*d<j>* + p*da.
2
,

or, (3) ds = (R p cos a) Vcf
2 + drj-,

where f, tj are written for
</>,

/
^

Fig. 34.

By (3) we have a conformal representation of the surface

of the anchor-ring on the & plane. The whole surface is

obviously covered once when
</>
and a (in (1)) each range from

TT to + TT. The conformal representation of the surface of the

anchor-ring therefore covers a rectangle of the plane, as in the

following figure.
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To make the relation between the rectangle and the anchor-

ring intuitively clear, imagine the former made of some material

which is capable of being stretched and let the opposite edges
of the rectangle be brought together without twisting. Or

the anchor-ring may be made of a similar material, and after

cutting along a curve of latitude and a meridian it can be

stretched out over the 77 plane. Instead of further explanation

I subjoin in a figure the projection of the anchor-ring from the

positive end of the axis of Z upon the xy plane, and in this

figure I have marked the relation to the %r) plane.

IT

Fig. 36.

The upper surface of the anchor-ring is, of course, alone

visible, the quadrants 3 and 4 on the under side are covered by
2 and 1 respectively.

Again, let a two-sheeted surface with four branch-points

z = 1,
- be given, where K is real and < 1, and

-1

Kip. 37.

+ i
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imagine the two positive half-sheets of the plane to be shaded

as in the figure. Let the branch-lines coincide with the straight

lines between + 1 and -
, and between 1 and respectively.K fC

This two-sheeted surface is known to represent the branching

of w = Vl 22
. 1 K2

z* and by proper choice of branch-lines we
can arrange that the real part of w shall be positive through-
out the upper sheet. Now consider the integral

F-f*.
/ W

This also, as is well-known, gives a representation of the

two-sheeted surface upon a rectangle, the relation between the

two being given in detail in the following figure, where the

shading and other divisions of Fig. 37 are reproduced. To the

upper sheet of Fig. 37 corresponds the left side of this figure.

The representation near the branch-points of the two-sheeted

surface should be specially noticed.

It would perhaps be simplest to proceed first from Fig. 37

by stereogr.aphic projection to a doubly-covered sphere with

four branch-points on a meridian then to cut this surface

along the meridian into four hemispheres, which by proper

bending and stretching in the vicinity of the branch -points
are then to be changed into plane rectangles and lastly to

place these four rectangles, in accordance with the relation

among the four hemispheres, side by side as in Fig. 38. More-

over it is thus made evident that in Fig. 38 to one and the

K, 4
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same point on the original surface correspond exactly two

(associated) points on the edge. And now to arrive at the

required relation between the anchor-ring and the two-sheeted

surface we have only to ensure by proper choice of K that the

rectangle of Fig. 38 shall be similar to that of Fig. 35. A
proportional magnification of the one rectangle (which again is

effected by a conformal deformation) will then make it exactly

cover the other and the result is a uniform conformal represen-

tation of the two-sheeted surface upon the anchor-ring or

vice versa. Here again it is sufficient to give a figure corre-

sponding exactly to Fig. 36. The shading in this figure is

Fig. 39.

confined to the upper part of the anchor-ring ;
on the remain-

der, the lower half should be shaded while the upper half is

blank.

The required conformal representation has thus been actually

effected. Now, conversely, we will determine on the surface of

the anchor-ring the streamings by means of which (according

to 14) the representation is brought about. There are cross-

points at 1, + -, and algebraic infinities of unit multiplicity
/c

at the two points at oo . The equipotential curves and the

stream-lines are most easily found by using the rectangle as an

intermediate figure. The curves x = const., y = const, of the

2-plane, Fig. 37, obviously correspond on the rectangle of

Fig. 38 to those shown in Fig. 40 and Fig. 41. The arrows are
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confined to the curves y = const, to distinguish them as stream-

lines.

CL>'

Fig. 40. Fig. 41.

We have now only to treat these figures in the manner

described for Fig. 35 and we obtain an anchor-ring and the

required system of curves on its surface. The result is the

following.

Fig. 42. Fig. 43.

In Fig. 42, by reason of the method of projection, the four

cross-points of the streaming appear as points of contact of the

equipotential curves with the apparent rim of the anchor-ring.

16. Functions of x + iy which correspond to the Streamings

already investigated.

Let x + iy, as in 14, be a uniform complex function of

position on the surface, with ra simple algebraic infinities
;
let

us transform the surface by the methods there given into an

42
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7H-sheeted surface over the x + iy plane* and let us then ask

into what functions of the argument x + iy the complex functions

of position we have hitherto investigated have been changed ?

The results of 6 should here be borne in mind.

First, let w be a complex function of position which, like

x + iy, is uniform on the surface. From the assumptions

respecting the infinities of the functions, and particularly those

of uniform functions, it follows at once that w, as a function of

x + iy, has no essential singularity. Again, w, on the ?/i-sheeted

surface as on the original surface, is uniform. Hence it follows

by known propositions that w is an algebraic function of z.

We have here not excluded the possibility of the m values

of w which correspond to the same z coinciding everywhere v at

a time (where v must of course be a divisor of m). But it

must be possible to choose functions w such that this may not

be the case. We have already ( 13) determined uniform

functions with arbitrarily assigned infinities
; thus, to avoid the

above contingency, we need only choose the infinities of w in

such a way that no v of them lead to the same z. Then we

have:

The irreducible equation between w and z

is of the mth degree in w.

Similarly, it will be of the nth degree in z, if n is the sum
of the orders of the infinities of w.

But the connection between the equation /=0 and the

surface is still closer than is shown by the mere agreement of

the degree with the number of the sheets. To every point of

the surface there belongs only one pair of values w, z, which

satisfy the equation; and conversely, to every such pair of

values there belongs, in general (, only one point of the surface.

