

Brian Cojoror.

THE ONTARIO

HIGH SCHOOL GEOMETRY

THEORETICAL

BY
A. H. McDOUGALL, B.A. Principal Ottawa Collegiate Institute

Authorized by the Minister of Education for Ontario

TORONTO
THE COPP, CLARK COMPANY, LIMITED

Copyright, Canada, 1910, by Thr Copp, Clark Company, Limited, Toronto, Ontario.

First Edition, 1910.
Reprinted, 1911, 1912, 1913, 1914.

PREFACE

The Ontario High School Geometry is intended to cover the course in Theoretical Geometry, begun in the Lower School and completed in the Middle School, as defined in the Programme of Studies for High Schools and Collegiate Institutes of the Province of Ontario.

In deference to the wish of the teachers of mathematics of the Province, this Geometry is divided into Books with numbered propositions.

While the theoretical course is complete in itself, it is assumed that its study has been preceded by the usual course in drawing and measurement. A considerable number of practical problems are given in the exercises. These should be worked out carefully, and, in fact, all diagrams should be accurately and neatly made.

The book contains an abundant supply of carefully selected and graded exercises. Those given in sets throughout the Books will be found suitable for the work of average classes, and just about sufficient in number to fix the subject-matter of the propositions in the minds of the pupils. All the problems contained in the miscellaneous collections at the ends of the Books could be worked through by a few of the best pupils only, and should be used also by the teachers as a store from which to draw suitable material for review purposes from time to time.

While the requirements of class-work have been constantly kept in mind in the choice of proofs, it should not be assumed that other proofs, just as good, cannot in many cases be given.

Students should be constantly encouraged to work out methods of their own, and to keep records of the best in their note books.

Symmetry has been used to an unusual extent in giving a more concise form to the proofs of constructions.

The treatment of parallels, in accord with the method of many of the best English text-books, is based on Playfair's Axiom.
Tangents are treated both by the method of limits and as lines which meet the circle in only one point.

Areas of triangles and parallelograms are compared with rectangles, thereby not only giving a simple method of treatment, but also promoting facility in numerical computations.

Similarly, the treatment of proportion is correlated with the algebraic knowledge of the pupil.

Оttawa, June, 1910.

SYMBOLS AND ABBREVIATIONS

The following symbols and abbreviations are used :-
Fig. Figure.
Const. Construction.
Hyp. Hypothesis.
Cor. Corollary.
e.g. exempli gratia, for example.
i.e. id est, that is.
p. page.
\because because, since.
\therefore therefore.
rt. right.
st. straight.
$\angle, \angle \mathrm{s}, \angle \mathrm{d}$ angle, angles, angled.
$\triangle, \Delta s$ triangle, triangles.
$\|$, $\| \mathrm{s}$ 'parallel, parallels.
\|gm, \|gms parallelogram, parallelograms.
sq., sqs. square, squares.
AB^{2} the square on AB .
rect. rectangle.
$\mathrm{AB} . \mathrm{CD}$ the rectangle contained by AB and CD .
$A B: C D$, or $\frac{A B}{C D}$ the ratio of $A B$ to $C D$.

+ plus, together with.
- minus, diminished by.
\perp is perpendicular to, a perpendicular.
$=$ is equal to, equals.
$>$ is greater than.
$<$ is less than.
\equiv is congruent to, congruent.
III is similar to, similar.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

CONTENTS

Book I PAGE
Preliminary Definitions and Explanations 1
Geometrical Reasoning 3
Angles and Triangles 8
First Case of the Congruence of Triangles 16
Second Case of the Congruence of Triangles 22
Constructions 25
Parallel Straight Lines 35
Triangles 45
Third Case of the Congruence of Triangles. 54
The Ambiguous Case in the Comparison of Triangles 56
Inequalities 59
Parallelograms 66
Construction 74
Loci 75
Miscellaneous Exercises 83
Book II
Areas of Parallelograms and Triangles 93
Constructions 110
Areas of Squares 116
Miscellaneous Exercises 134
Book III PAGE
The Circle 141
Constructions 143
Angles in a Circle 152
Tangents and Chords 169
Construction 173
Angle Between Chord and Tangent 177
Constructions 182
Contact of Circles 196
© Miscellaneous Exercises 200
Book IV.
Ratio and Proportion 213
Constructions 226
Bisectior Theorems 230
Similar Triangles 236
Geometric Means 244
Rectangles 247
Proof of Pythagorean Theorem by Proportion 249
Chords and Tangents 252
Miscellaneous Exercises 258
Book V
Areas of Similar Fiqures 271
Constructions 274
Areas of Similar Polygons 278
Constructions 280
Arcs and Angles 284
Analysis of a Problem-Common Tangents 285
Miscellaneous Exercises 289
Index 299

THEORETICAL GEOMETRY

BOOK I

Preliminary Definitions and Explanations

1. A point is that which has position but no size.

The position of a point on the blackboard, or on paper, is represented by a mark. This mark has some small size and therefore only roughly represents the idea of a point.
2. A line is that which has length but neither breadth nor thickness.

Again, the mark that we use to represent a line has breadth and some small thickness, and consequently, only roughly represents the idea.

The intersection of two lines is a point.
3. Lines may be either straight or curved.

The following property distinguishes straight lines from curved lines and may be used as the definition of a straight line:-

Two straight lines cannot have any two points of one coincide with two points of the other without the lines coinciding altogether.
This is sometimes stated as follows:-Joining two points there is always one and only one straight line.

It follows from this definition that two straight lines cannot enclose a space.

Can the circumferences of two equal circles coincide in two points without coinciding altogether?
4. A surface is that which has length and breadth but no thickness.

A sheet of tissue paper has length and breadth and very little thickness. It thus roughly represents the idea of a surface. In fact the sheet of paper has two well-defined surfaces separated by the substance of the paper.

The boundary between two parts of space is a surface.
5. Surfaces may be either plane or curved.

The following property distinguishes plane surfaces from curved surfaces and may be used as the definition of a plane surface:-
The straight line joining any two points on a plane surface lies wholly on that surface.

Give examples of curved surfaces on which straight lines may be drawn in certain directions. Notice the force of the word "any" in the definition above.
6. A solid is that which has length, breadth and thickness.
7. Any combination of points, lines, surfaces and solids is called a figure.
8. Geometry is the science which investigates the properties of figures and the relations of figures to one another.
9. In Plane Geometry the figure, or figures, considered in each proposition are confined to one plane, while Solid Geometry treats of figures the parts of which are not all in the same plane.

Plane Geometry is also called Geometry of Two Dimensions (length and breadth), and Solid Geometry is called Geometry of Three Dimensions (length, breadth and thickness).

Geometrical Reasoning

10. Two general methods of investigating the properties or relations of figures may be distinguished as the Practical Method and the Theoretical Method.

Some properties may be tested by measurement, paper-folding, etc., while in the same or other cases it may be shown that the property follows as a necessary result from others that are already known to be true.

The Theoretical Method, has certain advantages over the Practical method. Measurements, etc., are never exact, and in many cases cannot be made directly; but in the Theoretical Method, starting from certain simple statements, called axioms, the truth of which is selfevident, or, it may be in some cases, assumed, the consequent statements follow with absolute certainty.

The Practical Method is also known as the Inductive Method of Reasoning, and the Theoretical Method as the Deductive Method.
11. Figures may be compared by making a tracing of one of them and fitting the tracing on the other. In many cases the process may be made a mental operation and the comparison made with absolute certainty by means of the following axiom :-

A figure may be, actually or mentally, transferred from one position to another without change of form or size.

When two figures are shown to be exactly equal in all respects by supposing one to be made to fit exactly on the other, the proof is said to be by the method of superposition.

Figures which exactly fill the same space are said to coincide with each other.
12. In general a proposition is that which is stated or affirmed for discussion.

In mathematics a proposition is a statement of either a truth to be demonstrated or of an operation to be performed. It is called a theorem when it is something to be proved, and a problem when it is a construction to be made.

Example of Theorem:-If two straight lines cut each other, the vertically opposite angles are equal.

Example of Problem:-It is required to bisect a given straight line.
13. Theorems are commonly stated in two ways:First, the General Enunciation, in which the property is stated as true for all figures of a class, but without naming any particular figure, as in the first example given in § 12 ; second, the Particular Enunciation, in which the theorem is stated to be true of the particular figure in a certain diagram.

Similarly general and particular enunciations are commonly given for problems.

Examples of Particular Enunciation:-

1. Let $A B$ and $C D$ be two st. lines cutting at E.

It is required to show that $\angle A E C=\angle B E D$, and that $\angle A E D=\angle B E C$.
2. Let $A B$ be a given st. line.

It is required to bisect $A B$.
14. In general, the enunciation of a theorem consists of two parts: the hypothesis and the conclusion.

The hypothesis is the formal statement of the conditions that are supposed to exist, e.g., in the first example of § 12, "If two straight lines cut each other."

The conclusion is that which is asserted to follow necessarily from the hypothesis, e.g., "the vertically opposite angles are equal to each other."

Commonly, the hypothesis of a theorem is stated first, introduced by the word "if," and the two parts hypothesis and conclusion are separated by a comma. Sometimes, however, the two parts are not so formally
distinguished, e.g., in the proposition :-The angles at the base of an isosceles triangle are equal to each other. In order to show the two parts, this statement may be changed as follows:-If a triangle has two sides equal to each other, the angles opposite these equal'sides (or angles at the base) are equal to each other.
15. The demonstration of a theorem depends either on definitions and axioms, or on other theorems that have been previously shown to be true.

The following are some of the axioms commonly used in geometrical reasoning :-

1. Things that are equal to the same thing are equal to each other.

If $A=B, B=C, C=D, D=E$ and $E=F$, what about A and F ?
2. If equals be added to equals the sums are equal.

Thus if A, B, C, D be four st. lines such that $\mathbf{A}=\mathbf{B}$ and $\mathbf{C}=\mathbf{D}$, then the sum of \mathbf{A} and $\mathbf{C}=$ the sum of B and D.

Exercise:-Mark four successive points A, B, C, D on a st. line such that $A B=C D$. Show that $A C=B D$.
3. If equals be taken from equals the remainders are equal.

Give example.

Exercise:-Mark four successive points A, B, C, D on a st. line such that $\mathbf{A C}=\mathbf{B D}$. Show that $\mathbf{A B}=\mathbf{C D}$.
4. If equals be added to unequals the sums are unequal, the greater sum being obtained from the greater unequal.

Give example. Show also, by example, that if unequals be added to unequals the sums may be either equal or unequal.
5. If equals be taken from unequals the remainders are unequal, the greater remainder being obtained from the greater unequal.
6. Doubles of the same thing, or of equal things, are equal to each other.
7. Halves of the same thing, or of equal things, are equal to each other.
8. The whole is greater than its part, and equal to the sum of all its parts.

Give examples.
9. Magnitudes that coincide with each other, are equal to each other.
These simple propositions, and others that are also plainly true, may be freely used in proving theorems.

Angles and Triangles

16. Definitions. - When two straight lines are drawn from a point they are said to form an angle.

The point from which the two lines are drawn is called the vertex of the angle.

The two lines are called the arms of the angle.
The angle in the figure may be called the angle bAC, or the angle CAB. The letter at the vertex must be the middle one in reading the angle.

The single letter at the vertex is sometimes used to denote the angle when there can be no doubt as to which angle is meant.
17. Suppose a straight line $O B$ to be fixed, like a rigid rod on a pivot at the point O, and be free to rotate in the plane of the paper.

If the line $O B$ start from any position $O A$, it may rotate in either of two directions-that in which the hands of a clock rotate, or in the opposite.

When $O B$ starts from $O A$ and stops at any position an angle is formed with O for its vertex and OA and OB for its arms.
18. An angle is said to be positive or negative according to the direction in which the line that traces out the angle is supposed to have rotated. The direction contrary to that in which the hands of a clock rotate is commonly taken as positive.
19. The magnitude of an angle depends altogether on the amount of rotation, and is quite independent of the lengths of its arms.
20. If we wish to compare two angles $A B C$ and DEF we may suppose the angle $A B C$ to be placed on

the angle DEF so that \mathbf{B} falls on \mathbf{E} and $\mathbf{B A}$ along ED. The position of $B C$ with respect to $E F$ will then show which of the angles is the greater and by how much it is greater than the other.
21. Definition.-When a revolving line OB has made half of a complete revolution from the initial position OA the angle formed is a straight angle.

The arms of a straight angle are thus in the same straight line and extend in opposite directions from
the vertex. At the point 0 , in the diagram, there are two straight angles on opposite sides of the straight line $A O B$, the two straight angles making up the complete revolution.
22. Definition.-If a straight line, starting from $O A$, rotates in succession through two equal angles $\triangle O B$,

BOC, the sum of which is a straight angle, each of these angles is called a right angle.

A right angle is thus one-half of a straight angle, or one-quarter of a complete revolution.

Each arm of a right angle is said to be perpendicular to the other arm.

What is a vertical line? a horizontal line?
An angle which is less than a right angle is called an acute angle.

An angle which is greater than a right angle is called an obtuse angle.
23. If a right \angle be divided into ninety equal parts, each of these parts is called a degree.

$$
\begin{array}{rll}
\text { Thus } 1 \mathrm{rt.} . \angle & =90^{\circ}, \\
1 \mathrm{st.} . \angle & =180^{\circ} \\
1 \mathrm{revolution} & =360^{\circ} .
\end{array}
$$

24. Let a st. line starting from OA revolve through two successive $\angle \mathrm{s}$

$А О B, B O C$ such that $O C$ is in the same st. line with OA , but in the opposite direction from the point O , and consequently $A O C$ is a st. \angle.

$$
\begin{aligned}
& \because \angle \mathrm{AOB}+\angle \mathrm{BOC}=\text { the st. } \angle \mathrm{AOC}, \\
& \therefore \angle \mathrm{AOB}+\angle \mathrm{BOC}=2 \text { rt. } \angle \mathrm{s} .
\end{aligned}
$$

Thus the angles which one straight line makes with another on the same side of that other are together equal to two right angles.
25. Definition.-When two angles have the same vertex and a common arm, and the remaining arms on opposite sides of the common arm, they are said to be adjacent angles.

Thus BAC and CAD are adjacent angles having the same vertex A and the common arm AC.

But angles BAD and CAD, with the same vertex and the common arm AD are not adjacent angles.
26. Let the adjacent $\angle S A B C, A B D$ be together equal to two rt. $\angle \mathrm{s}$.

$\angle A B D+\angle A B C=$ two rt. $\angle S=$ a st. \angle. That is, $\angle D B C$ is a st. \angle, and \therefore line DBC is a st. line.

Thus, if two adjacent angles are together equal to two right angles, the exterior arms of the angles are in the same straight line.
27. Let a st. line OB , starting from the position $O A$, and rotating in the positive direction, trace out the successive $\angle S$: AOC, COD, DOE, EOF, FOA.

The sum of the successive $\angle \mathrm{s}$ is a complete revolution, and therefore equal to four rt. $\angle \mathrm{s}$.

Thus, if any number of straight lines meet at a point, the sum of the successive angles is four right angles.

Theorem 1

Each of the angles formed by two intersecting straight lines is equal to the vertically opposite angle.

Hypothesis.-The two st. lines AB, CD cut each other at E .
To prove that $(1) \angle \mathrm{AEC}=\angle \mathrm{BED}$,
(2) $\angle A E D=\angle B E C$.

Proof.- $\because \quad$ CED is a st. line, $\angle A E C+\angle A E D=$ two rt. $\angle \mathrm{s}$.
$\because \quad$ AEB is a st. line,
$\angle A E D+\angle D E B=$ two rt. $\angle \mathrm{s}$.
$\therefore \angle \mathrm{AEC}+\angle \mathrm{AED}=\angle \mathrm{AED}+\angle \mathrm{DEB}$.
From each of these equals take away the common $\angle A E D$ and the remainders must be equal to each other.

$$
\therefore \angle \mathrm{AEC}=\angle \mathrm{DEB} .
$$

In the same manner it may be shown that \angle AED $=\angle C E B$.
28. Definitions. - When two angles are such that their sum is two right angles, they are said to be supplementary angles, or each angle is said to be the supplement of the other.

If two $-s$ are equal, what about their supplementary $\angle \mathrm{s}$?

When two angles are such that their sum is one right angle, they are said to be complementary angles, or each angle is said to be the complement of the other.

29.-Exercises

1. If one of the four $\angle s$ made by two intersecting st. lines be 17°, find the number of degrees in each of the other three.
2. Two st. lines $A B D, C B E$ cut at B, and $\angle A B C$ is a rt. \angle. Prove that the other $\angle \mathrm{s}$ at B are also $\mathrm{rt} . \angle \mathrm{s}$.
3. If in the figure of Theorem 1 the $\angle A E C=\frac{2}{3} \angle A E D$, find the number of degrees in each \angle of the figure.
4.

5. In the diagram,

$$
\angle A B C=\angle A C B .
$$

Prove that
(1) $\angle \mathrm{ABD}=\angle \mathrm{ACE}$,
(2) $\angle \mathrm{FBC}=\angle \mathrm{GCB}$,
(3) $\angle \mathrm{DBF}=\angle \mathrm{ECG}$.

6. In the diagram,
$A O B$ is a st. line,
$\angle C O D=\angle D O B$ and
$\angle A O E=\angle E O C$.

Prove that EOD is a rt. \angle, and that $\angle A O E$ is the complement of $\angle B O D$.
7. E is a point between A and B in the st. line $A B ; D E, F E$ are drawn on opposite sides of $A B$ and such that $\angle D E A=$ $\angle F E B$. Show that DEF is a st. line.
8. Four st. lines, $O A, O B, O C, O D$, are drawn in succession from the point O, and are such that $\angle A O B=\angle C O D$ and $\angle B O C=\angle D O A$. Show that $A O C$ is a st. line, and also that $B O D$ is a st. line.
9. In the diagram, $A B C, D E F$, GBEH are st. lines and $\angle A B E=$ $\angle B E F$.

Prove that

(1) $\angle \mathrm{CBE}=\angle \mathrm{BED}$,
(2) $\angle \mathrm{GBC}=\angle \mathrm{DEH}$,
(3) $\angle \mathrm{ABG}=\angle \mathrm{BED}$,
(4) $\angle \mathrm{s} C B E, B E F$ are supplementary,
(5) $\angle \mathrm{s} A B E, B E D$ are supplementary.
30. Definitions.-A figure formed by straight lines is called a rectilineal figure.

The figure formed by three straight lines which intersect one another is called a triangle.

The three points of intersection are called the vertices of the triangle.

The lines between the vertices of the triangle are called the sides of the triangle.
31. Figures that are equal in all respects, so that one may be made to fit the other exactly, are said to be congruent.

The sign \equiv is used to denote the congruence of figures.

First Case of the Congruence of Triangles

Theorem 2

If two triangles have two sides and the contained angle of one respectively equal to two sides and the contained angle of the other, the two triangles are congruent.

Hypothesis.-ABC and DEF are two $\triangle \mathrm{s}$ having $A B=D E, A C=D F$ and $\angle A=\angle D$.

To prove that (1) $\mathrm{BC}=\mathrm{EF}$,
(2) $\angle B=\angle E$,
(3) $\angle C=\angle F$,
(4) area of $\triangle A B C=$ area of $\triangle D E F$; and, hence, $\triangle A B C \equiv \triangle D E F$.
Proof.-Let $\triangle A B C$ be applied to \triangle DEF so that vertex A falls on vertex D and $A B$ falls along $D E$.

$$
\because A B=D E,
$$

\therefore vertex B must fall on vertex E . $\because \angle A=\angle D$,
$\therefore A C$ must fall along $D F$,
and \therefore, as $A C=D F$,
the vertex C must fall on the vertex F.
$\therefore \triangle A B C$ coincides with \triangle DEF.
and $\therefore \triangle A B C \equiv \triangle D E F$.
32. Definitions.-A closed figure formed by four straight lines is called a quadrilateral.

In a quadrilateral a straight line joining two opposite vertices is called a diagonal.

A quadrilateral having its four sides equal to each other is called a rhombus.

A circle is a figure consisting of one closed curved line, called the circumference, and is such that all straight lines drawn from a certain point within the figure, called the centre, to the circumference are equal to each other.

In a circle a st. line drawn from the centre to the circumference is called a radius. (Plural-radii.)

A st. line, as $A B$, joining two points in the circumference is called a chord.

If a chord passes through the centre, as GD, it is called a diameter.

A part of the circumference, as the curved line FED, is called an arc.

A line drawn from a point in one arm of an angle to a point in the other arm is said to subtend the angle. In the diagram the arc FE subtends the L FCE; or in any \triangle each side subtends the opposite L.

33.-Exercises

1. Prove Theorem 2 when one \triangle has to be supposed to be turned over before it can be made to coincide with the other.
2. The $\angle B$ of a $\triangle A B C$ is a rt. \angle, and $C B$ is produced to D making $B D=B C$. Prove $A D=A C$.
3. A, B, C are three points in a st. line such that $A B=B C$. $D B$ is $\perp A C$. Show that any point in $D B$, produced in either direction, is equidistant from A and C.
4. Two st. lines $A O B, C O D$ cut one another at O, so that $O A=O B$ and $O C=O D$; join $A D$ and $B C$, and prove $\triangle s$ $A O D, B O C$ congruent.
5. Prove that all chords of a circle which subtend equal angles at the centre are equal to each other.
6. If with the same centre O, two circles be drawn, and st. lines ODB, OEC be drawn to meet the circumferences in D, E, B, C; prove that $B E=D C$.
7. $A B C D$ is a quadrilateral having the opposite sides $A B, C D$ equal and $\angle B=\angle C$. Show that $A C=B D$.
8. In the diagram, $A B C$ and DEF are both $\perp B E$. Also $A B=B C$ and $D E=$ $E F$. Prove that $A D=C F$.
9. Two st. lines $A O B, C O D$ cut one
 another at rt. $\angle s$ at O. $A O$ is cut off $=O B$, and $C O=$ OD. Prove that the quadrilateral $A C B D$ is a rhombus.
10. Two quadrilaterals $A B C D, E F G H$ have $A B=E F$, $B C=F G, C D=G H, \angle B=\angle F, \angle C=\angle G$. Prove that they are congruent.
11. Definitions.-A triangle having its sides all equal to each other is called an equilateral triangle.

A triangle having two sides equal to each other is called an isosceles triangle.

A triangle having no two of its sides equal to each other is called a scalene triangle.
35.

If a straight line revolve in the positive direction about the point O from the position $O A$ to the position $O B$, it must pass through some position OC such that $\angle A O C=\angle C O B$.

A straight line which divides an angle into two equal angles is called the bisector of the angle.

When a construction is represented in a diagram, although it has not previously been proved that it can be made, it is called a hypothetical construction. Thus $O C$ has been drawn to represent the bisector of $\angle A O B$.

Theorem 3

The angles at the base of an isosceles triangle are equal to each other.

Hypothesis.- ABC is an isosceles \triangle having $\mathrm{AB}=\mathrm{AC}$.
To prove that $\angle \mathbf{B}=\angle \mathbf{C}$.
Hypothetical Construction.-Draw the st. line AD to represent the bisector of $\angle B A C$.

Proof.-In the two $\triangle \mathrm{S}$ ADB, ADC̀,

$$
\begin{array}{rlr}
\left\{\begin{array}{rlr}
A B & =A C, & (\text { Hyp. }) \\
A D & \text { is common, }, & \\
\angle B A D & =\angle C A D, & \text { (Const.) }
\end{array}\right. \\
\therefore \triangle A D B \equiv \triangle A D C, & \text { (I-2, page 16.) } \\
\therefore & \angle B & =\angle C .
\end{array}
$$

36. The two $\triangle \mathrm{s}$ ADB, ADC, in the diagram of Theorem 3, are congruent, and if the isosceles \triangle be folded along the bisector of the vertical \angle as crease, the parts on one side of the bisector will exactly fit the corresponding parts on the other side.

Definition.-When a figure can be folded along a line so that the part on one side exactly fits the part on the other side, the figure is said to be symmetrical with respect to that line.

The line along which the figure is folded is called an axis of symmetry of the figure.

Hence the bisector of the vertical \angle of an isosceles \triangle is an axis of symmetry of the \triangle.

It follows from the above definition of a symmetrical figure that-

If a figure is symmetrical with respect to a st. line, for every point on one side of this axis of symmetry there is a corresponding point on the other side.

Show by folding, in the diagram of Theorem 3, that if $\angle B=\angle C$, the side $A B=$ the side $A C$.

37.-Exercises

1. An equilateral \triangle is equiangular.
2. $A B C$ is an equilateral \triangle, and points D, E, F, are taken in $B C, C A, A B$ respectively, such that $B D=C E=A F$. Show that DEF is an equilateral \triangle.
3. Show that the exterior $\angle \mathrm{s}$ at the base of an isosceles \triangle are equal to each other.
4. The opposite $\angle \mathrm{s}$ of a rhombus are equal to each other.
5. ABC is an isosceles \triangle having $A B=A C$, and the base $B C$ produced to D and E such that BD $=C E$. Prove that ADE is an isosceles \triangle.

6. $A C, A D$ are two st. lines on opposite sides of $A B$. Prove that if the bisectors of $\angle \mathrm{s} B A C, B A D$ are at $\mathrm{rt} . \angle \mathrm{s}$, $A C, A D$ must be in the same st. line.
7. If a figure be symmetrical with respect to a st. line, the st. line joining any two corresponding points cuts the axis at rt. $\angle \mathrm{s}$.

Second Case of the Congruence of Triangles

Theorem 4

If two triangles have the three sides of one respectively equal to the three sides of the other, the two triangles are congruent.

Hypothesis.-ABC, DEF are two $\triangle \mathrm{s}$ having $\mathrm{AB}=\mathrm{DE}$, $\mathrm{AC}=\mathrm{DF}$ and $\mathrm{BC}=\mathrm{EF}$.

To prove that $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$.
Proof.-Let \triangle DEF be applied to $\triangle A B C$ so that the vertex \mathbf{E} falls on the vertex \mathbf{B} and EF falls along $\mathbf{B C}$.

Then $\because E F=B C$, the vertex F falls on C. Let D take the position D^{\prime} on the side of $B C$ remote from A.

Join AD'.

$$
\begin{aligned}
& \because \quad B A=B D^{\prime}, \\
& \therefore \quad \angle B A D^{\prime}=\angle B D^{\prime} A . \quad(I-3, \text { p. 20. })
\end{aligned}
$$

Similarly $\angle C A D^{\prime}=\angle C D^{\prime} A$.
$\therefore \angle \mathrm{BAD}^{\prime}+\angle \mathrm{CAD}^{\prime}=\angle \mathrm{BD}^{\prime} \mathrm{A}+\angle \mathrm{CD}^{\prime} \mathrm{A}$, i.e., $\angle B A C=\angle B^{\prime} C$.

Then in $\triangle \mathrm{s} B A C, B D^{\prime} C\left\{\begin{aligned} B A & =\mathrm{BD}^{\prime}, \\ C A & =C^{\prime}, \\ \angle B A C & =\angle D^{\prime} C,\end{aligned}\right.$

$$
\therefore \quad \triangle A B C \equiv \triangle B D^{\prime} C ; \quad(I-2, p, 16 .)
$$

$$
\text { i.e., } \quad \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \text {. }
$$

Note.-In the proof of this theorem three cases may occur :-AD' may cut BC as in Fig. 1, or not cut BC as in Fig. 2, or pass through one end of $B C$ as in Fig. 3.

Fig. 1

Fig. 2

Fig. 3

The proof given above is that of the first case. The pupil should work out the proofs of the other two cases.

38.-Exercises

1. If the opposite sides of a quadrilateral be equal, the opposite $\angle \mathrm{s}$ are equal.
2. A diagonal of a rhombus bisects each of the $\angle \mathrm{s}$ through which it passes, and consequently, the diagonal is an axis of symmetry in the rhombus.
3. If in a quadrilateral $A B C D$ the sides $A B, C D$ be equal and $\angle A B C=\angle B C D$, prove that $\angle C D A=\angle D A B$.
4. Show that equal chords in a circle subtend equal $\angle \mathrm{s}$ at the centre.
5. Prove that the diagonals of a rhombus bisect each other at rt . $\angle \mathrm{s}$.

Theorem 5

If two isosceles triangles are on the same base, the straight line joining their vertices is an axis of symmetry of the figure; and the ends of the base are corresponding points.

Hypothesis.-ABC, DBC are two isosceles $\triangle \mathrm{s}$ on the same base BC.

To prove that AD is an axis of symmetry of the figure.

Proof.-AD, or AD produced, cuts BC at E.
In $\triangle S A B D, A C D,\left\{\begin{array}{l}A B=A C \\ B D=C D, \\ A D \text { is common, }\end{array}\right.$

$$
\begin{align*}
& \therefore \triangle B A D \equiv \triangle C A D . \tag{I-4,p.22.}\\
& \text { and } \therefore \angle B A D=\angle C A D \text {. }
\end{align*}
$$

In $\triangle S B A E, C A E,\left\{\begin{array}{l}B A=C A, \\ A E \text { is common, }\end{array}\right.$ $\angle B A E=\angle C A E$,
$\therefore \triangle B A E \equiv \triangle C A E$.
(I-2, p. 16.)
Similarly, $\triangle B D E \equiv \triangle C D E$.

Hence, each part of the figure on one side of $A D$ is congruent to the corresponding part on the other side, and if the figure be folded on AD, as crease, the corresponding parts will coincide.
$\therefore A D$ is an axis of symmetry of the figure; and B, C are corresponding points.

39.-Exercises

1. If two circles cut at two points, the st. line which joins their centres bisects at rt. $\angle \mathrm{s}$ the st. line joining the points of section.
2. A, B, C are three points each of which is equidistant from two fixed points P, Q. Show that A, B, C are in a st. line which bisects the st. line joining P, Q and cuts it at rt. <s.

Constructions

40. In Theoretical Geometry the use of instruments in making constructions is generally restricted to an ungraduated straight edge and a pair of compasses. With these instruments we can:-
41. Draw a st. line from one point to another.
42. Produce a st. line.
43. Describe a circle with any point as its centre and radius equal to any given st. line.
44. Cut off from one st. line a part equal to another st. line.
Note.-All constructions should be accurately and neatly drawn by the pupil, and, by means of theorems already prover, the correctness of the method of construction should be shown.

Problem 1

To bisect a given angle.

Let bac be the given \angle.
Construction.-With the compasses cut off equal distances $A D$ and $A E$ from the arms of the L.

With centre \mathbf{D} describe an arc.
With centre \mathbf{E} and the same radius describe another are cutting the first at F.

Join AF.
Then $A F$ is the bisector of $\angle B A C$.
Proof.-JJoin DF, EF, DE.
ADE, FDE are isosceles $\triangle S$ on the same base DE,
\therefore AF is an axis of symmetry of the figure, (I-5, p. 24.)
$\therefore \mathrm{AF}$ bisects $\angle \mathrm{BAC}$.
Note.-The equal ralii for the arcs with centres D and E must be taken long enough for the arcs to intersect.

41.-Exercises

1. Divide a given $<$ into four equal parts.
2. Prove that the bisectors of a pair of vertically opposite $\angle \mathrm{s}$ are in the same st. line.
3. Bisect a st. \angle.

Problem 2

To draw a perpendicular to a given straight line from a given point in the line.

Let $C D$ be the given st. line and B the given point.
Construction.-Bisect the st. $\angle C B D$ by the st. line BG.

Proof.-Then each of the $\angle S$ CBG, DBG is half of a st. \angle and \therefore each is a rt. L.

$$
\therefore \mathrm{BG} \text { is } \perp \mathrm{CD} .
$$

42.-Exercises

Using ruler and compasses only, construct $\angle \mathrm{s}$ of (1), 45°; (2), $22 \frac{1}{2}^{\circ}$; (3), 135°; (4), $67 \frac{1}{2}^{\circ}$; (5), 225°.
43. Definitions.-If one angle of a triangle be a right angle, the triangle is called a right-angled triangle.

In a right-angled triangle the side opposite the right angle is called the hypotenuse.

If one angle of a triangle be an obtuse angle, the triangle is called an obtuse-angled triangle.

If all three angles of a triangle be acute angles, the triangle is called an acute-angled triangle.

The altitude of a triangle is the length of the perpendicular from any vertex to the opposite side.

44.-Exercises

1. Construct a rt. $-\angle \mathrm{d} \triangle$ having one of the arms of the rt . \angle three times the other.
2. Construct a rt. $-\angle \mathrm{d} \triangle$ having the hypotenuse three times one of the arms of the rt. \angle.
3. Given the length of the hypotenuse and of one of the sides of a rt. $-\angle \mathrm{d} \triangle$, construct the \triangle.
4. Construct a rhombus having each of its diagonals equal to twice a given st. line.
5. Construct a rhombus having one diagonal twice and the other four times a given st. line.
6. Construct an isosceles \triangle having given its altitude and the length of one of the equal sides.
7. Construct an isosceles rt. $-\angle \mathrm{d} \triangle$.
8. Definitions.-Sometimes when a proposition has been proved the truth of another proposition follows as an immediate consequence of the former; such a proposition is called a corollary.

A straight line which bisects a line of given length at right angles is called the right bisector of the line.

Problem 3

To bisect a given straight line.

Let $A B$ be the given st. line.
Construction.-With centre A and any radius that is plainly greater than half of $A B$, draw two arcs, one on each side of $\mathbf{A B}$.

With centre \mathbf{B} and the same radius draw two ares cutting the first two at C and D.

Join CD, cutting $A B$ at E.
E is the middle point of $A B$.
Proof.-Join CA, AD, DB, BC.
$C A B$, DAB are isosceles $\triangle S$ on the same base $A B$,
$\therefore C D$ is an axis of symmetry of the figure; and A, B are corresponding points. (I-5, p. 24.)
$\therefore \mathrm{AE}=\mathrm{EB}$.
Corollary.-From the above proof it follows that the $\angle s$ at E are rt. $\angle s$, and hence, $C D$ is the right bisector of AB.
46. Definition.-The straight line drawn from a vertex of a triangle to the middle point of the opposite side is called a median of the triangle.

47.-Exercises

1. Divide a given st. line into four equal parts.

上
2. In an isosceles Δ prove that the bisector of the vertical \angle is a median of the \triangle.
3. In an equilateral \triangle prove that the bisectors of the $\angle \mathrm{s}$ are medians of the \triangle.
4. Show that any point in the right bisector of a given st. line is equidistant from the ends of the given line.
5. In any Δ the point of intersection of the right bisectors of any two sides is equidistant from the three
 vertices.
6. The right bisectors of the three sides of a \triangle pass through one point.

The right bisectors of AB, BC meet at O . Bisect AC at E. Join EO. Prove $\mathrm{OE} \perp \mathrm{AC}$.
7. Describe a circle through the three vertices of a \triangle.
8. Describe a circle to pass through three given points that are not in the same st. line.
9. Show how any number of circles may be drawn through two given points.

What line contains the centres of all
 these circles?
10. In a given st. line find a point that is equally distant from two given points.
11. On a given base describe an isosceles \triangle so that the sum of the two equal sides may equal a given st. line.

In what case is this impossible?
12. Construct a rhombus having its diagonals equal to two given st. lines.
13. In $\triangle A B C$ find in CA, produced if necessary, a point D so that $\mathrm{DC}=\mathrm{DB}$.
\checkmark l4. In $\triangle s A B C, D E F, A B=D E, A C=D F$ and the medians drawn from B and E are equal to each other. Prove that $\triangle A B C \equiv \triangle D E F$.

Problem 4

To draw a perpendicular to a given straight line from a given point without the line.

Let P be the given point and $A B$ the given st. line.
Construction.-Describe an arc with centre P to cut $A B$ at C and D.

With centres C and D, and equal radii, describe two ares cutting at E .

Join PE, cutting AB at F.
PF is the required perpendicular.
Proof.-Join PC, CE, ED, DP.
$\therefore P C D, E C D$ are isosceles $\triangle \mathrm{s}$ on the same base $C D$,
$\therefore P E$ is an axis of symmetry of the figure; and C, D are corresponding points.
(I-5, p. 24.)
$\therefore \angle \mathrm{s}$ at F are rt. $\angle \mathrm{s}$, and PF is $\perp \mathrm{AB}$.

To construct a triangle with sides of given length.

Let $A B, C$ and D be the given lengths.
Construction.-With centre A and radius C describe an arc.

With centre B and radius D describe an are cutting the first are at E .

Join EA, Eb.
$A E B$ is the required \triangle.
Question-In what case would the above construction fail?

48.-Exercises

1. On a given st. line describe an equilateral \triangle.
2. On a given base describe an isosceles Δ having each of the equal sides double the base.
3. Construct a rhombus having given a diagonal and the length of one of the equal sides.

Problem 6

To construct an angle equal to a given angle.

Let BAC be the given \angle.
Construction. - From AC, AB cut off equal parts $A E, A D$.

Draw a line and mark a point P in it.
Cut off $P Q=A E$.
With centre \mathbf{P} and radius $P Q$ describe an arc.
With centre Q and radius DE describe an arc cutting the are with centre \mathbf{P} at R .

Join RP.
$R P Q$ is the required \angle.
Proof.-Join DE, RQ.
In $\triangle S P R Q, A D E .\left\{\begin{array}{l}P Q=A E, \\ P R=A D, \\ R Q=D E,\end{array}\right.$

$$
\therefore \angle \mathrm{RPQ}=\angle \mathrm{BAC} .
$$

49.-Exercises

1. Construct a rhombus having given one of its $\angle \mathrm{s}$ and the length of one of its equal sides.
2. Construct a quadrilateral equal in all respects to a given quadrilateral.
3. On a given st. line $B C$ construct a \triangle having the ${ }^{\circ} \angle \mathrm{s}$ B, C equal to two given acute $\angle \mathrm{s}$.
4. Construct an \angle equal to the complement of a given acute \angle.
5. Construct an \angle equal to the supplement of a given \angle.
6. On a given base describe an isosceles \triangle having its altitude equal to a given st. line.
7. In the side $B C$ of a $\triangle A B C$ find a point E, such that $A E$ is half the sum of $A B$ and $A C$.
8. The \triangle formed by joining the middle points of the three sides of an isosceles Δ is isosceles.
9. $A B$ is a given st. line and C is a given point without the line. Find the point D so that C and D may be symmetrical with respect to $A B$.
10. C, D are given points, (1) on opposite sides, (2) on the same side of a given st. line $A B$. Find a point P in $A B$ so that $C P, D P$ make equal $\angle s$ with $A B$.
11. The right bisectors of the two sides $A B, A C$ of $\triangle A B C$ meet at D, and E is the middle point of $B C$. Show that DE $\perp B C$.

Parallel Straight Lines

50. Definitions.-Two straight lines in the same plane which do not meet when produced for any finite distance in either direction are said to be parallel to each other.

A straight line which cuts two, or more, other straight lines is called a transversal.

A quadrilateral that has both pairs of opposite sides parallel to each other is called a parallelogram.

Draw a st. line EF cutting two other st. lines $A B$ and $C D$ at G and H.

Eight $\angle \mathrm{s}$ are thus formed, four of which, $\mathrm{AGH}, \mathrm{BGH}$, $C H G$, DHG, being between $A B$ and $C D$, are called interior $\angle \mathrm{s}$. The other four are called exterior $\angle \mathrm{s}$.

The interior $\angle \mathrm{S} A G H$ and GHD, on opposite sides of the transversal, are called alternate $\angle \mathrm{s}$. Thus also, BGH and GHC are alternate $\angle \mathrm{s}$.

Name four pairs of equal angles in the diagram.

Theorem 6

If a transversal meeting two straight lines makes the alternate angles equal to each other, the two straight lines are parallel.

Hypothesis. - The transversal AB meeting CD and $\mathbf{E F}$ makes $\angle \mathbf{C G H}=$ the alternate $\angle \mathbf{G H F}$.

To prove that $\mathbf{C D \| E F}$.
Proof.-Detach the part DGHF from the figure and mark it $d g h f$.

Slide $d g h f$, from its original position, along the transversal until h comes to the point \mathbf{G}.

Then, rotate $d g h f$, in either direction, through a st. L about the point G.

When the rotation is complete $h g$ coincides with G H.

$$
\begin{aligned}
\text { And, } & \because<f h g=\angle \mathbf{C G H}, \\
& \therefore h f \text { coincides with GC. } \\
\text { Also, } & \because<d g h=\angle \text { GHE, } \\
& \therefore g d \text { coincides with HE. }
\end{aligned}
$$

If it be possible let CD and EF when produced meet towards \mathbf{D} and F .

Then $h f$ and $g d$ must meet towards f and d,
\therefore GC and HE must meet towards C and E.
Hence, $\mathbf{C D}$ and $\mathbf{E F}$ when produced must meet in two points.

This is impossible by the definition of a st. line.
$\therefore C D$ and EF do not meet towards D and F, and hence cannot meet towards \mathbf{C} and E .

$\therefore C D \| E F$.

Note.-If this proof is not at once clear to the pupil he should make a, drawing of the diagram, cut out the part d $g h f$, and turning it about, fit it to E H G C.

51.-Exercises

1. Lines which are \perp to the same st. line are $\|$ to each other.
2. If both pairs of opposite sides of a quadrilateral are equal to each other, the quadrilateral is a $\| \mathrm{gm}$.
3. A rhombus is a $\| g m$.
4. If the diagonals of a quadrilateral bisect each other, the quadrilateral is a $\| \mathrm{gm}$.
5. No two st. lines drawn from two vertices of a \triangle, and terminated in the opposite sides, can bisect each other.

Theorem 7

If a transversal meeting two straight lines makes (I) an exterior angle equal to the interior and opposite angle on the same side of the transversal, or, (2) the two interior angles on the same side of the transversal supplementary, in either case the two straight lines are parallel.

(1) Hypothesis. - AB meeting CD, EF makes $\angle \mathbf{A G D}=$ $\angle \mathrm{GHF}$.
To prove.$\mathrm{CD} \| \mathrm{EF}$.
Proof.-

$$
\angle \mathrm{CGH}=\angle \mathrm{AGD}, \quad(\mathrm{I}-\mathrm{I}, \mathrm{p} .13 .)
$$

but $\angle \mathrm{AGD}=\angle \mathrm{GHF}$,
(Hyp.)
$\therefore \angle \mathrm{CGH}=\angle \mathrm{GHF}$.
$\therefore \quad C D \| E F$.
(I-6, p. 36.)
(2) Hypothesis. -AB meeting CD, EF makes $\angle \mathrm{DGH}$ $+\angle \mathrm{GHF}=$ two rt. $\angle \mathrm{s}$.

To prove.- $\mathrm{CD} \| \mathrm{EF}$.
Proof. $-\angle \mathrm{CGH}+\angle \mathrm{DGH}=$ two rt. $\angle \mathrm{s}$, but $\angle \mathrm{DGH}+\angle \mathrm{GHF}$ two rt. $\angle \mathrm{s}$,
(Hyp.)
$\therefore \angle \mathrm{CGH}+\angle \mathrm{DGH}=\angle \mathrm{DGH}+\angle \mathrm{GHF}$.
From each take the common $\angle \mathrm{DGH}$, and $\angle \mathrm{CGH}=$ $\angle \mathrm{GHF}$,

$$
\therefore C D \| E F \quad(I-6, \text { p. } 36 .)
$$

52. The following statement of a fundamental property of parallel straight lines is called Playfair's axiom:-

Through any point one, and only one, straight line can be drawn parallel to a given straight line.

From this axiom it follows that:-
No two intersecting straight lines can be parallel to the same straight line.
\therefore straight lines which are parallel to the same straight line are not intersecting lines, i.e.:-

Straight lines which are parallel to the same straight line are parallel to each other.

Theorem 8

If a transversal cuts two parallel straight lines, the alternate angles are equal to each other.

Hypothesis.-The transversal AB cuts the || st. lines CD, EF at G, H.

To prove that $\angle \mathrm{CGH}=\angle \mathrm{GHF}$.
Proof.-If $\angle \mathrm{CGH}$ be not equal to $\angle \mathrm{GHF}$, make the $\angle \mathrm{KGH}=\angle \mathrm{GHF}$, and produce KG to L .

Then $\because A B$ cuts $K L$ and $E F$, making $\angle K G H=$ the alternate $\angle \mathrm{GHF}$.

$$
\therefore \mathrm{KL} \text { is } \| \text { to } \mathrm{EF} . \quad(\mathrm{I}-6, \mathrm{p} .36 .)
$$

But CD is, by hypothesis, I| to EF.
That is, two intersecting st. lines, KL and CD, are both \|EF, which is impossible.

$$
\therefore \angle \mathrm{CGH}=\angle \mathrm{GHF} .
$$

53. Consider the method of proof used in Theorem 8.

To prove that $\angle \mathrm{CGH}=\angle \mathrm{GHF}$ we began by assuming that these $\angle \mathrm{s}$ are not equal, and then showed that something absurd or contrary to the hypothesis must follow, and concluded that $\angle \mathbf{C G H}=\angle \mathrm{GHF}$.

This method of proof, in which we begin by assuming that the conclusion is not true, is called the indirect method of demonstration.
54. Compare Theorems ' 6 and 8.

In both cases a transversal cuts two straight lines.
In Theorem 6 the hypothesis is that the alternate angles are equal, and the conclusion is that the lines are parallel.

In Theorem 8 the hypothesis is that the lines are parallel, and the conclusion is that the alternate angles are equal.

Thus in these propositions the hypothesis of each is the conclusion of the other.

When two propositions are such that the hypothesis of each is the conclusion of the other, they are said to be converse propositions; or each is said to be the converse of the other.

The converse of a true proposition may, or may not, be true. The converse propositions in Theorems 6 and 8 are both true; but consider the true proposition:All rt. $\angle \mathrm{s}$ are equal to each other; and its converse:All equal $\angle \mathrm{s}$ are $\mathrm{rt} . \angle \mathrm{s}$. The last is easily seen to be untrue. Consequently proof must in general be given for each of a pair of converse propositions.

When a proposition is known to be true and we wish to prove the converse we commonly use the indirect method.

Theorem 9

If a transversal cuts two parallel straight lines, it makes (I) an exterior angle equal to the interior and opposite angle on the same side of the transversal, and (2) the interior angles on the same side of the transversal supplementary.

Hypothesis.-AB cuts the || st. lines CD, EF.
To prove that (1) $\angle \mathrm{AGD}=\angle \mathrm{AHF}$.
(2) $\angle \mathrm{DGH}+\angle \mathrm{GHF}=$ two rt. $\angle \mathrm{s}$.

Proof.-(1) $\because \mathrm{CD} \| \mathrm{EF}$,
$\therefore \angle \mathrm{GHF}=\angle \mathrm{CGH}$.
but $\angle \mathrm{CGH}=\angle \mathrm{AGD}$,
(I-1, p. 13.)
$\therefore \angle \mathrm{AGD}=\angle \mathrm{GHF}$.
(2) $\because \angle \mathrm{GHF}=\angle \mathrm{CGH}$,
$\therefore \angle \mathrm{GHF}+\angle \mathrm{DGH}=\angle \mathrm{CGH}+\angle \mathrm{DGH}$;
but $\angle \mathrm{CGH}+\angle \mathrm{DGH}=$ a st. \angle
$\therefore \angle \mathrm{s}$ GHF, DGH are supplementary.

Problem 7

Through a given point to draw a straight line parallel to a given straight line.

Let P be the given point and $A B$ the given st. line. Construction.-Take two points C, D, in AB.
With centre P and radius $C D$ describe an arc.
With centre \mathbf{D} and radius $\mathbf{C P}$ describe an arc cutting the first at \mathbf{Q}.

Join PQ.
Then $P Q \| A B$.
Proof.-Join PC, DQ, PD.

$$
\begin{aligned}
& \text { In } \triangle S \text { PCD, } D Q P,\left\{\begin{array}{l}
P C=D Q, \\
C D=Q P, \\
P D \text { is common, }
\end{array}\right. \\
& \therefore \angle C D P=\angle D P Q .(\mathrm{I}-4, \mathrm{p} .22 .) \\
& \therefore \quad P Q \| A B .(\mathrm{I}-6, \mathrm{p} .36 .)
\end{aligned}
$$

55.-Exercises
| 1. If a st. line be \perp to one of two $\|$ st. lines, it is also \perp to the other.
| 2. Prove, by using a transversal, that st. lines which are || to the same st. line are \| to each other.
| 3. Any st. line $\|$ to the base of an isosceles \triangle makes equal $\angle \mathrm{s}$ with the sides, or the sides produced.
4. Construct a \triangle having two of its $\angle s$ respectively equal to two given $\angle \mathrm{s}$, and the length of the \perp from the vertex of the third \angle to the opposite side equal to a given st. line.
5. Construct a rt.- $\angle \mathrm{d} \triangle$ having given one side and the opposite \angle.
6. If one \angle of a $\| \mathrm{gm}$ be a $\mathrm{rt} . \angle$, the other three $\angle \mathrm{s}$ are also rt . $\angle \mathrm{s}$.
7. Give a proof for the following method of drawing a line through $\mathbf{P} \| A B:-$

Place the set-square with the hypotenuse along the st. line $A B$.

Place a ruler against another side of the set-square as in the diagram.

Hold the ruler firmly in position and slide the set-square along it until the hypotenuse comes to the point P.

A line drawn through P along the set-square is || $A B$.

Triangles

Theorem 10

The exterior angle, made by producing one side of a triangle, equals the sum of the two interior and opposite angles; and the three interior angles are together equal to two right angles.

