UNIVERSITY OF
ILLINOIS LIBRARY
AT URBANA.CHAMPAIGN
BOOKSTACK.

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

BEBR
 FACULTY WORKING
 PAPER NO. 1327

On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game
M. Ali Khan

Ye Neng Sun

BEBR

FACULTY WORKING PAPER NO. 1327
College of Commerce and Business Administration University of Illinois at Urbana-Champaign
February 1987

On Symmetric Cournot-ỉash Equilibrium Distributions in a Finite-Action, Atomless Game
M. Ali Khan, Professor Department of Economics

Ye Neng Sun
Department of Mathematics

On Symmetric Cournot-Nash Equilibrium Distributions in a Finite-Action, Atomless Game \dagger

by

M. Ali Khan* and Ye Neng Sun**

January 1987

> Abstract. We show that in a finite-action, atomless game, every Cournot-Nash equilibrium distribution can be "symmetrized." This yields an elementary proof of a result of Mas-Colell.

\dagger This research was supported by a N.S.F. grant to the University of Illinois.
*Department of Economics, University of Illinois, 1206 South Sixth Street, Champaign, IL 61820.
**Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801.

I. Introduction

In [4], Mas-Colell showed the existence of a Cournot-Nash equilibrium distribution (CNED) as a consequence of the Fan-Glicksberg theorem. Mas-Colell also showed the existence of a symmetric CNED in finite-action, atomless games as a consequence of the Kakutani fixed point theorem and results in the theory of integration of correspondences. These results consist, in particular, of Lyapunov's theorem on the range of a vector measure, Aumann's measurable selection theorem, as well as his theorem on the upper hemicontinuity of the integral of a correspondence with upper-hemicontinuous values; on all of this [1] is a standard reference.

In this note, we show that in a finite-action, atomless game every CNED can be "symmetrized" to yield a symmetric CNED. This allows us to deduce Mas-Colell's result on the existence of a symmetric CNED from his first result on the existence of a CNED. The proof of our result is elementary in the sense that it uses only Lyapunov's theorem on the convexity of the range of a scalar measure.

Section 2 recalls the model and presents the results. Section 3 gives the basic idea of the proof and Section 4 is devoted to the formalities of the proof. Section 5 concludes with a remark.
2. The Model and Results

We recall for the reader's convenience the basic definitions from [4]. Let A be a compact, metric space of actions, M the set of Borel probability measures on A endowed with the weak * topology and ℓl_{A} is the space of continuous from $A \times M$ into R and endowed with the supremum-norm topology. A game is a Borel probability measure on ℓ_{A}.

A Borel probability measure τ is said to be Cournot-Nash equilibrium distribution (CNED) of the game μ if the marginal of τ on U_{A}, τ, μ, is μ and $\tau\left(B_{\tau}\right)=1$ where $B_{\tau}=\left\{(a, u) \varepsilon A \times \ell \ell_{A}: u\left(a, \tau_{A}\right) \geq u\left(a, \tau_{A}\right)\right.$ for all a $\varepsilon A\}$ and τ_{A} denotes the marginal of τ on $A . \tau$ is said to be a symmetric Cournot-Nash equilibrium distribution if τ is a CNED and there exists a measurable function $h: U L_{A}+A$ such that τ (graph $h)=1$. We shall say that every CNED τ can be symmetrized if there exists a symmetric CNED τ^{s} such that $B{ }_{\tau}{ }^{s}=B_{\tau}$.

We can now state

Theorem. Every Cournot-Nash equilibrium distribution of a game μ with action set A can be symmetrized if μ is atomless and A is finite.

This yields as a corollary

Corollary (Mas-Colell): A symmetric Cournot-Nash equilibrium distribution exists for a game μ with action set A whenever μ is atomless and A is finite.

The Corollary is an easy consequence of our theorem and Theorem 1 of [4].
3. Heuristics of the Proof

We illustrate the basic idea of the proof of our theorem by considering an action set with two elements. The reader may wish to keep Figure 1 in mind as we go through the argument.