This geometrical transformation is of course not essential; it merely

preserves the connection with the usual presentations of the subject.

t In special cases this may not be so. If we regard w, z, as coordinates and

interpret the equation between them by a curve, the double-points of this curve,

as we know, correspond to these exceptional cases.
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Equation and surface are, so to speak, connected by a uniform
relation.

Now let wl be another uniform function on the surface
;

it

is therefore certainly an algebraic function of z. Then, when

once the equation f(w, z)
= Q has been formed, with the above

assumption, the character of this algebraic function can be

expressed in half a dozen words. For it can be shown that wl is

a rational function of w and z, and, conversely, that every

rational function of w and z is a function with the character-

istics of W-L. This last is self-evident. For a rational function

of w and z is uniform on the surface
; moreover, as an analy-

tical function of z, it is a complex function of position on the

surface. The first part is easily proved. Let the ra values of

w belonging to a special value of z be w (l)
, w, ...... w (m)

(in

general, w (a}
) and the corresponding values of wl (which are

not all necessarily distinct) w^, w^, ...... w^. Then the sum,

(where v is an arbitrary integer, positive or negative), being a

symmetric function of the various values Wi (tt)w (a)
*, is a uniform

function of z, and therefore, being an algebraic function, is a

rational function of z. From any ra of such equations

being linearly involved, can be found, and it can easily be

shown that each w^ is, as it should be, a rational function of

the corresponding w (a) and of z.

With the help of this proposition we can at once determine

the character of those functions of z which arise from the

multiform functions of position of which we have been treating.

Let W be such a function. Then W must certainly be an

analytical function of z\ we may therefore speak of a diffe-

rential coefficient -r ,
and this again is a complex function

of position on the surface. Qua function of position it is

necessarily uniform
;

for the multiformity of W is confined

to constant moduli of periodicity, any multiples of which may

be additively associated with the initial value. Hence -j is,
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by what has just been proved, a rational function of w and z,

and W is therefore the integral of such a function, viz. :

W=fR(w,z)dz.

The converse proposition, that every such integral gives

rise to a complex function of position on the surface belonging
to the class of functions hitherto discussed, is self-evident on

the grounds of a known argument which considers, on the one

hand, the infinities of the integrals, on the other, the changes
in the values of the integrals caused by alterations in the path
of integration. It is not necessary to discuss this here at

greater length.

We have now arrived at a well-defined result. Having
once determined the algebraical equation which defines the rela-

tion between z and w, where w is highly arbitrary, all other

functions of position are given in kind ; they are co-extensive in

their totality with the rational functions of w and z and the

integrals of such functions.

A convenient example is the repeatedly considered case of

the anchor-ring, p = l, with, for z and w, the functions discussed

in the last section, the function z being the one illustrated by
Figs. 42, 43. The equation between these being simply

the integrals fR (w, z) dz are those generally known as elliptic

integrals. Among them, by 12, there is one single integral,
"
finite everywhere." From the representation given in Fig. 38

it follows that this is no other than
|

there considered, the

so-called integral of the first kind. The equipotential curves

and stream-lines are shown in Figs. 21, 22. But the functions

corresponding to Figs. 29, 30 and to Figs. 30, 31 are also

familiar in ordinary analysis. In one case we have a function

with two logarithmic discontinuities, in the other case one
with one algebraic discontinuity. Regarded as functions of z

these are the elliptic integrals usually called integrals of the

third kind, and integrals of the second kind respectively.
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17. Scope and Significance of the previous Investigations.

The last section has actually accomplished the solution of

the general problem indicated in 7. The most general of

the complex functions of position here treated of have been

determined on an arbitrary surface, and the analytical relations

among these have been defined by observation of the fact that

all are dependent, in the sense of ordinary analysis, on a single,

uniform, but otherwise arbitrarily chosen function of position.

To complete the discussion, therefore, a synoptic review of the

subject alone is wanting, to ascertain the total result of the

investigation. We have obtained, though not the whole content,

yet at least the principles of Riemann's theory, and for further

deductions Riemann's original work as well as other presenta-

tions of the theory may be referred to.

First, to establish that these investigations do actually

comprehend the totality of algebraic functions and their integrals.

For if any algebraical equation f(w,z) = Q is given, we can

construct, as usual, the proper many-sheeted surface over the

-plane, and on this we can then study the one-valued stream-

ings and complex functions of position (cf. 15).

We then enquire, is the knowledge of these functions

really furthered by these investigations ? In this connection

we must remember that it was chiefly the multiplicity of value

of the integrals which for so long hindered any advance in their

theory. That integrals acquire a multiplicity of value when

logarithmic discontinuities make their appearance had been

already observed by Cauchy. But it was only through
Riemann's surfaces that the other kind of periodicity was

clearly brought to light, that, namely, which has its origin in

the connectivity of the surface, and is measured along the

cross-cuts of that surface. Another point is this : transfor-

mation by substitutions had long been employed in the

examination of integrals, but without much more result than

their mere empirical evaluation. In Riemann's theory an

extensive class of substitutions presents itself automatically,
and is to be critically examined in operation. The variables

w, z
} are merely any two independent, uniform functions of
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position ; any other two, wlt z^ can be equally well assumed as

fundamental, whereby wlt z prove to be any rational, but

otherwise arbitrary functions of w, z, and these in their turn to

be rational functions of wlt zv The Riemann's surface is not

necessarily affected by this change. Hence among the numerous

accidental properties of the functions, we distinguish certain

essential ones which are unaltered by uniform transformations.

And in the number p especially such an invariantive element

presents itself from the outset. Thus Riemann's theory,

avoiding these two difficulties which had hampered former

investigations, proceeds at once to determine in what way the

functions in question are arbitrary. This was accomplished in

10 by the proposition : the infinities of the functions (with the

restrictions we have assumed throughout) and the moduli of

periodicity of its real part at the cross-cuts, are arbitrary and

sufficient datafor the determination of the function.

