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PREFACE,

The following pages are divided into three

chapters. The first presents by way of intro-

duction some of the elementary principles of

continuous girders, and the fundamental ideas

relating to the calculation of strains. The sec-

ond gives the theory of flexure as applied to

the continuous
trjiss^

of constant cross section,

and exhibits it in formula (I) to (VI), ready
for application to any particular case

;
and the

third gives an example of the computation of

strains in a continuous truss of five unequal

spans, with some useful hints concerning the

practical building of such bridges.

The theory of flexure indicates that, by the

use of continuous instead of single span

bridges, a saving in material of from twenty to

forty per cent, may be effected. flt is easy in-

deed to say that this advantage will be entirely

swallowed up by the effect of changes of tem-

perature, increased labor of erection, or addi-

tional cost of workmanship, but by no amount
of reasoning can such disadvantages be esti-

mated. Theory indicates a large saving,



whether or not it can be realized, may only be

determined by trial. Other nations have built

and are building continuous bridges, and their

experience has not yet shown that the system
is inferior to that of single spans. The inter-

est now prevailing among American engineers
in the subject, and the fact that at some recent

bridge let tings plans have been offered for a

continuous structure, seem to indicate that the

system will also be tried here.

This little book may then perhaps be of val-

ue to bridge engineers, as well as to students

in general.

M. M.
New Haven, Conn., July 10, 1876.



THEORY AND CALCULATION
OP

CONTINUOUS BRIDGES.

WHEN a straight bridge consists of

several spans, each entirely independent
of the others, it is said to be composed
of simple girders. If, on the other hand,

it consists of a single truss extending
from one abutment to the other without

any disconnection of parts over the piers

it is called a continuous girder. A load

placed upon any span of a continuous

beam influences, to some extent, each of

the other spans, and hence its complete

theory is much more complex than that

of the simple one. This very complexity
however has rendered the subject an at-

tractive one to mathematicians, who,

pursuing science for science's sake, have
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investigated the laws of equilibrium
which govern it. These laws with the

many beautiful consequences attending
them form one of the most interesting

chapters of mathematical analysis, and

as such have interest and value inde-

pendent of their application in engineer-

ing art.

It is the object of the present paper to

present in as simple a form as possible

some of the main principles and laws

most needed by the engineer, and to il-

lustrate their application as fully as

space will permit to the practical de-

signing of continuous bridges.

CHAPTEE 1.

The first point to be observed in con-

sidering either a simple or continuous

girder is that all the exterior forces

which act upon it are in equilibrium.

The exterior forces embrace the weight

of the girder and the loads upon it which

act downward, and the pressures or re-

actions of the supports which act up-



ward. In order that these may be in

equilibrium, it is necessary that the sum

of the reactions of all the supports must
be equal to the total weight of the girder
and its load.

ThuSj if a simple girder of uniform

section and weight rest at its ends upon
two supports, the reaction of each sup-

port will be one-half the weight. Exactly
in the center between the two supports
or abutments, let us suppose a pier to

be placed just touching, but not pressing

against the beam, which, at that point,

has a deflection below a straight line

joining the two abutments. Then the

condition of things is in no way altered,

for the weight being W, each abutment

reacts with a force i W, while the pier
bears no load. Raise now the pier so as

to lift the girder above the line of de-

flection and it receives a part of the

weight W, while Jie reactions of the

abutments become less than ^ W. If

the pier be raised higher and higher, it

will at length lift the girder entirely
from the abutments and bear itself the



whole load W. In every position, how-

ever, the sum of the reactions of the

three supports is equal to the total load.

For example, when the three are on the

same level it may be shown that the re-

action of each abutment is A W, and

that of the pier i? W.
This illustration shows also that small

differences of level in the supports occur-

ring after the erection of a bridge cause

large variations in the reactions of its

supports and in the strains in its several

parts. A simple girder having a deflec-

tion of one inch, would, if raised one

and three-fifth inches at the center, be

entirely lifted from the abutments. In

the first case the upper fiber would be in

compression, the lower in tension; in the

second case, the upper would be in ten-

sion, the lower in compression. If the

center were raised only one inch, the re-

versal would be only partial, the upper
fiber becoming subject to tension for a

short distance on each side of the mid-

dle. This fact often used as an argu-

ment against continuous bridges, is really



an objection only when the piers are

liable to settle after erection. Difference 8

of level, previously existing, do not act

prejudicial when the bridge is built upon
the piers, and with a profile correspond-

ing to them.

The mathematical theory of the con-

tinuous girder enables its reactions and

internal strains to be found for any as-

sumed levels of the supports, provided

only that the differences of level are very
small compared with the length of the

spans. However interesting such inves-

tigations may be in themselves, they are

of little importance in practice, since it

has been shown that when all the points

of support are on the same level, the

greatest economy of material results.*

In all that follows, then, we shall regard
the girder as resting on level supports,

or, what is the same thing, that it was '

built with a profile corresponding to that

of the piers.

The loads upon a bridge and the reac-

*
Weyrauch ; Theorie der continuirlichen Trdger, p. 129.

Winkler ; Lehre der Elasticitdt, p. 155.
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tions of the supports are external forces.

The equilibrium between them is main-

tained by means of internalforces, which,
in a framed truss, are transmitted longi-

tudinally along the pieces as strains of

tension and compression. When all the

external forces are known, these internal

forces or strains can be readily found.
This very important point we shall now

proceed to illustrate.

Fig. 1 represents a portion of a con-

Fig. I.

J

R
2

|

tinuous girder; the first span on the left

is called 1
19

which also represents its

length, the second
2 ,

the third 1
99 etc.;

in like manner,- the supports beginning
on the left are designated by the indices

1, 2, 3, etc., and their reactions by R,,

R
2 ,
R

3 ,
etc. Let the load per linear unit

be w, supposed uniformly distributed,

then the weight of the first span will be

w
Zj,

of the second w
2 ,

of the third w ^
? ,
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etc. If there are four spans the total

weight will be

w ^ + w l^ +w 3 4-w 1
4

and from the fundamental idea of equili-

brium, we must have the equation

Each of the reactions is then a fraction-

al part of the total load, and by methods

hereafter to be explained, their values

may be readily computed, whatever be

the number of spans. Granting for the

present that they may be found, let us

inquire how we may obtain the internal

forces or strains in any part of the gir-

der.

In the span Z
3
let a vertical plane be

passed, cutting the beam at a point

whose distance from the support 3 is x.

All the internal forces acting in this sec- *

tion may be considered as resolved into

two components, one vertical and the

other horizontal. The sum of all the

vertical components is a force which pre-

vents the two parts of the beam from
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shearing asunder, and is called the shear

for that section
;
the horizontal compo-

nents acting in parallel planes are the

resisting strains of tension and compres-
sion in the horizontal fibers, and the sum

of their moments with reference to any

point in the section is called the moment

of resistance, or simply the moment for

that section. The internal strains in any
section are thus completely represented

by the shear and moment. For example,

if the girder in Fig. 1 be a framed truss

of which Fig. 2 represents the span 1
3

Fig. 2,

enlarged, and the section be passed cut-

ting the three pieces E F, F e, and ef,

the vertical components of the chord

strains will be zero, and that of the di-

agonal strain 6F will be the shear.

Hence, if the shear be known, and the

angle included between the vertical and

a diagonal be d
y
we have only to multi-
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ply the shear by sec. 6 to find the strain

in the diagonal. Again, let the section

be moved to the left so as to pass through
the point 6, and let that point be taken as

the center of moments. Then the mo-

ment of resistance will be the moment
of the chord strain E F. Hence, if that

moment be known, we have only to di-

vide it by the depth of the truss to get

the strain in EF.
The internal shear and moment at

any section are easily found from the

fundamental conditions of statical equili-

brium. The shear being an internal

vertical force is the resultant of

the exterior vertical forces on either

side of the section. The exterior forces

on the left of the section, for instance,

have for a resultant their algebraic sum ;

considering the upward forces as posi-

tive, and the downward ones as negative
'

we have from Fig. 1, their sum

S^Rj w^ +R2
?J

a +R 3
10 x

as the expression for the shear in the

section x. To get the internal moment
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for the same section, we have only to

consider in like manner that it is equal
to the sum of the moments of all the ex-

terior forces on either side of the section,

for if otherwise, there would be a ten-

dency to rotation. The moment of the

force Ri with reference to x is R
x

(I, + J
a + x) ,

of R
2
is R

2 (Ja + x) ,
of the load

wl^iswl^ (4^ + 2 + a5), etc. Thus from

a mere inspection of Fig. 1 we write the

value of the moment M, regarding those

moments as positive which cause a ten-

sile strain in the upper fiber at x, and

those as negative which cause a compres-
sive one. The expression is

R
2 (k + x

) + w k (4 k

Now in these expressions for the in-

ternal shear S and the moment M at any

point cc, the lengths /,, 2 ,
x are given by

the conditions of the case in hand, and

the same is true of the load per linear

unit w. Hence the shear and moment,
and consequently the internal strains are

easily obtained as soon as the reactions
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of the supports are known. We shall

hereafter give methods by which the re-

actions may be readily determined.

By the same reasoning if we pass a

section in the span 2 , (Fig. 1) at a point

whose distance from the support 2 is x,

the shear S and the moment M for that

section will be

S=R^w ^ +R 2
w> x

Mc= R
a (Z, + x) -f w I, (i I, + x)

w x9

-R

In a simple girder whose length is

each of whose reactions is R or
-J-
w I the

shear and moment for any section x will

be

-w (% I x)

wx* w ,

When the number of spans is large,

the expressions for the shear and moment
as above deduced become long and in-

volve much arithmetical computation.
We are, however, fortunately able to
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place them under a much simpler form.

First they may be written thus

S= (R :
w

I, +R2
w

2 -fR 3)
to x

M= -R ll

Now(R l
wl

l +R, w/
2 4-R 3)

is the

shear in the span 3
at a point infinitely

near to the support 3
;
let this be called

S
3

. Also the quantity enclosed in [ ] in

the second equation is the moment of

the exterior forces with reference to the

point 3
;
let this be called M

3
. Then the

equations become

S=S
3

tox

M=M
3

S
5
x + %wx*

Therefore the internal shear and mo-

ment at any section can immediately be

found, without the necessity of determin-

ing the reactions, provided ice know the

shear and the moment for the preceding

support. This method, due to Clapeyron,
of using the moment at the supports in-

stead of the reactions greatly simplifies
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the numerical computations of a continu-

ous truss. We designate the moment at

3 by M3 ,
the reaction being R 3 ,

or the

sum of the shear S
3 ,

in the span 1
3
and

of the shear S'
a
in the span I

a
both infi-

nitely near to the support 3. In like

manner the moments at the supports 2

and 4, will be designated by M2
and M

,

the shears just to the right of those

points by S
2
and S

4 ,
and those to the left

by S'
1}
and S'

3
. In general for any sup-

port whose index is n, we have (Fig. 3)

Fig. 3,

^ 7 s _ 7 >s _ 7
W-i * n I

^*- -M+i

ilt
s ' <1N

on the left, the span n_ i, on the right the

span ln ;
the shear infinitely near to n

on the left is S r

n _i, on the right Sn ;
the

sum of S'n _i, and Sn makes the reaction

Rn ;
and the moment over the support

is MU. If the load be uniform and

equal to w per linear unit, the internal
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shear S and moment M for any section x

are given by

S= Sn 10 X

M=Mn Sn ce + - w x*

To find then the internal strains in

the diagonals of a continuous truss clue

to dead load only, we have to pass a

section cutting each diagonal and find

the value of S, this is the shear which

the strain in the diagonal must resist

and multiplied by sec. 6 (6 being the in-

clination of the diagonal to the vertical,)

it gives the required strain. To find the

strains in the upper chord we have to

take the lower chord apices as centers

of moments and compute the values of

M
;
these divided by the depth of the

truss give the strains, which are tensile

if M is positive, compressive if M is neg-
ative. To find the lower chord strains,

we choose the upper apices from which

to measure the values of x, and divide

the resulting values of M by the depth
of the truss

;
if M is positive these give

compressive strains
;

if negative, tensile

ones.
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Everything is thus known, except the

shears and moments at the supports, and

for these formulae and methods will be

presented in Chapter II, by which they

may be found for all cases. We give

here, however, two tables from which

they may be found for the common
case when all the spans are equal, and

which, by a simple law, may be extend-

ed to include any number of such spans.

