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§   i.    Introduction. 

1  he  object  of  this  paper  is  to  develop  some  of  the  chief  properties 

of  a  special  determinant  polyadic,  deriving  -  -  by  the  definition  given  in 

§  4  (a)  -  -  from  any  number  of  independent  vectors,  and  which  we  shall 
call  their  space  complement.  From  the  definition  will  be  seen  that  the 

vector  product  of  ordinary  vector  analysis  is  nothing  but  a  special  space 

complement.  It  is  further  our  object  to  show  that  the  equations  expressing 

characteristic  properties  of  the  space  complement,  from  a  formal  point  of 

view  can  be  regarded  as  generalized  vector  product  formulae,  and  thus 

formally  the  space  complement  may  be  considered  to  be  a  kind  of  a  gene- 
ralized vector  product. 

As  will  be  known,  by  the  vector  product  of  two  vectors  is  in  modern 

tensor  analysis  usually  understood  the  skew  symmetric  tensor  which  is 

determined  by  the  same  two  vectors.  This  tensor  is  of  the  second  order 

in  any  space.  But  as  in  S8  only  three  of  its  six  components  are  independent 

quantities,  there  may  in  this  case  be  associated  with  it  a  vector  whose 

components  are  those  three  quantities  taken  in  a  definite  order.  But  this 

tensor,  which  in  58  is  different  from,  but  representable  by,  the  vector 

product  of  classical  vector  analysis,  can  hardly  from  a  formal  point  of  view 
be  characterized  as  a  generalization  of  the  latter.  In  fact,  it  only  means 

an  old  name  on  a  new  and  different  quantity.  It  is,  of  course,  in  this  con- 
nection of  perfect  indifference  whether  or  not  this  new  quantity  (the  tensor) 

is  a  more  suitable  or  convenient  representation  of  those  physical  phenomena 

which  formerly  were  represented  by  the  vector  product. 

Notwithstanding  that  the  language  and  conceptions  of  vector  analysis  are 

always  used  in  the  sequel,  it  may  equally  well  be  regarded  as  dealing  with 

(an  extended)  algebra,  the  unit  vectors  playing  the  role  of  positional  sym- 
bols, and  their  GIBBSIAN  indeterminate  products  -  -  to  which  any  polyadic 

can  be  reduced  —  only  being  new  positional  symbols.  A  few  of  our 
theorems  concern  properties  of  matrices  only,  as  for  example  §  12  (a),  quite 
independent  of  vector  analysis  notations  and  conceptions. 

Rather  often  reference  is  given  to  the  writer's  paper  on  triadics,  where 
a  few  of  the  theorems  are  worked  out  for  the  three-dimensional  case. 
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§  2.    Preliminaries. 

Firstly  we  lay  down  a  few  definitions  : 

In  an  ordinary  w-dimensional  space  Sn  be  given  a  fixed  set  of  rect- 

angular (i.  e.  mutually  perpendicular)  axes  o  xlf  x9  .  .  .  .  xn  defining  a  coor- 
dinate system.  To  any  given  set  of  n  real  numbers 

corresponds  a  point  in  this  space.    Further  let 

designate  a  normal  system  of  unit  vectors  in  this  coordinate  system,  i.  e.  : 

n  vectors  of  length  one,  originating  from  any  point  in  Slt  and  parallel  to 

the  coordinate  axes  respectively,  i.  e.  each  of  them  is  at  right  angles  to  the 

other  (n  —  1).  These  vectors,  therefore,  determine  the  coordinate  system. 
Any  scalar  function  v  of  n  variables  xit  x^  .  .  .  .  xn  determines  for  each 

set  of  the  variables  a  scalar  quantity.  Hence:  to  each  point  in  Sn  is  thus 

made  to  correspond  a  scalar;  v  defines  a  scalar  field. 

The  e's  are  n  linearly  independent  vectors.  Any  other  vector  in  SH  is 
expressible  by  them.  This  contains  our  axiom  of  dimensions.  A  vector 

is  then  a  quantity  of  the  form 

(1)  t)   =   Ci  Vi    +    C2  V2    +....+    CM  Vn  =   tiVi. 

Summation  with  respect  to  a  subscript  appearing  twice  is  always  under- 

stood. The  v's  are  called  the  components  of  the  vector  t).  Supposing 

the  v's  are  functions  of  the  variables  xlt  x2,  .  .  .  .  xn.  With  each  point 

(xlt  #2  .  .  .  .  XM)  in  Sn  is  then  associated  a  set  of  the  v's,  that  is  a  vector. 
The  point  is  called  its  origin.  An  expression  as  (1)  thus  determines  in 

each  point  a  vector.  W  is  a  vector  function  of  position  in  space,  defining  a 

vector  field,  but  is  in  what  follows  nevertheless  usually  spoken  of  as  a  vector. 

If  t>  =  Cifli  and  tt'  :-~-  tivl  then  the  scalar  quantity  Vivl  is  called  the 

scalar  product  of  t>  and  V/  and  denoted  by  tt  •  tt'.  If  tt  •  9  vanishes,  the  two 
vectors  are  said  to  be  perpendicular  on  one  another,  tt  •  tt  is  the  square 
of  the  length  of  t).  The  fundamental  properties  of  the  unit  vectors  can 
thus  be  written: 

(2)  e,--e/  =<$,•/ 

where  6ij  is  a  symbol  equal  to  one  for  i  —  /  and  equal  to  zero  for  i  ̂  /• 

The  definition  of  GIBBS'S  indeterminate  product  of  vectors  (dyads,  triads 
and  in  general  polyads)  can  evidently  be  extended  to  Sn  without  further 

explanation,  as  there  is  nothing  in  the  mathematical  nature  of  those  concep- 
tions which  limits  them  to  three-space  only.  This  is  simply  a  consequence 

of  the  fact  that  a  dyad  (and  a  dyadic)  is  expressible  as  (B6CHER  says: 
identical  with)  a  square  matrix.  Here  may  briefly  be  mentioned: 
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Given  a  linear  transformation,  —  the  matrix  of  which  is  «,-/,  i  and 

j  —  1  ,  2  .  .  .  .  n  -  which  transforms  a  vector  to  =  Ci  v*  into  a  vector 
9  =  £,  0t-  as  follows  ; 

If  we  here  introduce  n  vectors  alf  X12  .   .   .   .  a«  defined  by 

a^  =  e±  a*!  +  C2  fl£2  +  .  .   .   .   +  ena^n  =  tia&i 

we  see  that  (3)  can  simply  be  written  : 

i\  ==a,,-tt 

(4)  '   '  |  ̂ t^"!  '      '      '•'      V' ^/i'  =  CU  •  t> 

(5)  or,  briefly  :  t;/  =  a.t  •  t) 

and   accordingly: 

(6)  t);  :-  Ci  ttj.  •  t>  +  e2  a2  •  t)  +....+  e«  a«  •  t>  =  e,-  a,-  •  t 
The  expression  : 

(7)  e,-  a,-  =  ex  ax  +  e2  a2  +  .  .  .  . 

is  a  dyadic  in  5«.  It  is  completely  defined  by  the  vector  system  a,-.  The 

vectors  e»  and  a/  in  ez-  a»  are  said  to  be  multiplied  indeterminately  with  one 
another.  A  dyad  is  [the  indeterminate  product  of  any  two  vectors,  its 

corresponding  matrix  is  of  rank  one,  a  dyadic  is  a  sum  of  dyads.  It  is 
frequently  in  literature  called  a  tensor  of  the  second  order. 

Thus  A  .  •  "0  is  nothing  but  a  linear  transformation,  and  the  matrix  of 
A  or  of  the-  vector  system  a/  is  simply  the  matrix  of  the  transformation. 

We  also  call  to  memory  that  a  dyadic  can  be  resolved  into  a  sum 

of  elementary  dyads,  i.  e.  indeterminate  products  of  two  unit  vectors  multi- 
plied by  a  scalar  factor.  This  is  obtained  by  putting 

and  expanding  according  to  the  distributive  law  of  multiplication. 
Therefore  : 

(8)  A  =  titjdij  t-tj-=]f2      .  .  .  n 

As    it   is    immaterial  to  which  vector  the  scalar   factor  is  applied,  this 

evidently  may  be  written: 
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(9)  A  =  e,  aii  ei  +  e' a* '2  e2  +  ....+  e, «,  „  e« 

Let  us  here  introduce  a  vector  system  x,  defined  by 

(10)  x, •  =  e/0/,- 
Then  we  have 

(11)  4  =  x,-e,-. 

The  system  x,-  is  said  to  be  conjugate  to  the  system  a,.  Two  conjugate 
systems  of  vectors  are  determined  by  the  rows  and  columns  of  the  same 

square  matrix.*  The  dyadic  Ac,  the  conjugate  to  A,  is  then  the  following: 

(12)  Ae  =  *iXi. 

In  an  analogous  way  the  definition  of  triadics,  tetradics  ....  polyadics 

is  extended  to  Sn.  A  triadic,  or  tensor  of  the  third  order,  is  any  sum  of 
the  form : 

(13)  e,  e/  e/fe  at-j  * ,        i,j,k  =  \,2.  .  .  .  .  « 

or  any  quantity,  which  can  be  broken  up  into  terms  of  this  kind,  and  thus 

wholly  determined  by  a  cubic  matrix  0,7*.  If  we  instead  of  e,-e/C*  have 

the  indeterminate  product  of  p  unit  vectors  multiplied  by  a  scalar,  /'.  0. : 

(14)  C,'!  e/2   •    .    •   *ip<*iii*   •    -    -   ip 

we  get  an  elementary  polyad  of  the  pth  order,  and  any  sum  of  such 

quantities  is  called  a  polyadic  (or  tensor)  of  the  pth  order.  As  above,  the 

np  scalars  atl  ,2  .  .  .  ip  suffice  for  the  determination  of  the  polyadic,  which 
is  called  complete  when  these  n*  scalars  are  independent  of  one  another. 

The   special    dyadic   which   transforms  any   vector  into  itself  is  called 

the  idem/actor  (Einheitsdyade)  and  denoted  by  /.  It  is  always  reducible  to 
the  form 

(15)  /  =  Ci  e,  (sum  for  i) 

which  follows  immediately  from  the  fact  that  the  corresponding  matrix  of 
transformation  in  this  case  must  be  the  unit  matrix. 

The  scalar  (dot)  product  of  two  dyadics,  which  is  frequently  used  in 

the  following,  is  defined  in  Sn  exactly  in  the  same  way  as  in  S8.**  It  may 
be  expanded,  according  to  the  distributive  law  of  multiplication,  into  a  sum 

*    Concerning  the  properties  of  conjugate  vector  systems  in  three-space,  see  Zur  Theorie 
der  Triaden  von  ALMAR  N^ess  (Kristiania   1921). 

-   See  GIBBS- WILSON  :  Vector  Analysis,  p.  276. 
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of  products  of  dyads,  this  sum  being,  of  course,  independent  of  the  particular 

form    in    which    the    dyadics    are  written.    Let  the  dyadics  be  for  example: 

(16)  A  =  e*-a,-  and  B  =  tiki. 

Hence  the  product,  which  is  also  a  dyadic,  may  be  written 

(17)  A-B  =  ti&i-B 

and  the  vector  system  defining  this    new  dyadic  (i.  e.  the  ith  vector  of  the 

system,  /'  running  from    1    to  n)  is : 

(18)  a*  •  B  —  a,  •  e,  by  =  a«y  by 

or,  by  being  equal   to  e*  bjk : 

(181)  CLi  •  B  =  e/t  atj  bjk,     sum  for  j  and  k 

Let  us  by  xf  denote  the  vector  system  which  is  conjugate  to  the  b's 
(i.  e.  a  system  such  that  its  ith  vector  has  its  components  in  the  ith  column 
of  the  matrix  bty  defining  the  dyadic  B).  That  is: 

(19)  x,*  =  e/£y,-. 
Therefore  : 

(20)  CLi-B  =  tk  ciij  bjk  =  tk  a,-  •  xkb  =  a,-  •  *kb  tk 

a  result  which  is  obtained  directly  by  observing  that: 

(21)  B  =  tkb*  =  xkbe* 
and,  accordingly : 

(22)  a«-  •  B  =  a,-  •  (*kb  e*)  =  (a,  •  *kb)  tk  =  tk  a,  •  xj 

This  only  means  that  if  cty  is  the  matrix  of  the  dyadic  A  -  B,  then 

(23)  ^y=a/V 

As,  for  any  vector  tt,  A  •  5  •  \)  =  ̂ 4  •  (B  •  t))  is  the  resulting  vector  when 
jB  and  ̂ 4  acting  in  succession  upon  the  vector  t>,  this  simply  contains  the 

multiplication  law  of  two  matrices,  which,  hence,  is  compatible  with  the 

law  of  (scalar)  multiplication  of  two  dyadics. 