This fairly represents the advantage gained by this treat-

ment if, with most mathematicians, we place the interests of

the theory of functions foremost. But it must be borne in

mind that the opposite point of view is as fundamentally

justifiable. The knowledge of one-valued streamings on given
surfaces may with good reason be regarded as an end in itself,

since in numerous physical problems it leads directly to a

solution. Among the infinite possible varieties of these

streamings Riemann's theory is a valuable guide for it indicates

the connection between the streamings and the algebraic

functions of analysis.

Finally, we may bring forward the geometrical side of the

subject and consider Riemann's theory as a means of making
the theory of the conformal representation of one closed

surface upon another accessible to analytical treatment. The
third part of this pamphlet is devoted to this view of the

subject ;
it is unnecessary to dwell on it at present at greater

length.

18. Extension of the Theory.

In Riemann's own train of thought, as I have here attempted
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to show, the Riemann's surface not only provides an intuitive

illustration of the functions in question, but it actually defines

them. It seems possible to separate these two parts, to take

the definition of the function from elsewhere and to retain the

surface only as a means of intuitive illustration. This is, in

fact, what has been done by most mathematicians, the more

readily that Riemann's definition of a function involves consider-

able difficulties* when subjected to more exact scrutiny. They
therefore usually begin with the algebraical equation and the

definition of the integral and then construct the appropriate
Riemann's surface.

But this method produces ipso facto a considerable general-

isation of the original conception. Hitherto, two surfaces were

only held to be equivalent when one could be derived from the

other by a conformal representation with a uniform correspon-

dence of points. Now there is no longer any reason for

retaining the conformal character of the representation. Every

surface which by a continuous uniform transformation can be

changed into the given surface, in fact any geometrical configura-

tion whose elements can be projected upon the original surface

by a continuous uniform projection, serves equally well to give a

graphic representation of the functions in question. I have, in

former papers, followed out this idea in two different ways, to

which I should like to refer.

On one occasion I used the conception of a normal surface

(cf. 8) which, although representative, was open to various

modifications, and on this I attempted to illustrate the course

of the functions in question by various graphical meansf. The
nets of polygons which I have repeatedly used j fall also under

this head
;
these I constructed by means of an appropriate dis-

section of the Riemann's surface afterwards spread out over the

plane. It need not here be discussed whether these figures,

*
Cf. the remarks on this subject in the Preface.

t Cf. my papers on Elliptic Modular-functions in Math. Ann., t. xiv., xv.,

XVII.

t Cf. especially the diagrams in Math. Ann., t. xiv. ("Zur Transformation
siebenter Ordnung der elliptischen Functionen"), and Dyck's paper, to be cited

presently, ib., t. xvn.
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which in the first place are susceptible of continuous deforma-

tion, may not hereafter, for the sake of further investigations in

the theory of functions, be restricted by a law of form whereby
it may be possible to define the functions graphically represented

by each figure.

On another occasion* I undertook to bring out as intuitively

as possible the connection between the conceptions of the

theory of functions and those of ordinary analytical geometry,

in which last an equation in two variables means a curve.

Starting from the proposition that every imaginary straight

line on the plane, and therefore also every imaginary tangent
to a curve, has one and only one real point, I obtained a

Riemann's surface depending essentially on the course of the

curve at every point. These surfaces I have hitherto employed,

following my original purpose, only to illustrate intuitively the

behaviour of certain simple integrals^. But a remark similar

to that on the nets of polygons may here be made. In so far

as the surface is subjected to a law of form, it must be possible

to use it as a definition of the functions which exist on it. And
it is actually possible to form a partial differential equation for

these functions somewhat analogous to the differential equation
of the second order considered in 1 and 5

; except that the

differential expression on which this equation depends cannot

be directly interpreted by the element of arc.

These few remarks must suffice to indicate developments
which appear to me worthy of consideration.

* "Ueber eine neue Art Kiemann'scher Flachen," Math. Ann. t. vn., x.

t See Harnack (" Ueber die Verwerthung der elliptischen Functionen fur die

Geometric der Curven dritten Grades"), Math. Ann., t. ix.
; and my paper referred

to above, "Ueber den Verlauf der Abel'schen Integrale bei den Curven vierten

Grades," Math. Ann., t. x.
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CONCLUSIONS.

19. On the Moduli of Algebraical Equations.

In one important point, Biemann's theory of algebraic

functions surpasses in results as well as in methods the usual

presentations of this theory. It tells us that, given graphically

a many-sheeted surface over the z plane, it is possible to construct

associated algebraic functions, where it must be observed that

these functions if they exist at all are of a highly arbitrary

character, R (w, z) having in general the same branchings as

w. This theorem is the more remarkable, in that it implies a

statement about an interesting equation of higher order. For

if the branch-points of an m-sheeted surface are given, there is

a finite number of essentially different possible ways of arrang-

ing these among the sheets; this number can be found by
considerations belonging entirely to pure analysis situs*. But,

by the above proposition this number has its algebraical

meaning. Let us with Biemann speak of all algebraic functions

of z as belonging to the same class when by means of z they can

be rationally expressed in terms of one another. Then ike

number in question^ is the number of different classes of

* This number has been determined by Herr Kasten, for instance, in his

Inaugural Dissertation: Zur TJieorie der dreibldttrigen Eiemann'schen Fldche.

Bremen, 1876.

t If I may be allowed to refer once more to my own writings, let me do so

with respect to a passage in Math. Ann. t. xn. (p. 173), which establishes the

result that certain rational functions are fully determined by the number of

their branchings, and again to ib., t. xv., p. 533, where a detailed discussion

shows that there are ten rational functions of the eleventh degree with certain

branch-points.
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algebraic functions which, with respect to z, have the given

branch-values.

In the present and following sections various consequences

are drawn from this preliminary proposition and among these

we may consider in the first place the question of the moduli

of the algebraic functions, i.e. of those constants which play the

part of the invariants in a uniform transformation of the

equation f(w, z)
= 0.