As before, let w be the uniforjnly dis-

tributed load per linear unit; let I be the

length of each span, then will w I be the

weight of one span. The shear at any

support is a fractional part of 10
,
or

Shear A w I

A being a fraction given in the follow-

ing triangle :
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Each of the squares composing this

triangle represents one of the supports,

and its left hand division gives the left

hand shear S'n _i, and the right hand one

the shear Sn (Fig. 3). Thus, in the gir-

der of three spans, the triangle shows

that the first support, beginning at the

left, has on the left no shear, and on the

right Y6 w lr that the second support has

on the left a shear of -f w I,
and on the

right one of -f tv L The sum of the two

shears for any supports is of course its

reaction. For example, a girder of six

equal spans has at its middle support a

reaction of i of w L

The moment at anj; support will be a

fractional part of wLf or

Moment = B w l^

B being a fraction given in the following

triangle ;
in which like the preceding

one the spaces indicate the supports of

the girder. Thus, the fourth horizontal

line refers to a girder of four spans, the

moments at the first and last supports

being 0, at the second and fourth A w I*

and at the middle one -A w I*.
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The triangles can be extended to any

required length by the application of the

following law which obtains in all oblique

columns. Any fraction belonging to an

even number of spans, may be obtained

by multiplying both numerator and de-

nominator of the preceding fraction by
two and adding the numerator and de-

nominator of the fraction preceding that.

33
Thus for eight spans, the fraction -

ooo

2X11 + 11
is equal to ---

T
- or to

2X12 + 9

2XT42+~T04'
accordmS as we use ne

oblique column or the other. For an odd

number of spans, any fraction is found

by adding the two preceding fractions,

numerator to numerator and denomina-

tor to denominator. Thus for seven

spans,

12 8 + 4 12 9 + 3
or

142~~104 + 38 142~~104 + 38

These tables* furnish the data for solv-

* These triangles were first given by the author in the

Journal of the Franklin Institute for March, 1875. A de-

monstration of the laws governing them may be seen in

the same Journal for April, 1875.
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ing all questions concerning continuous

girders whose supports are on the same

level, whose spans are all equal, and

which are loaded uniformly throughout
their entire length. The reader should

first acquire facility in the use of the

tables. We give, therefore, a few ex-

amples for practice :

1. In a girder of six spans, what is the

reaction at the second support ?

Ans * ^= wl wL

2. In one of eight spans, what is the

reaction at the middle support ?

O 386
7Ans.

R.=38-8
^.

3. In one of ten spans, what is the mo-

ment over the fourth support from the

left?

123

4. In one of seven spans, what are the

shears S
2
and

S'^
? (see Fig. 3.)
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5. In one of six spans, what is the mo-

ment M and the shear S ?

t
.

Having thus found from the triangles,

.the moment Mn and the shear Sn for the

?i
th

support, the shear S and the moment
M for any section in the nih

span are

readily found from the formulae

S=Sn wx
M=Mn Sn #-fi wx*

which we have demonstrated above, and

Fig, 3.

N" '

in which x is the distance from the sup-

port n to the assumed section. If in
'

these x be made equal to /, they will, of

course, give the shear S'n at the left of

the n + 1
th

support, and the moment
Mn_|_i

over that support. We will illus-

trate their use by a few examples :



26

6. In a continuous girder of three

spans, what is the shear and the moment
at the center of the middle span ?

We have from the table S^ wl and

Hence

S= w lwx

M= ioF

and placing x equal to \ /, we have

S=0 M.=--wT
40

7. In a girder of six spans, find the

shear and moment at the center of the

second span ?

8. In one of four spans, what is the

shear and moment in the third span for

3 4
Ans. S= w Z and S=-- w I

14 14
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In computing a framed truss we need

to find the value of S for a section cut-

ting every diagonal and that of M for

one passing through each panel apex,

from these we readily derive the strains

in the webbing and chords by the rules

explained above. A single example will

render the whole process clear. (We
here treat of the dead load only ;

com-

putations involving the live or rolling

load will be presented hereafter.)

Let the truss represented in Fig. 2

consist of seven continuous spans, each

sixty feet in length. Let the uniformly
distributed load per linear foot be two

hundred pounds, one half of which rests

upon the upper chord and the other half

upon the lower. The lower chord is di-

vided into six bays, each of ten feet, and

is connected with the upper one by a

Warren system of diagonals. The depth'*

of the truss is seven feet. Let it be re-

quired to compute the strains in all the

pieces of the third span, due to this dead

load.

We first take from the triangles for a
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70
girder of seven spans, S

3
= - wl and

11M
3
= wl*. We have for our case,

0=200 Ibs. and 1=60 feet. Hence

S
3
= 5916 Ibs. and M

3
55775 Ibs. ft.

Inserting these and the value of w in the

above general formulae, we have

wx
Mr=55775 5916 x+ IOOx*

. as the value of the shear iind moment for

any section x.

Now, since this is a framed truss, and

the several pieces are to be subjected

Fig. 2-

3

only to longitudinal strains, the load

should not be strictly uniformly distrib-

uted but concentrated on the upper
chord at the panel points B, C, etc. and

on the lower chord at a, #, c, etc. Allow-

ing that each of these points receives an
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equal weight and that a and <?, count as

but one point, we have at a 500 Ibs., at

g 500 Ibs. and at each of the others 1000

Ibs. In finding the shear for the diag-

onal a B, we pass the section anywhere
between a and B and take wx as 500,

for B wx is 1500, for bC 2500 and so

on
;
these subtracted from S

3 give the

required shears. This is in fact nothing
but taking the algebraic sum of all the

exterior forces between the left hand of

the truss and the diagonal under consid-

eration, for S
3
is the sum of those forces

from the left end to the beginning of the

span. For the diagonal Fe we have, for

example,

S = 5916 8500 = 2584 Ibs.

Thus by successive subtraction we
find the shears for all diagonals. Multi-

.

plying them by the secant of the angle

between a diagonal and the vertical or

Sec. tf=
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and we have the required strains. To
determine their character we have simply
to consider that a positive shear causes

(
tensile

)

a \ I strain in a diagonal
( compressive j

which slopes \

uPward
\ toward the

( downward }

left hand support, while a negative shear

produces the reverse. In the following

table, the results thus determined are

recapitulated. The first column shows

the name of the diagonal corresponding
to Fig. 2, the second gives the shears,

the third gives the slopes, + indicating

an upward inclination toward the left,

and a downward one, and the last

column gives the strains, + indicating

tension, and comiwession. In forming

the last column from the two preceding

ones, it will be noticed that the rule of

signs is observed :



31

DIAGONALS. (See Fig. 2.)

We will now pass to the computation
of the chord strains. In the above ex-

pression for M the quantity ^ w x 2
or

100 x2
is the moment of the load between

the point 3 and the assumed section and

its value is the same whether the load be

considered as uniformly distributed or ,

concentrated at the apices as above.

Hence to find the moments for the upper
chord we have in the expression

M = 55775 5916 x+ 100 x2

simply to give to x the successive values
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0, 10, 20, etc., since for the bays A B,
B C, C D, etc., the opposite vertices #, b, c

etc., must be taken as centers of moments.
Thus if the bay C D be cut rotation will

at once begin around the point c
;
we

take then x =20 and find for the mo-
ment of the strain in C D,

M= 22545 Ibs. ft.

and dividing this by its lever arm or

seven feet we have 3221 Ibs for the

strain. The character of the strain is

found by recollecting that a positive mo-

(
tensile

)

ment causes a
{ J-

strain in
( compressive )

the \
H

[ chord, while a negative
( lower }

moment produces the reverse. If we

designate then tension by + and com-

pression by ,
the signs of the strains

in the upper chord will be the same as

those of the moments. In this way it is

easy to compute the following results :
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UPPER CHORD. (See Fig. 2).

For the lower chord the calculation is

very similar. The centres of moments
are taken at the points B, C, etc., the

successive values of x are 5, 15, 25, etc.,

the strains are numerically one-seventh

of the moments, and their signs are op-

posite to that of the moments. Thus for

the bay e/,o;=45, M= 7945 Ibs. ft.

and the strain in ef is 1135 Ibs. tension.

The results are in the following table :
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LOWER CHORD. (See Fig. 2.)

and the strain sheet for the span is now

complete.
In the same way the strains for each of

the other spans may be readily found.

From the symmetry of the truss it is

evident that the fifth span will be exact-

ly the same as the third, the sixth the

same as the second, and the seventh the

same as the first. For the fourth span
the value of S and M for any section x

are

S=6000 w x
M=:60848 6000&+ 100

3

and the strains will be the same on each

side of its center. For the first span

Sj is the same as the reaction R
x
the mo-

ment M n is zero and we have
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8=4732 w#
M= 4732 x + 100 x9

It will be seen then that the compu-
tation of the strains in a continuous

girder is exactly the same as in a simple

one, except only in the preliminary de-

termination of the shears and moments

at the supports. In a simple girder the

end shears are the same as the
reactions^

which are known from the law of the

lever, and the moments at the supports

are zero. In a continuous one these

quantities must be determined by formu-

lae, or, for the case of equal spans uni-

formly loaded,* taken from the triangles

which we have given above. They may
also be found by a graphical process.

If the truss above discussed were built

with seven simple girders, the strains in

each would be the same. It may prove

interesting then to compare the results

above found with those for a simple gir-

* Other convenient tables for concentrated loads and

for uniform loads over one span only are given in the ar-

ticle above referred to in the Journal of the Franklin In.

8titute.
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der. The mode of computation is essen-

tially the same
;
the end shears are each

one half the total load, the pieces A B
and G H in Fig. 2 disappear, and for any
section x we have

8=0000^85

Considering as before that the load is

concentrated at the panel points we have

500 Ibs. at a and g and 1000 Ibs. at B, C,

D, by c, d, etc., respectively. We then

find the shears and moments and from

them deduce the strains as above de-

scribed. The results are given below

compared with those for the third span
of the continuous truss.