§  3.    Remarks  concerning  the  vector  product  and  the  reciprocal 

vector  system. 

As  is  well  known,  the  vector  product  of  two  vectors  a  and  b,  denoted 

by  a  X  b,  in  three-space  is  a  vector  whose  components  are  the  two  rowed 
determinants  which  can  be  formed  from  the  matrix  of  the  components  of 
the  factors,  i.  e.  from  the  matrix : 
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thus  giving  as  the  components  of  the  product  the  three  quantities 

which  also  is  written: 

(1) 
a  Xb  = 

i    i    f 

t,  j,  f,  being  the  unit  vectors  of  S8. 

If  we  in  this  way  shall  obtain  a  vector,  it  is,  of  course,  necessary 

that  the  number  of  determinants  which  can  be  picked  out  of  the  matrix, 

is  equal  to  the  number  of  dimensions  of  the  space  concerned.  Since  this  only 

is  the  case  when  n  =  3,  the  operation  of  forming  the  vector  product  from 
two  given  vectors  has  been  considered  to  be  unique  for  S8,  without  any 

possibility  of  generalizing  to  S«.  But,  of  course,  it  is  not  obviously  given 

beforehand,  that  such  a  generalized  product  -  -  giving  in  S3  the  Gibbsian 

vector  product  as  a  particular  case  —  necessarily  shall  be  a  vector,  nor  that 
it  shall  be  derived  from  two  given  vectors.  On  the  contrary,  we  will  show 

by  an  example  that  we  even  in  elementary  vector  analysis  may  meet  with 

quantities,  deriving  from  another  number  of  vectors  than  two,  which  with 

respect  to  fundamental  properties  must  be  considered  to  be  analogous  to 
the  vector  product. 

Let  in  three-space  a  system  of  three  vectors  be  given:  a,  b,  C.  To 
this  system  there  corresponds  one,  and  only  one,  definite  system  of  vectors, 

say  a*,  b*,  C*,  called  the  reciprocal  to  the  first,  such  that 

(2) 
aa*  +  bb* =  /=  a*  a  +  b*b  +  c*c. 

The  starred  system  is  easily  determined  by  elementary    matrix  opera- 
tions.   Let  t,  j,  f  be  the  unit  vectors  in  S8,  and 

(3) 

(4) 

(5) 

=     a 

b  +  f  C. 

Then : 
*  =  i  a*  +  j  b*  +  f  c*. 

a*  a  +  b*  b  -f  c*  c  - 

And  since  this  shall  be  equal  to  the  idemfactor,  the  matrix  of  *F*c  must 
be  the  inverse  of  that  of  ̂   and  the  matrix  of  W*t  accordingly,  the  conjugate 
to  the  inverse  of  that  of  *F.  Then  we  get  from  this  immediately: 
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(6) 

where  |  W\  designates  the  determinant  of  the  matrix  of  W.  Each  vector  in  the 
reciprocal  system  is  thus  determined  as  a  vector  product  of  two  vectors. 

We  will  carry  out  the  analogous  operations  in  two-space  (unit  vectors 
being  t  and  j).  Assuming  given  two  vectors  d  and  b  in  S.2,  we  determine 

two  others  a*  and  b*  such  that 

(7) 

As  we  have 

and  by  putting: 

a*  a  +  6*6  ='ii  +  j 

a  =  t  #!  +  j  02   and  6  =  t  b 

we  easily  get: 

(8)  a*  - 

where  the  two  vectors 

t  i t     | 

,  etc.  must   be   considered   to    be    quite  ana- 

logous to  b  X  C,  etc.  above.  I.  e. :  each  of  the  corresponding  vectors  in  the 

two-dimensional  case  derives  only  from  one  of  the  primary  vectors,  by  an 
operation  given  by  (8). 

If  therefore  a  generalization  of  the  vector  product  also  shall  cover  this 

operation  as  a  particular  case,  it  is  readily  understood  that  the  generaliza- 
tion cannot  exactly  be  limited  to  a  quantity  deriving  from  two  vectors 

only.    On  the  other  hand,  we  cannot  very   well    characterize   e.  g. 

which  is  completely  determined  by  b  alone,  as  a  "product"  of  b.  It 
seems  merely  to  be  accidental  that  the  number  of  vectors  in  bthe  ana- 

«   i    I 
logous    quantity  in  SB,  viz.: 

Ci      Cn      Co 

,   is    two,    and    it   may  be  questioned 

whether  the  term  "product"  is  a  proper  name  for  the  quantity  also  in 
this  case.  As  a  matter  of  fact,  the  idea  that  the  vector  product  cannot 

naturally  be  characterized  as  a  product  of  its  two  vectors  is  not  new.  It 
has  been  set  forth  for  example  by  E.  W.  HYDE. 

§  4.    The  Space  Complement. 

Our  view  point  in  the  following  is  to  consider  the  vector  product  as  being 

a  particular  case  of  a  (somewhat  special)  polyadic  that  can  be  derived  from 

any  number  (<J  n)  of  independent  vectors  in  Sn  by  means  of  the  following 
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Definition:  (a)  In  an  n-dimensional  space  let  there  be  given  p  linearly 

independent  vectors  a±  =  C,^,-,  a2  =  C«02',  •  •  •  •  dp  =  C,  «/>,,  (sum  for  i 
from  1  to  w),  Clf  C2,  .  .  .  .  C«  being  an  orthogonal  system  of  unit  vectors. 

By  the  space  complement  of  those  p  vectors  we  understand  a  determinant 

whose  last  p  rows  are  formed  from  the  components  of  the  a's  and  whose 
first  n — p  rows  are  the  unit  vectors,  i.  e. : 

(a1) 

Ci     Co  . 
.  .  .  c« 

CH 

#2  1  ̂2  2    • 

aP  \aPl    • 
.  .  .  apn 

As  the  vectors  in  these  n — p  rows  are,  of  course,  to  be  multiplied 
indeterminately  in  the  developed  determinant,  we  see  that  the  space  comple- 

ment of  p  vectors  is  a  polyadic  (tensor)  of  the  (n — />)th  order.  The  simplest 
and  for  our  purpose  most  convenient  way  of  expressing  it  as  a  sum  of 

(elementary)  polyadics  of  the  same  order  is  by  expanding  it  according  to 

the  (n — />)-rowed  determinants  of  the  first  n — p  rows. 
What  we  in  the  following  will  try  to  show  is  that,  by  deriving  the 

fundamental  properties  of  this  space  complement  we  arrive  at  equations 

which  can  be  regarded  as  generalized  vector  product  equations  of  S8,  and 

from  which,  therefore,  we  get  the  formulae  of  the  Gibbsian  cross  product 
as  special  results. 

We  see  that  the  space  complement  is  a  vector  if  and  only  if  the 

number  of  vectors  is  n — 1,  and  that  this  vector  then  is  perpendicular  to 
each  of  the  primary  ones,  i.  e. :  it  is  perpendicular  to  the  hyperplane 

containing  the  (n — 1)  vectors  from  which  it  is  derived.  For  the  components 
of  the  space  complement  are  in  this  case  the  cofactors  of  the  elements 

(i.  e.  the  unit  vectors)  of  the  first  row.  Hence  the  scalar  product  of  the 

vector  a,  and  the  space  complement  by  definition  is : 

(b) 

p  =  n—  1. 

which  vanishes  identically,  two  rows  being  equal. 

If  n  —  3  (i.  e.  :/>  =  «—  1  =  2)  we  get  the  ordinary  vector  product 
of  two  vectors.  The  space  complement  is  a  scalar  if  p  —  «,  viz.  equal 
to  the  determinant  of  the  n  vectors. 
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For  brevity  we  will  denote  the  space  complement  of  ax,  a2  .   .   .   .  fl/>  by 

(c)  </>  a±  a2  .  .  .  ap          or  :  a±  a2  .  .  .  a/,  />> 

Hence  the  operation  sign  (p  or  />>  indicates  that  p  vectors  written 
to  the  right,  or  respectively  to  the  left,  shall  be  combined  into  their  space 

complement.  If  we  are  going  to  derive  the  complement  of  s  +  /  vectors, 

5  to  the  left  and  t  to  the  right,  we  write  «X',  e.  g.  : 

(0 a8  2X3  bi  b2  68  b4  b5  =  a± 

e* 

**„ 

'31   b*n 

evidently  a  polyadic  of  order  1  +  (n  —  5)  +  2  =  n  —  2.  If  s  and  /  both 
are  equal  to  one,  we  write  X-  Thus  the  space  complement  of  two  vectors 

d  and  b  may  be  written: 

(2)  a  X  b  =  <2  a  b  =  a  b  2) 

which  in  .S3  coincides  with  the  ordinary  vector  product  of  a  and  b. 

§  5.    In  variance  with  regard  to  orthogonal  transformations 
of  coordinates. 

First  we  will  show  that  the  space  complement  of  any  number  (say  p) 

of  vectors  is  independent  of  the  particular  (orthogonal)  coordinate  system 

which  we  may  choose: 
Let 

e'1;  e'2,  .  .  .  e'« 
be  a  system  of  orthogonal  unit  vectors,  defining  a  new  coordinate   system, 
defined  by: 

(1)  Cx    =   Ci'  £]_!•;        C  2   =   C»  £  2  tj    •     •     •     •    C'»    =ti£ni 

where  consequently 

(2) 

(3)     and  e^  BJ 

=  !      for 

Further,  let  the  components  of  the  vectors  ax  ,  a2  .   .   .   .a*  with  respect 
to  this  new  coordinate  system  be  primed,  such  that  for  any  j 

(4) a  =  e, 
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We  then  get  by  intuition  that 

(5)  a'ji  =  ay  •  e'i  =  ajk  etk 

which    also,    more    exactly,  can  be  found  in  the  following  wellknown  way: 

(6)  ay  =  a'ji  e',  =  a'ji  €ik  tk 

But  as  we  also  have 

ay  =  ajk  tk 
we  get 

ajiSit  —  ajk 

which  involves  the  following  n2  equations: 

(7) 

a  Ji  £in  —  ajn 

If  we  by  £,7  denote  the  cofactor  of  the  element  £,7  in  the  determinant 

of  the  £*s,  these  equations  (7)    give : 

io\  '          aik  f-*k 
(fi)  a  /''  =    'i      i 

But  as  the  e's  form  an  orthogonal  matrix,  we  have: 

|  £,7!  —  1    and  Eik  =  ftk 
Therefore : 

(9)  a'ji  =  ajk  eik 

We  now  will  lorm  the  space  complement  of  the  vectors  ax ,  a2  .  .  .  .  Cl/> 

with  respect  to  the  new  (primed)  coordinate  system.  By  definition  it  clearly  is: 

e\        e'2   e'M 

<»'          <»'  e'  ,i ^1  ^2   

^11  ^12   ff  i  » 

/  I  ' 

a  p  i       a  p^   a  pn 
(10) 

C|   f i  (  C|   fo  l   ?»   f ,/  ; 

Ci  f  j  i          Ci •  £«  i   6«  f «  i 

fll  '  f  1  '    °l  i  f  2  '          fll ' 

rt/.  i  ̂i  i    «/>  i  F 2  i 
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(10) 
e,    e<>   ....  e« 

^1  2    ̂2  9    •     •     •     •    £** ' 

which  shows  that  the  space  complement  of  any  p  vectors  is  invariant  with 

regard  to  any  orthogonal  transformation  of  coordinates  (invariant  under  the 

group  of  orthogonal  transformations). 
Now  let  us  assume  that  the  p  vectors  dx  .  .  .  .  d/>  all  are  expressible  by 

the  same  p  unit  vectors,  i.  e. :  the  /-space  containing  at  .  .  .  .  a/,  also 
contains  p  of  the  unit  vectors,and  we  may  assume  without  loss  of  generality 

that  those  are  the  first  p  vectors  et,  e2  .  .  .  .  e/>.  Then  all  the  components 

at-j  vanish  for  j  ̂>  p  and  we  evidently  get : 

(11) 

ap\ 
app 

\.  e. :  the  space  complement   is  expressed  by  the  other  unit  vectors  (and  a 

scalar).    This  proposition  is  general.    In  other  words : 

(a).  The  space  complement  of  any  p  independent  vectors  is  expressible  by 

vectors  lying  in  the  (n — p]-space  which  is  absolutely  perpendicular  to  the  p-space 
containing  the  p  primary  vectors. 