For this purpose let p be a number initially unknown,

expressing the number of degrees of freedom in any one-one

transformation of a surface into itself, i.e. in a conformal

representation of the surface upon itself. Then let us recall

the number of available constants in uniform functions on given

surfaces ( 13). We found that there were in general oo 9mr-p+ 1

uniform functions with m infinities and that this, as we stated

without proof, is the exact number when m > 2p 2. Now
each of these functions maps the given surface by a uniform

transformation upon an m-sheeted surface over the plane.

Hence the totality of the m-sheeted surfaces upon which a given

surface can be conformally mapped by a uniform transformation,

and therefore also the number of m-sheeted surfaces with which

an equation f(w, z)
= Q can be associated, is oo *m-p+*-p

;
for oo f

representations give the same m-sheeted surface, by hypothesis.

But there are in all oo w m-sheeted surfaces, where w is the

number of branch-points, i.e. 2m + 2p 2. For, as we observed

above, the surface is given by the branch-points to within a

finite number of degrees of freedom, and branch-points of

higher multiplicity arise from coalescence of simple branch-

points as we have already explained in connection with the

corresponding cross-points in 1 (cf. Figs. 2, 3). With each of

these surfaces there are, as we know, algebraic functions

associated. The number of moduli is therefore

w - (2m + l-p-p) = 3p-3 + p.

It should be noticed here that the totality of m-sheeted

surfaces with w branch-points form a continuum* , corresponding
* This follows e.g. from the theorems of Liiroth and of Clebsch, Math.

.Inn., t. iv.
f
v.
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to the same fact, pointed out in 13 with respect to uniform

functions with m infinities on a given surface. Hence we

conclude that all algebraical equations with a given p form a

single continuous manifoldness, in which all equations derivable

from one another by a uniform transformation constitute an

individual element. Thus, for the first time, a precise meaning
attaches itself to the number of the moduli

;
it determines the

dimensions of this continuous manifoldness.

The number p has still to be determined and this is done

by means of the following propositions.

1. Every equation for which p = can by means of a one-

one relation be transformed into itself oo 3 times. For on the

corresponding Riemann's surface uniform functions with one

infinity only are triply infinite in number ( 13), and in order

that the transformation of the surface into itself may be uni-

form, it is sufficient to make any two of these correspond to each

other. Or the proof may be more fully given as follows. If

one function is called z, all the rest are (by 16) algebraic and

uniform, i.e. rational functions of z
t
and since the relation must

be reciprocal, linear functions of z. Conversely every linear

function of z is a uniform function of position on the surface

having one infinity only. Hence the most general uniform

transformation of the equation into itself is obtained by trans-

forming every point of the Riemann's surface by means of the

formula

a : ft : 7 : S being arbitrary.

2. Every equation for which p = 1 can be transformed
into itself in a singly infinite number of ways. For proof
consider the integral W finite over the whole surface, and in

particular the representation upon the W-plane of the Riemann's

surface when properly dissected. This has already been done

in a particular case ( 15, Fig. 38) and a minute investigation
of the general case is hardly necessary as the considerations

involved are usually fully worked out in the theory of elliptic

functions. The result is that to every value of W belongs one
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and only one point of the Riemann's surface, while the infinitely

many values of W corresponding to the same point of the

Riemann's surface can be constructed from one of these values

in the form W + ra^ + ra26>2 ,
where ra^ m.2 are any integers and

cr)j ,
G>2 are the periods of the integral. For a uniform deforma-

tion a point W^ must be associated with each point W in such

a way that every increase of W by a period gives rise to a

similar increase of W^ and vice versa. This is certainly

possible, but in general only by writing T^ = + W + C ;
in

special cases (when the ratio of the periods possesses certain
G>2

r

properties belonging to the theory of numbers) T^ may also

= +1^4. (7 or pW+C(p being a third root of unity)*.

However that may be we have in each case in the formulae of

transformation only one arbitrary constant and hence corre-

sponding to its different values we have a singly infinite

number of transformations, as stated above.

3. Equations for which p > 1 cannot be changed into

themselves in an infinite number of ways-^. For the analytical

proof of this statement I refer to Schwarz (Crelle, t. LXXXVU.)

and to Hettner (Gott. Nachr., 1880, p. 386). By intuitive

methods the correctness of the statement may be shown as

follows. If there were an infinite number of uniform transfor-

mations of the equation into itself, it would be possible to

displace the Riemann's surface continuously over itself in such

a way that every smallest part should remain similar to itself.

The curves of displacement must plainly cover the surface

completely and at the same time simply; there can be no

cross-point in this system, for such a point would have to be

regarded as a stationary point in order to avoid multiformity in

the transformation and the rate of displacement would there

* This result, which is well known from the theory of elliptic functions,

is stated in the text without proof.

t This theorem refers to a continuous group of transformations, those with

arbitrarily variable parameters. It is not discussed in the text whether, under

certain circumstances, a surface for which p>l may not be transformed into

itself by an infinite number of discrete transformations; though when p is

finite in value this also seems to be impossible.
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necessarily be zero. But then an infinitesimal element of

surface approaching the cross-point in the course of the dis-

placement would necessarily be compressed in the direction of

motion and perpendicular to that direction it would be stretched
;

it could therefore not remain similar to itself, contrary to the

conception of conformal representation. But on the other

hand all systems of curves covering a surface for which p > 1

completely and simply must have cross-points ;
this is the

proposition proved in somewhat less general form in 11. The
continuous displacement of the surface over itself is thus

impossible, as was to be proved.

By these propositions, p 3 for p = 0, p = 1 for p = 1, and

for all greater values of p, p = 0. The number of moduli is

therefore, for p = zero, for p = 1 one, and for p > I

3p
- 3.