(See Table on following pages.)

Adding these strains regardless of

sign we find the two sums to be the

same. It can be easily demonstrated

that for the dead load such should be



DIAGONALS. (See Fig. 2.)

Sums.... 44244 Ibs. 44244 Ibs.

the case. As far as the diagonals are

concerned, the two structures require an

equal amount of material.

UPPER CHORD. (See Fig. 2.)
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Adding the strains in the upper chord

we observe that the sum for the simple

truss is about 1.7 times that of the other.

If the amount of material is to be pro-

portional to the strain, a considerable

saving will here be expected.

LOWER CHORD. (See Fig. 2.)

The lower chord in the simple truss

would then be subjected to about 2.6

times as much strain as in the continuous

one.

If we suppose that the same working

strength may be allowed for compression
as for tension, we may obtain an estimate

of the saving in material by employing a
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continuous truss instead of a simple one.

The amount of material will be propor-
tional to the strain and to the length of

the piece strained. Regarding the bays of

the chord as unity, the diagonals will be

represented in length by 0.86. The pro-

portionate amounts of iron will then be

found by multiplying the above sums by

unity for the chords and by 0.86 for the

diagonals. Thus we have a

COMPARISON.

from which we see that the amounts of

material in the two cases are in the ratio

of the numbers 87570 and 140195 or as

1 to 1.6. For this particular span then

a saving in material of thirty-seven and

a half per cent, is effected by using a con-

tinuous truss instead of a common one.
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It is capable of demonstration that for

girders subjected only to dead load, the

total amount of strain in the webbing
will be the same for simple as for con-

tinuous trusses, and also that under the

most favorable circumstances, the total

strain in the chords of the first is to that

in the chords of the second as /\/27 ig to

2 or nearly as 2.6 to 1.

In studying the theory of girders many
interesting questions arise which are of

little importance in practice. One of

these is the determination of the inflec-

tion points. At these points the curva-

ture of the beam changes, the strain

passes from.tension to compression and

the moment is zero. At any point in the

nth span the moment is

M = Mn Sn x +-J- ic x*

Making in thisM equal to zero and solv-

ing the equation with reference to x we
find

20
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For a girder of equal spans and uniform-

ly loaded we may hence write for the two
inflection points,

x=All^/^_ 2 B

in which A and B are to be taken from

the above triangles, A always being taken

for the right hand side of the support
under consideration, for example, in a

girder of eight spans the inflection points

for the fourth span are at the points

3887 388

or for x 0.22 I and ^=0.79 I.

The point of maximum moment, or

the point near the center of the beam,

where the chord strain is the greatest is

more important and readily determined

from the above general value for M.

Differentiating it with reference to x we

have

_ _ nax

that is, the maximum moment obtains at
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the point where the shear is zero. Its

S
value is found by replacing x by -

which gives

Max. M:=Mn

as the greatest negative moment.
The following examples will enable

the reader to test his knowledge of the

preceding principles :

9. In a girder of two spans uniformly
loaded what are the maximum positive

and negative moments ?

Am. 0.125 wF and 0.071 wF.

10. In one of three spans what is the

maximum negative moment in the mid-

dle span ?

Am. 0.025 wF.

11. In one of eight spans where are

the inflection points in the fifth span ?

Ans. x= 0.2Hand 05=0.78-7.

12. A continuous girder of three spans,

each equal to fifty feet, is divided into
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five panels on the lower chord, and has

bracing similar to that shown in Fig. 2.

Supposing a load of five tons applied at

each of the lower panel points, what are

the strains in each of the pieces of the

middle span ? the height of the truss

being six feet.

Ans. In a #, 11.7 tons; in b c, -f- 1.7;

in B#, +13 ;
etc.

In this chapter we have treated of the

continuous girder when affected only by
dead load or its own weight. In the fol-

lowing chapters we shall take up the ac-

tion of the live or variable load.





45

CHAPTER II.

A continuous girder, loaded in any

manner, is held in equilibrium by the up-

ward pressures or reactions of the sup-

ports, and, as we have seen, these reac-

tions are alone sufficient for the complete
determination of the strains in every

part of the girder. But if, regarding the

question as one of pure statics, we con-

sider the beam as rigid, we find it impos-
sible to determine the reactions when the

number of supports is greater than two.

This does not arise from the fact that in

an actual case the question is indeterm-

inate, but simply because in considering

the girder as rigid we have restricted the

data to the mere weight, neglecting en-

tirely the physical properties of the ma-

terial. By taking into account the das-
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ticity of the girder, the problem becomes

determinate
;
we find the reactions, or

what is equivalent, the shears and mo-

ments at the supports, and from these

the investigation of the internal forces

or strains is easy.

THE ELASTIC LTNE.

When a girder is acted upon by verti-

cal forces, a change of shape arises,

which causes the originally parallel fibers,

to be on one side lengthened, and on the

other shortened. Between the lengthen-
ed and shortened fibers, there is a plane
which undergoes no change of length ;

the central line of this plane is called the

neutral axis or the elastic line. Thus, in

the bent beam represented in Fig. 4, m o

is the neutral axis, the fibers above it be-

ing shortened "or compressed, and those

below it lengthened or tensioned.

We derive the equation of the elastic

line upon three hypotheses : ls, that all

planes perpendicular to the neutral axis

before the bending or flexure, preserve
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during the bending their perpendiculari-

ty and their form as planes ; 2d, that the

change of length of a body subjected to

a force is, within certain limits called the

elastic limits, proportional to the intensi-

ty of the force
;
and 3c?, that the change

of shape is so little that the length of the

neutral axis is sensibly the same as its

horizontal projection.
In Fig. 4 we have a longitudinal sec-

tion of a portion of a bent beam; the two

planes ab and de, originally parallel, re-

maining perpendicular to the neutral

axis m o, and intersecting in c the center

of curvature. Hence, drawingj^ paral-

lel to ab through o, the lines fd, ge, etc.,

denote the elongations and compressions
of the respective fibers, and we see from

the figure that

od: odr

y.df: d'f
or the change of length in the fibers is

proportional to their distances from the

neutral axis. This is the consequence of

the first hypothesis.

Designating by H and H' the force
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acting in the fibers df and d' /", the sec-

ond hypothesis says that

H : H' \:df:d'f

FIG. 4.

Hence, by combining these two propor-

tions,

H : H' ; I o d : o d'

or, the horizontal forces are directly pro-



portional to their distances from the

neutral axis. Therefore, if we denote

the distance of any fiber from the axis

by 2 the strain upon it by H', the dis-

tance of the remotest fiber by e and the

strain upon it by H, we have

H' : H ! ! z : e or H'=
e

We have thus far considered the cross-

section of the fibers as unity. If the

actual section be a, the force in each is

evidently
-

. Each of these forces,
6

as for instance H' in the figure, tends to

turn the beam around the point o with a

lever arm o d' or z, and its moment or the

measure of that tendency to rotation is

TT n z
the product of the force by the dis-

tance z, or - . The sum of all these

moments is

= 2 az*
e
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or, since 2 a z* is the moment of inertia

of the section a &, we have

M=!!
e

as the expression for the sum of the mo-
ments of the internal forces, H being the

strain in the remotest fiber, e its distance

from the neutral axis, and I the moment
of inertia of the cross-section.

The line df denotes the change of

length of the fiber ad due to the force

H. Hence if E be the coefficient of

elasticity,*

a d: df: ; E : H

Designating the radius c o by r we have

from the similar figures o df and cad
(since mo=ad),

a d : df. \r : e

* The Coefficient of Elasticity is the ratio of the force

of displacement to the amount of displacement taken

upon a cube whose edge is unity ; Hence for the above

case E=H-< f. The term modulus of elasticity pro-aa

perly relates to the impact of bodies, and is a measure of

elasticity in the common sense of the word, unity indi-

cating perfect elasticity or restitution of form. These

terms are often confounded by writers.
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Combining these proportions we find

H_E
e ~~r

and hence, for the value of the internal

moment, we have

The radius of curvature of any plane

curve, whose length is u, and co-ordinates

x and is*

d x d* y

And as by our third hypothesis we may
place dit=dx, this becomes

which, inserted in the above value of M,

gives

M
(\\

x

as the differential equation of the elastic

* See any work on the Differential Calculus.
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curve, applicable to all bodies subject to

flexure, which fulfill the condition im-

posed by the third hypothesis. The co-

efficient of elasticity and the moment of

inertia may be different in every section.

CONDITIONS OP EQUILIBRIUM.

Let us consider the rthv span of a con-

tinuous girder whose length is lr
,
and

let a single concentrated load Pr be

placed on this span at a distance Mr from

the left hand support r. This load, the

loads on the other spans, and the weight
of the girder itself, are held in equili-

brium by the vertical reactions R r i,

R
r> etc., of the several supports. (See

Fig. 5.)

Let us pass a section between the load

Pr and the support r-f 1 at a distance x

from the rth support. As shown in the

last chapter, all the internal forces in this

section are represented by a shear S and

a moment M. The shear S is equal to

the algebraic" sum of all the external

forces upon the left hand side of the sec-



53

tion, and the ^noment M is equal to the

sum of the moments of those forces with

respect to the section as a center. Hence,

regarding upward forces as positive, and

a moment as positive when it tends to

cause tension in the upper fiber of the

section, wre have

(2) S = IS,
~ Pr

M=Mr
- Sr a+ Pr (x-Mr )

in which Sr is the shear at the right of

the rth support, and Mr the moment at

that support. In like manner for a sec-

tion between r and P
r>
we have

S=Sr

M=Mr
- Sr x

The internal forces at any section can

then be found as soon as the shear and

moment at the preceding support are

known.

If, in the above expression, we make x

equal to l
Tj
M becomes Mr _j_j,

and we de-

duce
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The shear and moment at any section

can then be determined as soon as Mr and

Mr _j_ i, the moments at the preceding and

following supports, are known.

These conditions of equilibrium are

entirely independent of variations in the

dimensions or material of the beam, or

in the relative heights of the supports of

the girder.

THE EQUATION OF THE ELASTIC LINE.

In order to apply equation (l) to the

case of continuous girders, we have to

insert for M, E and I their values as func-

tions of x and integrate the equation
twice. E, however, cannot under any

ordinary circumstances be a function of

#, it being dependent upon the elasticity

of the material alone, which is nearly the

same in one and the same beam, and we
hence regard it as constant. In a beam
of uniform section I is constant, and

although it varies in common bridge

trusses, we shall be obliged in order to

bring the investigation within the limits
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of this paper to consider it always as con-

stant, taking care to point out after-

wards the slight error thus introduced.

Inserting then in (1) the value of M
from (2), we have

Pr (x-k lr)_
dx*- El

as the differential equation, applicable
to girders of constant elasticity and
uniform cross section. Integrating this,

the constant is r,
the tangent of the in-

clination of the elastic line at the sup-

port r and

dx.~ r 2EI

we have thus far taken no account of

the relative heights of the supports.
For the reasons mentioned in the last

chapter, we shall consider them as all
'

upon the same level. The constant for

the second integration is then 0, the

origin being at r, and we have

t
-

r

(5) y-tt aH 6E I
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as the equation of the elastic curve be-

tween the load Pr and r-fl th
support

(Fig 5). If there be several loads we
have only to affix the sign of summation

J2* to the term involving PFj
and if that

term be omitted we shall have the equa-
tion between the load and the rth sup-

port, since for any section between those

points M=Mr ST x.