In  order  to  show  this  it  is  sufficient  to  transform  the  p  vectors  into 

a  new  rectangular  coordinate  system  and  to  choose  the  first  p  unit  vectors 

of  this  system  such  that  they  are  contained  in  the  /-space  on  the  p  given 
vectors  in  question,  which  is  always  possible.  This  done  the  problem  is 
reduced  to  the  case  mentioned  above  (under  (11)),  and  our  proposition 

is  proved. 

It  follows  directly  from  the  definition  §  4  (a)  that : 

(b).  The  space  complement  of  any  permutation  of  a  given  set  of  vectors 

is  equal  to  the  space  complement  of  the  given  set  with  the  same  or  opposite 

sign  according  as  the  permutation  can  be  obtained  from  the  given  set  by 
means  of  an  even  or  odd  number  of  transpositions. 
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§  6.    The  space  complement  regarded  as  a  function  of  the 
indeterminate  product  of  its  vectors. 

By  the  elementary  law  for  addition  of  determinants,  we  get: 

(i)     (a  +  b  +  c+....)Xt>  =  aXtt  +  bXt>  +  cXtt+.... 

The  combination  of  vectors  in  the  space  complement  is  thus  evidently 

in  this  case  distributive,  which  —  according  to  GIBBS'S  general  view  of  multi- 
plication —  might  justify  the  consideration  of  the  space  complement  as  a  kind 

of  product  of  the  two  vectors  of  which  it  is  formed. 

Clearly  it  is  immaterial  whether  tt  in  (1)  is  post-  or  pre-factor. 
As  we  have  not  yet  denned  what  we  understand  by  the  space  complement 

of  a  complete  polyadic  (i.  e.  :  a  sum  of  poly  ads)  we  cannot  rightaway  extend 
(1)  to  the  case  when  we  instead  of  a  +  6  +  C  .  .  .  .  etc.  have  a  sum  of 

polyads.  In  order  to  obtain  a  meaning  to  (1)  also  in  this  case,  we  proceed 
as  follows: 

The  space  complement: 

</>  ax  a2  .  .  .  .  <*4 

can  be  considered  as  a  function  of  the  polyad  of  the  pih  order 

i.  e.  :  as  a  function  of  the  indeterminate  product  of  the  same  p  vectors. 
This  is  in  accordance  with  the  fact  that  the  scalar  and  vector  product  of 

ordinary  vector  analysis  are  considered  to  be  special  functions  of  the  corre- 
sponding dyad. 

Firstly  it  is  then  necessary  to  show  :  (a)  The  space  complement  of  the 

vectors  of  a  polyad  is  independent  of  the  particular  form  in  which  the  polyad 
is  expressed. 

It  is  sufficient  to  prove  that  if  the  polyad  ̂   a2  .  .  .  .  fl/1  is  reduced 
into  a  sum  of  elementary  polyads,  and  if  we  derive  the  space  complement 
of  each  of  these  and  sum,  this  sum  is  equal  to  the  space  complement  of  the 

primary  polyad. 

Let  us  expand  the  space  complement  (i.  e.  the  determinant)  according 

to  the  («  —  /)-rowed  determinants  of  the  first  n—p  rows.  Let  klt  £2  •  •  •  •  ̂> 
denote  any  set  of  p  numbers  picked  out  of  the  set  1,  2,  .  .  .  .  n,  such  that: 

k,  <  k,  <....<  kp 

1  p  <;«  and    the  a's  are  independent  vectors ;    if  not,  the  theorem  is  true, 
but  trivial. 
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Then: 

(2)     /P  at  a2  .  .  .  .  a/,  = 
<?!  k\     .     •     .    «!  k2 

apk\  apkz  .  . 

The  xe\  indicates  tliat  the  first  determinant  is  formed  from  the  rest  of 

the  unit  vectors  after  e/h  &».»..,  tkp  have  been  stricken  out.  The  sum 

is  understood  to  be  taken  for  all  possible  sets  of  the  £'s.  On  the  other  hand, 
we  can  express  the  indeterminate  product  ̂   a2  ....  a/,  as  a  sum  of 

elementary  polyads  by  putting  az-  =  tjatj  (sum  for/  from  1  to  n,  *  =  1 , 2  .  .  .  .  p] 
and  multiplying  according  to  the  distributive  law : 

(3) .  a/,  =  2"ey,  ey2  . 

JP here  denotes  any  set  of  />  integers  in  any  order  picked 

>rs   1 ,  2  .          .  n.    and    the    sum    is    to    be    taken    for   all out    of   the    numbers    1,2 

possible  sets  of  the  fs. 

Now  let  kif  k%  .   .  .   .  kp  as  before  be  a  set  of  p  integers  picked  out  of 

1,2.   .   .   .  n  such  that  k±  <C  £2  <C  •   •   •   •  kp-    Then  we  have  : 

(4) 

er.  . 
.  .  e*     e*,  .  .  .  .  e. 

, 
" 

0  .   . 
.  .  1  .   ."  .      0                 0 

0  . .  0  .          .  1  .            .0 

If  we  expand  this  according  to  the  determinants  of  the  first  n — p  rows, 

we  notice  that  all  but  one  of  the  plain  complements  of  these  (n— />)-rowed 
determinants  vanish,  the  non-vanishing  plain  complement  having  the  value 
one  (each  element  in  its  principal  diagonal  is  one,  all  the  others  zero). 

Thus  we  get: 

(5) 

Vid.-Selsk.  Skrifter.  I.  M.-N.  Kl.  1922.  No.  13. 
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Let  us  further  consider  the  set  fcit  £2  .  .  .  .  kp  with  all  its  possible 

permutations;  let  jk\tjin  .  .  .  .  jkp  be  any  such  permutation.  We  then  first 
observe  that 

IJto 

== 

where   +    or  -  -  is   to  be   chosen    according   a&  the  set  jk\jkz  •  .  .  .  jkp  is 

an  even  or  odd  permutation  of  the  £'s  (s.  §  5  (b)). 
Let  us  now  consider  those  p !  terms  in  (3)  which  are  of  the  form : 

i.  e. :  all  those  p !  terms  which  contain  the  same  unit  vectors,  viz. 

in  all  possible  order.    We  will  take  the  space  complement  of  each  of  those 

pi  terms  and  then  sum.    By  what  is  said  above,  we  get: *Jtl 

kpadk\  a*Jk2'  •  'aPJkp  ~ 

(6) 

Clp  /n 

Jtkj.       .      .     Cw 

e« Clpk 

Therefore :  The  sum  of  the  space  complements  of  all  terms  in  (3)  is 

equal  to  the  sum  of  all  possible  terms  of  this  kind,  i.  e.:  the  sum  for  all 

possible  sets  of  the  £'s,  k^  <C  £2  •  •  •  •  kp.  And,  by  (2),  this  shows  that 
the  sum  is  equal  to  ̂ />  C^  d2  .  .  .  .  dp. 

Now  let  P!  and  P2  be  two  different  forms  of  the  same  polyad  of  the  />th 
order  (i.  e.:  two  equivalent  polyads, P!  =  P2)  and  thus  giving,  when  expressed 
by  elementary  polyads,  the  same  form  Pe.  Then 

m 
accordingly : 

(8) 

</>  P!  ==  </>  P,      and  (71)      </-  P2  =  </-  P, 

That  is:  the  space  complement  of  the  vectors  of  a  polyad  (we  will  say, 

shorter:  of  a  polyad)  is  independent  of  the  particular  form  in  which  the 
latter  is  expressed,  which  is  the  desired  result. 

This  can  always  be  applied  to  any  sum  of  elementary  polyads  which 

can  be  summed  up  to  a  single  polyad,  but,  strictly  speaking,  not  to  a  sum 

of  such  polyads  in  general.  But  what  we  have  found  above  very  naturally 

leads  to  an  extension  of  our  definition,  such  that  we  by  the  space  comple- 



1922.    No.   13.  ON  A  SPECIAL  POLYADIC  OF  ORDER  H  —  p.  1  9 

ment  of  any  sum  of  elementary  polyads  understand  the  sum  of  the  space 
complements  of  each  polyad.  Once  this  extension  established,  it  follows 

immediately  that  it  must  hold  good  for  sums  of  all  kinds  of  polyads,  as 

they  always  can  be  reduced  to  elementary  ones.  That  is:  we  can  lay 
down  the 

Definition  (b).    By  the  space  complement  of  a  poly  adic  is  understood 

the  sum  of  the  space  complements  of  each  of  its  polyads. 
Or: 

(g)       0  (Oi  a2  ....  a,  +  b±  62  ....  bp  +....) 
=  </>  a±  a2  ....  ap  +  </•  b±  b2  ....  bp  +  .... 

Accordingly  we  get  from  any  equation  between  polyadics  a  new  equation 

by  inserting  the  sign  </•  (or  X)  m  tne  same  way  in  each  of  its  terms  on 
both  sides  of  the  equation. 

And  from  this  follows  that  the  operation  of  forming  the  space  comple- 
ment obeys  the  distributive  law  because  the  indeterminate  multiplication 

does.  Since  we  e.  g.  have  : 

tf^a,  ....  a,  +  b±  68  •  •  •  •  &*  +  •  •  •  ) 

we    know   that  those  two  equal  polyadics  (of  order  n  +  1)   must  also  have 

equal  space  complements,  i.  e.  : 

(1  J}  t>  Xs  (*!  a2  ....  dp  +  6±  b2  ....  bp  +....) 
=  *  Xs  aj  a2  .  .  .  .  ap  +  ID  Xs  b±  b2  .  .  .  .  bp  + 

where  s  <>. 

§   7.    The  space  complement  of  a  determinant  of  the  form 

Each  row  here  consists  of  the  same  p  independent  vectors  (p  <C  n}. 
The  multiplication  being  indeterminate  (or  general)  the  determinant  is  a 

polyadic  of  the  />th  order. 
If  we  expand  this  determinant  we  get  p  \  terms  (polyads).  One  of 

them  is  the  principal  diagonal  a±  a2  . . .  .  .  ap,  all  the  others  are  permuta- 
tions of  this  term.  And,  by  what  is  said  above,  we  get  the  desired  space 

complement  by  taking  the  space  complement  of  each  of  these  terms  and 
summing. 
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Now  is: 

(1) <p  dx  d2 
VI  VO 

V« 

p  i      p  o 

And,  by  §  5  (b),  the  space  complement  of  each  of  the  even  permuta- 

tions of  di  d^  .   .  .   .  dp  is  equal  to  <p  ̂  d2  .   .   .   .  dp,  but  of  any  odd  permuta- 
tion equal  to  the  same  quantity  taken  negatively.    But  the  odd  permutations 

have,  in  the  developed   determinant,    minus   sign,  which   reverses  the  sign. 

I.  e. :  the  space  complements  of  each  term  of  the  determinant  in  question  are 

-  the  sign  of  the  term  taken  into  account  —  all  equal  to  the  space  comple- 
ment of  the  principal  diagonal. 

Thus  we  get: 

(2)  <P 

"IP 

We    get    a    similar    result    if  we    expand    the    space   complement   of  a 

polyadic  of  the  form  (order  being  />+!): 

IP 

(3)  t>           p<n 
h 

That  is: 

a,  ....  dp 

(4)  <P  +  it>               =p\ 
....  dp 

which  we  also  can  write: 

....  dp 

(5)  t)  X  P     -  //  i   V  /\  F  V*!    .     .     .     .    vip. 

We  readily  see  that  this  quantity  vanishes  if  tt  is  equal  to  one  of  the 

d's  or,  in  general,  linearly  dependent  on  the  d's. 

§  8.    A  generalization   of  the  expansion  for  the  vector  triple  product. 

An  equation  which  in  ordinary  vector  analysis  is  of  importance  on 

account  of  its  frequent  occurrence,  is  that  of  the  vector  triple  product.  In 

quaternion  notation  it  is  written : 



1922.    No.   13.  ON  A  SPECIAL    POLYADIC  OF  ORDER  H — p. 

21 

(1)  Fa(Fbc)  =  cSab  —  bSca  * 

which  equation  GIBBS  writes 

(2)  aX(bXc)=    -a-{6e-c6). 