It may be worth while to add the following remarks. To
determine a point in a space of 3p 3 dimensions we do not

generally confine ourselves to 3p 3 coordinates
;
more are

employed connected by algebraical, or transcendental relations.

But moreover it is occasionally convenient to introduce para-

meters, of which different series denote the same point of the

manifoldness. The relations which then hold among the 3p - 3

moduli necessarily existing for p > 1 have been but little

investigated. On the other hand the theory of elliptic functions

has given us an exact knowledge of the subject for the case

p = l. I mention the results for this case in order to be able

to express myself precisely and yet briefly in what follows.

Above all let me point out that for p = 1 the algebraical
element (to use the expression employed above) is actually

distinguished by one and only one quantity: the absolute

a 3

invariant J =
^-*.

Whenever, in what follows, it is said that

in order to transform two equations for which p = 1 into each

other it is not only sufficient but also necessary that the

moduli should be equal, the invariant J is always meant.

*
Cf. Math. Ann., t. xiv., pp. 112 et seq.
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In its place, as we know, it is usual to put Legendre's /r, which,

given J, is six-valued, so that by its use a certain clumsiness in

the formulation of general propositions is inevitable. And it is

even worse if the ratio of the periods of the elliptic integral
ft>2

of the first kind is taken for the modulus, though this is

convenient in other ways ;
for an infinite number of values of

the modulus then denote the same algebraical element.

20. Conformed Representation of closed Surfaces upon
themselves.

In accordance with our original plan we now develop the

geometrical side of the subject, in order to obtain at least the

foundations of the theory of conformal representation of surfaces

upon each other*, so following up the indications which, as we
have already remarked in the Preface, were given by Riemaim

at the close of his Dissertation. For the cases
jt>
=

0, p = l, I

shall for the most part, to avoid diffuseness, confine myself to

mere statements of results or indications of proofs. And first,

in treating of the conformal representations of a closed surface

upon itself, a distinction which has been hitherto ignored must

be introduced : the representation may be accomplished without

or with reversal of angles. We have an example of the first

case when a sphere is made to coincide with itself by rotation

about its centre
;
of the second case when it is reflected across

a diametral plane with the same result. The analytical treat-

ment hitherto employed corresponds to representations of the

first kind only. If u + iv and u^ + iv-^ are two complex functions

of position on the same surface, u = ult v = v-^ gives the most

general representation of the first kind (cf. 6). But it is

easy to see how to extend the formula in order to include

* The theorems to be established in the text are, for the most part, not

explicitly given in the literature of the subject. For the surfaces for which

p=0, compare Schwarz's memoir (Berl Monatsber., 1870), already cited.

And, further, a paper by Schottky: Ueber die conforme Abbildiuuj mchrfach
zutammenhanyender FWchen, which appeared in 1875 as a Berlin Inaugural
Dissertation and was reprinted in a modified form in Crelle, t. LXXXIII. It

treats of those plane surfaces of connectivity p which have p + 1 boundaries.
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representations of the second kind as well. We have simply
to write u = u^, v = vl in order to obtain a representation of the

second kind.

Let us first take from the theorems of the last section those

parts which refer to representations of the first kind
;
in the

most geometrical language possible we have then the following

theorems:

It is always possible to transform into themselves in an

infinite number of ways by a representation of the first kind

surfaces for which p = 0, p = 1, but never surfacesfor whichp > 1.

For the surfaces for which p = Q the only representation of
the first kind is determined if three arbitrary points of the sur-

face are associated with three other arbitrary points of the same.

If p = 1
,

to any arbitrary point of the surface a second

point may be arbitrarily assigned, and there is then in general

a two-fold possibility of determination of the representation of
the first kind, though in special cases there may be a four-fold or

six-fold possibility.

These propositions of course do not exclude the possibility

that special surfaces for which p > 1 may be transformed into

themselves by discontinuous transformations of the first kind.

If this occurs it constitutes an invariantive property for any
conformal deformation of the surface and by its existence and

modality specially interesting classes of surfaces may be dis-

tinguished from the remainder*. This point of view, however,

need not be discussed more fully here.

With respect to the transformations of the second kind

we may first say that every such transformation, combined with

one of the first kind, produces a new transformation of the

second kind. Now by the above theorems we have complete

knowledge of the transformations of the first kind for surfaces

for which p = 0, p = 1
;
in these cases therefore it suffices to

*
Algebraical equations with a group of uniform transformations into them-

selves correspond to these surfaces. The observations in the text thus refer to

investigations such as those lately undertaken by Herr Dyck (of. Math. Ann.,
t. xvii.,

"
Aufstellung und Untersuchung von Gruppe und Irrationalitat regularer

Riemann'scher Flachen ").

K. 5
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enquire whether one transformation of the second kind exists.

For the surfaces for which p = this is at once answered in the

affirmative. For it is sufficient to take any one of the uniform

functions of position with only one infinity, x -f iy, and then

to write x1 x,yl
=

y. For the surfaces for which p = l the

case is different. We find that in general no transformation of
the second kind exists. The easiest way to prove this is to

consider the values which the integral W, finite over the

whole surface, assumes on the anchor-ring, p = 1. Let the points
W = mlo)l + m.2w.2 be marked on the W plane, m1} m.2 being as

before arbitrary positive or negative integers. It is then easily

shown that a transformation of the second kind can change the

surface for which p = 1 into itself only if this system of points
has an axis of symmetry. This case occurs when the invariant

J, defined above, is real
; according as J is < 1 or > 1, these

points in the W plane are corners of a rhomboidal or rect-

angular system.

Now let p > 1. If one transformation of the second kind

exists for this surface, there will in general be no other of the

same kind*. For otherwise the repetition or combination of

these transformations would produce a transformation of the

first kind distinct from the identical transformation. The
transformation must then necessarily be symmetrical, i.e. it

must connect the points of the surface in pairs. The surface

itself will for this reason be called symmetrical. Moreover

under this name I shall in future include all those surfaces

for which there exists a transformation of the second kind

leading, when repeated, to identity. To this class belong

evidently all surfaces for which p = 0, and such surfaces for

which p = 1 as have real invariants.