If in (5) we make cc 4, y becomes 0,

and inserting for Sr its value from (3),

we find

(6) 6EH=-2Mr 4-Mr + j

Thus the equation of the curve is

completely determined, when we know
Mr and Mr + 1 the moments at the sup-

ports r and r+1. These may be found

by the remarkable theorem of three mo-

ments.

THE THEOREM OF THREE MOMENTS.

In Fig. 5 is represented a portion of a

continuous truss. Beginning at the left

hand end, the lengths of the spans are
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denoted by Z
2 ,

lr,
etc

,
and the sup-

ports are designated as 1, 2, r, etc.

Upon the spans /r _i and /r are loads

Pr _i and P
P>
whose distances from the

nearest left hand supports are &/r _i and

k l
Tj
k being any fraction less than unity,

and not necessarily the same in the two

cases. The equation of the elastic line

between Pr and the support r + 1 is

given by (5), and the tangent of the

angle which the curve at the section x

makes with the axis of abscissae is given

If in (4) we substitute for Sr its value

from (3), and for tr its value from (6),*

and make cc=/r ,

~ becomes r -f-i
the

ct cc

tangent of the inclination of the curve

at ?'+!, and we find

6 E I fr + ! =M r Zr + 2 Mr + 1 lr-PT ll(k-tf)
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Now, if we consider the origin moved
from the support r back to r1, we may
derive a value for r by simply diminish-

ing each of the indices in the above ex-

pression by unity, hence

(7) 6EH=Mr _ 1 Zr _ 1 + 2Mr /r _ 1

-Pr-iPr-if*-*
1

)

Equating the values of 6 E I tr given by
(6) and (7), we have

which is the most general form of the

theorem of Three Moments for girders
of constant cross-section. By prefixing
the sign 2 to the terms in the second

member, it becomes applicable to any
number of single loads. For uniform

loads WT __ i and wr per linear unit, we
have only to place

Pr _ i = wr _ i d (k lr_ i)
= w? ilT \dk

Pr = wr d (k lr)
=wr 1T d k

And to replace the sign of summation

2 by that of integration / . If these
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loads extend over the entire spans lr and

/r 1> we take the integrals between the

limits k=0 and k=l, and have

which is the theorem as first announced

by Clapeyron.
For each support of a continuous

girder an equation may be therefore

written involving the moment at that

support, and those at the preceding and

following support. In a girder of s

spans there are 5+1 supports, and since

the moments at the first and last sup-

ports are zero we have sl moments,
whose values may be found by the so-

lution of the 51 equations. The mo-

ments give the shear at any support, and

by (2) the internal forces or strains may
be determined for every section of the

girder.

REMARKS ON THE PRECEDING THEORY.

The laws of the theory of continuity
above deduced can be regarded as onlyap-
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proximate. Of the three hypotheses upon
which the differential equation of the

elastic line is deduced, the first, although
a most reasonable assumption, has not

been definitely verified by experiment,
and the second is rendered somewhat

doubtful by the extreme difficulty in

delicate experiments of assigning the

elastic limits. Nevertheless they are

universally regarded by all writers as

sufficiently accurate to form the basis of

a working theory, and must continue to

be thus used until we attain to a more

thorough knowledge of matter and force.

The third hypothesis, however, is a limi-

tation of the data, which we are at per-

fect liberty to make, since we know that

the increase in length of the girder by
deflection is too small to be practically

measured. We may conclude then that

the equation (1) is an extremely close

approximation to the actual law govern-

ing straight elastic beams. From the

time of Navier to the present it has

been so accepted and used.

The next hypothesis or limitation of
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data, which we make, is that E, the co-

efficient of elasticity, is constant through-
out the girder. In a solid beam of

ordinary homogeneous material, there

can be no reason for supposing it other-

wise.

In the Journal of the American So-

ciety of Civil Engineers for May, 1876,

appeared an article by Charles Bender,

C. E., in which the use of continuous

bridges is strongly opposed. One of his

main objections is that the theory upon
which such bridges are computed is un-

reliable in consequence of the assump-
tion of a constant coefficient of elasticity,

and he quotes the records of experi-

menters to show that values for the

coefficient of iron and steel have been

observed ranging from 17,000,000 to

40,000,000 pounds per square inch.

These limiting values are, however,

decidedly exceptional, but even grant-

ing that such variations may exist

in materials and forms like soft iron

wire, steel rails and wrought iron eye-

bars, it cannot be supposed that they
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will occur in one and the same structure,

where the material is of one kind, of

similar cross sections and which has

been subjected in the same mill to the

same process of manufacture. The mere

statement that Morin has observed val-

ues of the coefficient of elasticity as low

as 17,000,000 has very little weight when

unaccompanied by any reference to the

kind of iron experimented upon. Let

us see what Morin himself actually says
in recapitulating the results of experi-

ments upon wrought iron.*
" Iron of superior quality, which comes

from standard ores, and which has been

manufactured exclusively with charcoal,

or iron from sheet metal, many times

refined, may give for the coefficient of

elasticity values as high as E=28,-

400,000, or even E=31,200,000 Ibs. per

square inch, equal to those furnished by

ordinary steel. Iron of ordinary manu-

facture reduced with common coal, and

drawn into forms like rails, T irons,

*Morin; Resistance des Materiaux, Paris, 1862. Vol.

I, p. 443.
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flanges, etc., give such values as

E = 24,100,000 and E = 25,600,000.

Finally the most soft and ductile iron

furnishes values as low as E=: 2 1,300,000,

or E= 19,800,000, or even E= 1 7,000,000.

It is well, then, in calculations upon the

strength of iron, to ascertain the quality

of the material and the process of manu-

facture."

Mr. Bender likewise alludes to ex-

periments upon wrought iron bars in

which the coefficient of elasticity was

found to be 40,000,000, and it seems to

be implied by his language that such

values are of common occurrence. The

fact, however, that a standard writer on

the strength of materials, like Morin,

regards 34,000,000 as an exceptionally

high figure for iron, may justify us in

demanding that when a value like
t

,

40,000,000 is quoted, we should be fur-

nished with some details concerning the

quality of such iron, the process of

manufacture, as well as a description of

the testing machine and the manner of

measuring the small extensions or com-
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pressions, from which the coefficient is.

calculated, or at least that we should be

referred to the book or journal where

such experiments are described. And
further as it is well known that by strain-

ing a bar beyond the elastic limits, very
low values of E can be deduced, are we
not justified in asking similar informa-

tion concerning experiments which fur-

nish such values ?

Undoubtedly there is some variation

in the elasticity of different pieces of

iron, even when great care has been

taken to ensure uniformity of material

and manufacture, and it is greatly to be

desired that experiments should be made

to determine how it varies with the

cross section and length of the piece.

As soon as such a law of variation is

discovered (if any exist), we shall be

obliged to consider E as variable in in-

vestigating a continuous truss. But if

no law exists and we know only the fact

that there are slight variations in the

elasticity of different pieces in the same

truss, what is to be done ? Nothing but
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to regard E as constant,

assured that the distribution of the

variable pieces throughout the structure

will be governed by the law of proba-

bility, and that hence the girder as a

whole will conform closely to the

theoretic form of tho elastic line.

The next argument which it is our

duty to criticise in that article is, that

the theory of continuous girders is un-

reliable, because the calculated deflection

does not generally agree with the

actually measured deflection. The ac-

curacy of the computed strains must

depend upon the accuracy of the

theorem of three moments, and this it is

asserted depends upon the calculated

deflection. And because the deflection

as actually measured is sometimes no

more than one-half of the calculated
'

one, hence, it is said, the same differences

may occur in the strains, and the whole

theory is unworthy of consideration.

This we can only regard as a striking

instance of the incompetency of prac-

tical men to draw conclusions from even
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simple experiments. The reader who
has followed onr presentation of the

theory of the elastic line, will see at

once that the value of the deflection'

given by (5) only enters the discussion

as an auxiliary for finding (6), the

tangent of the inclination angle at the

support. The process supposes, indeed,

that E is constant, but it supposes noth-

ing whatever concerning the value of

the deflection at any point. When we

pass to the next span and find again in

(7) a second value of the tangent, the

actual value of the deflection there is

likewise not considered. And when by
the combination of (6) and (7), we de-

duce (8) in which E does not appear, its

very absence is a proof that the moments

and hence the strains are entirely in-

dependent of its value or of the actual

deflection. If two trusses of the same

spans, height and form are continuous

over several supports, one of steel hav-

ing a coefficient of elasticity of 31,000,000

Ibs. per square inch, and the other of

wood having a coefficient of only one-
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twentieth as much, the reactions, shears,

moments and strains would be the same

in each. The measurement of the actual

deflections of these bridges under given
loads is only useful for determining and

comparing their stiffness or elasticity, or

in connection with theory for finding the

values of E and I. The theory of con-

tinuity rests not upon absolute deflec-

tions, but on relative ones on the form
of the elastic curve, and this again upon
the three universally accepted hypotheses
included in our equation (1), with the

additional assumption that the coefficient

of elasticity is practically constant.

One more remark and we close for to-

day a discussion which shall be resumed

in our next chapter. Mr. Bender advises

us to abandon the theory of flexure, to

make no further advance in bridge

building, to remain content with the

simple lever, or at the utmost with the

continuous (sic) patent hinged truss.

But until such advice is enforced by
more logical arguments than we have

yet seen, we must continue our work



68

in support of a theory and system
which is universally accepted as only

slightly deviating from the exact ex-

isting conditions, which is applied in

the erection of continuous bridges by
every nation except our own, and which

perhaps if carried out by us might lead

to more perfect structures than the

world has yet seen. The great majority
of coefficients of elasticity quoted in his

paper, made by such men as Staudinger,

Baker, Morin and Wohler, were in fact

found by measuring the deflections of

beams, and then from the theory of

flexure computing the value of E. He

accepts those values, and on their evi-

dence condemns the theory by which

they were deduced ! Is not Morin's

conclusion, which we have quoted above,

by far the most reasonable ?

MOMENTS AT THE SUPPORTS.

The theorem of three moments given

by (8) furnishes the means of finding the

moments at the supports due to any as-

signed system of loading. The actual
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solution of those equations is, however,

quite tedious when the number of spans
is large, and we proceed therefore to de-

velop a general solution, by which the

values of the moments may be formulated

and placed in a convenient form for nu-

merical computation.
In the designing of continuous bridges

it is only necessary to consider single

loads concentrated at the panel apices or

uniform loads extending over an entire

span. Let us, then, consider a continu-

ous girder of constant cross-section and

homogeneous material whose supports
are on the same level. Let, as in Fig.

6, the supports beginning at the left

hand end be designated by the indices 1,

2, 3, .... r, etc, and the lengths of the

spans /
t , 2 ,

/
3 , 4? etc. Call the num-

ber of spans sy then the last span will

be /8 ,
and the last support s+1. The

ends of the girders rest upon abutments

in the usual manner, the lengths of the

spans may be all different and their

number may range from one to infinity.