It  may  be  found  more  convenient,  in  this  and  similar  equations,  to 
write  such  dyadics  (and  also  triadics  etc.)  in  determinant  form,  as  thereby 

greater  symmetry  is  obtained: 

(3) 
6      c 
b      c 

In  this  form  the  equation  can  be  generalized  to  ̂ -space.  It  must  only 
be  kept  in  mind  that  6  X  c  m  ̂   is  not  a  vector,  but  a  polyadic  of  order 

n  —  2.  The  vector  a  and  this  polyadic  then  combine  to  form  the  final  space 

complement  of  (3).  W7e  can  then  prove  that  in  any  space  Sn  the  following 
equation  is  valid: 

6      c 

**      c 

But  this  equation  can  be  still  more  generalized.  We  are  going  to 

show  that  it  holds  good,  not  only  for  the  triple  product,  i.  e.:  when  we 

have  to  derive  the  space  complement  of  two  vectors  6  and  C  and  then 
combine  this  with  d,  but  also  in  the  case  when  we  instead  of  6  and  C  have 

any  set  of  p  independent  vectors :  d1;  a2  .  .  .  .  dp,  (p  <  n).  (If  the  vectors 
are  dependent  the  theorem  is  true,  but  trivial.)  Hence,  the  equation  which 
we  will  consider  to  be  the  generalization  of  the  expansion  for  the  vector 

triple  product,  and  which  we  now  are  going  to  prove,  is: 

(5)    * 
.  .  a 

n  being   the    number   of  dimensions  of  the  space  considered.    We  can  tell 
at  a  glance  that  it  gives  (4)  as  well  as  (3)  as  special  cases. 

In  order  to  prove  (5)  we  first  expand  <p  a±  a2  .   .  •   .  ftp.   By  definition 
we  have: 

*   As  will  be  known,    Fa  b  =   -  ax&,  Sa  b  =  —  a  •  b. 

**    See:   Zur  Theorie  der  Triaden  von  ALMAR  N^;ss  (24),  p.  108. 
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(6) 
.  a  = 

c« 

*P1 

apn 

We  will  expand  this  determinant  according  to  the  /-rowed  determinants 
of  the  last  p  rows.  Let  p  columns  be  determined  by  klt  k±  .  .  .  .  kpt  such 

that  ki  <C  kz  <  .  .  .  .  <^kp.  The  plain  complement  of  the  /-rowed  deter- 
minant in  question  containing  these  columns  is  obtained  by  striking  out 

from  the  set  of  unit  vectors  all  the  e*,-  and  forming  the  (n  —  />)-rowed  de- 
terminant of  the  rest.  With  regard  to  the  sign  of  the  algebraic  complement 

we  observe  that  the  sum  of  the  indices  of  the  last  p  rows  in  (6)  is 

(n—p+'\  +  n)p  _  p(p—\] ~  ~-~      ~- 

According  to  Laplace's  theorem,  the  space  complement  of  (p  C^  U2  .  .  .  .  d 

is  equal  to  the  sum  of  all  (  n  J  terms  of  the  form 

np- (A)          (-  I) 

e, 

apk\ 

apkl 

each  being  a  (special)  poly adic  of  the  (n  —  />)th  order. 
In  order  to  obtain  the  left  mernberTof  the  equation  (5)  we  take  the 

indeterminate  product  of  t)  by  each  of  these  terms  (A)  and  then  deriving 

the  space  complement  of  each  of  the  polyadics,  obtained  in  this  way,  of 

order  n  —  p  +  1 .  But  each  of  these  polyadics  can  be  expanded  into  a  sum 

of  n  others  by  putting  tt  =  e/v/  and  then  multiplying  distributively.  Neglecting 

the  scalar  factor  we  thus  all  together  get  f n  J  n  terms  of  the  following  form : 

(B) 
e« 

and  our  final  task  is  to  derive  the  space  complement  of  each  of  these,  i.  e. : 

(O 

then  multiply  by  the  corresponding  scalar  and  sum. 
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But,  by  §  7  (5),  all  the  space  complements  (C)  vanish  where  Cy  is 
equal  to  one  of  the  unit  vectors  in  the  determinant.  Hence  it  is  sufficient 

to  take  into  account  those  terms  only  where  ey  is  equal  to  one  of  the 

vectors  e*i,  e/t2  .  .  .  .  t*p,  which  are  stricken  out  when  forming  the  deter- 

minant. For  each  set  of  the  £'s  we  thus  get  only  p  terms  of  the  form  (C). 

Let  us  consider  a  fixed  set  of  the  £'s  and  form  all  the  space  comple- 
ments with  regard  to  this  set.  The  first  one  will  be: 

X"  - 

(7) 

e           e  '  k 

CM 

i         /    i 

=  (w_0)!  e     \/w_ 
o  (e^  e«         e  £        eM) 

ct 

e e 1 

e * 
0                1                  0 o =  (»—/)] 
1   ....  0     0.   .   . .   .  0 

0  1   ...  0     0.   .   . .   .  0 

0  .          .0.             .0. 
.  1 

Each  of  the  last  n  —  p  +  I  rows,  being  components  of  a  unit  vector, 
consists  of  I  and  n  —  I  zeros.  Of  all  the  determinants  which  can  be  formed 

from  these  rows  there  is  therefore  only  one  which  is  different  from  zero. 

The  sum  of  the  indices  of  the  columns  of  this  nonvanishing  determinant  is 

(n  +  \)n 

and  the  sum  of  indices  of  the  rows  is 

(p  +  n)  (n  —  p  +  I)  _  n2  —  p2  +  n  +  p 
2  2 

Expanding  (7)  after   Laplace    according   to    these    determinants    of  the 

last  n  —  p  +  I    rows,  we  thus  get  only  one  term,  the  following  : 

(-1) 
(D) 

(n—p)\ 

o I o I  0 
o 

0  .  I 
0  . 
0  1 .   .  0 

0  . 
.  1 

We   must    especially  'notice    that   the  columns  stricken  out  of  the  last 

n  — p  +  1  rows' to  form  the  second  determinant  of  (D)  (the  last  factor  of  the  term) 
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(10) 

are  kz,  k8  .  .  .  .  kp,  which  are  all  to  the  right  of  the  column  £,.  Hence 

the  element  1  in  the  first  row  also  in  this  determinant  belongs  to  the 
column  k±.  The  value  of  the  determinant  therefore  is 

(8) 

0 
1. 

(-1) 

0  '.1 

Hence  the  final  sign  of  the  expression  (D)  is: 

(9) 

«2_(-  „  _ -  2k;  +  1+2*1 (P  -  i) 2 

=  (-D  1  =(-0  1 

since  w2  +  n  +  2£x  is  an  *w«  number,  and  therefore  cancel  out.  Then  we  get: 

e* (n-p}\ 
.  .   .   .  C* 

(E) 

The  scalar  factor  belonging  to  this  term  is: 

(-1)'""  ~r~+f\ apk\ 

where  we  can  write  tt  •  e/ti  instead  of  vki.    Multiplying   by   this  scalar,    the 
term  (10)  takes  the  following  form: 

(F) 

e*2 

#1  /fel  .     .     .     . 

When  we  now  form  the  space  complement: 

(G) 

we,  of  course,  get  an  expression  which  can  be  obtained  from  (D)  by  in- 

terchanging k±  with  £2,  only  it  must  be  noticed  that  the  single  ,,one"  in  the 
first  row  (of  the  last  determinant  of  (D))  belongs  to  the  column  £2  —  1, 

because,  in  forming  this  determinant  from  the  last  n  —  p  +  1  rows  of  (7), 

we  have  also  stricken  out  the  ̂ th  column,  which  is  to  the  left  of  £2.  Thus 

the  value  of  the  „ one-determinant"  in  this  case  (compare  (8))  is 
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(_    1  )  (k2  -  1)  +  1    =    —   (—    1  )  k2  +  1 

and,  accordingly,  for  (G)  we  get  an  expression  completely  analogous  to  (10) 

with  change  of  sign.  It  we  put  £3  instead  of  £2  we  have  charge  of  sign 
once  more  (two  columns  to  the  left  of  £3  stricken  out)  and  so  on.  If  we 

then  sum  all  those  p  space  complements  of  the  type  which  we  get  from 

that  fixed  set  of  the  £'s  which  we  have  considered,  we  arrive  at  the  fol- 
lowing expression: 

np  + 

(II) 

£                £ 

v. 

£       PA                                     P/, p 

e*2  e/fea                < k p 
d-i  k\               .  ̂ 1  k p 

etc 
a 4  p  *  '  *     p 

P  K\                                                    P      p 

Therefore : 

12)   a  X«  -  p  «p  a±  a2 .  .  .  ap)  =  —  (- 

tk\ . 

Oj  ....  ty =  2 e*  .  .  .  .  e*p «!*!.:.  a±kp 

<*!  .  .  .  .  ap e*,  :  .  .  .  tkp apki  .  .   .  apkp 

where  the  sum  is  to  be  taken  for  all  possible  sets  of  the  k's. 
We  now  only  have  to  show  that: 

(13) 

This  formula  follows  from  elementary  properties  of  vector  determinants, 

and  is  well  known  in  literature.  For  the  sake  of  completeness  we  shall 

also  give  this  last  step  of  the  proof. 

We  put  a;  =  £/«*•/,  and  inserting  this  in  (13)  (left  side)  we  get  for  the 
principal  diagonal: 

(H)  2tjaij2tjdzj  .  .  .  .Ztjdpj          /=i,2....« 

while  the  other  terms  in  the  expansion  are  all  possible  permutations  of  this 

one.  We  carry  out  the  multiplication.  Let  one  term  thus  obtained  from 
the  principal  diagonal  be: 

(I) 

Ca2 dp  ap 

but    to    this    there    is  a  corresponding   one   in  each  of  the  permutations  of 

the    diagonal ;    i.e.:    a  term    consisting    of  the  same  vectors  and  scalars  in 
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another  order,  and,  therefore,  the  multiplication  of  scalars  being  commutative, 

the  product  of  the  scalars  is  equal  in  each  of  them.  Moreover,  each  term 

having  the  sign  of  its  permutation,  it  has  the  sign  +  or  -  -  according  as 
it  is  an  even  or  odd  permutation  of  the  first  one  (those  terms  cancel  out 

where  two  of  the  a's  are  equal).  Hence  the  sum  of  all  these  terms  is 

(K) 

Ca8 

Ca 

Cl»  a2 

(I  pap. 

And  the  expanded  determinant  (13)  is  then  reduced  to  the  sum  of  all 

terms  of  this  form,  the  a's  being  any  p  numbers  in  any  order  of  1 ,  2  .  .  .  .  w. 
But  then  there  will  be  p  \  of  these  terms  which  contain  the  same  set  of  unit 
vectors,  but  with  the  columns  of  the  determinant  in  different  order.  In  one  of 

them  the  indices  will  occur  in  order  of  magnitude,  say  k±  <C  k^  <\  .  .  .  .  <^  kp, 
the  term  accordingly: 

/T   k 
\1-*/  — _|_   »vi     "-J    rvz      .        -        .        -       — y  n, 

P 

And  as  the  columns  of  a  vector  determinant  can  be  interchanged  as 

in  an  ordinary  one,  all  the  others  can  be  written: 

f\n  H- "i  pi  ~"*pf  ~  ~~P  ftp 

where  the  /?'s    stand  for    all  permutations  of  the  £'s,  the  sign   being  deter- 
mined as  usual.    Hence  the  sum  of  these  p\  terms  is: 

Cfci   Cfcp       a±  k\    -   -  -  <*i  kp 
(N)    

tki   e*p       rtp/c,    .  .  .  apkp 

And,  consequently,  the  vector  determinant  in  (13)  is  equal  to  the  sum  of 

the  (n  j  terms  of  this  form,  from  which  follows  the  desired  result.  Formula 

(5)  is  thereby  proved. 

If  we  in  (5)  put  p  =  2  we  get  the  more  special  formula  (4),  which 
also  can  be  written: 

(14) -=  —(n-  2)!a-(bc  — (bc)c). 
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§  g.    Expressions  of  the  form  2  f ,  X  f »    arid  2  ti  X  fi.    The  symmetric 

differences  of  a  matrix. 

Given  in  Sn  two  systems  of  n  vectors : 

(A) 
f     f  f 
1    1>  1    <2>    •     •     •     •    \    n 

Tl>      12>      •    •     ••    •    f* 

Let  the  two  conjugate  systems  of  these  be  denoted  by  x 'i  and  xt-  re- 
spectively. 

We  will  find  an  expression  for  the  quantity  2  ft  X  fi',  evidently  a 

polyadic  of  order  n  —  2.  It  is  a  vector  in  three-space,  the  X  then  denoting 
the  ordinary  vector  product,  and  we  know  that  this  vector  is  expressible 

in  the  form1  (i,  j,  f  being  the  unit  vectors  of  S8): 

(B) 

where  the  scalar  product  is  to  be  taken  of  each  two  corresponding  vectors 
of  the  last  two  rows,  i.  e. :  the  dot  is  here  written  after  the  vector  where 

it  is  to  be  used  in  the  developed  determinant. 

We  are  going  to  show  that  we  in  Sn  arrive  at  an  analogous  expression. 