Hypothesis.-ABC is a \triangle having BC produced to D.
To prove that (1) $\angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B}$.
(2) $\angle A+\angle B+\angle A C B=$ two rt. $\angle s$.

Construction.-Through \mathbf{C} draw $\mathbf{C E} \| \mathbf{A B}$.
Proof.- \quad CE $\| \mathrm{AB}$,
and $A C$ is a transversal,
$\therefore \angle A C E=\angle A$. (I-8, p. 40.)
$\because B D$ is a transversal,
$\therefore \angle E C D=\angle B$.
(I-9, p. 42.)
$\therefore \angle \mathrm{ACE}+\angle \mathrm{ECD}=\angle \mathrm{A}+\angle \mathrm{B}$.

$$
\text { i.e., } \angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B} \text {. }
$$

Hence, $\angle A+\angle B+\angle A C B=\angle A C D+\angle A C B$.
But $\angle A C D+\angle A C B=$ two rt. $\angle \mathrm{s}$,
$\therefore \angle A+\angle B+\angle A C B=$ two rt. $\angle \mathrm{s}$.
Cor.-The exterior angle of a triangle is greater than either of the interior and opposite angles.

56.-Exercises

(1. Prove Theorem 10 by means of a st. line drawn through the vertex || the base.
2. If two $\triangle s$ have two $\angle s$ of one respectively equal to two $\angle \mathrm{s}$ of the other, the third \angle of one is equal to the third \angle of the other.
3. The sum of the $\angle s$ of a quadrilateral is equal to four rt. $\angle \mathrm{s}$.
4. The sum of the $\angle \mathrm{s}$ of a pentagon is six rt. $\angle \mathrm{s}$.
5. Each \angle of a equilateral \triangle is an \angle of 60°.
6. Find a point B in a given st. line $C D$ such that, if $A B$ be drawn to B from a given point A, the $\angle A B C$ will equal a given \angle.
7. Show that the bisectors of the two acute $\angle s$ of a $\mathrm{rt} .-\angle \mathrm{d} \triangle$ contain an \angle of 135°.

* 8. If both pairs of opposite $\angle s$ of a quadrilateral are equal, the quadrilateral is a $\| g m$.

9. C is the middle point of the st. line $A B . C D$ is drawn in any direction and equal to CA or CB. Prove that ADB is a $\mathrm{rt} . \angle$.
*10. On $A B, A C$, sides of a $\triangle A B C$, equilateral $\triangle s A B D$, $A C E$ are described externally. Show that $D C=B E$.
※11. $A B$ is any chord of a circle of which the centre is O. $A B$ is produced to C so that $B C=B O . C O$ is joined, cutting the circle at D and is produced to cut it again at E. Show that $\angle A O E=$ three times $\angle B C D$.

* 12. If the exterior $\angle \mathrm{s}$ at B and C of a $\triangle A B C$ be bisected and the bisectors be produced to meet at D, the $\angle B D C$ equals half the sum of $\angle \mathrm{s} A B C, A C B$.

13. Show that a \triangle must have at least two acute $\angle \mathrm{s}$.
14. In an acute- $\angle \mathrm{d} \triangle$ show that the \perp from a vertex to the opposite side cannot fall outside of the \triangle.
1.). In an obtuse- $\angle \mathrm{d} \triangle$ show that the \perp from the vertex of the obtuse \angle on the opposite side falls within the \triangle, but that the \perp from the vertex of either acute \angle on the opposite side falls outside of the \triangle.
15. In a rt. $-\angle \mathrm{d} \triangle$ where do the \perp_{s} from the vertices on the opposite sides fall?
16. Only one \perp can be drawn from a given point to a given st. line.
17. Not more than two st. lines each equal to the same given st. line can be drawn from a given point to a given st. line.
18. D is a point taken within the $\triangle A B C$. Join DB, DC; and show, by producing $B D$ to meet $A C$, that $\angle B D C>\angle$ BAC.
19. With compasses and ruler only, construct the following $\angle \mathrm{s}:-30^{\circ}, 15^{\circ}, 120^{\circ}, 105^{\circ}, 75^{\circ}, 67 \frac{1}{2}^{\circ}, 150^{\circ}, 195^{\circ}, 210^{\circ}$, $240^{\circ}, 255^{\circ}, 285^{\circ},-30^{\circ},-75^{\circ},-135^{\circ}$.
20. If a transversal cut two st. lines so as to make the interior $\angle \mathrm{s}$ on one side of the transversal together less than two rt. $\angle \mathrm{s}$, the two lines when produced shall meet on that side of the transversal.
21. Tine bisector of the exterior vertical \angle of an isosceles is $\|$ to the base.
22. Give a proof for the following method of drawing a line through $\mathbf{P} \perp \mathbf{A B}$:-

First place the set-square in the position shown by the dotted line, with its hypotenuse along $A B$.

Place a ruler along one of the sides of the set-square and hold it firmly in that position.

Rotate the set-square through its right \angle, thus bringing the other side against the ruler, and slide the set-square along the ruler to the position shown by the shaded \triangle.

A line drawn through P, along the hypotenuse of the set-square, is perpendicular to $A B$.

Theorem 11

If one side of a triangle is greater than another side, the angle opposite the greater side is greater than the angle opposite the less side.

Hypothesis.-ABC is a \triangle having $\mathbf{A B}>\mathbf{A C}$.
To prove that $\angle \mathrm{ACB}>\angle \mathrm{ABC}$.
Construction.-From $A B$ cut off $A D=A C$. Join DC.

$$
\text { Proof.-In } \triangle A D C \text {, }
$$

$$
\because \quad A D=A C,
$$

$\therefore \angle A D C=\angle A C D . \quad(I-3$, p. 20.)
But $\angle A C B>\angle A C D$,
$\therefore \angle \mathrm{ACB}>\angle \mathrm{ADC}$.
In $\triangle B D C$,
$\because B D$ is produced to A,
\therefore exterior $\angle \mathrm{ADC}>$ interior and opposite

$$
\angle \text { DBC. } \quad(\mathrm{I}-10, \text { Cor., p. } 45 .)
$$

But $\angle \mathbf{A C B}>\angle \mathrm{ADC}$;
much more \therefore is $\angle A C B>\angle A B C$.

Theorem 12

(Converse of Theorem 11)
If one angle of a triangle is greater than another angle of the same triangle, the side opposite the greater angle is greater than the side opposite the less.

Hypothesis.-In $\triangle \mathbf{A B C} \angle \mathrm{B}>\angle \mathrm{C}$.
To show that $\mathrm{AC}>\mathrm{AB}$.
Proof.-If $A C$ be not $>A B$,
then either $A C=A B$,

$$
\begin{align*}
& \text { or } A C<A B \text {. } \\
& \text { If } A C=A B \text {, } \\
& \text { then } \angle B=\angle C . \tag{I-3,p.20.}
\end{align*}
$$

But this is not so, $\therefore \mathrm{AC}$ is not $=\mathbf{A B}$.

$$
\begin{aligned}
& \text { If } \mathrm{AC}<\mathrm{AB} \text {, } \\
& \text { then } \angle \mathrm{B}<\angle \mathrm{C} \text {. } \quad \text { (I-11, p. 49.) }
\end{aligned}
$$

But this also is not so, $\therefore A C$ is not $<A B$.
Hence $\because A C$ is neither $=$ nor $\angle A B$,

$$
\therefore A C>A B .
$$

57.-Exercises

1. The perpendicular is the shortest st. line that can be drawn from a given point to a given straight line.

The length of the \perp from a given point to a given st. line is called the distunce of the point from the liue.
$\times 2 . A B C D$ is a quadrilateral, of which $A D$ is the longest side, and BC the shortest. Show that $\angle B>\angle D$, and that $\angle \mathbf{C}>\angle \mathrm{A}$.
3. The hypotenuse of a rt. $-\angle \mathrm{d} \triangle$ is greater than either of the other two sides.
4. A st. line drawn from the vertex of an isosceles \triangle to any point in the base is less than. either of the equal sides.
$\times \quad$ 5. A st. line drawn from the vertex of an isosceles \triangle to any point in the base produced is greater than either of the equal sides.
6. If one side of a \triangle be less than another, the \angle opposite the less side is acute.
7. If D be any point in the side $B C$ of a $\triangle A B C$, the greater of the sides $A B, A C$, is greater than $A D$.
8. $A B$ is drawn from $A \perp C D$. E, F are two points in $C D$ on the same side of B, and such that $B E<B F$. Show that $A E<A F$. Prove the same proposition when E, F are on opposite sides of \mathbf{B}.
9. $A B C$ is a \triangle having $A B>A C$. The bisector of $\angle A$ meets BC at D. Show that BD $>$ DC. Give a general statement of this proposition.
10. $A B C$ is a \triangle having $A B>A C$. If the bisectors of $\angle \mathrm{s} \mathrm{B}, \mathrm{C}$ meet at D , show that $\mathrm{BD}>\mathrm{DC}$.
11. Prove Theorem 11 from the following construction: Bisect $\angle A$ by $A D$ which meets $B C$ at D; from $A B$ cut off $A E=A C$, and join ED.

12. The $\angle \mathrm{s}$ at the ends of the greatest side of a \triangle are acute.
13. If $A B>A D$ in the $\| g m \quad A B C D, \angle A D B>\angle B D C$.

Theorem 13

(Converse of Theorem 3)
If two angles of a triangle are equal to each other, the sides opposite these equal angles are equal to each other.

Hypothesis.-In $\triangle \mathrm{ABC} \angle \mathrm{B}=\angle \mathrm{C}$.
To prove that $\mathbf{A B}=\mathbf{A C}$.
Proof.- If $A B$ is not $=A C$, let $A B>A C$.
Then $\quad \angle \mathrm{C}><\mathrm{B} . \quad$ (I-11, p. 49.)
But this is not so.
$\therefore \mathrm{AB}$ is not $>\mathrm{AC}$.
Similarly it may be shown that
$A B$ is not $<A C$.
$\therefore A B=A C$.
58.-Exercises

1. An equiangular \triangle is equilateral.
2. $B D, C D$ bisect the $\angle \mathrm{sABC}, \mathrm{ACB}$ at the base of an isosceles $\triangle A B C$. Show that $\triangle D B C$ is isosceles.
3. $A B C$ is a \triangle having $A B, A C$ produced to D, E respectively. The exterior $\angle \mathrm{s}$ DBC, ECB are bisected by
$B F, C F$, which meet at F. Show that, if $F B=F C$, the $A B C$ is isosceles.
4. On the same side of $A B$ the two $\triangle s A C B, A D B$ have $A C=B D, A D=B C$, and $A D, B C$ meet at E. Show that $A E=B E$.
5. On a given base construct a \triangle having one of the $\angle \mathrm{s}$ at the base equal to a given \angle, and the sum of the sides equal to a given st. line.
6. On a given base construct a \triangle having one of the $-s$ at the base equal to a given L and the difference of the sides equal to a given st. line.
\times 7. If the bisector of an exterior \angle of a Δ be $\|$ to the opposite side, the \triangle is isosceles.
7. Through a point on the bisector of an - a line is drawn $\|$ to one of the arms. Prove that the \triangle thus formed is isosceles.
8. A st. line drawn \perp to $B C$, the base of an isosceles \triangle $A B C$, cuts $A B$ at X and $C A$ produced at Y. Show that $A X Y$ is an isosceles \triangle.
9. ACB is a rt. $-\perp \mathrm{d} \triangle$ having the $\mathrm{rt} . \angle$ at C . Through X, the middle point of $A C, X Y$ is drawn \| $C B$ cutting $A B$ a.t Y. Show that Y is the middle point of $A B$.
10. The middle point of the hypotenuse of a $\mathrm{rt} .-\angle \mathrm{d} \triangle$ is equidistant from the three vertices.
11. The st. line joining the middle points of two sides of a \triangle is $\|$ to the third side.
12. Construct a rt. $-\angle \mathrm{d} \triangle$, having the hypotenuse equal to one given st. line, and the sum of the other two sides equal to another given st. line.
13. If one \angle of a \triangle equals the sum of the other two, show that the \triangle is a $\mathrm{rt} .-\angle \mathrm{d} \triangle$.

Third Case of the Congruence of Triangles
Theorem 14
If two triangles have two angles and a side of one respectively equal to two angles and the corresponding side of the other, the triangles are congruent.

Hypothesis.-ABC, DEF are two $\triangle \mathrm{s}$ having $\angle \mathrm{A}=$ $\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$, and $\mathrm{BC}=\mathrm{EF}$.
To prove that $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$

$$
\begin{aligned}
\text { Proof.- } \quad \because & \angle A=\angle D, \\
\text { and } & \angle B=\angle E, \\
\therefore & \angle A+\angle B=\angle D+\angle E .
\end{aligned}
$$

But $\angle A+\angle B+\angle C=\angle D+\angle E+\angle F$. (I-10, p. 45.)

$$
\therefore \angle \mathrm{C}=\angle \mathrm{F} .
$$

Apply $\triangle A B C$ to $\triangle D E F$ so that $B C$ coincides with the equal side EF .

$$
\because \angle B=\angle E,
$$

\therefore BA falls along ED, and A is on the line ED.

$$
\because \angle C=\angle \mathrm{F},
$$

\therefore CA falls along FD , and A is on the line FD .
But D is the only point common to ED and FD, \therefore A falls on D.
$\therefore \triangle A B C$ coincides with $\triangle D E F$, and $\therefore \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$.

59.-Exercises

1. If the bisector of an \angle of a \triangle be \perp to the opposite side, the \triangle is isosceles.
2. Any point in the bisector of an \angle is equidistant from the arms of the \angle.
3. In the base of a \triangle. find a point that is equidistant from the two sides.
4. In a given st. line find a point that is equidistant from two other given st. lines.
5. Within a \triangle find a point that is equally distant from the three sides of the \triangle.
6. Without a \triangle find three points each of which is equally distant from the three st. lines that form the \triangle. $\times 7$. The ends of the base of an isosceles \triangle are equidistant from the opposite sides.
7. Two rt. $-\angle \mathrm{d} \triangle \mathrm{s}$ are congruent, if the hypotenuse andan acute \angle of one are respectively equal to the hypotenuse and an acute \angle of the other.
8. Construct a \triangle with a side and two $\angle \mathrm{s}$ respectively equal to a given st. line and two given $\angle \mathrm{s}$.
9. The \perp from the vertex of an isosceles \triangle to the base, bisects the base and the vertical \angle.
10. Prove $\mathrm{I}-13$ by drawing the bisector of the vertical \angle, and using I-14.
11. $\triangle A B C \equiv \triangle D E F$ and $A X, D Y$ are \perp to $B C, E F$ respectively. Prove that $A X=D Y$.
12. $\triangle A B C \equiv \triangle D E F$ and $A M, D N$ bisect $\angle S A, D$ and meet $B C, E F$ at M, N respectively. Prove that $A M=D N$.
13. If the diagonal $A C$ of a quadrilateral $A B C D$ bisects the $\angle \mathrm{s}$ at A and C, AC is an axis of symmetry of $A B C D$.
14. The middle point of the base of an isosceles \triangle is equidistant from the equal sides.

The Ambiguous Case in the Comparison of Triangles

Theorem 15
If two triangles have two sides of one respectively equal to two sides of the other and have the angles opposite one pair of equal sides equal to each other, the angles opposite the other pair of equal sides are either equal or supplementary.

Fig. 1

Fig. 2

Hypothesis.-ABC, DEF are two $\triangle \mathrm{s}$ having $\mathrm{AB}=\mathrm{DE}$, $A C=D F$ and $\angle B=\angle E$.

To prove that either $\angle \mathbf{C}=\angle \mathrm{F}$,

$$
\text { or } \angle \mathrm{C}+\angle \mathrm{F}=\mathrm{two} \mathrm{rt} . \angle \mathrm{s} \text {. }
$$

Froof.-Case I. Suppose $\angle A=\angle D$.
Then in the two $\triangle \mathrm{s} A B C, D E F$,

$$
\begin{aligned}
\because \angle \mathrm{A} & =\angle \mathrm{D}, \\
\text { and } \angle \mathrm{B} & =\angle \mathrm{E}, \\
\therefore \angle \mathrm{~A}+\angle \mathrm{B} & =\angle \mathrm{D}+\angle \mathrm{E} .
\end{aligned}
$$

But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}$. (I-10, p. 45.)

$$
\therefore \angle \mathrm{C}=\angle \mathrm{F} .
$$

Case II. Suppose $\angle A$ not $=\angle D$.
(Fig. 2.)

Make $\angle E D G=\angle B A C$, and produce its arm to meet $E F$, produced if necessary, at \mathbf{G}.

In $\triangle s A B C, D E G,\left\{\begin{array}{l}\angle A=\angle E D G, \\ \angle B=\angle E, \\ A B=D E,\end{array}\right.$

$$
\left.\begin{array}{rl}
\therefore \angle C & =\angle \mathrm{G}, \tag{Hyp.}\\
\text { and } \mathrm{AC} & =\mathrm{DG} .
\end{array}\right\} \quad(\mathrm{I}-14, \text { p. } 54 .)
$$

But DF $=\mathbf{A C}$,

$$
\therefore \mathrm{DF}=\mathrm{DG} .
$$

$\therefore \angle \mathrm{DFG}=\angle \mathrm{G}$.
But $\angle \mathbf{C}=\angle \mathbf{G}$.

$$
\therefore \angle \mathbf{C}=\angle \mathrm{DFG} .
$$

$\angle D F G+\angle D F E=$ two rt. $\angle \mathrm{s}$,
$\therefore \angle C+\angle D F E=$ two rt. $\angle \mathrm{s}$.
Note.-There are six parts in a triangle, viz., three sides and three angles, and in the cases in which the congruence of two triangles has been established three parts of one triangle, one at least a side, have been given respectively equal to the corresponding parts of the other.

The following general cases occur:-

1. Two sides and the contained angle. The triangles are congruent-Theorem 2.
2. Three sides. The triangles are congruent Theorem 4.
3. Two angles and a side. The triangles are con-gruent-Theorem 14.
4. Two sides and an angle opposite one of them. In this case the triangles are congruent if the angle is opposite the greater of the two sides- $\S 60$, Ex. 3, but
if the angle is opposite the less of the two sides, they are not necessarily congruent-Theorem 15.
5. Three angles. The triangles are not necessarily congruent- $§ 60$, Ex. 7.

60.-Exercises

1. If two rt. $-\angle \mathbf{d} \triangle s$ have the hypotenuse and a side of one respectively equal to the hypotenuse and a side of the other, the $\triangle \mathrm{s}$ are congruent.
2. If the bisector of the vertical \angle of a \triangle also bisects the base, the \triangle is isosceles.
3. If two $\triangle \mathrm{s}$ have two sides of one respectively equal to two sides of the other and the $\angle \mathrm{s}$ opposite the greater pair of equal sides equal to each other, the Δs are congruent.
4. Construct a \triangle having given two sides and the \angle opposite one of them.

When will there be: (a) no solution, (b) two solutions, (c) only one solution?
5. If two $\angle \mathrm{s}$ of a \triangle be bisected and the bisectors be produced to meet, the line joining the point of intersection to the vertex of the third \angle bisects that third \angle. Hence. The bisectors of the three $\angle \mathrm{s}$ of a \triangle pass through one point.
6. If two exterior $\angle \mathrm{s}$ of a \triangle be bisected and the bisectors be produced to meet, the line joining the point of intersection of the bisectors to the vertex of the third \angle of the \triangle bisects that third \angle.
7. Draw diagrams to show that if the three $\angle \mathrm{s}$ of one \triangle are respectively equal to the three $\angle \mathrm{s}$ of another \triangle, the two $\triangle \mathrm{s}$ are not necessarily congruent.

Inequalities

Theorem 16

Any two sides of a triangle are together greater than the third side.

Hypothesis.-ABC is a \triangle.
To prove that $\mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.
Construction.-Bisect $\angle A$ and let the bisector meet BC at D.

Proof.-ADC is an exterior \angle of $\triangle A B D$,

$$
\therefore \angle A D C>\angle B A D . \text { (I-10, Cor., p. 45.) }
$$

$$
\begin{aligned}
& \text { But } \angle \mathrm{BAD}=\angle \mathrm{DAC} . \\
& \therefore \angle \mathrm{ADC}>\angle \mathrm{DAC} . \\
& \therefore \quad \text { AC }> \text { DC. } \\
&\text { (I-12, p. } 50 .)
\end{aligned}
$$

Similarly it may be shown that

$$
\begin{aligned}
A B & >B D . \\
\therefore A B+A C & >B D+D C, \\
\text { i.e., } A B+A C & >B C .
\end{aligned}
$$

In the same manner it may be shown that $A B+B C>A C$ and that $A C+C B>A B$.

Cor.-The difference between any two sides of a triangle is less than the third side.

$A B C$ is a \triangle.
It is required to show that $\mathbf{A B}-\mathbf{A C}<\boldsymbol{B C}$.

$$
A B<A C+B C . \quad(I-16, \text { p. } 59 .)
$$

From each of these unequals take $A C$,

$$
\text { and } \mathbf{A B}-\mathbf{A C}<\mathbf{B C} \text {. }
$$

In the same manner it may be shown that $\mathbf{A B}-\mathbf{B C}$ $\angle A C$ and that $B C-A C<A B$.

61.-Exercises

1. Show that the sum of any three sides of a quadrilateral is greater than the fourth side.
2. The sum of the four sides of a quadrilateral is greater than the sum of its diagonals.
3. The sum of the diagonals of a quadrilateral is greater than the sum of either pair of opposite sides.
4. The sum of the st. lines joining any point, except the intersection of the diagonals, to the four vertices of a quadrilateral, is greater than the sum of the diagonals.
5. If any point within a \triangle be joined to the ends of a side of the Δ, the sum of the joining lines is less than the sum of the other two sides of the Δ.
6. If any point within a Δ be joined to the three vertices of the Δ, the sum of the three joining lines is less than the perimeter of the \triangle, but greater than half the perimeter.
7. The sum of any two sides of a Δ is greater than twice the median drawn to the third side.
8. The median of a \triangle divides the vertical \angle into parts, of which the greater is adjacent to the less side.
9. The perimeter of a Δ is greater than the sum of the three medians.
10. A and B are two fixed points, and $C D$ is a fixed st. line. Find the point P in $C D$, such that $P A+P B$ is the least possible ;
(a) When A and B are on opposite sides of CD;
(b) When A and B are on the same side of $C D$.
11. A and B are two fixed points, and $C D$ is a fixed st. line. Find the point P in $C D$, such that the difference between PA and PB is the least possible;
(a) When \mathbf{A} and \mathbf{B} are on the same side of $\mathbf{C D}$;
(b) When A and B are on opposite sides of CD.
12. Prove Theorem 16 by producing BA to \mathbf{E}, making $A E=A C$, and joining $E C$.
13. Prove that the shortest line which can be drawn with its ends on the circumferences of two concentric circles, will, when produced, pass through the centre.
14. Prove the Corollary under Theorem 1f, (a) by cutting off from $A B$ a part $A D=A C$ and joining $D C$; (b) by producing $A C$ to E making $A E=A B$ and joining $B E$.

Theorem 17

If two triangles have two sides of one respectively equal to two sides of the other but the contained angle in one greater than the contained angle in the other, the base of the triangle which has the greater angle is greater than the base of the other.

Hypothesis.-ABC, DEF are two $\triangle \mathrm{s}$ having $\mathrm{AB}=\mathrm{DE}$, $A C=D F$ and $\angle B A C>\angle E D F$.

To show that BC>EF.
Construction.-Make $\angle E D G=\angle B A C$ and cut off $D G=A C$, or DF. Join EG. Bisect $\angle F D G$ and let the bisector meet EG at H. Join FH.
Proof.-
In $\triangle S A B C, D E G,\left\{\begin{array}{l}A B=D E, \\ A C=D G, \\ \angle A=\angle E D G,\end{array}\right.$
$\therefore \mathrm{BC}=\mathrm{EG}$.
In $\triangle S F D H, G D H,\left\{\begin{array}{c}D F=D G, \\ D H \text { is common, } \\ \angle F D H=\angle ' G D H,\end{array}\right.$

$$
\therefore \mathrm{FH}=\mathrm{HG} .
$$

In $\triangle E H F, E H+H F>E F . \quad$ (I-16, p. 59.)

$$
\begin{aligned}
\text { But } \mathrm{HF} & =\mathrm{HG} \\
\therefore \mathrm{EH}+\mathrm{HG} & >\mathrm{EF} . \\
\text { i.e., } \mathrm{EG} & >\mathrm{EF} . \\
\text { But } \mathrm{BC} & =\mathrm{EG} \\
\therefore \mathrm{BC} & >\mathrm{EF} .
\end{aligned}
$$

Theorem 18
(Converse of Theorem 17)
If two triangles have two sides of one respectively equal to two sides of the other but the base of one greater than the base of the other, the triangle which has the greater base has the greater vertical angle.

Hypothesis.-ABC, DEF are two $\triangle \mathrm{s}$ having $\mathrm{AB}=\mathrm{DE}$, $A C=D F$ and $B C>E F$.

To prove that $\quad \angle \mathrm{A}>\angle \mathrm{D}$.
Proof.- If $\angle A$ is not $>\angle D$,
either $\angle A=\angle D$,
or $\angle A<\angle D$.
(1) If $\angle A=\angle D$.

In $\triangle S A B C$, DEF, $\left\{\begin{array}{l}A B=D E, \\ A C=D F, \\ \angle A=\angle D,\end{array}\right.$

$$
\begin{equation*}
\therefore \mathrm{BC}=\mathrm{EF} . \tag{I-2,p.16.}
\end{equation*}
$$

But this is not so.

$$
\begin{aligned}
& \therefore \angle \mathrm{A} \text { is not }=\angle \mathrm{D} . \\
& \text { (2) If } \angle \mathrm{A}<\angle \mathrm{D} .
\end{aligned}
$$

In $\triangle S A B C, D E F,\left\{\begin{array}{l}A B=D E, \\ A C=D F, \\ \angle A<\angle D,\end{array}\right.$

$$
\therefore \mathrm{BC}<\mathrm{EF} . \quad(\mathrm{I}-17, \text { p. } 62 .)
$$

But this is not so.

$$
\therefore \angle \mathrm{A} \text { is not }<\angle \mathrm{D} \text {. }
$$

Then since $\angle A$ is neither $=$ nor $<\angle D$,

$$
\therefore \angle \mathrm{A}\rangle \angle \mathrm{D} .
$$

62.-Exercises

/ 1. $A B C D$ is a quadrilateral having $A B=C D$ and $\angle B A D>$ $\angle A D C$. Show that $\angle B C D>\angle A B C$.
2. In $\triangle A B C, A B>A C$ and D is the middle point of $B C$. If any point P in the median $A D$ be joined to B and $C, B P>C P$.

If $A D$ be produced to any point Q show that $B Q<Q C$. /3. D is a point in the side $A B$ of the $\triangle A B C$. $A C$ is produced to E making $\mathrm{CE}=\mathrm{BD} . \mathrm{BE}$ and CD are joined. Show that BE $>C D$.
4. If two chords of a circle be unequal the greater subtends the greater angle at the centre.
5. Two circles have a common centre at O. A, B are two points on the inner circumference and \mathbf{C}, D two on the outer. $\angle A O C>\angle B O D$. Show that $A C>B D$.
6. $C D$ bisects $A B$ at rt. $\angle \mathrm{s}$. A point E is taken not in CD. Prove that EA, EB are unequal.
17. In $\triangle A B C, A B>A C$. Equal distances $B D, C E$ are cut off from $B A, C A$ respectively. Prove $B E>C D$.
18. In $\triangle A B C, A B>A C$. $A B, A C$ are produced to D, E making $B D=C E$. Prove $C D>B E$.
Parallelograms

Theorem 19

Straight lines which join the ends of two equal and parallel straight lines towards the same parts are themselves equal and parallel.

Hypothesis.-AB, CD are $=$ and $\|$.
To prove that (1) $\mathrm{AC}=\mathrm{BD}$,
(2) $A C \| B D$.

Construction.-Join AD.

$$
\begin{aligned}
& \text { Proof.- } \quad \because \mathbf{A B} \| \mathbf{C D} \text {, } \\
& \text { and } A D \text { is a transversal, } \\
& \therefore \angle \mathrm{BAD}=\angle \mathrm{CDA} \text {. } \\
& \text { (I-8, p. 40.) } \\
& \text { In } \triangle S B A D, C D A,\left\{\begin{array}{c}
B A=C D, \\
A D \text { is common, } \\
\angle B A D=\angle C D A,
\end{array}\right. \\
& \therefore B D=A C \text {, } \\
& \text { and } \angle B D A=\angle C A D,\} \quad(\mathrm{I}-2, \mathrm{p} .16 .) \\
& \because \text { transversal AD } \\
& \text { makes } \angle B D A=\angle C A D \text {, } \\
& \therefore \mathrm{BD} \| \mathrm{AC} \text {. } \\
& \text { (I-6, p. 36.) }
\end{aligned}
$$

Theorem 20

In any parallelogram:
(1) The opposite sides are equal;
(2) The opposite angles are equal ;
(3) The diagonal bisects the area;
(4) The diagonals bisect each other.

Hypothesis.-ABCD is a $\| \mathrm{gm}, \mathrm{AC}, \mathrm{BD}$ its diagonals. To prove that (1) $\quad A D=B C$ and $A B=C D$.
(2) $\angle B A D=\angle B C D$ and $\angle A B C=\angle A D C$.
(3) $\triangle A B C=\triangle A C D$.
(4) $A E=E C$ and $B E=E D$.

Proof.- \because AC cuts || lines AD, BC,
$\therefore \quad \angle \mathrm{DAC}=\angle \mathrm{ACB}$.
(I-8, p. 40.)
$\because A C$ cuts $\|$ lines $D C, A B$,
$\therefore \quad \angle \mathrm{DCA}=\angle \mathrm{CAB}$.
In $\triangle S A C D, A C B,\left\{\begin{array}{l}\angle D A C=\angle A C B, \\ \angle D C A=\angle C A B, \\ A C \text { is common, }\end{array}\right.$
\therefore (1) $A D=B C$, and $C D=A B$,
$\left.\begin{array}{l}\text { (2) also } \angle A D C=\angle A B C, \\ \text { (3) and } \triangle A D C=\triangle A B C .\end{array}\right\}(I-14, p .5+$.
Similarly it may be shown that $\angle B A D=\angle B C D$.
In $\triangle S A E D, B E C,\left\{\begin{aligned} A D & =B C, \\ \angle D A E & =\angle B C E, \\ \angle A D E & =\angle C B E,\end{aligned}\right.$

$$
\therefore A E=E C)
$$

$$
\begin{equation*}
\therefore A E=E C, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } D E=E B . \tag{I-14,p.54.}
\end{equation*}
$$

63. Definitions.-A parallelogram of which the angles are right angles is called a rectangle.

A rectangle of which all the sides are equal to each ${ }^{8}$ other is called a square.

A figure bounded by more than four straight lines is called a polygon.

The name polygon is sometimes used for a figure having any number of sides.

A polygon in which all the sides are equal to each other and all the angles are equal to each other is called a regular polygon.

64.-Exercises

1. The diagonals of a rectangle are equal to each other.
2. If the diagonals of a $\| g m$ are equal to each other, the $\| g m$ is a rectangle.
3. A rectangle has two axes of symmetry.
4. A square has four axes of symmetry.
$\times 5$. The st. line joining the
 middle points of the sides of a \triangle is $\|$ the base, and equal to half of it.

Note.-D, E are the middle points of AB, AC. Produce DE to F making $\mathrm{EF}=\mathrm{DE}$. Join FC.

- . 6. Of two medians of a \triangle each cuts the other at the point of trisection remote from the vertex.

Note.-Medians BE, CF cut at G. Bisect BG, CG at H, K. Join FH, HK, KE, EF.
7. The medians of a \triangle pass through one point.

Definition.-The point where the medians of a \triangle intersect is called the centroid of the \triangle.
$\times 8$. A st. line drawn through the middle point of one side of a $\triangle, \|$ to a second side, bisects the third side.
9. In any $\|$ gm the diagonal which joins the vertices of the obtuse $\angle \mathrm{s}$ is shorter than the other diagonal.
$\times 10$. If two sides of a quadrilateral be $\|$, and the other two be equal to each other but not $\|$, the diagonals of the quadrilateral are equal.
11. Through a given point draw a st. line, such that the part of it intercepted between two given || st. lines is equal to a given st. line.

Show that, in general, two such lines can be drawn.
12. Through a given point draw a st. line that shall be equidistant from two other given points.

Show that, in general, two such lines can be drawn.
X 13. Draw a st. line \| to a given st. line, and suc̣ that the part of it intercepted between two given intersecting lines is equal to a criven sti line.
$X 14$. BAC is a given \angle, and P is a given point. Draw a st. line terminated in the st. lines $A B, A C$ and bisected at P.
$\times 15$. Construct a \triangle having given the middle points of the three sides.
16. If the diagonals of a $\| g m$ cut each other at $r t . ~ \angle s$, the $\| \mathrm{gm}$ is a rhombus.
x.17. Every st. line drawn through the intersection of the diagonals of a $\| \mathrm{gm}$, and terminated by a pair of opposite sides, is bisected, and bisects the $\| g m$.
18. Bisect a given $\| g m$ by a st. line drawn through a given point.
19. Divide a given \triangle into four congruent $\Delta \mathrm{s}$.
$\times 20$. The bisectors of two opposite $\angle \mathrm{s}$ of a $\| \mathrm{gm}$ are $\|$ to each other.
$\times 21$. In the quadrilateral $A B C D, A B \| C D$ and $A D=B C$. Prove that (1) $\angle C=\angle D$; (2) if E, F are the middle points of $A B, C D$ respectively, $E F \perp A B$.
22. On a given st. line construct a square.
23. Construct a square having its diagonal equal to a given st. line.
$\times 24 . A B C$ is a \triangle and $D E$ a st. line. Draw a st. line $=D E, \| B C$ and terminated in $A B, A C$, or in these lines produced.
X25. Inscribe a rhombus in a given $\| g m$, such that one vertex of the rhombus is at a given point in a side of the $\| \mathrm{gm}$.
26. $A B C$ is an isosceles \triangle in which $A B=A C$. From P, any point in $B C, P X, P Y$ are drawn $\perp A B, A C$ respectively and $B M$ is $\perp A C$. Prove that $P X+P Y=B M$.

If P is taken on $C B$ produced, prove that $P Y-P X=$
 BM.
N 27\% The middle point of the hypotenuse of a rt. $\angle d \triangle$ is equidistant from the three vertices.

Note.-Through D, the middle point of the hypotenuse AB , draw DE \| BC. Join DC.

28. $A B C D$ is a quadrilateral in which $A B \| C D . E, F, G, H$ are the middle points of $B C$, BD, AC, AD. Prove that: (1) the st. line through $E \| A B$, or $D C$, passes through F, G and H; (2) $H E=$ half the sum of
$A B$ and $D C$; (3) $G F=$ half the difference of $A B$ and $D C$.
29. E, F, G, H are the middle points of the sides $A B, B C$, $C D, D A$ of the quadrilateral ABCD. Prove that EFGH is a $\|$ gm. Show also that: (1) the perimeter of $\mathrm{EFGH}=\mathrm{AC}+\mathrm{BD}$; (2) if $A C=B D, E F G H$ is a rhombus; (3) if $A C \perp B D, E F G H$ is a rectangle ; (4) if $A C=$ and $\perp B D, E F G H$ is a square.
30. The middle points of a
 pair of opposite sides of a quadrilateral and the middle points of the diagonals are the vertices of a $\| \mathrm{gm}$.
31. The st. lines joining the middle points of the opposite sides of a quadrilateral and the st. line joining the middle points of the diagonals are concurrent.

Theorem 21

The sum of the interior angles of a polygon of n sides is $(2 n-4)$ right angles.

Hypothesis.-ABCDE, etc., is a closed polygon of n sides.

To prove that the sum of the interior angles is $(2 n-4) \mathrm{rt} . \angle \mathrm{s}$.

Construction.-Take any point P within the polygon and join P to the vertices.

Proof.-The polygon is divided into $n \triangle \mathrm{~s}$ PAB, $\mathrm{PBC}, \mathrm{PCD}$, etc.

The sum of the interior $\angle \mathrm{s}$ of each \triangle is two rt. $\angle \mathrm{s}$.

$$
(\mathrm{I}-10, \mathrm{p} .45 .)
$$

\therefore the sum of the $\angle \mathrm{s}$ of the $n \Delta \mathrm{~s}$ is $2 n \mathrm{rt} . \angle \mathrm{s}$.
But the $\angle \mathrm{s}$ of the $n \triangle \mathrm{~s}$ make up the interior $\angle \mathrm{s}$ of the polygon together with the $\angle s$ about the point P.

And the sum of the $\angle \mathrm{s}$ about P equals $4 \mathrm{rt} . \angle \mathrm{s}$.
\therefore the sum of the interior $\angle \mathrm{s}$ of the polygon $=$ $(2 n-4) \mathrm{rt} . \angle \mathrm{s}$.

Cor.-If the sides of a polygon are produced in order, the sum of the exterior angles thus formed is four right angles.

If the polygon has n sides, the sum of all the st. $\angle \mathrm{s}$ at the vertices $=2 n \mathrm{rt}$. -s .
But, the sum of the interior $\angle \mathrm{s}=(2 n-4)$ rt. Ls. (I-21, p. 72.)
\therefore, subtracting, $\angle a+\angle b+$ etc. $=4 \mathrm{rt} . \angle \mathrm{s}$.
65.-Exercises

1. Find the number of degrees in an exterior \angle of an equiangular polygon of twelve sides.

Hence, find the number of degrees in each interior L.
2. Find the number of degrees in each \angle of (a) an equiangular pentagon; (b) an equiangular hexagon; (c) an equiangular octagon; (d) an equiangular decagon.
3. Each \angle of an equiangular polygon contains 162°. Find the number of sides.
4. Each \angle of an equiangular polygon contains 170°. Find the number of sides.
5. Show that the space around a point may be exactly filled in by six equilateral $\triangle \mathrm{s}$, four squares, or three equiangular hexagons. Draw the diagram in each case.

Construction

Problem 8
To divide a straight line into any number of equal parts.

Let $A B$ be the given st. line.
To divide $A B$ into five equal parts.
Construction.-From A draw a st. line AC.
From AC cut off five equal parts AD, DE, EF, FG, GH. Join HB.
Through D, E, F, G draw lines \|| HB cutting AB at P, Q, R, S.
$A B$ is divided into five equal parts at P, Q, R, S.
Proof.-Through D, E, F, G draw DK, EL, FM, GN \| AB.
\because AE cuts the parallels AP, DK,
$\therefore \angle E D K=\angle D A P$.
\because AE cuts the parallels DP, EQ,
$\therefore \angle \mathrm{ADP}=\angle \mathrm{DEQ}$.
In \triangle SADP, DEK, $\left\{\begin{aligned} \angle D A P & =\angle E D K, \\ \angle A D P & =\angle D E K, \\ A D & =D E,\end{aligned}\right.$

$$
\therefore \quad A P=D K \quad(I-14, \text { p. } 54 .)
$$

But $P Q=D K$.
(I—20, p. 67.)

$$
\therefore \quad P Q=A P
$$

Similarly it may be shown that each of $Q R, R S$, $\mathrm{SB}=\mathrm{AP}$.

By this method a st. line may be divided into any number of equal parts.

Loci

66. Example I.-A is a point and from A straight lines are drawn in different directions in the same plane.

On each line a distance of one inch is measured from \mathbf{A} and the resulting points are $\mathbf{B}, \mathbf{C}, \mathrm{D}$, etc.

Is there any one line that contains all of the points in the plane that are at a distance of one inch from A ?

To answer this question describe a circle with centre A and radius one inch. The circumference of this circle is a line that passes through all the points.

Mark any other point \mathbf{P} on the circumference. What is the distance of \mathbf{P} from \mathbf{A} ? From the definition of a circle the answer to this question is one inch.

If any point \mathbf{Q} be taken within the circle, its distance from \mathbf{A} is less than one inch, and if any point \mathbf{R} be taken without the circle, its distance from A is greater than one inch.

Thus every point in the circumference satisfies the condition of being just one inch from A, and no point, in the plane, that is not on the circumference does satisfy this condition.

This circumference is called the locus of all points in the plane that are at a distance of one inch from A.

Example 2:-AB is a straight line of indefinite length, to which any number of perpendiculars are drawn.

On each of these perpendiculars a distance of one centimetre is measured from $\mathbf{A B}$, and the resulting points are C, D, E, etc.

Are there any lines that contain all of the points, such as \mathbf{C}, \mathbf{D}, etc., that are at a distance of one centimetre from $A B$?

Draw two straight lines parallel to $A B$, each at a distance of one centimetre from $A B$, and one or other of these lines will pass through each of the points.

Any point P in CF, or in GK, is at a distance of one centimetre from $\mathbf{A B}$; any point \mathbf{Q} in the space between CF and GK is less than one centimetre from $A B$, and any point R in the plane and neither between $C F$ and GK nor in one of these lines is more than one centimetre from $A B$.

Thus every point in CF and GK satisfies the condition of being just one centimetre from AB, and no point outside of these lines and in the plane does satisfy this condition.

The two lines GF, GK make up the locus of all points in the plane that are at a distance of one centimetre from $\mathbf{A B}$.

Definition.-When a figure consisting of a line or lines contains all the points that satisfy a given condition, and no others, this figure is called the locus of these points.
67. In place of speaking of the "locus of the points which satisfy a given condition," the alternative expression "locus of the point which satisfies a given condition" may be used.

Suppose a point to move in a plane so that it traces out a continuous line, but its distance from a fixed point A in the plane is always one inch; then it must move on the circumference of the circle of centre A and radius one inch, and the locus of the point in its different positions is that circumference.

The following definition of a locus may thus be given as an alternative to that in $\S 66$.

Definition.-If a point moves on a line, or on lines, so that it constantly satisfies a given condition, the figure consisting of the line, or lines, is the locus of the point.

Theorem 22

The locus of a point which is equidistant from two given points is the right bisector of the straight line joining the two given points.

Hypothesis.-P is a point equidistant from \mathbf{A} and \mathbf{B}.
To prove that \mathbf{P} is on the right bisector of AB .
Construction.-Bisect AB at C.
Join PC, PA, PB.
Proof.-
In $\triangle S P A C, P B C,\left\{\begin{array}{l}P A=P B, \\ A C=C B, \\ P C \text { is common, }\end{array}\right.$
$\therefore \triangle P A C \equiv \triangle P C B, \quad(\mathrm{I}-4, \mathrm{p} .22$.
$\therefore \angle P C A=\angle P C B$,
and $\therefore \quad P$ is on the right bisector of $A B$.

Whom?
 тнвorem 23 Do same as Mu. 2
The locus of a point which is equidistant from two given intersecting straight lines is the pair of straight lines which bisect the angles between the two straight lines.

Hypothesis. - AB, CD are two st. lines cutting at $E ; G F, H K$ are the bisectors of $\angle S$ made by $A B, C D$.

To prove that the locus of a point equidistant from $A B$, and $C D$ consists of GF and HK.

Construction. - Take any point \mathbf{P} in GF. Draw $P X \perp A B, P Y \perp C D$.

Proof.—
In $\triangle S$ PES, PET, $\left\{\begin{array}{l}\angle P E X=\angle P E Y, \\ \angle P X E=\angle P Y E, \\ P E \text { is common, }\end{array}\right.$

$$
\therefore \quad \mathrm{PX}=\mathrm{PY} . \quad(\mathrm{I}-14, \mathrm{p} .54 .)
$$

\therefore every point in GF is equidistant from $\mathbf{A B}$ and $\mathbf{C D}$.
Similarly it may be shown that every point in $H K$ is equidistant from $A B$ and $C D$.
\therefore the locus of points equidistant from $A B, C D$ consists of GF and HK.

68. Problem:- To find the point that is equally distant from three given points, that are not in the same straight line.

Let A, B, C be the three given points.
It is required to find a point equally distant from A, B and C.

Draw EF the locus of all points that are equally distant from \mathbf{A} and \mathbf{B}.
(I-22, p. 78.)

Draw GH the locus of all points that are equally distant from B and C.

Let EF and GH meet at K.
Then K is the required point.
K is on $E F, \therefore K A=K B$.
K is on $G H, \therefore K B=K C$.
Consequently \mathbf{K} is equally distant from \mathbf{A}, \mathbf{B} and \mathbf{C}.

69.-Exercises

1. Find the locus of the centres of all circles that pass through two given points.
2. Describe a circle to pass through two given points and have its centre in a given st. line.
3. Describe a circle to pass through two given points and have its radius equal to a given st. line. Show that
generally two such circles may be described. When will there be only one? and when none?
4. Find the locus of a point which is equidistant from two given \| st. lines.
5. In a given st. line find two points each of which is equally distant from two given intersecting st. lines.

When will there be only one solution?
6. Find the locus of the vertices of all Δs on a given base which have the medians drawn to the base equal to a given st. line.
7. Find the locus of the vertices of all Δs on a given base which have one side equal to a given st. line.
8. Construct a \triangle having given the base, the median drawn to the base, and the length of one side.
9. Find the locus of the vertices of all Δs on a given base which have a given altitude.
10. Construct a \triangle having given the base, the median drawn to the base, and the altitude.
11. Construct a \triangle having given the base, the altitude and one side.
12. Find the locus of a point such that the sum of its distances from two given intersecting st. lines is equal to a given st. line.
13. Find the locus of a point such that the difference of its distances from two given intersecting st. lines is equal to a given st. line.
14. Find the locus of the vertices of all Δs on a given base which have the median drawn from one end of the base equal to a given st. line.
15. Show that, if the ends of a st. line of constant length slide along two st. lines at $\mathrm{rt} . \angle \mathrm{s}$ to each other, the locus of its middle point is a circle.
16. $A B$ is a st. line and C is a point at a distance of 2 cm . from $A B$. Find a point which is 1 cm . from $A B$ and 4 cm . from C. How many such points can be found?
17. Two st. lines, $A B, C D$, intersect each other at an \angle of 45°. Find all the points that are 3 cm . from $A B$ and 2 cm . from $C D$.
18. $A B C$ is a scalene \triangle. Find a point equidistant from $A B$ and $A C$, and also equidistant from B and C.
19. Find a point equidistant from the three vertices of a given \triangle.
20. Find four points each of which is equidistant from the three sides of a \triangle.

Note.-Produce each side in both directions.
21. Find the locus of a point at which two equal segments of a st. line subtend equal $\angle \mathrm{s}$.
2μ. Find the locus of the centre of a circle which shall pass through a given point and have its radius equal to a given st. line.
23. A st. line of constant length remains always \| to itself, while one of its extremities describes the circumference of a fixed circle. Find the locus of the other extremity.
24. The locus of the middle points of all st. lines drawn from a fixed point to the circumference of a fixed circle is a circle.

Miscellaneous Exercises

1. If a st. line be terminated by two $\| \mathrm{s}$, all st. lines drawn through its middle point and terminated by the same $\| \mathrm{s}$ are bisected at that point.
2. If two lines intersecting at A be respectively $\|$ to two lines intersecting at B, each \angle at A is either equal to or supplementary to each \angle at B.

3. If two lines intersecting at A be respectively \perp to two ines intersecting at B, each L at A is either equal to or supplementary to each \angle at B.
4. If from any point in the bisector of an \angle st. lines be drawn $\|$ to the arms of the L and terminated by the arms, these st. lines are equal to each other.
$X 5$. In the base of a find a point such that the st. lines drawn from that point $\|$ to the sides of the \triangle and terminated by the sides are equal to each other.
5. One L of an isosceles Δ is half each of the others. Calculate the $\angle s$.
6. If the \perp from the vertex of a \triangle to the base falls within the \triangle, the segment of the base adjacent to the greater side of the \triangle is the greater.
7. If a star-shaped figure be formed by producing the alternate sides of a polygon of n sides, the sum of the $\angle \mathrm{s}$ at the points of the star is $(2 n-8) \mathrm{rt} . \angle \mathrm{s}$.
×9. In a quadrilateral $A B C D, \angle A=\angle B$ and $\angle C=\angle D$. Prove that $A D=B C$.
8. The bisectors of the $\angle s$ of a $\| g m$ form a rectangle, the diagonals of which are \| to the sides of the original $\| g m$; and equal to the difference between them.
9. From A, B the ends of a st. line $\perp s A C, B D$ are drawn to any st. line. E is the middle point of $A B$. Show that EC = ED.
$\mathbf{x 1 2}$. If through a point within a \triangle three st. lines be drawn from the vertices to the opposite sides, the sum of these st. lines is greater than half the perimeter of the \triangle.
10. A, D are the centres of two circles, and $A B, D E$ are two $\|$ radii. EB cuts the circumferences again at C, F. Show that AC\|DF.
$X 14$. The bisectors of the interior $\angle s$ of a quadrilateral form a quadrilateral of which the opposite $\angle \mathrm{s}$ are supplementary.
11. In a given square inscribe an equilateral \triangle having one vertex at a vertex of the squary.
12. Through two given points draw two st. lines, forming an equilateral \triangle with a given st. line.
13. Draw an isosceles \triangle having its base in a given st. line, its altitude equal to a given st. line, and its equal sides passing through two given points.
14. If a \perp be drawn from one end of the base of an isosceles \triangle to the opposite side, the L between the \perp and the base $=$ half the vertical \angle of the \triangle.
15. If any point P in $A D$ the bisector of the $\angle A$ of \triangle $A B C$ be joined to B and C, the difference between $P B$ and $P C$ is less than the difference between $A B$ and $A C$.
X20. If any point P in the bisector of the exterior - at A in the $\triangle A B C$ be joined to B and $C, P B+P C>A B+$ AC.
16. BAC is a rt. \angle and D is any point. $D E$ is drawn \perp $A B$ and produced to F, making $E F=D E$. $D G$ is drawn \perp $A C$ and produced to H , making $\mathrm{GH}=\mathrm{DG}$. Show that F, A, H are in the same st. line.
$\times 22$. Construct a Δ having its perimeter equal to a given st. line and its $\angle \mathrm{s}$ respectively equal to the $\angle \mathrm{s}$ of a given \triangle.
$\times 23$. In any quadrilateral, the sum of the exterior $\angle \mathrm{s}$ at one pair of opposite vertices $=$ the sum of the interior s s at the other vertices.
17. If the arms of one \angle be respectively \| to the arms of another \angle, the bisectors of the $\angle \mathrm{s}$ are either $\|$ or \mathcal{L}.
(99. In a given \triangle inscribe a $\| g m$ the diagonals of which intersect at a given point.
18. Show that the $\perp \mathrm{s}$ from the centre of a circle to two equal chords are equal to each other.