Let τ be the CNED of a game μ with action set $\left\{a_{1}, a_{2}\right\}$. Let the set B_{T} of all pay-offs and corresponding pay-off maximizing actions be

Figure 1
denoted by the set $\left(a_{1} \times U_{1}\right) \bigcup\left(a_{2} \times U_{2}\right)$. Unlike Figure $1, U_{1}$ and U_{2} need not necessarily be connected sets. Suppose, again unlike Figure 1 , that $U_{1} \cap U_{2}=\phi$. since $U_{1} U U_{2}=\ell_{A}$, I can be shown to be symmetric CNED simply by letting $h(u)=a_{i}$ for all $u \varepsilon U_{i}$, for all $i=1,2$. Certainly h is measurable and $\tau($ graph $h)=1$. Thus, in the case $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\phi$, there is nothing to prove.

Suppose $\mathrm{U}_{1} \cap \mathrm{U}_{2} \neq \phi$. The basic idea in this case is to "disjointify" U_{1} and U_{2}, i.e., to construct measurable subsets $U_{i}^{*} \subset U_{i}$ for all $i=1,2$, such that $U_{1}^{*} \cap U_{2}^{*}=\phi$. Since μ is atomless, this can be done in a number of ways but the important consideration is to do this in such a way that the marginal of τ on A, τ_{A}, does not change. Since B_{τ} depends only on τ_{A}, this ensures that B_{τ} does not change. We now briefly spell out the mechanics of such a procedure.

Let $V_{i}=U_{i}-U_{j}, i=1,2, j \neq i$, and $V_{12}=U_{1} \cap U_{2}$. Find measurable subsets v_{12}^{1}, v_{12}^{2} of v_{12} such that $v_{12}^{1} \bigcap_{2} v_{12}^{2}=\phi, v_{12}^{1} \cup v_{12}^{2}=$ V_{12} and $\mu\left(V_{12}^{i}\right)=\tau\left(a_{i} \times V_{12}\right), i=1$, 2. Since $\sum_{i=1}^{2} \tau\left(a_{i} \times V_{12}\right)=$ $\tau\left(\bigcup_{i=1}^{2}\left(a_{i} \times V_{12}\right)\right)=\tau\left(\left\{a_{1}, a_{2}\right\} \times V_{12}\right)=\tau_{A}\left(V_{12}\right)={ }_{\mu_{A}}^{i=1}\left(V_{12}\right)$, Lyapunov's theorem on the range of an atomless scalar measure guarantees that v_{12}^{1} and v_{12}^{2} can be found. Now let $U_{i}^{*}=V_{i} \cup V_{12}^{i}, i=1,2$. These are the sets that work by letting $h: \ell_{A} \rightarrow A$ be a function such that $h(u)=a_{i}$ for all $u \varepsilon U_{i}^{*}$, for all $i=1$, 2. Now let $\tau^{s}(B)=$ $\mu\left\{u \in \ell_{A}:(h(u), u) \in B\right\}$ for any measurable subset B of $A \times \ell_{A}$. τ^{s} is the symmetric CNED. The only point which needs to be checked is that $\tau_{A}^{S}=\tau_{A}$. But $\tau_{A}\left(\left\{a_{i}\right\}\right)=\tau\left(a_{i} \times l_{A}\right)=\tau\left(a_{i} \times U_{i}\right)=\tau\left(a_{i} \times V_{i}\right)+\tau\left(a_{i} \times V_{12}\right)=$ $\mu\left(V_{i}\right)+\mu\left(V_{12}^{i}\right)=\mu\left(V_{i} U V_{12}^{i}\right)=\mu\left(U_{i}^{*}\right)=\mu\left\{u \varepsilon \ell l_{A}:(h(u), u) \varepsilon\left(a_{i} \times C l_{A}\right)\right\}=$ $\tau_{A}^{s}\left(\left\{a_{i}\right\}\right)$.