21. Special Treatment of symmetrical Surfaces.

Among the symmetrical surfaces now to be considered,

divisions at once present themselves according to the number

* There are, of course, surfaces capable of a certain number of trans-

formations of the first kind, together with an equal number of transformations

of the second kind; these correspond to the regular symmetrical surfaces of

Dyck'fl work.
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and kind of the "curves of transition" on the surfaces; i.e. of

those curves whose points remain unchanged during the sym-
metrical transformation in question.

The number of these curves can in no case exceed p + l.

For if a surface is cut along all its curves of transition with

the exception of one, it will still remain an undivided whole, the

symmetrical halves hanging together along the one remaining
curve of transition. Thus if there were more than p + 1 of

these, more than p loop-cuts in the surface could be effected

without resolving it into distinct portions, thus contradicting
the definition of p.

On the other hand there may be any number of curves of
transition below this limit. It will be sufficient here to discuss

the cases p = 0, p = 1
;
for the higher p's examples will present

themselves naturally.

(1) When a sphere is made to coincide with itself by
reflection in a diametral plane, the great circle by which the

diametral plane cuts it, is the one curve of transition. An
example of the other kind is obtained by making every point
of the sphere correspond to the point at the opposite end of

its diameter. Both examples can be easily generalised; the

analysis is as follows. If one curve of transition exists, there

are uniform functions of position with only one infinity, which

assume real values at all points of the curve of transition. If

one of these functions is x + iy the transformation, already

given as an example above, is xl
=

x, yl
=

y. For the second

case, a function x + iy can be so chosen that oo and 0, and

+ 1 and 1, are corresponding points. Then

-1
a?i w\ =

x + iy

is the analytical formula for the corresponding transformation.

(2) In the case p = 1, the invariant J must in the first

place, as we know, be assumed to be real. First, let it be > 1.

Then the integral W, which is finite over the whole surface,

can be reduced to a normal form by the introduction of an

appropriate constant factor in such a manner that one period
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becomes real = a and the other purely imaginary = ib. If we

then write

U,= U, F1= F, in W=U + iV,

we obtain a symmetrical transformation of the surface for

which p = 1, with the two curves of transition,

F=0, F=|,

but if we write U, = U+, Fx
= - F,

which again is a symmetrical transformation of the original

surface, we have the case in which there is no curve of

transition. The case with only one curve of transition occurs

when J< 1. W can then be so chosen that its two periods are

conjugately complex. We write, as before,

Vi=U, V, = -V,
and obtain a symmetrical transformation with the one curve of

transition, F= 0.

Besides this first division of symmetrical surfaces according
to the number of the curves of transition there is yet a second.

The cases of no curves of transition and of p + 1 curves of

transition are to be excluded for one moment. Then a two-

fold possibility presents itself: Dissection of the surfaces along

all the curves of transition may or may not resolve it into

distinct portions. Let TT be the number of curves of transition.

It is easily shown that p TT must be uneven if the surface

is resolved into distinct portions; that there is no further

limitation may be shown by examples. We shall therefore

distinguish between symmetrical surfaces of one kind or of the

other and count the surfaces with p + 1 curves of transition

among the first kind those that are resolved into distinct

portions and the surfaces with no curves of transition among
the second kind.

These propositions have a certain analogy with the results

obtained in analytical geometry by investigating the forms of

curves with a given p*. And in fact we see that this analogy

*
Cf. Harnack,

" Ueber die Vieltheiligkeit der ebenen algebraischen Curven,"
Math. Ann., t. x., pp. 189 et seq.; cf. also pp. 415, 416, ib. where I have given
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is justified. Analytical geometry is (primarily) concerned only
with equations, f(w, z)

= 0, with real coefficients. Let us first

observe that every such equation determines a symmetrical
Riemann's surface over the ^-plane, inasmuch as the equation,

and therefore the surface, remains unchanged if w and z are

simultaneously replaced by their conjugate values, and that the

curves of transition on this surface correspond to the real series

of values of w, z, which satisfy y=0, i.e. to the various circuits

of the curve/ = 0, in the sense of analytical geometry.

But the converse is also easily obtained. Let a symmetrical

surface, and on it any arbitrary complex function of position,

u + iv, be given. The symmetrical deformation causes a reversal

of angles on the surface. If then to every point of the surface

values ult vly are ascribed equal to those u, v, given by the

symmetrical point, u-i iv will be a new complex function of

position. Now construct

so obtaining an expression which in general does not vanish

identically; to ensure this, it is sufficient to assume that the

infinities of u + iv are unsymmetrically placed. We have then

a complex function of position with equal real parts, but equal

and opposite imaginary parts at symmetrically placed points.

Of such functions, U+iV, let any two, W, Z, be taken, these

being moreover uniform functions of position. The algebraical

equation existing between these two has then the characteristic

of remaining unaltered if W, Z are simultaneously replaced

by their conjugate values. It is therefore an equation with real

coefficients and the required proof has been obtained.

I supplement this discussion with a few remarks on the real

uniform transformations of real equations / (w, z) into

themselves, or, what amounts to the same thing, on conformal

representations, of the first kind, of symmetrical surfaces upon

themselves, in which symmetrical points pass over into other

symmetrical points. Such transformations, by the general

the two divisions of those curves. It is perhaps as well in these investigations

to start from the symmetrical surfaces and Riemann's Theory as presented in

the text.



70 CONCLUSIONS. [PART in.

proposition of 19, can occur in infinite number only for

p = 0, p = 1
;
we therefore confine ourselves to these cases.