27 . Construct a quadrilateral having its sides equal to four given st. lines and one \angle equal to a given \angle.
(8. The bisector of $\angle A$ of $\triangle A B C$ meets $B C$ at D and $3 C$ is produced to E. Show that $\angle A B C+\angle A C E=$ twice $\angle A D C$.
(29. The bisectors of $\angle S A$ and B of $\triangle A B C$ intersect at D. Show that $\angle A D B=90^{\circ}+$ half of $\angle C$.
$X(30$ The sides $A B, A C$ of a $\triangle A B C$ are bisected at D, E; and $B E, C D$ are produced to F, G, so that $E F=B E$ and $D G=C D$. Show that F, A, G are in the same st. line, and that $F A=A G$.
(31. $A B C$ is an isosceles \triangle, having $A B=A C$. $A E, A D$ are equal parts cut off from $A B, A C$ respectively. $B D, C E$ cut at F. Show that FBC and FDE are isosceles $\triangle \mathrm{s}$.
32. In a $\triangle A B C$, the bisector of $\angle A$ and the right bisector of $B C$ meet at D. $D E, D F$ are drawn $\perp A B, A C$ respectively. Show that the point D is not within the \triangle, that $A E=A F$ and that $B E=C F$.
$\times 33$. $A B C D$ is a quadrilateral having $\angle B=\angle C$ and $\mathrm{AB}<\mathrm{CD}$. Prove that $\angle \mathbf{A}>\angle \mathrm{D}$.
34. Through a given point draw a st. line cutting two intersecting st. lines and forming an isosceles \triangle with them.

Show that two such lines can be drawn through the given point.
35. If $A C B$ be a st. line and $A C D, B C D$ two adjacent $\angle \mathrm{s}$, any || to AB will meet the bisectors of these $\angle \mathrm{s}$ in points equally distant from where it meets $C D$.

36. Inscribe a square in a given equilateral \triangle.

Note.-Draw a sketch as in the diagram given here. Join AE.

What is the number of degrees in $\angle C A E$?
37. $A B C$ is a $\triangle, A X$ is $\perp B C$, and $A D$ bisects $\angle B A C$. Show that $\angle X A D$ equals half the difference of $\angle S B$ and C.
38. Construct a $\| g m$ having its diagonals and a side respectively equal to three given st. lines.
39. Find a point in each of two $\|$ st. lines such that the two points are equally distant from a given point and the st. line joining them subtends a rt. L at the given point.
40. P, Q are two given points on the same side of a given st. line BC. Find the position of a point A in $B C$ such that $\angle P A B=\angle Q A C$.

Note.-If P, Q are two points on a billiard table and BC the side of the table, a ball starting from P and reflected from BC at A would pass through \mathbf{Q}.
41. Find the path of a billiard ball which, starting from a given point, is reflected from the four sides of the table and passes through another given point.
42. BAC is a given \angle and D, E are two given st. lines. Find a point P such that its distances from $A B, A C$ equal D, E respectively.
43. Find in a side of a \triangle a point such that the sum of the two st. lines drawn from the point $\|$ to the other sides and terminated by them is equal to a given st. line.
44. AEB, CED are two st. lines, and each of the quadrilaterals CEAF, BEDG is a rhombus. Prove that FEG is a st. line.
45. F is a point within the $\triangle A B C$ such that $\angle F B C=$ $\angle F C B$. BF, CF produced mect $A C, A B$ at D, E respectively. Prove that if $\angle A F D=\angle A F E, \triangle A B C$ is isosceles.
46. D is a point in the base $B C$ of an equilateral $\triangle A B C$. E is the middle point of $A D$. Prove that EC $>$ ED.
47. $A B C$ is a \triangle of which $\angle B A C$ is obtuse, O a point within it; $B O, C O$ meet $A C, A B$ at D, E respectively. Prove that $B D+C E>B E+E D+D C$.
48. D, E, F are points in the sides $B C, C A, A B$ of an equilateral \triangle and are such that $B D=C E=A F$. If $A D, B E, C F$ do not all pass through one point, they form an equilateral \triangle.
49. The bisector of $\angle A$ of $\triangle A B C$ meets $B C$ at D. $D E, D F$ drawn $\| A B, A C$ respectively meet $A C, A B$ at E, F. Prove that AEDF is a rhombus.
50. Through each angular point of a \triangle a st. line is drawn \| the opposite side: prove that the \triangle formed by these three st. lines is equiangular to the given Δ.
51. $A D, B E, C F$ respectively bisect the interior $\angle A$ and the exterior $\angle s$ at B and C of the $\triangle A B C$. Show that no two of the lines $A D, B E, C F$ can be $\|$.
52. $D E$ is || to the base $A B$ of the isosceles $\triangle C A B$ and cuts CA, CB, or those sides produced, at D, E respectively. $A E, B D$ cut at F. Prove that DEF is an isosceles \triangle.
53. Through A, B the extremities of a diameter of a circle \| chords AC, BD are drawn. Prove that $A C=B D$; and that $C D$ is a diameter of the circle.
54. The median drawn from the vertex of a Δ is $>=$ or $<$ half the base according as the vertical \angle is acute, right or obtuse.
55. $A B C$ is a \triangle, obtuse- $\angle d$ at C; st. lines are drawn bisecting CA, CB at rt. $\angle \mathrm{s}$, cutting $A B$ in D, E respectively. Prove that $\angle D C E$ is equal to twice the excess of $\angle A C B$ over a rt. \angle.
56. With one extremity C of the base $B C$ of an isosceles $\triangle A B C$ as centre, and radius $C B$, a circle is described cutting $A B, A C$ at D, E respectively. Prove that $D E \|$ to the bisector of $\angle \mathrm{B}$.
57. In $\triangle A B C$ side $B C$ is produced to D. Prove that the \angle between the bisectors of $\angle \mathrm{S} A B C, A C D=$ half the $\angle A$.
58. Through the vertices of $\triangle A B C$, st. lines falling within the \triangle are drawn making equal $\angle \mathrm{s} B A L, C B M$, $A C N$; if these lines intersect in D, E, F, prove $\triangle D E F$ equiangular to $\triangle A B C$.
59. If the \angle between two adjacent sides of a $\| \mathrm{gm}$ be increased, while their lengths do not alter, the diagonal through the point of intersection will decrease.
60. $\mathbf{A}, \mathrm{B}, \mathrm{C}$ are three given points. Find a point equidistant from A, B and such that its distance from \mathbf{C} equals a given st. line. When is the problem impossible?
61. Through a fixed point draw a st. line which shall make with a given st. line adjacent $\angle \mathrm{s}$ the difference of which = a given \angle.
62. Construct a \triangle having given one L and the lengths of the $\perp s$ from the vertices of the other $\angle s$ on the opposite sides.
63. Construct an isosceles \triangle having given the vertical \angle and the altitude.
64. Construct an isosceles \triangle having given the perimeter and altitude.
65. Prove that the quadrilateral formed by joining the extremities of two diameters of a circle is a rectangle.
66. In a given $\| g m$ inscribe a rhombus, such that one diagonal passes through a given point.
67. St. lines are drawn from a given point to a given st. line. Find the locus of the middle points of the st. lines.
68. St. lines are drawn from a given point to the circumference of a given circle. Find the locus of the middle points of the st. lines.
69. The sum of the $\perp s$ from any point within an equilateral \triangle to the three sides is equal to the altitude of the \triangle.
70. Draw a square which has the sum of a side and a diagonal equal to 3 inches.
71. Draw a square in which the difference between a diagonal and a side is 1 inch.
72. Draw a rectangle having one side 2 inches in length, and subtending an \angle of 40° at the point of intersection of the diagonals.
(Use a protractor in Exercises 72 to 86.)
73. Draw a $\| \mathrm{gm}$ with diagonals 2 inches and 4 inches and their \angle of intersection 50°.
74. Draw a $\|$ gm with diagonals 4 inches and 7 inches and one side 5 inches.
75. Draw a $\| \mathrm{gm}$ with side 3 inches, diagonal $2 \frac{1}{2}$ inches and $\angle 35^{\circ}$. Show that there are two solutions.
76. Draw a $\|$ gm with side $2 \frac{3}{8}$ inches, $\angle 70^{\circ}$ and diagonal opposite \angle of 70° equal to 4 inches.
77. Draw a rectangle having the perimeter 8 inches and an \angle between the diagonals 80°.
78. Draw a rectangle having the difference of two sides 1 inch and an \angle between the diagonals 50°.
79. Draw a rectangle which has the perimeter 9 inches and a diagonal $3 \frac{1}{2}$ inches.
80. Draw an \angle of 55°. Find within the \angle a point which is 1 inch from one arm and 2 inches from the other.
81. Construct a Δ in which side $a=7 \mathrm{~cm} ., b+c=$ 10.6 cm . and $\angle A=78^{\circ}$.
82. Construct a \triangle with perimeter 4 inches and $\angle \mathrm{s} 70^{\circ}$ and 50°.
83. $A B, C D$ are two \|f st. lines; P, Q two fixed points. Find a point equidistant from $A B, C D$ and also equidistant from P and Q. When is this impossible ?
84. Through two given points on the same side of a given st. line draw two st. lines so as to form with the given st. line an equilateral \triangle.
85. Construct a rhombus with one diagonal 2 inches and the opposite $\angle 100^{\circ}$.
86. Construct a \triangle in which $a=8 \mathrm{~cm} ., b-c=2 \mathrm{~cm}$., $\angle \mathrm{C}=50^{\circ}$.
87. Squares $A B G E, A C H F$ are described externally on two sides of a $\triangle A B C$ Prove that the median $A D$ of the \triangle is $\perp \mathrm{EF}$ and equal to half of EF .

Note.-Rotate \triangle ABC through a rt. L making AC coincide with AF.
88. Prove also in Ex. 87 that EC is \perp and $=B F$.
89. Trisect a rt. L.
90. From any point in the base of an isosceles \triangle st. lines are drawn || to the equal sides and terminated by them. Prove that the sum of these lines $=$ one of the equal sides.
91. $A B C$ is a st. line such that $A B=B C . \quad \perp s$ are drawn from A, B, C to another st. line EF. Prove that the \perp from $\mathbf{B}=$ half the sum of the \perp_{s} from \mathbf{A} and \mathbf{C}, unless EF passes between \mathbf{A} and \mathbf{C}, and then the \perp from $\mathbf{B}=$ half the difference of the $\perp \mathrm{s}$ from \mathbf{A} and \mathbf{C}.
92. $A D$ is the bisector of $\angle A$ of $\triangle A B C$, and M the middle point of $B C$. $B E$ and $C F$ are $\perp A D$. Prove that $\mathbf{M E}=\mathbf{M F}$.
93. E, F are the middle points of AD, BC respectively in the $\| g m$ ABCD. Prove that $B E, D F$ trisect $A C$.
94. Find a point P in the side $A C$ of a $\triangle A B C$ so that $A P$ may be equal to the \perp from \mathbf{P} to $\mathbf{B C}$.
95. If the st. line $A B$ be bisected at C and produced to D, prove that $C D$ is half the sum of $A D, B D$.
96. In $\triangle A B C$ side $A C>$ side $A B ; A X \perp B C$ and $A D$ is a median. Prove that (1) $\angle \mathrm{CAX}>\angle \mathrm{BAX}$; (2) $\angle \mathrm{CAD}<$ $\angle D A B ;(3)$ the bisector of $\angle B A C$ falls between $A X$ and AD.
97. The median of a $\triangle A B C$ drawn from A is not less than the bisector of $\angle A$.
98. In a quadrilateral $A B C D, A B=D C$ and $\angle B=\angle C$. Prove that AD || BC.
99. If two medians of a \triangle are equal, the \triangle is isosceles.

Note.-Use Ex. 6, § 64.
100. If both pairs of opposite $\angle s$ of a quadrilateral are equal, the quadrilateral is a $\| g m$.
101. Find the point on the base of a \triangle such that the difference of the $\perp s$ from it to the sides is equal to a given st. line.
102. Find the point on the base of a \triangle such that the sum of the $\perp s$ from it to the sides is equal to a given st. line.
103. Show that the three exterior $\angle S$ at A, C, E, in the hexagon $A B C D E F$, are together less than the three interior $\angle \mathrm{S}$ at $\mathrm{B}, \mathrm{D}, \mathrm{F}$ by two rt. $\angle \mathrm{s}$.

BOOK II

Areas of Parallelograms and Triangles

70. A square unit of area is a square, each side of which is equal to a unit of length.

Examples:-A square inch is a square each side of which is one inch; a square centimetre is a square each side of which is one centimetre.

The acre is an exceptional case.
71. A numerical measure of any area is the number of times the area contains some unit of area.
$A B C D$ is a rectangle one centimetre wide and five centimetres long.

This rectangle is a strip divided into five square centimetres, and consequently the numerical measure of its area in square centinetres is 5 .
72. $A B C D$ is a rectangle 3 cm . wide and 5 cm . long.

This rectangle is divided into 5 strips of $3 \mathrm{sq} . \mathrm{cm}$. each, or into 3 strips of $5 \mathrm{sq} . \mathrm{cm}$. each, and consequently
the measure of the area in square centimetres is 5×3 sq. cm., or $3 \times 5 \mathrm{sq}$. cm.

Similarly, if the length of a rectangle is 2.34 inches and its breadth 56 of an inch, the one-hundreth of an inch may be taken as the unit and the rectangle can be divided into 234 strips each containing 56 square one-hundreths of an inch. The measure of the area then is 234×56 of these small squares, ten thousand (100×100) of which make one square inch.

This method of expressing the area of a rectangle may be carried to any degree of approximation, so that in all cases the numerical measure of its area is equal to the product of its length by its breadth.

In a rectangle any side may be called the base, and then either of the adjacent sides is the altitude.

A rectangle, as ABCD, is commonly represented by the symbol $\mathbf{A B}$. $\mathbf{B C}$, where $\mathbf{A B}$ and $\mathbf{B C}$ may be taken to represent the number of units in the length and the breadth respectively.

Or, if a be the measure of the base of a rectangle and b the measure of its altitude, the area is $a b$.

In the case of a square, the base is equal to the altitude, and if the measure of each be a, the area is a^{2}.

Theorem 1

The area of a parallelogram is equal to that of a rectangle on the same base and of the same altitude.

Hypothesis.-ABCD is a $\| g m$ and EBCF a rectangle on the same base $\mathbf{B C}$ and of the same altitude EB.

To prove that the area of the $\| g m \quad A B C D=$ the area of rect. EBCF.

Proof.- $\quad \because E D$ cuts the $\| \mathrm{s} \mathrm{AB}, \mathrm{DC}$,

$$
\therefore \angle E A B=\angle \text { FDC. } \quad \text { (I }-9, \text { p. 42.) }
$$

$\because A B C D$ is a $\| g m$,

$$
\therefore \quad A B=C D . \quad(I-20, \text { p. } 67 .)
$$

In $\triangle S E A B, F D C,\left\{\begin{aligned} \angle E A B & =\angle F D C, \\ \angle A E B & =\angle D F C, \\ A B & =D C,\end{aligned}\right.$

$$
\therefore \triangle A E B=\triangle F D C, \quad(I-14, \text { p. } 54 .)
$$

Figure $E B C D-\triangle E A B=\| g m A B C D$,
Figure EBCD - \triangle FDC $=$ rect. EBCF;
and as equal parts have been taken from the same area, the remainders are equal.

$$
\therefore \| g m \quad A B C D=\text { rect. EBCF. }
$$

Cor.-If a be the measure of the base of a $\| \mathrm{gm}$ and b the measure of its altitude, the area, being the same as that of a rect. of the same base and altitude, $=a b$.

73.-Practical Exercises

1. Draw a $\|$ gm having two adjacent sides 6.4 cm . and 7.3 cm . and the contained $\angle 30^{\circ}$. Find its area.
2. Draw a $\| g m$ having the two diagonals 4.8 cm . and 6.8 cm . and an \angle between the diagonals 75°. Find its area.
3. The area of a $\| \mathrm{gm}$ is $50 \mathrm{sq} . \mathrm{cm}$., one side is 10 cm . and one L is 60°. Construct the $\| \mathrm{gm}$, and measure the other side.
4. Draw a rectangle of base 7 cm . and height 4 cm . On the same base construct a $\| g m$.having the same area as the rectangle and two of its sides each 65 mm . Measure one of the smaller $\angle \mathrm{s}$ of the $\| \mathrm{gm}$.
5. Make a $\| g m$ having sides 10 and 7 cm . and one $\angle 60^{\circ}$. Make a rhombus equal in area to the $\| \mathrm{gm}$ and having each side 10 cm . Measure the shorter diagonal of the rhombus.
6. Make a rectangle 8 cm . by 5 cm . Construct a $\| \mathrm{gm}$ equal in area to the rectangle and having two sides 7 cm . and 8 cm . Construct a rhombus equal in area to the $\| g m$ and having each side 7 cm . Measure the shorter diagonal of the rhombus.
7. Make a rhombus having each side 8 cm . and its area 50 sq. cm. Measure the shorter diagonal.

Answers :-1. $23.4 \mathrm{sq} . \mathrm{cm}$. nearly. 2. $15 \cdot 8 \mathrm{sq} . \mathrm{cm}$. nearly. 3. 57.7 mm . nearly. 4. 38° nearly. 5. 64 mm . nearly. 6. 64 mm . nearly. 7. 69 mm . nearly.

Theorem 2

Parallelograms on the same base and between the same parallels are equal in area.

Hypothesis.-ABCD, ABEF are $\|$ gms on the same base $A B$ and between the same $\| S A B, D E$.

To prove that $\|g m \mathrm{ABCD}=\| \mathrm{gm}$ ABEF.
Construction.-Draw AK, BH each \perp to both AB and DE.

$$
\begin{aligned}
\text { Proof.- } \because \| g m ~ A B C D & =\text { rect. ABHK, (II-1, p. 95.) } \\
\text { and } \| g m \text { ABEF } & =\text { rect. ABHK, } \\
\therefore \| g m ~ A B C D & =\| g m \text { ABEF. }
\end{aligned}
$$

Theorem 3

Parallelograms on equal bases and between the same parallels are equal in area.

Hypothesis.-ABCD, EFGH are $\| g m s$ on the equal bases $\mathbf{A B}, \mathbf{E F}$ and between the same $\| \mathrm{s} A F, \mathrm{DG}$.

To prove that $\|g m \mathrm{ABCD}=\| \mathrm{gm}$ EFGH.
Construction.-Draw AK, BL, EM, FN each \perp to both AF, DG.

$$
\begin{aligned}
& \text { Proof.— } \quad \because A B=E F, \\
& \text { and } A K=E M \text {, } \\
& \text { (I—20, p. 67.) } \\
& \therefore \text { rect. } \mathrm{KB}=\text { rect MF. } \\
& \text { But } \| g m A B C D=\text { rect. } K B \text {, } \\
& \text { and. } \| \text { gm EFGH }=\text { rect. MF,. } \\
& \therefore\|g m ~ A B C D=\| g m \text { EFGH. }
\end{aligned}
$$

74. Draw an acute- $\angle \mathrm{d} \triangle \mathrm{ABC}$. Draw the \perp from A to BC. Draw through A, a st. line \|BC. Show that the \perp distance between these $\|$ lines at any place $=$. the altitude of $\triangle A B C$.

Draw an obtuse- $\angle d \triangle A B C$, having the obtuse \angle at B. Draw the altitude $\mathbf{A X}$. Show that it falls without the \triangle. Draw through A, a st. line \| BC. Show that the distance between these || lines at any place $=$ the
 altitude of the \triangle.

Taking \mathbf{C} as the vertex and $A B$ as the base, draw the altitude.

If a Δ is between two $\| s$, having its base in one of the $\| s$ and its vertex in the other, its altitude is the distance between the lis.

Theorem 4

The area of a triangle is half that of the rectangle on the same base and of the same altitude as the triangle.

Hypothesis.-ABC is a \triangle and DBCE a rectangle on the same base and of the same altitude BD.

To prove that area of $\triangle A B C=$ half that of rect. DBCE.

Construction.-Through C draw CF\|BA.
Proof.- \because AC is a diagonal of $\| g m$ ABCF,
$\therefore \triangle A B C=$ half of $\| \mathrm{gm} A B C F$. (I-20, p. 67.)
But $\| \mathrm{gm} \operatorname{ABCF}=$ rect. DBCE, \quad (II.-1, p. 95.)
$\therefore \triangle A B C=$ half of rect. DBCE.
Cor.-If a be the measure of the base of a \triangle and b the measure of its altitude, the measure of its area is $\frac{1}{2} a b$.

75. -Practical Exercises

1. Draw a rt. $-\angle \mathrm{d} \triangle$ having the sides that contain the right $\angle 56 \mathrm{~mm}$. and 72 mm . Find the area of the \triangle.
2. Make a $\triangle \mathrm{ABC}$, having $b=6 \mathrm{~cm} ., c=8 \mathrm{~cm}$., and $\angle A=72^{\circ}$. Find its area.
3. Draw a \triangle having, its sides 73 mm ., 57 mm . and 48 mm . Find its area.
4. Find the area of the $\triangle: a=10 \mathrm{~cm} ., \angle \mathbf{B}=42^{\circ}$, $\angle \mathrm{C}=58^{\circ}$.
5. The sides of a triangular field are 36 chains, 2.7 chains and 29 chains. Draw a diagram and find the number of acres in the field. (Scale: 1 mm . to the chain.)
6. Two sides of a triangular field are 41 and 38 chains and the contained \angle is 70°. Find its area in acres.

Answers :-1. $20 \cdot 16$ sq. cm.; 2. 23 sq. cm. nearly; 3. 13.7 sq. cm. nearly ; 4. $28.8 \mathrm{sq} . \mathrm{cm} . ; 5.36 \mathrm{ac} . ; 6.73$ ac. nearly.

Theorem 5
Triangles on the same base and between the same parallels are equal in area.

Hypothesis.-ABC, DBC are $\triangle \mathrm{s}$ on the same base $B C$ and between the same $\| s$ AD, BC.

To prove that $\triangle \mathrm{ABC}=\triangle \mathrm{DBC}$.
Construction.-Draw AX, DY \perp BC.

$$
\begin{aligned}
\text { Proof.- } \quad \triangle A B C & \left.=\frac{1}{2} \text { rect. } \mathrm{AX} . \mathrm{BC} . \quad \text { (II- }-4, \text { p. 100. }\right) \\
\triangle D B C & =\frac{1}{2} \text { rect. } \mathrm{DY} . \mathrm{BC} .
\end{aligned}
$$

But, $\because A X=D Y$,
\therefore rect. $A X . B C=$ rect. DY. BC. and $\therefore \triangle A B C=\triangle D B C$.

Theorem 6

Triangles on equal bases and between the same parallels are equal in area.

Hypothesis.-ABC, DEF are $\triangle \mathrm{s}$ on equal bases $\mathbf{B C}$, $\mathbf{E F}$ and between the same $\| \mathrm{S} \mathbf{A D}, \mathbf{B F}$.

To prove that $\triangle \mathrm{ABC}=\triangle \mathrm{DEF}$.
Construction.-Draw $\mathrm{AX}, \mathrm{DY} \perp \mathrm{BF}$.
Proof.- $\triangle A B C=\frac{1}{2}$ rect. $A X$.BC. (II.-4, p. 100.)
$\triangle D E F=\frac{1}{2}$ rect. $D Y . E F$.
But, $\quad \because B C=E F$,

$$
\begin{equation*}
\text { and } A X=D Y \text {, } \tag{I.-20,p.67.}
\end{equation*}
$$

\therefore rect. $A X . B C=$ rect. DY.EF.
Hence, $\triangle A B C=\triangle D E F$.
Cor. I.-Triangles on equal bases and of the same altitude are equal in area.

Cor. 2.-A median bisects the area of the triangle.

Theorem 7

If a parallelogram and a triangle are on the same base and between the same parallels, the parallelogram is double the triangle.

Hypothesis-ABCD is a $\| g m$ and EBC a \triangle on the same base $\mathbf{B C}$ and between the same $\| \mathrm{S} A E, B C$.

To prove that $\| \mathrm{gm} \mathrm{ABCD}=$ twice $\triangle \mathrm{EBC}$.
Construction.-Draw BX, CY, EZ $\perp \mathrm{BC}$ and AE .
Proof. $-\| \mathrm{gm} \cdot \mathrm{ABCD}=$ rect. $\mathrm{BX} . \mathrm{BC} . \quad$ (II-1, p. 95.)

$$
\begin{aligned}
\triangle E B C & =\frac{1}{2} \text { rect. EZ. BC. } & (\text { (II-4, p. 100.) } \\
\text { But, } \because B X & =E Z & (\mathrm{I}-20, \text { p. } 67 .)
\end{aligned}
$$

\therefore rect. $B X . B C=$ rect. $E Z . B C$.
And $\therefore \| g m \quad A B C D=$ twice $\triangle E B C$.

76.-Exercises

$X 1 . \triangle \mathrm{s} A B C, D E F$ are between the same $\| \mathrm{s} A D$ and $B C E F$, and $B C>E F$. Prove that $\triangle A B C>\triangle D E F$.
2. On the same base with a $\| \mathrm{gm}$ construct a rectangle equal in area to the $\| \mathrm{gm}$.
3. On the same base with a given $\| g m$, construct a $\| g m$ equal in area to the given $\| \mathrm{gm}$, and having one of its sides equal to a given st. line.
\boldsymbol{X} 4. Construct a rect. equal in area to a given $\| g m$, and having one of its sides equal to a given st. line.
5. Make a $\| g m$ with sides 5 cm . and 3 cm ., and contained $\angle 125^{\circ}$. Construct an equivalent rect. having one side 1.5 cm .
6. On the same base as a given \triangle construct a rect. equal in area to the \triangle.
7. Construct a rect. equal in area to a given \triangle, and having one of its sides equal to a given st. line.
$X 8$. On the same base with a $\| g m$ construct a rhombus equal in area to the $\| \mathrm{gm}$.
X 9. Construct a rhombus equal in area to a given $\| g m$, and having each of its sides equal to a given st. line.
10. On the same base with a given \triangle, construct a rt. $-\angle d \triangle$ equal in area to the given \triangle.
$X 11$. On the same base with a given \triangle, construct an isosceles \triangle equal in area to the given \triangle.
X 12. If, in the $\| g m A B C D, P$ be any point between $A B$, $C D$ produced indefinitely, the sum of the $\triangle S P A B, P C D$ equals half the $\| g m$; and if P be any point not between $A B, C D$, the difference of the $\triangle s P A B, P C D$ equals half the \|gm.
X13. $A B$ and $E C D$ are two $\|$ st. lines; $B F, D F$ are drawn $\| A D, A E$ respectively; prove that $\triangle S A B C, D E F$ are equal to each other.
14. On the same base with a given \triangle, construct a \triangle equal in area to the given \triangle, and having its vertex in a given st. line.
/ 15. If two $\triangle s$ have two sides of one respectively equal to two sides of the other and the contained Ls supplementary, the $\triangle s$ are equal in area.
/ 16. $A B C D$ is a $\| g m$, and P is a point in the diagonal $A C$. Prove that $\triangle P A B=\triangle P A D$.
17. P is a point within a $\| g m$ ABCD. Prove that \triangle PAC equals the difference between $\triangle s P A B, P A D$.
X 18. In $\triangle A B C, B C$ and $C A$ are produced to P and Q respectively, such that $C P=$ one-half of $B C$, and $A Q=$ one-half of CA. Show that $\triangle Q C P=$ three-fourths of \triangle ABC.
X 19. The medians $B E, C D$ of the $\triangle A B C$ intersect at F. Show that $\triangle B F C=$ quadrilateral $A D F E$.
\times 20. On the sides $A B, B C$ of a \triangle the $\| g m s A B D E, C B F G$ are described external to the $\triangle: E D$ and $G F$ meet at H and $B H$ is joined. On AC the $\| g m$ CAKL is described with $C L$ and $A K \|$ and $=H B$. Prove $\|g m A L=\| g m A D+\| g m$ CF.
$\times 21$. Two $\triangle \mathrm{s}$ are equal in area and between the same $\| \mathrm{s}$. Prove that they are on equal bases.
$\times 22$. Of all $\triangle \mathrm{s}$ on a given base and between the same $\| \mathrm{s}$, the isosceles \triangle has the least perimeter.
23. $A B C D$ is a $\| g m$, and E is a point such that $A E, C E$ are respectively \perp and $\|$ to $B D$. Show that $B E=C D$.
$\times 24$. The side $A B$ of $\| g m A B C D$ is produced to E and $D E$ cuts $B C$ at F. $A F$ and $C E$ are joined. Prove that $\triangle A F E=\triangle C B E$.
25. In the quadrilateral $A B C D, A B \| C D$. If $A B=a$, $C D=b$ and the distance between $A B$ and $C D=h$, show that the area of $\mathrm{ABCD}=\frac{1}{2} h(a+b)$.
26. Two sides $A B, A C$ of a \triangle are given in length, find the $\angle A$ for which the area of the \triangle will be greatest.
27. The medians $A D, B E$ of $\triangle A B C$ intersect at G, and $C G$ is joined. Prove that the three lines AG, BG, CG trisect the area of the \triangle.
28. Bisect the area of a \triangle by a st. line drawn through a vertex.
29. Trisect the area of a Δ by two st. lines drawn through a vertex.
$\times 30$. Bisect the area of a \triangle by a st. line drawn through a given point in one of the sides.
31. Trisect the area of a \triangle by two st. lines drawn through a given point in one of the sides.

32. The area of any quadrilateral $A B C D$ is equal to that of a \triangle having two sides and their included \angle respectively equal to the diagonals of the quadrilateral and their included \angle.
Note. -Draw PS and QR\|BD, PQ and SR\|AC. Join SQ.
33. Prove that in a rhombus the distance between one pair of opposite sides equals the distance between the other pair.
34. $\| \mathrm{gms}$ are described on the same base and between the same $\| \mathrm{s}$. Find the locus of the intersection of their diagonals.
35. Prove that the area of a rhombus is half the product of the lengths of its diagonals.
36. $A B C D$ is a quadrilateral in which $A B \| C D, E$ is the middle point of $A D$. Prove that $\triangle B E C=\frac{1}{2}$ quadrilateral ABED.
37. Divide a given \triangle into seven equal parts.

Theorem 8

If two equal triangles are on the same side of a common base, the straight line joining their vertices is parallel to the common base.

Hypothesis.-ABC, DBC are two equal $\triangle \mathrm{s}$ on the same side of the common base $\mathbf{B C}$.

To prove that $\mathrm{AD} \| \mathrm{BC}$.
Construction.-Draw AX and DY i Bc.
Proof.- $\triangle A B C=\frac{1}{2}$ rect. $\mathbf{B C} . A X$. (II-4, p. 100.) $\triangle D B C=\frac{1}{2}$ rect. $B C . D Y ;$
but $\triangle A B C=\triangle D B C$,
$\therefore \frac{1}{2}$ rect. $B C . A X=\frac{1}{2}$ rect. $B C . D Y$ and hence $A X=D Y$,
that is, $A X$ and $D Y$ are both $=$ and $\|$ to each other

$$
\therefore A D \| X Y . \quad(\mathrm{I}-19, \mathrm{p} .66 .)
$$

77. If, through any point E, in the diagonal $A C$ of a parallelogram BD, two straight lines FEG, HEK be drawn parallel respectively to the sides DC, DA of the parallelogram,

the $\| \mathrm{gms}$ FK and HG are said to be parallelograms
about the diagonal $\mathbf{A C}$, and the $\| \mathrm{gms} \mathrm{DE}, \mathrm{EB}$ are called the complements of the $\|$ gms $\mathbf{F K}, \mathrm{HG}$, which are about the diagonal.

Theorem 9

The complements of the parallelograms about the diagonal of any parallelogram are equal to each other.

Hypothesis.-FK and HG are \|gms about the diagonal AC of the \|gm ABCD.

To prove that the complements DE, EB are equal to each other.

Proof.- $\quad \because$ AE is a diagonal of $\| \mathrm{gm}$ FK,

$$
\therefore \triangle A F E=\triangle A K E . \quad(I-20, \text { p. } 67 .)
$$

Similarly $\triangle H E C=\triangle E G C$.
$\therefore \triangle \mathrm{AFE}+\triangle \mathrm{HEC}=\triangle \mathrm{AKE}+\triangle \mathrm{EGC}$.
But, $\because A C$ is a diagonal of $\| \mathrm{gm} A B C D$
$\therefore \triangle A D C=\triangle A B C$.
$\therefore \triangle A D C-(\triangle A F E+\triangle H E C)$
$=\triangle A B C-(\triangle A K E+\triangle E G C)$.
$\therefore\|\mathrm{gm} \mathrm{DE}=\| \mathrm{gm} \mathrm{EB}$.

78.-Exercises

1. If two equal $\triangle s$ be on equal segments of the same st. line and on the same side of the line, the st. line joining their vertices is $\|$ to the line containing their bases.
2. Through P, a point within the $\| g m$ ABCD, EPF is drawn \|AB and GPH is drawn \|AD. If \|gm AP $=\| \mathrm{gm}$ $P C$, show that P is on the diagonal BD. (Converse of Theorem 9.)
3. Two equal $\triangle \mathrm{s} A B C, D B C$ are on opposite sides of the same base. Prove that AD is bisected by BC, or BC produced.

Note.-Produce DB making BE = DB. Join EA, EC.

Give another proof of this proposition using $\perp \mathrm{s}$ from A and D to BC and II-4, p. 100.
4. The median drawn to the base of a \triangle bisects all st. lines drawn $\|$ to the base and terminated by the sides, or the sides produced.
5. P is a point within a $\triangle A B C$ and is such that $\triangle P A B$ $+\triangle P B C$ is constant. Prove that the locus of P is a st. line || $A C$.
6. \|gms about the diagonal of a square are squares.
7. D, E, F are respectively the middle points of the sides $B C, C A, A B$ in the $\triangle A B C$. Prove $\triangle B E F=\triangle C E F$ and hence that $E F \| B C$.
8. In the diagram of $I I-9$, show that $F K \mathbb{H G}$.

Constructions

Problem 1

To construct a parallelogram equal in area to a given triangle and having one of its angles equal to a given angle.

Let $A B C$ be the given \triangle and D the given - .
It is required to construct a $\| g m$ equal in area to $\triangle A B C$ and having one \angle equal to $\angle D$.

Construction.-Through A draw AFG $\|$ BC. Bisect BC at \mathbf{E}. At \mathbf{E} make $\angle \mathbf{C E F}=\angle \mathrm{D}$. Through \mathbf{C} draw $\mathbf{C G} \| E F$.

FC is the required \|gm.
Proof.-Draw any line HK \perp to the two \| st. lines. HK is the common altitude of the \|gm FC and the $\triangle A B C$.

$$
\begin{array}{rlrl}
\| \mathrm{gm} \mathrm{FC} & =\text { rect. EC. HK. } & (\mathrm{II}-1, \text { p. 95.) } \\
& =\frac{1}{2} \text { rect. } \mathrm{BC} . \mathrm{HK}, \because \mathrm{EC}=\frac{1}{2} \mathrm{BC}, \\
& =\triangle A B C . & & (\mathrm{II}-4, \mathrm{p} .100 .)
\end{array}
$$

Problem 2

To construct a triangle equal in area to a given quadrilateral.

Let $A B C D$ be the given quadrilateral.
It is required to construct a Δ equal in area to $A B C D$.

Construction. - Join AC. Through D draw DE\|AC and meeting $B C$ produced at E. Join $A E$.

$$
\triangle A B E=\text { quadrilateral } A B C D .
$$

Proof.- $\because \mathrm{DE} \| \mathrm{AC}$,
$\therefore \triangle E A C=\triangle D A C$.
(II-5, p. 101.)
To each of these equals add $\triangle A B C$.
Then $\triangle A B E=$ quadrilateral $A B C D$.

Problem 3

To construct a triangle equal in area to a given rectilineal figure.

Let the pentagon $A B C D E$ be the given rectilineal figure.

Construction.-Join AD, BD. Through E, draw $\mathbf{E F \| A D}$ and meeting $\mathbf{B A}$ at \mathbf{F}. Through \mathbf{C} draw $\mathbf{C G} \| \mathbf{B D}$ and meeting $A B$ at \mathbf{G}.

Join DF, DG.

$$
\triangle D F G=\text { figure } A B C D E .
$$

$$
\begin{aligned}
& \text { Proof.- } \because E F \| A D, \\
& \therefore \triangle \mathrm{DFA}=\triangle \mathrm{DEA} . \\
& \because \mathrm{CG} \| \mathrm{DB}, \\
& \therefore \triangle \mathrm{DGB}=\triangle \mathrm{DCB} . \\
& \therefore \triangle \mathrm{DFA}+\triangle \mathrm{DAB}+\triangle \mathrm{DBG} \\
&=\triangle \mathrm{DEA}+\triangle \mathrm{DAB}+\triangle \mathrm{DCB} ; \\
& \text { i.e., } \triangle \mathrm{DFG}=\text { figure } A B C D E .
\end{aligned}
$$

By this method a Δ may be constructed equal in area to a given rectilineal figure of any number of sides; e.g., for a figure of seven sides, an equivalent figure of five sides may be constructed, and then, as in the construction just given, a Δ may be constructed equal to the figure of five sides.

Problem 4

To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given angle.

Let $A B C D E$ be the given rectilineal figure and F the given L.

It is required to construct a $\| g m=A B C D E$, and having an $\angle=\angle \mathrm{F}$.

Construction.-Make \triangle DMH equal in area to figure ABCDE.
(II-Prob. 3, p. 112.)
Make \|gm LGHK $=\triangle$ DMH, and having \angle LGH $=$ $\angle \mathrm{F}$.
(II-Prob. 1, p. 110.)
Then $\|$ gm LGHK $=$ figure $A B C D E$, and has $\angle L G H=$ $\angle F$.

79.-Exercises

1. Construct a rect. equal in area to a given \triangle.
2. Construct a rect. equal in area to a given quadrilateral.
3. Construct a quadrilateral equal in area to a given hexagon.
4. On one side of a given \triangle construct a rhombus equal in area to the given \triangle.
5. Construct a Δ equal in area to a given $\| \mathrm{gm}$, and having one of its $\angle \mathrm{s}=$ a given L.

Problem 5

To construct a triangle equal in area to a given triangle and having one of its sides equal to a given straight line.

Let $A B C$ be the given \triangle and D the given st. line.
It is required to make a $\triangle=\triangle A B C$ and having one side $=\mathrm{D}$.

Construction.-From Bc, produced if necessary, cut off $\mathbf{B E}=\mathrm{D}$. Join $\mathbf{A E}$. Through \mathbf{C} draw $\mathbf{C F \| E A}$ and meeting BA, or BA produced at F. Join FE.
$F B E$ is the required \triangle.

$$
\begin{aligned}
& \text { Proof.-- } \quad \because F C \| A E, \\
& \therefore \triangle F C E=\triangle A F C . \quad(\mathrm{II}-5, \text { p. 101.) } \\
& \therefore \triangle F B C+\triangle F C E
\end{aligned}=\triangle F B C+\triangle A F C,
$$

and side $B E$ was made $=D$.

Problem 6

On a straight line of given length to make a parallelogram equal in area to a given triangle and having an angle equal to a given angle.

Let $A B C$ be the given \triangle, E the given st. line and D the given \angle.

It is required to make a $\| \mathrm{gm}$ equal in area to $\triangle A B C$, having one side equal in length to E, and one \angle equal to D.

Construction.-From BC, produced if necessary, cut off $\mathbf{B F}=\mathbf{E}$ Join $\mathbf{A F}$. Through \mathbf{C} draw $\mathbf{C G} \| \mathbf{F A}$ meeting BA, or BA produced, at G. Join GF. Bisect bG at H. Through H draw $H M \| B C$. At B make $\angle C B L=\angle D$. Through F draw FM $\|$ BL.

LBFM is the required $\| \mathrm{gm}$.
Proof.-Join HF.
$\triangle \mathrm{S}$ GAF, AFC are on the same base $\mathbf{A F}$ and have the same altitude, \therefore they are equal. (II-5, p. 101.)

To each of these equal $\triangle s$ add the $\triangle A B F$, and $\triangle \mathrm{GBF}=\triangle \mathrm{ABC}$.

$$
\begin{aligned}
\triangle \text { GBF } & =\text { twice } \triangle \text { HBF, } \quad(\text { II-6, Cor. 2, p. 102.) }) \\
& =\| \text { gm LBFM, } \quad(\mathrm{II}-7, \text { p. 103. }) \\
& \therefore \| g m \text { LBFM }=\triangle \text { ABC. }
\end{aligned}
$$

Also $\angle L B F=\angle D$ and side $B F=E$.

Areas of Squares

80.-A rectangle is said to be contained by two st. lines when its length is equal to one of the st. lines, and its breadth is equal to the other.

The symbol $A B^{2}$ should be read:-"the square on $A B, "$ and not "AB squared."

Theorem 10

The square on the sum of two straight lines equals the sum of the squares on the two straight lines increased by twice the rectangle contained by the straight lines.

Hypothesis.-AB, BC are the two st. lines placed in the same st. line so that $A C$ is their sum.

To prove that

$$
A C^{2}=A B^{2}+B C^{2}+2 \cdot A B \cdot B C .
$$

Algebraic Proof
Proof.-Let a, b represent the number of units of length in $A B, B C$ respectively.

$$
\begin{aligned}
& \text { Area of the square on AC } \\
& =(a+b)^{2} \\
& =a^{2}+b^{2}+2 a b
\end{aligned}
$$

$=$ area of square on $A B+$ area of square on $B C+$ twice the area of the rectangle contained by $A B$, and $B C$.

Geometric Proof

Construction.-On AC, AB, BC draw squares ACED, ABFG, BCKH. Produce $B F$ to meet DE at L.

Proof.-
$G D=A D-A G=A C-A B=B C$, and $G F=A B$.
$\therefore \mathrm{GL}=$ rect. $\mathrm{AB} . \mathrm{BC}$.
$K E=C E-C K=A C-B C=A B$, and $H K=B C$.
$\therefore \mathrm{HE}=$ rect. AB, BC.

$$
\begin{aligned}
A C^{2} & =A E \\
& =A F+B K+G L+H E \\
& =A B^{2}+B C^{2}+2 A B \cdot B C
\end{aligned}
$$

Theorem 11

The square on the difference of two straight lines equals the sum of the squares on the two straight lines diminished by twice the rectangle contained by the straight lines.

Hypothesis. -AB, BC are two st. lines, of which $\mathbf{A B}$ is the greater, placed in the same st. line, and so that AC is their difference.

To prove that

$$
\begin{aligned}
\mathrm{AC}^{2}= & A B^{2}+\mathrm{BC}^{2}-2 . \mathrm{AB} \cdot \mathrm{BC} . \\
& \text { Algebraic Proof }
\end{aligned}
$$

Proof.-Let a, b represent the number of units of length in $A B, B C$ respectively.

Area of square on $\mathrm{AC}=(a-b)^{2}$

$$
=a^{2}+b^{2}-2 a b .
$$

$=$ the sum of the squares on $\mathbf{A B}$ and $\mathbf{B C}$ diminished by twice the area of the rectangle contained by $A B$ and BC.

Geometric Proof

Construction.-On AC, AB, BC draw the squares ACED, ABFG, BCKH. Produce DE to meet BF at L.

Proof. $-\mathrm{DG}=\mathrm{AG}-\mathrm{AD}=\mathrm{AB}-\mathrm{AC}=\mathrm{BC}$, and $\mathrm{DL}=\mathrm{AB}$.
$\therefore D F=$ rect. $A B . B C$.
$K E=K C+C E=B C+A C=A B$, and $K H=B C$.
$\therefore \mathrm{KL}=$ rect. $\mathrm{AB} . \mathrm{BC}$.

$$
\begin{aligned}
A C^{2} & =A E \\
& =A F+K B-(D F+K L) \\
& =A B^{2}+B C^{2}-2 A B \cdot B C
\end{aligned}
$$

Theorem 12

The difference of the squares on two straight lines equals the rectangle of which the length is the sum of the straight lines and the breadth is the difference of the straight lines.

A, B are two st. lines, of which $\mathbf{A}>\boldsymbol{B}$.
To prove that the square on \mathbf{A} diminished by the square on $\mathbf{B}=$ the rect. contained by $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$.

Proof.-Let a, b represent the number of units in A and \mathbf{B} respectively.

The difference of the squares on A and B

$$
\begin{aligned}
& =a^{2}-b^{2} \\
& =(a+b)(a-b) \\
& =\text { the area of the rectangle }
\end{aligned}
$$

contained by $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$.

81.-Exercises

1. Draw a diagram illustrative of Theorem 12.
2. The square on the sum of three st. lines equals the sum of the squares on the three st. lines increased by twice the sum of the rectangles contained by each pair of the st. lines.

Illustrate by diagram.
3. The sum of the squares on two unequal st. lines $>$ twice the rectangle contained by the two st. lines.
4. The sum of the squares on three, unequal st. lines $>$ the sum of the rectangles contained by each pair of the st. lines.
5. Construct a rectangle equal to the difference of two given squares.
6. If there be two st. lines $A B$ and $C D$, and $C D$ be divided at E into any two parts, the rect. $A B . C D=$ rect. $A B . C E+$ rect. $A B . E D$.

Let $\mathbf{A B}=p$ units of length

$$
\begin{aligned}
& \mathbf{C E}=q \text { " } \\
& \mathrm{ED}=r \text { " } \\
& \text { Area of } \mathbf{A B} \cdot \mathbf{C D}=p(q+r) \\
& \text { " " } \mathbf{A B} \cdot \mathbf{C E}=p q \\
& \text { " " } \mathbf{A B} \cdot \mathbf{E D}=p r . \\
& \text { But } p(q+r)=p q+p r . \\
& \therefore \mathbf{A B} \cdot \mathbf{C D}=\mathbf{A B} \cdot \mathbf{C E}+\mathbf{A B} \cdot \mathbf{E D} .
\end{aligned}
$$

7. Give a diagram illustrating the identity $(a+b)$ $(c+d)=a c+a d+b c+b d$, taking a, b, c, d to be respectively the number of units in four st. lines.
8. C is the middle point of a st. line $A B$, and D is any other
 point in the line. Prove:
(1) $A D \cdot D B=A C^{2}-C D^{2}$;
(2) $A D^{2}+D B^{2}=2 A C^{2}+2 C D^{2}$.
$($ Let $\mathbf{A C}=\mathbf{C B}=p, \mathbf{C D}=q)$.
9. C is the middle point of a st. line $A B$, and D is any point in $A B$ produced. Prove:

(1) $A D . D B=C D^{2}-A C^{2}$;
(2) $A D^{2}+D B^{2}=2 \quad A C^{2}+2 C D^{2}$.
10. Draw diagrams to illustrate the four results in exercises 8 and 9.
11. Draw a diagram illustrating the identity $(a+b)^{2}-$ $(a-b)^{2}=4 a b$.
12. If $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ be four points in order in a st. line, $A B \cdot C D+A D \cdot B C=A C \cdot B D$.

Illustrate by a diagram.
13. $A B$ is a st. line in which C is any point. Prove that $A B^{2}=A B \cdot A C+A B \cdot C B$.
14. Construct a \triangle having two sides and the median drawn to one of these sides equal to three given st. lines.
15. Construct a \triangle having two sides and the median drawn to the third side equal to three given st. lines.
16. In a given $\| g m$ inscribe a rhombus having one vertex at a given point in a side of the $\| \mathrm{gm}$.

Theorem 13

The square described on the hypotenuse of a right-angled triangle is equal to the sum of the squares on the other two sides.

Hypothesis.-ABC is a \triangle in which $\angle \mathbf{A C B}$ is a rt. \angle, and $A E, B G, C K$ are squares on $A B, B C$ and $C A$.

To prove that $\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$.
Construction.-Through C draw CL \|AD. Join Kb. CD.