In the span 1T let a single load P be
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placed at a distance k lr from the sup-

port r, (k being any fraction less than

FIG. 6.

/A 2 L&.

i z 3 T r*'

unity), or let this span be loaded uni-

formly from T to r+l with a weight W,
(W being equal to w ?r ,

if w is the load

per linear unit), all the other spans be-

ing unloaded. By reference to (8) we
notice that there are two functions of

such loads which enter the equations of

moments. If the single load P is alone

considered these functions are

the first entering into the equation for

the preceding support r, and the second

into the one for the following support

r+ 1. If the uniform load over the whole

span is alone considered, these become

each equal to %W C, as we have shown

above in discussing the theorem of three
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moments. In the following investiga-

tion, we place therefore for abbreviation

A=P% (2 & 3 F-f&3

)
) for a single

B=P II (fc-k
a

) \ load in span lr .

(I)

A $W % } for a uniform load over

B=J W? I"
whole span lr .

By introducing the letters A and B to

represent these functions, our discussion

will apply equally well to a single load

P, or to a weightW uniformly distribut-

ed over the whole of a single span.

Since the girder is not fastened at the

abutments 1 and s-fl, the moments at

those points will be zero. The moments
at 2, 3, .... r, etc., we designate by M2 ,

M
3 ,
.... Mr , etc., and from (8) we may

write an equation for each of those sup-

ports. As there is no load considered

except on the span r ,
the right hand

member of the equation for the support
r will be A, of that for r + l will be B
and of all the others will be zero. Thus

we have the following equations :
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+M8 4 -1=0

The number of these equations is sl,
the same as the number of unknown mo-

ments. Their solution is best effected

by the method of indeterminate multi-

pliers. Let then the first equation be

multiplied by a number c
a ,

the second

by c
s , etc., the index of the as yet inde-

terminate numbers corresponding with

that of the M in the middle term. Then

let all the equations, thus multiplied, be

added, and the resulting equation be ar-

ranged according to the coefficients of

the unknown moments M
2 ,
M

3 ,
etc. Now,

if we require that such relations exist

between the multipliers, that all the

terms in the first member shall reduce to



73

zero, except the last containing M 8)
the

value of M 8 is

__
8~~c8 _i/8 _ 8 B-.

And the values of the multipliers will

be given by the equations

etc., etc. ....

After deducing the values of c from

these equations, the value Ms is at once

known.

Again, if we multiply the equations of

moments, beginning with the last, by the

indeterminate numbers rf
2 ,

<#
3 , etc., all the

moments except M2 may be eliminated,
and we have

~

and the multipliers will bo given by the

equations

etc., etc., etc.



The values of the numbers in the series

c and d need only satisfy the equations
as given above. Assuming then c

t=l,

and//a=l, we get the following :

c,=o
= !

(II)

etc., etc.

% 4

etc., etc.
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which reduce to numerical form as soon

as the lengths of the spans for any par-
ticular case are substituted.

Since the s 1 equations of moments
are of the same form as the equations of

the multipliers c and d, we must have

M
a
=c

3
M

2 ,
M

4
=c

4
M

a , etc.,

M8 _ i=6/3 M^ M8 _ 2=: ^
4 Mg, etc.,

or, if n indicate the index of any sup-

port,

Mn =cn M2
when /i<r-f-l

Mn = <^s_n-f2 M s
,
when n>r

Inserting in these the values of M
2
and

M8 as found above, we have

(III) whenn<r-fl

M - fl
Acr + Ber +Mn -^n-f2

C8 _ i/g _ i + 2c.

8(4
when

which give the values of the moments at

all supports in terms of the quantities A
and B, depending only upon the charac-

ter of the load and its position in the
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span /r
f
and the numbers c and ^depend-

ing only upon the lengths and number
of the spans of the girder.* To find

their numerical value for any given case

is hence a simple arithmetical exercise.

Example 1. A continuous girder has

four unequal spans, ^= 80 ft., 1
2
= 100 ft.,

J
s

50 ft., and /
4
=40 ft. (Let the reader

draw the figure). On the span a
is a

single load P 10 tons, whose distance

from the support 2 is &/
2
= 40ft. To

find the moments at the supports.

Since //
2 =:40, and

2=loo, we have

k=OA. Inserting then in (I), the values

of &, l
z
and P, we find

A=38400 tons ft. B 33600 tons ft.

Inserting next the lengths of the spans
in (II), we have

C
3

3.6 ^3 3 - 6

c=J9.6 (,= 10.3

* In the London Philosophical Magazine for September,

1875, where the above demonstration was first giver, the

author has- extended the method to girders witu fastened

or walled-in ends.
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Since the load is in the second span r=%,
also s4] hence f/s_ r_|.2

#
4 =10.3, cr =

<?
2=:1, etc., and 4- i=Js=50, etc. By
inserting these values of c, /, I,

A and B
in (III), we obtain

Mn = 82.01 cn
,

Mn = 24.05 /6_ n ,
when n>2

For the abutment or left hand support,

we have n=I, Cj 0, and hence Mj 0,

for the second support, n= 2, e
2=l, and

M
a
= 82.01 tons ft. For the third sup-

port, w=3, dQ_ n= 3.6, and M
3

88.56

tons ft. For the next, w=45 ?a_ n=l,
and M

3
24.65 tons ft. Lastly, for the

right hand abutment, ??= 5, and M
6

0.

A positive moment, it will be remember-

ed, causes tension in the upper chord of

a truss, while a negative moment causes

the reverse.

2. A girder of four equal spans has a

load P at any point on the tirst span.

Find the moment at each pier due to P.

Am. M
a
=:iJPJ (&-&', etc.
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SHEARS AND REACTIONS AT THE SUPPORTS,

It is thus easy from (I), (II) and (III)

to find the moments at all supports due

either to single concentrated loads or to

a uniform load over an entire span, and

these are the only two kinds of loading

which we need to consider in designing
a continuous bridge. We next need the

shear Sn at the right of any support due

to these same loads.

In computing strains in a continuous

truss we take up each span separately.

The index n refers always to the particu-

lar span under consideration, while the

index r referring to the span in which

the load is for the moment considered,

may be less than, equal to or greater

than n. For single loads the shear Sr is

given directly by (3), fora uniform load

p (i __&) in that expression becomes \ wl^

while for an unloaded span those terms

disappear. Thus we have

(1-*), for Fig. 6.

r

(IV) Sr =^-I^+l+$wlr,
for Fig. 3.



79

^
when n>r, orn<r,

for the shear in the span 7n infinitely

near to the support n.

The shear in the span ?n at a point in-

finitely near to the n+ 1
th

support is

called S'n (see Fig. 3). For its values

we deduce

a ,
Mn _i_i Mn

S n -
2-j
- ,for n>r, or

The reaction I> n at any support n is

evidently the sum of the shear Sn in the

span lu ;
and of the shear S

r

n -_i in the

span n _i or for all cases

Rn = Sn -f S'n _i.

JZxample. A girder of four equal

spans has a single load P at the center of

the third span from the left end. Find

the reaction at the third support.

Ans. B = H-P.
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SHEAR AND MOMENT AT ANY SECTION.

These are given directly by the sim-

ple conditions of static equilibrium.

For a single load we have from (2), (see

Figs. 5 and G),

S = Sr P, for a section between

(V) Pandr+1
S=S

Dj
for any other section.

as expressing the internal shear for any
section x (see Figs. 5 and 6).

Also, we have

M=Mr Sr x+P (xJclr), between

(VI) Pandr + 1

M=]VIn Sn #, for an}' other section,

for the internal moment for any section

a; in a span either unloaded or containing
the weight P. Similar expressions may
be also written as in Chapter I, if the

load be taken as uniformly distributed.

Example. A girder of three equal

Bpans has a load P at the center of the

first spans. What is the shear and mo-

ment at the center of the middle span ?

Ans. S=tP, M=APi
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MAXIMUM SHEARS AND MOMENTS.

The formulae (I) to (VI) inclusive are

sufficient in connection with an arithmeti-

cal process of tabulation to determine

the maximum strains in all the pieces of

a properly designed continuous truss.

Having for instance to calculate tbe span

Zn, we may take at every panel apex

throughout the bridge a single load P,

and compute the shear and moment at

any section due to every possible posi-

tion of P. These arranged in a table,

afford a clear view of the distribution of

loading giving the maxima ;
the great-

est positive shear, for example, occurring

when the live load covers those portions
of the bridge which furnish plus values

of S, while at the same tim3, it is absent

from those portions giving minus values

of S. Adding then all the plus values

thus found, the maximum is determined

by combination with that due to the al-

ways existing dead load.

It is therefore not absolutely neces-

sary that the engineer should be ac-
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quainted with the theory of the distri-

bution of loading giving rise to the maxi-

mum strains in the various pieces of the

truss. As such a knowledge, however,
is of great assistance in checking the ac-

curacy of the calculation, we shall here

state without demonstration the cases

under which such maxima and minima
i

arise.

First the shear
;
from this we obtain

the strains in the webbing by the simple

multiplication by a constant, a positive

shear producing tension in a diagonal
which slopes upward toward the left

hand support. The maximum positive

shear in the span Zn at the section whose

distance from the support n is x
y occurs

under a distribution of loading such as

is represented in Fig. 7, in which the

shaded portions denote the live or rolling

load. From this we see that the nearest

span on the left and each alternate one

FIG. 7.
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are covered with the live load
;
that

from the section x to the support n+l
the live load extends

;
and that the sec-

ond span on-the right and each alternate

one are also covered with the live load
;

all other poitions being subjected only
to the dead or actual load of the truss.

The minimum positive, or, what is the

same thing, the maximum negative shear

obtains under exactly reverse conditions,

the loaded portions in Fig. 7 being un-

loaded, while the empty ones receive the

live load. Let the reader draw a figure

for this case, and imagine the section x

to move from n to n+ 1.

Next the moment
;
from this we ob-

tain the chord strains by dividing by the

constant depth of the truss, a positive

moment producing tension in the upper
chord. Here the maximum positive mo-

ment in the span /
n> occurs near the sup-

port n under a distribution of loading
like that represented in the first illustra-

tion of Fig. 8, near the middle of the

span as in the second and near the sup-

port n+l as in the last. Fig. 8 repre-
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sents one and the same beam with the

cases of loading causing maximum posi-

tive moments at three different sections

in the span l
Qt the first a section between

n and a point i, the second between i

and i
r and the third between V and n-f 1.

These points i and V are called fixed in-

flection points, and they enjoy the pro-

perty that all loads on the spans to the

FIG. 8.

m <%&. &&.
<i

\ } /^ M. 7$\
u-/ n Tirt-i

right of 4, produce no moment at i,

while all loads on the spans to the left

of ln produce no moment at i'. The

position of these points depend only up-
on the lengths and number of the spans
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of the girder, or upon the numbers c and

d given by (II). If the distance from n
to i be denoted by i, and that from n to

*' by i'
y
the following simple formulae

t_ MB n-f2

a n+2 < n-fl

will give the position of the fixedjnflec-

tion points in any span ln .