According  to  our  definition  we  get  the  sum  of  n  determinants : 

(1) 

the  last  two  rows  being  the  components  of  f  ,•  and  f,-  respectively. 
We  develop  each  of  these  n  determinants  in  terms  of  the  (n  —  2)- 

rowed  determinants  of  the  first  n  —  2  rows  of  unit  vectors.  We  get,  /  and  / 

being  any  two  columns,  j  <C  /: 

d         Co 

...    CM 

p.      p, 

CM 

vl       V2      '     * 

Al  fi2 

A- /;-,  /;•,  . 

.  /;•„ 

(2) 
/.•//.•/ 

/.;  /•* 
the  sum  2  being  taken  for  all  the  [*)  possible    sets    of  (j  I).    As    before, 

(jt) 
/j  and  /i  indicate  that  e/  and  e/  are  stricken  out. 

1    See:  Zur  Theorie  der  Triaden  von  ALMAR  N^ss.  (5)  and  (6),  p.  16. 
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But  evidently  is: 

(3)  2,  tutu  =  x'i 

(4) 

and,  accordingly: 

(5)  SY;IJ."\  = 

Therefore,  we  can  write: 

/         r 

x  j-    xi- 

(6) 

X     •  X 

One  special  case  of  this  formula  is  of  particular  interest. 

We  know  from  three-space,  that  the  vector  of  a  dyadic  (GIBBS)  is 
obtained  by  insertion  of  the  cross  between  each  pair  of  its  vectors.  The 

dyadic  be*  V  =  i  a  +  j  6  +  f  C.  Then  Wv  (GIBBS  writes  ¥*)  =  i  Xa 
+  j  X  6  +  f  X  C.  We  also  know  that  the  components  of  this  vector  are 

the  so-called  symmetric  differences  of  the  matrix  of  a,  6,  C,**.  They  play 

a  r6le  in  the  theory  of  triadics  in  S8***.  In  any  square  matrix  there  are 

in  general  --  pairs  of  elements  such  that  the  elements  of  each  pair 

are  symmetric  with  respect  to  the  principal  diagonal  of  the  matrix.  We 

thus  can  form  -  -  -  differences  (,,the  symmetric  differences")  by  sub- 

tracting one  of  these  two  elements  (a  definite  one)  from  the  other.  The 

number  of  symmetric  differences  is  equal  to  n  if  and  only  if  n  =  3.  Of  the 
matrix  of  a,  6,  C  they  aref 

We    observe   that   the    minuend    is    chosen    in    a   definite   way,    alternately 

in  the  upper  and  lower  half  of  the  matrix  ft- 

*  In  order  to  be  able  to  tell  at  a  glance,  whether  we  are  speaking  of  three-space  or 
w-space,  we  will  in  the  following  (usually)  denote  a  dyadic  in  5$  by  W  =  \  0  -f  j  b  +  f  C, 
in  Sn  by  *. 

•*    Zur  Theorie  der  Triaden  von  ALMAR  N^ss,  §  4. 

—  loc.  cit.  §  33  &  §  45. 
t   loc.  cit.  §  4  (i)  or  p.  71. 

tt   loc.  cit.  p.  70,  footnote. 
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Let  a  dyadic  in  Sn  be  defined  as   $  =  c«-  f,-  (sum  for  i  as  usual  from 
1    to  n).    Then  the  quantity  which  is  analogous  to    Wv  of  SB,  must  be: 

(7) v  =  e,-  X  ft 

i.  e. :  a  polyadic  of  order  n  —  2,  the  space  complement  of  0.    We  obtain  a 

formula  for   &v  by  putting  f',-  —  c«  in  (6).    Thus  we  get : 

?!     C2  . '   CM 

(8)  #„  =  e,-Xft  =    ct  c2   CM 
erea-   CM- 
^1    ̂ 2   ^M 

But  as: 

we  can  write: 

?i   e,    CM 

(10)  #„  =  e,-X  ft  =  -     cx  c2   CM 
^1  "  *2  "   *n  ' 

fi  f,   f» 

Here  we  have  for  any  j  and  /  (/<C/): 

C,-  C/' fr  ft 

If  we  develop  (10)    in  terms  of  determinants  of  this  kind,  the  sign  of 

(11)  will    be  (—  I) »-i +»+/+'=  —  (—  i)/+'.    Let  us   by  £//  denote  the 

(w  —  2)-rowed  determinant  defined  by  the  unit  vectors  after  erasing  C/  and 

e/ (/</),  i.e.: 

(12)  £y/=       !../.../...... 

ei   e« 

i.  e. :    The  E's  are  defined  by  the  equation : 

e±   CM 

(13)  ;f_(_i)/+'£yj     !y  e!' C;      C/ 

Moreover,  we  put: 

(14) 
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Then: 

(15) 
V  =  2 

Summing  for  all  possible  sets  of  (//).    As  j  and  /  are  not  quite  inde- 
pendent of  one  another  (/  <C  /),  it  is  convenient  to  consider  j  I  in  this  and 

similar   summations    as  a  single    index    running    from    1    to  (     I  =   —  —  -  '. 

The 
quantities:    dfi  =       -  (-  1)'  +  /  (/,/-///),    (/</),    we 

will  call  the  symmetric  differences  of  the  matrix: 

y  1 1  j: 1 2   / 1 « 

y  2  1  y  2  2   /2  » 

yw  « 

whereby  they  are  defined  also  for  the  ̂ -dimensional  case.  We  now  can 
easily  see  which  of  the  two  quantities  fji  and  ///  (the  sign  taken  into 
account)  that  is  to  be  subtracted  from  the  other,  as  we  have: 

(a) 

(b) 

and 

if  j  4-  /  is  an  odd  number;  (minuend  in  the 
upper  half  of  the  matrix), 

if  j  +  /  is  an  even  number ;  (minuend  in  the 
lower  half  of  the  matrix). 

We  readily  see  that  this  gives  the  well-known  formula  for   Wv  in  58. 
For  in  the  case  n  =  3  we  have: 

(16) =  et  =  t;  £18  =  e2  =  j;  £12  =  c.  =  f. 

But   the    formula  (15)  also    holds  good    in   two-space.    For  if  we  have 

=  ̂   fi  +  e2  f2 ,   &v  must  by  definition  in  this  case  be  a  scalar : 

(17) 

0,= 

1       0 

/i i  y i 2 

0      1 

.72  1    ./ 2  2 

~" yi  2       /a  i • 

But   according   to  (13)  we  must  have  £"12  =-  1*,  and   the  formula  (15) 
gives  the  same  as  (17),  viz.: 

(18) =  -  (-  0'+2(/12  -/, J  =/lf  - 

*    wTlie    complement    of   the    w-rowed    minor  (the    determinant  itself)  is   i".   BCCHER,    M., 
Introduction  to  Higher  Algebra,   p.  23. 
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As  we,  by  §  6  (a),  have : 

(19)  e,-xf.-  =  *.-Xe,-, 
we  obviously  get: 

(20)  c,-  X  fi  =     -  e,  X  Ki 

an  equation  which  is  well-known  for  the  three-dimensional  case*. 
A  few  other  properties  of  <E>V,  which^are  completely  analogous  to  well- 

known  vector  product  properties  in  Ss,  shall  also  be  mentioned. 

The  equation  §  8  (14)  is  valid  if  we  instead  of  b  X  C  put  a  sum  ot 
such  expressions.  From  this  we  deduce: 

(21)  VX*-20V  =  —  (n  —  2)1  *>•($—  &e) 

analogous  to  the  equation  in  53: 

(22)  t>X  Wv  =  —  a-!??  —  Wc}. 

If  we  put  t)  =  d'  in  (21)  we  get  the  n  equations: 

(23)  c,-  X-  -  2  #,  =     -  (*  —  2) !  (ff-  —  n) 

corresponding  to  the  following  three  in  S8:** 

t  X  Vv  =  -  (a  —  x±) 
(24)  1X3^=     -  (6  -  *s) 

f.x  ft  =  —  (c  —  *g) 

xi»  ;'a>  Xs  denoting  here,  of  course,  the  conjugate  system  to  a,  6,  C. 

§10.    The  reciprocal  system  and  the  ,,Erganzungen<<  of 
a  given  set  of  vectors. 

y> 

Let  the  reciprocal  system,  say  fi*,  to  a  given  system  fi-  be  defined  (as 
in  S8]  by  the  equation 

(I)  f,'f,-=e,-e,-=f,-f,-*. 

It  is  here  convenient  to  introduce,  as  we  have  done  in  53,  the  ,,Er- 

ganzungssystem"  of  a  primary  system,  f  If  the  latter  be  a,  b,  C  (in  SB),  the 

,,Erganzungen"  are:  tt^  =  b  X  C,  tt>2  =  C  X  a  =  —  a  X  C ;  tt>8  =  a  X  b ; 
Wi  is  the  Erganzung  of  a,  tt>2  that  of  b,  etc.  The  reciprocal  system  of 

a,  b,  C  is,  as  mentioned  §  3  (6),  obtained  from  the  ,,Erganzungssystem"  by 
division  by  the  determinant  of  a,  b,  C. 

*    ALMAR  N^:ss:  loc.  cit.  §  4  (4). 
**    loc.  cit.  §  4  (2). 
t    loc.  cit.  §  13. 
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The  Erganzungssystem  has  a  few  properties  which  may  be  worth 

noting,  f  Here  we  shall  only  mention  that  the  Erganzungssystems  of  two 

conjugate  vector  systems  are  conjugate.  This  follows  from: ft 

/  u/X  uf\    .  _  nf  X  IT/ 

\s where  J  denotes  the  (GIBBSIAN)  double  cross  product. 

From  our  point  of  view,  the  Erganzung  of  a  vector  of  a  system  01 
n  vectors  in  S«  must  be  the  space  complement  of  all  the  others,  taken 

alternately  with  positive  or  negative  sign.  We  will  give  the  definition  the 

following  form : 

(a)  The  ith  Ergdnzungsvector  of  a  given  vector  system  f,-  is  obtained  by 

striking  out  the  ith  row  in  the  determinant  of  the  f  s  and  replacing  it  by 
the  unit  vectors. 

If  the  Ith  Erganzungsvector  is  denoted  by  tt)t,  we  get: 

(2) 

/, 

1 1 

i—  12 

/»+!« 

fn  1          fn  2   fn  n 

=  Ci  Ft- 1  +  e2  Ft 2  +   e«  Fin  =  e/  Ft/ 

where  Ffj  is  the  cofactor  of  /,-/.  We  thus  see  that  the  matrix  of  the  Er- 
ganzungssystem is  the  matrix  of  the  cofactors,  i.  e.  conjugate  to  the  adjoint 

of  the  matrix  of  the  f  s. 

Now  (2)  evidently  can  be  written: 

(3)  tt>,  -  (-  I)1'"1  <«  -  i  f,  .   .   .  f,_  ,  f +,  .   .   .  f«. 

It  is  now  easily  shown  that  the  reciprocal  system  of  the  f 's  is  deter- 
mined by  the  n  equations: 

r*         1 fc'-w«i (4) 

analogous  to  what  we  have  found  in  S8.    |/|  is  the  determinant  of  the  f  s. 
Let  us  put: 

(5)  0  -  e,  f, ;  0*  =  e,  f,* ;  <&*  =  f,*  e,. 
Moreover : 

(6)  f*  ft  =  (tf  e,)  •  (ey  f/)  =  ̂   -  </>. 

t    loc.  cit.  §  13,  §  37,  §  46. 

tt   loc.  cit,  §  12  (5)  and  §  13  (i). 
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If  now  t>  be  any  vector,   and  tt'  =  =  0  •  V),   then  : 

(7) 

But  f,-*  jy  is  equal  to  the  idemfactor  if,  and  only  if,  <PC*  •  t/  =  tt.  I.  e.  the 

transformation  </>c*  must  be  the  inverse  of  </>,  f  and  its  matrix  accordingly 
the  inverse  of  the  matrix  of  0,  Hence  the  matrix  of  0*,  being  the  con- 

jugate of  that  of  <&c*,  consequently  is: 

(A) 

I/I /», 

w 
-L   n  n 

ITT 

whereby  the  validity  of  (4)  is  shown. 

From  (a)  follows  immediately  that  the  Erganzungssystem  of  xt-  is  con- 

jugate to  w,-  (where  x,-  is  the  conjugate  system  of  the  f  s). 
We  also  have  as  in  .So : 

(8) 
fi  '  W«  '  =  fa  '  K>2  = 

=  f« 

The    dyadic    determined    by    the    tt)'s,  the  Erg&nxungsdyadic,    is  in  vS3 
given    by    the    following    determinant,   the   primary  system  being  a,  6,  C:ft 

(9) aX  bx  ex 
a      6      c 

=  - 1 1(6  XC  —  CX6)  —  etc. 