Proof.- $\because \angle \mathrm{s}$ HCA, ACB, BCG are rt. $\angle \mathrm{s}$,
$\therefore \angle \mathrm{s} \mathrm{HCB}, \mathrm{ACG}$ are st. $\angle \mathrm{s}$.
and $\therefore \mathrm{HCB}, \mathrm{ACG}$ are st. lines.

$$
\angle B A D=\angle K A C,
$$

to each add $\angle C A B$, then $\angle \mathrm{CAD}=\angle \mathrm{KAB}$.
In $\triangle S C A D, K A B,\left\{\begin{aligned} C A & =K A \\ A D & =A B \\ \angle C A D & =\angle K A B\end{aligned}\right.$

$$
\therefore \triangle C A D=\triangle K A B \quad(\mathrm{I}-2, \text { p. 16.) }
$$

\because rect. ADLM and \triangle CAD are on the same base $A D$ and between the same $\| s C L, A D$,
\therefore rect. $A L=$ twice $\triangle C A D$. (II-7, p. 103.)
Similarly, sq. $H A=$ twice $\triangle K A B$.
\therefore rect. $\mathrm{AL}=\mathrm{sq}$. HA .
In the same manner, by joining CE and AF, it may be shown that

$$
\text { rect. } B L=s q . B G \text {. }
$$

\therefore rect. $A L+$ rect. $B L=$ sq. $H A+$ sq. $B G$,

$$
\text { i.e., } \mathbf{A B}^{2}=\mathbf{A C}^{2}+\mathbf{B C}^{2} \text {. }
$$

82. Many proofs have been given for this important theorem. Pythagoras (570 to 500 b.c.) is said by tradition to have been the first to prove it, and from that it is commonly called the Theorem of Pythagoras, or the Pythagorean Theorem. The proof given above is attributed to Euclid (about 300 b.c.). An alternative proof is given in Book IV.

83.-Exercises

1. Draw two st. lines 5 cm . and 6 cm . in length. Describe squares on both, and make a square equal in area to the two squares. Measure the side of this last square and check your result by calculation.
2. Draw three squares having sides 1 in., 2 in . and $2 \frac{1}{2} \mathrm{in}$. Make one square equal to the sum of the three. Check by calculation.
3. Draw two squares having sides $1 \frac{1}{2} \mathrm{in}$. and $2 \frac{1}{2} \mathrm{in}$. Make a third square equal to the difference of the first two. Check by calculation.
4. Draw two squares having sides 9 cm . and 6 cm . Make a third square equal to the difference of the first two. Check your result by calculation.
5. Draw any square and one of its diagonals. Draw a square on the diagonal and show that it is double the first square.
6. Draw a square having each side 4 cm . Draw a second square double the first. Measure a side, and check by calculation.
7. Draw a square having one side 45 mm . Draw a second square three times the first. Measure its side, and check by calculation.
8. Draw three lines in the ratio $1: 2: 3$. Draw squares on the lines, and divide the two larger so as to show that the squares are in the ratio $1: 4: 9$.
9. Draw a st. line $v^{\prime} \overline{2} \mathrm{in}$. in length.
10. Draw a st. line $\sqrt{3} \mathrm{in}$. in length.
11. Draw a st. line $\sqrt{5} \mathrm{in}$. in length.
12. Draw any rt. $-\angle d \triangle$. Describe equilateral $\triangle s$ on the three sides. Find the areas of the $\triangle s$ and compare that on the hypotenuse with the sum of those on the other two sides.
13.

$A B$ is one inch in length, $\angle B$ a rt. $\angle, B C$ is one inch $B D$ is cut off $=A C, B E=A D, B F=A E, B G=A F$, etc. Show that $B D=\sqrt{ } 2$ in., $B E=\sqrt{ } / 3$ in., $B F=\sqrt{ } 4=2$ in., $B G=\sqrt{ } 5 \mathrm{in}$, etc.
14. Construct a square equal to half a given square.
15. If a \perp be drawn from the vertex of a \triangle to the base, the difference of the squares on the segments of the base $=$ the difference of the squares on the other two sides.

Hence, prove that the altitudes of a \triangle pass through one point.
16. \mathbf{A} is a given st. line. Find another st. line B, such that the difference of the square on \mathbf{A} and \mathbf{B} may be equal to the difference of two given squares.

* 17. If the diagonals of a quadrilateral cut at rt. $\angle \mathrm{s}$, the sum of the squares on one pair of opposite sides equals the sum of the squares on the other pair.

18. The sum of the squares on the diagonals of a rhombus equals the sum of the squares on the four sides.
W19. Five times the square on the hypotenuse of a rt.- $\angle \mathrm{d}$ \triangle equals four times the sum of the squares on the medians drawn to the other two sides.
19. In an isosceles $\mathrm{rt} .-\angle \mathrm{d} \triangle$ the sides have the ratios 1:1: V^{2}.
20. If the angles of a \triangle be $90^{\circ}, 30^{\circ}, 60^{\circ}$, the sides have the ratios $2: 1: \sqrt{ } 3$.
~22. Divide a st. line into two parts such that the sum of the squares on the parts equals the square on another given st. line. When is this impossible?
21. In the st. line $\mathbf{A B}$ produced find a point \mathbf{C} such that the sum of the squares on AC, BC equals the square on a given st. line.
(24. Divide a given st. line into two parts such that the square on one part is double the square on the other part. $\nsim 25 . A B C D$ is a rect., and P is any point. Show that $\mathrm{PA}^{2}+\mathrm{PC}^{2}=\mathrm{PB}^{2}+\mathrm{PD}^{2}$.

* 26. $A B C$ is a $\triangle r t .-\angle d$ at A. E is a point on $A C$ and F is a point on $A B$. Show that $\mathbf{B E}^{2}+\mathbf{C F}^{2}=\mathbf{E F}{ }^{2}+\mathbf{B C}^{2}$.

27. If two rt.- $\angle \mathrm{d} \triangle$ s have the hypotenuse and a side of one respectively equal to the hypotenuse and a side of the other, the $\triangle \mathrm{s}$ are congruent.
28. The square on the side opposite an acute \angle of a \triangle is less than the sum of the squares on the other two sides.
29. The square on the side opposite an obtuse \angle of a \triangle is greater than the sum of the squares on the other two sides.
30. Construct a square that contains 20 square inches.
31. In the diagram of II-13, show that KB, CD cut at rt. $\angle \mathrm{s}$.
32. In the diagram of $\mathrm{II}-13$, if KD be joined, show that $\triangle K A D=\triangle A B C$.
33. In the diagram of $I I-13$, the distance of E from $A C=A C+C B$.
34. $A B C$ is an isosceles rt. $\angle d \triangle$ in which C is the rt. \angle. $C B$ is produced to D making $B D=C B$. $\perp \mathrm{s}$ to $A B$, $B D$ at A, D respectively meet at E. Prove that $A E=2$ $A B$.

Theorem 14

(Converse of Theorem 13)

If the square on one side of a triangle is equal to the sum of the squares on the other two sides, the angle contained by these sides is a right angle.

Hypothesis.-ABC is a \triangle in which $\mathbf{B C}^{2}=\mathbf{A B}^{\mathbf{2}}+\mathbf{A C ^ { 2 }}$. To prove that $\angle \mathrm{A}$ is a rt. \angle.
Construction.-Make a rt. $\angle \mathrm{D}$ and cut off $\mathrm{DE}=\mathrm{AB}$, $D F=A C$.

Join EF.

$$
\begin{aligned}
\mathrm{BC}^{2} & =\mathbf{A B ^ { 2 } + \mathbf { A C } \mathbf { 2 } ^ { 2 }} \\
& =\mathrm{DE}^{2}+\mathrm{DF}^{2} \\
& =E F^{2}(\because \mathrm{D} \text { is a rt. } \angle) . \quad(\mathrm{II}-13, \mathrm{p} .122 .) \\
\therefore \mathrm{BC} & =\mathrm{EF} .
\end{aligned}
$$

In $\triangle S A B C, D E F,\left\{\begin{array}{l}A B=D E, \\ A C=D F, \\ B C=E F,\end{array}\right.$

$$
\therefore \angle A=\angle D .
$$

$\therefore \angle A$ is a rt. \angle.

84.-Exercises

1. The sides of a \triangle are $3 \mathrm{in} ., 4 \mathrm{in}$. and 5 in . Prove that it is a rt. $-\angle \mathrm{d} \triangle$.
2. The sides of a \triangle are $13 \mathrm{~mm} ., 84 . \mathrm{mm}$. and 85 mm . Prove that it is a $r t .-\angle d \triangle$.
3. In the quadrilateral $A B C D, A B^{2}+C D^{2}=B C^{2}+A D^{2}$. Prove that the diagonals $A C, B D$ cut at rt. $\angle s$.
4. If the sq. on one side of a Δ be less than the sum of the squares on the other two sides, the L contained by these sides is an acute \angle. (Converse of § 83, Ex. 28.)
5. State and prove a converse of § 83, Ex. 29.
6. Using a tape-measure, or a knotted cord, and Ex. 1, draw a st. line at rt . Ls to a given st. line.
7. Show that, if the sides of a \triangle are represented by $m^{2}+n^{2}, m^{2}-n^{2}, 2 m n$, where m and n are any numbers, the Δ is $\mathrm{rt}_{\mathrm{o}}-\mathrm{d}$.

Use this result to find numbers representing the sides of a rt. $-\angle \mathrm{d} \triangle$.
85. Definition.-If a perpendicular be drawn from a given point to a given straight line, the foot of the perpendicular is said to be the projection of the point on the line.

From the point \mathbf{A} the $\perp \mathbf{A X}$ is drawn to the line BC.

The point \mathbf{X} is the projection of the point \mathbf{A} on the st. line BC.
86. Definition.-If from the ends of a given straight line perpendiculars be drawn to another given straight line, the segment intercepted on the second straight line is called the projection of the first straight line on the second straight line.
$A B$ is a st. line of fixed length and $C D$ another st. line. $\mathbf{A E}, \mathrm{BF}$ are drawn $\perp \mathbf{C D}$.

$E F$ is the projection of $A B$ on $C D$.

87.-Exercises

1. Show that a st. line of fixed length is never less than its projection on another st. line. In what case are they equal? In what case is the projection of one st. line on another st. line just a point?
2. ABC is a \triangle having $a=36 \mathrm{~mm} ., b=40 \mathrm{~mm}$. and $c=45 \mathrm{~mm}$. Draw the \triangle and measure the projection of $A B$ on BC. (Ans. 23.9 mm . nearly.)
3. ABC is a \triangle having $a=, j \mathrm{~cm} ., b=7 \mathrm{~cm} ., c=10$ cm . Draw the \triangle and measure the projection of $A B$ on BC. (Ans. 76 mm .)

Theorem 15

In an obtuse-angled triangle, the square on the side opposite the obtuse angle equals the sum of the squares on the sides that contain the obtuse angle increased by twice the rectangle contained by either of these sides and the projection on that side of the other.

Hypothesis.-ABC is a \triangle in which $\angle \mathrm{C}$ is obtuse, and $C D$ is the projection of $\mathbf{C A}$ on $\mathbf{C B}$.

To prove that $\mathbf{A B}^{2}=\mathbf{A C}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{CD}$.
Proof.- \because ADB is a rt. \angle,
$\therefore A B^{2}=B D^{2}+A D^{2} . \quad(I I-13, p .122$.
$\because B D=B C+C D$,
$\because B D^{2}=B C^{2}+C D^{2}+2 B C . C D .(I I-10, p .116$.
$\therefore A B^{2}=B C^{2}+C D^{2}+2 B C . C D+A D^{2}$.

But $\because A D C$ is a rt. \angle,
$\therefore \mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}$.
$\therefore \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{CD}$.

Theorem 16
In any triangle, the square on the side opposite an acute angle is equal to the sum of the squares on the sides which contain the acute angle diminished by twice the rectangle contained by either of these sides and the projection on that side of the other.

Hypothesis.-ABC is a \triangle in which $\angle \mathbf{C}$ is acute, and $C D$ is the projection of $C A$ on $C B$.

To prove that $\mathbf{A B}^{2}=\mathbf{A C}^{2}+\mathbf{B C}^{2}-2 \mathbf{B C} . \mathbf{C D}$.
Proof.- \because ADB is a rt. \angle,
$\therefore \mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$.
(II-13, p. 122.)
$\because B D$ is the difference between $B C$ and $C D$,
$\therefore B D^{2}=C D^{2}+B C^{2}-2 B C . C D$. (II-11, p. 118.)
$\therefore A B^{2}=C D^{2}+B C^{2}-2 B C . C D+A D^{2}$.
But, $\because A D C$ is a rt. \angle,
$\therefore C D^{2}+A D^{2}=A C^{2}$.
$\therefore A B^{2}=A C^{2}+B C^{2}-2 B C . C D$.

88.-Exercises

$11 A B C$ is a \triangle having C an \angle of 60°. Show that sq. on $A B=$ sq. on $B C+$ sq. on $A C-$ rect. $B C . A C$.
2. ABC is a \triangle having C an \angle of 120°. Show that sq. on $A B=$ sq. on $B C+$ sq. on $A C+$ rect. $B C . A C$.

1 3. ABC is a $\triangle, C D$ the projection of CA on CB , and CE the projection of $C B$ on CA. Show that rect. BC.CD = rect. AC.CE.
14. In any \triangle the sum of the squares on two sides equals twice the square on half the base together with twice the square on the median drawn to the base.

Note.--Draw a \perp from the vertex to the base, and use II15 and $I I-16$.
5. In any quadrilateral the sum of the squares on the four sides exceeds the sum of the squares on the diagonals by four times the square on the st. line joining the middle points of the diagonals.

What does this proposition become when the quadrilateral is a $\| \mathrm{gm}$?
16. ABC is a \triangle having $a=47 \mathrm{~mm} ., b=62 \mathrm{~mm}$., and $c=84 \mathrm{~mm}$. D, E, F are the middle points of BC, CA, $A B$ respectively. Calculate the lengths of $A D, B E$ and $C F$. Test your results by drawing and measurement.
7. The squares on the diagonals of a quadrilateral are together double the sum of the squares on the st. lines joining the middle points of opposite sides.
8. If the medians of a \triangle intersect at G, $A B^{2}+B C^{2}+C A^{2}=3\left(G A^{2}+G B^{2}+G C^{2}\right)$.
19. C is the middle point of a st. line $A B . \quad P$ is any point on the circumference of a circle of which \mathbf{C} is the centre. Show that $\mathrm{PA}^{2}+\mathrm{PB}^{2}$ is constant.
10. Two circles have the same centre. Prove that the sum of the squares of the distances from any point on the circumference of either circle to the ends of the diameter of the other is constant.
1 11. The square on the base of an isosceles \triangle is equal to twice the rect. contained by either of the equal sides and the projection on it of the base.
12. Prove II-13 from the following construction:-

Draw two squares, $A B C D$, $A E F G$, having $A D, A E$ in the same st. line.

Cut off GH and EK each $=A B$.

Join FH, HC, CK, KF.
13. If two sides of a \triangle be unequal, the median drawn to the shorter side is greater than the median drawn to the longer side.

14. If, from any point P within $\triangle A B C, \perp s P X, P Y, P Z$ be drawn to $B C, C A, A B$ respectively,

$$
B X^{2}+C Y^{2}+A Z^{2}=C X^{2}+A Y^{2}+B Z^{2}
$$

15. D, E, F are the middle points of $B C, C A, A B$ respectively in $\triangle A B C$. Prove that

$$
3\left(A B^{2}+B C^{2}+C A^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)
$$

16. G is the centroid of $\triangle A B C$, and P is any point. Show that

$$
P A^{2}+P B^{2}+P C^{2}=A G^{2}+B G^{2}+C G^{2}+3 P G^{2} .
$$

17. Find the point P in the plane of the $\triangle A B C$ such that the sum of the squares on $P A, P B, P C$ may be the least possible.
18. Check the results in Exs. 2 and 3, §87, by calculation.
19. If, in II-15, the obtuse L becomes greater and greater and finally becomes a st. - , what does the theorem become?
20. If, in the diagram of $\mathrm{II}-16$, the -C becomes more and more acute and finally the point A comes down to the line BC, what does the theorem become?

Miscellaneous Exercises

1. If a quadrilateral be bisected by each of its diagonals, it is a $\| \mathrm{gm}$.
2. If any point \mathbf{P} in the diagonal $\mathbf{A C}$ of the $\| g m$ $A B C D$ be joined to B and D, the $\| g m$ is divided into two pairs of equal $\triangle \mathrm{s}$.
3. The diagonals of a $\| g m$ divide the $\| g m$ into four equal parts.
4. If two sides of a quadrilateral are || to each other, the st. line joining their middle points bisects the area of the quadrilateral.
5. If two sides of a quadrilateral are \|t each other, the st. line joining their middle points passes through the intersection of the diagonals.
6. If P is any point in the side $A B$ of $\| g m A B C D$, and PC, PD are joined,

$$
\triangle P A D+\triangle P B C=\triangle P D C
$$

7. Prove that the following method of bisecting a quadrilateral by a st. line drawn through one of its vertices is correct:-Let $A B C D$ be the quadrilateral. Join AC, BD. Bisect $\mathbf{B D}$ at \mathbf{E}. Through \mathbf{E} draw $E F \| \mathbf{A C}$ and meeting $B C$, or $C D$, at F. Join $A F$. AF bisects the quadrilateral. Note.-Join AE, and EC.
8. If the diagonals of $\| \mathrm{gm} A B C D$ cut at O, and P is any point within the $\triangle A O B, \triangle C P D=\triangle A P B+\triangle A P C+$ \triangle BPD.

Note.-Join PO.
9. $A B C$ is an isosceles \triangle having $A B=A C$, and D is a point in the base $B C$, or $B C$ produced. Prove that the difference between the squares on $A D$ and $A C=$ rect. BD.DC.
10. P, Q, R, S are respectively the middle points of the sides $A B, B C, C D, D A$ in the quadrilateral $A B C D$. Prove that $\mathbf{A B}^{2}+\mathbf{C D}^{2}+2 \mathbf{P R}^{2}=\mathbf{C B}^{2}+\mathrm{DA}^{2}+2 \mathrm{QS}^{2}$.
11. $B Y \perp A C$ and $C Z \perp A B$ in $\triangle A B C$. Prove that $\mathrm{BC}^{2}=$ rect. $A B . B Z+$ rect. $A C . C Y$.
12. L, M, N are three given points, and $P Q$ a given st. line. Construct a rhombus $A B C D$, having its angular points A, C lying on the line $P Q$, and its three sides $A B, B C, C D$ (produced if necessary) passing through $\mathbf{L}, \mathbf{M}, \mathbf{N}$ respectively.
13. Through D the middle point of the side $B C$ of \triangle $A B C$ a st. line $X D Y$ is drawn cutting $A B$ at X and $A C$ produced through C at Y. Prove $\triangle A X Y>\triangle A B C$.
14. From the vertex A of $\triangle A B C$ draw a st. line terminated in $B C$ and equal to the average of $A B$ and $A C$.
15. $A B$ and $C D$ are two equal st. lines that are not in the same st. line. Find a point P such that $\triangle P A B \equiv \triangle$ PCD.

Show that, in general, two such points may be found.
16. EF drawn $\|$ to the diagonal AC of $\| \mathrm{gm}$ ABCD meets $A D, D C$, or those sides produced, in E, F respectively. Prove that $\triangle A B E=\triangle B C F$.
17. Construct a rect. equal to a given square and such that one side equals a given st. line.
18. Find a point in one of two given intersecting st. lines such that the perpendiculars drawn from it to both the given lines may cut off from the other a segment of given length.
19. In the diagram of $\mathrm{II}-9$, if BD, BE and DE be drawn, $\|$ gm FK $-\| g m ~ H G=2 \triangle E B D$.
20. $A B C$ is an isosceles \triangle in which \mathbf{C} is a rt. \angle, and the bisector of $\angle A$ meets $B C$ at D. Prove that $C D=$ $A B$ - $A C$.
21. Place a st. line of given length between two given st. lines so as to be $\|$ a given st. line.
22. Describe a $\Delta=$ a given $\| g m$ and such that its base $=a$ given st. line, and one \angle at the base $=$ a given \angle.
23. Construct a $\| g m$ equal and equiangular to a given $\| g m$, and such that one side is equal to a given st. line.
24. Construct a $\| g m$ equal and equiangular to a given $\| g m$, and such that its altitude is equal to a given st. line.
25. $A B C D$ is a quadrilateral. On BC as base construct a $\| g m$ equal in area to $A B C D$, and having one side along BA.
26. Squares $A B D E, A C F G$ have a common $\angle A$, and A, B, C are in the same st. line. $A H$ is drawn $\perp B G$ and produced to cut CE at K. Prove that EK $=$ KC.
27. Make a rhombus $A B C D$ in which $\angle A=100^{\circ}$. A circle described with centre A and radius $A B$ cuts $B C, C D$ at E, F respectively. Prove that $A E F$ is an equilateral \triangle.
28. A st. line $A B$ is bisected at C and divided into two unequal parts at D. Prove that $A D^{2}+D B^{2}=2 A D . D B+$ $4 C D^{2}$.
29. $A B C D$ is a quadrilateral in which $A B \| C D$. Prove that

$$
A C^{2}+B D^{2}=A D^{2}+B C^{2}+2 A B \cdot C D
$$

30. Trisect a given $\| g m$ by st. lines drawn through one of its angular points.
31. The base $B C$ of the $\triangle A B C$ is trisected at D, E. Prove that

$$
A B^{2}+A C^{2}=A D^{2}+A E^{2}+4 D E^{2}
$$

32. $A C B, A D B$ are two $r t .-\angle d \triangle s$ on the same side of the same hypotenuse $A B$, and $A X, B Y$ are $\perp C D$ produced. Prove that

$$
X C^{2}+C Y^{2}=X D^{2}+D Y^{2}
$$

33. $A B C$ is an isosceles \triangle, and $X Y$ is $\| B C$ and terminated in $A B, A C$. Prove

$$
B Y^{2}=C Y^{2}+B C \cdot X Y
$$

34. Any rect. $=$ half the rect. contained by the diagonals of the squares on two of its adjacent sides.
35. $A B C D$ is a $\| g m$ in which $B D=A B$. Prove that $B D^{2}+2 B^{2}=A C^{2}$.
36. A rect. BDEC is described on the side $B C$ of a $\triangle A B C$. Prove that

$$
A B^{2}+A E^{2}=A C^{2}+A D^{2}
$$

37. $B E, C D$ are squares described externally on the sides $A B, A C$ of a $\triangle A B C$. Prove that

$$
B C^{2}+E D^{2}=2\left(A B^{2}+A C^{2}\right)
$$

Note.-Draw EX, CY $\perp \mathrm{DA}, \mathrm{AB}$ respectively, and rotate $\triangle A B C$ to the position in which $A B$ coincides with $A E$.
38. $A B C$ is a \triangle in which $A X \perp B C$, and D is the middle point of $B C$. Prove that the difference of the squares on $A B, A C=2 B C . D X$.
39. $B C$ is the greatest and $A B$ the least side in $\triangle A B C$. D, E, F are the middle points of $B C, C A, A B$ respectively; and X, Y, Z are the feet of the \mathcal{L} from A, B, C to the opposite sides. Prove that CA.EY = AB.FZ + BC.DX.
40. $A B C D$ is a rect. in which E is any point in $B C$ and F is any point in $C D$. Prove that $A B C D=2 \triangle A E F+$ BE. DF.
41. A and B are two fixed points. Find the position of a point P such that $P A^{2}+P^{2}$ may be the least possible.
42. From a given point A draw three st. lines $A B, A C, A D$ respectively equal to three given st. lines, and such that B, C, D are in the same st. line and $B C=C D$.
43. Find the locus of a point such that the sum of the squares on its distances from two given points is constant.
44. Find the locus of a point such that the difference of the squares on its distances from two given points is constant.
45. $A B C D$ is a $\| g m, P$ any point in $B C$, and Q any point in $A P$. Prove that $\triangle B Q C=\triangle P Q D$.
46. $A B C D$ is a quadrilateral having $A B \| C D$, and $A B+$ $C D=B C$. Prove that the bisectors of $\angle S B$ and C intersect on AD.
47. $A B C$ is a \triangle in which $\angle A$ is a rt. \angle, and $A B>$ AC. Squares BCDE, CAHF, ABGK are described outwardly to the \triangle. Prove that

$$
D G^{2}-E F^{2}=3\left(A B^{2}-A C^{2}\right)
$$

48. In the hypotenuse $A B$ of a rt.- $-d \triangle A C B$, points D and E are taken such that $A D=A C$ and $B E=B C$. Prove that

$$
D E^{2}=2 B D . A E .
$$

49. A st. line is 8 cm . in length. Divide it into two parts such that the difference of the squares on the parts $=5 \mathrm{sq} . \mathrm{cm}$.
50. A and B are two given points and $C D$ is a given st. line. Find a point P in $C D$ such that the difference of the squares on PA and PB may be equal to a given rectangle.
51. $A D$ is a median of the acute $-\angle d \triangle A B C ; D X \perp$ $A B, D Y \perp A C$. Prore that

$$
B A \cdot A X+C A \cdot A Y=2 A D^{2}
$$

52. Find a point P within a given quadrilateral KLMN such that $\triangle P L M=\triangle P M N=\triangle P N K$.
53. $A B C$ is an isosceles \triangle in which $A B=A C . A P \| B C$. Prove that the difference between $P B^{2}$ and $P C^{2}$ equals 2 AP.BC.
54. If the sum of the squares on the diagonals of a quadrilateral be equal to the sum of the squares on the sides, the quadrilateral is a $\| \mathrm{gm}$.
55. D is a point in the side $B C$ of a $\triangle A B C$ such that $A B^{2}+A C^{2}=2 A D^{2}+2 B D^{2} . A X \perp B C$. Prove that either $B D=D C$, or $2 D X=B C$.
56. $A B C D$ is a $\| g m$, and P is a point such that $P A^{2}+$ $P C^{2}=P B^{2}+P D^{2}$. Prove that $A B D C$ is a rectangle.
57. A, B, C, D are four fixed points. Find the locus of a point P such that $P A^{2}+P B^{2}+P C^{2}+P D^{2}$ is constant.
58. A, B, C, D are four fixed points. Find the locus of a point P such that $P A^{2}+P B^{2}=P C^{2}+P D^{2}$.
59. D and E are taken in the base $B C$ of $\triangle A B C$ so that $B D=E C$. Through D, E st. lines are drawn $\| A B$ and $A C$ forming two $\| g m s$ with $A D, A E$ as diagonals. Prove the $\|$ gms equal in area.
60. A st. line EF drawn $\|$ to the diagonal AC of a $\| \mathrm{gm}$ $A B C D$ meets $A B$ in E and $B C$ in F. Prove that $B D$ bisects the quadrilateral DEBF.
61. $A B C$ is an isosceles $\mathrm{rt} .-\angle \mathrm{d} \triangle$ in which $A B=A C$. E is taken in $A B$ and D in $A C$ produced such that $E B=C D$. Prove that $\triangle E A D<\triangle A B C$.
62. L and M are respectively the middle points of the diagonals $B D$ and $A C$ of a quadrilateral $A B C D$. ML is produced to meet $A D$ at E. Prove that $\triangle E B C=$ half the quadrilateral.
63. $D E$ is || $B C$ the base of $\triangle A B C$, and meets $A B, A C$ at D, E respectively. $D E$ is produced to F making $D F=$ $B C$. Prove that $\triangle A E F=\triangle B D E$.
64. Construct the minimum \triangle which has a fixed vertical \angle, and its base passing through a fixed point situated between the arms of the \angle.
65. BE, BD are the bisectors of the interior and exterior $\angle S$ at B in the $\triangle A B C . A E \perp B E$ and $C D \perp B D$. $A E$ and $C D$ intersect at F. Prove that rect. $B E F D=\triangle A B C$.
66. $A B C D$ is a square. St. lines drawn through A and D make with BC produced in both directions the $\triangle E F G$. $E X \perp F G$. Prove that $B C(E X+F G)=2 \triangle E F G$.
67. The $\triangle A B C$ is $\mathrm{rt} .-\angle d$ at C, and the bisectors of $\angle s$ A and B meet at E. $E D \perp A B$. Prove that rect. $A D$. $D B$ $=\triangle A B C$.
68. Calculate the area of an equilateral \triangle of which the side is 2 inches.
69. If the side of an equilateral \triangle is a inches, show that its area is $\frac{a^{2} \sqrt{3}}{4}$ sq. in.
70. Calculate the side of an equilateral Δ of which the area is 10 sq . cm.
71. Construct a \triangle having two sides 4 cm . and 4.5 cm ., and the area 7 sq. cm.

Show that there are two solutions.
72. M is a point in the side $Q R$ of $\triangle P Q R$ such that $\mathbf{Q M}=2 \mathbf{M R}$. Prove that $\mathrm{PQ}^{2}+2 \mathrm{PR}^{2}=3 \mathrm{PM}^{2}+6 \mathrm{MR}^{2}$.
73. The rectangle contained by the two segments of a st. line is a maximum when the st. line is bisected. (Use Ex. 8 (1), §81.)
74. The sum of the squares on the two segments of a st. line is a minimum when the st. line is bisected. (Use Ex. 8 (2), §81.)

BOOK III

The Circle

89. A definition of a circle was given in §32, and from the explanation given in $\S 66$ we may take the following alternative definition of it:-

A circle is the locus of the points that lie at a fixed distance from a fixed point.

90 . As the centre of a circle is a point equally distant from the two ends of any chord of the circle, the three following statements follow at once from I-22, p. 78 :-

(a) The straight line drawn from the centre of a circle perpendicular to a chord bisects the chord.
(b) The straight line drawn from the centre of a circle to the middle point of a chord is perpendicular to the chord.
(c) The right bisector of a chord of a circle passes through the centre of the circle.

As an exercise the pupil should give independent proofs of theorems (a), (b) and (c).

Theorem 1

If from a point within a circle more than two equal straight lines are drawn to the circumference, that point is the centre.

Hypothesis.- \mathbf{P} is a point within the circle $A B C$ such that $\mathbf{P A}=\mathbf{P B}=\mathbf{P C}$.

To prove that P is the centre of the circle.
Construction. - Join AB, BC, and from \mathbf{P} draw $P D \perp A B$ and $P E \perp B C$.

Proof.- $\because \mathrm{PA}=\mathrm{PB}$,
$\therefore \mathrm{P}$ is in the right bisector of AB . ($\mathrm{I}-22, \mathrm{p} .78$.)
And \therefore PD produced is the locus of the centres of all circles through \mathbf{A} and \mathbf{B}.
\therefore the centre of the circle $\mathbf{A B C}$ is somewhere in PD.
In the same manner it may be shown that the centre of the circle $A B C$ is somewhere in PE.

But P is the only point common to PD and PE.
$\therefore P$ is the centre of circle $A B C$.

Constructions

Problem 1

To find the centre of a given circle.

Let DEF be the given circle.
Construction.-From any point D on the circumference draw two chords DE, DF.

Draw the right bisectors of $D E$, DF meeting at O.
O is the centre of circle DEF.
Join OF, OE, OM OD
Proof.- \because O is on the right bisector of DE,
$\therefore \mathrm{OE}=\mathrm{OD}$.
(I-22, p. 78.)
Similarly $O D=O F$.
$\because O E=O D=O F$,
$\therefore \mathrm{O}$ is the centre of the circle. (III-1, p. 142.)
91. Definitions.-If a circle passes through all the vertices of a rectilineal figure, it is said to be circumscribed about the figure.

Four points so situated that a circle
 may be described to pass through all of them are said to be concyclic.

If the four vertices of a quadrilateral are on the circumference of the same circle, it is said to be a cyclic quadrilateral.

The centre of a circle circumscribed about a triangle is called the circumcentre of the triangle.

Problem 2

To circumscribe a circle about a given triangle.

Let PQR be the given \triangle.
Construction.-Draw the right bisectors of PQ, PR meeting at $\mathbf{0}$.
$\because O$ is on the right bisector of $P Q$.
$\therefore \mathrm{OP}=\mathrm{OQ}$.
(I-22, p. 78.)

Similarly OP $=O R$.
$\therefore \mathrm{OP}=\mathrm{OQ}=\mathrm{OR}$,
And a circle described with centre O and radius $O P$ will pass through Q and R, and be circumscribed about the \triangle.

92.-Exercises

1. Through a given point within a circle draw a chord that is bisected at the given point.
2. Complete a circle of which an arc only is given.
3. Circumscribe a circle about a given square.
4. Circumscribe a circle about a given rectangle.
5. Describe a circle with a given centre to cut a given circle at the ends of a diameter.
6. The locus of the middle points of a system of $\|$ chords in a circle is a diameter of the circle.
7. If two circles cut each other, the st. line joining their centres bisects their common chord at rt. Ls.
8. If each of two equal st. lines has one extremity on one of two concentric circles, and the other extremity on the other circle, the st. lines subtend equal $\angle \mathrm{s}$ at the common centres.
9. A st. line cuts the outer of two concentric circles at \mathbf{E}, \mathbf{F}; and the inner at \mathbf{G}, \mathbf{H}. Prove that $\mathbf{E G}=\mathrm{FH}$.
10. A st. line cannot cut a circle at more than two points.
11. Two chords of a circle cannot bisect each other unless both are diameters.
12. A circle cannot be circumscribed about a \|gm unless the $\| g m$ is a rectangle.
13. A st. line which joins the middle points of two $\|$ chords in a circle is \perp to the chords.
14. If two circles cut each other, a st. line through a point of intersection, $\|$ to the line of centres and terminated in the circumferences, is double the line joining the centres.
15. If two circles cut each other, any two || st. lines through the points of intersection, and terminated by the circumferences, are equal to each other.
16. If two circles cut each other, any two. st. lines through one of the points of intersection, making equal $\angle s$ with the line of centres and terminated by the circumferences, are equal to each other.

Theorem 2

Chords that are equally distant from the centre of a circle are equal to each other.

Hypothesis.-ABC is a circle of which P is the centre and $A B, C D$ are two chords such that the $\perp \mathrm{s} P \mathrm{PE}, \mathrm{PF}$ from P to $A B, C D$ respectively are equal to each other.

To prove that $\mathrm{AB}=\mathbf{C D}$.
Construction.-Join AP, CP.
Proof. - Rotate \triangle PFC about point P making PF fall on PE.
$\because P F=P E$,
\therefore point F falls on point E.
$\because \angle P F C=\angle P E A$,
\therefore FC falls along EA.
hence, $\because P C$ is a radius and
\therefore C remains on the circumference,
C must fall on A.
\therefore FC coincides with EA,
and $\therefore F C=E A$,
But $C D=2 C F$,
and $A B=2 A E$,
$\therefore C D=A B$.
Theorem 3
In a circle any chord which does not pass through the centre is less than a diameter.

Hypothesis.-In the circle FGH, GH is a chord which does not pass through the centre and FK is a diameter. \mathbf{E} is the centre.

To prove that $\mathbf{G H}<\mathbf{F K}$.
Construction.-Join EG, EH.
Proof.- $\quad \because G E=E F$ and $E H=E K$,
$\therefore G E+E H=F K$.
\because GEH is a \triangle,
$\therefore \mathrm{GH}<\mathrm{GE}+\mathrm{EH}$.
(I-16, p. 59.)
And $\therefore \mathrm{GH}<\mathrm{FK}$.

Theorem 4

Of two chords in a circle the one which is nearer to the centre is greater than the one which is more remote from the centre.

Hypothesis.-P is the centre of a circle ABC, and $A B, C D$ are two chords such that PE, the distance of $A B$ from the centre, is less than PF, the distance of $C D$ from the centre.

To prove that $\mathrm{AB}>\mathrm{CD}$.
Construction.-Join PA, PC.
Proof.- $\quad \because$ PEA is a rt. \angle,

$$
\therefore A E^{2}+E P^{2}=A P^{2} . \quad(I I-13, \text { p. 122. })
$$

Similarly $\mathbf{C F}^{2}+\mathrm{FP}^{2}=\mathbf{C P}^{2}$.

$$
\text { But } \because \quad A P=C P \text {, }
$$

$$
\therefore \quad \mathbf{A P}^{2}=\mathbf{C P}^{2} .
$$

And $. . A E^{2}+E P^{2}=C F^{2}+F P^{2}$.
$\because \quad \mathrm{EP}<\mathrm{PF}$,
$\therefore \quad \mathrm{EP}^{2}<\mathrm{PF}^{2}$.
And $\therefore \quad \mathbf{A E}^{2}>\mathbf{C F}^{2}$,
$\therefore \quad A E>C F$.
But $\quad A B=2 A E$,
and $\quad C D=2 C F$,
$\therefore \quad A B>C D$.

Theorem 5

(Converse of Theorem 4)

If two chords of a circle are unequal, the greater is nearer to the centre than the less.

Hypothesis.-Chord GH $>$ chord KL, and PE, PF are respectively perpendiculars from the centre \mathbf{P} to GH, KL.

To prove that $\mathrm{PE}<\mathrm{PF}$.
Construction.-Join PG, PK.
Proof.- \because PEG is a rt. \angle,

$$
\mathrm{GE}^{2}+\mathrm{EP}^{2}=\mathrm{GP}^{2} .
$$

(II-13, p. 122.)
Similarly $\mathrm{PF}^{2}+\mathrm{FK}^{2}=\mathrm{PK}$.

$$
\therefore \mathrm{GE}^{2}+\mathrm{EP}^{2}=\mathrm{PF}^{2}+\mathrm{FK}^{2} .
$$

But $\quad \because G H=2 G E$ and $K L=2 K F$,
And also $\mathrm{GH}>\mathrm{KL}$,
$\therefore \mathrm{GE}>\mathrm{KF}$.
$\therefore \mathrm{GE}^{2}>\mathrm{KF}^{2}$.
Hence, $\quad \mathbf{E P}^{\mathbf{2}}<\mathbf{P F}^{2}$.
And $\quad \therefore \mathrm{EP}<\mathrm{PF}$.

93.-Exercises

1. If two chords of a circle are equal to each other, they are equally distant from the centre. (Converse of Theorem 2.)
2. A chord 6 cm . in length is placed in a circle of radius 4 cm . Calculate the distance of the chord from the centre.
3. A chord a inches long is placed in a circle of radius b inches. Find an algebraic expression for the distance of the chord from the centre.
4. In a circle of radius 5 cm . a chord is placed at a distance of 3 cm . from the centre. Calculate the length of the chord.
5. Through a given point within a circle draw the shortest chord.
6. In a circle of radius 4 cm ., a point \mathbf{P} is taken at the distance 3 cm . from the centre. Calculate the length of the shortest chord through P.
7. The length of a chord 2 cm . from the centre of a circle is 5.5 cm . Find the length of a chord 3 cm . from the centre. Verify your result by measurement.
8. In a circle of radius 5 cm ., two $\|$ chords of lengths 8 cm . and 6 cm . are placed. Find the distance between the chords. Show that there are two solutions.
9. $A C B$ is a diameter, and C the centre of a circle. D is any point on $A B$, or on $A B$ produced, and P is any point on the circumference except A and B. Show that DP is intermediate in magnitude between DA and DB.
10. O is the centre of a circle, and P is any point. If two st. lines be drawn through P, cutting the circle, and
making equal $\angle \mathrm{s}$ with PO, the chords intercepted on these lines by the circumference are equal to each other.
11. O is the centre of a circle, and P is any point. On two lines drawn through \mathbf{P} chords AB, CD are intercepted by the circumference. If the \angle made by $A B$ with $P O>$ \angle made by $C D$ with $P O$, the chord $A B<$ chord $C D$.
12. From any point in a circle which is not the centre equal st. lines can be drawn to the circumference only in pairs.
13. Find the locus of the middle points of chords of a fixed length in a circle.

14 K and L are two fixed points. Find a point P on a given circle such that $K P^{2}+L P^{2}$ may be the least possible.
15. Chords equally distant from the centre of a circle subtend equal $\angle \mathrm{s}$ at the centre.
16. The nearer to the centre of two chords of a circle subtends the greater \angle at the centre.
Answers :-2, 26.5 mm . nearly ; $4,8 \mathrm{~cm}$.; $6,5 \cdot 3$ c.m. nearly; $7,32 \mathrm{~mm}$. nearly ; $8,1 \mathrm{~cm}$. or 7 cm .

Angles in a Circle

Theorem 6

The angle which an arc of a circle subtends at the centre is double the angle which it subtends at any point on the remaining part of the circumference.

Hypothesis.-ABC is an are of a circle, D the centre, and E any point on the remaining part of the circumference.

To prove that $\angle \mathrm{ADC}=2 \angle \mathrm{AEC}$.
Construction. - Join ED and produce ED to any point F .

Proof.-
In both figures:-

$$
\text { In } \begin{aligned}
\triangle D A E, & \\
\because \quad D A & =D E \\
\therefore \angle D A E & =\angle D E A \quad(\mathrm{I}-3, \mathrm{p} .20) .
\end{aligned}
$$

$\because A D F$ is an exterior \angle of $\triangle A D E$,

$$
\begin{aligned}
\therefore \angle A D F= & \angle D A E+\angle D E A \quad(\mathrm{I}-10, \text { p. } 45 .) \\
& =2 \angle \text { DEA. }
\end{aligned}
$$

Similarly $\angle C D F=2 \angle D E C$.

$$
\text { In Fig. 1:- } \begin{aligned}
\angle A D F & =2 \angle D E A \\
\angle C D F & =2 \angle D E C, \\
\text { adding, } \angle A D C & =2(\angle D E A+\angle D E C) \\
& =2 \angle \mathrm{AEC} .
\end{aligned}
$$

In Fig. 2:-

$$
\begin{aligned}
& \angle C D F=2 \angle D E C, \\
& \angle A D F=2 \angle D E A,
\end{aligned}
$$

subtracting, $\angle A D C=2(\angle D E C-\angle D E A)$.

$$
=2 \angle A E C .
$$

94. Definitions.-The figure bounded by an arc of a circle and the chord which joins the ends of the are is called a segment of a circle.

$A B C, D E F$ are segments of circles.
A semi-circle is a particular case of a segment.
An are is called a major arc or a minor arc according as it is greater or less than half the circumference.

A segment is called a major segment or a minor segment according as the are of the segment is a major or a minor arc.
95. Definitions.-If the ends of a chord of a segment are joined to any point on the arc of the segment, the angle between the joining lines is called an angle in the segment.

$A B C$ is an \angle in the segment $A B C$, and $D E F$ is an \angle in the segment DEF. DGF is also an \angle in the segment DEF.
96. Definitions.-An angle which is greater than two right angles but less than four right angles is called a reflex angle.

A straight line starting from the position $O X$ and rotating in the direction opposite to that of the hands of a clock to the position OY, in either diagram, traces out the reflex angle xOY.

The figure bounded by two radii of a circle, and either of the arcs intercepted by the radii is called a sector of the circle.

ABC, DEFG are sectors of circles.
BAC is the \angle of the sector $A B C$, and the reflex \angle EDG is the \angle of the sector DEFG.

Theorem 7

Angles in the same segment of a circle are equal to each other.

Hypothesis.-ABC, ADC are two $\angle \mathrm{s}$ in the same segment ABDC.

To prove that $\angle \mathrm{ABC}=\angle \mathrm{ADC}$.
Construction.-Find E the centre of the circle. Join AE, EC.

Proof.-The $\angle A E C$ at the centre and the $\angle S$ ABC and ADC at the circumference are subtended by the same arc,

$$
\begin{aligned}
\therefore \angle \mathrm{ABC} & =\frac{1}{2} \angle \mathrm{AEC}, \\
\text { and } \angle \mathrm{ADC} & =\frac{1}{2} \angle \mathrm{AEC}, \\
\therefore \angle \mathrm{ABC} & =\angle \mathrm{ADC} .
\end{aligned}
$$

Alternative statement of the preceding theorem:-
The angle in a given segment is constant in magnitude for all positions of the vertex of the angle on the arc of the segment.

Theorem 8

(Converse of Theorem 7)
The locus of all points on one side of a straight line at which the straight line subtends equal angles is the arc of a segment of which the straight line is the chord.

Hypothesis.-AB is a st. line, and \mathbf{C} one of the points. Circumscribe a circle about the $\triangle \mathbf{A C B}$.

To prove that are $\mathbf{A C B}$ is the locus of all points on the same side of $A B$ at which $A B$ subtends $\angle \mathrm{s}$ equal to $\angle A C B$.

Construction.-Take any other point D on arc ACB, E any point within the segment, and F any point without the segment.

Join AD, DB, AE, EB, AF, FB.
Proof. -Then $\angle \mathrm{ADB}=\angle$ АСВ.
(III—7, p. 156.)
Produce $\mathbf{A E}$ to meet arc ACB at G. Join ba.
\because AEB is an exterior \angle of \triangle EGB,

$$
\begin{array}{rlr}
\therefore & \angle A E B>\angle A G B ; & (\text { I-10, Cor., p. } 45 .) \\
\text { but } & \angle A G B=\angle A C B, & \text { (II I-7, p. 156.) } \\
\therefore \angle A E B>\angle A C B ; &
\end{array}
$$

In a similar manner it may be shown that

$$
\angle \mathrm{AFB}<\angle \mathrm{ACB} ;
$$

and consequently arc $A C B$ is the locus.
97. Definition:-If the three angles of one triangle are respectively equal to the three angles of another triangle, the triangles are said to be similar. 111
98. There are two conditions implied when figures are said to be similar: not only are the angles of one respectively equal to the angles of the other, but a certain relationship must exist between the lengths of the sides of the two figures. For triangles, it will be shown in Book IV that, if one of these conditions is given, the other is also true. For figures of more than three sides this is not the case, and a definition including both conditions must be given. (See § 131.)

The symbol III may be used for the word similar, or for "is similar to."

99.-Exercises

$\not \subset 1$. Prove Theorem 6 when the arc is half the circumference.
2. Construct a circular are on a chord of 3 inches and having the apex 3 inches from the chord. Calculate the radius of the circle.
3. If the chord of an are is a inches, and the distance of its apex from the chord b inches, show that the radius of the circle is $\frac{a^{2}+4 b^{2}}{8 b}$.
\checkmark 4. Two chords $A O B, C O D$, intersect at a point O within the circle. Show that $A O C, B O D$ are similar $\triangle \mathrm{s}$. BOC, $A O D$ are also similar $\triangle \mathrm{s}$. Read the segments that contain the equal $\angle \mathrm{s}$.
\checkmark 5. $A B C$ is a \triangle inscribed in a circle, and the bisector of $\angle A$ meets the circumference again at D. Show that the st. line drawn from $\mathrm{D} \perp \mathrm{BC}$ is a diameter.
*6. A circle is divided into two segments by a chord equal to the radius. Show that the L in the major segment is 30° and that in the minor segment is 150°.
7. The locus of the vertices of the rt. $\angle \mathrm{s}$ of all $\mathrm{rt} .-\angle \mathrm{d}$ $\triangle \mathrm{s}$ on the same hypotenuse is a circle.
8. Prove Theorem 6 when the arc is greater than half the circumference.
\checkmark 9. PQR is a \triangle inscribed in a circle. The bisector of $\angle P$ cuts $Q R$ at D and meets the circle at E. Prove that PQD II| \triangle PER.'
10. DPQ and EPQ are two fixed circles, and D, P and E are in the same st. line. The bisector of $\angle D Q E$ meets $D E$ at F. Show that the locus of F is an arc of a circle. - 11. If the diagonals of a quadrilateral inscribed in a circle cut at rt. $\angle \mathrm{s}$, the \perp from their intersection on any side bisects the opposite side.
0 ~レ 12 . If the diagonals of a quadrilateral inscribed in a circle cut at $\mathrm{rt} . \angle \mathrm{s}$, the distance of the centre of the circle from any side is half the opposite side.

- 13. If the diagonals of a quadrilateral inscribed in a circle cut each other at rt. $\angle \mathrm{s}$, the $\angle \mathrm{s}$ which a pair of opposite sides of the quadrilateral subtend at the centre of the circle are supplementary.
- 14. XYZ, XYV are two equal circles, the centre of each being on the circumference of the other. $\mathbf{Z X V}$ is a st. line. Prove that $Y Z V$ is an equilateral \triangle.

15. EFGH is a quadrilateral inscribed in a circle and $E F=\mathbf{G H}$. Prove that $E G=F H$.

- 16. $A B C D$ is a quadrilateral inscribed in a circle; the diagonals $A C, B D$ cut at $E ; F$ the centre of the circle is within the quadrilateral. Prove that $\angle A F B+\angle C F D=$ $2 \angle A E B$.

Theorem 9

The angle in a semi-circle is a right angle.

Hypothesis.-ABC is an L in the semi-circle ABC, of which \mathbf{D} is the centre.

To prove that $\mathbf{A B C}$ is a rt. \angle.
Proof.-The $\angle A B C$ at the circumference, and the st. $\angle A D C$ at the centre, would each subtend the same arc, if the circle were complete.

$$
\begin{aligned}
\therefore \angle A B C & =\frac{1}{2} \angle A D C . \quad(\text { III }-6, \text { p. 152.) } \\
& =\text { a rt. } \angle .
\end{aligned}
$$

Theorem 10

(a) The angle in a major segment of a circle is acute.
(b) The angle in a minor segment of a circle is obtuse.

Fig!

Fig. 2
(a) Hypothesis.-ACB is an \angle in a major segment of a circle. (Fig. 1.)

