

BEBR
FACULTY WORKING
PAPER NO. 1385

On Structured Modeling: A Model Management Perspective

Ting-peng Liang

College of Commerce and Business Administration

Bureau of Economic and Business Research
University of Illinois, Urbana-Champaign

BEBR
FACULTY WORKING PAPER NO. 1385

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

August 1987

On Structured Modeling: A Model Management Perspective

Ting-peng Liang, Assistant Professor
Department of Accountancy

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/onstructuredmode1385lian

Abstract

Recently a framework of structured modeling has been

presented by Geoffrion (1987) . This note expands his frameowrk

by addressing two issues: cognitive considerations and automatic

modeling. First, from a model management perspective, it may be

unnecessary to decompose every model into its elemental

structure. In addition, the decomposition process should not

affect a model's cognitive meaning to the user. Second, in order

to support automatic modeling, a higher level model abstraction

is needed. This abstraction provides an interface through which

algorithms and heuristics in graph theory can be applied to

automate a modeling process.

Page 1

1. Introduction

In a recent article, Geoffrion (1987) presents a framework

of structured modeling to provide a computer-based environment

for conceiving, representing, and manipulating a wide variety

of models. The framework uses a hierarchically organized,

partitioned, and attributed acyclic graph to represent the

semantic as well as mathematical structure of models. In

the framework, models are represented at three different levels

of abstraction: elemental structure, generic structure, and

modular structure. The author argues that the structured

modeling system provides a kernel of a model management system.

This note expands Geoffrion' s structured modeling framework

and discusses two issues crucial to the application of the

framework to model management. First, in many situations,

decomposing a model into its elemental level may be unnecessary.

This is particularly important when we have a large number of

models in the model base and a limited amount of computing

resource. Therefore, cognitive factors must be considered in

determining the bottom line for model decomposition. Second, from

the perspective of decision support, it is important for a model

management system to have automatic modeling capabilities that

automatically integrate several existing models to provide ad hoc

support. In order to achieve this goal, a higher-level model

abstraction built on top of the structured modeling framework is

needed. Only at this level of abstraction, algorithms and

heuristics in graph theory and artificial intelligence can be

applied to manipulating models. In the remainder of this article,

Page 2

factors affacting the bottom line for model decomposition will be

first discussed. Then, a graph-based abstraction appropriate for

automatic modeling follows.

2. Cognitive Considerations in Model Decomposition

One of the reasons for model management is to reduce

redundancy in a conventional modeling environment. Therefore,

large models are decomposed into functionally dependent, lower-

level submodels for storage and model sharing. If at least one

input of model A is among the outputs of model B, then model A is

called functionally dependent on model B. It is similar to the

calling sequence defined in Geoffrion (1987) . The lowest level

models that actually stored in executable forms in a model base

are called basic models. One important issue in this

decomposition process is to determine when the decomposition

should be terminated, that is, to determine basic models. In the

structured modeling system, every model is decomposed into its

elemental structure. This certainly provides much insight into a

model. From a model management perspective, however, it may be

inefficient in terms of system execution and also unnecessary in

many cases.

Since the primary purpose of modeling is to improve human

decision making, one general guideline for decomposition would be

to support user cognitive models corresponding to the

mathematical models to be decomposed (Liang and Jones, 1987)

.

Due to many inherent cognitive limitations, human beings tend to

store and retrieve knowledge in chunks (Simon, 1981) . Therefore,

the decomposition must comply with the way users orgainze the

Page 3

knowledge about a model. In other words, the decomposition of a

model should not affect the cognitive meaning of the model to the

user.

An inappropriate decomposition may damage the cognitive

meaning of a model. The well-known experiment conducted by De

Groot (1966) is an example indicating that, to chess masters,

knowledge about a game is stored in patterns, rather than a

"television scan" of every position. These patterns are basic

models; further decomposing them into pieces will lose the

information the patterns contain.

Taking this fact into consideration, we can re-examine the

feedmix model and the multi-item EOQ model presented in Geoffrion

(1987) . In brief, from the model management perspective, the

feedmix model should be considered as a whole, whereas the multi-

item EOQ model can be further decomposed.

Further decomposition of the feedmix model into separate

components, such as total cost (objective function) and minimum

daily requirements (constraints) , will lose the cognitive meaning

of the model, because the model works only when both present. If

we solve these two components separately by their calling

sequence and then combine the two solutions, the final solution

may not be the same as the one obtained from the original feedmix

model. The major reason here is that the LP solver can be

activated only when both present. In other words, although the

total cost and minimum daily requirements look decomposable in

the genus graph (Figure 3 in Geoffrion 1987) , they are actually

not, just like pieces in a chess pattern.

Page 4

The multi-item EOQ model, however, can be further decomposed

into five smaller models without losing its original contents.

Figure 1 shows the relationships among the five submodels: total

cost, item cost, setup cost, carrying cost, and frequency model.

A sequential execution of these models will generate a solution

the same as what obtained from the original model. In this case

it is decomposable.