4. Proof of the Theorem

We begin with an elementary lemma.
$\frac{\text { Lemma 1. Let }}{k} A_{i_{k}}(i=1, \ldots, k)$ and B be arbitrary sets. Then $\bigcup_{i=1}^{k}\left(A_{i} \times B\right)=\left(\left(\bigcup_{i=1}^{k} A_{i}\right) \times B\right)$.

Proof: Straightforward.

Our next lemma is a simple consequence of Lyapunov's theorem on the range of a scalar measure.

Lemma 2. Let (S, ℓ, μ) be an atomless measure space. If $V \in \mathcal{S}$, $\mu(V)=\sum_{i=1} \lambda_{1}$ with $\lambda_{i} \geq 0$ for all i, there exist for all $i=1, \ldots, n$, $V^{i} \varepsilon \& \xrightarrow{i=1}$ such that $V^{i} \cap V^{j}=\phi(1 \neq j), \bigcup_{i=1}^{n} V_{i}=V$ and $\mu\left(V^{1}\right)=\lambda_{i}$.

Proof: We shall prove the lemma by induction. The lemma is trivially true for $\mathrm{n}=1$. Assume it to be true for $\mathrm{n}=\mathrm{k}$ and let $\mathrm{V} \varepsilon \mathcal{S}$ with k+1
$\mu(V)=\sum_{i=1} \lambda_{i}, \lambda_{i} \geq 0$ for all $i=1, \ldots, k+1$. If $\lambda_{i}=0$ for any i, we are reduced to the case of $\mathrm{n}=\mathrm{k}$ and the proof is completed by
 $\lambda(1)=\sum_{i=1} \lambda_{i} / \sum_{i=1} \lambda_{i}$ and $\lambda(2)=1-\lambda(1)$. By Lyapunov's theorem $[1$, p. 45$]$, we can find $V^{k+1} \varepsilon \int_{k}$ such that $\mu\left(V^{k+1}\right)=\lambda_{k+1}$. Since $\left(V-v^{k+1}\right) \varepsilon \ell$, and $\mu\left(V-V^{k+1}\right)=\sum_{i=1}^{k} \lambda_{1}$, we use the induction hypothesis to complete the proof.

Before we present the proof of Theorem, we develop some notation. Let I denote the $\operatorname{set}\{1,2, \ldots, n\}$ and $P(I)$ the set of subsets of I, including the empty set. For any $\pi \varepsilon P(I)$, let π^{c} denote the complemint of π in I. Let $P^{m}(I)=\{\pi \in P(I): m \varepsilon \pi\}$. We shall use the
convention that a union over the empty set is the empty set. We also use the same notation for a point and a set consisting solely of that point.

Proof of Theorem
Let τ be the Cournot-Nash equilibrium distribution of the game μ. Let $U_{i}=\operatorname{proj} \ell_{A}\left(B_{\tau} \cap\left(a_{i} \times \ell l_{A}\right)\right.$) for all $i \varepsilon I$
(1) $\bigcup_{i \in I} U_{i}=l l_{A}$

Certainly $U_{i} \subset C l_{A}$ for $i \varepsilon I$. On the other hand, let $u \varepsilon \ell l_{A}$. Certainly there exists $k \in I$ such that $u\left(a_{k}, \tau\right) \geq u\left(a_{i}, \tau\right)$. Then $\left(a_{k}, u\right) \varepsilon B_{\tau}$ and hence $u \varepsilon U_{k}$.

$$
\begin{equation*}
B_{\tau}=\bigcup_{i \in I}\left(a_{i} \times U_{i}\right) \tag{2}
\end{equation*}
$$

Certainly $\left(a_{i} \times U_{i}\right) \subset B_{\tau}$ for all $i \in I$. Now any element x of B_{τ} can be written as $\left(a_{i}, u\right)$ for some $i \varepsilon I$ and some $u \varepsilon \ell l_{A}$. Hence $u \varepsilon U_{i}$ and $x \in\left(a_{i} \times U_{i}\right)$.