To prove that $\angle \mathrm{ACB}$ is acute.
Construction.-Join A and B to the centre D.
Proof.- $\angle \mathbf{A C B}$ at the circumference and $\angle A D B$ at the centre stand on the same arc,

$$
\begin{equation*}
\therefore \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{ADB} . \tag{III—6,p.152.}
\end{equation*}
$$

But $\angle A D B$ is $<$ a st. \angle. $\therefore \angle A C B$ is acute.
(b) Hypothesis.- $\mathbf{A C B}$ is an \angle in a minor segment of a circle. (Fig. 2.)

To prove that $\angle \mathrm{ACB}$ is obtuse.
Construction.-Join A and в to the centre D.
Proof.-
$\angle \mathrm{ACB}=\frac{1}{2}$ the reflex $\angle \mathrm{ADB} . \quad$ (III-6, p. 152.)
$\therefore \angle \mathrm{ACB}$ is obtuse.

100.-Exercises

1. A circle described on the hypotenuse of a rt.- $\angle d \triangle$ as diameter passes through the vertex of the rt. L. (Converse of III-9).
2. Circles described on two sides of a \triangle as diameters, intersect on the third side, or the third side produced.

Where is the point of intersection when the circles are described on the equal sides of an isosceles \triangle ?
3. LM is a st. line and L a point from which it is required to draw a \perp to $L M$.

Construction.-With a con-
 venient point P as centre describe a circle to pass through L and cut LM at D. Join DP, and produce DP to cut the circle at E. Join LE.

Prove LE \perp LM.
4. EF, EG are diameters of two circles FEH, GEH respectively. Show that FHG is a st. line.
5. ST is a diameter of the circle SVT. A circle is described with centre \mathbf{S} and radius ST. Show that any chord of this latter circle drawn from T is bisected by the circle SVT.
6. Chords of a given circle are drawn through a given point. Find the locus of the middle points of the chords when the given point is (a) on the circumference, (b) within the circle, (c) without the circle.
7. F is any point on the arc of a semi-circle of which $D E$ is a diameter. The bisectors of $\angle S$ FED, FDE meet at P. Find the locus of P.
8. F is a point on the arc of a semi-circle of which $D E$ is a diameter. $F G \perp D E$. Show that the $\triangle s$ FDG, FEG, FDE are similar.
9. PQRS is a st. line and circles described on PR, QS as diameters cut at E. Prove that $\angle P E Q=\angle R E S$.

Theorem 11

If a quadrilateral is inscribed in a circle, its opposite angles are supplementary.

Hypothesis.-ABCD is a quadrilateral inscribed in a circle.

To prove that $\angle \mathrm{A}+\angle \mathrm{C}=2 \mathrm{rt} . \angle \mathrm{s}$.
Construction.-Find the centre E. Join BE, ED.
Proof.- $\angle B E D$ at the centre and $\angle C$ at the circumference are subtended by the same arc BAD.

$$
\therefore \angle \mathrm{C}=\frac{1}{2} \angle \mathrm{BED} .
$$

(III-6, p. 152.)
Similarly $\angle A=\frac{1}{2}$ refiex $\angle B E D$.
Hence $\angle \mathbf{A}+\angle \mathbf{C}=\frac{1}{2}$ the sum of the two $\angle \mathrm{s}$
BED at the centre $=\frac{1}{2}$ of $4 \mathrm{rt} . \angle \mathrm{s}$

$$
=2 \mathrm{rt} . \angle \mathrm{s} .
$$

Theorem 12

If the opposite angles of a quadrilateral are supplementary, its vertices are concyciic.

Hypothesis. - ABCD is a quadrilateral in which $\angle A+\angle C=2 \mathrm{rt} . \angle \mathrm{s}$.
To prove that A, B, C, D are on the circumference of a circle.

Construction. - Draw a circle through the three points A, B, D. On this circumference and on the side of $B D$ remote from A take a point E. Join BE, ED.

Proof.- \because ABED is a quadrilateral inscribed in a circle,

$$
\begin{align*}
\therefore \angle \mathrm{A}+\angle \mathrm{E} & =2 \mathrm{rt.} \quad \angle \mathrm{~s} ; \\
\text { but } \angle \mathrm{A}+\angle \mathrm{C} & =2 \mathrm{rt} . \angle \mathrm{s} . \tag{Нур.}\\
\therefore \angle \mathrm{A}+\angle \mathrm{E} & =\angle \mathrm{A}+\angle \mathrm{C}, \\
\text { and } . & \text { p. 163.) } \\
\therefore \angle \mathrm{E} & =\angle \mathrm{C} .
\end{align*}
$$

Consequently, as \mathbf{C}, \mathbf{E} are on the same side of $\mathbf{B D}$, the circle BADE passes through. C. (III-8, p. 157.)

101.-Exercises

1. If one side of an inscribed quadrilateral be produced, the exterior \angle thus formed at one vertex equals the interior \angle at the opposite vertex of the quadrilateral.

State and prove the converse.
2. From a point O without a circle two st. lines $O A B, O C D$ are drawn
 cutting the circumference at $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}$. Show that $\triangle s O B C, O A D$ are similar, and that $\triangle s O A C$, OBD are similar.
3. If a $\| g m$ be inscribed in a circle, the $\| g m$ is a rect.
4. A, D, C, E, B are five successive points on the circumference of a circle; and A, B are fixed. Show that the sum of the $\angle S A D C, C E B$ is the same for all positions of D, C, E.
5. A circle is circumscribed about an equilateral \triangle. Show that the \angle in each segment outside the \triangle is an \angle of 120°.
6. A scalene \triangle is inscribed in a circle. Show that the sum of the $\angle s$ in the three segments outside the \triangle is 360°.
7. A quadrilateral is inscribed in a circle. Show that the sum of the $\llcorner s$ in the four segments outside the quadrilateral is 540°.
8. P is a point on the diagonal KM of the \|gm KLMN. Circles are described about PKN and PLM. Show that LN passes through the other point of intersection of the circles. 9. A circle drawn through the middle points of the sides of a \triangle passes through the feet of the $\perp s$ from the vertices to the opposite sides.
10. If the opposite sides of a quadrilateral inscribed in a circle be produced to meet at L and M, and about the Δs
so formed outside the quadrilateral circles be described intersecting again at N, then L, M, N are in the same st. line.
\checkmark 11. In a $\triangle D E F, D X \perp E F$ and $E Y \perp D F$. Prove that $\angle X Y F=\angle D E F$.
12. PQRS, PQTV are circles and SPV, RQT are st. lines. Prove that SR\|VT.
13. The st. lines that bisect any \angle of a quadrilateral inscribed in a circle and the opposite exterior \angle meet on the circumference.
14. $X Y Z$ is a $\triangle ; Y D \perp Z X$, and $D E \perp X Y ; Z F \perp X Y$ and $F G \perp \mathbf{Z X}$. Show that $E G \| Y Z$.
15. EGD, FGD are two circles with centres H, K respectively. EGF is a st. line. EH, FK meet at P. Show that $\mathrm{H}, \mathrm{K}, \mathrm{D}, \mathrm{P}$ are concyclic.
16. KL, MN are two \| chords in a circle; KE, NF two \perp chords in the same circle. Show that LF \perp ME.
17. The bisectors of the $\angle s$ formed by producing the opposite sides of a quadrilateral inscribed in a circle are \perp to each other.
18. HKM, LKM are two circles, and HKL is a st. line. HM, LM cut the circles again at E, F respectively, and HF cuts LE at G. Show that a circle may be circumscribed about MEGF.
19. PQRS is a quadrilateral and the bisectors of the $\angle s$ P, Q; Q, R; R, S; S, P meet at four points. Show that a circle may be circumscribed about the quadrilateral thus formed.
20. $E F$ is the diameter of a semi-circle and G, H any two points on its arc. EH, FG cut at K and EG, FH cut at L. Show that $K L \perp E F$.
21. $D E$ is the diameter, O the centre and P any point on the arc of a semi-circle. PM $\perp D E$. Show that the bisector of \angle MPO passes through a fixed point.
22. PQR is a \triangle and $P D Q, P F Q$ are two circles cutting $P R$ at D, F and $Q R$ at E, G. Prove that $D E \| F G$.

Theorem 13

If two angles at the centre of a circle are equal to each other, they are subtended by equal arcs.

Hypothesis.-AKC, DKF are equal $\angle \mathrm{s}$ at the centre K of the circle ACD.

To prove that arc AEC equals arc DGF.
Construction. - Draw the diameter HKL bisecting $\angle C K D$.

Proof.-Suppose the circle to be folded along the diameter HKL, and the semi-circle HFL will coincide throughout with the semi-circle HAL.
$\because \angle L K D=\angle L K C$,
$\therefore \mathrm{KD}$ falls along KC ;
and $\therefore \mathrm{D}$ falls on C .
$\because \angle D K F=\angle C K A$,
$\therefore \mathrm{KF}$ falls along KA;
and $\therefore F$ falls on A.
\therefore the arc DGF coincides with the arc CEA.
\therefore arc DGF $=\operatorname{arc}$ CEA.

102. - Exercises

1. If two arcs of a circle be equal to each other, they subtend equal $\angle s$ at the centre. (Prove either by indirect demonstration, or by the construction and method used in III-13.)
2. If two $\angle s$ at the circumference of a circle be equal to each other, they are subtended by equal arcs.
3. If two arcs of a circle be equal to each other, they subtend equal $\angle s$ at the circumference.
4. In equal circles equal $\angle s$ at the centres (or circumferences) stand on equal arcs.
5. In equal circles equal arcs subtend equal $\angle s$ at the centres (or circumferences).
6. If two arcs of a circle (or of equal circles) be equal, they are cut off by equal chords.
7. If two chords of a circle be equal to each other, the major and minor arcs cut off by one are respectively equal to the major and minor arcs cut off by the other.
8. If two sectors of a circle have equal $\angle s$ at the centre, the sectors are congruent.
9. Bisect a given arc of a circle.
10. Parallel chords of a circle intercept equal arcs.

Show also that the converse is true.
1 11. If two equal circles cut one another, any st. line drawn through one of the points of intersection will meet the circles again at two points which are equally distant from the other point of intersection.
12. The bisectors of the opposite $\angle s$ of a quadrilateral inscribed in a circle meet the circumference at the ends of a diameter.
13. If two $\angle \mathrm{s}$ at the centre of a circle be supplementary, the sum of the arcs on which they stand is equal to half the circumference.
14. If any number of $\angle s$ be in a segment, their bisec tors all pass through one point.

Tangents and Chords

103. Definitions.-Any straight line which cuts a circle is called a secant.

A straight line which, however far it may be produced, has one point on the circumference of a circle, and all other points without the circle is called a tangent to the circle.

A tangent is said to touch the circle.
The common point of a tangent and circle, that is, the point where the tangent touches the circle, is called the point of contact.

$A B C$ is a secant drawn to the circle BCF from the point A.

DFFE is a tangent to the circle $\mathbf{B C F}$, touching the circle at the point of contact F.

If the secant $\mathbf{A B C}$ rotate about the point A until the two points \mathbf{B}, \mathbf{C} where it cuts the circle coincide at \mathbf{G}, the secant becomes a tangent having \mathbf{G} for the point of contact.

Theorem 14

The radius drawn to the point of contact of a tangent is perpendicular to the tangent.

Hypothesis.-ABF is a tangent to the circle CBD at the point B, O is the centre and $O B$ the radius drawn to the point of contact.

To prove that OB is $\perp \mathrm{AF}$.
Construction. - From any point A, except B, in AF draw a secant AE cutting the circle in \mathbf{C} and \mathbf{D}. Join OC, OD.

Proof.- $\because O D=O C$,
$\therefore \angle \mathrm{ODC}=\angle \mathrm{OCD}$.
(I-3, p. 20.)
But, st. $\angle \mathrm{EDC}=$ st. $\angle \mathrm{DCA}$,
$\therefore \angle \mathrm{ODE}=\angle \mathrm{OCA}$.
Rotate AE about A until it coincides with AF. As $A E$ rotates about A the $\angle \mathrm{s} O D E, O C A$ are continually equal to each other and finally $\angle O D E$ becomes $\angle O B F$ and \angle OCA becomes $\angle O B A$.

$$
\begin{aligned}
& \therefore \angle \mathrm{OBF}=\angle \mathrm{OBA} . \\
& \text { and } \therefore \quad \mathrm{OB} \perp \perp \mathrm{AF} .
\end{aligned}
$$

Cor. I.-Only one tangent can be drawn at any point on the circumference of a circle.
\because only one st. line can be \perp to the radius at that point.

Hence, also:-The straight line drawn perpendicular to a radius at the point where it meets the circumference is a tangent.

Cor. 2.-The perpendicular to a tangent at its point of contact passes through the centre of the circle.
\therefore only one st. line can be \perp to the tangent at that point.

Cor. 3.-The perpendicular from the centre on a tangent passes through the point of contact.
\because only one \perp can be drawn from a given external point to a given st. line.

104.-Exercises

1. Draw a tangent to a given circle from a given point on the circumference.
2. Describe a circle with its centre on a given st. line DE to pass through a given point P in DE and touch another given st. line DF.
3. Find the locus of the centres of all circles that touch a given st. line at a given point.
4. Describe a circle to pass through a given point and touch a given st. line at a given point.
5. Tangents at the ends of a diameter are \|.
6. C is any point on the tangent of which \dot{A} is the point of contact. The st. line from \mathbf{C} to the centre O cuts the circumference at B. $A D$ is $\perp O C$. Show that $B A$ bisects the \angle DAC.
7. Find the locus of the centres of all circles which touch two given \|| st. lines.
8. Draw a circle to touch two given $\|$ st. lines and pass through a given point between the $\| \mathrm{s}$. Show that two such circles may be drawn.
\checkmark 9. To a given circle draw two tangents, each of which is $\|$ to a given st. line.
9. To a given circle draw two tangents, each of which is \perp to a given st. line.
10. Give an alternative proof for III-14 by supposing the radius OB drawn to the point of contact of the tangent $A B F$ not \perp to $A F$ and drawing $O G \perp A F$.
11. Two tangents to a circle meet each other. Prove that they are equal to each other.
12. $E F$ is a diameter of a circle and $E G$ is a chord. $E H$ is a chord bisecting the \angle FEG. Prove that the tangent at H is \perp EG.
13. Draw a circle to touch a given st. line at a given point and have its centre on another given st. line.
14. Draw a tangent to a given circle making a given \angle with a given st. line.
Show that, in general, four such tangents may be drawn.

Construction

Problem 3

To draw a tangent to a given circle from a given point without the circle.

Let $A B C$ be the given circle, and P the given point.
It is required to draw a tangent from \mathbf{P} to the circle $A B C$.

Join \mathbf{P} to the centre \mathbf{O}. Bisect OP at D. With centre D and radius DO, describe a circle cutting the circle $A B C$ at A and C. Join PA, PC.

Either PA or PC is a tangent to the given circle.
Join OA.
OAP is an \angle in a semi-circle, and is \therefore a rt. L.
(III-9, p. 160.)
\therefore PA is a tangent. (III-14, Cor. 1, p. 171.)
In the same manner it may be shown that PC is a tangent.
105. Definition.-The straight line joining the points of contact of two tangents to a circle is called the chord of contact of the tangents.

$B C$ is the chord of contact of the tangent $A B, A C$.

106.-Exercises

1. Draw a circle of radius 4 cm . Take a point 9 cm . from the centre of the circle. From this point draw two tangents to the circle. Measure the length of each tangent and check your result by calculation.
2. Draw a circle of radius 5 cm . Mark a point 7 cm . from the centre. From this point draw two tangents to the circle and measure the \angle between the tangents. $\left(91^{\circ}\right.$ nearly.)
3. Draw a circle with a radius of 3 cm . Mark any point A on the circumference, and from this point draw a tangent $A B 4 \mathrm{~cm}$. long. Measure the distance of B from the centre and check your result.
4. Draw a circle with 43 mm . radius. Draw any st. line through the centre, and find a point, in this line, from which the tangent to the circle will be 5 cm . in
length. Measure the distance of the point from the centre and check your result.
5. Mark two points A and B 7 cm . apart. Draw two st. lines from A such that the length of the perpendicular from B to either of them is 4 cm .
6. Draw a circle of radius 6 cm . Mark a point P 4 cm . from the centre. Draw a chord through \mathbf{P} such that the perpendicular from the centre to the chord is 3 cm . in length. Measure the length of the chord and check your result by calculation.
7. Draw a circle of radius 36 mm . Mark any point. \mathbf{P} without the circle. Draw a st. line from \mathbf{P} such that the chord cut off on it by the circle is 4 cm . in length.
8. Draw a circle of radius 47 mm . Mark a point P 4 cm . from the centre. Draw two chords through \mathbf{P}, each of which is 65 mm . in length.
9. If from a point without a circle two tangents be drawn, the st. line drawn from this point to the centre bisects the chord of contact and cuts it at rt. Ls.
10. If a quadrilateral be circumscribed about a circle, the sum of one pair of opposite sides equals the sum of the other pair.
*11. Through a given point draw a st. line, such that the chord intercepted on the line by a given circle is equal to a given st. line.
\checkmark 12. If a $\| g m$ be circumscribed about a circle, the $\| g m$ is a rhombus.
11. If two tangents to a circle be $\|$, their chord of contact is a diameter.
\checkmark 14. If two || tangents to a circle be cut by a third tangent to the circle at A, B; show that $A B$ subtends a rt. L at the centre.

- 15. If a quadrilateral be circumscribed about a circle, the $\angle s$ subtended at the centre by a pair of opposite sides are supplementary.

16. To a given circle draw two tangents containing an \angle equal to a given \angle.
17. Find the locus of the points from which tangents drawn to a given circle are equal to a given st. line.
v^{18}. Find a point P in a given st. line, such that the tangent from P to a given circle is of given length. What is the condition that this is possible?

レ19. E is a point outside a circle the centre of which is D. In DE produced find a point F, such that the length of the tangent from F may be twice that of the tangent from E.
20. Two tangents, LM, LN are drawn to a circle; P is any point on the circumference outside the \triangle LMN. Prove that $\angle L M P+\angle L N P$ is constant.
21. Find the L between the tangents to a circle from a point whose distance from the centre is equal to a diameter.
22. Show that all equal chords of a given circle touch a fixed concentric circle.
23. From a given point without a circle draw a st. line such that the part intercepted by the circle subtends a rt. i at the centre.

Theorem 15
If at one end of a chord of a circle a tangent is drawn, each angle between the chord and the tangent is equal to the angle in the segment on the other side of the chord.

Hypothesis.-AB is a chord and EAD a tangent to the circle ABC.

To prove that $\angle \mathrm{DAB}=\angle \mathrm{ACB}$ and that $\angle \mathrm{EAB}=$ $\angle \mathrm{AHB}$.

Construction.-From A draw the diameter AOC. Join BC. Join any point H in the arc $A H B$ to A and B.

Proof.- \because ABC is an \angle in a semi-circle,
$\therefore A B C$ is a rt. \angle.
(III-9, p. 160.)

$$
\begin{aligned}
\therefore \angle \mathrm{BAC}+\angle \mathrm{BCA} & =\text { a rt. } \angle \quad(\mathrm{I}-10, \mathrm{p} .45 .) \\
& =\angle \mathrm{CAD} .(\mathrm{III}-14, \mathrm{p} .170 .)
\end{aligned}
$$

Take away the common $\angle B A C$,
$\therefore \angle B A D=\angle A C B$,
$=\angle$ in the segment ACB.
\because AHBC is an inscribed quadrilateral,

$$
\begin{aligned}
\therefore \angle \mathrm{H}+\angle \mathrm{C} & =\text { a st. } \angle \\
& =\text { st. } \angle \mathrm{DAE} .
\end{aligned}
$$

But $\angle C=\angle B A D$.
$\because \angle B A E=\angle H$
$=\angle$ in the segment AHB.

Theorem 15
 (Alternative Proof)

If at one end of a chord of a circle a tangent is drawn, each angle between the chord and the tangent is equal to the angle in the segment on the other side of the chord.

Hypothesis.-AB is a chord and EAD a tangent to the circle ABC.

To prove that $\angle \mathrm{DAB}=\angle \mathrm{ACB}$, and that $\angle \mathrm{EAB}=$ \angle AHB.

Construction.-In are AFC take any point F. Join CF, and draw the line FAG.

Proof.- \because AFCB is an inscribed quadrilateral,
$\therefore \angle F C B$ is supplementary to $\angle F A B$,
(III-11, p. 163.)
But, $\angle B A G$ is supplementary to $\angle F A B$.
$\therefore \angle \mathrm{BAG}=\angle \mathrm{FCB}$.
These $\angle \mathrm{s}$ are equal however near F is to A.
Let F move along the circumference towards A and finally coincide with \mathbf{A}.

The line FAG rotates about the point A and finally coincides with EAD. The $\angle G A B$ becomes $\angle D A B$ and \angle FCB becomes $\angle A C B$.

$$
\begin{aligned}
& \therefore \angle D A B=\angle A C B . \\
& \because \angle E A B \text { is supplementary to } \angle D A B, \\
& \text { and, } \angle A H B \text { is supplementary to } \angle A C B . \\
& \therefore \angle E A B=\angle A H B . \\
& \text { (III-11, p. 163.) }
\end{aligned}
$$

107.-Exercises

1. $A B$ is a chord of a circle and $A C$ is a diameter. $A D$ is \perp to the tangent at B. Show that $A B$ bisects the \angle DAC.
2. Two circles intersect at \mathbf{A} and B. Any point P on the circumference of one circle is joined to A and B and the joining lines are produced to meet the circumference of the other circle at C, D. Show that CD is $\|$ to the tangent at P .
3. LMN is a \triangle. Show how to draw the tangent at L to the circumscribed circle, without finding the centre of this circle.
4. If either of the $\angle s$ which a st. line, drawn through one end of a chord of a circle, makes with the chord is equal to the L in the segment on the other side of the chord, the st. line is a tangent. (Converse of III-15.)
5. The tangent at a point \mathbf{P} on a circle meets the chord $M N$ produced through N, at Q. Prove $\angle Q=\angle P N M$ \angle PMN.
6. A tangent drawn $\|$ to a chord of a circle bisects the arc cut off by the chord.
7. FGE, HKE are two circles, and FEH, GEK two st. lines. Prove that FG, KH meet at an \angle which $=$ the \angle between the tangents to the circles at \mathbf{E}.
8. \mathbf{G} is the middle point of an arc EGF of a circle. Show that G is equidistant from the chord EF and the tangent at E .
9. A st. line EF is trisected in G, H, and an equilateral $\triangle \mathrm{PGH}$ is described on GH. Show that the circle FGP touches EP.
10. D, E, F are respectively the points of contact of the sides MN, NL, LM of a \triangle circumscribed about a circle. $D G, E H$ are respectively $\perp E F$, DF. Prove $G H \| L M$.
11. The tangent at L to the circumscribed circle of \triangle LMN meets MN produced at D, and the internal and external bisectors of the $\angle \mathrm{MLN}$ meet MN at E, F respectively. Prove that D is the middle point of $E F$.
12. GEF, HEF are two circles and GEH is a st. line. The tangents at G, H meet at K. Show that K, G, F, H are concyclic.
13. Points P, Q are taken on two st. lines LM, LN so that $L P+L Q=$ a given st. line. Prove that the circle PLQ passes through a second fixed point.
.14. E, F, G, H are the points of contact of the sides $\mathrm{XY}, \mathrm{YZ}, \mathrm{ZV}, \mathrm{VX}$ of a quadrilateral circumscribed about a circle. If X, Y, Z, V are concyclic, show that $E G \perp$ FH.
14. XYZV is a quadrilateral inscribed in a circle, and $X Z, Y V$ cut at \mathbf{E}. Prove that the tangent at \mathbf{E} to the circle XEY is \|ZV.
15. F is the point of contact of a tangent $E F$ to the circle FGH. GK drawn \| EF meets FH, or FH produced,
at K. Show that the circle through $\mathbf{G}, \mathrm{K}, \mathrm{H}$ touches $\mathbf{F G}$ at G.
16. If from an external point P a tangent $P T$ and a secant PMN be drawn to a circle, the $\triangle s$ PTM, PNT are similar.
17. Use III-15 to prove that the tangents drawn to a circle from an external point are equal.
18. From an external point T a tangent $T R$ and a secant TQP through the centre are drawn to a circle. Prove that $\angle T+2 \angle T R Q=$ a rt. \angle.
19. The tangents OT, OS from a fixed point O to a given circle contain an \angle of x degrees. A third tangent is drawn to the circle at any point on the minor arc TS. Show that the portion of this tangent intercepted by OT and OS subtends an \angle of $\left(90-\frac{x}{2}\right)$ degrees at the centre.

Show that if the moving point be taken on the major arc TS, the L at the centre will be $\left(90+\frac{x}{2}\right)$ degrees.

Constructions

Problem 4

On a given straight line to construct a segment. containing an angle equal to a given angle.

Let $A B$ be the given st. line, and C the given \angle. Construction. -Make $\angle B A F=\angle \mathbf{C}$.
Draw AE \perp AF.
Draw the right bisector of $A B$ and produce it to cut $A E$ at E.
$\because E$ is in the right bisector of $\mathbf{A B}$, it is equidistant from A and B.
(I-22, p. 78.)
With centre \mathbf{E} and radius EA describe the arc ADB.
ADB is the required arc.
Proof.- \because AF is \perp AE,
$\therefore A F$ is a tangent to the circle ADB.
(III-14, Cor. 1, p. 171.)
$\because A B$ is a chord drawn from the point of contact of the tangent $A F$,
$\therefore \angle$ in segment ADB $=\angle$ FAB. $\quad($ III-15, p. 177.)
But, $\angle \mathrm{FAB}=\angle \mathrm{C}$,
$\therefore \angle$ in segment $\mathrm{ADB}=\angle \mathbf{C}$.

Problem 5

From a given circle to cut off a segment containing an angle equal to a given angle.

Let LMN be the given circle, and D the given \angle.
Construction. - Draw a tangent LE to the given circle.

At L make the $\angle E L N=\angle D$.
LMN is the required segment.
Proof.- \because LE is a tangent, and LN a chord, $\therefore \angle$ in segment LMN $=\angle$ NLE.
(III—15, p. 177.)

$$
\begin{align*}
\text { But, } & \angle \mathrm{NLEE}=\angle \mathrm{D} . \tag{Const.}\\
\therefore & \angle \mathrm{in} \text { segment } \mathrm{LMN}=\angle \mathrm{D} .
\end{align*}
$$

108.-Exercises

1. On st. lines each 4 cm . in length, describe segments containing $\angle \mathrm{s}$ of (a) 45°, (b) 150°, (c) 72°, (d) 116°. (Use the protractor for (c) and (d).)
2. On a given base construct an isosceles Δ with a given vertical L.
3. Divide a circle into two segments such that the \angle in one segment is (a) twice, (b) three times, (c) five times, (d) seven times the L in the other segment.
4. Construct two $\triangle s A B C_{1}, A B C_{2}$ on the same base $A B=4 \mathrm{~cm}$., having $\angle A C_{1} B=\angle A C_{2} B=50^{\circ}$, and $A C_{1}=$ $\mathrm{AC}_{2}=5 \mathrm{~cm}$.

Prove that $\angle A B C_{1}+\angle A B C_{2}=2 \mathrm{rt} . \angle \mathrm{s}$.
5. Construct a $\triangle L M N$ having $L M=5 \mathrm{~cm} ., \angle N=110^{\circ}$, and the median from $N=2 \mathrm{~cm}$.

Measure the greatest and least values the median from N could have, with $L M=5 \mathrm{~cm}$., and $\angle N=110^{\circ}$.
6. Construct a \triangle having its base 5 cm ., its vertical \angle 70°, and its altitude 3 cm .
7. Construct a $\triangle X Y Z$, having $X Y=4 \mathrm{~cm} ., \angle Z=40^{\circ}$, and $X Z+Z Y=10 \mathrm{~cm}$.
8. Construct a $\triangle X Y Z$, having $X Y=6 \mathrm{~cm} ., \angle Z=50^{\circ}$ and $X Z-Z Y=4 \mathrm{~cm}$.
9. Through a given point draw a st. line to cut off from a given circle a segment containing an L equal to a given $<$ 。

Problem 6

In a given circle to inscribe a triangle similar to a given triangle.

Let LMN be the given circle, and def the given \triangle. Construction.-Draw a radius OL of the circle.
Make \angle LON $=2 \angle \mathrm{E}$, and $\angle \mathrm{LOM}=\angle 2 \mathrm{~F}$.
Join LM, MN, NL.
LMN is the required \triangle.
Join OM, ON.
Proof.- $\because \angle$ LON at the centre and \angle LMN at the circumference stand on the same arc.

$$
\therefore \quad \angle L O N=2 \angle \text { LMN, (III-6, p. 152.) }
$$

But $\angle L O N=2 \angle E$,

$$
\therefore \angle \mathrm{LMN}=\angle \mathrm{E} .
$$

Similarly $\angle L N M=\angle F$.

$$
\because \angle L M N=\angle E \text {, }
$$

and $\angle L N M=\angle F$,

$$
\therefore \angle \mathrm{MLN}=\angle \mathrm{D} . \quad(\mathrm{I}-10, \mathrm{p} .45 .)
$$

and $\therefore \triangle$ LMN $\|\| \quad \triangle$ DEF.

109.-Exercises

1. Prove the following construction for inscribing a \triangle similar to a given $\triangle D E F$ in
 the circle LMN.

Draw a tangent HLG. Make $\angle \mathrm{GLN}=\angle \mathrm{E}$, and $\angle \mathrm{HLM}=$ $\angle \mathrm{F}$. Join MN.
2. Inscribe an equilateral \triangle in a given circle.
3. Inscribe a square in a given circle.
4. Inscribe a regular pentagon in a given circle. (Use protractor).
5. Inscribe a regular hexagon in a given circle. (Without protractor).
6. Inscribe a regular octagon in a given circle.
7. Two $\triangle \mathrm{s}$ LMN, DEF, each similar to a given \triangle GHK, are inscribed in a given circle. Prove $\triangle L M N \equiv \triangle D E F$.
8. In a given circle inscribe a Δ having its sides \| to the sides of a given \triangle.

Problem 7

To find the locus of the centres of circles touching two given intersecting straight lines.

Ket $A B C$, $D B E$ be the two st. lines.

Construction.-Draw the bisectors FBG, HBK of the $\angle S$ made by $A C$ and $D E$.

These bisectors make up the required locus.
Proof.-Take a point P in either FG or HK, and draw $P M \perp A C, P N \perp D E$.

In $\triangle S P M B, P N B,\left\{\begin{array}{l}\angle P B M=\angle P B N, \\ \angle P M B=\angle P N B, \\ \text { and } P B \text { is common, }\end{array}\right.$

$$
\therefore P M=P N . \quad(\mathrm{I}-14, \text { p. } 54 .)
$$

Hence, a circle described with centre P and radius PM will pass through N.
$\because \angle S$ at M, N are rt. $\angle S$,
$\therefore A C, D E$ are tangents to the circle.
(III-14, Cor. 1, p. 171.)
110. Definitions. - When a circle is within a triangle, and the three sides of the triangle are tangents to the circle, the circle is said to be inscribed in the triangle, and is called the inscribed circle of the triangle.

When a circle lies without a triangle, and touches one side and the other two sides produced, the circle is called an escribed circle of the triangle.

Problem 8

To inscribe a circle in a given triangle.

Let $A B C$ be the given \triangle.
Bisect $\angle S$ B and C and produce the bisectors to meet at I .

Draw $I D, I E, I F, \perp B C, C A, A B$ respectively.

$$
\text { In } \triangle S \text { BID, } B I F,\left\{\begin{array}{l}
\angle I B D=\angle I B F, \\
\angle I D B=\angle I F B, \\
I B \text { is common, }
\end{array}\right.
$$

$$
\begin{equation*}
\therefore \mathrm{ID}=\mathrm{IF} . \tag{I-14,p.54.}
\end{equation*}
$$

Similarly, ID = IE.
\therefore a circle described with centre I and radius ID will pass through E and F.

And \because the $\angle s$ at D, E and F are rt. $\angle s$,
\therefore the circle will touch $B C, C A$ and $A B$.
(III-14, Cor. 1, p. 171.)

Problem 9

To draw an escribed circle of a given triangle.

Let $A B C$ be a given \triangle having $A B, A C$ produced to G, H .

It is required to describe a circle touching the side $\mathbf{B C}$ and the two sides $\mathbf{A B}, \mathbf{A C}$ produced.

Bisect $\angle \mathrm{S}$ GBC, $\mathbf{H C B}$ and let the bisectors meet at L. Draw \perp s LP, LQ, LR to $\mathbf{B C}, \mathbf{C H}, \mathrm{BG}$ respectively.

In $\triangle s L B P, L B R,\left\{\begin{array}{c}\angle P B L=\angle R B L, \\ \angle L P B=\angle L R B, \\ L B \text { is common, }\end{array}\right.$

$$
\therefore \mathrm{LP}=\mathrm{LR} \text {. }
$$

(I-14, p. 54.)
Similarly LP = LQ.
\therefore a circle described with centre L and radius LP will pass through R and Q.
\because the $\angle \mathrm{s}$ at P, Q and R are $\mathrm{rt} . \angle \mathrm{s}$,
\therefore the circle will touch $B C$, and $C A$ and $A B$ produced.

Problem 10

To describe a circle to touch three given straight lines.
(a) If two of the lines are $\|$ to each other, and the third cuts them, two circles may be drawn to touch the three lines.

Let ABC, DEF and GBEH be the three lines of which AC || DF.

Bisect $\angle \mathrm{S} A B E, B E D$, and produce the bisectors to meet at I.

Draw IL, IM, IN \perp DE, EB, BA respectively.
As in problems 8 and 9 it may be shown that a circle described with centre 1 and radius IL will touch $D E, E B$ and BA.

Similarly, a circle may be described on the other side of $\mathbf{B E}$ to touch the three given st. lines.
(b) If the lines intersect each other forming a Δ, four circles may be drawn to touch the three lines.

Let $A B C$ be the \triangle formed by the lines.

Draw the inscribed circle and the three escribed circles of $\triangle A B C$.

These four circles touch the three given st. lines.

111.-Exercises

1. Make an $\angle Y X Z=45^{\circ}$. Find a point P such that its distance from $X Y$ is 3 cm ., and its distance from $\mathbf{X Z}$ is 4 cm .
2. Make an $\angle Y X Z=60^{\circ}$. Find a point P such that its distance from $X Y$ is 4 cm ., and its distance from $X Z$ is 5 cm .
3. The bisectors of the $\angle \mathrm{s}$ of a \triangle are concurrent.
4. The bisectors of the exterior $\angle \mathrm{s}$ at two vertices of a \triangle and the bisector of the interior \angle at the third vertex are concurrent.
5. If a, b, c represent the numerical measures of the sides $B C, C A, A B$ respectively of $\triangle A B C$, and $\varepsilon=\frac{1}{2}$ $(a+b+c)$, .
(a) $\mathrm{AF}=s-a, \mathrm{BD}=s-b, \mathrm{CE}=s-c$, when D, E and F are the points of contact of $B C, C A, A B$ with the inscribed circle. (Diagram of Problem 8.)
(b) $\mathrm{AR}=s, \mathrm{BP}=s-c, \mathrm{CP}=s-b$, where R and P are the points of contact of $A B$ produced and of $B C$ with an escribed circle. (Diagram of Problem 9.)
(c) If r be the radius of the inscribed circle, $r s=$ the area of $\triangle A B C$.
(d) If r_{1} be the radius of the escribed circle touching $\mathrm{BC}, r_{1}(s-a)=$ the area of $\triangle \mathrm{ABC}$.
6. If the base and vertical \angle of a \triangle be given, find the locus of the inscribed centre.
7. If the base and vertical L of a \triangle be given, find the loci of the escribed centres.
8. L, \mathbf{M}, \mathbf{N} are the centres of the escribed circles of $\triangle P Q R$. Show that the sides of $\triangle L M N$ pass through the vertices of $\triangle P Q R$.
9. If the centres of the escribed circles be joined, and the points of contact of the inscribed circle with the sides be joined, the Δs thus formed are similar.
10. Construct a \triangle having given the base, the vertical \angle and the radius of the inscribed circle.
11. Describe a circle cutting off three equal chords of given length from the sides of a given \triangle.
12. An escribed circle of $\triangle A B C$ touches $B C$ at D and also touches $A B$ and $A C$ produced. The inscribed circle touches $B C$ at E. Show that $D E$ equals the difference of $A B$ and $A C$.
13. Circumscribe a square about a given circle.
14. Inscribe a circle in a given square.
15. Circumscribe a circle about a given square.

Problem 11

About a given circle to circumscribe a triangle similar to a given triangle.

Let $A B C$ be the given circle and $D E F$ the given \triangle. Construction.-Produce EF to G and \mathbf{H}.
Draw any radius OA of the circle, and at O make $\angle A O B=\angle D F H$, and $\angle A O C=\angle D E G ;$ and produce the arms to cut the circle at \mathbf{B}, \mathbf{C}.

At $\mathbf{A}, \mathrm{B}, \mathrm{C}$ draw tangents to the circle meeting at K, L and M.

KLM is the required \triangle.
Proof.- $\because \angle \mathrm{s}$ MAO and MBO in the quadrilateral MBOA are rt. $\angle \mathrm{s}$,
$\therefore \angle \mathrm{M}+\angle \mathrm{AOB}=2 \mathrm{rt} . \angle \mathrm{s}$.
$=\angle D F E+\angle D F H$.
But, $\angle A O B=\angle D F H$,

$$
\therefore \angle \mathrm{M}=\angle \mathrm{DFE} .
$$

Similarly, $\angle L=\angle D E F$.

$$
\begin{aligned}
& \therefore \angle L+\angle M=\angle D E F+\angle D F E, \\
& \text { and } \therefore \angle \mathrm{K}=\angle \mathrm{EDF} . \quad \text { (I-10, p. 45.) } \\
& \therefore \triangle \text { KLM }|\mid \triangle \text { DEF. }
\end{aligned}
$$

112.-Exercises

1. About a given circle circumscribe an equilateral \triangle.
2. If two similar Δs be circumscribed about the same circle, the Δs are congruent.
3. Describe a \triangle LMN similar to a given \triangle and such that a given circle is touched by MN and by LM and LN produced.

Problem 12

To inscribe a circle in a given regular polygon.

Let $A B, B C, C D, D E$ be four consecutive sides of a given regular polygon.

It is required to inscribe a circle in the polygon.
Bisect $\angle S B C D, C D E$ and produce the bisectors to meet at O. Join OB. From O draw $\perp \mathrm{s} O F, \mathrm{OG}, \mathrm{OH}$, $O K$ to $A B, B C, C D, D E$ respectively.
In \triangle S OCB $, O C D,\left\{\begin{array}{l}B C=C D, \\ C O \text { is common, } \\ \angle O C B=\angle O C D,\end{array}\right.$
$\therefore \angle \mathrm{OBC}=\angle \mathrm{ODC}$.
But $\angle O D C=\frac{1}{2} \angle C D E$ and $\angle A B C=\angle C D E$,
$\therefore \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{ABC}$.

In the same manner it may be shown that if O be joined to all the vertices of the polygon the joining lines will bisect the $\angle \mathrm{s}$ at the vertices.

$$
\text { In } \triangle \mathrm{S} O C G, \mathrm{OCH},\left\{\begin{array}{l}
\angle \mathrm{OCG}=\angle \mathrm{OCH} \\
\angle \mathrm{OGC}=\angle \mathrm{OHC}, \\
\mathrm{OC} \text { is common }
\end{array}\right.
$$

$$
\therefore O G=O H . \quad(\mathrm{I}-14, \text { p. } 54 .)
$$

In the same manner it may be shown that the $\perp \mathrm{s}$ from O to all of the sides are equal to each other, and as the $\angle s$ at F, G, H, etc., are $r t . \angle s$, a circle described with O as centre and $O F$ as radius will touch each of the sides and be inscribed in the polygon.

I. $P+Q$ are centres of two evicles lonchinig at Prove PQ passes through A
suppose of dab not p ass though A but curs thieincles at B. C. join PA.QA.

Contact of Circles

113. Definition.-If two circles meet each other at one and only one point, they are said to touch each other at that point.

Theorem 16

If two circles touch each other, the straight line joining their centres passes through the point of contact.

Let two circles DEF, GEF, of which the centres are H, K respectively, cut each other at \mathbf{E}, \mathbf{F}.

Join HE, HF, KE, KF.
\because HEF, KEF are isosceles $\triangle \mathrm{s}$ on the same base EF,
\therefore HK is an axis of symmetry of the quadrilateral HEKF and E, F are corresponding points. (I-5, p. 24.)
\therefore HK bisects EF.

Let the circle GEF move so that the points E, F approach each other and finally coincide.
$\because \mathrm{L}$ is the middle point of EF ,
\therefore L coincides with E and F, the circles touch at L , and the st. line HK passes through the point of contact L.

Cor. I .-The straight line drawn from the point of contact perpendicular to the line of centres is a common tangent to the two circles.

Definition.-If two circles which touch each other are on opposite sides of the common tangent at their point of contact, and consequently each circle outside the other, they are said to touch externally ; if they are on the same side of the common tangent, and consequently one within the other, they are said to touch internally.

Cor. 2.-If two circles touch externally, the distance between their centres is equal to the sum of their radii ; and conversely.

Cor. 3.-If two circles touch internally, the distance between their centres is equal to the difference of their radii; and conversely.

114.-Exercises

1. If the st. line joining the centres of two circles pass through a point common to the two circumferences, the circles touch each other at that point.
2. Find the locus of the centres of all circles which touch a given circle at a given point.
3. Draw three circles with radii 23,32 and 43 mm . each of which touches the other two externally.
-4. Draw a circle of radius 9 cm ., and within it draw two circles of radii 3 cm . and 4 cm ., to touch each other externally, and each of which touches the first circle internally.
4. Draw a circle of radius 85 mm ., and within it draw two circles of radii 25 mm . and 35 mm ., to touch each other externally, and each of which touches the first circle internally.
5. Draw a $\triangle A B C$ with sides 5,12 and 13 cm . Draw three circles, with centres A, B and C respectively, each of which touches the other two externally.
6. Construct the $\triangle \mathrm{ABC}$, having $a=5 \mathrm{~cm} ., b=4 \mathrm{~cm}$., and $c=3 \mathrm{~cm}$. Draw three circles with centres A, B and C respectively, such that the circles with centres \mathbf{B} and \mathbf{C} touch externally, and each touches the circle with centre A internally.
7. Mark two points \mathbf{P} and $\mathbf{Q} 10 \mathrm{~cm}$. apart. With centres P and Q, and radii 4 cm . and 3 cm ., describe two circles. Draw a circle of radius 5 cm . which touches each of the first two circles externally. Find the distance of the centre from PQ.

- 9. Describe a circle to pass through a given point, and touch a given circle at a given puint.

10. If two circles touch each other, any st. line drawn through the point of contact will cut off segments that contain equal $\angle \mathrm{s}$.
11. Two circles $A C O$, BDO touch, and through O, st. lines $A O B, C O D$ are drawn. Show that $A C \| B D$.
\checkmark 12. If two $\|$ diameters be drawn in two circles which touch one another, the point of contact and an extremity of each diameter are in the same st. line.
12. Describe a circle which shall touch a given circle, have its centre in a given st. line, and pass through a given point in the st. line.
13. Describe three circles having their centres at three given points and touching each other in pairs. Show that there are four solutions.
14. Two circles touch a given st. line at two given points, and also touch each other; find the locus of therr point of contact.
15. If through the point of contact of two touching circles a st. line be drawn cutting the circles again at two points, the radii drawn to these points are $\|$.

- 17. In a given semi-circle inscribe a circle having its radius equal to a given st. line.
- 18. Inscribe a circle in a given sector.

19. A circle of 2.5 cm . radius has its centre at a distance of 5 cm . from a given st. line. Describe four circles each of 4 cm . radius to touch both the circle and the st. line.
20. If DE be drawn $\|$ to the base $\mathbf{G H}$ of a \triangle FGH to meet FG, FH at D, E respectively, the circles described about the $\triangle \mathrm{s} F \mathrm{FGH}, \mathrm{FDE}$ touch each other at F .
21. Two circles with centres P, Q touch externally and a third circle is drawn, with centre R , which both the first circles touch internally. Prove that the perimeter of $\triangle P Q R=$ the diameter of the circle with centre R.

