

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN BOOKSTACKS Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

http://www.archive.org/details/onsymmetriccourn1327khan

UNV HSITY O

On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game

M. Ali Khan Ye Neng Sun

College of Commerce and Business Administration Bureau of Economic and Business Research University of Illinois, Urbana-Champaign

BEBR

FACULTY WORKING PAPER NO. 1327

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

February 1987

On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game

> M. Ali Khan, Professor Department of Economics

Ye Neng Sun Department of Mathematics

On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game[†]

Ъy

M. Ali Khan* and Ye Neng Sun**

January 1987

Abstract. We show that in a finite-action, atomless game, every Cournot-Nash equilibrium distribution can be "symmetrized." This yields an elementary proof of a result of Mas-Colell.

[†]This research was supported by a N.S.F. grant to the University of Illinois.

*Department of Economics, University of Illinois, 1206 South Sixth Street, Champaign, IL 61820.

**Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801.

I. Introduction

In [4], Mas-Colell showed the existence of a Cournot-Nash equilibrium distribution (CNED) as a consequence of the Fan-Glicksberg theorem. Mas-Colell also showed the existence of a symmetric CNED in finite-action, atomless games as a consequence of the Kakutani fixed point theorem and results in the theory of integration of correspondences. These results consist, in particular, of Lyapunov's theorem on the range of a vector measure, Aumann's measurable selection theorem, as well as his theorem on the upper hemicontinuity of the integral of a correspondence with upper-hemicontinuous values; on all of this [1] is a standard reference.

In this note, we show that in a finite-action, atomless game every CNED can be "symmetrized" to yield a symmetric CNED. This allows us to deduce Mas-Colell's result on the existence of a symmetric CNED from his first result on the existence of a CNED. The proof of our result is elementary in the sense that it uses only Lyapunov's theorem on the convexity of the range of a scalar measure.

Section 2 recalls the model and presents the results. Section 3 gives the basic idea of the proof and Section 4 is devoted to the formalities of the proof. Section 5 concludes with a remark.

2. The Model and Results

We recall for the reader's convenience the basic definitions from [4]. Let A be a compact, metric space of actions, \mathcal{M} the set of Borel probability measures on A endowed with the weak * topology and \mathcal{U}_A is the space of continuous from A× \mathcal{M} into R and endowed with the supremum-norm topology. A <u>game</u> is a Borel probability measure on \mathcal{U}_A . A Borel probability measure τ is said to be a <u>Cournot-Nash equilibrium</u> <u>distribution (CNED)</u> of the game μ if the marginal of τ on \mathcal{U}_A , $\tau_{\mathcal{U}}$, is μ and $\tau(B_{\tau}) = 1$ where $B_{\tau} = \{(a, u) \in A \times \mathcal{U}_A : u(a, \tau_A) \ge u(a, \tau_A) \text{ for all}$ $a \in A\}$ and τ_A denotes the marginal of τ on A. τ is said to be a <u>symmetric Cournot-Nash equilibrium distribution</u> if τ is a CNED and there exists a measurable function h: $\mathcal{U}_A + A$ such that τ (graph h) = 1. We shall say that every CNED τ can be <u>symmetrized</u> if there exists a symmetric CNED τ^S such that $B_s = B_{\tau}$.

We can now state

Theorem. Every Cournot-Nash equilibrium distribution of a game μ with action set A can be symmetrized if μ is atomless and A is finite.

This yields as a corollary

Corollary (Mas-Colell): A symmetric Cournot-Nash equilibrium distribution exists for a game μ with action set A whenever μ is atomless and A is finite.

The Corollary is an easy consequence of our theorem and Theorem 1 of [4].

3. Heuristics of the Proof

We illustrate the basic idea of the proof of our theorem by considering an action set with two elements. The reader may wish to keep Figure 1 in mind as we go through the argument.

Let τ be the CNED of a game μ with action set $\{a_1, a_2\}$. Let the set B_r of all pay-offs and corresponding pay-off maximizing actions be

Figure l

denoted by the set $(a_1 \times U_1) \bigcup (a_2 \times U_2)$. Unlike Figure 1, U_1 and U_2 need not necessarily be connected sets. Suppose, again unlike Figure 1, that $U_1 \cap U_2 = \phi$. Since $U_1 \bigcup U_2 = \mathcal{U}_A$, τ can be shown to be symmetric CNED simply by letting $h(u) = a_i$ for all $u \in U_i$, for all i = 1, 2. Certainly h is measurable and τ (graph h) = 1. Thus, in the case $U_1 \cap U_2 = \phi$, there is nothing to prove.