Let us first take p = 1. Then we see at once that among the

transformations already established, we need now only consider

the one

W, = W+C,
where C is a real constant. Similarly when p = 0, for the first

case. The relations #1 = #, 3/1
= y remain unaltered if

x + iy
= z and a^ + iy-^

= zl

are simultaneously transformed by the substitution

where the ratios a. : ft : 7 : B are real. When p = 0, for the

second case, the matter is rather more complicated. Similar

transformations with three real parameters are again possible ;

but these assume the following form, z being the same as above,

, (a + ib) z + (c + id)

-(c-id)z + (a-ib)'

where a : b : c : d are the three real parameters. This result

is implicitly contained in the investigations referring to the

analytical representation of the rotations of the x-\-iy sphere

about its centre*.

22. Conformal Representation of different closed Surfaces

upon each other.

If we now wish to map different closed surfaces upon each

other, the foregoing investigation of the conformal representa-

tion of closed surfaces upon themselves will give us the means

of determining how often such a representation can occur, if it

is once possible. Surfaces which can be conformally represented

upon each other certainly possess (as has been already pointed

out) transformations into themselves, consistent with these.

Thus all representations of the one surface upon the other are

obtained by combining one arbitrary representation with all

those which change one of the given surfaces into itself. To
this I need not return.

*
Cf. Cayley,"On the correspondence between homographies and rotations,"

Math. Ann., t. xv., pp. 238240.
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Let us first consider general, i.e. non-symmetrical surfaces.

Then the enumerations of the moduli of algebraical equations

given in 19 are at once applicable.

We have first : Surfacesfor whichp = can always be confor-

mally represented upon each other, and we find besides that

surfaces for which p 1 have one modulus, surfaces for which

p>l, 3p 3 moduli, unaltered by conformal representation.

Every such modulus is in general a complex constant. Since in

the case of symmetrical surfaces real parameters alone must be

considered, we shall suppose the modulus to be separated into

its real and imaginary parts. Then we have : If two surfaces

for which p > can be represented upon each other there must

exist equations among the real constants of the surface, 2 for

p = 1, and 6p 6 for p > 1.

Turning now to the symmetrical surfaces, we must make

one preliminary remark. It is evident that two such surfaces

can be "
symmetrically" projected upon one another only if they

have, as well as the same p, the same number TT of curves of

transition, and moreover if they both belong either to the first

or to the second kind. The enumeration in 13 of the number

of constants in uniform functions is now to be made over again,

with the special condition required for symmetrical surfaces

that those functions only are to be considered whose values at

symmetrical places are conjugately imaginary. And then, as in

19, we must combine with this the number of those many-
sheeted surfaces which can be spread over the 2-plane and are

symmetrical with respect to the axis of real quantities. To

avoid an infinite number of transformations into themselves, I

will here assume p > 1. The work is then so simple that I do

not need to reproduce it for this special case. The only
difference is that those constants which were before perfectly

free from conditions must now be either every one real or else

conjugately complex in pairs. Hence all the arbitrary quantities

are reduced to half the number. This may be stated as follows :

In order that it may be possible to represent two symmetrical

surfaces for which p > 1 upon one another, it is necessary that,

over and above the agreement of attributes, Sp 3 equations

should subsist among the real constants of the surface.
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The cases p = 0, p = 1, which were here excluded, are

implicitly considered in the preceding section. Of course two

symmetrical surfaces for which p = 1 which are to be repre-

sented upon one another must have the same invariant J,

giving one condition for the constants of the surface, inasmuch

as J is certainly real. But besides this we find at once that the

representation is always possible, so long as the symmetrical
surfaces agree in the number of curves of transition, a condition

which is obviously always necessary.

23. Surfaces with Boundaries and unifacial Surfaces.

By means
"

of the results just obtained an apparently

important generalisation may be made in the investigation of

the representations of closed surfaces, and it was for the sake of

this generalisation that symmetrical surfaces were discussed in

so much detail. For surfaces with boundaries and unifacial

surfaces (which may or may not be bounded) may now be

taken into account and the problems referring to them all

solved at once. With reference to the introduction of boundaries

here, a certain limitation hitherto implicitly accepted must be

removed. The surfaces employed have been all assumed to be

of continuous curvature or at least to have discontinuities at

isolated points only (the branch-points). But there is now no

reason against the admission of other discontinuities. For

instance, we may suppose that the surface is made up of a

finite number of different pieces (in general, of various curva-

tures) which meet at finite angles after the manner of a

polyhedron ;
for there is nothing to prevent the conception of

electric currents on these surfaces as well as on those of

continuous curvature. Now surfaces with boundaries are in-

cluded among such surfaces*. For let the two sides of the

bounded surface be conceived to be two faces of a polyhedron

*
I owe this idea to an opportune conversation with Herr Schwarz (Easter,

1881). Compare Schottky's paper, already cited, Crelle, t. LXXXIII., and

Schwarz's original investigations in the representations of closed polyhedral

surfaces upon the sphere. (Berl. Monatsber., 1865, pp. 150 et seq. Crelle, t. LXX. ,

pp. 121136, t. LXXV., p. 330.)
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meeting along a boundary (and therefore everywhere at an angle

of 360), and employ the total surface composed of these two

faces instead of the original bounded surface*.

This total surface is then in fact a closed surface
;
but it is

moreover symmetrical, for if the points which lie one above the

other are interchanged, the total surface undergoes a conformal

transformation into itself, the angles being reversed
;

the

boundaries are here the curves of transition. But at the same

time the division of symmetrical surfaces into two kinds obtains

an important significance. The usual bounded surfaces, in

which the two sides are distinguishable, evidently correspond

to the first kind
;
but unifacial surfaces, in which it is possible

to pass continuously from one side to the other on the

surface itself, belong to the second kind. The case, above

mentioned, in which the unifacial surface has no boundary has

also to be considered. It is a symmetrical surface without a

curve of transition.