As  we  see  deriving  from  a  (somewhat  special)  determinant-triadic  by 

taking  —  as  the  crosses  indicate  -  -  the  vector  product  of  the  two  last  vectors 
in  each  of  its  triads. 

In  the  analogous  way  we  can  derive  the  Erganzungsdyadic  Q  =tt'  Wi 
in  Sn  by  means  of  the  space  complement.  It  is  readily  shown  that: 

(10) 

where  the  space  complement  is  to  be  derived  of  the  last  n  —  1    vectors  in 
each  of  the  polyads  of  the  polyadic,  represented  by    the  determinant. 

(10)  can  also  be  written: 

,»   p 

.  .  .  ew 

1 f  i  f, 

f. 

(«  —  1  )  ! 
f,  f«  . 

t    Usually  in  literature  denoted  by   <£-  '. 
tt    ALMAR  NJESS,  loc.  cit.  §  13  (i)and  (2),  and  §  12  (4). 

Vid.-Selsk.  Skr.  I.  M.-N.  Kl.  1922.  No.  13. 
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fi  .  .  .  fi  -  i  f* •  + 1  .  .  .  f» 

fi  .  .  .  fi-  i  fi-+ 1  .  .  .  f« 

And  as,  by  §  7  (2),  the  determinant  in  this  expression  is  equal  to 

(n  —  1  )!<"-•  fi  .  .  .  f,  _  i  f,-  _j- 1  .  .  .  f,,,  it  follows  immediately  from  (3)  that 
the  second  member  of  the  equation  (11)  is  equal  to  e« tt),,  q.  e.  d. 

§   ii.    The  space  complement  of  the  Erganzungsdyadic. 

As    is    known,    the    ̂ vector"    of   the  Erganzungsdyadic    in    S3    can    be 
written :  t 

( 1)  £>;  =  (£8  —  c>2)  a  4-  (q  —  rt8)  b  +  (<72  —  bj  C  = 

i-   j-   f 

a  b  c 
a   b  c 

The  analogous  equation  holds  in   Stt.    We  put: 

(2} 

(3> 

By  §  8(5)  we  get,  noticing  that  here  p  =  n  —  1,  and  therefore 

(-  \)"p(n-p}\  =(-  ir("-%-(*-  !))!==  1: 

~   2  ( —    1)  Ci  X  ((*  -  1  fi    .     .     .    JY-   1    f/'+l    •     •     .    f;/) 

f,.  .  .f,-_,f,-+1.  .  .f,, 

fl    •     .     .    fi-  1    fi'+l    .     •     •    f« 

fi    f, 

f. 

We  notice  that  the  two-rowed  determinants  of  the  first  two  rows  are 
all  scalars  of  the  form: 

(4) 

IS) 

e,  •    (i 
6    ft 

Thus  we  can  write: 

a,  ==-^(-i)^'  (///-///> (/'» 
fl... //...//. . .f- 

t   loc,  cit.  §  13  (7). 
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Here  we  write,  as  in  §  9  (14):  —  (—  1)/  +  /  (/}/  —fij)  =  dji.  Further, 
let  the  (n  —  2)-rowed  vector-determinant,  formed  from  the  f  s  after  f/  and  f/ 
have  been  stricken  out,  be  denoted  by  Fji,  i.  e. :  F\i  is  formed  from  the 

f's  similarly  as  £}/  of  §  9  (12)  and  (13)  is  formed  from  the  e's.  Then  we 
can  write  the  expression  for  Qv  in  the  very  simple  way : 

(6) 

(ji) 

the  sum  extending  to   all   the  (  « J   possible    combinations  of/,  /(/ <C  /).    We 

may  think  of  these  two  sets  as  arranged  in  some  definite  order,  for  example : 

F     F     F  F 
'ifit'ift'oft   •     •     •     •     •    *    n  —  1  n 

(A)  ,    "     ,   '     /  , »i  a   »i  a  "as   »«  —  i  * 

and  then  regard  the  sum  as  the  GRASSMANN  ,,inneres  Produkt"  of  these 
two  ordered  sets.  Thus  we  realize  that  /,  /  here  plays  the  role  of  a  single, 

(n  \       n  (n  —  1 ) not  a  double,   index  running  from    1    to        I  -       — — 

Let    us    consider  a  definite    determinant    Fji.     We    will    expand    it    as 

§  8  (13).    Let  us  in  the  (n  —  2)-rowed    matrix  of  the  vectors  of  Fji,   viz.: 

/i  i  /i  2   •   •   •   •  /i  « 

(B)     (n—2  rows), 

;2l/,2   fnn 

strike  out  the  rth  and  /th  columns  (r  <T  /)  and  denote  the  determinant  thus 

obtained  by  ̂ j/.rt-  Thus  we  see  that  ̂ ji.rt  is  the  second  minor  of  the 

determinant  of  the  f's,  obtained  by  striking  out  its  /th  and  /th  rows  and  its 
rth  and  /th  columns. 

Further,  let  us  put,   as  we  have  done  §  9  (12): 

(7) 

Thus  we  have,  by  §  8  (13): 

(8)  -       /V/  = 

and,  accordingly! 

(rt)      '     (/O 

(rt) 

(9) 
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§  12.  A  theorem  of  the  symmetric  differences  of  a  matrix. 

We  readily  see  that  the  expression  (9)  for  Qv  in  the  preceding  §  (1 1) 

is  simply  a  transformation  of  the  form : 

to  sum,  as  usual,  for  a  and  ft  which  here  as  above  must  be  thought  of  as 

indices  running  from  1  to   .  The  elements  of  the  matrix  of  this 

transformation,  i.  e.  of  the  matrix  <J/? « »  are  tne  niinors  of  the  second  order 

of  the  matrix  of  the  f's.  In  full  5/?«  can  t>e  written: 

12  A  2'   18 

(A.) 

—  1  «,  1  2    jf-n  —  1  «,  1  3   ^J-n  —  \n,n—  \n 

i.  e. :  (conjugate  to)  the  adjoint  of  F  of  the  second  class.  It  may  be 

denoted  by  [7^].  (/''stands  for  the  primary  matrix.) 
But  is  should  be  emphasized  that  the  matrix  of  the  transformation 

5/? «  dpi  where  we  have  to  sum  for  the  first  index,  is  the  conjugate  (trans- 

posed) of  this  matrix  (A),  that  is,  the  matrix  of  the  transformation  Qpadp 

is  ([/']2)r  -  [7v]2. 
The  two  transformations  [7r].2  and  [Fc]%  are,  of  course,  different  just  as 

F  and  Fc  are.  But  we  can  prove  that  in  this  case,  where  the  transformed 

quantities  are  the  (fs,  it  does  not  make  any  difference,  because  there  is  one 

particular   set  of  I n  }  quantities   with    that   property    that   the  two  matrices 

[F\  and  [Fc].2  effect  the  same  transformation  on  it.  This  particular  set  is 

the  symmetric  differences  of  the  matrix.  This  theorem,  which  we  now  are 

going  to  prove,  can  be  expressed  in  the  following  form: 

(a)  The  two  matrices  which  can  be  formed  from  the  second  minors  of 

n  primary  matrix  and  from  the  second  minors  of  the  conjugate  of  thist 

transform  the  symmetric  differences  of  the  primary  matrix  into  the  same 

set  of  quantities. 

In  order  to  prove  this,  we  must  show  that  the  following  equation 

between  the  two  transformations  in  question : 

(2)  <Jff  a  dp  =  <3«  ft  dp 

holds  good  for  any  a,  i.  e.  for  any  combination  of  two  rows  and  columns 

respectively. 
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We  can  without  loss  of  generality  assume  that  a  stands  for  the  first 

and  the  second  rows,  or  respectively  columns.  Then  more  explicitely  we  write 

the  equation  which  we  have  to  prove,  thus: 

(3) 

(j  I) 

12 

The  symmetric  differences  can  be  expressed  as  the  scalar  values  of 

all  the  two-rowed  determinants  -  -  taken  with  the  sign  —  (—  1)' +  ',  /  and  / 
being  the  two  columns  represented  in  the  determinant  of  the  fol- 

lowing matrix: 

|U.....,..M 

i.  e. :  we  have  to  take  the  scalar  product  of  each  two  vectors  to  be 

multiplied.  But  we  also  notice  that  the  symmetric  differences  in  the  same 
way  can  be  formed  from  the  matrix. 

(C) 

.  .  e» 

being  the  conjugate  system  of  the  f  s. 

Now    all    the    quantities 
of  the  matrix: 

12 are  all  the  (n  —  2)-rowed   determinants 

(D) 

/I  8  /I  4 

723/24 

J'l  8  /«4   Jnn 

obtained  from  the  matrix  of  the  f  s  by  striking  out  the  columns  1  and  2. 

And  in  order  to  form  5;  ̂ 12^  we  nave  to  multiply  each  <///  by  the 

corresponding  one  of  these  determinants  and  add  up  all  the  products. 

But  then  we  see  that  this  sum  is  simply  got  as  a  determinant,  obtained 

from  (D)  by  replacing  the  two  missing  columns  by  the  matrix  (B),  whose 

two-rowed  determinants  -  -  as  said  above  -  -  exactly  give  the  quantities 
dji  as  their  scalar  values.  Changing  rows  and  columns  in  this  determinant 
we  thus  obviously  have : 

(4) 

(jl) 
1-2 

rf,,= 

fi-f, 

en 

1      e2 
A  3/2; 

/!«/. 

2" 

Jnn 

The    validity    of  this  equation  is  also  readily  shown   by  expanding  its 
second  member  in  terms  of  the  two-rowed  determinants  of  the  first  two  rows. 
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,  e,,  .......  fr  =  21/*  ,  e, 

We  here  put: 

15)  t;  =  27i  ,  e,,  f2  - < 

and  inserting  this  in  (4)  we  get: 

16) 

But,  according  to  an  elementary  theorem  of  determinants,  this  simply 

means  that  (6)  can  be  expressed  as  a  sum  of  all  the  n  determinants  of  the 
following  type: 

2ylf- 
t,~Sfti«,~  .  . .   .   .  2fnitr ' 1 i e, 

e, 
£ 

/*« 
J 

Tl    H 

(7) 

e, p,-/2/e/«.  .  .  . e, .  ./«,*,• 

/as   
 • 

•  Aa 

J  "8 

=  e, /",  •    /o  • 

fni 

Ci     Co    e,, 

.  /„, 

where  especially  the  subscript  i  in  this  case  does  not  indicate  a  summation 

in  ordinary  sence;  it  only  means  that  /  can  be  any  one  of  the  numbers 

I,  2,  3  .  .  .  n.  And  the  ,, dotted"  vector  er  is, of  course, to  be  applied  to  the 
„ nearest"  vectors,  i.  e.  to  those  in  the  second  row. 

But  we  now  readily  see,  that  by  putting  /  ;;>  3  we  get  determinants 

in  which  two  rows  of  scalars  are  equal,  i.  e. :  vanishing  determinants.  Thus 
we  have: 

(8) 

J\\J»\    ......  f*  i 

/I  8  f'l  8     ......  f 

»l 

f\  »  fi  n 

f- 

+ 

/I  2    '22 

/!-/« 

•J" 

./"    » 

Each  of  these  two  determinants  is  a  vector,  whose  components  are  the 

cofactors  of  the  elements  in  the  second  row.  If  we  now  expand  in  terms 

of  these  elements  (i.  e. :  in  terms  of  the  unit  vectors)  and  then  multiply 

distributively  by  6j  •  and  e.2  •  respectively,  all  the  scalar  products  vanish 

except  one  in  each  determinant,  as  t,  •  c/  -O(i^J)  and  =l  (/=/).  Therefore: 

(9; 

/"      / 

A/, /,  .  A  ,                    A  > 

/in  At                           /"8 .  ».i 

•f 

/-/»    .  .  ../;,„ /,„/,„     /,„ 
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In  order  to  get  an  expression  for  the  sum  2  GL9)  rt  drtj  we  can  proceed 
(rt) 

in  a  completely  analogous  way.    We  get: 

(10) 
(rt) l  2  >  r  t     r  t 

dr  t  = 

731732   73 

readily  seen  by  expanding  according  to  the  two-rowed   determinants  of  the 
first  two  rows  (i.  e.  according  to  the  quantities  drt),   because  we  now   shall 

combine  drt  with  determinants  of  that  matrix  which  is  obtained  by  striking 
out  the  first  two  rows  of  the  matrix  of  the  f  s, 

We  here  put: 

(10 

=  2 fin  fr 

and  inserting  this  in  (10)  we  get: 

(12) 
(rt) 

/»!  /», 

•  f'A" 

J  n  n 

and  this  determinant  can  be  reduced  to    the  sum  of  the  n  determinants  of 

e  .     i>  • 

tn' 

V!          v2       .     .     . 