Suppose $U_1 \cap U_2 \neq \phi$. The basic idea in this case is to "disjointify" U_1 and U_2 , i.e., to construct measurable subsets $U_1^* \subset U_1$ for all i = 1, 2, such that $U_1^* \cap U_2^* = \phi$. Since μ is atomless, this can be done in a number of ways but the important consideration is to do this in such a way that the marginal of τ on A, τ_A , does not change. Since B_{τ} depends only on τ_A , this ensures that B_{τ} does not change. We now briefly spell out the mechanics of such a procedure.

Let $\mathbb{V}_{i} = \mathbb{U}_{i} - \mathbb{U}_{j}$, $i = 1, 2, j \neq i$, and $\mathbb{V}_{12} = \mathbb{U}_{1} \cap \mathbb{U}_{2}$. Find measurable subsets \mathbb{V}_{12}^{1} , \mathbb{V}_{12}^{2} of \mathbb{V}_{12} such that $\mathbb{V}_{12}^{1} \cap \mathbb{V}_{12}^{2} = \phi$, $\mathbb{V}_{12}^{1} \cup \mathbb{V}_{12}^{2} = \mathbb{V}_{12}$ and $\mu(\mathbb{V}_{12}^{i}) = \tau(a_{i} \times \mathbb{V}_{12})$, i = 1, 2. Since $\mathbb{E} \tau(a_{i} \times \mathbb{V}_{12}) = \tau(a_{i} \times \mathbb{V}_{12}) = \tau(a_{i} \times \mathbb{V}_{12}) = \tau_{A}(\mathbb{V}_{12}) = \mu_{A}(\mathbb{V}_{12})$, Lyapunov's theorem on the range of an atomless scalar measure guarantees that \mathbb{V}_{12}^{1} and \mathbb{V}_{12}^{2} can be found. Now let $\mathbb{U}_{i}^{*} = \mathbb{V}_{i} \cup \mathbb{V}_{12}^{i}$, i = 1, 2. These are the sets that work by letting h: $\mathcal{U}_{A} \neq A$ be a function such that $h(u) = a_{i}$ for all $u \in \mathbb{U}_{i}^{*}$, for all i = 1, 2. Now let $\tau^{S}(B) = \mu\{u \in \mathcal{U}_{A}: (h(u), u) \in B\}$ for any measurable subset B of $A \times \mathcal{U}_{A}$. τ^{S} is the symmetric CNED. The only point which needs to be checked is that $\tau_{A}^{S} = \tau_{A}^{*}$. But $\tau_{A}(\{a_{i}\}) = \tau(a_{i} \times \mathcal{U}_{A}) = \tau(a_{i} \times \mathbb{U}_{i}) = \tau(a_{i} \times \mathbb{U}_{i}) + \tau(a_{i} \times \mathbb{U}_{i}) = \mu(\mathbb{V}_{i}) + \mu(\mathbb{V}_{12}^{i}) = \mu(\mathbb{V}_{i} \cup \mathbb{V}_{12}^{i}) = \mu(\mathbb{U}_{i}^{*})$.

4. Proof of the Theorem

We begin with an elementary lemma.

Lemma 1. Let
$$A_i$$
 (i = 1, ..., k) and B be arbitrary sets. Then
 $\bigcup_{i=1}^{k} (A_i \times B) = ((\bigcup_{i=1}^{k} A_i) \times B).$

Proof: Straightforward.

Our next lemma is a simple consequence of Lyapunov's theorem on the range of a scalar measure.