$$
\begin{equation*}
\tau\left(a_{i} \times U_{i}\right)=\tau\left(a_{i} \times l l_{A}\right) \tag{3}
\end{equation*}
$$

Since $\left(a_{i} \times U_{i}\right) \subset\left(a_{i} \times \ell_{A}\right)$, certainly $\tau\left(a_{i} \times U_{i}\right) \leq \tau\left(a_{i} \times \ell \ell_{A}\right)$. Suppose there exists i ε I such that strict inequality holds for that i. Then $1=\tau\left(B_{\tau}\right)=\tau\left(\bigcup_{i \in I}\left(a_{i} \times l_{A}\right)\right)=\tau\left(A \times C_{A}\right)$, a contradiction to the fact that τ is a probability measure.

$$
\text { For any } \pi \varepsilon P(I), \text { let } V_{\pi}=\left(\bigcap_{i \varepsilon \pi} U_{i}\right)-\left(\bigcup_{i \varepsilon \pi} U_{i}\right) \text {. }
$$

(4) (a) $\bigcup_{\pi \in P(I)} V_{\pi}=\ell_{A}$, (b) $V_{\pi} \cap V_{\sigma}=\phi(\pi, \sigma \varepsilon P(I), \pi \neq \sigma),(c) \underbrace{}_{\pi \varepsilon P^{i}(I)} V_{\pi}=U_{i}$.

For (a), pick $u \in \ell_{A}$. Let $\sigma=\left\{i \in I: u \varepsilon U_{i}\right\}$. By (I), $\sigma \neq \phi$. Then $u \in V_{\sigma}$. On the other hand, $u \varepsilon \underbrace{}_{\pi \varepsilon P(I)} V_{\pi}$ implies that there exists $\sigma \varepsilon \mathrm{P}(\mathrm{I}), \sigma \neq \phi$ such that $u \varepsilon V_{\sigma^{\circ}}$ Hence $u \varepsilon U_{i}$ for all i $\varepsilon \sigma$ and hence, by (1), $u \in \ell_{A}$. For (b), suppose there exists π, σ in $P(I)$ such that $\pi \neq \sigma$ and $V_{\pi} \cap V_{\sigma} \neq \phi$. Since V_{π} and V_{σ} are nonempty, π and σ are nonempty. Then there exists i $\varepsilon \pi, i k$. Now $u \varepsilon V_{\pi} \cap V_{\sigma}$ implies $u \varepsilon U_{i}$. Since $i \varepsilon \sigma^{C}, u \notin V_{\sigma}$ which is a contradiction. For (c), pick u $\varepsilon \underbrace{V_{\pi}}_{\pi \varepsilon P^{i}(I)} V$. Then there exists $\pi \varepsilon P^{i}(I)$ such that $u \varepsilon V_{\pi}$. Since i $\varepsilon \pi, u \varepsilon U_{i}$. On the other hand, for any $u \varepsilon U_{i}$, let $\sigma=\left\{j \varepsilon I, u \varepsilon U_{j}\right\}$ and $\pi=\{i\} \cup \sigma$. Certainly $u \varepsilon V_{\pi}$ and $\pi \varepsilon P^{i}(I)$.
(5) For any $\pi \varepsilon P(I), \exists$ measurable $V_{\pi}^{i}(i \varepsilon I), V_{\pi}^{i} \cap V_{\pi}^{j}=\phi(i \neq j), \bigcup_{i \varepsilon \pi} V_{\pi}^{i}=V_{\pi}$

$$
\text { and } \mu\left(V_{\pi}^{i}\right)=\tau\left(a_{i} \times V_{\pi}\right)
$$