Miscellaneous Exercises

1. If two chords of a circle intersect at rt. $\angle \mathrm{s}$, the sum of the squares on their segments is equal to the square on the diameter.
2. Find a point in the circumference of a given circle, the sum of the squares on whose distances from two given points may be a maximum or minimum.
3. $A O B, C O D$ are chords cutting at a point O within the circle. Show that $\angle B O C$ equals an \angle at the circumference, subtended by an are which is equal to the sum of the arcs subtending $\angle \mathrm{s} B O C, A O D$.
4. Two chords $A B, C D$ intersect at a point O without a circle. Show that $\angle A O C$ equals an \angle at the circumference subtended by an arc which is equal to the difference of the two arcs $B D, A C$ intercepted between OBA and ODC.
5. Two circles touch externally at E , and are cut by a st. line at A, B, C, D. Show that \angle AED is supplementary to $\angle B E C$.
6. If at a point of intersection of two circles the tangents drawn to the circles be at rt. $\angle \mathrm{s}$, the st. line joining the points where these tangents meet the circles again, passes through the other point of intersection of the circles.
7. Find a point within a given Δ at which the three sides subtend equal $\angle \mathrm{s}$. When is the solution possible?
8. Through one of the points of intersection of two given circles draw the greatest possible st. line terminated in the two circumferences.
9. Through one of the points of intersection of two given circles draw a st. line terminated in the two circumferences and equal to a given st. line.
10. Describe a circle of given radius to touch two given circles.
11. DEF is a st. line cutting $B C, C A, A B$, the sides of $\triangle A B C$, at D, E, F respectively. Show that the circles circumscribed about the $\triangle s A E F, B F D, C D E, A B C$, all pass through one point.
12. Two circles touch each other at A and BAC is drawn terminated in the circumferences at B, C. Show that the tangents at B, C are \|.
13. D, E, F are any points on the sides $B C, C A, A B$ of $\triangle A B C$. Show that the circles circumscribed about the $\triangle \mathrm{S}$ AFE, BDF, CED pass through a common point.
14. Two arcs stand on a common chord $A B$. P is any point on one arc and PA, PB cut the other are at C, D. Show that the length of $C D$ is constant.
15. $A C B$ is an \angle in a segment. The tangent at A is $\|$ to the bisector of $\angle A C B$ and meets $B C$ produced at D. Show that $A D=A B$.
16. Describe a circle of given radius to touch two given intersecting st. lines.
17. In the $\triangle A B C$, the bisector of $\angle A$ meets $B C$ at D. O is the centre of a circle which touches $A B$ at A and passes through D. Prove that $O D \perp A C$.
18. The st. line $B C$ of given length moves so that B and C are respectively on two given fixed st. lines $A X$ and $A Y$. Prove that the circumcentre of $\triangle A B C$ lies on the circumference of a circle with centre A.
19. $A B C$ is an isosceles \triangle in which $A B=A C$. D is any point in $B C$. Show that the centre of the circle $A B D$ is the same distance from $A B$ that the centre of the circle $A C D$ is from $A C$.
20. E, F, G, H are the points of contact of the sides of a quadrilateral ABCD circumscribed about a circle. Prove that the difference of two opposite $\angle \mathrm{s}$ of $\mathrm{ABCD}=$ twice the difference of two adjacent $\angle \mathrm{s}$ of EFGH .
21. $A B C$ is a \triangle in which $A X, B Y$ are $\perp B C, C A$ respectively. Prove that the tangent at X to the circle CXY passes through the middle point of $\mathbf{A B}$; and the tangent at \mathbf{C} to the same circle \|AB.
22. The inscribed circle of $\triangle A B C$ touches $B C$ at D. Prove that the circles inscribed in $\triangle s$ BAD, CAD touch each other.
23. O is the circumcentre of the $\triangle A B C$, and $A O, B O$, CO produced meet the circumference in D, E, F. Prove $\triangle D E F \equiv \triangle A B C$.
24. $A B C$ is a rt.- $\angle d \triangle, A$ being the rt. \angle. Prove that $B C=$ the difference between the radius of the inscribed circle and the radius of the circle which touches BC and the other two sides produced.
25. Describe two circles to touch two given circles, the point of contact with one of these given circles being given.
26. Circles through two fixed points A and B intersect fixed st. lines, which terminate at A and are equally inclined to $A B$ on opposite sides of it, in the points L, M. Prove that $A L+A M$ is constant.
27. $A B$ is a diameter and $C D$ a chord of a given circle. AX and BY are both $\perp \mathrm{CD}$. Prove that $\mathrm{CX}=\mathrm{DY}$.
28. Through a fixed point A on a circle any chord $A B$ is drawn and produced to C making $B C=A B$. Find the locus of \mathbf{C}.
29. Construct a \triangle having given the base, the vertical \angle, and the length of the median drawn from one end of the base.
30. If the sum of one pair of opposite sides of a quadrilateral is equal to the sum of the other pair, a circle may be inscribed in the quadrilateral.
31. Construct a \triangle having given the vertical \angle, the base, and the point where the bisector of the vertical \angle cuts the base.
32. From the ends of a diameter $B C$ of a circle, \| chords BE, CF are drawn, meeting the circle again in \mathbf{E} and F. Prove that EF is a diameter.
33. ACFB and ADEB are fixed circles; CAD, CBE and DBF are st. lines. Prove that CF and DE meet at a constant L.
34. $\mathbf{A}, \mathrm{B}, \mathbf{C}, \mathrm{D}$ are four points in order on the circumference of a circle, and the $\operatorname{arc} A B=$ the arc $C D$. If $A C$ and $B D$ cut at E, the chord which bisects $\angle S A E B$, CED is itself bisected at E.
35. $A B, A C$ are tangents at B, C to a circle, and D is the middle point of the minor arc BC. Prove that D is the centre of the inscribed circle of the $\triangle A B C$.
36. Construct an equilateral \triangle whose side is of given length so that its vertices may be on the sides of a given equilateral \triangle.
37. D, E, F are the points of contact of the sides $B C$, $C A, A B$ of a $\triangle A B C$ with its inscribed circle. $F K$ is $\perp D E$, and $E H$ is \perp FD. Prove $H K \| B C$.
38. Tangents are drawn from a given point to a system of concentric circles. Find the locus of their points of contact.
39. From a given point A without a given circle draw a secant $A B C$ such that $A B=B C$.
40. EF is a fixed chord of a given circle, P any point on its circumference. EM $\perp F P$ and $F N \perp E P$. Find the locus of the middle point of MN.
41. K is the middle point of a chord $P Q$ in a circle of which \mathbf{O} is the centre. LKM is a chord. Tangents at L, M meet PQ produced at \mathbf{G}, \mathbf{H} respectively. Prove $\triangle \mathrm{OGL} \equiv \triangle \mathrm{OHM}$.
42. LM is the diameter of the semi-circle LNM in which $\operatorname{arc} L N>\operatorname{arc} N M$, and ND \perp LM. A circle inscribed in the figure bounded by ND, DM and the arc NM touches DM at E. Show that $L E=L N$; and hence give a construction for inscribing the circle.
43. GK is a diameter and O the centre of a circle. A tangent $K D=K O$. From O a $\perp O E$ is drawn to $G D$. KE is joined and produced to meet the circumference in F. Prove that FE $=$ FG.
44. LPM and LQRM are two given segments on the same chord LM. If P moves on the arc LPM such that LQP and MRP are st. lines, the length of QR is constant.
45. EFP, EFRS are two circles and PFR, PES are st. lines. O is the centre of the circle EFP. Prove that $P O \perp R S$.
46. E, F are fixed points on the circles EPD, FQD, and $P D Q$ is a variable st. line. PE, QF intersect at R. Find the locus of R.
47. The circle PEGF passes through the centre \mathbf{G} of the circle $Q E F$, and P, E, Q are in a st. line. Prove that $P Q=P F$.
48. Through two points on a diameter equally distant from the centre of a circle, $\|$ chords are drawn, show that
these chords are the opposite sides of a rectangle inscribed in the circle.
49. If through the points of intersection of two circles any two || st. lines be drawn and the ends joined towards the same parts, the figure so formed is a $\| g m$.
50. Any two || tangents are drawn, one to each of two given circles; a st. line is drawn through the points of contact, show that the tangents to the circles at the other points of intersection are also \|.
51. The hypotenuse of a rt.- $\angle d \triangle$ is fixed and the other two sides are moveable, find the locus of the point of intersection of the bisectors of the acute $\angle s$ of the \triangle.
52. From the middle point L of the arc MLN of a circle two chords are drawn cutting the chord MN and the circumference. Show that the four points of intersection are concyclic.
53. If from one end of a diameter of a circle, two st. lines be drawn to the tangent at the other end of the diameter, the four points of intersection-with the circle, and with the tangent-are concyclic.
54. $A B C$ is a diameter of a circle, B being the centre. $A D$ is a chord, and $B E \perp$ to $A C$ cutting the chord at E. Show that BCDE is a cyclic quadrilateral ; and that the circles described about $A B E$ and the quadrilateral $B C D E$, are equal.
55. Two circles intersect at A and B. From A two chords $A C$ and $A E$ are drawn one in each circle making equal $\angle s$ with $A B$, st. lines $C B D$ and $E B F$ are drawn to cut the circles at D and F, prove C, F, D, E concyclic; also prove $\triangle \mathrm{SFCA}$ and DEA similar.
56. $A B C$ is a \triangle and any circle is drawn passing through B, and cutting $B C$ at D and $A B$ at F; another circle is
drawn passing through \mathbf{C} and \mathbf{D} and intersecting the former circle at E and AC at G. Prove A, F, E, G are concyclic.
57. If two equal circles intersect, the four tangents at the points of intersection form a rhombus.
58. If two equal circles cut, and at \mathbf{G}, one of the points of intersection, chords be drawn in each circle, to touch the other circle, these chords are equal.
59. Two equal circles, centres \mathbf{O} and P , touch externally at $S, S Q$ and $S R$ are drawn \perp to each other cutting the circumferences at \mathbf{Q} and \mathbf{R} respectively. Show that $\mathbf{O}, \mathbf{P}, \mathbf{Q}$ and \mathbf{R} are the vertices of a $\| \mathrm{gm}$.
60. AB, CD, and EF are \| chords in a circle, prove that the $\triangle \mathrm{S} A C E$ and $B D F$ are congruent ; also $A C F$ and $B D E ;$ also $A D F$ and $B C E$.
61. On the circumference of a circle are two fixed points which are joined to a moveable point either inside or outside the circle. If these lines intercept a constant arc, find the locus of the point.
62. KL is any chord of a circle and \mathbf{H} the middle point of one of the arcs, any st. line HED cuts KL at E and the circumference at D . Show that HL is a tangent to the circle about LED, and HK a tangent to that about KED.
63. Two circles intersect at E and F. From any point P on the circumference of one of them st. lines PE and PF are drawn to meet the circumference of the other at Q and R, show that the length of the straight line $Q R$ is constant. [Take \mathbf{P} both on the major arc and on the minor arc.]
64. HKL is a \triangle having $\angle H$ acute; on KL as diameter a circle, centre O , is described cutting HK at D and HL at E. Show that $\angle O D E=\angle H$.
65. P is a point external to two concentric circles whose centre is $O, P Q$ is a tangent to the outer circle and PR and PS are tangents to the inner circle. Show that L RQS is bisected by QO.
66. If the extremities of two $\|$ diameters in two circles be joined by a st. line which cuts the circles, the tangents at the points of intersection are \|. Show. that this is true for the four cases that arise.
67. KLMN is a $\| g m$, through L and N two $\|$ st. lines are drawn cutting $M N$ at F and $K L$ at E, show that the circles described about the $\triangle \mathrm{s}$ KNE and LMF are equal.
68. EFGHi is a quadrilateral having $E F \| H G$ and $E H=F G$. From E a st. line EK is drawn \|FG meeting HG at K. Show that circles described about the $\triangle s$ EHG, EKG are equal.
69. From any point P on the circumference of a circle $P D, P E$ and PF are perpendiculars to a chord $Q R$, and to the tangents QT and RT. Show that the $\triangle s$ PED and PFD are similar.
70. A quadrilateral having two $\|$ sides is described about a circle. Show that the st. line drawn through the centre || to the || sides and terminated by the nonparallel sides is one quarter of the perimeter of the quadrilateral.
71. $C D$ is a diameter of a circle centre O; chords $C F$ and DG intersect within the circle at E. Show that OF is a tangent to the circle passing through F, G and E.
72. $E F$ is a chord of a circle and EP a tangent; a st. line PG || to EF meets the circle at G; prove that the $\triangle \mathrm{s} E F G$ and EPG are similar.
73. The diagonals of a quadrilateral are \perp; show that the st. lines joining the feet of the perpendiculars from
the intersection of the diagonals on the sides form a cyclic quadrilateral.
74. Two chords of a circle intersect at rt. $\angle \mathrm{s}$ and tangents are drawn to the circle from. the extremities of the chords; show that the resulting quadrilateral is cyclic.
75. A quadrilateral is described about a circle and its vertices are joined to the centre cutting the circumference in four points. Show that the diagonals of the quadrilateral formed by joining these four points are \perp.
76. DEF is a \triangle inscribed in a circle whose centre is \mathbf{O}. On EF any arc of a circle is described and ED, FD, or these lines produced, meet the arc at \mathbf{P}, \mathbf{Q}. Show that OD , or OD produced, cuts PQ at rt. $\angle \mathrm{s}$.
77. PQRS is a $\| \mathrm{gm}$ and the diagonals intersect at E . Show that the circles described about PES and QER touch each other; and likewise those about PEQ and RES.
78. Two equal circles intersect at \mathbf{E} and \mathbf{F}; with centre \mathbf{E} and radius $\mathbf{E F}$ a circle is described cutting the circles at G and H. Show that FG and FH are tangents to the equal circles.
79. If from any point on the circumference of a circle perpendiculars be drawn to two fixed diameters, the line joining their feet is of constant length.
80. From the extremities of the diameter of a circle perpendiculars are drawn to any chord. Show that the centre is equally distant from the feet of the perpendiculars.
81. EF and GH are $\|$ chords in a circle, F and H being towards the same parts; a point K is taken on the circumference such that GF bisects $\angle \mathbf{H G K}$. Prove GK $=$ EF.
82. Two circles intersect at D and E, and KEL and PEQ are two chords terminated by the circumferences. Show that the $\triangle \mathrm{s}$ DKP and DLQ are similar.
83. If from two points outside a circle, equally distant from the centre and situated on a diameter produced, tangents be drawn to the circle, the resulting quadrilateral is a rhombus.
84. If the arcs cut off by the sides of a quadrilateral inscribed in a circle be bisected and the opposite points be joined, these two lines shall be 1 . (Note.-Use Ex. 3.)
85. PQ is a fixed st. line and PM, QN are any two $\|$ st. lines, M and N being towards the same parts. The $\angle S M P Q$ and NQP are bisected by PR and QR. Find the locus of R.
86. If the $\angle s$ of a \triangle inscribed in a circle be bisected by lines which meet the circumference, and a new \triangle be formed by joining these points on the circumference, its sides shall be \perp to the bisectors.
87. If two circles touch each other internally, and a st. line be drawn $\|$ to the tangent at the point of contact, the two intercepts between the circumferences subtend equal $\angle s$ at the point of contact.
88. $A B C$ is a \triangle inscribed in a circle and $B A$ is produced to $E ; D$ is any point in $A E$; circles are described through B, C, D and through $B, C, E ; C F D G$ cuts the circles $A B C, E B C$ in F and G. Prove that $\triangle s A D F$ and DEG are similar.
89. Draw a tangent to a circle which shall bisect a given $\| \mathrm{gm}$ which is outside the circle.
90. In a given circle draw a chord of fixed length which shall be bisected by a given chord.
91. In a given circle draw a chord which shall pass through a given point and be bisected by a given chord. How many such chords can be drawn?
92. Describe a circle with given radius to touch a given st. line and have its centre in another given st. line.
93. Describe a circle of given radius to pass through a given point and touch a given st. line.
94. Describe a circle to touch a given circle at a given point and a given st. line.
95. In a given st. line find a point such that the st. lines joining it to two given points may be $(a) \perp \mathrm{s}$, (b) make a given \angle with each other.
96. Describe a circle of given radius to touch a given circle and a given st. line.
97. Describe a circle to touch a given circle and a given st. line at a given point.
98. Inscribe in a given circle a \triangle one of whose sides shall be equal to a given st. line, and such that the other two may pass through two given points respectively.
99. Place a chord $P Q$ in a circle so that it will pass through a given point O within the circle, and such that the difference between $O P$ and $O Q$ may be equal to a given st. line.
100. Find two points on the circumference of a given circle which shall be concyclic with two given points \mathbf{P} and \mathbf{Q} outside the circle.
101. Describe a square ($E F G H$) having given the point F and two points P and Q in the sides $F E$ and $E H$ respectively.
102. Describe a square (EFGH) having given the point \mathbf{G} and two points P and Q in the sides $F E$ and $E H$ respectively.
103. Describe a square so that its sides shall pass respectively through four given points.
104. If three circles touch externally at P, Q, R and $P Q$ and $P R$ meet the circumference of $Q R$ at D and E, then $D E$ is a diameter, and is $\|$ to the line joining the centres of the other two circles.
105. Two equal circles intersect so that the tangents at one of the points of intersection are $\perp \mathrm{s}$. Show that the square on the diameter is twice the square on the common chord.
106. LMN is a rt. $-\angle d \triangle$, L being the $r t . ~ L$, and LD is \perp to MN. Show that LM is a tangent to the circle LDN.
107. PQ is a tangent to a circle and PRS a secant passing through the centre, QN is \perp to PS . Show that QR bisects $\angle \mathrm{PQN}$.
108. LMN is a \triangle inscribed in a circle whose centre is O. Show that the radius OL makes the same \angle with LM that the \perp from L to MN makes with LN.
109. If two chords of a circle be \perp, the sum of one pair of opposite intercepted arcs is equal to the sum of the other pair.
110. On the sides of a quadrilateral as diameters circles are described. Show that the common chords of every adjacent pair of circles is $\|$ to the common chord of the remaining pair.
111. Two equal circles are so situated that the distance between their nearest points is less than the diameter of either circle. Show how to draw a st. line cutting them so as to be trisected by the circumferences.
112. LMN is a \triangle and D, E, F are the middle points of MN, NL and LM respectively; if LP is the perpendicular on MN, show that D, P, E, F are concyclic.
113. $Q R$ is a fixed chord of a circle and \mathbf{P} a moveable point on the circumference. Find the locus of the intersection of the diagonals of the $\| g m$ having $P Q$ and $Q R$ for adjacent sides.
114. If a quadrilateral having two \| sides is inscribed in a circle, show that the four perpendiculars from the middle point of an arc cut off by one of the $\|$ sides, to the two diagonals and to the nonparallel sides, are equal.
115. $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are any rectangles inscribed in two concentric circles respectively. P is on the circumference of the former circle and P^{\prime} on the latter. Prove $P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2}+P D^{\prime 2}=P^{\prime} \mathbf{A}^{2}+P^{\prime} \mathbf{B}^{2}+P^{\prime} \mathbf{C}^{2}+P^{\prime} D^{2}$.
116. A point Y is taken in a radius of a circle whose centre is O; on OY as base an isosceles $\triangle X O Y$ is described having X on the circumference; $X O$ and $X Y$ are produced to meet the circumference at D and Z respectively, and E is the point between D and Z where the perpendicular from O to $O Y$ cuts the circle. Show that the arc DE is one-third of arc $E Z$

BOOK IV

Ratio and Proportion

115. Definitions.-The ratio of one magnitude to another of the same kind is the number of times that the first contains the second; or it is the part, or fraction, that the first magnitude is of the second.

Thus the ratio of one magnitude to another is the same as the measure of the first when the second is taken as the unit.

If a st. line is 5 cm . in length, the ratio of its length to the length of one centimetre is 5 , that is, the st. line is to one centimetre as 5 is to 1 .

If two st. lines A, B are respectively 8 inches and 3 inches in length, then the ratio of \mathbf{A} to \mathbf{B} is 8 to 3 .

The ratio of one magnitude A to another B is written either $\underset{\vec{B}}{A}$, or $A: B$.

When the form $\frac{A}{B}$ is used, the upper magnitude is called the numerator, and the lower the denominator; and when the form $\mathbf{A}: \mathbf{B}$ is used, the first magnitude is called the antecedent, and the second the consequent. The two magnitudes are called the terms of the ratio.
116. Definitions. - Proportion is the equality of ratios, i.e., when two ratios are equal to each other, the four magnitudes are said to be in proportion.

The equality of the ratios of \mathbf{K} to L and of \mathbf{m} to \mathbf{N} may be written in any one of the three forms:$\frac{K}{L}=\frac{M}{N}, K: L=M: N$ or $K: L:: M: N$; and is read " K is to L as M is to $N . "$

The four magnitudes in a proportion are called proportionals.

The first and last are called the extremes, and the second and third are called the means.

The first two magnitudes of a proportion must be of the same kind, and the last two must be of the same kind; but the first two need not be of the same kind as the last two. Thus in the proportion $\frac{D}{E}=\frac{F}{H}, D$ and E may be lengths of lines, while F and H are areas.
117. Definitions.-Three magnitudes are said to be in continued proportion, or in geometric progression, when the ratio of the first to the second equals the ratio of the second to the third.

Three magnitudes L, M, N, of the same kind, are in continued proportion, if $\frac{L}{M}=\frac{M}{N}$.
e. g. $:-\mathrm{L}=4 \mathrm{~cm} ., \mathrm{M}=6 \mathrm{~cm} ., \mathrm{N}=9 \mathrm{~cm}$.

The second magnitude of a continued proportion is called the mean proportional, or geometric mean, of the other two.
118. Two magnitudes of the same kind are commensurable when each contains some common measure an integral number of times.

Two magnitudes of the same kind are incommensurable when there is no common measure, however small, contained in each of them an integral number of times.

The diagonal and side of a square are incommensurable; the ratio of the diagonal to the side being $v^{\prime} \overline{2}: 1$.
The side of an equilateral triangle and the perpendicular from a vertex to the opposite side are incommensurable; the ratio of a side to the perpendicular being $2: \sqrt{3}$.
$\sqrt{2}=1.414$ nearly, and $\sqrt{3}=1.732$ nearly, but while these roots may be calculated to any required degree of accuracy they cannot be exactly found. Thus there is no straight line however short that is contained an integral number of times in both the diagonal and side of a square; or in both the side and altitude of an equilateral triangle.

The treatment of incommensurable magnitudes is too difficult for an elementary text-book, but as in algebra, the relations that are obtained in geometry for commensurable magnitudes hold good also for incommensurable magnitudes.
119. The following simple algebraic theorems are used in geometry :-

1. If $\frac{a}{b}=\frac{c}{d}, a d=b c$.

If four numbers be in proportion, the product of the extremes is equal to the product of the means.
2. If $\frac{a}{\bar{b}}=\frac{c}{\vec{d}}, \frac{a}{c}=\frac{b}{d}$.

If four numbers be in proportion, the first is to the third as the second is to the fourth.

When a proportion is changed in this way the second proportion is said to be formed from the first by alternation.

In order that a given proportion may be changed by alternation, the four magnitudes must be of the same kind.
e. $g .:-\frac{2 \mathrm{ft} .}{5 \mathrm{ft} .}=\frac{4 \mathrm{ft} .}{10 \mathrm{ft} .}$ and, by alternation, $\frac{2 \mathrm{ft} .}{4 \mathrm{ft.}}=$ $\frac{5 \mathrm{ft} .}{10 \mathrm{ft} \text {. }}$ but from the proportion $\frac{\text { st. line } \mathrm{D}}{\text { st. line } \mathbf{E}}=\frac{\operatorname{area} \mathrm{F}}{\operatorname{area} \mathrm{G}}$ another proportion cannot be inferred by alternation.
3. If $\frac{a}{b}=\frac{c}{d}, \frac{b}{a}=\frac{d}{c}$.

If four numbers be in proportion, the second is to the first as the fourth is to the third.

When a proportion is changed in this way the second proportion is said to be formed from the first by inversion.
4. If $\frac{a}{b}=\frac{c}{d}, \frac{a+b}{b}=\frac{c+d}{d}$.

If four numbers be in proportion, the sum of the first and second is to the second as the sum of the third and fourth is to the fourth.
5. If $\frac{a}{b}=\frac{c}{d}, \frac{a-b}{b}=\frac{c-d}{d}$.

If four numbers be in proportion, the difference of the first and second is to the second as the difference of the third and fourth is to the fourth.
6. If $\frac{a}{b}=\frac{c}{d}, \frac{a+b}{a-b}=\frac{c+d}{c-d}$.

If four numbers be in proportion, the sum of the first and second terms is to the difference of the first and second terms as the sum of the third and fourth terms is to the difference of the third and fourth terms.
7. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=$ etc., then each of the equal fractions $=\frac{a+c+e+\text { etc. }}{b+d+f+\text { etc. }}$
If any number of ratios, the terms of which are ali magnitudes of the same kind, be equal to each other, the sum of the numerators divided by the sum of the denominators equals each of the given ratios.
8. If $a d=b c, \frac{a}{b}=\frac{c}{d}$, and $\frac{a}{c}=\frac{b}{d}$.

If the product of two numbers be equal to the product of two other numbers, one factor of the first product is to a factor of the second product as the remaining factor of the second is to the remaining factor of the first.
120. If a given straight line MN be divided internally at a point P, the internal
 segments PM, PN are the distances from \mathbf{P} to the ends of the given straight line.

Similarly, if a point \mathbf{P} be taken in a given straight line $\mathbf{M N}$ produced, the dis-
 tances from \mathbf{P} to the ends of the given straight line, PM, PN, are called the external segments of the straight
line, or the given straight line is said to be divided externally at the point P.

121. There is only one point where a straight line MN is divided internally into segments MP, PN that have a given ratio $\frac{a}{b}$.

For, if possible, let it be divided internally at P and Q such that $\frac{M P}{P N}$ and $\frac{M Q}{Q N}$ each equals $\frac{a}{b}$.

$$
\begin{aligned}
& \text { Then } \\
& \frac{M P}{P N}=\frac{M Q}{Q N} . \\
& \therefore \frac{M P+P N}{P N}=\frac{M Q+Q N}{Q N} . \\
& (4, \S 119 .) \\
& \text { ide., } \\
& \frac{M N}{P N}=\frac{M N}{Q N} . \\
& \therefore \quad P N=Q N \text {. } \\
& \text { and } \quad \therefore Q \text { coincides with } P \text {. }
\end{aligned}
$$

Similarly, there is only one point where a straight line MN is divided externally into segments MP, PN that have a given ratio $\frac{a}{b}$.

For, if possible, let it be divided externally at P and Q such that $\frac{M P}{P N}$ and $\frac{M Q}{Q N}$ each equals $\frac{a}{b}$.

$$
\begin{align*}
& \text { Then } \\
& \frac{M P}{P N}=\frac{M Q}{Q N} . \\
& \therefore \frac{M P-P N}{P N}=\frac{M Q-Q N}{Q N} \text {. } \\
& \text { ide., } \\
& \frac{M N}{P N}=\frac{M N}{Q N} \text {. } \\
& \therefore \quad \mathrm{PN}=\mathrm{QN} \text {. } \\
& \text { and } \quad \therefore \quad Q \text { coincides with } P \text {. }
\end{align*}
$$

Theorem 1

Triangles of the same altitude are to each other as their bases.

Hypothesis.-In $\triangle \mathrm{S} A B C, \mathrm{DEF} ; \mathrm{AX} \perp \mathrm{BC}, \mathrm{DY} \perp \mathrm{EF}$ and $\mathrm{AX}=\mathrm{DY}$.

To prove that $\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{DEF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$.
Construction.-On BC and EF construct the rectangles $H C$ and $L F$, having $H B=A X$ and $L E=D Y$.

Proof.-Let BC and EF contain a and b units of length respectively, and $A X$ or DY contain c units.

$$
\begin{aligned}
\triangle \mathrm{ABC} & =\frac{1}{2} \mathrm{HB} \cdot \mathrm{BC}=\frac{1}{2} c a . \\
\triangle \mathrm{DEF} & =\frac{1}{2} \mathrm{LE} \cdot \mathrm{EF}=\frac{1}{2} c b . \\
\therefore \triangle \mathrm{ABC} & =\frac{1}{2} c a \\
\frac{1}{2} c b & =\frac{a}{b}=\frac{\mathrm{BC}}{\mathrm{EF}} .
\end{aligned}
$$

122.-Exercises

1. $\triangle s$ on equal bases are to each other as their altitudes.
2. If two Δs are to each other as their bases, their altitudes must be equal.
3. \|gms of equal altitudes are to each other as their bases.
4. Construct a \triangle equal to $\frac{5}{4}$ of a given \triangle.
5. Construct a $\| g m$ equal to $\frac{5}{2}$ of a given $\| g m$.
6. $A B C, D E F$ are two $\triangle s$ having $A B=D E^{\prime}$ and $\angle B=$ $\angle E$. Show that $\triangle A B C: \triangle D E F=B C: E F$.
7. The rectangle contained by two st. lines is a mean proportional between the squares on the lines.
8. If two equal Δs be on opposite sides of the same base, the st. line joining their vertices is bisected by the common base, or the base produced.
9. The sum of the \perp s from any point in the base of an isosceles Δ to the two equal sides equals the \perp from either end of the base to the opposite side.
10. The difference of the $\perp \mathrm{s}$ from any point in the base produced of an isosceles \triangle to the equal sides equals the \perp from either end of the base to the opposite side.
11. The sum of the $\perp s$ from any point within an equilateral \triangle to the three sides equals the \perp from any vertex to the opposite side.
12. If st. lines $A O, B O, C O$ are drawn from the vertices of a $\triangle A B C$ to any point O and $A O$, produced if necessary, cuts $B C$ at D,

$$
\frac{\triangle A O B}{\triangle A O C}=\frac{B D}{D C}
$$

13. In any $\triangle A B C, F$ is the middle point of $A B, E$ is the middle point of $A C$, and $B E, C F$ intersect at O. Show that AO produced bisects BC; that is, the medians of a \triangle are concurrent.
14. $A B C$ is a \triangle and O is any point. $A O, B O, C O$, produced if necessary cut $B C, C A, A B$ at D, E, F respectively, $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$, are respectively the numerical measures of BD, DC, CE, EA, AF, FB. Show that $a_{1} b_{1} c_{1}$ $=a_{2} b_{2} c_{2}$. (This is known as Ceva's Theorem.)
15. The four Δs into which a quadrilateral is divided by its diagonals are proportional.
16. DEF is a $\triangle ; G$ is a point in $D E$ such that $D G=3$ $G E$, and H is a point in DF such that $F H=3$ HD. Show that $\triangle \mathrm{FGH}=0 \triangle \mathrm{EGH}$.
17. St. lines DG, EH, FK drawn from the vertices of $\triangle D E F$ to meet the opposite sides at G, H, K pass through a common point O. Prove that $\frac{D O}{D G}+\frac{E O}{E H}+\frac{F O}{F K}=2$.
18. In $\triangle \mathrm{DEF}, \mathrm{G}$ is taken in side EF such that $\mathrm{EG}=$ 2 GF , and H is taken in side FD such that $\mathrm{FH}=2 \mathrm{HD}$. DG and $E H$ intersect at O. Prove that $\frac{\triangle D O H}{\triangle D E F}=\frac{1}{21}$.

Theorem 2

A straight line drawn parallel to the base of a triangle cuts the sides, or the sides produced, proportionally.

Hypothesis.-In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$.
To prove that $\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{CE}}{\mathrm{EA}}$.
Construction.-Join BE and DC.
Proof.- \because DE \| BC,

$$
\begin{aligned}
& \therefore \triangle B D E=\triangle C D E \quad(\mathrm{II}-5, \mathrm{p} .101 .) \\
& \therefore \frac{\triangle B D E}{\triangle A D E}=\frac{\triangle C D E}{\triangle A D E} .
\end{aligned}
$$

$\because \triangle \mathrm{SBDE}, \mathrm{ADE}$ have the same altitude, viz., the \perp from E to $A B$,

$$
\begin{equation*}
\therefore \frac{\triangle B D E}{\triangle A D E}=\frac{B D}{D A} . \tag{IV-1,p.219.}
\end{equation*}
$$

In the same way,

$$
\begin{aligned}
& \triangle C D E \\
\triangle A D E & =\frac{C E}{E A} . \\
\therefore \quad \frac{B D}{D A} & =\frac{C E}{E A} .
\end{aligned}
$$

N.B.-By placing D on $\mathbf{A B}$ and \mathbf{E} on $\mathbf{A C}$ in all three figures the proof applies to all.
Cor.-In the first figure,
$\because \frac{B D}{D A}=\frac{C E}{E A}, \quad \therefore \frac{B D+D A}{D A}=\frac{C E+E A}{E A}$. by addition.

$$
\begin{aligned}
& \therefore \quad \frac{A B}{A D}=\frac{A C}{A E} . \\
& \therefore \quad \frac{A D}{A B}=\frac{A E}{A C} \quad \text { by inverting. }
\end{aligned}
$$

Again,

$$
\begin{array}{rlr}
\therefore \frac{B D}{\mathrm{DA}}=\frac{\mathrm{CE}}{\mathrm{EA},} \therefore \quad \therefore \frac{\mathrm{DA}}{\mathrm{BD}}=\frac{\mathrm{EA}}{\mathrm{CE}} . & \text { by inverting. } \\
\therefore \frac{\mathrm{DA}+\mathrm{BD}}{\mathrm{BD}}=\frac{\mathrm{EA}+\mathrm{CE} .}{\mathrm{CE}} . & \text { by addition. } \\
\therefore \frac{A B}{B D}=\frac{A C}{C E} . \\
& \therefore \frac{B D}{A B}=\frac{C E}{A C} . & \text { by inverting. }
\end{array}
$$

Similar proofs may be given for the second and third figures.

Thus we see that where a line is parallel to the base of a triangle we may form a proportion by taking the whole side or either of the segments, in any order, for the terms of the first ratio, provided we take the corresponding parts of the other side to form the terms of the other ratio in the proportion.

Theorem 3

(Converse of Theorem 2)
If two sides of a triangle, or two sides produced, be divided proportionally, the straight line joining the points of section is parallel to the base.

Hypothesis.-In $\triangle A B C, \frac{B D}{D A}=\frac{C E}{E A}$.
To prove that DE \| BC.
Construction.-Draw DF \|BC, to cut AC at F.
Proof.-
$\because D F \| B C$,
$\therefore \frac{B D}{D A}=\frac{C F}{F A}$.
But $\frac{B D}{D A}=\frac{C E}{E A}$.
$\therefore \frac{C E}{E A}=\frac{C F}{F A}$,
And \therefore E coincides with F.
$\therefore \quad D E \| B C$.

123.-Exercises

1. The st. line drawn through the middle point of one side of a \triangle, and $\|$ to a second side bisects the third side.
2. The st. line joining the middle points of two sides of a Δ is $\|$ to the third side.
3. If two sides of a quadrilateral be $\|$, any st. line drawn || to the || sides and cutting the other sides, will cut these other sides proportionally.
4. $A B C D$ is a quadrilateral having $A B \| D C$. P, Q are points in $A D, B C$ respectively such that $A P: P D=B Q: Q C$. Show that $P Q \| A B$ or $D C$.
5. If two st. lines are cut by a series of || st. lines, the intercepts on one are proportional to the corresponding intercepts on the other.
6. D, E are points in $A B, A C$, the sides of $\triangle A B C$, such that $D E \| B C ; B E, C D$
 meet at F. Show that $\triangle A D F=\triangle A E F$.

Show also that $A F$ bisects $D E$ and $B C$.
7. Through D, any point in the side $B C$ of $\triangle A B C, D E, D F$ are drawn $\| A B, A C$ respectively and meeting $A C, A B$ at E, F. Show that $\triangle A E F$ is a mean proportional between $\triangle \mathrm{s}$ FBD, EDC.
8. $\mathrm{ACB}, \mathrm{ADB}$ are two $\triangle \mathrm{s}$ on the same base AB . E is any point in $A B$. $E F$ is $\| A C$ and meets $B C$ at F. EG is $\| A D$ and meets $B D$ at G. Prove $F G \| C D$.
9. D is a point in the side $A B$ of $\triangle A B C$; $D E$ is drawn $\| B C$ and meets $A C$ at $E ; E F$ is drawn $\| A B$ and meets $B C$ at F. Show that $A D: D B=B F: F C$.
(10) From a given point M in the side $D E$ of $\triangle D E F$, draw a st. line to meet DF produced at N so that MN is bisected by EF.
11. PQRS is a $\| g m$, and from the diagonal $P R$ equal lengths PK, RL are cut off. SK, SL when produced meet $P Q, R Q$ respectively at E, F. Prove $E F \| P R$.
12. DEF is a \triangle in which K, M are points in the side $D E$ and L, N are points in the side $D F$ such that $K L$ and $\mathbf{M N}$ are both \|EF. Find the locus of the intersection of KN and LM.
13. O any point within a quadrilateral $P Q R S$ is joined to the four vertices and in OP any point \mathbf{X} is taken. $\mathbf{X Y}$
is drawn \|PQ to meet OQ at $\mathrm{Y} ; \mathrm{YZ}$ is drawn $\| \mathrm{QR}$ to meet $O R$ at Z; and $Z V$ is drawn $\| R S$ to meet $O S$ at V. Prove that $X V \| P S$.
14. O is a fixed point and P moves along a fixed st. line. Q is a point in $O P$, or in $O P$ produced in either direction, such that $O Q: Q P$ is constant. Find the locus of Q .
15. L is any point in the side $D E$ of a $\triangle D E F$. From L a line drawn $\| E F$ meets $D F$ at M. From F a line drawn \| ME ineets DE produced at N. Prove that DL: DE = DE : DN.
16. If from the vertex of a \triangle perpendiculars are drawn to the bisectors of the exterior $\angle \mathrm{s}$ at the base, the line joining the feet of the perpendiculars is $\|$ the base.

Problem 1

To divide a given straight line into any number of equal parts.
(Alternative proof for I Prob. 8)

Let $A B$ be the given straight line.
At A draw $A C$ making any angle with $A B$ and from $A C$ cut off in succession the required number of equal parts. $A D, D E, E F, F G, G H$.

Join HB and through D, E, F, G draw lines \| BH cutting $A B$ at K, L, M, N.

Then $A K=K L=L M=M N=N B$.

In $\triangle A E L, D K \| E L$,

$$
\therefore \frac{A D}{D E}=\frac{A K}{K L} . \quad(I V-2, \text { p. 222.) }
$$

But $A D=D E, \therefore A K=K L$.
In $\triangle A F M, E L \| F M$,

$$
\begin{aligned}
\therefore \frac{A E}{E F} & =\frac{A L}{L M} . \\
\text { But } A E & =2 E F, \therefore A L=2 L M \\
\therefore L M & =A K \text { or } K L .
\end{aligned}
$$

In the same way it may be proved that $A K=K L=$ $L M=M N=N B$.

Problem 2

To find a fourth proportional to three given straight lines taken in a given order.

Let A, B, C be the three given st. lines.
From a point D draw two st. lines DE, DF.
Cut off DG $=A, G H=B, D K=C$.
Join GK. Through H draw HL\|GK meeting DF in L.

Then KL is the required fourth proportional.
In $\triangle \mathrm{DHL}, \mathrm{GK} \| \mathrm{HL}$.

$$
\begin{aligned}
\therefore \frac{D G}{G H} & =\frac{D K}{K L} \\
\text { i.e., } \quad & \quad(I V-2, p \\
\bar{B} & =\frac{C}{K L}
\end{aligned}
$$

$\therefore \mathrm{KL}$ is the required fourth proportional.

Problem 3

To divide a given straight line in a given ratio.

Let $A B$. be the given st. line, and $\frac{C}{D}$ the given ratio. Draw AE making any \angle with $A B$.
On $A E$ cut off $A F=C, F G=D$.
Join BG, and through F draw $F H \| G B$.
In $\triangle A B G, \because F H \| G B$,

$$
\therefore \frac{A H}{H B}=\frac{A F}{F G} . \quad(I V--2, p .222 .)
$$

But $A F=C$, and $F G=D$,

$$
\therefore \frac{A H}{H B}=\frac{C}{D} .
$$

Problem 4

To divide a given straight line similarly to a given divided line.

Let $A B$ be the given st. line, and $C D$ the given line divided at E and F.

At A draw $A G$ making any angle with $A B$.
From $A G$ cut off $A H=C E, H K=E F, K L=F D$. Join BL. Through H,K draw HN, KM both || BL.

Then $\mathbf{A B}$ is divided at \mathbf{N} and \mathbf{M} similarly to $\mathbf{C D}$. Through H draw HPQ \|AB.

Proof.-In \triangle AMK, NH \| MK,
$\therefore \frac{A N}{N M}=\frac{A H}{H K}$.
(IV-2, p. 222.)
In $\triangle \mathrm{HQL}, \mathrm{PK} \| \mathrm{QL}$
$\therefore \frac{H P}{P Q}=\frac{H K}{K L}$.
But $H P=N M$ and $P Q=M B$,

$$
\begin{equation*}
\therefore \frac{N M}{M B}=\frac{H K}{K L} . \tag{I-20,p.67.}
\end{equation*}
$$

$\therefore \frac{A N}{N M}=\frac{C E}{E F}$ and $\frac{N M}{M B}=\frac{E F}{F D}$.
Both these relations are contained in

$$
\frac{A N}{C E}=\frac{N M}{E F}=\frac{M B}{F D} .
$$

124.-Exercises

1. Divide the area of a given Δ into parts that are in the ratio of two given st. lines.
2. Divide the area of a \|gm into parts that are in the ratio of two given st. lines.
3. Find a third proportional to two given st. lines. Show how two third proportionals, one greater than either of the given st. lines and the other less than either, may be found.
4. Divide a given st. line externally so that the ratio of the segments may equal the ratio of two given st. lines.
5. BAC is a given \angle and \mathbf{P} is a given point. Through P draw a st. line DPE cutting $A B$ at D and $A C$ at E such that DP : PE equals the ratio of two given st. lines.
6. Divide a given st. line in the ratio $2!3: 5$.
7. Construct a \triangle having its sides in the ratio $2: 3: 4$, and its perimeter equal to a given st. line.
8. From a given point P outside the $\angle X O Y$ draw a line meeting $O X$ at Q and $O Y$ at R so that $P Q: Q R=$ a given ratio.

Bisector Theorems's
Theorem 4
If the vertical angle of a triangle is bisected by a straight line which cuts the base, the segments of the base are proportional to the other sides of the triangle.

Hypothesis.-In $\triangle A B C, A D$ bisects $\angle B A C$.
To prove

$$
\frac{B D}{D C}=\frac{B A}{A C} .
$$

Construction.-Through C draw CE \|AD to meet BA produced at E.

$$
\begin{aligned}
& \text { Proof.-AD\|EC, } \therefore \angle B A D=\angle A E C, \quad(I-9, \text { p. 42.) } \\
& \text { and } \angle \mathrm{DAC}=\angle \mathrm{ACE} . \quad(\mathrm{I}-8, \mathrm{p} .40 .) \\
& \text { But } \angle B A D=\angle D A C \text {, by hypothesis, } \\
& \therefore \angle A E C=\angle A C E \text {. } \\
& \therefore A C=A E . \quad(\mathrm{I}-13, \mathrm{p} .52 .)
\end{aligned}
$$

$$
\text { In } \begin{aligned}
\triangle E B C, A D & \| E C, \\
\therefore \frac{B D}{D C} & =\frac{B A}{A E} . \quad(I V-2, p .222 .) \\
B u t A E & =A C \\
\therefore \frac{B D}{D C} & =\frac{B A}{A C} .
\end{aligned}
$$

Theorem 5

(Converse of Theorem 4)

If the base of a triangle is divided internally into segments that are proportional to the other sides of the triangle, the straight line which joins the point of section to the vertex bisects the vertical angle.

Hypothesis. - In $\triangle \mathrm{ABC}, \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{BA}}{\mathrm{AC}}$.
To prove that AD bisects $\angle B A C$.
Construction.-Bisect $\angle \mathrm{BAC}$ and let the bisector cut BC at E.

Proof.- \because AE bisects $\angle \mathrm{BAC}$

$$
\therefore \frac{B E}{E C}=\frac{B A}{A C} .
$$

(IV-4, p. 230.)
But, by hypothesis, $\frac{B D}{D C}=\frac{B A}{A C}$.
$\therefore \frac{B E}{E C}=\frac{B D}{D C}$.
$\therefore E$ and D coincide.
$\therefore A D$ bisects $\angle B A C$.

Theorem 6

The bisector of the exterior vertical angle of a triangle divides the base externally into segments that are proportional to the sides of the triangle.

Hypothesis.-In $\triangle \mathrm{ABC}, \mathrm{BA}$ is produced to F .
$\angle F A C$ is bisected by AD which cuts BC produced at D.

$$
\text { To prove } \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BA}}{\mathrm{AC}} \text {. }
$$

Construction.-Through C draw CE \| AD to meet AB at E .

$$
\begin{aligned}
\text { Proof.- } \because \text { EC } \| \text { AD, } \therefore \angle \text { FAD } & =\angle \text { AEC. }(\mathrm{I}-9, \text { p. } 42 .) \\
\text { and } \angle \mathrm{DAC} & =\angle \text { ACE. }(\mathrm{I}-8, \text { p. } 40 .)
\end{aligned}
$$

But, by hypothesis, $\angle \mathrm{FAD}=\angle \mathrm{DAC}$.

$$
\therefore \angle A E C=\angle A C E .
$$

$$
\therefore A C=A E . \quad(I-13, \text { p. } 52 .)
$$

In $\triangle B A D, E C \| A D$,

$$
\left.\left.\therefore \frac{B A}{A E}=\frac{B D}{D C} . \quad \text { (IV—2, Cor., }\right) \text { p. } 223 .\right)
$$

$$
\text { But } A E=A C \text {. }
$$

$$
\therefore \frac{B A}{A C}=\frac{B D}{C D} .
$$

Theorem 7

(Converse of Theorem 6)
If the base of a triangle is divided externally so that the segments of the base are proportional to the other sides of the triangle, the straight line which joins the point of section to the vertex bisects the exterior vertical angle.

Hypothesis.-In $\triangle A B C, \frac{B D}{C D}=\frac{B A}{A C}$, and $B A$ is produced to E .

To prove that AD bisects $\angle \mathrm{CAE}$.
Construction.-Bisect \angle EAC by AF.
Proof.- \because AF bisects exterior \angle EAC,

$$
\therefore \frac{B F}{C F}=\frac{B A}{A C} . \quad(I V-6, p .232 .)
$$

But, by hypothesis,

$$
\frac{B D}{C D}=\frac{B A}{A C} .
$$

$$
\therefore \frac{B F}{C F}=\frac{B D}{C D} .
$$

$\therefore \mathrm{D}$ and F coincide
$\therefore A D$ bisects $\angle E A C$.

125.-Exercises

1. The sides of a \triangle are $4 \mathrm{~cm} ., 5 \mathrm{~cm} ., 6 \mathrm{~cm}$. Calculate the lengths of the segments of each side made by the bisector of the opposite \angle.
2. $A D$ bisects $\angle A$ of $\triangle A B C$ and meets $B C$ at D. Find $B D$ and $C D$ in terms of a, b, and c.
3. In $\triangle \mathrm{ABC}, a=7, b=5, c=3$. The bisectors of the exterior $\angle s$ at A, B, C meet $B C, C A, A B$ respectively at D, E, F. Calculate $B D, A E$ and $A F$.
4. In $\triangle A B C$, the bisector of the exterior \angle at A meets BC produced at D. Find BD and CD in terms of a, b and c.
5. If a st. line bisects both the vertical \angle and the base of a Δ, the \triangle is isosceles.
6. The bisectors of the $\angle s$ of a \triangle are concurrent. (Use IV-4 and 5.)
7. $A D$ is a median of $\triangle A B C ; \angle S A D B, A D C$ are bisected by $D E, D F$ meeting $A B, A C$ at E, F respectively. Prove EF || BC.
8. The bisectors of $\angle S A, B, C$ in $\triangle A B C$ meet $B C, C A$, $A B$ at D, E, F respectively. Show that AF.BD.CE $=$ FB.DC.EA.
9. If the bisectors of $\angle s A, C$ in the quadrilateral $A B C D$ meet in the diagonal $B D$, the bisectors of $\angle S B, D$ meet in the diagonal AC.
10. If the bisectors of $\angle s A B C, A D C$ in the quadrilateral $A B C D$ meet at a point in $A C$, the bisectors of the exterior $\angle s$ at B and D meet in $A C$ produced.
11. If O is the centre of the inscribed circle of $\triangle D E F$ and DO produced meets $E F$ at G, prove that $D O: O G=$ $E D+D F: E F$.
12. PQ is a chord of a circle \perp to a diameter MN and D is any point in PQ. The st. lines MD, ND meet the circle at E, F respectively. Prove that any two adjacent sides of the quadrilateral PEQF are in the same ratio as the other two.
13. The bisector of the vertical L of a \triangle and the bisectors of the exterior $\angle \mathrm{s}$ at the base are concurrent.
14. One circle touches another internally at M. A chord PQ of the outer circle touches the inner circle at T . Prove that $\frac{P T}{T Q}=\frac{P M}{M Q}$.
15. LMN is a \triangle in which $L M=3 \mathrm{LN}$. The bisector of $\angle L$ meets $M N$ in D, and $M X \perp$ LD. Prove that $L D=D \times$
16. The $\angle A$ of $\triangle A B C$ is bisected by $A D$, which cuts the base at D, and O is the middle point of $B C$. Show that $O D$ is to $O B$ as the difference of $A B$ and $A C$ is to their sum.
17. The bisectors of the interior and exterior $\angle \mathrm{s}$ at the vertex of a Δ divide the base internally and externally in the same ratio.
18. A point P moves so that the ratio of its distances from two fixed points Q, R is constant. Prove that the locus of P is à circle. (The Circle of Apollonius.)

Divide QR internally at \mathbf{S} and externally at \mathbf{T} so that

$$
\frac{Q S}{S R}=\frac{Q T}{T R}=\frac{P Q}{P R} .
$$

Join PS, PT; and produce QP to V .

$$
\begin{aligned}
& \because \frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}, \therefore \angle \mathrm{QPS}=\angle \mathrm{SPR} . \\
& \because \frac{\mathrm{QT}}{\mathrm{TR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}, \therefore \angle \mathrm{RPT}=\angle \mathrm{TPV} . \\
& \begin{aligned}
\therefore \angle \mathrm{SPT} & =\mathrm{QPS}+\angle \mathrm{TPV} \\
& =\frac{1}{2} \text { st. } \angle \mathrm{QPV} \\
& =\text { a rt. } \angle ;
\end{aligned}
\end{aligned}
$$

and, hence, a circle described on ST as diameter passes through P .
19. If L, M, N be three points in a st. line, and \mathbf{P} a point at which LM and MN subtend equal $\angle \mathrm{s}$, the locus of P is a circle.

Similar Triangles

Theorem 8

If the angles of one triangle are respectively equal to the angles of another, the corresponding sides of the triangles are proportional.

Hypothesis.-In $\triangle \mathrm{s}$ ABC, DEF; $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=$ $\angle E, \angle C=\angle F$.

To prove $\quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$.
Proof.-Apply \triangle DEF to $\triangle A B C$ so that $\angle E$ coincides with $\angle B$; the $\triangle D E F$ taking the position $D^{\prime} B^{\prime}$.

$$
\begin{aligned}
& \therefore \angle B D^{\prime} F^{\prime}=\angle A, \therefore D^{\prime} F^{\prime} \| A C .(I-7, p .38 .) \\
& \therefore \frac{A B}{D^{\prime} B}=\frac{C B}{F^{\prime} B} \quad(I V-2, \text { Cor., p. 223.) } \\
& \therefore \frac{A B}{D E}=\frac{B C}{E F} .
\end{aligned}
$$

In the same way, by applying the $\Delta \mathrm{s}$ so that $\angle \mathrm{s}$ C and F coincide, it may be proved that $\frac{B C}{E F}=\frac{C A}{F D}$.

$$
\therefore \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}
$$

$$
\text { Note.- } \because \frac{A B}{D E}=\frac{B C}{E F}, \quad \therefore \quad \frac{A B}{B C}=\frac{D E}{E F},
$$

and in the same way $\frac{B C}{C A}=\frac{E F}{F D}$ and $\frac{C A}{A B}=\frac{F D}{D E}$.
\therefore If two triangles are similar, the corresponding sides about the equal angles are proportional.

Theorem 9
(Converse of Theorem 8)
If the sides of one triangle are proportional to the sides of another, the triangles are similar, the equal angles being opposite corresponding sides.

Hypothesis.-In $\triangle \mathrm{S} A B C$, $\mathrm{DEF} ; \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$. To prove $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{DEF}, \angle \mathrm{C}=\angle \mathrm{DFE}$.
Construction.-Make $\angle \mathbf{F E G}=\angle \mathrm{B}, \angle \mathrm{EFG}=\angle \mathbf{C}$.
Proof.-In $\triangle S A B C, G E F\left\{\begin{array}{l}\angle A=\angle G, \\ \angle B=\angle G E F, \\ \angle C=\angle E F G .\end{array}\right.$
$\therefore \quad \triangle A B C\|\|$ GEF.

$$
\therefore \frac{\mathrm{AB}}{\mathrm{GE}}=\frac{\mathrm{BC}}{\mathrm{EF}} . \quad(\mathrm{IV}-8, \mathrm{p} .236 .)
$$

But, by hypothesis,

$$
\frac{A B}{D E}=\frac{B C}{E F} .
$$

$$
\therefore \frac{\mathrm{AB}}{\mathrm{GE}}=\frac{\mathrm{AB}}{\mathrm{DE}}, \therefore \mathrm{GE}=\mathrm{DE} .
$$

Similarly it may be proved that $G F=D F$.

$$
\text { In } \triangle \mathrm{S} D E F, \mathrm{GEF}\left\{\begin{array}{l}
\mathrm{DE}=\mathrm{GE}, \\
\mathrm{EF} \text { is common, } \\
\mathrm{FD}=\mathrm{FG} .
\end{array}\right.
$$

$$
\therefore \triangle \mathrm{DEF} \equiv \triangle \mathrm{GEF} .
$$

$\therefore \angle \mathrm{DEF}=\angle \mathrm{GEF}=\angle \mathrm{B}, \angle \mathrm{DFE}=\angle \mathrm{GFE}=\angle \mathrm{C}$.
\therefore remaining $\angle \mathrm{D}=$ remaining $\angle \mathrm{A}$.