Let us now consider in order the various cases to be

distinguished.

(1) First, let a simply-connected surface with one boundary
be given. This surface now appears as a closed surface for

which p = 0, which, since there is a curve of transition, can be

symmetrically represented upon itself. We find therefore that

two such surfaces can always be conformally represented upon
one another by transformations of either kind, and that there are

always three real disposable constants. These can be employed
to make an arbitrary interior point on the one surface corre-

spond to an arbitrary interior point on the other surface and

also an arbitrary point on the boundary of one to an arbitrary

point on the boundary of the other. This method of determina-

tion corresponds to the well-known proposition concerning the

conforraal representation of a simply-connected plane surface

with one boundary upon the surface of a circle, given by
Riemann, and explained at length in No. 21 of his Dissertation

* I express myself in the text, for brevity, as if the original surface were

bifacial, but the case of unifacial surfaces is not to be excluded.

K. 6
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as an example of the application of his theory to problems of

conformal representation.

(2) Further we consider unifacial surfaces for which p = 0,

with 110 boundaries. From 21, 22 it follows at once that two

such surfaces can always be conformally represented upon one

another and that there still remain (by the formulae at the end

of 21) three real disposable constants.

(3) The different cases arising from a total surface

for which p = 1, may be considered together. These include,

first, the doubly-connected surfaces with two boundaries, that

is, surfaces which in the simplest form may be thought of

as closed ribbons
; and, next, the well-known unifacial surfaces

with only one boundary, obtained by bringing together the

two ends of a rectangular strip of paper after twisting it

through an angle of 180. Finally, certain unifacial surfaces

with no boundaries belong to this class. An idea of these

may be formed by turning one end of a piece of india-

rubber tubing inside out and then making it pass through
itself so that the outer surface of one end meets the inner

surface of the other. With reference to all these surfaces it

has been established by former propositions that the representa-

tion of one surface upon another of the same kind is possible if

one, but only one, equation exists among the real constants of

the surface
;
and that the representation, if possible at all, is

possible in an infinite number of ways, since a double sign and

a real constant remain at our disposal.

(4) We now take the general case of a bifacial surface.

The surface has TT boundaries and admits moreover of p' loop-

cuts which do not resolve it into distinct portions, where either

p' must be > 0, or TT > 2. Then the total surface composed of the

upper and under sides admits of 2p'+7r 1 loop-cuts which leave

it still connected
;
for first the p' possible loop-cuts can be effected

twice over (on the upper, as well as on the under side), and then

cuts may be made along TT - 1 of the boundaries, and the total

surface is still simply-connected. We will therefore write

p = 2p' + TT 1 in the theorems of the foregoing section and we

have the following theorem : Two surfaces of the kind in question
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can be represented upon each other, if at all, only in a finite

number of ways. The transformation depends on Qp
f

+ STT 6

equations among the real constants of the surface.

(5) We have, finally, the general case of unifacial surfaces

with TT boundaries and P other possible loop-cuts when the

surface is considered as a bifacial total surface. Leaving aside

the three cases given in (1), (2), and (3) (P = 0, TT = or 1, and

P=l, 7r = 0) we have the same proposition as in (4) only that

for 2p' + TT 1 we must write P + TT, where p may be odd or

even. In particular, the number of real constants of a unifacial

surface which are unchanged by conformal transformation is

3P + 37T-3.

The general theorems and discussions given by Herr Schottky
in the paper we have repeatedly cited, are all included in these

results as special cases.

24. Conclusion.

The discussion in this last section now drawing to its

conclusion is, as we have repeatedly mentioned, intended to

correspond to the indications given by Riemann at the close of

his Dissertation. It is true we have here confined ourselves to

uniform correspondence between two surfaces by means of

conformal representation, whereas Riemann, as he explicitly

states, was also thinking of multiform correspondence. For

this case it would be necessary to imagine each of the surfaces

covered by several sheets and to find then a conformal relation

establishing uniform correspondence between the many-sheeted
surfaces so obtained. For every branch-point which these

surfaces might possess a new complex constant would be at our

disposal.

It may here be remarked that we have already considered

in detail at least one case of such a relation. When an arbitrary

surface is spread over the plane in several sheets ( 15), there

is established between the surface and plane a correspondence
which is multiform on one side. Further we may point out

that by means of this special case two arbitrary surfaces are in
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fact connected by a relation establishing a multiform corre-

spondence. For if the two surfaces are each represented on

the plane, then, by means of the plane, there is a relation

between them. The subject of multiform correspondence is of

course by no means exhausted by these remarks. But we have

laid a foundation for its treatment by showing its connection

with Riemann's other speculations in the Theory of Functions,

to an account of which these pages have been devoted.

GLOSSARY OF TECHNICAL TERMS.

The numbers refer to the pages.

Bifacial, zweiseitig, 73

Boundary, Randcurve, 23

Branch-line, Verzweigungsschnitt, 45

Branch-point, Verzweigungspunct, 44

Circuit, Ast, Zug, 42

Circulation, Wirbel, 7

Conformal representation, conforme Abbildung, 15

Cross-cut, Querscknitt, 23

Cross-point, Kreuzungspunct, 3

Curve of transition, Uebergangscurve, 67

Equipotential curve, Niveaucurve, 2

Essential singularity, wesentlich singiddre Stelle, 5

Loop-cut, Riickkehrschnitt, 23

Modulus, absoluter Betrag, 8

Multiform, vieldeutig, 27

Normal surface, Normalflache, 24

One-valued, einformig, 22

Source, Quelle, 6

Steady streaming, stationare Stromung, 1

Stream-line, Stromungscurve, 2

Strength, Ergiebigkeit, 6

Total surface, Gesammtflache, 73

Unifacial surface, Doppeljtiiche, 72

Uniform, eindeutig, 2

Vortex-point, Wirbelpunct, 7
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