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1. Introduction

In [A] , Mas-Colell showed the existence of a Cournot-Nash equi-

librium distribution (CNED) as a consequence of the Fan-Glicksberg

theorem. Mas-Colell also showed the existence of a symmetric CNED in

finite-action, atomless games as a consequence of the Kakutani fixed

point theorem and results in the theory of integration of correspon-

dences. These results consist, in particular, of Lyapunov's theorem

on the range of a vector measure, Aumann's measurable selection

theorem, as well as his theorem on the upper heraicontinuity of the

integral of a correspondence with upper-heraicontinuous values; on all

of this [1] is a standard reference.

In this note, we show that in a finite-action, atomless game every

CNED can be "symmetrized" to yield a symmetric CNED. This allows us

to deduce Mas-Colell' s result on the existence of a symmetric CNED

from his first result on the existence of a CNED. The proof of our

result is elementary in the sense that it uses only Lyapunov's theorem

on the convexity of the range of a scalar measure.

Section 2 recalls the model and presents the results. Section 3

gives the basic idea of the proof and Section 4 is devoted to the

formalities of the proof. Section 5 concludes with a remark.

2. The Model and Results

We recall for the reader's convenience the basic definitions from

[4]. Let A be a compact, metric space of actions , /tL the set of Borel

probability measures on A endowed with the weak * topology and £/ is

the space of continuous from AxHt into R and endowed with the

supremum-norm topology. A game is a Borel probability measure on vC
A*
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A Borel probability measure t is said to be a Cournot-Nash equilibrium

distribution (CNED) of the game y if the marginal of t on Ci . , T , is

y and x(B ) = 1 where B = {(a,u) e Ax^f : u(a,T.) ^> u(a,x ) for all

a e A} and t. denotes the marginal of t on A. t is said to be a
A

symmetric Cournot-Nash equilibrium distribution if t is a CNED and

there exists a measurable function h: £o. * A such that t (graph
A

h) = 1. We shall say that every CNED t can be symmetrized if there

s
exists a symmetric CNED t such that B = B .ST

T

We can now state

Theorem . Every Cournot-Nash equilibrium distribution of a game y with

action set A can be symmetrized if y is atomless and A is finite .

This yields as a corollary

Corollary (Mas-Colell) : A symmetric Cournot-Nash equilibrium distri-

bution exists for a game y with action set A whenever y is atomless

and A is finite .

The Corollary is an easy consequence of our theorem and Theorem 1

of [4].

3. Heuristics of the Proof

We illustrate the basic idea of the proof of our theorem by con-

sidering an action set with two elements. The reader may wish to keep

Figure 1 in mind as we go through the argument.

Let t be the CNED of a game y with action set {a ,a }. Let the

set B of all pay-offs and corresponding pay-off maximizing actions be
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denoted by the set (a.xU.) U( a o xU
?
). Unlike Figure 1, U. and U need

not necessarily be connected sets. Suppose, again unlike Figure 1,

that U. C\ U = $. Since U \J U = £/
, t can be shown to be symmetric

CNED simply by letting h(u) = a for all u e U. , for all i = 1, 2.

Certainly h is measurable and t (graph h) = 1. Thus, in the case

U, C\ U- = 4>, there is nothing to prove.

Suppose U. HU» * $• The basic idea in this case is to "dis-

*
jointify" U, and U~ , i.e., to construct measurable subsets U. (Z. U.

* *
for all i = 1, 2, such that U H U = $• Since y is atomless, this

can be done in a number of ways but the important consideration is to

do this in such a way that the marginal of x on A, x , does not change.
Pi.

Since B depends only on x., this ensures that B does not change. We
T A T

now briefly spell out the mechanics of such a procedure.

Let V = U - U. , i = 1, 2, j * i, and V = U HU . Find mea-

12 12 12
surable subsets V^, V of V^ such that V^HV^ = <j>, V U V =

V
12

and u(V^) = T(a *V ), 1 - 1, 2. Since Z x(a.xV ) -

2 i=l

t(_U (a
i
xV

l2
)} = T({ a

1
»
a
2

> xV
1 2

)
= t

a
(V

12
)

=
"tS^ll*'

Lya Punov
'

s

i = l

theorem on the range of an atomless scalar measure guarantees that12 * i
V and V can be found. Now let U = V. (J V , i = 1, 2. These are

the sets that work by letting h: LC.. + A be a function such that

* s
h(u) = a for all u e U. , for all i = 1, 2. Now let t (B) =

y{u e \Ji .'• (h(u),u) e B} for any measurable subset B of Ax (JL. . t is

the symmetric CNED. The only point which needs to be checked is that

x^ » x. But T.({a. }) = x(a .x£t.) - x(a xU.) = x(a xV ) + x(a.xV 10 ) =AA Ai iA ii ii il2
u(V.) + u(V^) = M(V

i VJvJ2
) = M(U*) = y{u e Ct^ (h(u),u) e (a.x^)} =

x^((a
i}

).
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4. Proof of the Theorem

We begin with an elementary lemma.