Lemma 2. Let (S, \hat{J}, μ) be an atomless measure space. If $V \in \hat{J}$, $\mu(V) = \sum_{i=1}^{n} \lambda_{i} \quad \underline{\text{with}} \quad \lambda_{i} \geq 0 \quad \underline{\text{for all } i}, \quad \underline{\text{there exist for all } i = 1, \dots, n},$ $V^{i} \in \hat{J} \quad \underline{\text{such that }} \quad V^{i} \cap V^{j} = \phi \quad (i \neq j), \quad \bigcup_{i=1}^{n} V_{i} = V \quad \underline{\text{and }} \quad \mu(V^{i}) = \lambda_{i}.$

Proof: We shall prove the lemma by induction. The lemma is trivially true for n = 1. Assume it to be true for n = k and let V $\varepsilon \bigwedge$ with k+1 $\mu(V) = \sum_{i=1}^{k} \lambda_i, \lambda_i \ge 0$ for all i = 1, ..., k+1. If $\lambda_i = 0$ for any i, i=1 we are reduced to the case of n = k and the proof is completed by letting $V_i = \phi$ for that i. Thus, suppose $\lambda_i > 0$ for all i. Let k^i k+1 $\lambda(1) = \sum_{i=1}^{k} \lambda_i / \sum_i \lambda_i$ and $\lambda(2) = 1 - \lambda(1)$. By Lyapunov's theorem i=1 i=1 [1, p. 45], we can find $V^{k+1} \in \bigwedge$ such that $\mu(V^{k+1}) = \lambda_{k+1}$. Since $(V-V^{k+1}) \in \bigwedge$, and $\mu(V-V^{k+1}) = \sum_{i=1}^{k} \lambda_i$, we use the induction hypothesis i=1

Before we present the proof of Theorem, we develop some notation. Let I denote the set {1, 2, ..., n} and P(I) the set of subsets of I, including the empty set. For any $\pi \in P(I)$, let π^{C} denote the complement of π in I. Let $P^{m}(I) = \{\pi \in P(I): m \in \pi\}$. We shall use the

11

convention that a union over the empty set is the empty set. We also use the same notation for a point and a set consisting solely of that point.

Proof of Theorem

Let τ be the Cournot-Nash equilibrium distribution of the game μ . Let $U_i = \operatorname{proj}_{\mathcal{U}_A}(B_{\tau} \cap (a_i \times \mathcal{U}_A))$ for all $i \in I$

(1) $\bigcup_{i \in I} U_i = \ell \ell_A$

Certainly $U_i \subset \mathcal{U}_A$ for $i \in I$. On the other hand, let $u \in \mathcal{U}_A$. Certainly there exists $k \in I$ such that $u(a_k, \tau) \geq u(a_i, \tau)$. Then $(a_k, u) \in B_{\tau}$ and hence $u \in U_k$.

(2)
$$B_{\tau} = \bigcup_{i \in I} (a_i \times U_i)$$

Certainly $(a_i \times U_i) \subset B_{\tau}$ for all $i \in I$. Now any element x of B_{τ} can be written as (a_i, u) for some $i \in I$ and some $u \in \mathcal{U}_A$. Hence $u \in U_i$ and $x \in (a_i \times U_i)$.

(3)
$$\tau(a_i \times U_i) = \tau(a_i \times \mathcal{U}_A)$$

Since $(a_i \times U_i) \subset (a_i \times U_A)$, certainly $\tau(a_i \times U_i) \leq \tau(a_i \times U_A)$. Suppose there exists i ε I such that strict inequality holds for that i. Then $1 = \tau(B_{\tau}) = \tau(\bigcup_{i \in I} (a_i \times U_A)) = \tau(A \times U_A)$, a contradiction to the fact that τ is a probability measure.

For any
$$\pi \in P(I)$$
, let $V_{\pi} = (\bigcap_{i \in \pi} U_i) - (\bigcup_{i \in \pi} U_i)$.

(4) (a)
$$\bigcup_{\pi \in P(I)} V_{\pi} = \mathcal{U}_{A}$$
, (b) $V_{\pi} \cap V_{\sigma} = \phi(\pi, \sigma \in P(I), \pi \neq \sigma)$, (c) $\bigcup_{\pi \in P^{i}(I)} V_{\pi} = U_{i}$

