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EDITOR S NOTE.

TV TO apology is needed for the publication of the present new
L ^ edition of The Study and Difficulties of Mathematics, a

characteristic production of one of the most eminent and lumi

nous of English mathematical writers of the present century. De

Morgan, though taking higher rank as an original inquirer than

either Huxley or Tyndall, was the peer and lineal precursor of

these great expositors of science, and he applied to his lifelong task

an historical equipment and a psychological insight which have

not yet borne their full educational fruit. And nowhere have these

distinguished qualities been displayed to greater advantage than in

the present work, which was conceived and written with the full

natural freedom, and with all the fire, of youthful genius. For the

contents and purpose of the book the reader may be referred to

the Author s Preface. The work still contains points (notable

among them is its insistence on the study of logic), which are in

sufficiently emphasised, or slurred, by elementary treatises; while

the freshness and naturalness of its point of view contrasts strongly

with the mechanical character of the common text-books. Ele

mentary instructors and students cannot fail to profit by the gen

eral loftiness of its tone and the sound tenor of its instructions.

The original treatise, which was published by the Society for

the Diffusion of Useful Knowledge and bears the date of 1831, is

now practically inaccessible, and is marred by numerous errata

and typographical solecisms, from which, it is hoped, the present

edition is free. References to the remaining mathematical text

books of the Society for the Diffusion of Useful Knowledge now
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out of print have either been omitted or supplemented by the men

tion of more modern works. The few notes which have been

added are mainly bibliographical in character, and refer, for in

stance, to modern treatises on logic, algebra, the philosophy of

mathematics, and pangeometry. For the portrait and autograph

signature of De Morgan, which graces the page opposite the title,

The Open Court Publishing Company is indebted to the courtesy

of Principal David Eugene Smith, of the State Normal School at

Brockport, N. Y.

THOMAS J. MCCORMACK

LA SALLE, 111., Nov. i, 1898.



AUTHOR S PREFACE.

TN compiling the following pages, my object has been to notice

*
particularly several points in the principles of algebra and

geometry, which have not obtained their due importance in our

elementary works on these sciences. There are two classes of men

who might be benefited by a work of this kind, viz.
,
teachers of

the elements, who have hitherto confined their pupils to the work

ing of rules, without demonstration, and students, who, having

acquired some knowledge under this system, find their further

progress checked by the insufficiency of their previous methods

and attainments. To such it must be an irksome task to recom

mence their studies entirely ;
I have therefore placed before them,

by itself, the part which has been omitted in their mathematical

education, presuming throughout in my reader such a knowledge

of the rules of algebra, and the theorems of Euclid, as is usually

obtained in schools.

It is needless to say that those who have the advantage of

University education will not find more in this treatise than a little

thought would enable them to collect from the best works now in

use [1831], both at Cambridge and Oxford. Nor do I pretend to

settle the many disputed points on which I have necessarily been

obliged to treat. The perusal of the opinions of an individual,

offered simply as such, may excite many to become inquirers, who

would otherwise have been workers of rules and followers of dog

mas. They may not ultimately coincide in the views promulgated

by the work which first drew their attention, but the benefit which

they will derive from it is not the less on that account. I am not,
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however, responsible for the contents of this treatise, further than

for the manner in which they are presented, as most of the opin

ions here maintained have been found in the writings of eminent

mathematicians.

It has been my endeavor to avoid entering into the purely

metaphysical part of the difficulties of algebra. The student is, in

my opinion, little the better for such discussions, though he may

derive such conviction of the truth of results by deduction from

particular cases, as no a priori reasoning can give to a beginner.

In treating, therefore, on the negative sign, on impossible quanti

ties, and on fractions of the form g, etc., I have followed the

method adopted by several of the most esteemed continental writ

ers, of referring the explanation to some particular problem, and

showing how to gain the same from any other. Those who admit

such expressions as a, \/ a, g, etc., have never produced any

clearer method
;
while those who call them absurdities, and would

reject them altogether, must, I think, be forced to admit the fact

that in algebra the different species of contradictions in problems

are attended with distinct absurdities, resulting from them as

necessarily as different numerical results from different numerical

data. This being granted, the whole of the ninth chapter of this

work may be considered as an inquiry into the nature of the differ

ent misconceptions, which give rise to the various expressions

above alluded to. To this view of the question I have leaned,

rinding no other so satisfactory to my own mind.

The number of mathematical students, increased as it has

been of late years, would be much augmented if those who hold

the highest rank in science would condescend to give more effective

assistance in clearing the elements of the difficulties which they

present. If any one claiming that title should think my attempt

obscure or erroneous, he must share the blame with me, since it is

through his neglect that I have been enabled to avail myself of an

opportunity to perform a task which I would gladly have seen con

fided to more skilful hands. AUGUSTUS DE MORGAN.



CONTENTS.

CHAPTER PAGE

Editor s Note iii

Author s Preface ......... ^, . . . v

I. Introductory Remarks on the Nature and Objects of

Mathematics .............. I

II. On Arithmetical Notation . ....... n
III. Elementary Rules of Arithmetic 20

IV. Arithmetical Fractions 30

V. Decimal Fractions 42

VI. Algebraical Notation and Principles 55

VII. Elementary Rules of Algebra 67

VIII. Equations of the First Degree 90

IX. On the Negative Sign, etc 103

X. Equations of the Second Degree 129

XI. On Roots in General, and Logarithms 158

XII. On the Study of Algebra 175

XIII. On the Definitions of Geometry 191

XIV. On Geometrical Reasoning 203

XV. On Axioms 231

XVI. On Proportion 240

XVII. Application of Algebra to the Measurement of Lines,

Angles, Proportion of Figures, and Surfaces. . . 266





CHAPTER I.

INTRODUCTORY REMARKS ON THE NATURE AND

OBJECTS OF MATHEMATICS.

THE OBJECT of this Treatise is (1) To point

out to the student of Mathematics, who has not

the advantage of a tutor, the course of study which it

is most advisable that he should follow, the extent to

which he should pursue one part of the science before

he commences another, and to direct him as to the

sort of applications which he should make. (2) To

treat fully of the various points which involve difficul

ties and which are apt to be misunderstood by begin

ners, and to describe at length the nature without

going into the routine of the operations.

No person commences the study of mathematics

without soon discovering that it is of a very different

nature from those to which he has been accustomed.

The pursuits to which the mind is usually directed be

fore entering on the sciences of algebra and geometry,

are such as languages and history, etc. Of these,

neither appears to have any affinity with mathemat-
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ics; yet, in order to see the difference which exists be

tween these studies, for instance, history and geom

etry, it will be useful to ask how we come by knowl

edge in each. Suppose, for example, we feel certain

of a fact related in history, such as the murder of

Ca3sar, whence did we derive the certainty? how came

we to feel sure of the general truth of the circum

stances of the narrative? The ready answer to this

question will be, that we have not absolute certainty

upon this point ;
but that we have the relation of his

torians, men of credit, who lived and published their

accounts in the very time of which they write
;
that

succeeding ages have icceived those accounts as true,

and that succeeding historians have backed them with

a mass of circumstantial evidence which makes it the

most improbable thing in the world that the account,

or any material part of it, should be false. This is

perfectly correct, nor can there be the slightest ob

jection to believing the whole narration upon such

grounds; nay, our minds are so constituted, that,

upon our knowledge of these arguments, we cannot

help believing, in spite of ourselves. But this brings

us to the point to which we wish to come
;
we believe

that Caesar was assassinated by Brutus and his friends,

not because there is any absurdity in supposing the

contrary, since every one must allow that there is just

a possibility that the event never happened : not be

cause we can show that it must necessarily have been

that, at a particular day, at a particular place, a sue-
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cessful adventurer must have been murdered in the

manner described, but because our evidence of the

fact is such, that, if we apply the notions of evidence

which every-day experience justifies us in entertain

ing, we feel that the improbability of the contrary

compels us to take refuge in the belief of the fact
;

and, if we allow that there is still a possibility of its

falsehood, it is because this supposition does not in

volve absolute absurdity, but only extreme improb

ability.

In mathematics the case is wholly different. It is

true that the facts asserted in these sciences are of a

nature totally distinct from those of history ;
so much

so, that a comparison of the evidence of the two may
almost excite a smile. But if it be remembered that

acute reasoners, in every branch of learning, have

acknowledged the use, we might almost say the neces

sity, of a mathematical education, it must be admitted

that the points of connexion between these pursuits

and others are worth attending to. They are the more

so, because there is a mistake into which several have

fallen, and have deceived others, and perhaps them

selves, by clothing some false reasoning in what they

called a mathematical dress, imagining that, by the

application of mathematical symbols to their subject,

they secured mathematical argument. This could not

have happened if they had possessed a knowledge of

the bounds within which the empire of mathematics

is contained. That empire is sufficiently wide, and
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might have been better known, had the time which

has been wasted in aggressions upon the domains of

others, been spent in exploring the immense
^tracts

which are yet untrodden.

We have said that the nature of mathematical dem

onstration is totally different from all other, and the

difference consists in this that, instead of showing

the contrary of the proposition asserted to be only im

probable, it proves it at once to be absurd and impos

sible. This is done by showing that the contrary of

the proposition which is asserted is in direct contra

diction to some extremely evident fact, of the truth of

which our eyes and hands convince us. In geometry,

of the principles alluded to, those which are most

commonly used are

I. If a magnitude be divided into parts, the whole

is greater than either of those parts.

II. Two straight lines cannot inclose a space.

III. Through one point only one straight line can

be drawn, which never meets another straight line, or

which is parallel to it.

It is on such principles as these that the whole of

geometry is founded, and the demonstration of every

proposition consists in proving the contrary of it to be

inconsistent with one of these. Thus, in Euclid, Book

I., Prop. 4, it is shown that two triangles which have

two sides and the included angle respectively equal

are equal in all respects, by proving that, if they are

not equal, two straight lines will inclose a space, which
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is impossible. In other treatises on geometry, the

same thing is proved in the same way, only the self-

evident truth asserted sometimes differs in form from

that of Euclid, but may be deduced from it, thus

Two straight lines which pass through the same

two points must either inclose a space, or coincide

and be one and the same line, but they cannot inclose

a space, therefore they must coincide. Either of these

propositions being granted, the other follows imme

diately ;
it is, therefore, immaterial which of them we

use. We shall return to this subject in treating

specially of the first principles of geometry.