126.-Exercises

1. The st. line joining the middle points of the sides of a Δ is $\|$ to the base, and equal to half of it.
2. If two sides of a quadrilateral be $\|$, the diagonals cut each other proportionally.
3. In the $\triangle A B C$ the medians $B E, C F$ cut at G. Show that $B G=$ twice $G E$, and $C G=$ twice $G F$.
4. Using the theorem in Ex. 3, devise a method of trisecting a st. line.
5. If three st. lines meet at a point, they intercept on any || st. lines portions which are proportional to one another.
6. In similar $\triangle \mathrm{s} \perp \mathrm{s}$ from corresponding vertices to the opposite sides are in the same ratio as the corresponding sides.
7. In similar $\triangle \mathrm{s}$ the bisectors of two corresponding $\angle \mathrm{s}$, terminated by the opposite sides, are in the same ratio as the corresponding sides.
X8. $A B C D$ is a $\| g m$, and a line through A cuts $B D$ at $E, B C$ at F and meets DC produced at G. Show that $A E: E F=A G: A F$.
\nprec. If two $\|$ st. lines $A B, C D$ be divided at E, F respectively so that $A E: E B=C F: F D$, then $A C, B D$ and EF are concurrent.
8. The median drawn to a side of a \triangle bisects all st. lines || to that side and terminated by the other two sides, or those sides produced.
$\Sigma^{11 .} A B C D$ is a $\| g m$. $A D$ is bisected at E and $B C$ at F. Show that $A F$ and CE trisect the diagonal $B D$.
$\Varangle 12$. If the st. lines $\mathrm{OAB}, \mathrm{OCD}, \mathrm{OEF}$ be similarly divided, the $\triangle \mathrm{s} A C E, B D F$ are similar.
9. If the corresponding sides of two similar $\Delta \mathrm{s}$ be $\|$, the st. lines joining the corresponding vertices are concurrent.
10. $\triangle L M N$ ||| $\triangle P Q R, \angle L=\angle P$ and $\angle M=\angle Q . \quad L M=$ $7 \mathrm{~cm} ., \mathrm{MN}=5 \mathrm{~cm}$., $\mathrm{LN}=9 \mathrm{~cm}$., $\mathrm{QR}=4 \mathrm{~cm}$. Find PQ and PR.
11. In $\triangle \mathrm{DEF}, \mathrm{DE}=13 \mathrm{~cm} ., \mathrm{EF}=5 \mathrm{~cm}$. and $\mathrm{DF}=12$ cm . The \triangle is folded so that the point D falls on the point \mathbf{E}. Find the length of the crease.
12. LMN is a \triangle and X is any point in $M N$. Prove that the radii of the circles circumscribing LMX, LNX are proportional to LM, LN.
13. St. lines $P O Q, R O S$ are drawn so that $P O=2 O Q$ and $R O=2 O S$. RQ and PS are produced to meet at T. Prove that $\mathrm{PS}=\mathrm{ST}$ and $\mathrm{RQ}=\mathrm{QT}$.
14. FDE, GDE are two circles and FDG is a st. line. FE, GE are drawn. Prove that FE is to GE as diameter of circle FDE is to diameter of GDE.
15. P is any point on either arm of an $\angle X O Y$, and $P N \perp$ to the other arm. Show that $\frac{P N}{O P}$ has the same value for all positions of P.

Show also that $\frac{O N}{O P}$ has the same value for all positions of P; and that $\frac{P N}{O N}$ has the same value for all positions of P.
(Note.-The ratio $\frac{\mathrm{PN}}{\mathrm{OP}}$ is called the sine of the $\angle \mathrm{XOY}$, $\frac{\mathrm{ON}}{\mathrm{OP}}$ is the cosine of that \angle, and $\frac{\mathrm{PN}}{\mathrm{ON}}$ is the tangent of the same L.)
20. PQRS is a quadrilateral inscribed in a circle. The diagonals $P R, Q S$ cut at X. Prove that $\frac{P Q}{S R}=\frac{X P}{X S}$.
21. $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ are three fixed st. lines, and P is any point in OZ. From P, PL is drawn $\perp \mathrm{OX}$ and $\mathrm{PM} \perp$ OY. Prove that the ratio PL:PM is constant.
22. In the quadrilateral DEFG the side DE \| GF and the diagonals DF, EG cut at H . Through \mathbf{H} the line LHM is drawn || DE and meeting EF, DG at L, M respectively. Prove HL = HM.
23. KLMN is a quadrilateral in which KL \| NM. Prove that the line joining the middle points of KL and MN passes through the intersection of the diagonals KM, LN.
24. DEF is a \triangle and G is any point in $E F$. The bisector of $\angle D G F$ meets DF in H. EH cuts DG at K. FK meets DE at L. Prove that LG bisects $\angle D G E$.
25. DG and DH bisect the interior and exterior $\angle \mathrm{s}$ at D of a $\triangle D E F$, and meet $E F$ at G and H; and O is the middle point of EF. Show that OE is a mean proportional between OG and OH.
26. DG bisects $\angle \mathbf{D}$ of $\triangle D E F$ and meets $E F$ at G. GK bisects $\angle D G E$ and meets DE at K. GH bisects $\angle D G F$ and meets DF at H. Prove that $\triangle E K H: \triangle F K H$ = ED: DF.

Theorem 10

If two triangles have one angle of one equal to one angle of the other and the sides about these angles proportional, the triangles are similar, the equal angles being opposite corresponding sides.

Hypothesis.-In $\triangle \mathrm{S} A B C, \mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{D}$ and $\frac{A B}{D E}=\frac{A C}{D F}$.
To prove $\triangle A B C$ III $\triangle D E F$.
Proof.-Apply the $\triangle s$ so that L•D coincides with $\angle A$ and $\triangle D E F$ takes the position $A E^{\prime} F^{\prime}$.

$$
\begin{aligned}
\because & \frac{A B}{D E}=\frac{A C}{D F}, \\
\therefore & \frac{A B}{A E^{\prime}}=\frac{A C}{A F^{\prime}}, \therefore E^{\prime} F^{\prime} \| B C .(I V-3, p .224 .) \\
\therefore \angle & B=A E^{\prime} F^{\prime}, \angle C=\angle A F^{\prime} E^{\prime},(I-9, p .42 .) \\
& \therefore \triangle A B C .\| \| A E^{\prime} F^{\prime} .
\end{aligned}
$$

But $\triangle A E^{\prime} F^{\prime}$ is the triangle $D E F$ in its new position, $\therefore \triangle A B C \| \triangle D E F$.

The equal $\angle \mathrm{S} B, E$ are respectively opposite the corresponding sides $\mathbf{A C}, \mathrm{DF}$, also the equal $\angle \mathbf{S} \mathbf{C}, \mathbf{F}$ are respectively opposite the corresponding sides $A B$, DE.

Theorem 11

If two triangles have two sides of one proportional to two sides of the other, and the angles opposite one pair of corresponding sides in the proportion equal, the angles opposite the other pair of corresponding sides in the proportion are either equal or supplementary.

Fig. 1

Fig. 2

Hypothesis.-In $\triangle \mathrm{S} A B C, D E F, \frac{A B}{D E}=\frac{A C}{D F}$ and $\angle B=$ $\angle \mathrm{E}$.

To prove either $\angle \mathbf{C}=\angle \mathrm{F}$ or $\angle \mathrm{C}+\angle \mathrm{DFE}=2 \mathrm{rt} . \angle \mathrm{s}$.
Proof.-(1) If $\angle A=\angle D$.
(Fig. 1.)
$\because \angle A=\angle D$, and $\angle B=\angle E, \therefore \angle C=\angle F$.
In this case $\triangle A B C\|\| D E F$.
(2) If $\angle A$ is not equal to $\angle D$.
(Fig. 2.)
At \dot{D} make $\angle E D G=\angle A$ and produce $D G$ to meet $E F$, produced if necessary, at G.

In $\triangle S A B C, D E G\left\{\begin{aligned} \angle A & =\angle E D G, \\ \angle B & =\angle E, \\ \therefore \angle C & =\angle G .\end{aligned}\right.$
$\therefore \triangle A B C\|\| D E G$.
$\therefore \frac{A B}{D E}=\frac{A C}{D G}$.
(IV-8, p. 236.)

$$
\text { In } \triangle \mathrm{DFG}, \because \mathrm{DF}=\mathrm{DG}, \therefore \angle \mathrm{DGF}=\angle \mathrm{DFG} .
$$

$$
\text { But } \angle \mathrm{DGF}=\angle \mathrm{C}, \therefore \angle \mathrm{DFG}=\angle \mathrm{C} .
$$

$$
\angle D F E+\angle D F G=2 \mathrm{rt} . \angle \mathrm{s},
$$

$$
\therefore \angle \mathrm{DFE}+\angle \mathrm{C}=2 \mathrm{rt} . \angle \mathrm{s} .
$$

127.-Exercises

1. Show that certain propositions of Book I are respectively particular cases of Theorems 9, 10 and 11 of Book IV.
2. In similar $\triangle s$ medians drawn from corresponding vertices are proportional to the corresponding sides.
3. In a $\triangle A B C, A D$ is drawn $\perp B C$. If $B D: D A=$ $D A: D C$, prove that BAC is a rt. \angle.
4. If the diagonals of a quadrilateral divide each other proportionally, one pair of sides are \|.
5. A point D is taken within a $\triangle L M N$ and joined to L and M. A $\triangle E M N$ is described on the other side of $M N$ from $\triangle L M N$ having $\angle E M N=\angle D M L$, and $\angle E N M=$ \angle DLM. Prove that \triangle DME III \triangle LMN.
6. M, N are fixed points on the circumference of a given circle, and P is any other point on the circumference. $M P$ is produced to Q so that $P Q: P N$ is a fixed ratio. Find the locus of \mathbf{Q}.
7. EOD, GOF are two st. lines such that GO: DO = EO:FO. Prove that E, F, D, G are concyclic.
8. $O E F, O G D$ are two st. lines such that $O E: O G=$ OD: OF. Prove that E, F, G, D are concyclic.
9. $D E F$ is a \triangle, and $F X \perp D E$. Prove that, if $D F: F X=$ $D E: E F, \angle X F E=\angle D$.

$$
\begin{aligned}
& \text { But, by hypothesis, } \quad \frac{A B}{D E}=\frac{A C}{D F} \text {. } \\
& \therefore \frac{A C}{D G}=\frac{A C}{D F}, \quad \therefore \quad D G=D F .
\end{aligned}
$$

10. Similar isosceles $\triangle S$ DEF, DEG are 'described on opposite sides of $D E$ such that $D F=D E$ and $G D=G E$. H is any point in DF and K is taken in $G D$ such that $\mathrm{GK}: \mathrm{GD}=\mathrm{DH}: \mathrm{DF} . \quad$ Prove $\triangle \mathrm{KHE}\|\| \triangle \mathrm{GDE}$.
11. LMN is a \triangle, and D is any point in LM produced. E is taken in NM such that NE:EM = LD: DM. Prove that DE produced bisects LN.
12. O is the centre and $O D$ a radius of a circle. E is any point in $O D$, and F is taken in $O D$ produced such that $O F$ is a third proportional to $O E, O D . P$ is any point on the circumference. Prove $\angle \mathrm{FPD}=\angle \mathrm{DPE}$.
13. The bisectors of the interior and exterior $\angle \mathrm{s}$ at L in the \triangle LMN meet $M N$ and $M N$ produced at D, E respectively. $F N G$ drawn $\| L M$ meets $L E$ at F and LD produced at \mathbf{G}. Prove $\mathbf{F N}=$ NG.
14. If one pair of $\angle s$ of two $\triangle s$ be equal and another pair of $\angle \mathrm{s}$ be supplementary, the ratios of the sides opposite to these pairs of $\angle \mathrm{s}$ are equal to each other.

Geometric Means

Theorem 12
The perpendicular from the right angle to the hypotenuse in a right-angled triangle divides the triangle into two triangles which are similar to each other and to the original triangle.

Hypothesis.-In $\triangle A B C, \angle B A C$ is a rt. \angle and $A D \perp B C$.

To prove $\triangle \mathbf{A B D}\||\triangle \mathbf{C A D} \|| \triangle \mathbf{C B A}$.
Proof.-
In $\triangle \mathrm{SABD}, \mathrm{CBA}\left\{\begin{array}{l}\angle \mathrm{BDA}=\angle \mathrm{BAC}, \text { both rt. } \angle \mathrm{s} . \\ \therefore \angle B A D=\angle B C A .\end{array}\right.$
$\therefore \triangle \mathrm{ABD}\|\| \mathrm{CBA}$
Similarly $\triangle A D C \| I \triangle C B A$.
$\therefore \triangle A B D|\mid \triangle C A D\| \| C B A$.
Cor. 1.- $\quad \because \triangle A B D \| \triangle C A D$,

$$
\therefore \quad \frac{B D}{A D}=\frac{A D}{C D} .
$$

$\therefore A D$ is the mean proportional between $B D$ and $D C$.
Cor. 2.-Because $\triangle A B D \| \triangle C B A$

$$
\therefore \quad \frac{B D}{A B}=\frac{A B}{B C} .
$$

$\therefore A B$ is the mean proportional between $B D$ and $B C$.
Similarly-
$A C$ is the mean proportional between DC and CB.
Cor. 3.-Because $\triangle C B A \| I \triangle C A D$,

$$
\therefore \quad \frac{C B}{B A}=\frac{C A}{A D} .
$$

i.e., the hypotenuse is to one side as the other side is to the perpendicular.

Problem 5

To find the mean proportional between two given straight lines.

From a st. line cut off $A B, B C$ respectively equal to the two given st. lines.

It is required to find the mean proportional to $A B, B C$.
On AC as diameter describe a semi-circle ADC. From B draw $B D \perp A C$ and meeting the arc $A D C$ at D.
$B D$ is the required mean proportional.
Join AD, DC.
Probf.- $\quad \because$ ADC is a semi-circle,
$\therefore \angle A D C$ is a rt. \angle. (III-9, p. 160.)
In $\triangle A D C, \angle A D C$ is a rt. \angle, and $D B \perp A C$.
$\therefore \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{DB}}{\mathrm{BC}} . \quad$ (IV-12, Cor. 1, p. 245.)
$\therefore \mathrm{BD}$ is the mean proportional between $A B$ and $B C$.

Rectangles
Theorem 13
If four straight lines are proportionals, the rectangle contained by the means is equal to the rectangle contained by the extremes.

Hypothesis.-A, B, C, D are four st. lines such that $\frac{A}{B}=\frac{C}{D}$.

To prove that rect. B.C $=$ rect. A.D.
Let a, b, c, d be the numerical measures of A, B, c, D respectively.

$$
\begin{aligned}
& \text { Then } \quad \begin{aligned}
& a= \\
& \bar{b}
\end{aligned} \\
& \therefore \quad b c=a d .
\end{aligned}
$$

But $b c$ is the numerical measure of B.C and $a d$ is the numerical measure of A.D,
\therefore rect. B.C $=$ rect. A.D.

Theorem 14

(Converse of Theorem 13)
If two rectangles are equal to each other, the length of one is to the length of the other as the breadth of the second is to the breadth of the first.

Hypothesis.-Rect. $\mathrm{ABCD}=$ rect. EFGH.
To prove $\quad \frac{\mathrm{BC}}{\mathrm{FG}}=\frac{\mathrm{EF}}{\mathrm{AB}}$.
Proof.-Let a, b, c, d be the numerical measures of BC, BA, FG, EF respectively.

Then since the rectangles are equal,

$$
\begin{aligned}
a b & =c d . \\
\therefore \frac{a}{c} & =\frac{d}{b}, \\
\therefore \frac{B C}{F G} & =\frac{E F}{A B} .
\end{aligned}
$$

Alternative proof of the Pythagorean Theorem. (II-13, p. 122.)

The square on the hypotenuse of a right-angled triangle equals the sum of the squares on the other two sides.

Hypothesis.-BAC is a \triangle having $\angle B A C$ a rt. \angle, ard having squares described on the three sides.

To prove that $\mathbf{B C}^{2}=\mathbf{B A}^{2}+\mathbf{A C}^{2}$.
Construction.-Draw AD \perp BC.
Proof.- \because BAC is a rt. $-\angle \mathrm{d} \triangle$ with $A D \perp$ the hypotenuse BC,

$$
\begin{array}{ll}
\therefore & \frac{B C}{B A}=\frac{B A}{B D} \cdot(\text { IV }-12, \text { Cor. } 2, \text { p. 245. }) \\
\therefore & B A^{2}=B C . B D . \quad(I V-13, \text { p. 247.) }
\end{array}
$$

Similarly $\quad C A^{2}=B C . C D$.

$$
\begin{aligned}
\therefore \quad B^{2}+C A^{2} & =B C \cdot B D+B C \cdot C D \\
& =B C(B D+C D) \\
& =B C \cdot B C \\
& =B C^{2} \\
\text { i.e., } B^{2} C^{2} & =B A^{2}+C A^{2} .
\end{aligned}
$$

128.-Exercises

1. Give a general enunciation of IV-12, Cor. 1.
2. Give a general enunciation of IV-12, Cor. 2.
3. Give an alternative proof of IV-13, using the construction indicated in the following diagram :-

$\frac{A B}{C D}=\frac{E F}{G H} . \quad$ In the rectangles $N L, R L, K L=A B, L M=G H$, $P L=C D$ and $L Q=E F$.

Using a similar construction give also an alternative proof of IV-14.
4. In any two equal $\triangle s A B C, D E F$, if $A G, D H$ be $\perp s$ to $B C, E F$ respectively, $A G: D H=E F: B C$.
5. In any \triangle the $\perp \mathrm{s}$ from the vertices to the opposite sides are inversely as the sides.
6. In the diagram of $I V-12$, show that rect. $A D \cdot B C=$ rect. BA.AC. Give a general statement of this theorem.
7. $A B C, D E F$ are two equal $\triangle s$ having also $\angle B=\angle E$. Show that $\frac{B C}{E F}=\frac{D E}{A B}$.
8. $A B C D, E F G H$ are two equal $\| g m s$ having also $\angle B=$ $\angle F$. Show that $\frac{B C}{F G}=\frac{F E}{B A}$.
9. $A B C D$ is a given rect. and $E F$ a given st. line. It is required to make a rect. equal in area to $A B C D$ and having one of its sides equal to $E F$.
10. Make a rect. equal in area to a given \triangle and having one of its sides equal to a given st. line.
11. Show how to construct a rect. equal in area to a given polygon and having one of its sides equal to a given st. line.
12. If from any point on the circumference of a circle a \perp be drawn to a diameter, the square on the \perp equals the rect. contained by the segments of the diameter.
13. Construct a square equal to a given rect.
14. Construct a square equal to a given $\| g m$.
15. Construct a square equal to a given \triangle.
16. Draw a square having its area 12 sq. inches.
17. Divide a given st. line into two parts such that the rect. contained by the parts is equal to the square on another given st. line.
18. If a st. line be divided into two parts, the rect. contained by the parts is greatest when the line is bisected.
19. $A B$ and C are two given st. lines. Find a point D in $A B$ produced such that rect. $A D . D B=s q$. on C.
20. Construct a rect. equal in area to a given square and having its perimeter equal to a given st. line.

When will the solution be impossible?
21. Show how to construct a square equal in area to a given polygon.
22. In the corresponding sides $B C, E F$ of the similar $\triangle s$ $A B C, D E F$ the points G, H are taken such that $B G: G C=$ EH:HF. Prove AG:DH = BC:EF.

Chords and Tangents

Theorem 15

If two chords intersect within a circle, the rectangle contained by the segments of one is equal to the rectangle contained by the segments of the other.

Hypothesis.-In the circle ABC, the chords AC, BD intersect at E .

To prove that rect. $\mathrm{AE} . \mathrm{EC}=$ rect. $\mathrm{BE} . \mathrm{ED}$.
Construction.-Join AB, CD.
Proof.- $\because \angle S A B D, A C D$ are in the same segment,

$$
\begin{equation*}
\therefore \angle A B D=\angle A C D . \tag{III-7,p.156.}
\end{equation*}
$$

Similarly, $\angle B A C=\angle B D C$.
And
$\angle A E B=\angle C E D$.
$\therefore \triangle \mathrm{AEB}\|\| \mathrm{DCE}$.
$\therefore \quad \frac{A E}{E D}=\frac{B E}{E C}$.
(IV-8, p. 236.)
\therefore rect. $A E . E C=$ rect. BE.ED. $(I V-13$, p. 247. $)$

Theorem 16

(Converse of IV-15)
If two straight lines cut each other so that the rectangle contained by the segments of one is equal to the rectangle contained by the segments of the other, the four extremities of the two straight lines are concyclic.

Hypothesis -The st. lines $\mathbf{A B}, \mathbf{C D}$ cut at E so that rect. $\mathrm{AE} . \mathrm{EB}=$ rect. CE.ED.

To prove that A, C, B, D are concyclic.
Construction.-Describe a circle through A, C, B, and let it cut ED, produced if necessary, at F.

Proof.- $\quad \because A B, C F$ are chords of a circle,
$\therefore A E . E B=C E . E F . \quad(I V-15$, p. 252.)
But, AE.EB = CE.ED.
(Hyp.)
$\therefore C E . E F=C E . E D$.
And $\therefore \quad E F=E D$.
$\therefore F$ coincides with D,
and the points A, C, B, D are concyclic.

Theorem 17
If from a point without a circle, a secant and a tangent are drawn, the square on the tangent is equal to the rectangle contained by the secant, and the part of it without the circle.

Hypothesis.-PA is a tangent and PCB a secant to the circle ABC.

To prove that $\mathrm{PA}^{2}=\mathrm{PB} . \mathrm{PC}$.
Construction.-Join AB, AC.
Proof.- \because AP is a tangent, and AC is a chord from the same point A,

$$
\therefore \angle \mathrm{PAC}=\angle \mathrm{ABC} . \quad(\mathrm{III}-15, \mathrm{p} .177 .)
$$

In $\triangle s$ PAB, PCA, $\left\{\begin{array}{l}\angle P \text { is common, } \\ \angle P B A=\angle P A C, \\ \text { and } \therefore, \angle P A B=\angle P C A,\end{array}\right.$
$\therefore \triangle P A B\|\| P C A$.
$\therefore \frac{P B}{P A}=\frac{P A}{P C}$.
(IV-8, p. 236.)
$\therefore \mathrm{PA}^{2}=\mathrm{PB} . \mathrm{PC}$.
(IV-13, p. 247.)

Theorem 18

(Converse of IV-17)
If from a point without a circle two straight lines are drawn, one of which is a secant and the other meets the circle so that the square on the line which meets the circle is equal to the rectangle contained by the secant and the part of it without the circle, the line which meets the circle is a tangent.

Hypothesis.-PA and PBC are drawn to the circle ABC so that $\mathrm{PA}^{2}=\mathrm{PB} . \mathrm{PC}$.

To prove that PA is a tangent.
Construction.-Join AB, AC.
Proof.-In $\triangle \mathrm{S} P A B, \mathrm{PAC}, \angle \mathrm{P}$ is common, and $\because \quad \mathrm{PA}^{2}=\mathrm{PB} . \mathrm{PC}$,
$\therefore \quad \frac{P A}{P B}=\frac{P C}{P A} . \quad(I V-14$, p. 248.)
$\therefore \triangle P A B \| \triangle P C A . \quad$ (IV-10, p. 241.)
$\therefore \angle \mathrm{PAB}=\angle \mathrm{PCA}$.
\therefore PA coincides with the tangent
at A. (III-15, p. 177.)
i.e., PA is a tangent to the circle.

Note.-Prove this proposition with the following construction :-Draw a tangent from \mathbf{P}, and join the point of contact and the points A, P to the centre.

129.-Exercises

1. $P A B, P C D$ are two secants drawn from a point P without a circle. Show that rect. PA.PB $=$ rect. PC.PD.

From this exercise deduce a proof for IV-17.
2. If in two st. lines PB, PD points A, C respectively be taken such that rect. PA.PB $=$ rect. PC.PD, the four points A, B, C, D are concyclic.
3. If two circles intersect, their common chord bisects their common tangents.

- 4. If two circles intersect, the tangents drawn to them from any point in their common chord produced are equal to each other.

※

5. Through P any point in the common chord, or the common chord produced, of two intersecting circles two lines are drawn cutting one circle at A, B and the other at C, D. Show that A, B, C, D are concyclic.
6. Through a point P within a circle, any chord $A P B$ is drawn. If O be the centre, show that rect. $\mathrm{AP} . \mathrm{PB}=$ $O A^{2}-O P^{2}$.
7. From any point P without a circle any secant $P A B$ is drawn. If O be the centre, show that rect. $\mathrm{PA} . \mathrm{PB}=$ $O P^{2}-O A^{2}$.
8. From a given point as centre describe a circle cutting a given st. line in two points, so that the rectangle contained by their distances from a given point in the st. line may be equal to a given square.

- 9. Describe a circle to pass through two given points and touch a given st. line.

10. If three circles be drawn so that each intersects the other two, the common chords of each pair meet at a point.
11. Find a point D, in the side $B C$ of $\triangle A B C$, such that the sq. on $A D=$ rect. $B D . D C$. When is the solution possible?
12. Use IV-17 to find a mean proportional to two given st. lines.
13. P is a point at a distance of 7 cm . from the centre of a circle. PDE is a secant such that $P D=5 \mathrm{~cm}$. and $D E=3 \mathrm{~cm}$. Find the length of the radius of the circle.
14. In a circle of radius 4 cm . a chord DE is drawn 7 cm . in length. F is a point in $D E$ such that $D F=5 \mathrm{~cm}$. Find the distance of F from the centre of the circle.
15. DEF is an isosceles \triangle in which $E D=E F$. A circle, which passes through D and touches $E F$ at its middle point cuts DE at H. Prove that $\mathrm{DH}=3 \mathrm{HE}$.
16. In a circle two chords DE, FG cut at H. Prove that $(F H-H G)^{2}-(D H-H E)^{2}=F^{2}-D^{2}$.
17. LND, MNE are two chords intersecting inside a circle and LM is a diameter. Prove that

$$
L N \cdot L D+M N \cdot M E=L M^{2} .
$$

18. DEF, HGF are two circles and DFG is a fixed st. line. Show how to draw a st. line EFH such that EF.FH = DF.FG.
19. P is a point in the diameter DE of a circle, and PT is the \perp on the tangent at a point Q. Prove that PT.DE = DP.PE + PQ².
20. P, Q, R, S are four points in order in the same st. line. Find a point O in this st. line such that $O P . O R=$ OQ.OS.
21. The tangent at \mathbf{P} to a circle, whose centre is \mathbf{O} meets two \|t tangents in Q, R. Prove that $\mathrm{PQ} . \mathrm{PR}=\mathrm{OP}^{2}$.

Miscellaneous Exercises

1. EFGH is a $\| g m, P$ a point in $E F$ such that $E P: P F=$ $m: n$. What fraction is $\triangle E P H$ of the $\| g m$?
2. $E F G H$ is a $\| g m, P$ is a point in the diagonal $F H$ such that FP:PH=2:5. What fraction of the $\| \mathrm{gm}$ is \triangle EFP? If FP: PH $=m: n$ find the fraction.
3. EFGH is a $\| g m, P$ is a point in the diagonal FH produced such that $\mathrm{FP}: \mathrm{PH}=9: 5$. What fraction of the $\| \mathrm{gm}$ is the \triangle PEH?
4. KLMN is a $\| \mathrm{gm}$. Any st. line EKG is drawn cutting the sides ML and MN produced at E and G. Show that half the $\| g m$ is a mean proportional between $\triangle s$ EKL and NKG.
5. The $\triangle P Q R$ has $P Q$ and $Q R$ divided at D and E such that $P D: D Q=Q E: E R=1: 3$. $P E$ and $R D$ intersect at O. Find the ratios of the $\triangle s$ PDO:OPR:OER:PQR.
6. D and E are points in $P Q$ and $P R$ sides of the \triangle $P Q R$ such that $Q D: D P=P E: E R=m: n$. Compare the areas of the $\triangle S$ QDE and DER.
7. Either of the complements of the $\| g m s$ about the diagonal of a $\| \mathrm{gm}$ is a mean proportional between the two $\| g m s$ about the diagonal.
8. LMN is an isosceles \triangle having $L M=L N$, LD is perpendicular to $M N, P$ is a point in LN such that LP:LM $=1: 3$. Prove that MP bisects LD.
9. Through E one of the vertices of a rectangle EFGH any st. line is drawn, and $H P$ and $F Q$ are $\perp s$ to PEQ. Prove $P E . E Q=H P . F Q$.
10. DEF is a \triangle, P and Q are points in $D E$ and $D F$, and $D P: P E=3: 5$ and $D Q: Q F=7: 8$. In what ratio is $P Q$ cut by the median DG?
11. DEFG is a $\| \mathrm{gm}$, and $\mathbf{E F}$ is produced to K so that $F K=E F ; D K$ cuts $E G$ at P. Show that $G P=\frac{1}{3} E G$.
12. The diagonals of the \|gm EFGH intersect at O; if E be joined to the middle point \mathbf{P} of OH , and EP and FG meet at K, find GK:EH.
13. DEF is a right-angled \triangle, E being the right angle. G is taken in $D E$ produced such that $D G: G F=D F: E F$. Prove that $\angle D F G$ is right.
14. If the perpendicular to the base of a \triangle from the vertex be a mean proportional to the segments of the base, the triangle is right angled.
15. DGH is any \triangle, and from K the middle point of GH a line is drawn cutting $D H$ at E and $G D$ produced at F. Prove GF:FD = HE:ED. Prove the converse also.
16. $A D$ and $A E$ are the interior and exterior bisectors of the vertical angle of $\triangle A B C$ meeting the base at D and E. Through C, FCG is drawn \| to $A B$ meeting $A D$ and $A E$ at F and G. Prove that $F C=C G$.
17. HKL is an isosceles \triangle, having $H K=H L$; $K L$ is produced to D and DEF is drawn cutting HL at E, and HK at F. Prove DE:DF $=E L: K F$.
18. DP and DQ are perpendiculars to the bisectors of the interior angles \mathbf{E} and F of any $\triangle \mathbf{D E F}$. Prove $P Q \| E F$.
19. $P X$ and $Q Y$ are perpendiculars from P and Q to $X Y$; $P Y$ and $Q X$ intersect at R, and $R Z$ is perpendicular to $X Y$. Prove $\angle P Z X=\angle Q Z Y$.
20. $A B C$ is any \triangle, and $A D$ is taken along $A C$ such that $A C: A B=A B: A D$; also $C F$ is taken along $A C$ such that $\mathrm{AC}: \mathrm{CB}=\mathrm{CB}: \mathrm{CF}$. Prove $\mathrm{BF}=\mathrm{BD}$.
21. The perpendicular KD to the hypotenuse HL of a right-angled $\triangle K H L$ is produced to E such that KD:DH = DH:DE. Prove HE || KL.
22. DEF is a \triangle inscribed in a circle, and P and Q are taken in DE and DF such that DP:PE = DQ QF. Show that the circle described about $\mathbf{D}, \mathrm{P}, \mathbf{Q}$ touches the given circle at D.
23. D is a point in $L M$ a side of $\triangle L M N, D E$ is $\|$ to MN and EF || to LM, meeting the sides at E and F. Prove LD: DM = MF:FN.
24. A variable line through a fixed point O meets two $\|$ st. lines at P and Q. Prove $O P: O Q$ a constant ratio.
25. If the nonparallel sides of a trapezium are cut in the same ratio by a st. line, show that this line is \|t to the \| sides.
26. $A B C D E$ is a polygon, O a point within it. If X, Y, Z, P, Q are points in $O A, O B, O C, O D, O E$ such that $O X$: $O A=O Y: O B=$ etc., show that the sides of $X Y Z P Q$ are \| to those of $A B C D E$.
27. $D E$ is a st. line, F any point in it; find a point P in DE produced such that PD:PE = DF:FE.
28. St. lines $P D, P E, P F$ and $P G$ are such that each of the $\angle S$ DPE, EPF, $F P G$ is equal to half a right angle. DEFG cuts them such that PD $=P$ PG. Prove that $D G: F G$ $=F G: E F$.
29. $G H$ is a chord of a circle, K and D points on the two ares respectively; $K H$ and $K D$ are joined and GD meets KH produced at E;EF\| to GH meets KD produced. Show that $E F$ is equal to the tangent from F.
30. DEF, DEG are two circles, the centre P of DEG being on the circumference of DEF. A st. line PHGF cuts the common chord at H. Prove that $P H: P G=P G: P F$.
31. $E F$ is the diameter of a circle. $P Q$ is a chord \perp to EF, a chord QXR cuts EF at X, and PR, EF produced meet at Y. Show that EX:EY = FX:FY.
32. O is a fixed point and P a variable point on the circumference of a circle; PO is produced to Q such that $\mathrm{OQ}: \mathrm{OP}=m n$. Find the locus of Q .
33. LMN is a \triangle inscribed in a circle, $L L$ is bisected by LED cutting MN at E and the arc at D. Prove $\triangle s$ LEN and LMD similar.
34. The $\angle \mathrm{D}$ of the $\triangle \mathrm{DEF}$ is bisected by DP cutting $E F$ in $P ; Q P R$ is \perp to $D P$ meeting $D E$ and $D F$ at Q and R; RS is $\|$ to $E F$ meeting $D E$ at S. Prove $S E=E Q$.
35. AOB, COD and EOF are any three st. lines; ACE is $\|$ to FDB. Prove $\mathrm{AC}: \mathrm{CE}=\mathrm{BD}: \mathrm{DF}$. State and prove a converse to this theorem.
36. Two circles DEF and DEG intersect; a tangent DF is drawn to DEG, and EG to DEF. Show that DE is a mean proportional between FE and DG.
37. $\mathbf{E F G H}$ is a quadrilateral, the diagonals $\mathbf{E G}$ and $\mathbf{F H}$ meet at Q . Prove $\triangle \mathrm{EFH}: \triangle \mathrm{FGH}=\mathrm{EQ}: \mathrm{QG}$.
38. EFGH is a quadrilateral of which the sides EH and FG produced meet at P. Prove $\triangle E F G: \triangle F G H=E P:$ PH.
39. G is the middle point of the st. line MN, PE a st. line $\|$ to MN. Any st. line EFGH cuts PN at \mathbf{F} and PM produced at H. Prove EF:FG = EH:HG.
40. $A B C$ is a \triangle having $\angle B=\angle C=$ twice $\angle A, B D$ bisects the $\angle B$ meeting $A C$ at D. Prove $A C: A D=A D$: $D C ;$ also prove $\triangle A B C: \triangle A B D=\triangle A B D: \triangle B D C$.
41. EFGH is a cyclic quadrilateral, EG and FH intersect at O, and $O P$ and $O Q$ are \perp s to $E H$ and $F G$. Show that $O P: O Q=E H: F G$.
42. $E F$ is the diameter of a circle and P and Q any points on the circumference on opposite sides of $E F ; Q R$ is \perp to $E F$ meeting $E P$ at S. Prove $\triangle E S Q\|\| E Q P$.
43. $A B C$ is a \triangle inscribed in a circle, centre $O, A D$ a \perp to $B C, A O E$ a diameter. Prove $\triangle s A D C$ and $A B E$ similar : and $A D \cdot A E=A B . A C$.
44. EFG is a \triangle inscribed in a circle, $E D \|$ to the tangent at G meets the base at D. Prove that $F G: F E=E G: E D$.
45. Find the ratio of the segments of the hypotenuse of a right- $\angle \mathrm{d} \triangle$ made by a perpendicular on it from the vertex, if the ratio of the sides be (1) $1: 2$; (2) $m: n$.
46. PQ is the diameter of a circle; a tangent is drawn from a point R on the circumference, PS and QT are \perp to the tangent. Prove $\triangle s$ PRQ, RPS and RTQ similar ; also show that $\triangle P R Q$ is half of PSTQ.
47. $P Q$ and $P R$ are tangents to a circle, PST is a secant meeting the circle at S and T. Prove $Q T: Q S=R T: R S$.
48. Two circles intersect at E and F; from P, any point on one of them, chords PED, PFG are drawn, EF and DG meet at Q and $P Q$ cuts the circle PEF at R. Prove R, F, G, Q concyclic; also that $P Q^{2}$ is equal to the sum of the squares on the tangents to the circle EFGD from P and Q.
49. PBR is a st. line, and similar segments of circles, $P A B$ and $B A R$, are described on $P B$ and $B R$ and on the same side of PR. PAC and RAD are drawn to meet the circles at C and D. Prove PD: RC = PB: BR.

Note.-Segments of circles are said to be similar when they contain equal angles.
50. $P M Q$ is the diameter of a circle $P R Q, P X$ and $Q Y$ are || tangents, $X R Y$ is any other tangent, $P Y$ and $X Q$ meet at O. Show that RO is \| to PX; that RO produced to \mathbf{M} is \perp to the diameter ; and that $M O=O R$.
51. $A B C D$ is a rectangle, a st. line $A P Q R$ is drawn cutting $B C$ at P, the circle circumscribing the rectangle at Q and DC produced at R, and such that $A C$ bisects \angle DAR. Prove DC: CR = PQ:PA.
52. PQRS is a square. A st. line PFED cuts QS at F , SR at E and $Q R$ produced at D. Prove $F R$ a tangent to the circle described about DER; also that EF:PF=PF:FD.
53. FGHK is a cyclic quadrilateral, the $\angle \mathrm{GFE}$ is made equal to $\angle H F K$ and E is in GK. Prove $\triangle s$ FEK and FGH similar.
54. PA and PB are tangents to a circle, centre O, AB meets $P O$ in R; PCD is any secant, $O S$ is \perp to $P D$, and $A B$ and $O S$ produced meet at Q. Prove (1) P, R, S, Q concyclic ; (2) PO.OR $=\mathrm{OA}^{2}$; (3) QD and QC are tangents to the given circle.
55. DEF is a \triangle and P and Q are points in $E D$ and $F E$ such that $E P: P D=F Q: Q E$, and $P Q$ meets $D F$ produced at R. Prove $\mathrm{RF}: \mathrm{RD}=\mathrm{PE}^{2}: \mathrm{PD}^{2}$. (Through F draw a st. line $\|$ to DE to meet PR.)
56. If a square is inscribed in a rt.- $\angle d \triangle$ having one side on the hypotenuse, show that the three segments of the base are in continued proportion.
57. FGH is a \triangle and $\angle \mathrm{G}$ and $\angle \mathrm{H}$ are bisected by st. lines which cut the opposite sides at \mathbf{D} and E ; if DE is $\|$ to $\mathbf{G H}$, then $\mathrm{FG}=\mathrm{FH}$.
58. From \mathbf{P}, the middle point of an arc of a circle cut off by a chord $Q R$, any chord PDE is drawn cutting $Q R$ at D. Show that $\mathrm{PQ}^{2}=\mathrm{PD} . \mathrm{PE}$.
59. Draw a st. line through a given point so that the perpendiculars on it from two other given points may be (1) equal, (2) one twice the other, (3) three times the other, (4) in a given ratio.
60. LMN is an isosceles \triangle, the base $M N$ is produced both ways, in NM produced any point \mathbf{P} is taken, and in MN produced $N Q$ is taken a third proportional to PM and LM. Prove $\triangle s$ PLQ and PLM similar.
61. EDOF is the diameter of a circle, centre O. PE and PG are tangents to the circle; GD is \perp to EF. Prove GD: $D E=O E: E P$.
62. DEF is a \triangle inscribed in a circle, centre O. The diameter \perp to $E F$ cuts $D E$ at P and $F D$ produced at Q. Prove $\triangle \mathrm{s}$ EPO and FOQ similar ; and hence $\mathrm{OE}^{2}=\mathrm{OP} . \mathrm{OQ}$.
63. $A B C$ is a \triangle inscribed in a circle. The exterior \perp at A is bisected by a st. line cutting BC produced at D and the circumference at E. Prove BA.AC = EA.AD.
64. EFGH is a cyclic quadrilateral, P a point on the circumference, PQ, PR, PS, PT are \perp to EF, FG, GH, HE respectively. Prove $\triangle s$ PTQ and PSR similar ; and PT.PR = PS.PQ.
65. Any three \| chords AB, CD, EF are drawn in a circle, $A C$ and $B D$ meet $E F$ produced at Q and R, P is a point in the $\operatorname{arc} E F$, and PA and PD meet EF at M and N. Prove $\triangle s$ AQM and NDR similar ; hence show that, for all positions of $P, Q M$.NR is constant.
66. Two tangents TMP and TNQ are drawn to a circle, centre O; and the st. line POQ is \perp to TO. MN is any other tangent to the circle. Prove $\triangle s$ MPO and NQO similar.
67. DH is a median of the $\triangle \mathrm{DEF}, \mathrm{PQ}$ is \| to EF cutting $D E$ at P and DF at Q. Show that PF and EQ intersect on DH.
68. LNM is a \triangle inscribed in a semicircle, diameter LM. NM is greater than NL. On opposite sides of LN the $\angle L N P$ is made equal to $\angle L N Q, P$ and Q lying along LM. Prove $P L: L Q=P M: Q M$.
69. EFGH is a $\| g m$, and RS is drawn $\|$ to HF meeting EH and EF at R and S. Show that RG and SG cut off equal segments of the diagonal FH. Prove a converse of this.
70. $\mathbf{A B C}$ is a \triangle and $\mathbf{A B}, \mathbf{A C}$ are produced to \mathbf{D}, \mathbf{E} so that $B D=C E ; D E$ and $B C$ produced meet at F. Show that $A D: A E=F C: F B$.
71. Two circles, centres O, P intersect, the centre O being on the circumference of the other circle. GDE touches the circle with centre O at \mathbf{G} and cuts the other at D, E, and EPF is a diameter. Prove \triangle OGD III \triangle DEF; and hence, that OD.OE is constant for all positions of the tangent.
72. Two circles touch externally at P; EF a chord of one circle toucles the other at D. Prove PE:PF=ED:DF.
73. EOF is the diameter of a circle, with centre O , DP any chord cutting the diameter; OSQR \perp to DP meets $D P$ at $S, D E$ at Q, and $P E$ at R. Prove $\triangle s$ EDF and RSP similar ; also $O Q . O R=O D^{2}$.
74. Divide an arc of a circle into two parts so that the chords which cut them off shall' have a given ratio to each other.
75. LMN is a \triangle, and $X Y \| M N$ meets LM at X and $L N$ at $\mathbf{Y} ; \mathbf{M N}$ is produced to \mathbf{D} so that $\mathbf{N D}=\mathbf{X Y}$, and $\mathbf{X P} \|$ to $\mathbf{L D}$ meets MN at P. Prove MN: ND = ND : NP.
76. Two circles intersect and a st. line CDOEF cuts the circumferences at C, D, E, F and the common chord at \mathbf{O}. Show that CD: DO = EF:OE
77. $D X \perp E F$ and $E Y \perp D F$ in $\triangle D E F$. The lines $D X$, $E Y$ cut at O. Prove that $E X: X O=D X: X F$.
78. From a point \mathbf{P} without a circle two secants PKL, PMN are drawn to meet the circle in K, L, M, N. The bisector of \angle KPM meets the chord KM at \mathbf{E} and the chord LN at F. Prove that $\mathrm{LF}: \mathrm{FN}=\mathrm{ME}: E K$
79. QR is a chord $\|$ to the tangent at \mathbf{P} to a circle. A chord $P D$ cuts $Q R$ at E. Prove that $P Q$ is a mean proportional between PE and PD.
80. DEF, DEG are two fixed circles and FEG is a st. line. Show that the ratio FD: DG is constant for all positions of the st. line FEG.
81. DEF is a st. line, and EG, FH are any two \| st. lines on the same side of DEF such that EG: FH = DE: DF. Prove that D, G, H are in a st. line.
82. From a given point on the circumference of a circle draw two chords which are in a given ratio and contain a given L.
83. DEF is a \triangle and on DE, DF two $\triangle s$ DLE, DFM are described externally such that $\angle F D M=\angle E D L$ and $\angle D F M=$ \angle DLE. Prove \triangle DLF $\|\| \triangle$ DEM.
84. DEFG is a $\| g m$ and P is any point in the diagonal EG. The st. line KPL meets DE at K and FG at L, and MPN meets EF at M and GD at N. Prove KM \| NL.
85. $A B C D$ is a $\| g m$ and $P Q$ is a st. line $\| A B$. The st. lines PA, QB meet at R and PD, QC meet at S. Prove RS \| AD.
86. If the three sides of one \triangle are respectively \perp to the three sides of another \triangle, the two $\triangle s$ are similar.
87. Find a point whose \perp distances from the three sides of a \triangle are in the ratio $1: 2: 3$.
88. Squares are described each with one side on one given st. line and one vertex on another given st. line. Find the locus of the vertices which are on neither.
89. If the sides of a $\mathrm{rt} .-\angle \mathrm{d} \triangle$ are in the ratio $3: 2$, prove that the \perp from the vertex of the rt. L to the hypotenuse divides it in the ratio $9: 4$.
90. $H K$ is a diameter of a circle and L is any point on the circumference. A st. line $\perp \mathrm{HK}$ meets HK at D, HL at $E, K L$ at G, and the circumference at F. Show that $D F^{2}=D E . D G$.
91. The st. line joining a fixed point to any point on the circumference of a given circle is divided in a given ratio at \mathbf{P}. Prove that the locus of \mathbf{P} is a circle.
92. DEFG is a quadrilateral and $\mathbf{P}, \mathbf{Q}, \mathrm{R}, \mathrm{S}$ are points on $D E, E F, F G, G D$ such that $D P: D E=F Q: F E=F R: F G=$ DS: DG. Prove that PQRS is a $\| \mathrm{gm}$.
93. DEFG is a $\| \mathrm{gm}$, and a line is drawn from \mathbf{E} cutting DF in P, DG in Q and $F G$ produced in R. Prove that $\mathrm{PQ}: P R=\mathrm{DP}^{2}: \mathrm{PF}^{2}$; and that $\mathrm{PQ} . \mathrm{PR}=E \mathrm{P}^{2}$.
94. If $\triangle \mathrm{DEF}: \triangle \mathrm{GHK}=\mathrm{DE} . \mathrm{EF}: \mathrm{GH} . \mathrm{HK}$, prove that $\angle \mathrm{s}$ E, H are either equal or supplementary.
95. From a point P without a circle draw a secant $P Q R$, such that $Q R$ is a mean proportional between $P Q$ and $P R$.
96. Through a point of intersection of two circles draw a line such that the chords intercepted by the circles are in a given ratio.
97. If two $\Delta \mathrm{s}$ are on equal bases and between the same $\| \mathrm{s}$, the intercepts made by the sides of the $\Delta \mathrm{s}$ on any st. line $\|$ to the base are equal.
98. The radius of a fixed circle is 38 mm ., and a chord LM of the circle is divided at \mathbf{P} such that LP.PM $=225 \mathrm{sq} . \mathrm{mm}$. Construct the locus of P .
99. If the tangents from a given point to any number of intersecting circles are all equal, all the common chords of the circles pass through that point.
100. Circles are described passing through two fixed points; find the locus of a point from which the tangents to all the circles are equal.
101. DEF is a \triangle having $\angle E$ a rt. \angle. A circle is described with centre D and radius $D E ;$ from F a secant is drawn cutting the circle at G, H; and $E X$ is drawn $\perp \mathrm{DF}$. Show that D, X, G, H are concyclic.
102. GD is a chord drawn $\|$ to the diameter $L M$ of a circle. LG, LD cut the tangent at M at E, F respectively. Prove that LG.GE + LD.DF $=$ LM 2.
103. LM is a diameter of a circle, and on the tangent at L equal distances LP, $P Q$ are cut off. MP, MQ cut the circumference at R, S respectively. Prove that LR:RS $=$ LM : MS.
104. GH drawn in the $\triangle D E F$ meets $D E$ in G and $D F$ in H. From D any line DLK is drawn cutting GH in L and EF in K. From L the st. lines LM, LN are drawn || KH, KG and meeting DH, DG at \mathbf{M}, N respectively. Prove $\triangle L M N\|\| \angle H G$.
105. In a given \triangle inscribe an equilateral \triangle so as to have one side $\|$ to a side of the given \triangle.
106. In a given $\triangle D E F$ draw a st. line $P Q$ '\| ED meeting $E F$ in P and $D F$ in Q, so that $P Q$ is a mean proportional between EP and PF.
107. Two circles intersect at E, F, and DEG is the st. line $\perp E F$ and terminated in the circumferences. HEK is any other st. line through E terminated in the circumferences. HF, DF, KF, GF are drawn. Prove, by similar $\triangle \mathrm{s}$, that $\mathrm{DG}>\mathrm{HK}$.
108. In $\triangle A B C$ the bisectors of $\angle A$ and of the exterior \angle at A meet the st. line $B C$ at D and E. Show that $\mathrm{DE}=\frac{2 a b c}{c^{2}-b^{2}}$.
109. If two circles intercept equal chords $P Q, R S$ on any st. line, the tangents PT, RT to the circles at P, R are to one another as the diameters of the circles.
110. DEF is a \triangle having DF $>D E$. From DF a part DG is cut off equal to $\mathbf{D E}$, and $\mathbf{G H}$ is drawn || DE to meet

EF at H. From GF a part GK is cut off equal to GH, and KL is drawn \| GH to meet EF at L; etc. Prove that DE, GH, KL, etc., are in continued proportion.
111. A circle \mathbf{P} touches a circle \mathbf{Q} internally, and also touches two $\|$ chords of Q. Prove that the \perp from the centre of \mathbf{P} on the diameter of \mathbf{Q} which bisects the chords is a mean proportional between the two extremes of the three segments into which the diameter is divided by the chords.
112. PX is the \perp from a point \mathbf{P} on the circumference of a circle to a chord $Q R$, and $Q Y, R Z$ are $\perp s$ to the tangent at \mathbf{P}. Prove that $\mathrm{PX}^{2}=\mathbf{Q Y} . R Z$.
113. Prove, by using 112 , that if $\perp \mathrm{s}$ are drawn to the sides and diagonals of a cyclic quadrilateral from a point on the circumference of the circumscribed circle, the rectangle contained by the $\perp s$ on the diagonals is equal to the rectangle contained by the $\perp \mathrm{s}$ on either pair of opposite sides.
114. The projections of two $\|$ st. lines on a given st. line are proportional to the st. lines.
115. DEFG is a square, and \mathbf{P} is a point in $G F$ such that $D P=F P+F E$. Prove that the st. line from D to the middle point of EF bisects \angle PDE.
116. DEF, GEF are Δs on opposite sides of EF, and DG cuts EF at H. Prove that $\triangle D E F: \triangle G E F=D H: H G$.
117. From the intersection of the diagonals of a cyclic quadrilateral $\perp \mathrm{s}$ are drawn to a pair of opposite sides: prove that these $\perp \mathrm{s}$ are in the same ratio as the sides to which they are drawn.
118. $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ are points in a st. line, $\mathbf{P X}\|\mathrm{QY}, \mathbf{R X}\| \mathbf{S Y}$, and $X Y$ meets $P S$ at O. Prove that $O P . O S=O Q . O R$.
119. From a point T without a circle tangents $T P, T Q$ and a secant TRS are drawn. Prove that in the quadrilateral PRQS the rect. PR.QS $=$ the rect. RQ.SP.