For (a), pick $u \in \mathcal{U}_A$. Let $\sigma = \{i \in I: u \in U_i\}$. By (1), $\sigma \neq \phi$. Then $u \in V_{\sigma}$. On the other hand, $u \in \bigcup_{\pi \in P(I)} V_{\pi}$ implies that there exists $\sigma \in P(I)$, $\sigma \neq \phi$ such that $u \in V_{\sigma}$. Hence $u \in U_i$ for all $i \in \sigma$ and hence, by (1), $u \in \mathcal{U}_A$. For (b), suppose there exists π, σ in P(I) such that $\pi \neq \sigma$ and $V_{\pi} \cap V_{\sigma} \neq \phi$. Since V_{π} and V_{σ} are nonempty, π and σ are nonempty. Then there exists $i \in \pi$, $i \notin \sigma$. Now $u \in V_{\pi} \cap V_{\sigma}$ implies $u \in U_i$. Since $i \in \sigma^C$, $u \notin V_{\sigma}$ which is a contradiction. For (c), pick $u \in \bigcup_{\pi \in P^1(I)} V_{\pi}$. Then there exists $\pi \in P^1(I)$ such that $\pi \in P^1(I) = 0$. On the other hand, for any $u \in U_i$, let $\sigma = \{j \in I, u \in U_j\}$ and $\pi = \{i\} \bigcup \sigma$. Certainly $u \in V_{\pi}$ and $\pi \in P^1(I)$.

(5) For any
$$\pi \in P(I)$$
, \exists measurable $V_{\pi}^{i}(i \in I)$, $V_{\pi}^{i} \cap V_{\pi}^{j} = \phi(i \neq j)$, $\bigcup_{i \in \pi} V_{\pi}^{i} = V_{\pi}$
and $\mu(V_{\pi}^{i}) = \tau(a_{i} \times V_{\pi})$

Now let
$$U_i^* = \bigcup_{\pi \in P^i(I)} V_{\pi}^i$$
.

(6) For all
$$i \in I$$
, (a) $U_i^* \subset U_i$, (b) $U_i^* \cap U_j^* = \phi(i \neq j)$, (c) $\bigcup_{i \in I} U_i^* = \mathcal{U}_A$

To see (a), pick $u \in U_i^*$. Then there exists $\pi \in P^i(I)$ such that $u \in V_{\pi}^i$. This implies $u \in V_{\pi}$. Since $i \in \pi$, $u \in U_i$. (b) follows from the fact that for $i \neq j$, $V_{\pi}^i \cap V_{\pi}^j = \phi$ on the one hand, and from

$$\begin{array}{l} \mathbb{V}_{\pi} \cap \mathbb{V}_{\sigma} = \phi \ \text{for } \pi \neq \sigma \ \text{on the other. For (c), note that} \\ \bigcup_{i \in I} \mathbb{U}_{i}^{\star} = \bigcup_{i \in I} \mathbb{U}_{\pi \in P^{i}(I)} \mathbb{V}_{\pi}^{i} = \bigcup_{i \in I} \mathbb{U}_{\pi \in P(I)} \mathbb{V}_{\pi}^{i} = \bigcup_{\pi \in P(I)} \mathbb{V}_{\pi}^{i} = \bigcup_{\pi \in P(I)} \mathbb{V}_{\pi}^{i} = \mathcal{U}_{A}, \\ \mathcal{U}_{A}, \ \text{the last step from (4a).} \\ (7) \qquad \mu(\mathbb{U}_{i}^{\star}) = \tau(a_{i} \times \mathbb{U}_{i}) \ \text{for all } i \in I. \\ \text{The left hand side equals } \mu(\bigcup_{\pi \in P^{i}(I)} (\mathbb{V}_{\pi}^{i})). \ \text{Since } \mathbb{V}_{\pi}^{i} \subset \mathbb{V}_{\pi} \ \text{by (5), and} \\ \mathbb{V}_{\pi} \cap \mathbb{V}_{\sigma} = \phi \ \text{for } \pi \neq \sigma \ \text{by (4c), this equals } \sum_{\pi \in P^{i}(I)} \mu(\mathbb{V}_{\pi}^{i}). \ \text{By (5), this} \\ \text{equals } \sum_{\pi \in P^{i}(I)} \tau(a_{i} \times \mathbb{V}_{\pi}) \ \text{which equals } \tau(\bigcup_{\pi \in P^{i}(I)} (a_{i} \times \mathbb{V}_{\pi})). \ \text{By Lemma 1,} \end{array}$$

this can be written as $\tau(a_i \times \bigcup_{\pi \in P^i(I)} V_{\pi})$ and hence by (4b) as $\tau(a_i \times U_i)$.