Such being the nature of mathematical demonstra

tion, what we have before asserted is evident, that

our assurance of a geometrical truth is of a nature

wholly distinct from that which we can by any means

obtain of a fact in history or an asserted truth of meta

physics. In reality, our senses are our first mathe

matical instructors
; they furnish us with notions

which we cannot trace any further or represent in any

other way than by using single words, which every

one understands. Of this nature are the ideas to

which we attach the terms number, one, two, three,

etc., point, straight line, surface; all of which, let

them be ever so much explained, can never be made

any clearer than they are already to a child of ten

years old.

But, besides this, our senses also furnish us with

the means of reasoning on the things which we call
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by these names, in the shape of incontrovertible prop

ositions, such as have been already cited, on which,

if any remark is made by the beginner in mathemat

ics, it will probably be, that from such absurd truisms

as &quot;the whole is greater than its
part,&quot; no useful re

sult can possibly be derived, and that we might as

well expect to make use of &quot;two and two make four.&quot;

This observation, which is common enough in the

mouths of those who are commencing geometry, is

the result of a little pride, which does not quite like

the humble operation of beginning at the beginning,

and is rather shocked at being supposed to want such

elementary information. But it is wanted, neverthe

less
;
the lowest steps of a ladder are as useful as the

highest. Now, the most common reflection on the

nature of the propositions referred to will convince us

of their truth. But they must be presented to the un

derstanding, and reflected on by it, since, simple as

they are, it must be a mind of a very superior cast

which could by itself embody these axioms, and pro

ceed from them only one step in the road pointed out

in any treatise on geometry.

But, although there is no study which presents so

simple a beginning as that of geometry, there is none

in which difficulties grow more rapidly as we proceed,

and what may appear at first rather paradoxical, the

more acute the student the more serious will the im

pediments in the way of his progress appear. This

necessarily follows in a science which consists of rea-
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soning from the very commencement, for it is evident

that every student will feel a claim to have his objec

tions answered, not by authority, but by argument,

and that the intelligent student will perceive more

readily than another the force of an objection and the

obscurity arising from an unexplained difficulty, as

the greater is the ordinary light the more will occa

sional darkness be felt. To remove some of these

difficulties is the principal object of this Treatise.

We shall now make a few remarks on the advan

tages to be derived from the study of mathematics,

considered both as a discipline for the mind and a key

to the attainment of other sciences. It is admitted by

all that a finished or even a competent reasoner is not

the work of nature alone
;
the experience of every day

makes it evident that education develops faculties

which would otherwise never have manifested their

existence. It is, therefore, as necessary to learn to

reason before we can expect to be able to reason, as it

is to learn to swim or fence, in order to attain either

of those arts. Now, something must be reasoned

upon, it matters not much what it is, provided that it

can be reasoned upon with certainty. The properties

of mind or matter, or the study of languages, mathe

matics, or natural history, may be chosen for this pur

pose. Now, of all these, it is desirable to choose the

one which admits of the reasoning being verified, that

is, in which we can find out by other means, such as

measurement and ocular demonstration of all sorts,
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whether the results are true or not. When the guid

ing property of the loadstone was first ascertained,

and it was necessary to learn how to use this new dis

covery, and to find out how far it might he relied on,

it would have been thought advisable to make many

passages between ports that were well known before

attempting a voyage of discovery. So it is with our

reasoning faculties : it is desirable that their powers

should be exerted upon objects of such a nature, that

we can tell by other means whether the results which

we obtain are true or false, and this before it is safe

to trust entirely to reason. Now the mathematics are

peculiarly well adapted for this purpose, on the fol

lowing grounds :

1. Every term is distinctly explained, and has but

one meaning, and it is rarely that two words are em

ployed to mean the same thing.

2. The first principles are self-evident, and, though

derived from observation, do not require more of it

than has been made by children in general.

3. The demonstration is strictly logical, taking

nothing for granted except the self-evident first prin

ciples, resting nothing upon probability, and entirely

independent of authority and opinion.

4. When the conclusion is attained by reasoning,

its truth or falsehood can be ascertained, in geometry

by actual measurement, in algebra by common arith

metical calculation. This gives confidence, and is



NATURE AND OBJECTS OF MATHEMATICS. 9

absolutely necessary, if, as was said before, reason is

not to be the instructor, but the pupil.

5. There are no words whose meanings are so

much alike that the ideas which they stand for may
be confounded. Between the meanings of terms there

is no distinction, except a total distinction, and all

adjectives and adverbs expressing difference of de

grees are avoided. Thus it may be necessary to say,

&quot;A is greater than B;&quot; but it is entirely unimportant

whether A is very little or very much greater than B.

Any proposition which includes the foregoing asser

tion will prove its conclusion generally, that is, for all

cases in which A is greater than B, whether the dif

ference be great or little. Locke mentions the dis

tinctness of mathematical terms, and says in illustra

tion : &quot;The idea of two is as distinct from the idea of

&quot;three as the magnitude of the whole earth is from

&quot;that of a mite. This is not so in other simple modes,

&quot;in which it is not so easy, nor perhaps possible for us

&quot;to distinguish between two approaching ideas, which

&quot;yet
are really different

;
for who will undertake to

&quot;find a difference between the white of this paper,

&quot;and that of the next degree to it ?&quot;

These are the principal grounds on which, in our

opinion, the utility of mathematical studies may be

shown to rest, as a discipline for the reasoning pow
ers. But the habits of mind which these studies have

a tendency to form are valuable in the highest degree.

The most important of all is the power of concentrat-
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ing the ideas which a successful study of them in

creases where it did exist, and creates where it did

not. A difficult position, or a new method of passing

from one proposition to another, arrests all the atten

tion and forces the united faculties to use their utmost

exertions. The habit of mind thus formed soon ex

tends itself to other pursuits, and is beneficially felt

in all the business of life.

As a key to the attainment of other sciences, the

use of the mathematics is too well known to make it

necessary that we should dwell on this topic. In fact,

there is not in this country any disposition to under

value them as regards the utility of their applications.

But though they are now generally considered as a

part, and a necessary one, of a liberal education, the

views which are still taken of them as a part of edu

cation by a large proportion of the community are

still very confined.

The elements of mathematics usually taught are

contained in the sciences of arithmetic, algebra, geom

etry, and trigonometry. We have used these four di

visions because they are generally adopted, though,

in fact, algebra and geometry are the only two of them

which are really distinct. Of these we shall commence

with arithmetic, and take the others in succession in

the order in which we have arranged them.
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ON ARITHMETICAL NOTATION.

TVHE first ideas of arithmetic, as well as those of

-*- other sciences, are derived from early observa

tion. How they come into the mind it is unnecessary

to inquire ;
nor is it possible to define what we mean

by number and quantity. They are terms so simple,

that is, the ideas which they stand for are so com

pletely the first ideas of our mind, that it is impossible

to find others more simple, by which we may explain

them. This is what is meant by defining a term
;
and

here we may say a few words on definitions in general,

which will apply equally to all sciences.

Definition is the explaining a term by means of

others, which are more easily understood, and thereby

fixing its meaning, so that it may be distinctly seen

what it does imply, as well as what it does not.. Great

care must be taken that the definition itself is not a

tacit assumption of some fact or other which ought to

be proved. Thus, when it is said that a square is &quot;a

four-sided figure, all whose sides are equal, and all
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whose angles are right angles/ though no more is

said than is true of a square, yet more is said than is

necessary to define it, because it can be proved that

if a four-sided figure have all its sides equal, and one

only of its angles a right angle, all the other angles

must be right angles also. Therefore, in making the

above definition, we do, in fact, affirm that which

ought to be proved. Again, the above definition,

though redundant in one point, is, strictly speaking,

defective in another, for it omits to state whether the

sides of the figure are straight lines or curves. It

should be, &quot;a square is a four-sided rectilinear figure,

all of whose sides are equal, and one of whose angles

is a right angle.&quot;

As the mathematical sciences owe much, if not all,

of the superiority of their demonstrations to the pre

cision with which the terms are defined, it is most es

sential that the beginner should see clearly in what a

good definition consists. We- have seen that there

are terms which cannot be defined, such as number

and quantity. An attempt at a definition would only

throw a difficulty in the student s way, which is already

done in geometry by the attempts at an explanation

of the terms point, straight line, and others, which

are to be found in treatises on that subject. A point is

defined to be that &quot;which has no parts, and which

has no magnitude
&quot;

;
a straight line is that which

&quot;lies evenly between its extreme points.&quot; Now, let

any one ask himself whether he could have guessed
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what was meant, if, before he began geometry, any

one had talked to him of &quot;that which has no parts

and which has no magnitude,&quot; and &quot;the line which

lies evenly between its extreme points,&quot; unless he had

at the same time mentioned the words
&quot;point&quot;

and

&quot;straight line/ which would have removed the diffi

culty? In this case the explanation is a great deal

harder than the term to be explained, which must

always happen whenever we are guilty of the absurd

ity of attempting to make the simplest ideas yet more

simple.

A knowledge of our method of reckoning, and &quot;of

writing down numbers, is taught so early, that the

method by which we began is hardly recollected.

Few, therefore, reflect upon the very commencement

of arithmetic, or upon the simplicity and elegance

with which calculations are conducted. We find the

method of reckoning by ten in our hands, we hardly

know how, and we conclude, so natural and obvious

does it seem, that it came with our language, and is

a part of it
;
and that we are not much indebted to

instruction for so simple a gift. It has been well ob

served, that if the whole earth spoke the same lan

guage, we should think that the name of any object

was not a mere sign chosen to represent it, but was a

sound which had some real connexion with the thing ;

and that we should laugh at, and perhaps persecute,

any one who asserted that any other sound would do

as well if we chose to think so. We cannot fall into
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this error, because, as it is, we happen to know that

what we call by the sound &quot;horse,&quot; the Romans dis

tinguished as well by that of
&quot;equus,&quot;

but we commit

a similar mistake with regard to our system of nume

ration, because at present it happens to be received

by all civilised nations, and we do not reflect on what

was done formerly by almost all the world, and is done

still by savages. The following considerations will,

perhaps, put this matter on a right footing, and show

that in our ideas of arithmetic we have not altogether

rid ourselves of the tendency to attach ideas of mysti

cism to numbers which has prevailed so extensively

in all times.