Lemma 1 . Let A ( i = 1 , . . . , k) and B be arbitrary sets. Then

~~

k

k

U (A xB) = (( A )xB).

i=l i=l

Proof : Straightforward. II

Our next lemma is a simple consequence of Lyapunov's theorem on

the range of a scalar measure.

L emma 2 . Let (S,/^ , u) be an atomless measure space. If V e A ,

n

u(V) = E X with X >_ for all i , there exist for all i = 1, ...
t

n,

V
1
£^ such that V

1 A V J - <j> (i * j ) , \J V = V and y(V ) = X.

.

i=l
X

Proof: We shall prove the lemma by induction. The lemma is trivially

true for n = 1. Assume it to be true for n = k and let V £ /Q with
k+1

y(V) = E X., X. _> for all i = 1, ..., k+1. If X. = for any i,

i=l
X X X

we are reduced to the case of n = k and the proof is completed by

letting V. =
<(> for that i. Thus, suppose X. > for all i. Let

k
1

k+1

X(l) = E X./ E X. and X(2) = 1 - X(l). By Lyapunov's theorem
1=1

X
i=1

X

k+1 / k+1
[1, p. 45], we can find V e A such that y(V ) = X, . . Since

k+1 (/ k+1
k

(V-V ) e ^ , and jj(V-V ) = E X. , we use the induction hypothesis
i=l

1

to complete the proof. II

Before we present the proof of Theorem, we develop some notation.

Let I denote the set {1, 2, ..., n} and P(l) the set of subsets of I,

including the empty set. For any tt z P(I), let tt denote the comple-

ment of tt in I. Let P (I) = {it e P(I): m e tt}. We shall use the



-5-

convention that a union over the empty set is the empty set. We also

use the same notation for a point and a set consisting solely of that

point.

Proof of Theorem

Let t be the Cournot-Nash equilibrium distribution of the game \i.

Let U. = proj /,. (B n(a.xCO) for all iel
1 fX\ T i a

en U », ^
iel

rtainly U. C ££. for Iel. On the other hand, let u e <-c A • Cer-J i A A

iel

Ce

tainly there exists k e I such that u(a, ,t) _> u(a x). Then

(a, ,u) e B and hence u e U, .

k t k

(2) B
t

=
\J (a.xU.)

iel

Certainly (a xUj CL B for all iel. Now any element x of B can belit t

written as (a.,u) for some iel and some u e £c« Hence u e U. and
1 A 1

x e ( a . xU . )

.

l i

(3) tU.xU.) = i(a.x# )11 l A

Since (a x(J. ) <z. (a x d ) , certainly r(a.xU.) < T(a.x^). Supposeii I A i i — I A

there exists iel such that strict inequality holds for that i.

Then 1 = t(B ) = t( \_J (a xU)) = t(AxCL), a contradiction to the

iel

fact that t is a probability measure.

For any tt e P(I), let V = ( C\ U.) - ( U U.).
TT .1 C 1

i etr l eir
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(4) (a) U V = ti (b) V ft V = 4>(TT,acP(I),Tr^a), (c) ^ V = U,
n/TN ir A tt a n i /TN iriTreP(I) ttcP (I)

For (a), pick u e CC.. Let or - {I e I: u e U. }. By (1), a # <j>.