INSERT FIGURE 1

Therefore, in addition to the graphical representations of

the components constituting a model, the structured modeling

framework may need to differentiate decomposable genus graphs

from non-decomposable ones. In general, two criteria are

applicable. The first is solver retrievability. Although

solvers are usually not given a major concern in discussing model

management, some solvers (such as an LP algorithm) are so strong

that they become part of the cognitive model to the user and

provide a natural bottom line for decomposition. Any

decomposition should not damage the linkage between the model and

this kind of powerful solvers.

The second criterion is the nature of application. If a model

is decomposable and some of its submodels may be combined with

other models to become a new model for solving another problem,

then the model should be decomposed into a lower level in order

to minimize redundancy in modeling effort and to help model

sharing. If such opportunities do not exist, then it may be more

efficient to store the whole model as a basic model and not to

Page 5

decompose it, even if it is decomposable.

3. Automatic Modeling

Given the basic models available in a model base, it becomes

possible for a model management system to perform automatic

modeling that integrates basic models to formulate larger ones

for supporting ad hoc decision making. The automatic modeling

process involves three major tasks: (1) identify appropriate

basic models, (2) determine their functional dependent

relationships (i.e., calling sequences) by matching input

attributes and output attributes, and (3) select one model if

there exists more than one alternative.

One way to deal with these tasks is to take advantage of

the algorithms and heuristics available in graph theory and

artificial intelligence literature. In fact, this is one of the

major motivations for developing a graph-based framework. In

order to take advantage of this knowledge, a higher level

model abstraction built on top of the structured modeling

framework is needed.

In structured modeling, each model is represented as a

collection of data attributes (called schema) without explicitly

pointing out inputs and outputs. Actually a model can also be

considered as a mapping from a set of input data attributes to a

set of output data attributes or an operator that bridges two

states: input and output.

If we use a node to represent a set of data attributes and

an arc to represent a mapping function from an input node to an

Page 6

output node, then each basic model can be represented as a

combination of two nodes and one arc connecting the two nodes.

This significantly simplifies the genus tree and modular tree of

a model. For example, the multi-item EOQ model, if considered

as a basic model, can be represented as in Figure 2. In a text

form, the multi-item EOQ model can be represented as

{multi_item_EOQ, [D(n) ,H,F,Q] , [FREQ, SETUP$, CARRY$, ITEM$, TOT$] }

,

which means it serves as a bridge between [D(n),H,F,Q] and

[FREQ , SETUP$, CARRY$, ITEM$, TOT$]

.

INSERT FIGURE 2

Since problem solving is often described as "a search

through a vast maze of possibilities" (Simon, 1981) , we can

define the automatic modeling process as a process by which a

computer-based model management system searches its model base to

find proper basic models and then organizes the selected basic

models in a way that can effectively convert the initial state of

a problem to the desired goal state. By this definition, every

basic model is considered an operator and the initial state

represents the information available in the problem and the goal

state represents the information desired for problem solving. At

this level of model abstraction, we can define the three tasks

involved in automatic modeling.

1. Identify appropriate basic models

A basic model is considered a candidate component for

modeling if the model bridges two states that reduce the

difference between the initial state and the goal state of the

Page 7

decision.

2 . Determine functional dependencies

In the case where more than one basic model is identified as

candidate component, the following rule can be used to determine

functional dependencies:

If the input state of a model includes a nonempty set of
elements that is a subset of the output state of another
model but is not a subset of the input state of the
latter model, then the former model is functionally
dependent on the latter one.

For example, suppose we have a single-item EOQ model, {EOQ,

[D(n),H,F], [Q]}, then the multi-item EOQ model is functionally

dependent on it because there exists a set of element, [Q] , in

the input state of the multi-item EOQ model, which is a subset of

the output state but not a subset of the input state of the

single-item EOQ model.

3

.

Select one model from alternatives

After identifying basic components for modeling and the

functional dependencies among them, a graph, called model graph,

can be formulated and the modeling process can be defined as a

process by which a path that connects the initial and final

states can be found. Depending upon the criteria used, this

process can be formulated as either a maximum flow or a shortest

path problem.

If every basic model is given a validity measure and the

goal of the modeling process is to find a path with the highest

overall validity, then the process is a maximum flow problem. If

the objective is to optimize the execution efficiency of the

formulated ad hoc model and each model is given a measure of

Page 8

execution time, then the process becomes a shortest path problem.

After formulating a maximum folw or shortest path graph, the

algorithms and heuristics in graph theory and artificial

intelligence can be applied to automate the modeling process.

The following example illustrates how this graph-based

abstraction works in an automatic modeling process.

[Example] Assume that we have the following basic models in our

model base:

(1) a single-item EOQ model

<EOQ, [D(n),H,F], [D(n),H,F,Q]},

(2) a multi-item EOQ model

{Multi_item_EOQ / [D(n),H,F,Q], [FREQ, SETUP$, CARRY$

,

ITEM$ / TOT$] }.