We know that we have nine signs to stand for the

first nine numbers, and one for nothing, or zero. Also,

that to represent ten we do not use a new sign, but

combine two of the others, and denote it by 10, eleven

by 11, and so on. But why was the number ten chosen

as the limit of our separate symbols why not nine,

eight, or eleven? If we recollect how apt we are to

count on the fingers, we shall be at no loss to see the

reason. We can imagine our system of numeration

formed thus : A man proceeds to count a number,

and to help the memory he puts a finger on the table

for each one which he counts. He can thus go as far

as ten, after which he must begin again, and by reck

oning the fingers a second time he will have counted

twenty, and so on. But this is not enough ;
he must

also reckon the number of times which he has done
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this, and as by counting on the fingers he has divided

the things which he is counting into lots of ten each,

he may consider each lot as a unit of its kind, just as

we say a number of sheep is one flock, twenty shillings

are one pound. Call each lot a ten. In this way he

can count a ten of tens, which he may call a hundred,

a ten of hundreds, or a thousand, and so on. The

process of reckoning would then be as follows : Sup

pose, to choose an example, a number of faggots is to

be counted. They are first tied up in bundles of ten

each, until there are not so many as ten left. Suppose

there are seven over. We then count the bundles of

ten as we counted the single faggots, and tie them up

also by tens, forming new bundles of one hundred

each with some bundles of ten remaining. Let these

last be six in number. We then tie up the bundles

of hundreds by tens, making bundles of thousands,

and find that there are five bundles of hundreds re

maining. Suppose that on attempting to tie up the

thousands by tens, we find there are not so many as

ten, but only four. The number of faggots is then 4

thousands, 5 hundreds, 6 tens, and 7.

The next question is, how shall we represent this

number in a short and convenient manner? It is plain

that the way to do this is a matter ofchoice. Suppose
then that we distinguish the tens by marking their

number with one accent, the hundreds with two ac

cents, and the thousands with three. We may then

represent this number in any of the following ways :
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76 5&quot;4&quot;
,

6 75&quot;4
&quot;,

6 4
&quot;5&quot;7,

4&quot; 5&quot;6 7, the whole num
ber of ways being 24. But this is more than we want

;

one certain method of representing a number is suffi

cient. The most natural way is to place them in order

of magnitude, either putting the largest collection first

or the smallest
;
thus 4&quot; 5&quot;6 7, or 76 5&quot;4&quot; . Of these

we choose the first.

In writing down numbers in this way it will soon

be apparent that the accents are unnecessary. Since

the singly accented figure will always be the second

from the right, and so on, the place of each number

will point out what accents to write over it, and we

may therefore consider each figure as deriving a value

from the place in which it stands. But here this diffi

culty occurs. How are we to represent the numbers

3&quot; 3
,
and 4&quot; 2 7 without accents? If we write them

thus, 33 and 427, they will be mistaken for 3 3 and

4&quot;2 7. This difficulty will be obviated by placing cy

phers so as to bring each number into the place al

lotted to the sort of collection which it represents ;

thus, since the trebly accented letters, or thousands,

are in the fourth place from the right, and the singly

accented letters in the second, the first number may
be written 3030, and the second 4027. The cypher,

which plays so important a part in arithmetic that it

was anciently called the art of cypher, or cyphering,

does not stand for any number in itself, but is merely

employed, like blank types in printing, to keep other

signs in those places which they must occupy in order



ON ARITHMETICAL NOTATION. IJ

to be read rightly. We may now ask what would

have been the case if, instead of ten fingers, men had

had more or less. For example, by what signs would

4567 have been represented, if man had nine fingers

instead of ten? We may presume that the method

would have been the same, with the number nine rep

resented by 10 instead of ten, and the omission of the

symbol 9. Suppose this number of faggots is to be

counted by nines. Tie them up in bundles of nine,

and we shall find 4 faggots remaining. Tie these

bundles again in bundles of nine, each of which will,

therefore, contain eighty-one, and there will be 3 bun

dles remaining. These tied up in the same way into

bundles of nine, each of which contains seven hundred

and twenty-nine, will leave 2 odd bundles, and, as

there will be only six of them, the process cannot be

carried any further. If, then, we represent, by 1
,
a

bundle of nine, or a nine, by 1&quot; a nine of nines, and

so on, the number which we write 4567, must be writ

ten G &quot;2&quot;3 4. In order to avoid confusion, we will

suffer the accents to remain over all numbers which

are not reckoned in tens, while those which are so

reckoned shall be written in the common way. The

following is a comparison of the way in which num

bers in the common system are written, and in the

one which we have just explained :

COUNTING BY

Tens...l 2 3 4 5 6 7 8 9 10 11 12 13

Nines.. 1 2 3 4 5 6 7 8 I O I l 1 2 1 3 1 4
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COUNTING BV

Tens 14 15 16 17 18 19 20 30 40 50

Nines 1 5 1 6 VI 1 8 2 2 1 2 2 3 3 4 4 5 5

Tens 60 70 80 90 100

Nines 6 6 7 7 8 8 1&quot;1 1&quot;2 1

We will now write, in the common way, in the

tens system, the process which we went through in

order to find how to represent the number 4567 in

that of the nines, thus :

9)4567

9) 507 rem. 4.

9) 56 rem. 3.

9) 6 rem. 2.

rem. 6. Representation required, 6
&quot;

2&quot; 3 4.

The processes of arithmetic are the same in prin

ciple whatever system of numeration is used. To

show this, we subjoin a question in each of the first

four rules, worked both in the common system, and

in that of the nines* There is the difference, that, in

the first, the tens must be carried, and in the second

the nines.

ADDITION.

636 7&quot; T 6

987 1&quot; 3&quot;1 6

403 4&quot; 8 7

2026 2&quot; 7&quot;0 1

SUBTRACTION.

1384 1&quot; 8&quot;0 7

797 l &quot;0&quot; 7 5

587 7&quot; 2 2
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MULTIPLICATION.

297 3&quot; 6

136 1&quot; 6 1

1782 360
891 2400

297 360
40392 & &quot;!

&quot;

3&quot; 6

DIVISION.

633) 79125 (125 7&quot; 7 3) l v
3^0-4&quot; 7 1 6*

(1&quot;4
8

633 773
4217
3423
6846
6846

The student should accustom himself to work

questions in different systems of numeration, which

will give him a clearer insight into the nature of arith

metical processes than he could obtain by any other

method. When he uses a system in which numbers

are counted by a number greater than ten, he will

want some new symbols for figures. For example, in

the duodecimal system, where twelve is the number

of figures supposed, twelve will be represented by I O
;

there must, therefore, be a distinct sign for ten and

eleven : a nine and six reversed, thus 9 and 6, might

be used for these.

*To avoid too great a number of accents, Roman numerals are put in

stead of them; also, to avoid confusion, the accents are omitted after the

first line.



CHAPTER III.

ELEMENTARY RULES OF ARITHMETIC,

AS SOON as the beginner has mastered the notion

-E~-*- of arithmetic, he may be made acquainted with

the meaning of the algebraical signs -J-, , X? =&amp;gt;
and

also with that for division, or the common way of rep

resenting a fraction. There is no difficulty in these

signs or in their use. Five minutes consideration will

make the symbol 5 -j- 3 present as clear an idea as the

words &quot;5 added to 3.&quot; The reason why they usually

cause so much embarrassment is, that they are gener

ally deferred until the student commences algebra,

when he is often introduced at the same time to the

representation of numbers by letters, the distinction

of known and unknown quantities, the signs of which

we have been speaking, and the use of figures as

the exponents of letters. Either of these four things

is quite sufficient at a time, and there is no time more

favorable for beginning to make use of the signs of

operation than when the habit of performing the ope

rations commences. The beginner should exercise
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himself in putting the simplest truths of arithmetic in

this new shape, and should write such sentences as

the following frequently :

2 + 7-9,
6-4= 2,

2X2 + 12X 12= 14x 10 + 2 X2X 2 -

These will accustom him to the meaning of the signs,

just as he was accustomed to the formation of letters

by writing copies. As he proceeds through the rules

of arithmetic, he should take care never to omit con

necting each operation with its sign, and should avoid

confounding operations together and considering them

as the same, because they produce the same result.

Thus 4x7 does not denote the same operation as

7 X 4, though the result of both is 28. The first is

four multiplied by seven, four taken seven times ;
the

second is seven multiplied by four, seven taken four

times; and that 4x7= 7x4 is a proposition to be

proved, not to be taken for granted. Again, $ X -A

and ^ are marks of distinct operations, though their

result is the same, as we shall show in treating of

fractions.

The examples which a beginner should choose for

practice should be simple and should not contain very

large numbers. The powers of the mind cannot be

directed to two things at once : if the complexity of

the numbers used requires all the student s attention,

he cannot observe the principle of the rule which he
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is following. Now, at the commencement of his ca

reer, a principle is not received and understood by

the student as quickly as it is explained by the in

structor. He does not, and cannot, generalise at all
;

he must be taught to do so; and he cannot learn that

a particular fact holds good for all numbers unless by

having it shown that it holds good for some numbers,

and that for those &quot;some numbers he may substitute

others, and use the same demonstration. Until he

can do this himself he does not understand the prin

ciple, and he can never do this except by seeing the

rule explained and trying it himself on small numbers.

He may, indeed, and will, believe it on the word of

his instructor, but this disposition is to be checked.

He must be told, that whatever is not gained by his

own thought is not gained to any purpose ;
that the

mathematics are put in his way purposely because

they are the only sciences in which he must not trust

the authority of any one. The superintendence of

these efforts is the real business of an instructor in

arithmetic. The merely showing the student a rule

by which he is to work, and comparing his answer

with a key to the book, printed for the preceptor s

private use, to save the trouble which he ought to

bestow upon his pupil, is not teaching arithmetic any

more than presenting him with a grammar and dic

tionary is teaching him Latin. When the principle

of each rule has been well established by showing its

application to some simple examples (and the number
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of these requisite will vary with the intellect of the

student), he may then proceed to more complicated

cases, in order to acquire facility in computation. The

four first rules may be studied in this way, and these

will throw the greatest light on those which succeed.

The student must observe that all operations in

arithmetic may be resolved into addition and subtrac

tion
;
that these additions and subtractions might be

made with counters
;
so that the whole of the rules

consist of processes intended to shorten and simplify

that which would otherwise be long and complex. For

example, multiplication is continued addition of the

same number to itself twelve times seven is twelve

sevens added together. Division is a continued sub

traction of one number from another; the division of

129 by 3 is a continued subtraction of 3 from 129, in

order to see how many threes it contains. All other

operations are composed of these four, and are, there

fore, the result of additions and subtractions only.