We are now ready to construct our symmetric Cournot-Nash equilibrium distribution. Let h: $\mathcal{U}_A \rightarrow A$ be such that h(u) = a_i for all u $\in U_i^*$, for all i \in I. Since V_π^i are measurable, U_i^* are measurable. Moreover, from (vi), h is a well-defined function. Now let τ^S be a measure on Ax \mathcal{U}_A such that for any measurable B, $\tau^S(B) = \mu \{ u \in \mathcal{U}_A : (h(u), u) \in B \}$. Given measurability of h and the identity map, τ^S is well-defined. Also

$$\tau^{s}(\text{graph }h) = \mu\{u \in \mathcal{U}_{A}: (h(u), u) \in (\text{graph }h)\} = \mu\{u \in \mathcal{U}_{A}\} = 1.$$

All that remains to be shown is that τ^{s} is a Cournot-Nash equilibrium distribution. Towards this end, we first show that $\tau^{s}_{\mathcal{U}_{A}} = \mu$. Pick any measurable subset W of \mathcal{U}_{A} . Then $\tau^{s}_{\mathcal{U}_{A}}(W) = \tau^{s}(A \times W) = \mu\{u \in \mathcal{U}_{A}: (h(u), u) \in A \times W\} = \mu\{u \in (\mathcal{U}_{A} \cap W)\} = \mu(W)$.

Next, we show $\tau_A^s = \tau_A$. Pick any measurable subset of A. If this set is empty, there is nothing to be shown. Hence, let this set be

$$\begin{split} \bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}} \text{ for some } \pi \in \mathbb{P}(\mathbf{I}). \quad \text{Now } \tau_{A}^{S}(\bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}}) = \tau^{S}(\bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}} \times \mathcal{U}_{A}) = \\ \mu\{\mathbf{u} \in \mathcal{U}_{A}: \quad (h(\mathbf{u}), \mathbf{u}) \in ((\bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}}) \times \mathcal{U}_{A})\} = \mu\{\mathbf{u} \in \mathcal{U}_{A}: \quad h(\mathbf{u}) = \mathbf{a}_{\mathbf{i}}, \\ \mathbf{i} \in \pi\} = \mu(\bigcup_{\mathbf{i}\in\pi} \mathbf{h}^{-1}(\mathbf{a}_{\mathbf{i}})) = \sum_{\mathbf{i}\in\pi} \mu(\mathbf{U}_{\mathbf{i}}^{*}). \quad \text{Now} \\ \sum_{\mathbf{i}\in\pi} (\mathbf{U}_{\mathbf{i}}^{*}) = \sum_{\mathbf{i}\in\pi} \tau(\mathbf{a}_{\mathbf{i}} \times \mathbf{U}_{\mathbf{i}}) \quad (by (7)) \\ = \sum_{\mathbf{i}\in\pi} \tau(\mathbf{a}_{\mathbf{i}} \times \mathcal{U}_{A}) \quad (by (2)) \\ = \tau(\bigcup_{\mathbf{i}\in\pi} (\mathbf{a}_{\mathbf{i}} \times \mathcal{U}_{A})) \\ = \tau((\bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}}) \times \mathcal{U}_{A}) \quad (by \text{ Lemma 1}) \\ = \tau_{A}(\bigcup_{\mathbf{i}\in\pi} \mathbf{a}_{\mathbf{i}}). \end{split}$$

We are done.

Since $\tau_A^S = \tau_A$ and since B_τ depends only on τ_A , $B_\tau^S = B_\tau$. Thus to show $\tau^S(B_r) = 1$. But by the definition of h, graph h $\subset B_\tau$. Since $\tau^S(\text{graph h}) = 1$, $\tau^S(B_r) = \tau^S(B_\tau) = 1$. The proof of the theorem is complete.

5. Concluding Remark

In [2, 3], the authors present an alternative formulation of Mas-Colell's result in games where pay-offs are represented by preference relations or by functions which are upper-semicontinuous in actions. We remark that the theorem proved here applies to that generalized set-up.

References

- Hildenbrand, W., Core and Equilibria of a Large Economy, Princeton University Press, Princeton, New Jersey, 1974.
- [2] Khan, M. Ali, On a Variant of a Theorem of Schmeidler, <u>B.E.B.R.</u> Faculty Working Paper No. 1306. Revised in December 1986..
- [3] Khan, M. Ali and Y. Sun, On a Reformulation of Cournot-Nash Equilibria, University of Illinois, mimeo, January 1987.
- [4] Mas-Colell, A., On a Variant of Theorem of Schmeidler, Journal of Mathematical Economics, 13 (1984), 201-206.

•