Observe that $\mu\left(V_{\pi}\right)=\tau_{e l_{A}}\left(V_{\pi}\right)=\tau\left(A \times V_{\pi}\right)=\tau\left(\left(\bigcup_{i \in I} a_{i}\right) \times V_{\pi}\right)$ which, by Lemma 1 , equals $\tau\left(\left(\bigcup_{i \varepsilon I} a_{i} \times V_{\pi}\right)\right)=\sum_{i \in I} \tau\left(a_{i} \times V_{\pi}\right)$. We can now apply Lemma 2 to complete the proof of (5).

$$
\text { Now let } U_{i}^{*}=\bigcup_{\pi \varepsilon P^{i}(I)} V_{\pi}^{i}
$$

(6) For all $i \in I$, (a) $U_{i}^{*} \subset U_{i}$,
(b) $U_{i}^{*} \cap U_{j}^{*}=\phi(i \neq j)$,
(c) $\bigcup_{i \in I} U_{i}^{*}=\mathscr{C l}$

To see (a), pick $u \varepsilon U_{i}^{*}$. Then there exists $\pi \varepsilon P^{i}(I)$ such that $u \varepsilon \mathrm{~V}_{\pi}^{\mathrm{i}}$. This implies $u \varepsilon \mathrm{~V}_{\pi^{\circ}}$. Since i $\varepsilon \pi$, $u \varepsilon U_{i}$. (b) follows from the fact that for $i \neq j, V_{\pi}^{i} \cap v_{\pi}^{j}=\phi$ on the one hand, and from
$v_{\pi} \cap v_{\sigma}=\phi$ for $\pi \neq \sigma$ on the other. For (c), note that
$\bigcup_{i \in I} U_{i}^{*}=\bigcup_{i \varepsilon I} \underbrace{}_{\pi \varepsilon P^{i}(I)} v_{\pi}^{i}=\bigcup_{i \varepsilon I} \bigcup_{\pi \varepsilon P(I)} v_{\pi}^{i}=\bigcup_{\pi \in P(I)} \bigcup_{i \varepsilon I} v_{\pi}^{i}=\bigcup_{\pi \varepsilon P(I)} V_{\pi}=$ $\ell \ell_{A}$, the last step from (4a).

$$
\begin{equation*}
\mu\left(U_{i}^{*}\right)=\tau\left(a_{i} \times U_{i}\right) \text { for all } i \varepsilon I \text {. } \tag{7}
\end{equation*}
$$

The left hand side equals $\mu(\underbrace{}_{\pi \varepsilon P^{i}(I)}\left(V_{\pi}^{i}\right))$. Since $V_{\pi}^{i} \subset V_{\pi}$ by (5), and $V_{\pi} \cap V_{\sigma}=\phi$ for $\pi \neq \sigma$ by (4c), this equals $\sum_{\pi \varepsilon P^{i}(I)} \mu\left(V_{\pi}^{i}\right)$. By (5), this equals $\sum_{\pi \varepsilon P^{i}(I)}^{\sum_{i}} \tau\left(a_{i} \times V_{\pi}\right)$ which equals $\tau(\underbrace{}_{\pi \varepsilon P^{i}(I)}\left(a_{i} \times V_{\pi}\right))$. By Lemma 1 , this can be written as $\tau(a_{i} \times \underbrace{V_{\pi}}_{\pi \varepsilon P^{i}(I)})$ and hence by (Hb) as $\tau\left(a_{i} \times U_{i}\right)$.

We are now ready to construct our symmetric Cournot-Nash equilibrim distribution. Let $h: C l_{A} \rightarrow A$ be such that $h(u)=a_{i}$ for all $u \varepsilon U_{i}^{*}$, for all i ε I. Since V_{π}^{i} are measurable, U_{i}^{*} are measurable. Moreover, from (vi), h is a well-defined function. Now let τ^{s} be a measure on $A \times \ell_{A}$ such that for any measurable $B, \tau^{s}(B)=\mu\left\{u \varepsilon \ell_{A}\right.$: $(h(u), u) \varepsilon B\}$. Given measurability of h and the identity map, τ^{s} is well-defined. Also

$$
\tau^{s}(\text { graph } h)=\mu\left\{u \varepsilon \ell l_{A}:(h(u), u) \varepsilon(\text { graph } h)\right\}=\mu\left\{u \varepsilon C \ell_{A}\right\}=1
$$