The following principles, which occur so continu

ally in mathematical operations that we are, at length,

hardly sensible of their presence, are the foundation

of the arithmetical rules :

I. We do not alter the sum of two numbers by

taking away any part of the first, if we annex that

part to the second. This may be expressed by signs,

in a particular instance, thus :

(20 6) + (32 + 6)= 20 + 32.
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II. We do not alter the difference of two numbers

by increasing or diminishing one of them, provided

we increase or diminish the other as much. This may
be expressed thus, in one instance :

(45 -f 7) (22 + 7)= 45 22.

(45 8) (22 8)
= 45 22.

III. If we wish to multiply one number by another,

for example 156 by 29, we may break up 156 into any

number of parts, multiply each of these parts by 29
?

and add the results. For example, 156 is made up of

100, 50, and 6. Then

156 X 29= 100 X 29 + 50 X 29 + 6 X 29 -

IV. The same thing may be done with the multi

plier instead of the multiplicand. Thus, 29 is made

up of 18, 6, and 5. Then

156 X 29= 156 X 18 + 156 x 6 + 156X 5.

V. If any two or more numbers be multiplied to

gether, it is indifferent in what order they are multi

plied, the result is the same. Thus,

10X6X4X3=3X10X4XG= 6X10X-X3, etc.

VI. In dividing one number by another, for ex

ample 156 by 12, we may break up the dividend, and

divide each of its parts by the divisor, and then add

the results. We may part 156 into 72, 60, and 24
;

this is expressed thus :

156 _ 72 60 24

T2~
==

12 + 12 + 12
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The same thing cannot be done with the divisor. It

is not true that

156 _ 156 156 156

~12~
z

4 ~3~ ~5~*

The student should discover the reaso
t
n for himself.

A prime number is one which is not divisible by

any other number except 1. When the process of di

vision can be performed, it can be ascertained whether

a given number is divisible by any other number, that

is, whether it is prime or not. This can be done by

dividing it by all the numbers which are less than its

half, since it is evident that it cannot be divided into

a number of parts, each of which is greater than its

half. This process would be laborious when the given

number is large ;
still it may be done, and by this

means the number itself may be reduced to its prime

factors* as it is called, that is, it may either be shown

to be a prime number itself or made up by multiply

ing several prime numbers together. Thus, 306 is

34 X 9, or 2x1^X9, or 2x17x3x3, and has for

its prime factors 2, 17, and 3, the latter of which is

repeated twice in its formation. When this has been

done with two numbers, we can then see whether

they have any factors in common, and, if that be the

case, we can then find what is called their greatest

common measure or divisor; that is, the number made

* The factors of a number are those numbers by the multiplication of

Which it is made.
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by multiplying all their common factors. It is an evi

dent truth that, if a number can be divided by the

product of two others, it can be divided by each of

them. If a number can be parted into an exact num

ber of twelves, it can be parted also into a number of

sixes, twos, or fours. It is also true that, if a number

can be divided by any other number, and the quotient

can then be divided by a third number, the original

number can be divided by the product of the other

two. Thus, 144 is divisible by 2
;
the quotient, 72, is

divisible by 6
;
and the original number is divisible

by 6 X 2 or 12. It is also true that, if two numbers

are prime, their product is divisible by no numbers

except themselves. Thus, 17 X H is divisible by no

numbers except 17 and 11. Though this is a simple

proposition, its proof is not so, and cannot be given

to the beginner. From these things it follows that

the greatest common measure of two numbers (meas

ure being an old word for divisor) is the product of all

the prime factors which the two possess in common.

For example, the numbers 90 and 100, which, when

reduced to their prime factors, are 2x5x3x3 and

2x2x^x5, have the common factors 2 and 5, and

are divisible by 2 X 5, or 10. The quotients are 3x3
and 2x5, or 9 and 10, which have no common factor

remaining, and 2x5, or 10, is the greatest common

measure of 90 and 100. The same may be shown in

the case of any other numbers. But the method we
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have mentioned of resolving numbers into their prime

factors, being troublesome to apply when the num

bers are large, is usually abandoned for another. It

happens frequently that a method simple in principle

is laborious in practice, and the contrary.

When one number is divided by another, and its

quotient and remainder obtained, the dividend may
be recovered again by multiplying the quotient and

divisor together, and adding the remainder to the pro

duct. Thus 171 divided by 27 gives a quotient 6 and

a remainder 9, and 171 is made by multiplying 27 by

6, and adding 9 to the product. That is, 171 =
27 X 6 -f 9. Now, from this equation it is easy to

show that every number which divides 171 and 27

also divides 9, that is, every common measure of 171

and 27 is also a common measure of 27 and 9. We
can also show that 27 and 9 have no common meas

ures which are not common to 171 and 27. Therefore,

the common measures of 171 and 27 are those, and no

others, which are common to 27 and 9
;
the greatest

common measure of each pair must, therefore, be the

same, that is, the greatest common measure of a di

visor and dividend is also the greatest common meas

ure of the remainder and divisor. Now take the com

mon process for finding the greatest common measure

of two numbers
;
for example, 360 and 420, which is

as follows, and abbreviate the words greatest common

measure into their initials g. c. m. :
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360)420(1
360

~~60)360(6
360

From the theorem above enunciated it appears

that

g. c. m. of 420 and 360 is g. c. m. of 60 and 360
;

g. c. m. of 60 and 360 is 60
;

because 60 divides both 60 and 360, and no number

can have a greater measure than itself. Thus may be

seen the reason of the common rule for finding the

greatest common measure of two numbers.

Every number which can be divided by another

without remainder is called a multiple of it. Thus,

12, 18, and 42 are multiples of 6, and the last is a

common multiple of 6 and 7, because it is divisible both

by 6 and 7. The only things which it is necessary to

observe on this subject are, (1), that the product of

two numbers is a common multiple of both
; (2), that

when the two numbers have a common measure greater

than 1, there is a common multiple less than their

product; (3), that when they have no common meas

ure except 1, the least common multiple is their pro

duct. The first of these is evident
;
the second will

appear from an example. Take 10 and 8, which have

the common measure 2, since the first is 2 x 5 and

the second 2x4. The product is 2 X 2 X 4 X 5, but
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2 X 4 X 5 is also a common multiple, since it is divis

ible by 2 x ^, or 8, and by 2x5, or 10. To find this

common multiple we must, therefore, divide the pro

duct by the greatest common measure. The third

principle cannot be proved in an elementary way, but

the student may convince himself of it by any number

of examples. He will not, for instance, be able to

find a common multiple of 8 and 7 less than 8 X 7

or 56.



CHAPTER IV.

ARITHMETICAL FRACTIONS.

WHEN
the student has perfected himself in the

four rules, together with that for finding the

greatest common measure, he should proceed at once

to the subject of fractions. This part of arithmetic is

usually supposed to present extraordinary difficulties
;

whereas, the fact is that there is nothing in fractions

so difficult, either in principle or practice, as the rule

for finding the greatest common measure. We would

recommend the student not to attend to the distinc

tions of proper and improper, pure or mixed fractions,

etc., as there is no distinction whatever in the rules,

which are common to all these fractions.

When one number, as 56, is to be divided by an

other, as 8, the process is written thus :
-6
B
6
-. By this

we mean that 56 is to be divided into 8 equal parts,

and one of these parts is called the quotient. In this

case the quotient is 7. But it is equally possible

to divide 57 into 8 equal parts ;
for example, we can

divide 57 feet into 8 equal parts, but the eighth part
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of 57 feet will not be an exact number of feet, since

57 does not contain an exact number of eights ;
a part

of a foot will be contained in the quotient -5
g
7
-, and this

quotient is therefore called a fraction, or broken num

ber. If we divide 57 into 56 and 1, and take the

eighth part of each of these, whose sum will give the

eighth part of the whole, the eighth of 56 feet is 7

feet
;
the eighth of 1 foot is a fraction, which we write

J, and -5̂ - is 7 -(- i, which is usually written 7J. Both

of these quantities -5
^, and 7|, are called fractions

;
the

only difference is that, in the second, that part of the

quotient which is a whole number is separated from

the part which is less than any whole number.

There are two ways in which a fraction may be

considered. Let us take, for example, |. This means

that 5 is to be divided into 8 parts, and | stands for

one of these parts. The same length will be obtained

if we divide 1 into 8 parts, and take 5 of them, or find

J X 5. To prove this let each of the lines drawn be

low represent | of an inch ; repeat J five times, and

repeat the same line eight times.

In each column is Jth of an inch repeated 8 times
;

that is one inch. There are, then, 5 inches in all,
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since there are five columns. But since there are 8

Jines, each line is the eighth of 5 inches, or f, but

each line is also Jth of an inch repeated 5 times, or

JX 5- Therefore, f= JX 5
J
that is, in order to find

| inches, we may either divide five inches into 8 parts,

and take one of them, or divide one inch into 8 parts,

and takeySW of them. The symbol | is made to stand

for both these operations, since they lead to the same

result.

The most important property of a fraction is, that

if both its numerator and denominator are multiplied

by the same number, the value of the fraction is not

altered ; that is, ^ is the same as
J-J,

or each part is

the same when we divide 12 inches into 20 parts, as

when we divide 3 inches into 5 parts. Again, we get

the same length by dividing 1 inch into 20 parts, and

taking 12 of them, which we get by dividing 1 inch

into 5 parts and taking 3 of them. This hardly needs

demonstration. Taking 12 out of 20 is taking 3 out

of 5, since for every 3 which 12 contains, there is a 5

contained in 20. Every fraction, therefore, admits of

innumerable alterations in its form, without any altera

tion in its value. Thus, \ f f= | $, etc.;

?= T
44=A=28

8&amp;gt;

e tc.