In order to render these distributions

of load clear, let us imagine the sec-

tion x to move from the support n to

n-fl. When the section is at n the live

load covers the whole span lu to render

the moment at x a maximum, as x

passes toward i the load recedes rapidly

toward n+ 1, until when x reaches i the

span 1Q becomes empty, and the loads,

on the following spans shift as shown in

Fig. 8. As x passes from i to i
r

the

span lu remains empty as in the second

sketch and when it reaches i
1

the loads

on the preceding spans shift. As soon

as x passes i' the load begins to come on
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at n, which rapidly increases as x moves,
until it covers the whole span when x

coincides with ;i+l.

The arrangements of loading for caus-

ing the maximum negative moment in

any section depend likewise upon the

position of that section with reference to

the fixed inflection points, and are in all

cases exactly the reverse of those for the

positive moment.

It will be seen, then, that the maxi-

mum moments between the supports and

the fixed inflection points cannot be de-

termined by cases of loading, for such

cases are different for every section. In

a girder of two equal spans for example,
one of these points in each span coin-

cides with the abutments, the others are

at one-fifth the length of the span from

the pier. Between those points the

maximum strains are not to be found by
parabolic curves of moments drawn from

a few assumed arrangements of loading.o o
Here have some late writers fallen into

grave error.

The above completes, what seems to
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us a simple presentation of the theory of

the continuous girder of constant cross-

section. We have disconnected it en-

tirely from the properties of the simple

girder, have avoided the use of artificial

angles and couples, parabolic moment
and shear curves, static and elastic reac-

tions and other paraphernalia which are

too often introduced to complicate the

subject. The formulae (T) to (VI) which

may be written on a page of the engi-

neer's note book include indeed the

whole theory, and are sufficient for the

determination of the maximum strains in

a continuous truss of any number or

lengths of spans.
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CHAPTER III.

We will now apply the above theory

to the practical calculation of the strains

in a continuous truss, and to show the

perfect generality of our method we will

take one of
tftve unequal spans.

Fig. 9 shows the relative lengths of

the several spans, each support and span

receiving an index according to the no-

tation previously adopted. The first

span l
t
has a length of 70 feet, the

FIG. 9.

I/ 72 3 Ik 15
fa. ^ /\ S\ /fa /fa.

I SL 3 k 56
second

/,
of 100 feet, the third

/,
of

80 feet, the fourth Z
4

of 120 feet and

the last l
t
of 90 feet. This girder is
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to be subject to a live load of 0.8 tons

per linear foot per truss
; the dead

load we estimate at 0.6 tons per
linear foot per truss. It is divided

into panels of ten feet each and its

height is also ten feet, the webbing being
a simple series of isosceles triangles as

shown in Fig. 10, which represents the

FIG. 10.

-

HI IP, IP* ift IB i?7

span l
a enlarged. The live load is ap-

plied at the panel points on the lower

chord. It is required to calculate the

maximum strains in all the pieces of the

span 1
9
due to the above live and dead

loads.

We take up first the live load of 0.8

tons per linear foot, or eight tons per

panel. Since every load in the span ^
affects every section in 1

3
in a similar

manner, we may, instead of considering
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the separate panel loads on Jp take them
as uniformly distributed in the prelimi-

nary determination of the shear and

moment at 3. (The load of eight tons at

the points 1, 2, 3, etc., give reactions

only at those points, and cannot affect

the span 3).
On the span l^

there are

seven panels and six apices, hence the

live load in that span is W^GXS 48

tons. In the same way we have on the

spans J
a ,

/
4
and

6 ,
to consider the live

loads applied at the panel apices as uni-

formly distributed over the spans; but in

the span 1
3
we must consider each panel

load separately, since different arrange-
ments of those loads give maxima for

different sections. Thus we have

On 1
19
the load W

a
=r48 tons,

On l^ the load W
a
=72 tons,

On l
s ,
the loads P,, Pa,

P
3 , etc.,

(see Fig. 10) each equal to 8 tons,

On ?4 ,
the load W

4

~ 88 tons,

On f
ft,
the load W

6
=64 tons.

We now turn to formulae (I) of the
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preceding chapter, and determine the

quantities A and B due to each of these

loads. For that on
/,
we have, for ex-

ample, W t
= 48, 7^= 4900, hence A=B

=58800. For P
t
we have P=8, l\=

6400, &=&, hence A= 10500, and B=
6300

;
in like manner, for P

2 ,
P

3 , etc., we

place &=f, &=f , etc., and find for each

a value of A and B. Thus we have for

the several loads :

For W
x ,
A=B= 58800

For W
2 ,
A=B= 180000

ForP
1?

A=:10500 B 6300

ForP
2 ,

A
ForP

3 ,
A

ForP
4 ,

A=19200
ForP

6,
A=16500

ForP
6,

A=12000
ForP

7 ,
A= 6300 &= 10500

For W
4 ,
A=B 316800

ForW
6 ,
A^B= 129600

We next turn to formulae (II), and sub-

stitute the lengths ^= 70, /,= 100, etc.,

and thus obtain
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c
s
= 3.4 (7

3
3.5

C
4
=:14.05 d

4
=16.

C
6
= 44.567 tf

B
=: 54.8

as the values of the multipliers c and d
for the case under consideration.

We are now able to find from (III)

the moments M
8
and M

4
at the supports

3 and 4 for each of the above loads.

Since there are five spans, 5=5, c?B=
54.8, dg_ i=l 6, etc. ; substituting these

in (III), we have

Mn = -

n being any index (in our case either 3

or 4), and r the index of that span,

which, for the moment, we regard as

loaded. Taking the load on the first

span, we have r=l, and since n>r, we
use only the second of the above formu-

lae, which becomes

Acr -f l^r-4-1 iwhen
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= - 3.452 <?,_,,

Substituting in this n=3 and n 4, and
we have

M
3
= 3.452 (16)= 55.23 tons ft.

M
4
= 3.452

( 3.5)
= 12.08 tons ft.

Taking the load in the second span, we
have r=2, and

= -25.364 rfr-

in which, by making n=3 and n=4
9 we

get the values of M
3
and M

4
.

For the single loads on the span /
3 , we

must use the first of formulae (III) to

obtain M
3 ,
and the second to obtain M

4
.

Making then r=3, we have,

3.4

17032 17032

(16 A 3.5 B)
, A^

3
+ Bc

4_ 3.5

4
~~ ~ C

* 17032~~ ""17032

(-3.4A-fl4.05 B)

and inserting in these the values of A
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and B, as given above, we find the mo-

ments at 3 and 4 from each of the loads

from P
l

to P
7

. For the load on the

fourth span, we make r=4; for that on

the fifth span, r=5; and the first of for-

mulae (III) give the moments. Thus, by
very simple arithmetical work, we obtain

the moments M
3
and M

4
due to each of

the single loads in /
3 ,
and each of the

uniform loads in the exterior spans, and

arrange them in the second and third

columns of the following table :

The last column of the table, which

gives the shear S
3

in the span 1
3
at a
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point infinitely near to the support 3, ia

found from the quantities M s
and M

4 by
means of formulae (IV). The load W

s ,

for example, gives a positive moment of

405.82 tons ft. at 3, and a negative one

of 88.77 tons ft. at 4. From the last

formula of (IV), we have then

=6.182 tons.
,

80

Also for the load P
3
on the span /

3 ,
we

have P 8, &=, and from the first for-

mulae of (IV)

S
3
= 50 ' 85~ 33 ' 93 + 8 (l-) =5.211 tons.

and in the same way the other shears in

the last column are computed. All of

these refer, of course, only to the live

load of eight tons per panel.

We are now ready to proceed with the

computation of the maximum strains in

the span 7
S

. And first we take up the

webbing.
The maximum strain in any diagonal

in Fig. 10, is equal to the maximum



shear for that section multiplied by the

secant of the angle between the diagonal
and a vertical. We proceed first to find

the maximum shears.

The shear at any section due to the

dead load is constant, increases or de-

creases as the live load comes upon the

bridge, and becomes a maximum or

minimum under certain particular distri-

butions of loading. To determine these

it is only necessary to tabulate the shear

due to each separate load. This is easily

done from the values of S
3
and the

formulae (V). In the following table the

vertical column headed aB/> includes the

shears which may act upon the diagonals
a B and B b, b C c those for b C and C c,

etc. The horizontal column numbered 1

gives then the shears at every section

due to the live loads
;
the load W, for

example producing a negative shear of*

0.84 tons in every panel or S=S
3 ,

the

load P
3 giving in the three panels on its

left S = S
3 +5.21 tons and in the five

onitsrightS=S3-P=+5.21-8=:-2.79
tons. A mere inspection of this table
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shows the distributioir of live load caus-

ing the maximum or minimum shear in

any section. Thus for the panel cEe
the maximum occurs when those loads

giving positive shears are present,

namely, Wa ,
P

4 ,
P

5 ,
P

6 ,
P

7
, and W

6
and

when all the others are absent, and the

minimum occurs when only those giving

negative shears are on the bridge. If

then we add all the positive quantities
in 1 and likewise all the negative ones

and place the results in the horizontal

column 2, we have for the panel c/Ee,

4-17.52 tons and 16.24 tons as the

greatest and least shears which can occur

in that panel due to the live load, and

these need only to be combined with the

shear due to the dead load to obtain the

absolute maximum and minimum.

If the dead load be regarded like the

live load as concentrated at the panel

points on the lower chord, its effect will

be a fractional part of that of the live

considered as uniformly distributed.

Adding algebraically the quantities in 2

we have in 3 the shears produced by a
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uniformly distributed live load of eight
tons per panel, since this is the same as

taking the algebraic sum of all the quan-
tities in 1. The live load if extending
over the whole bridge will then produce
in dl&e a shear of -f 1.28 tons, and since

the actual dead load is three-fourths of

the live, the dead load must produce in

tluit panel a shear equal to fxl.28
= 0.96 tons. Taking then three-fourths

of the quantities in the horizontal col-

umn 3 we have in 4 the shears due to

the dead load of six tons per panel.

The shears in 4 always must exist,

while those in 2 may exist under certain

positions of the live load. The absolute

maxima are therefore found by adding

algebraically the quantities in those two

horizontal rows. Thus fore?Ee, 4-0.96

always obtains, and if +17.52 also oc-

curs their sum -f 18.48 is the positive

maximum shear; and if 16.24 occurs,

4-0.96 16.24 = 15.28 is the minimum
or negative maximum. Placing these

results in column 5 we have the required

maximum shears in every section of the
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span under consideration. If the dead

load shear in 4 is greater than the live

load shear of opposite sign in 2 only one

kind of shear can prevail ;
thus in bCc

the greatest possible value is +12.96

+ 29.01 =+41.97 tons, the least possible

is +12.96 11.73 = + 1.23 tons and the

diagonals b C and Cc will be subject to

only one kind of strain. In the case be-

fore us three panels cT> d, d'E.e and

ef have both a positive and negative
maximum and the diagonals in those

panels may be subject to either tension

or compression.
The maximum shears in 5 multiplied

by sec. $, or the secant of the inclination

of diagonal to vertical give the maximum

strains, tension of the diagonal slopes up-

ward toward the left hand support, com-

pression if it slopes downward. The

depth of the truss being ten feet and the

half panel length 5 feet, sec. 6 is 1.118.