All that remains to be shown is that τ^{s} is a Cournot-Nash equilibrium distribution. Towards this end, we first show that $\tau^{s} U_{A}=\mu$. Pick any measurable subset W of ℓ_{A}. Then $\tau^{s} U_{A}(W)=\tau^{s}(A \times W)=$ $\mu\left\{u \varepsilon l_{A}:(h(u), u) \varepsilon A \times W\right\}=\mu\left\{u \varepsilon\left(l_{A} \cap W\right)\right\}=\mu(W)$.

Next, we show $\tau_{A}^{S}=\tau_{A}$. Pick any measurable subset of A. If this set is empty, there is nothing to be shown. Hence, let this set be
$\bigcup_{i \varepsilon \pi} a_{i}$ for some $\pi \varepsilon P(I)$. Now $\tau_{A}^{s}\left(\bigcup_{i \varepsilon \pi} a_{i}\right)=\tau^{s}\left(\bigcup_{i \varepsilon \pi} a_{i} \times l_{A}\right)=$
$\mu\left\{u \in \ell_{A}: \quad(h(u), u) \varepsilon\left(\left(\bigcup_{i \in \pi} a_{i}\right) \times \ell_{A}\right)\right\}=\mu\left\{u \varepsilon \ell_{A}: h(u)=a_{i}\right.$,
i $\varepsilon \pi\}=\mu\left(\bigcup_{i \varepsilon \pi} h^{-1}\left(a_{i}\right)\right)=\sum_{i \varepsilon \pi} \mu\left(U_{i}^{*}\right)$. Now

$$
\begin{align*}
\sum_{i \varepsilon \pi}\left(U_{i}^{*}\right) & =\sum_{i \varepsilon \pi} \tau\left(a_{i} \times U_{i}\right) \\
& =\sum_{i \varepsilon \pi} \tau\left(a_{i} \times \ell_{A}\right) \quad \text { (by (7)) } \tag{2}\\
& =\tau\left(\bigcup_{i \varepsilon \pi}\left(a_{i} \times U_{A}\right)\right) \\
& \left.=\tau\left(\left(\bigcup_{i \varepsilon \pi} a_{i}\right) \times \ell_{A}\right) \quad \text { (by Lemma } 1\right) \\
& =\tau_{A}\left(\bigcup_{i \in \pi} a_{i}\right) .
\end{align*}
$$

We are done.
Since $\tau_{A}^{s}=\tau_{A}$ and since B_{τ} depends only on $\tau_{A},{ }^{B}{ }_{\tau}{ }^{s}=B_{\tau}$. Thus to show $\tau^{s}\left(B_{\tau}\right)=1$. But by the definition of h, graph $h \subset B_{\tau}$. Since $\tau^{s}($ graph $h)=1, \tau^{s}\left(B_{\tau^{s}}\right)=\tau^{s}\left(B_{\tau}\right)=1$. The proof of the theorem is complete.

5. Concluding Remark

In $[2,3]$, the authors present an alternative formulation of Mas-Colell's result in games where pay-offs are represented by preference relations or by functions which are upper-semicontinuous in actions. We remark that the theorem proved here applies to that generalized set-up.

References

[1] Hildenbrand, W., Core and Equilibria of a Large Economy, Princeton University Press, Princeton, New Jersey, 1974.
[2] Khan, M. Ali, On a Variant of a Theorem of Schmeidler, B.E.B.R. Faculty Working Paper No. 1306. Revised in December 1986..
[3] Khan, M. Ali and Y. Sun, On a Reformulation of Cournot-Nash Equilibria, University of Illinois, mimeo, January 1987.
[4] Mas-Colell, A., On a 廿ariantof Theorem of Schmeidler, Journal of Mathematical Economics, 13 (1984), 201-206.