On the same principle it is shown that the terms

of a fraction may be divided by any number without

any alteration of its value. There will now be no diffi

culty in reducing fractions to a common denomina

tor, in reducing a fraction to its lowest terms
;
neither
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in adding nor subtracting fractions, for all of which

the rules are given in every book of arithmetic. -^

We now come to a rule which presents more pe

culiar difficulties in point of principle than any at

which we have yet arrived. If we could at once take

the most general view of numbers, and give the be

ginner the extended notions which he may afterwards

attain, the mathematics would present comparatively

few impediments. But the constitution of our minds

will not permit this. It is by collecting facts and

principles, one by one, and thus only, that we arrive

at what are called general notions
;
and we afterwards

make comparisons of the facts which we have acquired

and discover analogies and resemblances which, while

they bind together the fabric of our knowledge, point

out methods of increasing its extent and beauty. In

the limited view which we first take of the operations

which we are performing, the names which we give

are necessarily confined and partial ;
but when, after

additional study and reflection, we recur to our former

notions, we soon discover processes so resembling one

another, and different rules so linked together, that

we feel it would destroy the symmetry of our language

if we were to call them by different names. We are

then induced to extend the meaning of our terms, so

as to make two rules into one. Also, suppose that

when we have discovered and applied a rule and given

the process which it teaches a particular name, we

find that this process is only a part of one more gen-
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eral, which applies to all cases contained under the

first, and to others besides. We have only the alter

native of inventing a new name, or of extending the

meaning of the former one so as to merge the particu

lar process in the more general one of which it is a

part. Of this we can give an instance. We began

with reasoning upon simple numbers, such as 1, 2, 3,

20, etc. We afterwards divided these into parts, of

which we took some number, and which we called

fractions, such as f, J, J, etc. Now there is no num

ber which may not be considered as a fraction in as

many different ways as we please. Thus 7 is * or

%-, etc.; 12 is ffi,
-7
^
2
-, etc. Our new notion of frac

tion is, then, one which includes all our former ideas

of number, and others besides. It is then customary

to represent by the word number, not only our first

notion of it, but also the extended one, of which the

first is only a part. Those to which our first notions

applied we call whole numbers, the others fractional

numbers, but still the name number is applied to both

2 and ^, 3 and |. The rule of which we have spoken

is another instance. It is called the multiplication of

fractional numbers. Now, if we return to our mean

ing of the word multiplication, we shall find that the

multiplication of one fraction by another appears an

absurdity. We multiply a number by taking it several

times and adding these together. What, then, is

meant by multiplying by a fraction? Still, a rule has

been found which, in applying mathematics, it is ne-
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cessary to use for fractions, in all cases where multi

plication would have been used had they been whole

numbers. Of this we shall now give a simple exam

ple. Take an oblong figure (which is called a rect

angle in geometry), such as ABCD, and find the mag
nitudes of the sides AB and BC in inches. Draw the

B

A D

line EF equal in length to one inch, and the square

G, each of whose sides is one inch. If the lines AB
and BC contain an exact number of inches, the rect

angle ABCD contains an exact number of squares,

each equal to G, and the number of squares contained

is found by multiplying the number of inches in AB
by the number of inches in BC. In the present case

the number of squares is 3 X 4, or 12. Now, suppose

another rectangle A B C D
,
of which neither of the

sides is an exact number of inches
; suppose, for exam

ple, that A B is | of an inch, and that B C is f of an

B C

A
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inch. We may show, by reasoning, that we can find

how much A B CD is of G by forming a fraction

which has the product of the numerators of f and f

for its numerator, and the product of their denomina

tors for its denominator; that is, that A B C D con

tains J of G. Here then appears a connexion be

tween the multiplication of whole numbers, and the

formation of a fraction, whose numerator is the pro

duct of two numerators, and its denominator the pro

duct of the corresponding denominators. These ope

rations will always come together, that is whenever a

question occurs in which, when whole numbers are

given, those numbers are to be multiplied together;

when fractional numbers are given, it will be neces

sary, in the same case, to multiply the numerator by

the numerator, and the denominator by the denomina

tor, and form the result into a fraction, as above.

This would lead us to suspect some connexion be

tween these two operations, and we shall accordingly

find that when whole numbers are formed into frac

tions, they may be multiplied together by this very

rule. Take, for example, the numbers 3 and 4, whose

product is 12. The first may be written as -^
5
-, and

the second as f . Form a fraction from the product

of the numerators and denominators of these, which

will be !-, which is 12, the product of 3 and 4.

From these considerations it is customary to call

the fraction which is produced from two others in the

manner above stated, the product of those two frac-
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tions, and the process of finding the third fraction,

multiplication. We shall always find the first meaning

of the word multiplication included in the second, in

all cases in which the quantities represented as frac

tions are really whole numbers. The mathematics are

not the only branches of knowledge in which it is cus

tomary to extend the meaning of established terms.

Whenever we pass from that which is simple to that

which is complex, we shall see the necessity of carry

ing our terms with us and enlarging their meaning,

as we enlarge our own ideas. This is the only method

of forming a language which shall approach in any

degree towards perfection ;
and more depends upon

a well- constructed language in mathematics than in

anything else. It is not that an imperfect language

would deprive us of the means of demonstration, or

cramp the powers of reasoning. The propositions of

Euclid upon numbers are as rationally established as

any others, although his terms are deficient in analogy,

and his notation infinitely inferior to that which we

use. It is the progress of discovery which is checked

by terms constructed so as to conceal resemblances

which exist, and to prevent one result from pointing

out another. The higher branches of mathematics

date the progress which they have made in the last

century and a half, from the time when the genius of

Newton, Leibnitz, Descartes, and Hariot turned the

attention of the scientific world to the imperfect mech

anism of the science. A slight and almost casual im-



38 ON THE STUDY OF MATHEMATICS.

provement, made by Hariot in algebraical language,

has been the foundation of most important branches

of the science.* The subject of the last articles is of

very great importance, and will often recur to us in

explaining the difficulties of algebraical notation.

The multiplication of f by f is equivalent to divid

ing ^ into 2 parts, and taking three such parts. Be

cause | being the same as
-if,

or 1 divided into 12

parts and 10 of them taken, the half of || is 5 of those

parts, or f^. Three times this quantity will be 15 of

those parts, or
-J-|-,

which is by our rule the same as

what we have called, | multiplied by f . But the same

result arises from multiplying f by |-,
or dividing |

into 6 parts and taking 5 of them. Therefore, we find

that | multiplied by f is the same as f multiplied by

f, or | X f= % X f- This proposition is usually con

sidered as requiring no proof, because it is received

very early on the authority of a rule in the elements

of arithmetic. But it is not self-evident, for the truth

of which we appeal to the beginner himself, and ask

him whether he would have seen at once that
|-

of an

apple divided into 2 parts and 3 of them taken, is the

same as f of an apple, or one apple and a-half divided

into six parts and 5 of them taken.

An extension of the same sort is made of the term

division. In dividing one whole number by another,

*The mathematician will be aware that I allude to writing an equation

in the form
jr2 -\- ax b = o

;
instead of

.r2.f ax=b.
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for example, 12 by 2, we endeavor to find how many
twos must be added together to make 12. In passing

from a problem which contains these whole numbers

to one which contains fractional quantities, for exam

ple | and f ,
it will be obser.ved that in place of find

ing how many twos make 12, we shall have to find

into how many parts J must be divided, and how many
ot them must be taken, so as to give |. If we reduce

these fractions to a common denominator, in which

case they will be ^J and ^ ;
and if we divide the sec

ond into 8 equal parts, each of which will be ^, and

take 15 of these parts, we shall get J, or |. The

fraction whose numerator is 15, and whose denomina

tor is 8, or
-Jg

5
-, will in these .problems take the place

of the quotient of the two whole numbers. In the

same manner as before, it may be shown that this pro

cess is equivalent to the division of one whole number

by another, whenever the fractions are really whole

numbers
;
for example, 3 is \2

-, and 15 is -3
Y -. If this

process be applied to -^ and -L2
-, the result is J^ -,

which is 5, or the same as 15 divided by 3. This pro

cess is then, by extension, called division :
-J
g
5- is called

the quotient of f divided by |,
and is found by multi

plying the numerator of the first by the denominator

of the second for the numerator of the result, and the

denominator of the first by the numerator of the sec

ond for the denominator of the result. That this pro

cess does give the same result as ordinary division in

all cases where ordinary division is applicable, we can
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easily show from any two whole numbers, for exam

ple, 12 and 2, whose quotient is (&amp;gt;. Now 12 is -8
^
6
-, and

2 is
-^Q.,

and the rule for what we have called division

of fractions will give as the quotient -f^-, which is 6.

In all fractional investigations, when the beginner

meets with a difficulty, he should accustom himself to

leave the notation of fractions, and betake himself to

their original definition. He should recollect that f

is 1 divided into 6 parts and five of them taken, or the

sixth part of 5, and he should reason upon these sup

positions, neglecting all rules until he has established

them in his own mind by reflexion on particular in

stances. These instances should not contain large

numbers, and it will perhaps assist him if he reasons

on some given unit, for example a foot. Let AB be

one foot, and divide it into any number of equal parts

(7 for example) by the points C, D, E, F, G, and H.

I I ! I

F G H

He must then recollect that each of these parts is ^

of a foot
;
that any two of them together are ^ of a

foot
; any 3, -|,

and so on. He should then accustom

himself, without a rule, to solve such questions as the

following, by observation of the figure, dividing each

part into several equal parts, if necessary ;
and he

may be well assured that he does not understand the

nature of fractions until such questions are easy to

him.
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What is J of f of a foot? What is f of J of of a

foot? Into how many parts must f of a foot be di

vided, and how many of them must be taken to pro
duce if of a foot? What is -f ^ of a foot? and so on.



CHAPTER V.

DECIMAL FRACTIONS.

TT is a disadvantage attending rules received without

*- a knowledge of principles, that a mere difference

of language is enough to create a notion in the mind

of a student that he is upon a totally different subject.

Very few beginners see that in following the rule

usually called practice, they are working the same

questions as were proposed in compound multiplica

tion
;

that the rule of three is only an application of

the doctrine of fractions
;
that the rules known by the

name of commission, brokerage, interest, etc., are the

same, and so on. No instance, however, is more con

spicuous than that of decimal fractions, which are

made to form a branch of arithmetic as distinct from

ordinary or vulgar fractions as any two parts of the

subject whatever. Nevertheless, there is no single

rule in the one which is not substantially the same as

the rule corresponding in the other, the difference

consisting altogether in a different way of writing the

fractions. The beginner will observe that throughout
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the subject it is continually necessary to reduce frac

tions to a common denominator : he will see, there

fore, the advantage of always using either the same

denominator, or a set of denominators, so closely con

nected as to be very easily reducible to one another.