//!/,•  2     .              fin 

f       f fan 
_ f        f                                                           f 

781     782    '     '     ' 

   78  H 
781782                  '  7  8  n 

     In  n 
/Ml  /MO       '•  ./«« 

(13) 

But   if  we   here  put  i  ̂>  3,  we  get  vanishing  determinants.    Therefore 
we  have: 

(14)  2
' 

('• ') 

71 1 71 2 

781782 

7^17^2 /I- 

Jnn 

j       v.i   wz 

/21/22   72" 
/.!/• 

3-2 

/, 

3" 

fn\fn\ 
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or: 

J  \  '2  J  1  8     '     ' 

/«,   /«« 

fn 

.    .    .  y  j  >/ 

(14')                    2<&»,rt    drt    = 
/'        / 

fnn 

/•        /• 

, 

=  -z-g.i     +i ;.  d. 

•  j  nn 
J"1J"8    •    •     • 

As  obviously  the  method  in  this  proof  is  entirely  general,  this  result 

holds  good  when  we  instead  of  I,  2  have  any  other  two  possible  numbers, 
and  our  theorem  is  hereby  proved. 

If  n  =  3,  the  .  matrix  of  the  second  minors  is  simply  the  primary 
matrix,  f  Let  the  latter  be  that  of  the  transformation  (dyadic)  W;  then  we 

know  that  the  symmetric  differences  in  this  case  are  the  components  of 
the  vector  Wv.  For  the  three-dimensional  case  our  theorem  thus  takes  the 

particular  form 

(15)  ¥•  ¥v  =  Wc-  Wv 

which  simply  means  that  each  vector  of  the  triple: 

d  —  xx  ,   6  —  x2  ,   C  —  K% 

is   perpendicular   to   Wv  (/a  conjugate    to    d,  b,  c),    a    proposition  previously 
stated,  ft 

A  still  more  particular  case  of  the  same  theorem  is  that  if  tt  is  any 

vector  in  58,  with  the  three  components  P,  Q,  R,  then  each  of  the  three 
vectors 

is  perpendicular  to  the  curl  of  tt.  ttt 

§   13.    Application  to  Cramer's  Rule. 

Let  a  system    of  n    equations   of  the    first   degree    be   given,    the    un- 
knowns being  xlt  jc2,  .   .   .   .  xn. 

/ n 

*»  = 

-f   .   .   .   . 

"     X »  =  V» 

t    though,  according  to  (A),   with  the  elements  in  another  order.    This  is,  however,  of  no 

consequence  as  the  order  of  dj  I   is  altered  correspondingly, 

tt  Zur  Theorie  der  Triaden  von   ALMAR  N^ss,  §  4  (a)  and  (a),  and  §  8  (i). 

ttt  loc.  cit.  §  4  <e). 
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Let  us  here  by  jr  denote  an  unknown  vector,  jc  =  tiXi,  and  by  tt  the  known 

vector  tt  =  e/  Vf.    Putting,    moreover,    fy  =  fj ,-  Ci,    then   ( 1 )    can    be   written : 

fi  '  J  =  ̂ i 

fa  '  f  =  ̂ s 
(2)    

f»  •  J?  —  #» 

Multiplying  these  equations  by  tif  e2  .  .  .  .  C«  respectively,  and  adding, 

we  get 

(3)  e±  fi  •  ;:  +  e2  f2  •  jt  +  ....+  e«  f«  -  jr  =  a 
or 

(4)  #.r  =  B. 

To  solve  the  equations  (1)  then  simply  means  to  find  that  unknown 

vector  jr  which  by  the  known  dyadic  0  is  transformed  into  the  known 

vector  t).  We  know  that  the  equations  (1)  are  always  solvable  if  the  f's 
are  not  all  contained  in  a  subspace,  Sp,  of  Sn.  For  in  this  case  0  •  jtr  will 

also  be  lying  in  a  /-space,  viz.  the  /-space  which  contains  the  conjugate 

vectors  to  the  f's,  and  which  in  general  is  different  from  Sp. 

Now  (1)  is  solved  by  multiplying  (4)  by  0C*,  0*  being  the  dyadic 

determined  by  the  reciprocal  system  of  the  f's.  From  (4)  then  we  get: 

(5)  3>c*  •  0  -  1  =  &c*  •  K> 
which  reduces  to 

(6)  r  =#**•&. 

This  single  equation  involves  CRAMER'S  formulae.  Let  W*  be  the  Er- 

ganzungssystem  of  the  x's,  i.  e.  the  conjugate  system  to  the  Erganzungen 

of  the  f's  (see  §  10).  Then: 

(7)  0C*  =  H™L- 

and  (6)  may  be  written  : 
*  •      * 

(8) !i        , 

The  components  here  being  equal  each  to  each,  we  get: 

which  are  CRAMER'S  formuke.    We  notice  that  the  space  complement  in  this 

very    compact    formula    serve    to    determine    the    unknowns    exactly    in    the 
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analogous 
have  three 

Writt 

tt 

"171' 

(10) 

way    as   the  vector  product  does  in  the  particular  case  that  we 

j  equations  with  three  unknowns,  f 

en  in  full,  (9)  becomes: 

J  1  1            J  -  1 

1 

"171 

z>*/a«-- 

/i.-i/,.-. 

.  fni 

A.'       l   Ao/                                       A/« 

I).             yn                                     <v» 

/l'-fl/2'  +  l 

fn  i  4- 
f,  i  4.  ,   /0  .  -4.  ,                             /,,  ,  4. 

'    J  "  l  ~T~  ' 

A  »         A,  n 
•     •             fnn f              f                                        f 

\ 

=  \f\ 

/I  1    •     '     '  /I  *  —  1 

/•I'-    •    ./,.'-. 

\-  1    •    '     •  /I  « 

/"  1   •     •     '    fn  «  —  »    v«  /"  «  +  1   •    '     '  /"  « 

which  is  the  usual  form. 

Another  related  application  shall  also  be  mentioned : 

Let  there  be  given  the  two  systems  of  independent  vectors  f,-  and  f/.    We 
will  find  the  dyadic  X  which  transforms  the  vectors  f,  into  the  vectors  f/ 

respectively.    X  is  hereby  completely  determined  by  the  n  equations : 

Let  0'  ==  Ci-fi  —  x/  e,,  else  the  notations  given  above.    From  (11)  we 
then  get: 

(12)  *.f;-e.-  =  f/e,- 

(13)  or:  X-  <PC  =  <l>c 

Multiplying  by  4>*  we  get: 

(14)  X-  <PC'  <1>*  =  <Pc  •  0* 

(15)  or:  X  —  &  '  <1>* 

whereby  X  is  determined. 

Let  us  put: 

X  =  e,-  jr,-  =  e,  cy  A-, 

(16)  then,  by  (15)  e,  r,  =  e,  x/  •  0* 

**».* (17)  or:  rf,  e/  =  r,-  =  x/  •  </>*  =  x, 

t  C.  RUNGE:  Vektoranalysis  (des  dreidimensionalen  Raumes),  (Leipzig   1919)  §   12. 
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(18) 

That  is,  the  matrix  of  X  is  determined  by: 

*/'=-ra  *?••»/" 

By    the    definition  of  the  /th  Erganzungsvector,   §   10  (a),  this  means : 

\f\  'xtj  is  obtained  from  the  determinant 

/n  721  •   •   •   •'  •   •   •  f*\ 
712722   f*% 

f* •1" 

Jnn 

by  interchanging  the  yth  row  with  the  quantities  f\i,/z ,-,  .   .   .   .  f  ni.    Or, in  other  words : 

|/|  Xij   is    obtained    from    the    determinant  of  the  f's  by  interchanging 

its  /th  column  with  the  *th  column  of  the  determinant  of  the  f's. 

§   14.    Miscellaneous  Formulae. 

The  space  complement  of  a  set  of  p  unit  vectors  must,  by  §  5  (a),  be 

expressible  by  the  other  n — p  unit  vectors.  Let  the  set  be  e/h,  C*a  .  .  .  .  C.£  : 
We  will  assume  that  they  are  arranged  in  order  of  magnitude,  i.  e. . 

k,  <  k,  <....<  kp. 

(l) 

Cl     *;,-.;...«•». 
.  .  .  e*,  .  .  .  .  e* 

e 
0    ....  1            o 
0       .   .                         1 o 

0    . .  1  .            .0 

=  (-1) 

where,  as  before,  ex  .  .  .  .  xe%-  .  .  .  .  e«  denotes  the  set  of  the  n— p  unit 
vectors  which  are  left  after  erasing  the  e^/s.  This  formula  taken  into 

account,  we  can  write  §  8  (6)  and  (A) : 

(2) 



44 ALMAR  N.ESS. 
M.-N.  Kl. 

But,  of  course,  from  this  does  not  follow  that  the  equation  holds  it 

we  remove  the  operation  sign  ̂ p.  i.  e. :  the  two  polyad(ic)s  whose  space 

complements  form  the  left  and  right  member  of  this  equation,  are  not  equal. 

From  (1)  again  follows  that,  for  example  (/  =  e,  e«  and  <  stands  for  <i): 

(3) 

</  = 

while  />  is  equal  to  the  same  determinant  times  ( —  1)"     l. 
We  also  have: 

.  .  .  .  e« 
.  an (4)  e,-x  a  =  (-!)"(-  i)1'4 

from  which  we  get: 

(5)  IX  a  =  (—!)"<  a. 

In  the  same  way  we  can  prove  the  more  general  formula: 

fC\  T  W  4  \n  —  P    / 

i  X.P  dj  a2  .  .  .  .  dp  =  v  cix  d2  .  .  .  .  dp . 

We  will  expand 

where  <£  and  <£'  are  two  dyadics,  0=  Cif,  =  x,-e,-,  0'  =e,-f'i.  </>X  ̂ '  is 
always  a  polyadic  of  order  «.  In  three-space  it  is  called  the  vector  product 
of  two  dyadics.  We  get: 

(7) 

Here  we  only  consider  /  ̂   j  as  ez  X  **'  =  0. 

Firstly  we  assume  that  i  <C  j.    Then  we  have  : 

(8) 
*!•• 

.  e, 
...e/. 

.  .  .  e« 

e. 

c» 

0  .  . 1 .  .  .0  . .  .  .0 

0  . 0 .  i  . 
.0 

e,, 

If  i  >./ we  get: 

(9) 
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Therefore  : 

(10) 

The  sum  in  the  brackets  is  equal  to  the  following  determinant  of  order 

(n  —  1),  multiplied  by  (—  1)": 

(A) 

.  .  .  .  e» 

r  i  .  .  .  fi  -  1  f  i  +  1  •  .  .  f  '» 

For    all    the  (n  —  2)-rowed    determinants    of  the   first  n  —  2  rows  are 

of  the    form  £",•/,  where  /  ==  1,  2  .   .   .   .  /  —  1|  f  +  1-  ......    The  plain 
complement  of  Etj  is  f/'.  It  must  be  noticed  that  f/  stands  in  the/th  column 
of  this  determinant  if  t^>j,  but  in  the  (j  —  l)th  column  if  i<^j.  Hence 

the  algebraic  complement  of  £"//  in  the  first  case  is: 

but  (-  lf(-  l)yf/,  for  /</ 

But  then  (  1  0)  readily  shows  that  : 

(12) *'=(-!)" 

J.     J. 
X 

p        p 
....    CM 

/>        p 

.     .     .     .    C« 

f  ,  f' 

.     f  M 

which  gives   the   formula   for   the  vector  product  of  two  dyadics  in  three- 
space  f  as  a  particular  case. 

By  comparing  (12)  with  §  4  (a1)  we  observe  that  (12),  as  in  58,  holds 

good  also  if  <2>  and   0'  are  vectors,   i.  e.:  if  x/  and  f/  are  scalars. 

t  ALMAR  N^ss,  loc.  cit.,  §  37  (7). 
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§   15.    The  skew-symmetric  dyadic  (tensor)  of  two  vectors  expressed 

as  a  space  complement. 

From    two    given    vectors    a  and  b  we    can    derive    a    skew-symmetric 
tensor  defined  by  the  following  scalars : 

involving   independent    scalars,  as   CH  =  0    and    cij  =     -  Cji.    This 

tensor   (by    some    authors    called    the    vector    product   of  a    and    bt)    is   in 

vector  analysis  notations : 

(2) c/  e/  cij  =  a  b  —  b  a  = 

a   b 

a  b 

the  multiplication  of  the  vectors  being  indeterminate. 