(3) a demand forecasting model that uses moving average
approach to forecast demand for year n by demands of
the past 10 years,

{Moving_avg, [D(i) | i = n-1, . . . ,n-10] , [D(n)]>,

(4) a demand forecasting model that uses regression approach
to forecast demand for year n by demands of the past
10 years,

{Regress, [D (i) | i = n-1, . . . ,n-10] , [D(n)]}.

Further assume that the data base already contains data of

H, F, n, and D(i) , i = n-1, ..., n-10 and the decision maker

needs data of D(n) , H, F, Q, FREQ, SETUP$, CARRY$, ITEM$, and

T0T$. That is,

(1) Initial state = [H,F,D(i)| i = n-1, . . . ,n-10]

,

(2) Goal state = [D(n) ,H, F,Q, FREQ, SETUP$, CARRY$, ITEM$,T0T$]

.

Developing a model to support the decision maker is now

equivalent to finding a path that can bridge the difference

between the initial state and the desired goal state. In this

Page 9

case, the difference is [D(n) , FREQ, SETUP$, CARRY$, ITEM$,TOT$] . In

formulating the model graph, the following heuristics are used:

H.l: If there exists more than one model that eliminates at
least part of the difference, then apply the one that
eliminates the largest number of elements in the
difference list;

H.2: If more than one model is selected by H.l and a model
is functionally dependent on others, then apply the
model first.

INSERT FIGURE 3

Based on these two heuristics, Figure 3 shows the difference

elimination process. Multi_iten_EOQ is first applied because it

can remove four elements from the difference list, then EOQ is

used because it is functionally dependent on Regress or

Moving_avg. Finally, both Regress and Moving_avg are applied to

remove the last element in the difference list because there is

no rule to break the tie. The resulting model graph, which

includes two paths, is shown in Figure 4.

INSERT FIGURE 4

Selecting one path between the two is easy and does not need

any complex algorithm. When the number of alternative paths

increases, however, selecting a path in a model graph may become

very sophisticated and, therefore, need to use algorithms

developed in graph theory. In this example, suppose we want to

maximize the validity of the formulated model and already have

the validity values of Regress and Moving_avg, which are 0.8 and

Page 10

0.5 respectively, then this is a maximum flow problem and the the

darkened route in Figure 4 will be the one selected for the

decision maker. This path means that the decision maker can

obtain the desired information by executing Regress, EOQ, and

Multi_item_EOQ sequentially.

4. Conclusions

This note has expanded Geoffrion's structured modeling

framework to the model management domain. Two issues have been

discussed. First, the concept of basic models must be considered

in model decomposition processes. Human cognition and solver

retrievability usually define a bottom line for decomposition.

Therefore, from a model management perpective, it may not be

necessary to represent every model in the elemental level.

Second, in order to support automatic modeling, a higher level

model abstraction is needed. It uses nodes and arcs to represent

sets of data attributes and mappings between nodes respectively.

Models are defined as bridges that connect two different states

and problem solving is considered a process by which a path can

be found to eliminate the difference between the initial state

and the desired goal state. Building this high-level abstraction

on top of structured modeling opens the door to a new area of

research in which algorithms and heuristics in graph theory can

be applied to automate a modeling process.

Page 11

References

De Groot, A.D., "Perception and Memory versus Thought: Some Old
Ideas and Recent Findings," in B. Kleinmuntz (ed.) Problem
Solving , John Wiley, New York, NY, 1966, 19-50.

Geoffrion, A.M., "An Introduction to Structured Modeling,"
Management Science , 33, 5, (May 1987), 547-588.

Liang, T.P. and Jones, C.V., "Meta-Design Considerations in
Developing Model Management Systems," forthcoming in
Decision Sciences . 1987.

Simon, H.A. , The Sciences of The Artificial . Second Edition, MIT
Press, Cambridge, MA, 1981.

*
»

I

I

I

I

I

%

N

TOT$ \ Total cost model

Item cost model

ITEMS

' CARRYS .'

i *

i

i

i

ii

Setup cost model

f v
•

• Q \

/ - 7
Frequency model Carrying cost model

/

Figure 1. Decomposition of Multi-item EOQ Model

o- o
[D(n),H,F,Q] [FREQ,SETUP$,carry$,

item$,TOT$]

Figure 2. A Higher-level Representation
of Multi-item EOQ Model

[D(n) , FREQ , SETUF$, CARRY? , ITEM$, TOT$

]

Apply rnulti_item_EOQ

[D(n),Q]

Apply EOQ

[D(n)]

Apply Repress
"or Movinc, avc

[]

Ficure 3. Process of Difference Elimination

Repress

o [D(n) ,H,F,Q,FREQ, SETUP?, CARRY$,
ITEM$,TOT$]

Multi item EOQ

r\ [D(n),H,F,Q]

I

EOQ

[D(n),H,F]

Moving_avg

[H,F,D(i), i = n-1, .., n-10]

Figure 4. Resulting Model Graph