Now of all numbers which can be chosen the most

easily manageable are 10, 100, 1000, etc., which are

called decimal numbers on account of their connexion

with the number ten. All fractions, such as
-fifa,

T
3
o
3
o%&amp;gt; ~ff ~&amp;gt;

which have a decimal number for the

denominator, are called decimal fractions. Now a

denominator of this sort is known whenever the num
ber of cyphers in it are known

;
thus a decimal num

ber with 4 cyphers can only be 10,000, or ten thou

sand. We need not, therefore, write the denominator,

provided, in its stead, we put some mark upon the

numerator, by which we may know the number of

cyphers in the denominator. This mark is for our own

selection. The method which is followed is to point

off from the numerator as many figures as there are

cyphers in the denominator. Thus \7
o
3
o
3
o
4 ^ s represented

by 17.334; ^^ thus, .229. We might, had we so

pleased, have represented them thus, 173343
,
2293

;

or thus, 173343 ,
2293 , or in any way by which we

might choose to agree to recollect that the denomina

tor is 1 followed by 3 cyphers. In the common method

this difficulty occurs immediately. What shall be done

when there are not as many figures in the numerator

as there are cyphers in the denominator? How shall
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we represent T^
8
oVo ? We must here extend our lan

guage a little, and imagine some method by which,

without essentially altering the numerator, it may be

made to show the number of cyphers in the denom

inator. Something of the sort has already been done

in representing a number of tens, hundreds, or thou

sands, etc.
;
for 5 thousands were represented by 5000,

in which, by the assistance of cyphers, the 5 is made

to stand in the place allotted to thousands. If, in the

present instance, we place cyphers at the beginning of

the numerator, until the number of figures and cyphers

together is equal to the number of cyphers in the de

nominator, and place a point before the first cypher,

the fraction T o
8
o
8

o&amp;lt;j

will be represented thus, .0088
; by

which we understand a fraction whose numerator is

88, and whose denominator is a decimal number con

taining four cyphers.

There is a close connexion between the manner of

representing decimal fractions, and the decimal nota

tion for numbers. Take, for example, the fraction

217.3426 or 2|J342e. YOU will recollect that 2173426

is made up of 2000000 -f 100000 + 70000 + 3000 -f

400 -f 20 -f 6. If each of these parts be divided by

10000, and the quotient obtained or the fraction re

duced to its lowest terms, the result is as follows :

4. 9 fi

10000
} + + Io oo ooo 10000

We see, then, that in the fraction 217.3426 the first

figure 2 counts two hundred
;
the second figure, 1,
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ten, and the third 7 units. It appears, then, that all

figures on the left of the decimal point are reckoned

as ordinary numbers. But on the right of that point

we find the figure 3, which counts for
-f$ ; 4, which

counts for T^; 2, for T^ ;
and 6, for Tooo- lt aP

pears therefore, that numbers on the right of the de

cimal point decrease as they move towards the right,

each number being one-tenth of what it would have

been had it come one place nearer to the decimal

point. The first figure on the right hand of that point

is so many tenths of a unit, the second figure so many
hundredths of a unit, and so on.

The learner should go through the same investiga

tion with other fractions, and should demonstrate by

means of the principles of fractions, generally, such

exercises as the following, until he is thoroughly ac

customed to this new method of writing fractions :

. 68342= . 6 -f . OS -f . 003 -f . 0004 -f . 00002

G8342 6834 2
or

100000
~~

To &quot;*&quot; Too &quot;*&quot; 1000 &quot;i~ 10000 ~J~ 100000

163 499
163429

163
429 1634

-I
29

-IMF 3
I666

=
lor -1000

=

16342 9
i i nnn100 1000

The rules of addition, subtraction, and multiplica

tion may now be understood. In addition and sub

traction, the keeping the decimal points under one
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another is equivalent to reducing the fractions to a

common denominator, as we may show thus : Take

two fractions, 1.5 and 2.125, or -if and fjf |, which,

reducing the first to the denominator of the second,

may be written %%%g and fjff If we add the nume

rators together, we find the sum of the fractions fff J&amp;gt;

or 3.625

2125 2.125

1500 1.5

3625 3.625

The learner can now see the connexion of the rule

given for the addition of decimal fractions with that

for the addition of vulgar fractions. There is the

same connexion between the rules of subtraction. The

principle of the rule of multiplication is as follows :

If two decimal numbers be multiplied together, the

product has as many cyphers as are in both to

gether. Thus 100 X 1000= 100000, 10 X 100= 1000,

etc. Therefore the denominator of the product, which

is the product of the denominators, has as many cy

phers as are in the denominators of both fractions,

and since the numerator of the product is the product

of the numerators, the point must be placed in that

product so as to cut off as many decimal places as are

both in the multiplier and the multiplicand. Thus:

13 12 156

loo&quot;

x
To
=

looo
or i

4 6 24

1000
^

100 100000

or . 004 X 06= . 00024, etc.



DECIMAL FRACTIONS. 47

It is a general rule, that wherever the number of fig

ures falls short of what we know ought to be the num

ber of decimals, the deficiency is made up by cyphers.

It may now be asked, whether all fractions can be

reduced to decimal fractions? It may be answered

that they cannot. It is a principle which is demon

strated in the science of algebra, that if a number

be not divisible by a prime number, no multiplication

of that number, by itself, will make it so. Thus 10

not being divisible by 7, neither 10 X 10, nor 10 X 10

X 10, etc., is divisible by 7. A consequence of this

is, that since 5 and 2 are the only prime numbers

which will divide 10, no fraction can be converted into

a decimal unless its denominator is made up of pro

ducts, either of 5 or 2, or of both combined, such as

5x2, 5x5x 2
, 5x5x5, 2x2, etc. To show that

this is the case, take any fraction with such a denomi

nator ; for example, = -. Multiply the numera-
* X ** X *

tor and denominator by 2, once for every 5, which is

contained in the denominator, and the fraction will

then become

13X2X2X2 2x 2X 2X 13

5X5X5X2X2X2 10x10x10

which is yVVo or -l^. In a similar way, any fraction

whose denominator has no other factors than 2 or 5,

can be reduced to a decimal fraction. We first search

for such a number as will, when multiplied by the de

nominator, produce a decimal number, and then mul-
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tiply both the numerator and denominator by that

number.

No fraction which has any other factor in its de

nominator can be reduced to a decimal fraction ex

actly. But here it must be observed that in most

parts of mathematical computation a very small error

is not material. In different species of calculations,

more or less exactness may be required ;
but even in

the most delicate operations, there is always a limit

beyond which accuracy is useless, because it cannot

be appreciated. For example, in measuring land for

sale, an error of an inch in five hundred yards is not

worth avoiding, since even if such an error were com

mitted, it would not make a difference which would

be considered as of any consequence, as in all prob

ability the expense of a more accurate measurement

would be more than the small quantity of land thereby

saved would be worth. But in the measurement of a

line for the commencement of a trigonometrical sur

vey, an error of an inch in five hundred yards would

be fatal, because the subsequent processes involve

calculations of such a nature that this error would be

multiplied, and cause a considerable error in the final

result. Still, even in this case, it would be useless

to endeavor to avoid an error of one-thousandth part

of an inch in five hundred yards ; first, because no in

struments hitherto made would show such an error:

and secondly, because if they could, no material dif-
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ference would be made in the result by a correction of

it. Again, we know that almost all bodies are length

ened in all directions by heat. For example : A brass

ruler which is a foot in length to-day, while it is cold,

will be more than a foot to-morrow if it is warm. The

difference, nevertheless, is scarcely, if at all, percept

ible to the naked eye, and it would be absurd for a

carpenter, in measuring a few feet of mahogany for a

table, to attempt to take notice of it
;
but in the meas

urement of the base of a survey, which is several miles

in length and takes many days to perform, it is neces

sary to take this variation into account, as a want of

attention to it may produce perceptible errors in the

result : nevertheless, any error which has not this ef

fect, it would be useless to avoid even were ft pos

sible. We see, therefore, that we may, instead of a

fraction, which cannot be reduced to a decimal, sub

stitute a decimal fraction, if we can find one so near

to the former, that the error committed by the substi

tution will not materially affect the result. We will

now proceed to show how to find a series of decimal

fractions, which approach nearer and nearer to a given

fraction, and also that, in this approximation, we may

approach as near as we please to the given fraction

without ever being exactly able to reach it.

Take, for example,, the fraction T̂ . If we divide

the series of numbers 70, 700, 7000, etc., by 11, we

shall obtain the following results :
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-
7- - gives the quotient 6, and the remainder 4, and is 6T

4
-j

a 63 &quot; 7

t &amp;lt; 636 4

63 &quot; 7 63T
7
T

io_o_o_o 6363 &quot; 7 6363T
7
T

etc. etc. etc.

Now observe that if two numbers do not differ by

so much as 1, their tenth parts do not differ by so

much as T̂ , their hundredth parts by so much as TJ^,

their thousandth parts by so much as T^Vo~&amp;gt;
an&amp;lt;^ so on

&amp;gt;

and also remember that T
7
T is the tenth part of Jf, the

hundredth part of -7
TT-, and so on. The two following

tables will now be apparent :

iQ- does not differ from 6 by so much as 1

iff. 63 &quot; 1
*

vooo 636 &quot; 1

ip_o_oo tt 6363 &quot; 1

etc. etc. etc.

Therefore

T
7
T does not differ from T

6
^ or . 6, by so much as T̂ or . 1

r
7
T

&quot;

TfW&quot;-
63 &quot;

rW&quot;-
01

T
7
T

&quot;

etc. etc. etc.

We have then a series of decimal fractions, viz., .6,

.63, .636, .6363, .63636, etc., which continually ap

proach more and more near to T
7
T ,

and therefore in

any calculation in which the fraction T\ appears, any

one of these may be substituted for it, which is suffi

ciently near to suit the purpose for which the calcula

tion is intended. For some purposes .636 would be a
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sufficient approximation; for others .63636363 would

be necessary. Nothing but practice can show how

far the approximation should be carried in each case.

The division of one decimal fraction by another is

performed as follows : Suppose it required to divide

6.42 by 1.213. The first of these is fJ 2, and the sec

ond |JJJ. The quotient of these by the ordinary rule

is f
420 a^ or 6420. This fraction must now be reduced

to a decimal on the principles of the last article, by

the rule usually given, either exactly, or by approxi

mation, according to the nature of the factors in the

denominator.