This  tensor  (dyadic)  and  the  space  complement  of  fl  and  b  are  very 

closely  related  to  one  another,  as  either  of  them  in  a  simple  way  can  be 
derived  from  the  other.  We  will  here  show  that  the  tensor  a/  can  be 

obtained  as  the  space  complement  of  a  X  &  times  a  scalar. 

By  definition  we  get  as  an  expression  for  a  X  &  tne  sum  °f  a^  possible 
terms  (when  /</)  of  the  following  form: 

(3) 

So  we  take  the  space  complement   of  this.    We    get  by  §  7  (2)  and 
P 

§    14   (1),  putting   p  =  2,2k.  =  i  +/: 

<«-  2  Ei)  =  (n  —  2) !  <"-  2  ej  .  .  //  .  .  //  .  . 
e/    e/ 

e/    ey 

t  HERMANN  WEYL,  Raiim,  Z-it,  Matsrij,  p,  40. 
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Hence  : 

(5) 

fly 

e/    ey 

=  (n  —  2)1  2  [e/  e;-  («/  bj  —  fly  bi)  -f  ey  e/  («y  £/•  —  a/  £yj 

with  the  restriction  that  /  <</•   But   this  sum  is,   of  course,   equal  to  the  si.m 
of  all  terms  of  the  form: 

(A) 

/  and  j  =  1,  2  .   .   .   .  w 
or: 

(»  —  2)1   e/eyc/ 

(6) <»-2  a  X  b  =  («  —  2)!  (a  6  —  6  a}  =  (»  —  2)! 
a    b 
a    b 

which  also  follows  from  (5)  directly,   by   §  8  (13). 

From  this  we  easily  get  the  space  complement  of  <£>?,,  viz.: 

(7)  ("  —  2(&v  =  (n  —  2)1  (<&  —  0C) 

The    equation    (6)  can  be  considered  as  a  particular  case   of  a  formula  for 

the  space  complement  of  the  space   complement  of  a  set  of  any  number  of 

vectors  less  than  n  (say  p}. 

We  found  §  8  (A)  that: 

n  p  _      -      i   vfc =  £(-  1) 

.  .  .  e« 

Now    we    will    derive    the    space    complement    of   this    quantity.     We 
notice  that: 

' ,   e,  ( 

=  (n  -  P)\  <" -P e, .     .  .e'xr, .    .  c« (9)        <«-/> 
C;, 

This  can  be  developed  according  to  §  14  (l)  by  putting  T/  —  p  instead 

n(n  -\-  \]        p  p 
of  p    and,    accordingly,  -  -  ---  ^.  .  instead    of^f.   whereby    the    final 

,  /A.      M1  ,      ,      , 
sign  of  (9)  will  be  (—  1 

we  get  from  (8)  : 

v*. 

7  z'-     Noticing  that: 

which  by  §  8  (13)  gives; 

(ii)      <H-p(<pa,.  .  .  . 

-f  DP 
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The  equation  §  8  (5)  can  also  be  obtained  from  this  by  the  following 
theorem  : 

(a)  The  space  complement  of  any  number  of  vectors  (say  p)  is  equal  to 

the  scalar  product  of  the  first  vector  by  the  space  complement  of  the  others, 

taken  with  the  sign  ( —  1)"  p. 
Let  Pr  be  a  polyad  of  order  r.    Then  the  theorem  says: 

(12) Pr. 

It  is  easily  proved.  Let  P,  ==  6t  .  .  .  .  6r  (it  is  readily  seen  that  the 
proof  is  valid  also  in  the  case    that  Pr  is  a  sum  of  such  polyads).    Then : 

(13) 

'l  II n  —  r—\ 

=  {-i)< 

— r—  I 

tt-C! 

d . 

eN 

—  r  —  \ 

As  <p  ax  .  .  .  a,  is  of  order  n  — p,  we  can  put:  Pr  =  <P( 
and  inserting  this  in  (12),    we  get  immediately  from  (11): 

(14) 

(15) 

np 

a,)=  -(-  \}    (n-p)\  v 

If  we  in  (12)  put  Pr  —  a,  we  get 

V 

=  PH-P, 

which  by  §   14  (5)  can  be  written: 

(16)  t>Xa  =  t)-(/Xa). 

The  well-known  equation  of  the  same  form  in  58t  is  thus  valid  unaltered 

in  Sn.     In  S.2    the   equation    is   self-evident.    t>  X  <*  tnen  simply  means  the 

t  GIBBS,    Scientific  Papers  II,  p.  59. 
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area  of  the  parallelogram  on  tt  and  a,  and  /  X  a  is  the  vector  a  turned 

one  right  angle  in  negative  direction,  that  is  in  the  direction  from  a  to 

t)  if  tt  X  fl  is  a  positive  sealer.  Then  (16)  only  says  that  two  opposite  sides 

of  a  parallelogram  are  equal  in  length. 

§   1  6.    Remarks  concerning  the  divergence  and  the  curl. 

By  the  Nabla  vector  V  we  understand  the  symbolic  vector  differentiator 
a 

C/  ̂  —  .    Hence  : 
*Xi 

„  3d V  a  =  C/T—  . 

In  the  three-dimensional  vector  analysis  the  scalar  and  vector  of  this 
dyadic  is  called  the  divergence  and  curl  of  a  respectively. 

As    the    first    of  these    conceptions  only    depends^  upon    the  definition 

of  the    scalar    product    of  two  vectors   -  -  which    is  valid  in  any  space  - 
we  put  also  in  Sn: 

,-,  3  a        3  «/ 

(2)  div  a  =  V  •  a  =  e,  •  •  ̂ —  =  ~— 3  xi       3  xi 

As  in  S3,  we  will  apply  this  equation  also  to  the  case  when  we  instead 

of  a  have  in  general  a  polyad(ic),  whereby  the  divergence  of  any  polyad(ic) 

is  defined.  Particularly  we  notice  that  if  a  polyadic  is  written  as  a  deter- 
minant whose  first  row  consists  of  the  unit  vectors,  the  divergence  of  it  is 

9 

obtained  by  interchanging  the  first  row  with   the  operators  -  —  . 

The  generalisation  of  the  curl  to  SH  is  not  so  obvious.  We  here  want 

to  emphasize  that  by  the  term  curl  we  only  understand  the  (special)  vector 
function,  such  as  it  is  defined  in  classical  vector  analysis,  not  the  physical 

phenomena  (the  rotation)  which  this  vector  may  represent.  And  it  is  out- 
side our  province  to  consider  whether  or  not  there  may  be  a  more  suitable 

mathematical  representation  for  those  phenomena  (e.  g.  a  skew-symmetric 
tensor  of  the  second  order),  f  But  from  this  point  of  view,  the  curl  is 

nothing  but  a  certain  vector  product  (i.  e.  :  a  sum  of  such  ones),  and  a  way 

of  extending  the  latter  to  5«  once  defined  or  adopted,  necessarily  leads  to 
a  corresponding  generalization  of  the  curl. 

Hence,  the  quantity  which  we  here  will  consider  to  be  the  generalized 

„  vector"  of  the  dyadic  V  <*>  is  tne  following: 

(3)  y  >  a  =  e/  X    A 

t   WEYL,  H. :   loc.  cit.  p.  54. 

Vid.-Selsk.  Skrifter.  I.  M.-N.  Kl.  1922.  No.  13. 



ALMAR   NJESS. 

M.-N.  Kl. 

the  cross  as  before  denoting  the  space  complement  of  two  vectors.  From 

this  equation  we  get  the  ordinary  curl  of  a  vector  as  a  particular  case 

(viz.  n  =  3),  and  we  will  also  call  (3)  the  curl  of  a. 
We  will  derive  a  few  properties  of  this  quantity: 

It  is  a  tensor  (polyadic)  of  order  n  —  2,  thus  a  vector  only  in  58. 
From  §  9  (10)  we  immediately  get: 

(4) 

But  as: 

VXa  -  - 

e/, 

(5) 3  a     3a 
3  Jff         3  #/ 

(4)  evidently  can  be  written: 

30, 

3 

(6) 

f 
C2       .                            £« 1 

a a                          a 

3  Xj 

a  *s     3  *,, 
i 2            w 

of  which  the  well-known  formula  in  three-space: 

(7) curl   a  = 

j        f a     3 

3  _y    20 

is  a  particular  case. 

When  -  -  as  in  (6)  —  one  or  more  rows  of  a  determinant  consist  of 

operators,  it  is  always  understood  that  these  are  to  be  applied  to  the 

quantities  in  all  of  the  following  rows,  i.  e. :  to  the  determinants  formed 

from  the  matrix  of  the  following  rows. 
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According  to  what  is  said  above,  we  get: 

a      a 

ei      ea 

(8)  V  •  (V  X  a)  =    e 
a      a  a 

a  #!  a  .r2 

which  vanishes  identically.  Hence  the  curl  of  ft,  defined  as  we  have  done 

above,  satisfies  the  characteristic  equation 

(9)  div  curl  a  =  0. 
We  also  find: 

(a)  The  divergence  of  the  space  complement  of  a  vector  is  equal  to  the 

curl  of  the  same  vector  times  ( —  1)  . 

For  remembering  that  the  e's  are  constant  vectors,  we  get 

_a_  _a_  ej.   e« 
a  x      3  Xtt 

*i   e«  _n"~2  ei   e«    a  a 

ai   a»  a\   a» 

from  which  the  proposition  follows.    This  may  be  written: 

(ii)  V  •<<*  =  (—  i)"V  X  a 
and  in  this  form  it  can  be  regarded  as  a  particular  case  of  §  15  (15), 

t)  being  interchanged  with  Nabla,  and  r  ™  1 ,  i.  e. :  Pr  =  a. 
Also  in  (9)  (or  (8))  Nabla  plays  the  role  of  an  ordinary  vector,  as 

tt  •  (tt  X  d)  vanishes  identically  too. 
By  §  14  (5),  (11)  can  be  written: 

(12) V  •  (/  X  a)  =  V  X  a 

which  is  only  a  special  case  of  §  15  (16).    This  equation  is  well-known  in 
By  §  9  (14)  (15)  and  remembering  that  in  this  special  case: 

/«/  = 

So, 

3*,' 

t   Zur  Theorie  der  Triaden  von  ALMAR  N^:ss,  p.  121. 
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the  curl  of  a  can  also  be  written: 

(13)  VXa=-(- 

the  sum  to  be  taken  for  all  possible  sets  of  /,  /,  when  i 

And  exactly  in  the  same  way  as  in  §  1 5  we  here  prove  that  the  space 

complement  of  the  curl  is  equal  to  (n  —  2)1  times  the  dyadic  whose  matrix  is: 

3  a)       3  at 
3  Xi       3  Xj 

which  dyadic  sometimes  is  called  the  curl  of  a.    Thus  we  get: 

<"-2V  Xa  =  (»-2)!  (Va-(Va),}  =  (n-2}\  {Va-aV}. 

The  formula  for  the  divergence  of  the  vector  product  in  S8  is  a  particular 
case  of  the  following  equation: 

(15) 
curl  OL-    curl  a2 
fti  «a 

We  have 

(16)  div  at  X  a2  = *i   , 

11 

^21 a^n 
aan 

— 3 

e,  . 

.       .       .      C/7 

e, 

C;/ 

3 3 

3*i  ' 

<?i  1 

'  '  '  3*. 

^?i  ;/ 

fl.  1 

.     ̂7.1  ;/ 

But  this  last  determinant  is  obviously  equal  to  the  sum  of  two  determinants 
a 

obtained  by  applying  the  operators  — —  to  the  rows  ali  and  fl2/  respectively. 

The  first  of  these  clearly  is: 

(17) 

.  .  .  c// 
e, 

C;/ 

1 

e 
Ci        .   .   . 

e,, 

c,  •  a, 
C;/   •    il  , 

a a 3 
'     '     '     3  Xn 

a*i 

(It  II 

curl  clj  •  Cl., 
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and  the  second : 

(18) 

<in 

3 
c  xn 

*2« 

=  —  curl  a 

whereby  our  theorem  (15)  is  proved. 

Let  a  be  any  fixed  integer  of  the  set   1,  2,  ....  n.    Then   applying 

§  8  (4)  we  get: 

a  a  a       3  a 
=  —  w  —  2  !  »-ear   — Ca (19)  »X«- 

and  by  summing  all  the  expressions  of  this  form  we  get: 

(20)  t>X»-2(V  Xa)  =    -(n  —  2}l  tt-{Va  —  a  V 

and  from  this,   putting  ti  =  C/: 

Xa)=    -(«-2)! 

which  can  be  regarded  as  a  particular  case  of  §  9  (23). 

Horten,  Norway,  July  1922, 
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