We have then the following table of

maximum strains in the
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DIAGONALS. (See Fisr. 10.)

JJc
T>d
Ed
Ee
F<3

KA

61.7 tons

+61.7
46.9

+16.9
83.2 or +7. 2 tons

+38.2 or 7.2

20.6 or +17.1
+206 or -17 1

+28.2 or 9.4

28.2 or +9.4
+40.5

40.5

+54.0
54.0

+683
68.3

in which + denotes tension and com-

pression.

In the same manner we may tabulate

the moments at every section due to

each load and deduce the maximum
chord strains. For the upper chord

panels A B, B C, C D, etc., the centers

of moments are at the opposite vertices

a, #, c, etc., and hence in formulae (VI)
we must take 0, 10, 20, etc., as the suc-

cessive values of x. To find the moment
for CD due to the load W, on the
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span ,,
we have only to insert jc=20,

and the values of M
3
and S

3
as found

above for that load (see Fig. 10), giving

M = 55.23 (0.841 X 20)
= 38.41 tons ft.

the negative sign denoting that W
l

causes compression in the upper chord.

Also to find the moment in the same panel
due to the load P

,
we have as before

x=20 and

M = 31.19 7.254 X 20 -f 8X10
= 33.89 tons ft.

In this way we readily compute the mo-

ments for every panel due to every live

load and arrange them as in the follow-

ing table of
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The horizontal column 1 of this table

shows at a glance the distribution of live

load giving the maximum strain in any

bay : in the bay B C for instance the

loads W, W5
and P

4
to P, inclusive

produce positive moments, and hence

the greatest tensile strain obtains when
those loads are on the bridge and all

others are absent, while the least tensile

strain in B C occurs when W
t ,
W

4 , P,, P,
and P

s
are present and the others ab-

sent. Adding separately therefore these

positive and negative moments, we have

in 2, the greatest and least moments for

every bay due to the live load. Adding
those algebraically and we have in 3 the

moments when the live load covers the

entire bridge ; taking three-fourths of

the quantities in 3 we have in 4 the mo-

ments due to the actual dead load.

Lastly combining the moments in 4 which

always must exist with those in 2 which

may exist, we get in 5 the absolute

maxima and minima. For example, in

CD we have due to the live load the

moments +327.0 and 281.3, the sum
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of these or +45.7 is the moment when
the live load extends over the whole

girder, three-fourths of this or -f 34.2 is

the value due to the actual dead load,

and finally

+ 34.2 + 327.0=4-361.2 tons ft.

+ 34.2 281.3= 247.1 tons ft.

are the maximum positive and negative

moments, C D may then be subject to

two kinds of strain.

Dividing these results by the depth of

the truss and remembering that a posi-

tive moment causes tension in the upper

chord, we have the maximum strains for

the

UPPER CHORD. (See Fig. 10.)

AB
BC
CD
DE
EF
FG
GH
Hit
KL

- -104.0 tons
-- 547
-- 36 1 or 24.7 tons

38.2 or 44 9
30.1 or 411

__ 40.0 or 43.3
-- (>0.2 or 21.4

8GO
140.3
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From this we see that the whole upper
chord may under certain positions of the

rolling load be subject to tension. This

is due to the short length of the span

compared with the adjacent ones.

The calculation of the maximum
strains in the lower chord is entirely

similar, the centers of moments being at

the opposite vertices B, C, D, etc., and

the corresponding values of x being 5,

15, 25, etc. We leave therefore as an

exercise for the student the formation of

the tabulation, merely giving the results

to which it will lead, viz.

LOWER CHORD. (See Fig. 10.)

The strain sheet for the span l
z (Fig.9)

is now finished, and in a similar way
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each of the other spans may be comput-
ed. The method we have presented is

entirely general and applicable to any
number of continuous spans, whether

equal or unequal. In each case we take

the load in the exterior spans as uniform

and that in the span under consideration

as applied at the panel apices, and find

for each the quantities A and B from (I)

and from the lengths of the spans we
find by (II) the multipliers c and d.

These enable us to deduce from (III)

the moments at the supports due to each

load, from which (IV) give us the shear.

It is only in this preliminary computation
of moments and shears that the calcula-

tion of continuous girders differs from

that of ordinary simple trusses. In the

latter the moments at the ends are known

to be zero, and the shears coincide with

the reactions which are found from the

law of the lever. The simple truss is

thus but a particular case of the continu-

ous one as may be readily seen by placing

5=1 in our formulae (I) to (IV). In an

end span of a continuous truss the mo-
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ment at the abutment is also zero and

the shear is the same as the reaction.*

GIRDERS WITH SPANS ALL EQUAL.

This is one of the most common cases.

Making in (II) all the Vs equal, we have

c=d

6'
4
= d

4
= 15

c
5
=d

B
=-56

c^d6
= 209, etc.,

which are the well-known Clapeyronian
numbers first deduced by the discoverer

of the theorem of three moments.f Each

of these numbers is equal to four times

the preceding one less the one next pre-

ceding, and their signs are alternately

positive and negative. They are here

seen to be a particular case of our gener-
al formulae (II).

* For an example of the computation of a continuous

truss of two spans, see Van Nostrand's Engineering

Magazine for July, 18T5.

t See Comptes Rendus, 1857, p. 1076.
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GIRDERS WITH SYMMETRICAL SPANS.

If the two end spans of the bridge are

each equal to ft I and the others each

equal to I, the multipliers c and d become

also equal. Their values are

c,
= d,=

*,=<* = 1

c^d3
=- 2-2/3

c^d^ 7 + 8 /3

c
5
=d

5
=-2Q-30 ft

C
6
=d

e
= 97 + 112 /?, etc.,

each being equal to four times the pre-

ceding one less the one preceding that.

Having established the value of ft (usual-

ly taken at about 0.8) these reduce at

once to numerical form. If ft be unity
the spans become all equal and the mul-

tipliers reduce to the Clapeyronian num-

bers.

Example. A girder of four spans has

a single load P in the second span at a

distance kl from the second support ;

the two end spans being equal to 0.8/

and the central ones to I. Find the mo-

ment at the second support.

Ans. M
2

P /(0.52& 0.901 F + 0.38U3

)
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CONSTANT AND VARIABLE CROSS SECTION.

Having computed the maximum strains

in a continuous truss, we choose for the

various pieces cross sections of an area

and form sufficiept to resist those strains,

thus making the girder one of uniform

strength. The theory by which we have

computed the strains supposes however

that the cross section of the girder is

constant. The question now arises what

error is introduced by this hypothesis.

As we have been unable to present in

the short limits of this paper the theory

of the continuous girder with variable

cross section, we cannot place before the

reader a mathematical comparison of the

two cases, and are hence obliged to re-

ly on the computations of others and on

general considerations.

Computations of strains in continuous

girders have been made by Bresse, Mohr,

Winkler, Weyrauch and others, consid-

ering the cross section both constant and

variable. The general conclusion to be

derived from their investigations is, that
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the maximum moments over the supports
are greater, when the variable cross sec-

tion is taken into account, but rarely

more than six per cent, that the maximum
moments near the centers of the spans
are generally slightly less, and that the

shearing forces do not sensibly differ.*

For example, in a truss of two equal

spans, the maximum moment at the pier

is 0.125 wV for constant cross section

and 0.133 wl* for variable
;
the maximum

negative moment is 0.070 wl* for constant

and 0.067 wl* for variable, and the reac-

tions of the pier are 1.250 w I and 1.266

w I respectively.

If then we compute continuous trusses

as if they were of constant cross section,

we are liable to slight errors in the chord

strains. These strains are however com-

puted on the assumption of a distribution

of live load which can never occur in

practice, and in proportioning the sec-

* Mohr. in Zeitschrift des Arch. u. Ing. Ver. zu Hanno-

ver, 1860, 1862, Winkler
;
Die Lehre von der Elasticitdt,

p. 150. Weyrauch ;
Theorie der continuirlichen Trdger,

p. 22., p. 143.
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tions to those strains a factor of safety

involving five or six-fold security is in-

troduced. Considering then that it

must be almost impossible for the live

load to be arranged on the bridge as

Fig. 8 represents, we may be well as-

sured that our computations on the hy-

pothesis of constant moment of inertia

give greater strains than can ever obtain.

After having computed on both hypo-
theses a girder with four spans, two of

sixty-five meters in length and two of

fifty-two meters, Weyrauch says :

" We
are now able to answer the question,

whether it is allowable to calculate con-

tinuous girders with variable cross sec-

tion by the formulae for constant cross

section, in the affirmative. The maxi-

mum moments arising from the two cal-

culations differ but slightly. In our ex-

ample, where the cross sections vary be-

tween 1 and 2i, the greatest difference

was 6 per cent, the next following only
2.7 per cent. The shears change scarcely
at all. Only for bridges with extremely

long spans, is it desirable to make a sec-
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ond computation on account of variable

cross section."

LEVELS OF SUPPORTS.

In Chapter I we alluded to the fact

that small changes in the relative levels

of the piers produce great variations in

the strains of the pieces of the truss.

Continuous girders should not for this

reason be used when the piers are liable

to settle. Whether the supporting points
are exactly upon level when the bridge
is built is a matter of no importance, al-

though, of course, no great differences

can be allowed.

If in finding the equation of the elas-

tic line we had considered the supports
on different levels, a term containing
those differences of level and the term

El would have .entered the theorem of

three moments. Now if a straight beam

be laid across two points, a downward
force is necessary in order that it should

touch a third point at a lower level. If

this downward force be furnished by the
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weight of the beam, a certain part of

this weight will be effective in producing
the deflection or satisfying the term E I,

while the remaining part will act exactly
as if the three supports were on the same

level. But if the beam, instead of being

originally straight, were of such a shape
that it exactly fitted the three points it

is in the same condition as the horizontal

one after it has undergone the deflection.

Hence its action is independent of the

variations in level, for no exterior force

is required to compel it to correspond with

the points of support.

We therefore conclude, that if a bridge
be built, by suitably adjusting its false

works, corresponding to the profile of the

piers, all the strains obtain exactly as if

those piers were on one and the same
level.

BEST LENGTHS OF SPANS.

Except the well-known rule that the

lengths of the spans should be so adjust-
ed that the cost of the piers and super-
structure may be equal, there is little to
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be said upon this subject. Although
most writers give a mathematical discus-

sion of the most economical relations of

spans, the fact that no two of them

agree except in the simplest case, only
indicates that the theory contains no

principle which will lead to general con-

clusions.

Viewing the matter from a practical

point of view, but not neglecting the in-

vestigations of mathematicians, we may
give the following rules. For two spans
the lengths should be equal. For others

the span should be symmetrical, the in-

terior ones being equal and. the end ones

shorter by about one-fifth or one- sixth,

or making the central ones each equal to

Z, the end ones should be about t I or 1 1.

Such an arrangement equalizes 'the mo-

ments due to the dead load and being

pleasing to the eye, it is advisable to re-

gard it in designing continuous bridges.