When the decimal fraction corresponding to a com

mon fraction cannot be exactly found, it always hap

pens that the series of decimals which approximates

to it, contains the same number repeated again and

again. Thus, in the example which we chose, T
7
T is

more and more nearly represented by the fractions .6,

.63, .636, .6363, etc., and if we carried the process on

without end, we should find a decimal fraction con

sisting entirely of repetitions of the figures 63 after the

decimal point. Thus, in finding ^, the figures which

are repeated in the numerator are 142857. This is

what is commonly called a circulating decimal, and

rules are given in books of arithmetic for reducing

them to common fractions. We would recommend

to the beginner to omit all notice of these fractions,

as they are of no practical use, and cannot be thor

oughly understood without some knowledge of alge-
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bra. It is sufficient for the student to know that he

can always either reduce a common fraction to a deci

mal, or find a decimal near enough to it for his pur

pose, though the calculation in which he is engaged

requires a degree of accuracy which the finest micro

scope will not appreciate. But in using approximate

decimals there is one remark of importance, the ne

cessity for which occurs continually.

Suppose that the fraction 2.143876 has been ob

tained, and that it is more than sufficiently accurate

for the calculation in which it is to be employed. Sup

pose that for the object proposed it is enough that

each quantity employed should be a decimal fraction

of three places only, the quantity 2.143876 is made up

of 2.143, as far as three places of decimals are con

cerned, which at first sight might appear to be what

we ought to use, instead of 2.143876. But this is not

the number which will in this case give the utmost

accuracy which three places of decimals will admit

of; the common usages of life will guide us in this

case. Suppose a regiment consists of 876 men, we

should express this in what we call round numbers,

which in this case would be done by saying how many
hundred men there are, leaving out of consideration

the number 76, which is not so great as 100
; but in

doing this we shall be nearer the truth if we say that

the regiment consists of 900 men instead of 800, be

cause 900 is nearer to 876 than 800. In the same

manner, it will be nearer the truth to write 2.144 in-
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stead of 2.143, if we wish to express 2.143876 as nearly

as possible by three places of decimals, since it will

be found by subtraction that the first of these is nearer

to the third than the second. Had the fraction been

2.14326, it would have been best expressed in three

places by 2.143; had it been 2.1435, it would have

been equally well expressed either by 2.143 or 2.144,

both being equally near the truth; but 2.14351 is a

little more nearly expressed by 2.144 than by 2.143.

We have now gone through the leading principles

of arithmetical calculation, considered as a part of

general Mathematics. With respect to the commer

cial rules, usually considered as the grand object of

an arithmetical education, it is not within the scope

of this treatise to enter upon their consideration. The

mathematical student, if he is sufficiently well versed

in their routine for the purposes of common life, may

postpone their consideration until he shall have be

come familiar with algebraical operations, when he

will find no difficulty in understanding the principles

or practice of any of them. He should, before com

mencing the study of algebra, carefully review what

he has learnt in arithmetic, particularly the reasonings

which he has met with, and the use of the signs which

have been introduced. Algebra is at first only arith

metic under another name, and with more general

symbols, nor will any reasoning be presented to the

student which he has not already met with in estab

lishing the rules of arithmetic. His progress in the
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former science depends most materially, if not alto

gether, upon the manner in which he has attended to

the latter ; on which account the detail into which we

have entered on some things which to an intelligent

person are almost self-evident, must not be deemed

superfluous.

When the student is well acquainted with the prin

ciples and practice of arithmetic, and not before, he

should commence the study of algebra. It is usual

to begin algebra and geometry together, and if the

student has sufficient time, it is the best plan which

he can adopt. Indeed, we see no reason why the ele

ments of geometry should not precede those of alge

bra, and be studied together with arithmetic. In this

case the student should read some treatise which re

lates to geometry, first. It is hardly necessary to say

that though we have adopted one particular order,

yet the student may reverse or alter that order so as

to suit the arrangement of his own studies.

We now proceed to the first principles of algebra,

and the elucidation of the difficulties which are found

from experience to be most perplexing to the begin

ner. We suppose him to be well acquainted with

what has been previously laid down in this treatise,

particularly with the meaning of the signs -f-, , X&amp;gt;

and the sign of division.



CHAPTER VI.

ALGEBRAICAL NOTATION AND PRINCIPLES.

TTTHENEVER any idea is constantly recurring,

* * the best thing which can be done for the per

fection of language, and consequent advancement ol

knowledge, is to shorten as much as possible the sign

which is used to stand for that idea. All that we have

accomplished hitherto has been owing to the short

and expressive language which we have used to rep

resent numbers, and the operations which are per

formed upon them. The first step was to write simple

signs for the first numbers, instead of words at full

length, such as 8 and 7, instead of eight and seven.

The next was to give these signs an additional mean

ing, according to the manner in which they were con

nected with one another; thus 187 was made to rep

resent one hundred added to eight tens added to seven.

The next was to give by new signs directions when to

perform the operations of addition, subtraction, mul

tiplication, and division ;
thus 5 + 8 was made to rep

resent 8 added to 5, and so on. With these signs
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reasonings were made, and truths discovered which

are common to all numbers
; not at once for every

number, but by taking some example, by reasoning

upon it, and by producing a result
; this result led to

a rule which was declared to be a rule which held

equally good for all numbers, because the reasoning

which produced it might have been applied to any

other example as well as to the one which was chosen.

In this way we produced some results, and might have

produced many more ; the following is an instance :

half the sum of two numbers added to half their differ

ence, gives the greater of the two numbers. For ex

ample, take 16 and 10, half their sum is 13, half their

difference is 3
;

if we add 13 and 3 we get 16, the

greater of the two numbers. We might satisfy our

selves of the truth of this same proposition for any

other numbers, such as 27 and 8, 15 and 19, and so

on. If we then make use of signs, we find the follow

ing truths :

16 10 16-10 _,
2 2

27 + 8 27-~~~ ~

15+9 159
~T~ + ~2~ =15

and so on. If, then, we choose any two numbers,

and call them the first and second numbers, and call

that the first number which is the greater of the two,

we have the following :
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First No. -f- Second No. First No. Second No.

~^2~ ~^~
First No.

In this way we might express anything which -is true

of all numbers, by writing First No., Second No., etc.,

for the different numbers which enter into our propo

sition, and we might afterwards suppose the First

No., the Second No., etc., to be any which we please.

In this way we might write down the following asser

tion, which we should find to be always true :

(First No. -f Second No.) X (First No. Second No.)

= First No. X First No. Second No. X Second No.

When any sentence expresses that two numbers or

collections of numbers are equal to one another, it is

called an equation* thus 7-f- 5 = 12 is an equation, and

the sentences written just above are equations.

Now the next question is, could we not avoid the

trouble of writing First No., Second No., etc., so fre

quently? This is done by putting letters of the alpha

bet to stand for these numbers. Suppose, e. g., we

let x stand for the first number, and y for the second,

the two assertions already made will then be written :

i

x y x~~~

(* +} ) X (x } }
= x X x yX y.

By the use of letters we are thus enabled to write

sentences which say something of all numbers, with a

* As now usually defined an equation always contains an unknown quan

tity. See also p. 91. Ed.
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very small part only of the time and trouble necessary

for writing the same thing at full length. We now

proceed to enumerate the various symbols which are

used.

1. The letters of the alphabet are used to stand

for numbers, and whenever a letter is used it means

either that any number may be used instead of that

letter, or that the number which the letter stands for

is not known, and that the letter supplies its place in

all the reasonings until it is known.

2. The sign -(- is used for addition, as in arithme

tic. Thus x -\- z is the sum of the numbers represented

by x and z. The following equations are sufficiently

evident :

*+J+ *==#4- *
+&amp;gt; =y -\-z-\-x.

If a= b, then a + c= b-\- c, a-\- c + d=b + c+ d,

etc.

3. The sign is used for subtraction, as in arith

metic. The following equations will show its use :

x -\- a b t-\- e= x-\- a-\- e b c

= a c -\- e b-\- x.

\{a= b
t
a c= b c, a c + d=b c -\- d, etc.

4. The sign X is used for multiplication as in

arithmetic, but when two numbers represented by let

ters are multiplied together it is useless, since aX b

can be represented by putting a and b together thus,

ab. Also a X b X c is represented by a be; aX#X a,

for the present we represent thus
;
a a a. When two

numbers are multiplied together, it is necessary to
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keep the sign X ;
otherwise 7 X 5 or 35 would be mis

taken for 75. It is, however, usual to place a point

between two numbers which are to be multiplied to

gether; thus 7x5x3 is written 7.5.3. But this

point may sometimes be mistaken for the decimal

point : this will, however, be avoided by always writ

ing the decimal point at the head of the figure, viz.,

by writing ^-f^fJ- thus, 234*61.

5. Division is written as in arithmetic : thus,
b

signifies that the number represented by a is to be di

vided by the number represented by b.

6. All collections of numbers are called expres

sions
; thus, a + b, a + b c, aa-\-bb d, are alge

braical expressions.

7. When two expressions are to be multiplied to

gether, it is indicated by placing them side by side,

and inclosing each of them in brackets. Thus, if

a -|- b -f c is to be multiplied by d-\- e -f/, the product

is written in any of the following ways :

.d+e+f,

8. That a is greater than b is written thus, 0&amp;gt;.

9. That a is less than b is written thus, a
&amp;lt;i

b.

10. When there is a product in which all the fac

tors are the same, such as xxxxx, which means that
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five equal numbers, each of which is represented by

x, are multiplied together, the letter is only written

once, and above it is written the number of times

which it occurs, thus xxxxx is written xb
. The fol

lowing table should be carefully studied by the stu

dent :

x X x or xx is written x2
,

and is called the square, or second power of x.

xX^X^orxxx is written x3
,

and is called the cube or third power of x.

xX* X* X* or xxxx is written x4
,

and is called the fourth power of x.

xXxXxXxXx or xxxxx is written x 5
,

and is called the fifth power of x,

etc., etc., etc.

There is no point which is so likely to create con

fusion in the ideas of a beginner as the likeness be

tween such expressions as 4x and x4
. On this account

it would be better for him to omit using the latter ex

pression, and to put x xx x in its place until he has

acquired some little facility in the operations of alge

bra. If he does not pursue this course, he must re

collect that the 4, in these two expressions, has differ

ent names and meanings. In 4x it is called a coeffi

cient, in x^ an exponent or index.

The difference of meaning will be apparent from

the following tables :
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2x= x -f- x x^= xy(x= xx

3 x= x -\-x-\-x x*=x X x X x or xxx

4x= x-\-x Jr x-\-x, x^=x^xy^x^x or

etc., etc.

If #= 3 2x= 6 # = 9,

. Zx= 9 *3
:=27,

The beginner should frequently a//-//* for himself

such expressions as the following :

kcfifi^aaabb-^-aaabb-^aaabb-^aaabb.