1

BOOK V

Areas of Similar Figures

Theorem 1

The areas of similar triangles are proportional to the squares on corresponding sides.

Hypothesis.-ABC, DEF are similar $\triangle \mathrm{s}$ of which BC, EF are corresponding sides.

To prove that $\quad \triangle \mathrm{ABC}=\frac{\mathrm{BC}^{2}}{\triangle \mathrm{EF}^{2}}$
Construction.-Draw $\mathrm{AH} \perp \mathrm{BC}$ and $\mathrm{DK} \perp \mathrm{EF}$.
Proof.- $\quad \because \triangle$ AHC III \triangle DKF,
And $\triangle A B C|!| \triangle D E F$,
$\therefore \quad \frac{A H}{D K}=\frac{A C}{D F}=\frac{B C}{E F} . \quad(I V-8$, p. 236.)
$\triangle A B C=\frac{1}{2} A H . B C,(I I-4, p .100$.
$\triangle \mathrm{DEF}=\frac{1}{2} \mathrm{DK} . \mathrm{EF}$,
$\therefore \quad \triangle A B C=\frac{1}{\triangle} \frac{A H}{\frac{1}{2}} \frac{1}{2} \mathrm{DK} \cdot \mathrm{BF}$
$=\frac{A H}{D K} \cdot \frac{B C}{E F}$
$=\frac{B C}{E F} \cdot \frac{B C}{E F}$
$=\frac{\mathrm{BC}^{2}}{E F^{2}}$.

130.-Exercises

1. Two similar $\triangle \mathrm{s}$ have corresponding sides in the ratio of 3 to 5 . What is the ratio of their areas?
2. The ratio of the areas of two similar Δs equals the ratio of 64 to 169 . What is the ratio of their corresponding sides?
3. Draw a \triangle having sides $4 \mathrm{~cm}, 5 \mathrm{~cm} ., 6 \mathrm{~cm}$. Make a second \triangle having its area four times that of the first, and divide it into parts each equal and similar to the first \triangle.
4. Show that the areas of similar $\triangle \mathrm{s}$ are as :-
(a) the squares on corresponding altitudes;
(b) the squares on corresponding medians;
(c) the squares on the bisectors of corresponding $\angle \mathrm{s}$.
5. $A B C, D E F$ are two similar $\triangle s$ such that area of \triangle $D E F$ is twice that of $\triangle A B C$. What is the ratio of corresponding sides?

Draw $\triangle A B C$ having sides $5 \mathrm{~cm} ., 6 \mathrm{~cm} ., 7 \mathrm{~cm}$., and make $\triangle D E F$ similar to $\triangle A B C$, and of double the area. \checkmark 6. If $A B C, D E F$ be similar $\triangle s$ of which $B C, E F$ are corresponding sides, and the st. line G be such that $B C: E F=E F: G$, then $\triangle A B C: \triangle D E F=B C: G$; that is :-

If three st. lines be in continued proportion, the first is to the third as any \triangle on the first is to the similar \triangle similarly described on the second.

Note.-Similar Δs are said to be similarly described on corresponding sides.
7. $A B C$ is a \triangle and G is a st. line. Describe a $\triangle D E F$ similar to $\triangle A B C$ and such that $\triangle A B C: \triangle D E F=B C: G$.

Describe another $\triangle H K L$ similar to $\triangle A B C$ and such that $\triangle A B C: \triangle H K L=A B: G$.
8. Bisect a given \triangle by a st. line drawn $\|$ to one of its sides.
9. From a given \triangle cut off a part equal to one-third of its area by a st. line drawn $\|$ to one of its sides.
10. Trisect a given \triangle by st. lines drawn $\|$ to one of its sides.
11. Show that the equilateral \triangle described on the hypotenuse of a rt.- $\angle d \triangle$ equals the sum of the equilateral Δs on the two sides.
12. In $\triangle D E F, D X \perp E F$ and $E Y \perp F D$. Prove that \triangle FXY: $\triangle \mathrm{DEF}=\mathrm{FX}^{2}: \mathrm{FD}^{2}$.
13. In the acute- $\angle \mathrm{d} \triangle \mathrm{DEF}, \mathrm{DX} \perp \mathrm{EF}, \mathrm{EY} \perp \mathrm{FD}$, $F Z \perp D E, Y G \perp E F$ and $Z H \perp E F$. Prove that $X Y$ and $X Z$ divide the $\triangle D E F$ into three parts that are proportional to FG, GH and HE .
14. LMN is an equilateral \triangle. The st. lines RLQ, PMR, QNP are respectively $\perp \mathrm{LM}, \mathrm{MN}, \mathrm{NL}$. Find the ratio of $\triangle \mathrm{PQR}$ to $\triangle \mathrm{LMN}$.
15. A point O is taken in the diameter PQ produced of a circle. OT is a tangent, and the tangent at P cuts OT at N. If D is the centre of the circle, prove that $\triangle O P N: \triangle O T D=O P: O Q$.
16. H is a point on the circumference of a circle of which $F G$ is a diameter, and O is the centre. $\mathrm{HD} \perp \mathrm{FG}$, and tangents at F and H meet at E. Prove that $\triangle F E H$: $\triangle O H G=F D: D G$.
17. DEF, LMN are two $\triangle \mathrm{s}$ in which $\angle \mathrm{E}=\angle \mathrm{M}$. Prove that $\triangle \mathrm{DEF}: \triangle \mathrm{LMN}=\mathrm{DE} . \mathrm{EF}:$ LM.MN.
18. Similar $\Delta \mathrm{s}$ are to one another as the squares on the radii of their circumscribing circles.
131. Definition.-If two polygons of the same number of sides have the angles of one taken in order around the figure respectively equal to the angles of the other in order, and have also the corresponding sides in proportion, the polygons are said to be similar polygons.

Problem 1

To describe a polygon similar to a given polygon, and with the corresponding sides in a given ratio.

Let $A B C D E$ be the given polygon, and $G H$ a st. line taken such that $A B$ is to $G H$ in the given ratio.

It is required to describe on $\mathbf{G H}$ a polygon similar to $A B C D E$ and such that $A B$ and $G H$ are corresponding sides.

Join AC, AD.
Make $\angle \mathrm{H}=\angle \mathrm{B}, \angle \mathrm{HGK}=\angle \mathrm{BAC}$ and produce the arms to meet at K . Make $\angle \mathrm{KGL}=\angle \mathrm{CAD}, \angle \mathrm{GKL}=$ $\angle A C D$, and produce the arms to meet at L. Make $\angle \mathrm{LGM}=\angle \mathrm{DAE}, \angle \mathrm{GLM}=\angle \mathrm{ADE}$ and produce the arms to meet at M.

GHKLM is the reguired polygon.

$$
\angle H=\angle B, \angle H G K=\angle B A C, \therefore \angle H K G=\angle B C A .
$$

Similarly $\angle \mathrm{GLK}=\angle \mathrm{ADC}$, and $\angle \mathrm{M}=\angle \mathrm{E}$.
Hence $\angle \mathrm{HKL}=\angle \mathrm{BCD}, \angle \mathrm{KLM}=\angle \mathrm{CDE}$ and $\angle \mathrm{HGM}$ $=\angle B A E$.
\therefore polygon GHKLM has its $\angle \mathrm{s}$ equal respectively to the $\angle \mathrm{s}$, of polygon $A B C D E$.

From the similar $\triangle \mathrm{S} G H K, A B C, \frac{\mathrm{GH}}{\mathrm{AB}}=\frac{\mathrm{HK}}{\mathrm{BC}}=\frac{\mathrm{KG}}{\mathrm{CA}}$; and from the similar $\triangle S G K L, A C D, \frac{K G}{C A}=\frac{K L}{C D}$;

$$
\therefore \frac{G H}{A B}=\frac{H K}{B C}=\frac{K L}{C D} .
$$

In the same manner it may be shown that each of these ratios equals $\frac{L M}{D E}$ and \therefore equals $\frac{M G}{E A}$.

Hence the corresponding sides of the two polygons are proportional; \therefore polygon GHKLM is similar to polygon $A B C D E$; and the two polygons have their corresponding sides in the given ratio.

132.-Exercises

1. Draw diagrams to show that two quadrilaterals may have the sides of one respectively proportional to the sides of the other, but the $\angle \mathrm{s}$ of one not equal to the corresponding $\angle \mathrm{s}$ of the other.
2. Draw diagrams to show that two quadrilaterals may have the $\angle \mathrm{s}$ of one respectively equal to the $\angle \mathrm{s}$ of the other, but the corresponding sides not in the same proportion.
3. KLMN is a polygon. Construct a polygon similar to KLMN, and having each side one-third of the corresponding side of KLMN.
4. $A B C D E$ is a given polygon and $G H$ a given st. line. Cut off $A Q=G H$. Take any point P within $A B C D E$.

Join P to A, B, C, D, E. Draw $Q K\|A P, K F\| A B, F N \|$ $A E, N M\|E D, K L\| B C$. Join LM.

Show that FKLMN is similar to ABCDE.
5. Twice as many polygons may be described on a given st. line GH, each similar to a given polygon, as the given polygon has sides.

Problem 2

To divide similar polygons into similar triangles.

Let $A B C D E$, FGHKL be similar polygons of which $A B$ and $F G$ are corresponding sides.

It is required to divide $A B C D E$, and FGHKL into similar $\triangle \mathrm{s}$.

Take any point \mathbf{P} within the polygon $A B C D E$. Join PA, PB, PC, PD, PE.

Make $\angle \mathrm{GFQ}=\angle \mathrm{BAP}$ and $\angle \mathrm{FGQ}=\angle \mathrm{ABP}$, and let the arms of these $\angle \mathrm{s}$ meet at Q .

Join $\mathrm{QH}, \mathrm{QK}, \mathrm{QL}$.
$\angle \mathrm{PAB}=\angle \mathrm{QFG}$ and $\angle \mathrm{PBA}=\angle \mathrm{QGF} ; \therefore \angle \mathrm{FQG}=\angle$ APB , and consequently $\triangle \mathrm{S} A B P, F G Q$ are similar;

$$
\therefore \frac{Q G}{P B}=\frac{F G}{A B} .
$$

But, by definition of similar polygons,

$$
\begin{aligned}
& \frac{F G}{A B}=\frac{G H}{B C} . \\
\therefore & \frac{Q G}{P B}=\frac{G H}{B C} .
\end{aligned}
$$

Also $\angle \mathrm{FGH}=\angle \mathrm{ABC}$ and $\angle \mathrm{FGQ}=\angle \mathrm{ABP}$;
$\therefore \angle \mathrm{QGH}=\angle \mathrm{PBC}$.
Then in $\triangle \mathrm{SQGH}, \mathrm{PBC}, \frac{\mathrm{QG}}{\mathrm{PB}}=\frac{\mathrm{GH}}{\mathrm{BC}}$, and $\angle \mathrm{QGH}=$ $\angle \mathrm{PBC}$.
\therefore these $\triangle \mathrm{s}$ are similar. (IV--10, p. 241.)
In the same manner it may be shown that the remaining pairs of corresponding Δs are similar.

Theorem 2

The areas of similar polygons are proportional to the squares on corresponding sides.

Using the diagram and construction of Problem 2.
It is required to show that $\frac{\text { polygon } F G H K L}{\text { polygon } A B C D E}=\frac{\mathrm{FG}^{2}}{A B^{2}}$.
$\because \triangle \mathrm{s}$ FGQ, ABP are similar,

$$
\therefore \frac{\triangle F G Q}{\triangle A B P}=\frac{G Q^{2}}{B P^{2}} .
$$

Similarly $\frac{\triangle Q G H}{\triangle P B C}=\frac{G Q^{2}}{B P^{2}}$.

$$
\begin{aligned}
\therefore & \triangle Q Q G=\triangle Q Q G H=(\text { in the same manner }) \\
& \triangle Q Q B K=\triangle P B C \\
& \triangle P C D=\triangle \triangle P L=\triangle Q L F
\end{aligned}
$$

But, if any number of fractions be equal to each other, the sum of their numerators divided by the sum of their denominators equals each of the fractions.

Now the sum of the numerators of the equal fractions is the polygon FGHKL, and the sum of the denominators is the polygon $A B C D E ;$

$$
\text { .. } \frac{\text { polygon } F G H K L}{\text { polygon } A B C D E}=\frac{\triangle Q F G}{\triangle P A B} .
$$

$$
\begin{array}{r}
\text { But } \frac{\triangle \mathrm{QFG}}{\triangle \mathrm{PAB}}=\frac{\mathrm{FG}^{2}}{\mathrm{AB}^{2}} . \\
\therefore \frac{\text { polygon } \mathrm{FGHKL}}{\text { polygon } A B C D E}=\frac{\mathrm{FG}^{2}}{\mathrm{AB}^{2}} .
\end{array}
$$

Theorem 3

If three straight lines are in continued proportion, the first is to the third as any polygon on the first is to the similar and similarly described polygon on the second.

Hypothesis.-AB, CD, E are three st. lines such that $A B: C D=C D: E$, and L, M, similar polygons having $A B, C D$ corresponding sides.

To prove that polygon L : polygon $\mathbf{M}=\mathbf{A B}: \mathbf{E}$.

$$
\begin{array}{rlr}
\text { Proof. }-\frac{\text { Polygon } \mathrm{L}}{\text { Polygon } M} & =\frac{A B^{2}}{C D^{2}} & (\mathrm{~V}-2, \text { p. 278.) } \\
& =\frac{A B}{C D} \cdot \frac{A B}{\mathbf{C D}} \\
& =\frac{A B}{C D} \cdot \frac{\mathbf{C D}}{\mathrm{E}} & \text { (Hyp.) } \\
& =\frac{A B}{\mathbf{E}} . \tag{Нур.}
\end{array}
$$

Problem 3

To make a polygon similar to a given polygon and such that their areas are in a given ratio.

Let $A B C D E$ be the given polygon and $F G, G H$ two given st. lines.

It is required to make a polygon similar to $A B C D E$, and such that its area is to that of $A B C D E$ as $G H$ is to FG.

Construction.-Find KL a fourth proportional to FG, GH, AB. (IV—Prob. 2, p. 227.)

Find KM a mean proportional to FK, KL. (IV-Prob. 5, p. 246.)

Cut off $A N=K M$, and on $A N$ construct a polygon ANOPQ similar to ABCDE.

$$
\begin{aligned}
& \text { Proof.- } \quad \because \frac{A B}{A N}=\frac{A N}{K L}, \\
& \therefore \frac{\text { polygon } A B C D E}{\text { polygon } A N O P Q}=\frac{A B}{K L} \quad(\mathrm{~V}-3, \text { p. 279.) }
\end{aligned}
$$

$$
\text { And } \quad \therefore \frac{\text { polygon } A N O P Q}{\text { polygon } A B C D E}=\frac{G H}{F G} .
$$

Problem 4

To make a figure equal to one given rectilineal figure and similar to another.

Let D and $E F G H$ be the given figures.
It is required to make a figure similar to EFGH and equal to D.

Construction.-Construct the rect. KL = D, and the rect. $\mathrm{FN}=\mathbf{E F G H}$.

Make KM the side of a square which is equal to $K L$, and $F O$ the side of a square which is equal to FN ; so that, $\mathrm{KM}^{2}=\mathrm{D}$ and $\mathrm{FO}^{2}=\mathrm{EFGH}$.

From F draw a st. line $F Q$ and from it cut off $F P=K M$ and $F Q=F O$.

Join $Q E$, and draw $P R \| Q E$ cutting $E F$ at R.
On RF describe RFTS similar to EFGH.
RFTS is the required figure.

$$
\begin{aligned}
& \text { Proof.- } \quad \because \text { RFTS ||| EFGH, } \\
& \therefore \frac{\mathrm{RFTS}}{\mathrm{EFGH}}=\frac{\mathrm{RF}^{2}}{\mathrm{EF}^{2}} \quad \text { (V-1, p. 271.) } \\
& =\frac{\mathrm{PF}^{2}}{\mathrm{QF}^{2}} \quad(\mathrm{IV}-2, \mathrm{p} .222 .) \\
& =\frac{\mathrm{KM}^{2}}{\mathrm{FO}^{2}}=\frac{\mathrm{D}}{\mathrm{EFGH}} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \quad \therefore \frac{\text { RFTS }}{E F G H}=\frac{D}{E F G H} ; \\
& \text { and } \therefore \text { RFTS }=D ; \\
& \text { also RFTS was made similar to EFGH. }
\end{aligned}
$$

133.-Exercises

1. On a plan of which the scale is 1 inch to 2 feet, a room is represented by 30 sq . in. Find the area of the room.
2. On a map of which the scale is 4 inches to the mile, a farm is represented by 10 sq . in . Find the number of acres in the farm.
3. Construct an equilateral \triangle equal in area to a given square.
4. Construct a square equal in area to a given \triangle.
5. Construct a rectangle similar to a given rectangle and equal in area to a given square.
6. Construct a square the area of which is 15 sq . in.
7. Bisect a given \triangle by a st. line drawn \perp to one side.

Arcs and Angles

134.-Suppose an angle $A O B$ at the centre of a circle
 to be divided into a number of equal parts AOC, COD, DOE, Еов.

Then, by III-13, p. 167, the arcs $A C, C D, D E, E B$ are equal to each other, and whatever multiple the angle $\triangle O B$ is of the angle $A O C$, the arc $A B$ is the same multiple of the arc AC.
Thus, if an angle at the centre of a circle be divided into degrees and contain a of them, the arc subtending the angle will contain the are subtending one degree a times.

Theorem 4

In equal circles, angles, whether at the centres or circumferences, are proportional to the arcs on which they stand.

Hypothesis.--In the equal circles AEB, CFD, the $\angle \mathrm{s}$ $A O B, C Q D$ at the centres stand respectively on the ares $A B, C D$.

To prove that $\frac{\angle A O B}{\angle C Q D}=\frac{\operatorname{arc} A B}{\operatorname{arc} C D}$.
Proof.-Let the $\angle \mathrm{S} A O B, C Q D$ be commensurable having $\angle A O H$ a common measure. Suppose $\angle A O B$ contains $\angle A O H$ a times, and $\angle C Q D$ contains $\angle A O H$ b times.

Then arc AB contains arc AH a times, and arc CD contains arc AH b times.

$$
\begin{aligned}
& \therefore \frac{\angle A O B}{\angle C Q D}=\frac{a \times \angle \mathrm{AOH}}{b \times \angle \mathrm{AOH}}=\frac{a}{b} . \\
& \frac{\operatorname{arc} \mathrm{AB}}{\operatorname{arc} \mathrm{CD}}=\frac{a \times \operatorname{arc} \mathrm{AH}}{b \times \operatorname{arc} \mathrm{AH}}=\frac{a}{b} . \\
& \therefore \frac{\angle \mathrm{AOB}}{\angle \mathrm{CQD}}=\frac{\operatorname{arc} \mathrm{AB}}{\operatorname{arc} \mathrm{CD}} .
\end{aligned}
$$

And

Again, since the $\angle s$ at the circumferences are respectively half the $\angle s$ at the centres, on the same arcs, the $\angle s$ at the circumferences are also in the ratio of the ares on which they stand.

Analysis of a Problem-Common Tangents of Circles

135. A common method of discovering the solution of a problem begins with the drawing of the given figure or figures. The required part is then sketched in, and a careful examination is made to determine the connection between the given parts and the required result. Properties of the figure are noted, and lines are drawn that may help in finding the solution. This method of attack is known as the Analysis of the Problem. Its use is illustrated in the following sections.
136. Problem.-To draw the direct common tangents to two given circles.

Let $A B C$, DEF be two circles, with centres P, Q.
It is required to draw a direct common tangent to the circles $A B C$, DEF.

Suppose AD to be a direct common tangent touching the circles at A, D.

Join PA, QD.
$P A, Q D$ are both $\perp A D$, and $\therefore P A \| Q D$.
Cut off $A G=D Q$. Join $Q G$.
$A G$ is both $=$ and $\| Q D, \therefore A Q$ is a $\|!g m$, and as \angle $G A D$ is a rt. $\angle, A Q$ is a rect.

Draw a circle with centre P and radius PG.
$P G Q$ is a rt. $\angle, \therefore Q G$ is a tangent to the circle GHK and this tangent is drawn from the given point Q. The radius PG of the circle GHK is the difference of the radii of the given circles.

Using the construction suggested by the above analysis the pupil should make the direct drawing and prove that it is correct.

Show that two direct common tangents may be drawn.
137. Problem.-To draw the transverse common tangents to two given circles.

Let $A B C, D E F$ be two circles with centres P, Q.
It is required to draw a transverse common tangent to the circles $A B C$, DEF.

Suppose AD to be a transverse common tangent touching the circles at A, D

Join PA, QD.
$P A, Q D$ are both $\perp \mathrm{AD}, \therefore \mathrm{PA} \| \mathrm{QD}$.
Produce PA to \mathbf{G} making $\mathbf{A G}=\mathrm{DQ}$. Join $\mathbf{Q G}$.
Then $A Q$ is seen to be a rect., and if a circle be drawn with centre \mathbf{P} and radius PG, QG is seen to be a tangent to this circle. .The radius PG of the circle GHK is the sum of the radii of the given circles.

From this analysis the pupil can make the direct construction and give the proof.

Two transverse common tangents may be drawn to the given circles.

138.-Exercises

1. Draw diagrams to show that the number of common tangents to two circles may be $4,3,2,1$ or 0 .
2. Draw a st. line to cut two given circles so that the chords intercepted on the line may be equal respectively to two given st. lines.
3. \mathbf{P}, Q are the centres of two circles. A common tangent (either direct or transversal) meets the line of centres at R. Show that the ratio PR:QR equals the ratio of the radii of the circles.
4. The transverse common tangents and the line of centres of two circles are concurrent.
5. The direct common tangents and the line of centres of two circles are concurrent.
6. P, Q are the centres of two circles and $P A, Q B$ any two $\|$ radii drawn in the same direction from P, Q. Show that $A B$ produced and the direct common tangents meet the line of centres at the same point.
7. P, Q are the centres of two circles and $P A, Q B$ any two $\|$ radii drawn in opposite directions from P, Q. Show that $A B$ and the transverse common tangents meet the line of centres at the same point.
8. Draw the direct common tangents to two equal circles.

Miscellaneous Exercises

1. Draw four circles each of radius $1 \frac{3}{4}$ inches, touching a fixed circle of radius 1 inch and also touching a st. line $1 \frac{1}{2}$ inches distant from the centre of the circle.
2. DE, FG are \| chords of the circle DEGF. Prove that $D E . F G=D G^{2}-D F^{2}$.
3. If two circles touch externally at A and are touched at B, C by a st. line, the st. line BC subtends a rt. L at A.
4. Of all $\triangle \mathrm{s}$ of given base and vertical 4 , the isosceles \triangle has the greatest area.
5. $\mathbf{A B C}$ is an equilateral \triangle inscribed in a circle, \mathbf{P} is any point on the circumference. Of the three st. lines PA, PB, PC, shew that one equals the sum of the other two.
6. Construct a rt.- $\angle d \triangle$, given the radius of the inscribed circle and an acute \angle of the \triangle.
7. The diagonals $A C, B D$ of a cyclic quadrilateral $A B C D$ cut at \mathbf{E}. Show that the tangent at \mathbf{E} to the circle circumscribed about $\triangle A B E$ is $\|$ to $C D$.
8. A, B, C are three points on a circle. The bisector of $\angle A B C$ meets the circle again at D. $D E$ is drawn $\|$ to $A B$ and meets the circle again at E. Show that $D E=B C$.
9. The side of an equilateral \triangle circumscribed about a circle is double the side of the equilateral \triangle inscribed in the same circle.
10. $A B$ is the diameter of a circle and $C D$ a chord. $E F$ is the projection of $A B$ on $C D$. Show that $C E=D F$.
11. Construct an isosceles \triangle, given the base and the radius of the inscribed circle.
12. Two circles touch externally. Find the locus of the points from which tangents drawn to the circles are equal to each other.
13. Two circles, centres C, D, intersect at A, B. PAQ is a st. line cutting the circles at \mathbf{P}, \mathbf{Q}. $P C, Q D$ intersect at R. Find the locus of R.
14. Two circles touch internally at A; BC, a chord of the outer circle, touches the inner circle at D. Show that $A D$ bisects $\angle B A C$.
15. P is a given point on the circumference of a circle, of which $A B$ is a given chord. Through P draw a chord $P Q$ that is bisected by $A B$.
16. On a given base construct a \triangle having given the vertical \angle and the ratio of the two sides.
17. $A B$ is a given st. line and P, Q are two points such that $A P: P B=A Q: Q B$. Show that the bisectors of $4 s$ $A P B, A Q B$ cut $A B$ at the same point.
18. $A B$ is a given st. line and P, Q are two points such that $A P: P B=A Q: Q B$. Show that the bisectors of the exterior $\angle s$ at P, Q of the $\triangle s A P B, A Q B$ meet $A B$ produced at the same point.
19. $A B$ is a given st. line and P is a point which moves so that the ratio $A P: P B$ is constant. The bisectors of the interior and exterior $-S$ at P of the $\triangle A P B$, meet $A B$ and $A B$ produced at C, D respectively. Show that the locus of P is a circle on $C D$ as diameter.
20. $A B$ is a st. line 2 inches in length. P is a point such that AP is twice BP. Construct the locus of P.
21. Two circles touch externally, and A, B are the points of contact of a common tangent. Show that $A B$ is a mean proportional between their diameters.
22. If on equal chords segments of circles be described containing equal $\angle \mathrm{s}$, the circles are equal.
23. Construct a quadrilateral such that the bisectors of the opposite $\angle \mathrm{s}$ meet on the diagonals.
24. Draw a circle to pass through a given point and touch two given st. lines.
25. Draw a circle to touch a given circle and two given st. lines.
26. Draw a circle to pass through two given points and touch a given circle.
27. Construct a rt. $-\angle \mathrm{d} \triangle$ given the hypotenuse and the radius of the inscribed circle.
28. In $\triangle A B C$ the inscribed circle touches $A B, A C$ at D, E respectively. The line joining A to the centre cuts the circle at F. Show that F is the centre of the inscribed circle of $\triangle A D E$.
29. The inscribed circle of the rt.- $\angle \mathrm{d} \triangle A B C$ touches the hypotenuse BC at D. Show that rect. $B D . D C=\triangle A B C$.
30. If on the sides of any Δ equilateral Δs be described outwardly, the centres of the circumscribed circles of the three equilateral Δs are the vertices of an equilateral \triangle.
31. Describe three circles to touch each other externally and a given circle internally.
32. Show that two circles can be described with the middle point of the hypotenuse of a rt. $-\angle \mathrm{d} \triangle$ as centre to touch the two circles described on the two sides as diameters.
33. A st. line $A B$ of fixed length moves so as to be constantly || to a given st. line and A to be on the circumference of a given circle. Show that the locus of B is an equal circle.
34. Construct an isosceles \triangle equal in area to a given \triangle and having the vertical \angle equal to one of the $\angle \mathrm{s}$ of the given \triangle.
35. If two chords $A B, A C$, drawn from a point A in the circumference of the circle $A B C$, be produced to meet the tangent at the other extremity of the diameter through A in D, E respectively, then the $\triangle A E D$ is similar to $\triangle A B C$.
36. If a st. line be divided into two parts, the sq. on the st. line equals the sum of the rectangles contained by the st. line and the two parts.
37. $A B C D$ is a quadrilateral inscribed in a circle. $A B, D C$ meet at E and $B C, A D$ meet at F. Show that the sq. on EF equals the sum of the sqs. on the tangents drawn from E, F to the circle.
38. The st. line $\mathbf{A B}$ is divided at \mathbf{C} so that $\mathbf{A C}=3 \mathbf{C B}$. Circles are described on $A C, C B$ as diameters and a common tangent meets $A B$ produced at D. Show that BD equals the radius of the smaller circle.
39. $D E$ is a diameter of a circle and A is any point on the circumference. The tangent at A meets the tangents at D, E at B, C respectively. $B E, C D$ meet at F. Show that $A F$ is $\|$ to $\mathbf{B D}$.
40. TA, TB are tangents to a circle of which C is the centre. $A D$ is $\perp B C$. Show that $T B: B C=B D: D A$.
41. $A B C D$ is a quadrilateral inscribed in a circle. $B A, C D$ produced meet at P, and $A D, B C$ produced meet at Q. Show that PC: PB = QA: QB.
42. Divide a given arc of a circle into two parts, so that the chords of these parts shall be to each other in the ratio of two given st. lines.
43. Describe a circle to pass through a given point and touch a given st. line and a given circle.
44. LMN is a rt. $-\angle d \triangle$ with L the rt. L. On the three sides equilateral $\triangle s$ LEM, MFN, NDL are described outwardly. LG is \perp MN. Prove that $\triangle F G M=\triangle L E M$ and $\triangle \mathrm{FGN}=\triangle \mathrm{NDL}$.
45. L is the $\mathrm{rt} . \angle$ of a $\mathrm{rt} .-\angle \mathrm{d} \triangle \mathrm{LMN}$ in which $\mathrm{LN}=$ 2 LM. Also LX \perp MN. Prove that LX $=\frac{2}{5} \mathrm{MN}$.
46. A st. line meets two intersecting circles in \mathbf{P} and \mathbf{Q}, R and S and their common chord in O. Prove that $O P$, $O Q, O R, O S$, taken in a certain order, are proportionals.
47. LMN is a semi-circle of which O is the centre, and $O M \perp L N$. A chord LDE cuts $O M$ at D. Prove that LM is a tangent to the circle MDE.
48. The bisector of $\angle F$ of $\triangle F G H$ meets the base $G H$ in E and the circumcircle in D. Prove that $D G^{2}=D E . D F$.
49. $\mathrm{POQ}, \mathrm{ROS}$ are two st. lines such that $\mathrm{PO}: \mathrm{OQ}=3: 4$ and RO:OS $=2: 5$. Compare areas of $\triangle s P O R, Q O S$; and also areas of $\triangle s$ POS, QOR.
50. Trisect a given square by st. lines drawn \| to one of its diagonals.
51. Construct a \triangle having its base 8 cm ., the other sides in the ratio of 3 to 2 , and the vertical $\angle=75^{\circ}$.
52. In two similar $\triangle \mathrm{s}$, the parts lying within the \triangle of the right bisectors of corresponding sides have the same ratio as the corresponding sides of the \triangle.
53. KMN, LMN are $\triangle \mathrm{s}$ on the same base and between the same $\| s$. KN, LM cut at E. A line through $E, \| M N$, meets $K M$ in F and $L N$ in G. Prove that $F E=E G$.
54. Construct a \triangle having given the vertical L, the ratio of the sides containing that - , and the altitude drawn to the base.
55. From a point P without a circle two secants PFG, PED are drawn, and PQ drawn || FD meets GE produced at Q. Prove that $P Q$ is a mean proportional between QE, QG.
56. LD bisects $L L$ of $\triangle L M N$ and meets $M N$ at D. From D the line DE || LM meets LN at E, and DF || LN meets LM at F. Prove that $F M: E N=L^{2} \mathbf{L N}^{2}$.
57. LMN is a $\triangle \angle r t .-d$ at $L . L D \perp M N$ and meets a line drawn from $M \perp L M$ at E. Prove that $\triangle L M D$ is a mean proportional between $\triangle \mathrm{s}$ LDN, MDE.
58. Two circles touch externally at D and $P Q$ is a common tangent. .PD and QD produced meet the circumferences at L, M respectively. Show that PM and QL are diameters of the circles.
59. The common tangent to two circles which intersect subtends supplementary $\angle \mathrm{s}$ at the points of intersection.
60. Two circles intersect at Q and R, and $S T$ is a common tangent. Show that the circles described about $\triangle s$ STR, STQ are equal.
61. A st. line DEF is drawn from D the extremity of a diameter of a circle cutting the circumference at E and a fixed st. line \perp to the diameter at F. Show that the rect. DE.DF is constant for all positions of DEF.
62. A chord LM of a circle is produced to E such that $M E$ is one-third of LMi; a tangent EP is drawn to the circle and produced to D such that $P D=E P$. Prove that $\triangle E L D$ is isosceles.
63. Draw a st. line to touch one circle and to cut another, the chord cut off being equal to a given st. line.
64. Two equal circles are placed so that the transverse common tangent is equal to the radius. Show that the tangent from the centre of one circle to the other equals the diameter of each circle.
65. Construct a \triangle having its medians respectively equal to three given st. lines.
66. Construct a \triangle given one side and the lengths of the medians drawn from the ends of that side.
67. Construct a \triangle given one side, the median drawn to the middle point of that side, and a median drawn from one end of that side.
68. Construct a \triangle having $\angle A=20^{\circ}, \angle C=90^{\circ}$, and $c-a=4 \mathrm{~cm}$.
69. Construct a \triangle having $\angle \mathrm{C}=90^{\circ}, b=6 \mathrm{~cm}$., and $c-a=3.5 \mathrm{~cm}$.
70. Construct a \triangle having $a=7 \mathrm{~cm}$., $c-b=3 \mathrm{~cm}$., and $\angle C-\angle B=28^{\circ}$.
71. If a st. line be drawn. in any direction from one vertex If a $\| \mathrm{gm}$, the \perp to it from the opposite vertex equals the sum or difference of the $\perp s$ to it from the two remaining vertices.
72. PQ is a chord of a circle \perp to the diameter LM , and E is any point in LM. If PE, QE meet the circumference in S, R respectively, show that $\mathrm{PS}=\mathrm{QR}$; and that $R S \perp L M$.
73. \mathbf{P} is any point in a diameter LM of a circle, and QR is a chord $\| \mathrm{LM}$. Prove that $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=\mathrm{PL}^{2}+\mathrm{PM}^{2}$.
74. On the hypotenuse $E F$ of the rt. $\angle \mathrm{d} \triangle \mathrm{DEF}$ a \triangle GEF is described outwardly having $\angle \mathrm{GEF}=\angle \mathrm{DEF}$ and $\angle \mathrm{GFE}$ a rt. \angle. Prove that $\triangle G F E: \triangle D E F=G E: E D$.
75. Two quadrilaterals whose diagonals intersect at equal $\angle \mathrm{s}$ are to one another in the ratio of the rectangles contained by the diagonals.
76. P is any point in the side LM of a $\triangle L M N$. The st. line $M Q, \| P N$, meets $L N$ produced at \mathbf{Q}; and \mathbf{X}, \mathbf{Y} are points in $L M$, LQ respectively, such that $L X^{2}=L P . L M$ and $L Y^{2}=$ LN.LQ. Prove that $\triangle L X Y=\triangle L M N$.
77. EFP, EFQ are circles and PFQ is a st. line. ER is a diameter of circle EFP and ES a diameter of EFQ. Prove $\triangle E P R: \triangle E Q S$ as the squares on the radii of the circles.
78. If P is the point of intersection of an external common tangent PQR to two circles with the line of centres, prove that $P Q: P R$ as the radii of the circles. Also, if PCDEF is a secant, prove that PC:PE = PD: PF
79. A point E is taken within a quadrilateral $F G H K$ such that $\angle E F K=\angle G F H$ and $\angle E K F=\angle G H F$. GE is joined. Prove $\triangle F E G \| \mid \triangle F H K$.
80. Through a given point within a circle, draw a chord that is divided at the point in a given ratio
81. From P, a point on the circumference of a circle, tangents PE, PF are drawn to an inner concentric circle. GEFH is a chord, and PE meets the circumference at \mathbf{Q}. Prove $\triangle \mathrm{s}$ PGF, PEH, GEQ similar; also show that GQ^{2} : $\mathbf{G P}^{\mathbf{2}}=\mathbf{G E}: \mathbf{G F}$.
82. L is the vertex of an isosceles $\triangle L M N$ inscribed in a circle, LRS is a st. line which cuts the base in R and meets the circle in S. Prove that SL. RL $=\mathrm{LM}^{2}$.
83. PQR is a $\mathrm{rt} .-\angle \mathrm{d} \triangle$ with P the rt. \angle. $\mathrm{PD} \perp \mathrm{QR}$; $D M \perp P Q$ and $D N \perp P R$. Prove that $\angle Q M R=\angle Q N R$.
84. DEF is an isosceles \triangle with $\angle \mathrm{D}=120 .^{\circ}$ Show that if $E F$ be trisected at G and H, the $\triangle D G H$ is equilateral.
85. $A S$ and $A T, B P$ and $B Q$ are tangents from two points A and B to a circle. C, D, E, F are the middle points of AS, AT, BP, BQ respectively. Prove that CD, $E F$, produced if necessary, meet on the right bisector of AB. (Let O be the centre of the circle; L and M the points where OA, OB cut the chords of contact. Prove A, L, M, B concyclic, etc.)
86. If from the middle point of an arc two st. lines be drawn cutting the chord of the arc and the circumference, the four points of intersection are concyclic.
87. If a st. line be divided at two given points, find a third point in the line, such that its distances from the ends of the line may be proportional to its distances from the two given points.
88. Prove geometrically that the arithmetic mean between two given st. lines is greater than the geometric mean between the two st. lines.
89. A square is inscribed in a rt.-angled triangle, one side of the square coinciding with the hypotenuse: prove that the area of the square is equal to the rectangle contained by the extreme segments of the hypotenuse.
90. Any regular polygon inscribed in a circle is the geometric mean between the inscribed and circumscribed regular polygons of half the number of sides.
91. The diagonal and the diagonals of the complements of the parallelograms about the diagonal of a parallelogram are concurrent.
92. Develop the formula for the area of a \triangle, $v^{\prime s(s-a)(s-b)(s-c)}$ where $2 \mathrm{~s}=a+b+c$ and a, b, c are the sides.

Solution of 92. In $\triangle A B C$, draw $A X \perp B C$, and let $A X$ $=h, \mathbf{B X}=x$. Then $\mathbf{C X}=a-x$.

Area of $\triangle A B C=\frac{1}{2} a h$.

$$
\begin{aligned}
& \quad h^{2}=b^{2}-(a-x)^{2}=c^{2}-x^{2}, \\
& \therefore \quad x=\frac{a^{2}-b^{2}+c^{2}}{2 a} . \\
& \begin{aligned}
& h^{2}=c^{2}-\frac{\left(a^{2}-b^{2}+c^{2}\right)^{2} .}{4 a^{2}} . \\
& 4 a^{2} h^{2}=4 a^{2} c^{2}-\left(a^{2}-b^{2}+c^{2}\right)^{2} \\
&=\left(2 a c+a^{2}-b^{2}+c^{2}\right)\left(2 a c-a^{2}+b^{2}-c^{2}\right) \\
&=\left\{(a+c)^{2}-b^{2}\right\}\left\{b^{2}-(a-c)^{2}\right\} \\
&=(a+b+c)(a-b+c)(a+b-c)(b-a+c) \\
&=2 s(2 s-2 b)(2 s-2 c)(2 s-2 a) . \\
& \therefore \frac{1}{4} a^{2} h^{2}=s(s-a)(s-b)(s-c), \\
& \text { And } \frac{1}{2} a h=\sqrt{s(s-a)(s-b)(s-c) .}
\end{aligned}
\end{aligned}
$$

93. Show from the diagram how the distance between two points, A, B at opposite sides of a pond may be found by measurements on land.
94. Show from the diagram how the breadth of a river may be found by measurements made on one side of it.
95. Given a st. line $A B$, construct a continuation of it $C D, A B$ and $C D$ being separated by an obstacle.
96. AB, CD are two lines which would meet off the
 paper. Draw a st. line which would pass through the point of intersection of $A B, C D$, and bisect the \angle between them.

INDEX TO DEFINITIONS

Acute angle:-An L which is < a rt. L 10
Acute-angled triangle :-A \triangle which has three acute \angle s. 27
Adjacent angles:-Two $\angle \mathrm{s}$ which have the same vertex, an arm common, and the remaining arms on opposite sides of the com- mon arm 11
Altitude of a triangle:-The length of the \perp from any vertex of the \triangle to the opposite side. 27
Angle :-The amount of rotation made by a st. line when it revolves about a fixed point in itself from one position to another 8
Antecedent:-The first term in a ratio 213
Arc of a circle:-A part of the circumference 17
Axiom :-A statement that is self-evident, or assumed 3
Axis of symmetry:-The line about which a symmetrical figure can be folded so that the parts on one side will exactly fit the corresponding parts on the other side 21
Centroid:-The point where the medians of a \triangle intersect one another 69
Chord of a circle :-The st. line joining two points on the cir- cumference 17
Chord of contact:-The st. line joining the points of contact of two tangents 174
Circle :-The locus of the points that are at a fixed distance from a fixed point 17, 141(The name circle is also used for the area inclosed by the circumference).Circumcentre :-The centre of the circumscribed circle of a $\triangle \ldots 144$
Circumference :-Same as circle 17
Circumscribed circle :-A circle which passes through all the ver- tices of a rectilineal figure 143
Coincide :-Magnitudes which fill exactly the same space are said to coincide with each other 4
Commensurable magnitudes:-Magnitudes which have a conmon measure. 214
Complementary angles :-Two $\angle \mathrm{s}$ of which the sum is one rt . \angle. 13
Concyclic points :-Points through which a circle may be described 143
Congruent figures:-Figures equal in all respects, so that one may be made to fit the other exactly 15
Consequent :-The second term of a ratio 213
Converse propositions :-Two propositions of which the hypothesis of each is the conclusion of the other 41
Cyclic quadrilateral:-A quadrilateral of which all the vertices
PAGE
are on the circumference of the same circle 144
Diagonal:-A st. line joining opposite vertices of a rectilineal figure 17
Diameter of a circle :-A chord passing through the centre. 17
Equilateral triangle :-A \triangle having three equal sides. 19
Escribed circle of a triangle:-A circle which is touched by one side of a \triangle and by the other two sides produced. 187
External segments of a line :-The distances from the two ends of a line to a point taken in the line produced 217
Figure :-Any combination of points, lines, surfaces and solids. 2
Geometric mean :-The second of three terms that are in continued proportion 214
Hypotenuse:-The side opposite the rt. \angle in a rt. $-\angle \mathrm{d} \triangle$ 27
Hypothesis:-The part of a proposition in which the conditions that are supposed to exist are stated 5
Incommensurable magnitudes:-Magnitudes that have no com- mon measure however small 214
Indirect method of demonstration :-Method of proof that begins by assuming that the proposition to be proved is not true 41
Inscribed Circle:-A circle that is within a closed, rectilineal figure, and which is touched by each side of the figure 187
Internal segments of a line :-The distances from the ends of a line to a point in the line 217
Isosceles triangle :-A \triangle having two equal sides. 19
Line :-That which has length, but neither breadth nor thickness.. 1
Locus:-A figure consisting of a line (or lines) which contains all the points that satisfy a given condition, and no others. 77
(See also page 78).
Major arc of a circle :-An arc that is greater than half the cir- cumference 153
Major segment of a circle :-A segment of which the arc is a major arc 153
Means of a proportion:-The second and third of four magnitudes that are in proportion 214
Mean proportional :-The second of three magnitudes that are in continued proportion 214
Median :-A st. line drawn from any vertex of a \triangle to the middle point of the opposite side 30
Minor arc of a circle:-An arc that is less than half the circum- ference 153
Minor segment of a circle :-A segment of which the arc is a minor arc 153
Obtuse angle :-An L which is $>$ a rt. L 10
Obtuse-angled triangle :-A \triangle one L of which is an obtuse L 27
Parallel straight lines:-St. lines in the same plane which do not meet when produced for any finite distance in either direction. 35
Parallelogram:-A quadrilateral that has both pairs of opposite sides || to each other. 35
Perpendicular :-Each arm of a rt. L is said to be \perp to the other arm. 10
Plane surface:-A surface such that if any two points on it be joined by a st. line the joining line lies wholly on the surface. 2
Point:-That which has position but no size 1
Point of contact:-The common point of a tangent and circle 169
Polygon:-A figure bounded by more than four st. lines. Also sometimes used for a figure bounded by any number of st. lines. 68
Problem:-The statement of a construction to be made. 4
Projection of the point on the line:-The foot of the \perp from the point to the line 128
Projection of the line on the line:-The intercept on the second line between the projections of the two ends of the first line on the second 129
Proportion :-The equality of ratios. 213
Proposition:-That which is stated or affirmed for discussion 4
Quadrilateral:-A closed figure formed by four st. lines 17
Radius:-A st. line drawn from the centre of a circle to the circumference 17
Ratio:-The measure of one magnitude when another magnitude of the same kind is taken as the unit 213
Rectangle :-A $\| \mathrm{gm}$ of which the $\angle \mathrm{s}$ are $\mathrm{rt} . \angle \mathrm{s}$. 68
Rectilineal figure:-A figure formed by st. lines 15
Reflex angle :-An \angle which is $>$ two rt. $\angle \mathrm{s}$, but $<$ four rt. $\angle \mathrm{s}$.. 154
Regular polygon:-A polygon in which all the sides are equal to each other, and all the $\angle s$ are equal to each other. 68
Rhombus:-A quadrilateral having its four sides equal to each other 17
Right angle :-An \angle which is half of a st. \angle 10
Right-angled triangle :-A \triangle one L of which is a rt. L 27
Right bisector :-A st. line which bisects a st. line of given length at rt. Ls. 28
Scalene triangle :-A \triangle having no two of its sides equal to each other 19
Secant of a circle :-A st. line drawn from a point without to cut PAGE
a circle. 169
Sector of a circle:-A figure bounded by two radii of a circle and either of the ares intercepted by these radii 155
Segment of a circle :-A figure bounded by an arc of a circle and the chord which joins the ends of the are 153
Similar polygons:-Two polygons of the same number of sides which have the $\angle s$ of one taken in order around the figure respectively equal to the $\angle \mathrm{s}$ of the other in order, and have also the corresponding sides in proportion 274
Similar segments of circles:-Segments which contain equal $\angle \mathrm{s}$. 263
Similar triangles :-Two $\triangle s$ which have the three $\angle s$ of one respectively equal to the three $\angle \mathrm{s}$ of the other 158
Solid :-That which has length, breadth and thickness 2
Square :-A rectangle of which all the sides are equal to each other. 68
Straight angle :-Half of a complete revolution made by a st. line revolving about a point in itself 9
Straight lines:-Lines which cannot have any two points of one coincide with two points of the other without the lines coin- ciding altogether. 1
Subtend:-A line drawn from a point in one arm of an L to a point in the other arm subtends the L 17
Supplementary angles:-Two $\angle \mathrm{s}$ of which the sum is two $\mathrm{rt} . \angle \mathrm{s}$. 13
Surface:-That which has length and breadth but no thickness 2
Symmetrical figure:--A figure which can be folded along a st. line so that the parts on one side exactly fit the corresponding parts on the other side. 20
Tangent to a circle :-A st. line which, however far it may be produced, has one point on the circumference of a circle and all other points without the circle 169
Theorem :-The statement of a truth to be proved 4
Touch - A tangent is said to touch a circle 169
Two circles which meet each other at one point and only one point are said to touch each other. 196
Transversal - A st. line which cuts two, or more, other st. lines. 35
Triangle:-A figure formed by three st. lines which intersect one another 15
Vertex of an angle :-The point from which the two arms of the
L are drawn 8

$=$

I corgromice 15 $\angle \underset{y y y}{*}$ aube

$\bar{M} 306170$

$$
\begin{aligned}
& \text { QA } 453 \\
& M 3
\end{aligned}
$$

THE UNIVERSITY OF CALIFORNIA LIBRARY