PRACTICAL CONSTRUCTION.

In the construction of continuous

bridges, the following points should be

carefully observed :
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1. The iron should be of a uniform

qnality, and have undergone as near as

possible the same process of manufac-

ture.

2. The truss should be built with par-
allel chords, each capable of resisting

either tension or compression ;
the web-

bing should be simple. With double

and triple systems of webbing the strains

cannot be accurately determined.

3. Joints in the chords should never

be made over the piers.

4. The falseworks should be so adjust-

ed that the bridge may be built with its

points of support on the same relative

level with the actual bed plates.

5. The bearing surface of the bridge

upon the piers should be as ,small as pos-

sible consistent with considerations of

strength and safety, and arrangements
for longitudinal variation, due to changes*
in temperature, should be provided.

6. Continuous girders cannot be used

if the piers are liable to variations in

level after erection.
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ADVANTAGES OF THE CONTINUOUS SYS-

TEM.

In favor of the continuous girder versus

the simple one, we may mention :

1. Greater stiffness, since the deflec-

tion under a rolling load is much less

than that of independent simple spans.
2. Ease of erection in cases where

false works are difficult and expensive ;

the girder may then be built on shore

and pushed out over the piers.

3. Saving in material for the piers,

since a less bearing surface is required
than for two ends of single span bridges.

4. Saving in iron, amounting to from
twenty to fortyper cent, over the ordinary
construction of single spans.

5. Simplicity of construction, when an

angle of skew exists in the piers: in such

cases the cross girders may be placed at

right angles in the continuous structure,

and the difficulties of oblique connec-

tions entirely avoided.

In a simple girder, whose length is /,

and live load per unit of length w, the
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maximum deflection due to the live load

5 wT T
is ^ . In two continuous spans each

384 sL L

equal to /, the maximum deflection, which

occurs when one span is covered with

the live load, is -^TT, or only three-
384 xL 1

fourths as much. With many continu-

ous spans, the deflection is much less, its

greatest value being in the end spans.

In the case of a girder with horizontally

fastened ends, the deflection is only one-

fifth of that of ordinary simple spans.

The saving in iron is large, and alone

sufficient to recommend the continuous

system, particularly for long spans. This

saving occurs wholly in the chords where

material can best be spared. In the web-

bing the quantity of material is slightly

increased. The exact percentage of sav-

ing depends upon the number and lengths,

of spans, the proportion of live to dead

load, the arrangement of webbing, and will

be the same in no two cases. In the ex-

ample of Fig. 9, the center span which

we computed does not afford scarcely



120

any saving in material owing to the in-

fluence of the larger adjacent spans.

For girders of two hundred feet in

length with spans nearly equal, calcula-

tion indicates a saving of about thirty

per cent. For the extreme case a sin-

gle span with horizontal fixed ends the

saving is fifty per cent.

DISADVANTAGES OF THE CONTINUOUS SYS-

TEM.

In our last chapter we referred to an

article by Charles Bender, C. E., which

contains many ingenious arguments

against the use of continuous bridges.

There are, in fact, fifteen
" conclusions

"

to which he is led and which may be

seen by the reader on p. 109 of the cur-

rent volume of The Journal of the

American Society of Civil Engineers.
Of these we will give a short abstract

and append a running commentary.
1. The theoretical calculation of curves

of moments, without consideration of

proportions and details, is exceedingly
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fallacious. Other things being equal,
the calculation of strains does furnish an

estimate of amounts of material. The
method of curves moreover is neither so

accurate nor so quick as our process of

tabulation.

2. This fallacy will be greater, if the

theory stands upon false premises. Un-

doubtedly.
3. The theory of continuity is fallaci-

ous and unreliable, because it supposes
the coefficient of elasticity constant,

whereas it has been shown that it may
vary for wrought iron from 17,000,000 to

40,000,000 Ibs. per square inch. In our

last chapter we have shown that the

proper interpretation of the variability

of E is, that different qualities of iron

have different degrees of elasticity. The
values of E, from which it is concluded

that the laws of flexure are fallacious,*

were in fact found by the theory itself

from the measured deflections of beams,
and it is hence more than fallacious to

regard them as condemning that theory.

4. With several diagonal systems the
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strains in a continuous girder cannot be

calculated, but only guessed. A good

objection and it applies also to simple

girders and draw spans.

5. The theory needs a correction if the

chords are made variable in cross section.

The amount of this correction we have

indicated above.

6. The calculation of continuous

trusses is excedingly tedious, and if gen-

erally introduced would greatly impede
the business of bridge building in this

country. A conclusion to which those

who know how to calculate decidedly ob-

ject. For a construction costing half a

million dollars, it matters little whether

one day or one week be spent in compu-

tation, and if the one week saves ten per

cent or more on the cost, it is certainly

well employed.*

* In the discussion of this subject at the late Engineers'

Convention, one of the speakers mentioned an instance

where the strain sheet for a continuous revolving draw

bridge was furnished for $40. As that strain sheet was

made by the author of this paper it is not improper that

he should remark that its price would have been consid-

erably less bad the computations been made by tabula-

tion of apex loads, instead of by the consideration of

cases of loading.
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7. Pieces which resist two kinds of

strain must be proportioned to resist the

maximum tension plus the maximum

compression. Further experiments are

much needed in this connection
;

if

Woehler's conclusions are confirmed,

pieces must be so proportioned and hence

the percentage of saving lowered.

8. Continuous girders require very
accurate workmanship. Are we to infer

that ordinary trusses do not ?

9. The foundations and masonry of

the piers must be of excellent quality.

Does not the same hold for the simple

girder? See No. 11.

10. If the girders are built on shore

and pushed out over the piers, additional

computations must be made and extra

pieces introduced. The additional com-

putations are of the simplest character^,

and in many cases no extra pieces would

be needed.

11. If improperly placed on their bed

plates, greater strains arise than are con-

templated, an inch difference in level

producing great variations in strains.
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We have shown above that unless piers

are liable to settle after the erection of

the bridge, such differences in level pro-
duce no effect.

12. If one chord be protected from

the heat of the sun the strains are much
disturbed. The camber of the bridge
is altered, as also occurs in single spans.

It should be remembered however that

although certain strains cause a curva-

ture, a certain curvature does not neces-

sarily cause corresponding strains.

13. Continuous bridges have proved
to be more economical in Europe than

simple spans, because the latter have

been improperly proportioned. Trial is

necessary to prove that they would or

would not be more economical in this

country.
14. By designing two bridges of 200

feet each, a two span continuous truss

twenty-five feet high, and a simple truss

27 feet high, with different details, Mr.

Bender finds that the latter is more

economical. Perhaps for other propor-
tions this might be reversed. In a com-
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parison of amount of material, ought not

other things to be taken equal ?

15. Continuous bridges deflect as much
as single spans. Not if they have the

same height and span, and are subject to

the same loads
;

a fact which every

schoolboy knows.

In regard to objections 2, 6, 7, 8, 9, 10,

12 and 13 one remark further is neces-

sary. They are objections which may
be made to every new proposed con-

struction in engineering art. In the

days of wooden bridges, they were ad-

vanced against the use of iron
; they

have been made against the suspension

system and against the braced arch.

But their value can be estimated in only
one way, by trial. On the other hand

theory can estimate one at least of the

advantages claimed for the continuous

systems, and that estimate is a saving 6f

twenty to forty per cent, in material;

how much of this must be deducted for

extra care in workmanship, labor of erec-

tion, effects of temperature, or varia-

tions in the elasticity of the material can
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only be determined by the actual erec-

tion of continuous bridges, by experi-

ments extending through a long series

of years.

Having thus stated briefly, but fairly,

the arguments for and against the use of

continuous bridges, we leave it to prac-

tical builders to decide whether or not

the system is worth a trial. Other na-

tions have long been using it
; profiting

by their experience and by our own im-

proved methods of manufacture arid

modes of erection, it may, perhaps, turn

out that we shall find it better and more

economical than the present system of

single independent spans.

HfSTORY AND LITERATURE.

The^ literature on the theory of con-

tinuous girders is very extensive in the

German and French languages, and very
limited in English. We can only give
here a few hints concerning its develop-

ment and history.

About the year 1825, Navier founded

the present theory of flexure by intro-
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ducing the hypothesis that the exten-

sions and compressions of the fibers on

each side of the neutral axis were pro-

portional to their distances from that

axis. From this he deduced the equa-

tion of the elastic line, and applied it to

the discussion of continuous girders.

His method consisted in determining
first the reactions of the supports, and

from these the internal forces or strain s,

which, although the most logical, was

exceedingly tedious in practice. In the

following works the reader may find de-

tailed information concerning his meth-

od :

Kayser : Handbuch der StatiJc, Carls-

ruhe, 1836, chap. X.

Molinos et Pronnier : Traite de la

construction des ponts metaliques, I^aris,

1857.

From the time of Navier to the pub-
lication in 1857 by Clapeyron of the

method of using the moments over the

piers as auxiliaries in the computation
instead of the reactions, many continu-

ous girders were built in France, Ger-
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many and England. Among these may
be mentioned the Britannia tubular

bridge, of four spans, two of 231 feet,

and two of 460 feet
;

the Boyne Via-

duct with three spans of 141, 267 and

141 feet
;

and the bridge over the

Weichsel at Dirschau with six continu-

ous spans, each 397 feet in length. By
Clapeyron's happy discovery of the the-

orem of three moments, a great impetus
seemed to be given toward the erection

of such bridges, for in the twenty years

following 1857, we find them extensively
built in Germany and France, although
in England the unfortunate example of

the Britannia tube caused a tendency to

other forms of construction. A mere

list of such bridges would occupy pages.

They are generally of shorter span than

those mentioned above, rarely exceeding
300 feet, while the number of spans
varies from two to seven.

To give here a list of the books which

has appeared since Clapeyron's time will

also be impossible. We can only indi-

cate two or three which are at the same

time valuable and easily accessible :
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Bresse : La mecanique appliquee,

Paris, 1865. (Vol. Ill contains a tolera-

bly complete mathematical discussion,

with tables for facilitating the calcula-

tion of moments.)
Winkler: Theorie der Bruecken^Vienna,

1872. (Contains the graphical method

of Culmann and Mohr, with also analyt-

ical investigations.)

"Weyrauch : Theorie der continuir-

lichen Traeger, Leipzig, 1873. (A com-

plete analytical discussion of the whole

subject. The best work which has yet

appeared.)
In our own country have been issued

during the past year the works of

Greene, Herschel and DuBois, each of

which contains valuable contributions to

the literature of the subject, and which

should be in the library of every student

of engineering. On the other hand,
works by English authors, which treat of

the subject at all, do it in such an imper-
fect and unsatisfactory manner, that we
are forced to consider them as twenty
years behind the age.
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As the above mentioned works treat

only of the theory and calculation of

continuous girders, we ought perhaps to

say that a book giving an account of the

most important continuous and simple,

together with suspension and arch

bridges, is the admirable descriptive

work by Heinzerling, Die Bruecken in

Eisen: Leipzig, 1870, which is illustrat-

ed by over a thousand engravings, and

presents a complete history of iron

bridge construction.
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