Then u e V . On the other hand, u e v ,J V implies that there
irePd)

exists a e P(I), a #
<f>
such that u e V . Hence u e U for all i e a

a i

and hence, by (1), u e "£v.« For (h) , suppose there exists tt, o in P(I)

such that tt t a and V f\ V # 4. Since V and V are nonempty, tt and
tt a tt a

a are nonempty. Then there exists i e tt, i k o. Now u e V f|V
tt a

implies u e U.. Since i e a , u e V which is a contradiction. For

(c), pick u e *—i—' V . Then there exists tt e P (I) such that
ireP

1
(I) *

u e V . Since i e tt, u e U.. On the other hand, for any u e U. , let
TT 1 1

O - {j el. ueU.} and tt = {i } U a. Certainly u e V and tt e P (I).
J TT

(5) For any tt e P(I), -(measurable V
1
(iel), V

1
f\ V^ = d>(i*J), I J V

1
= V

~~^
TT tt TT ,

>*' TT tt

1 ETT

and yCV
1

) = x(a.xV )TT 1 TT

Observe that y(V ) - ?., (V ) - t(AxV ) = t( ( LJ a.)xV ) which, by
TT ££ TT TT . T 1 TT

A 1 el

Lemma 1, equals t(( I) a . xV ) ) = E x(a.xV ). We can now apply
. t i tt . T 1 TT

iel lei
Lemma 2 to complete the proof of (5).

Now let U. = W-> V
1

.

1 D l/ T s TT

tteP (I)

(6) For all i e I, (a) U* Gl^, (b) U* C\ U* -
cf> (i*j), (c) [J U* = li^

i el

* i
To see (a), pick u e U. . Then there exists tt e P (I) such that

u e V . This implies u e V . Since i e tt, u e U.. (b) follows from
TT Tt 1

the fact that for i * j , V H V - 4 on the one hand, and from
TT TT
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V f\ V = <}> for it * a on the other. For (c) , note that
tt o

uvuu VU U O v
1

= U U v

1

- U v =

iel iel ireP (I) iel TreP(I)
v

tteP(I) iel
w

ireP(I) "

Cc , the last step from (4a).

(7) p(U.) = x(a xU ) for all iel.

The left hand side equals p( I—,—> (V
1
)). Since V

1 d V by (5), and
1, _ N TT TT TT

•rreP (I)

V f\ V
(Ji

for tt * o by (Ac), this equals Z y(V ). By (5), this
TT eP ( I

)

equals E. x(a. xV ) which equals t( '—;—
' (a.xV )). By Lemma 1,

this can be written as x(a.x »

—

:
—' V ) and hence by (4b) as x(a.xij.).

i Di,.v tt
3 l i

ireP (I)

We are now ready to construct our symmetric Cournot-Nash equilib-

rium distribution. Let h: vC, + A be such that h(u) = a J for all
A i

* i *
u e U, , for all iel. Since V are measurable, U. are measurable,

i tt i

s
Moreover, from (vi), h is a well-defined function. Now let x be a

measure on Ax {£. such that for any measurable B, x (B) = y {u e Cc .:

s
(h(u),u) e B}. Given measurability of h and the identity map, x is

well-defined. Also

x
S
(graph h) = p{u e (L

k
: (h(u),u) e (graph h) } = u {u e ££A > = 1.

g
All that remains to be shown is that x is a Cournot-Nash equilibrium

s
distribution. Towards this end, we first show that x = y. Pick

^A
any measurable subset W of {A k

• Then x, (W) = x (AxW) =
A CL

u {u e £t
k

: (h(u),u) e AxW} = y {u e (fi^W)} = u(W).

s
Next, we show x = x . Pick any measurable subset of A. If this

set is empty, there is nothing to be shown. Hence, let this set be
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(J a. for some * e P(I). Now t®( (J a ) = t
S
( (J a x^ ) =

u {u e^: (h(u),u) e (( (J a
£

) x tlj } = y {u ef^: h(u) = alf
ieir

i e tt} = n((J h
_1

(a.)) = I u(U*). Now

E (U*) = £ T(a
i
xU

1
) (by (7))

ieir ieir

- Z T(a iX ^A ) (by (2))
i eir

t((J (a^^))
ieir

= t(( U a
i
)x

Â ) (by Lemma 1}

ieir

- T
A(U .±

).

ieir

We are done.

s
Since t. = T. and since B depends only on t. , B = B . Thus

A A t Ast
T

to show t (B ) = 1. But by the definition of h, graph h OB . Since
s T

T
s s s

t (graph h) = 1, t (B ) = t (B ) = 1. The proof of the theorem is
o T

T

complete. II

5. Concluding Remark

In [2, 3], the authors present an alternative formulation of

Mas-Colell's result in games where pay-offs are represented by

preference relations or by functions which are upper-semicontinuous

in actions. We remark that the theorem proved here applies to that

generalized set-up.
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