-{- aaaax-}-aaaax-\-aaaax-\-aaaax.

#2
-}-^

2 a a -j- b b a a b b

9 Z.9 L 7 Z. L I

a a b b

aa c c bb -\- cc

aa bb aa bb

aaa bbb aa-\- ab -\- bb

a2 bi
~

a a bb a^- b

With many such expressions every book on algebra

will furnish him, and he should then satisfy himself

of their truth by putting some numbers at pleasure

instead of the letters, and making the results agree

with one another. Thus, to try the expression

or, which is the same,

aaa bbb
bb.

a b

Let a stand for 6 and b stand for 4, then, if this ex

pression be true,



62 ON THE STUDY OF MATHEMATICS.

6.6 6 4.4.4

6_ 4
-=6.6 + 6.4 + 4.4,

which is correct, since each of these expressions is

found, by calculation, to be 76.

The student should then exercise himself in the

solution of such questions as the following : What is

9
I 19 a b a

a?-\-P + - -
a,

a + b a o

I. when a stands for 6, and b for 5, II. when a stands

for 13, and b for 2, and so on. He should stop here

until he has, by these means, made the signs familiar

to his eye and their meaning to his mind
;
nor should

he proceed to any further algebraical operations until

he can readily find the value of any algebraical ex

pression when he knows the numbers which the letters

stand for. He cannot, at this period of his course,

write too many algebraical expressions, and he must

particularly avoid slurring over the sense of what he

has before him, and must write and rewrite each ex

pression until the meaning of the several parts forces

itself upon his memory at first sight, without even

the necessity of putting it in words. It is the neglect

ing to do this which renders the operations of algebra

so tedious to the beginner. He usually proceeds to

the addition, subtraction, etc., of symbols, of the

meaning of which he has but an imperfect idea, and

which have been newly introduced to him in such

numbers that perpetual confusion is the consequence.

We cannot, therefore, use too many arguments to in-
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duce him not to mind the drudgery of reducing alge

braical expressions into figures. This is the connect

ing link between the new science and arithmetic, and,

unless that link be well fastened, the knowledge which

he has previously acquired in arithmetic will help him

but little in acquiring algebra.

The order of the terms of any algebraical expres

sion may be changed without changing the value of

that expression. This needs no proof, and the follow

ing are examples of the change :

a -\- b -\- a b -\- c -\- ac d e de f=.

a d+b e -\-ab-de+cf+ac=
a -f b d e de f-\- ac -f- c -f- a /&amp;gt;

=
ab -j- a c de-\- a-\- b -\- c e f d.

When the first term changes its place, as in the fourth

of these expressions, the sign -f- is put before it, and

should, properly speaking, be written wherever there

is no sign, to indicate that the term in question in

creases the result of the rest, but it is usually omitted.

The negative sign is often written before the first

term, as in the expression a-\-b: but it must be re

collected that this is written on the supposition that

a is subtracted from what comes after it.

When an expression is written in brackets, with

some sign before it, such as a (b c), it is under

stood that the expression in brackets is to be consid

ered as one quantity, and that its result or total is to

be connected with the rest by the sign which precedes

the brackets. In this example it is the difference of b
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and c which is to be subtracted from a. If a= 12,

b= $
y and &amp;lt;r

= 4, this is 10. In the expression a b

made by subtracting b from a, too much has been sub

tracted by the quantity c, since it is not b, but b c,

which must be subtracted from a. In order, therefore,

to make a (b
&amp;lt;:),

c must be added to a b, which

gives a b-\-c. Therefore, a (b c~)
= a b-\-c.

Similarly

a + b (c +de f^= a-^b-c d+ e+f,

ax2 b x -\- c dx*1 -f- e x f.

When the positive sign is written before an ex

pression in brackets, the brackets may be omitted

altogether, unless they serve to show that the expres

sion in question is multiplied by some other. Thus,

instead of (0-f b -\- c} -f- (d-\- &amp;lt;?+/),
we may write

a -j- b -f- c -f d-\- e -\-f, which is, in fact, only saying

that two wholes may be added together by adding to

gether all the parts of which they are composed. But

the expression a -f ( -f- ^) (d-\- e) must not be written

thus: a-\- b -{- r(X-f-&amp;lt;?),
since the first expresses that

(/-}- c) must be multiplied by (//+ e) and the product

added to a, and the second that c must be multiplied

by (X~h&amp;lt;0
and the product added to a-\- b. If a, b, c,

d, and e, stand for 1, 2, 3, 4, and 5, the first is 46 and

the second 30.

When two or more quantities have exactly the

same letters repeated the same number of times, such

as 4#2 ^3
,
and 6a?fl, they may be reduced into one by
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merely adding the coefficients and retaining the same

letters. Thus, 2a-\- 3a is 5#, bc \bc is 2r,
3 (x+y) -f 2(#+.y) is 5 0+7). These things are

evident, but beginners are very liable to carry this

farther than they ought, and to attempt to reduce ex

pressions which do not admit of reduction. For ex

ample, they will say that 3/; -f ft is 4^ or 4 2
, neither

of which is true, except when b stands for 1. The ex

pression 3^-}-^
2

,
or ^b^-bb, cannot be made more

simple until we know what b stands for. The follow

ing table will, perhaps, be of service :

s8 2 is not 9a 5 ^ 5

4#2
is not 2 a

is not %&amp;gt;ab.

Such are the mistakes which beginners almost uni

versally make, mostly for want of a moment s consid

eration. They attempt to reduce quantities which

cannot be reduced, which they do by adding the ex

ponents of letters as well as their coefficients, or by

collecting several terms into one, and leaving out the

signs of addition and subtraction. The beginner can

not too often repeat to himself that two terms can

never be made into one, unless both have the same

letters, each letter being repeated the same number

of times in both, that is, having the same index in

both. When this is the case, the expressions may be

reduced by adding or subtracting the coefficients ac

cording to the sign, and affixing the common letters

with their indices. When there is no coefficient, as
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in the expression a2
b, the quantity represented bya2 ^

being only taken once, 1 is called the coefficient.

Thus,
ab-\-ab ab 1 ab=

-j- 3 xy^ 5 xy* -j- xy*=
The student must also recollect that he is not at lib

erty to change an index from one letter to another, as

by so doing he changes the quantity represented.

Thus cfib and ab^ are quantities totally distinct, the

first representing aaaab and the second abbbb. The

difference in all the cases which we have mentioned

will be made more clear, by placing numbers at pleas

ure instead of letters in the expressions, and calculat

ing their values
; but, in conclusion, the following re

mark must be attended to. If it were asserted that the

(P + P. 2ab
expression is the same as a -4- b = -.

,
and

a-\- b 2a b

we wish to proceed to see whether this is always the

case or no, if we commence accidentally by supposing

b to stand for 2 and a for 4, we shall find that the first

is the same as the second, each being 3i. But we

must not conclude from this that they are always the

same, at least until we have tried whether they are so,

when other numbers are substituted for a and b. If

we place 6 and 8 instead of a and b, we shall find that

the two expressions are not equal, and therefore we

must conclude that they are not always the same.

Thus in the expressions 3x 4 and 2^ + 8, if x stand

for 12, these are the same, but if it stands for any

other number they are not the same.



CHAPTER VII.

ELEMENTARY RULES OF ALGEBRA.

THE
student should be very well acquainted with

the principles and notation hitherto laid down

before he proceeds to the algebraical rules for addi

tion and subtraction. He should then take some sim

ple examples of each, and proceed to find the sum

and difference by reasoning as follows. Suppose it is

required to add c d to a b. The direction to do

this may either be written in the common way thus :

a b

c d

Add&quot;

or more properly thus : Find (a ) -f (c ^).

If we add c to a, or find a-}- c, we have too much
;

first, because it is not a which is to be increased by

c d but a b -

y this quantity must therefore be de

creased by b on this account, or must become a-\- c b
;

but this is still too great, because it is not c which was

to be added but c d\ it must therefore be decreased

by d on this account, or must become a -j- c b d or
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a b -j- c d. From a few reasonings of this sort the

rule may be deduced
; and not till then should an ex

ample be chosen so complicated as to make the stu

dent lose sight for one moment of his demonstration.

The process of subtraction we have already performed.

and from a few examples of this method the rule may
be deduced.

The multiplication of a by c d is performed thus :

a is to be taken c d times. Take it first c times or

find ac. This is too great, because a has been taken

too many times by d. From ac we must therefore

subtract d times a, or ad, and the result is that

a(c d}= ac ad.

This may be verified from arithmetic, in which the

same process is shown to be correct
;
and this whether

the numbers a, c, and d are whole or fractional. For

example, it will be found that 6(14 9) or 6x5 is

the same as 6 X 14 6 X 9, or as 84 54. Also that

f(t T\)&amp;gt;
r *X Tt* is the same as f X* f XA,

or as ^
2
T \. Upon similar reasoning the following

equations may be proved :

a(b -\- c d}= ab -f- ac ad.

&r)xz=.pxz -\-pqxz arxz.

or aa

Also when a multiplication has been performed, the

process may be reversed and the factors of it may be

given. Thus, on observing the expression
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ab ac -\-
2

,

or ab ac-\-aa,

we see that in its formation every term has been mul

tiplied by a
;
that is, it has been made by multiplying

b c -\- a by a,

or a by b c -f- a.

There will now be no difficulty in perceiving that

a c -f a d -f b c -f b d= a (c -f- d) -f b (c -f d)
=

&amp;lt;/&amp;lt;:-)-
3 &amp;lt;z
=

It is proved in arithmetic that if numbers, whether

whole or fractional, are multiplied together, the pro

duct remains the same when the order in which they

are multiplied is changed. Thus 6x4x3= 3x6x4=
4x6x3, etc.

,
and f X f= * X |, etc. Also, that a

part of the multiplication may be made, and the par

tial product substituted instead of the factors which

produced it, thus, 3x4X^X6 is 12x5x6, or 15x4x6,
or 90x4. From these rules two complicated single

terms may be multiplied together, and the product

represented in the most simple manner which the case

admits of. Thus if it be required to multiply

603 ^4
r, which is baaabbbbc

by 12 a2 b* c* d, which is \2aabbbcccd,

the product is written thus :

aaabbbbc \2aabbbcccd,
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which multiplication may be performed in the follow

ing order

y\2aaaaabbbbbbbccccd,

which is represented by 72 a5 b 1
&amp;lt;r

4
d. A few examples

of this sort will establish the rule for the multiplica

tion of such quantities which is usually given in the

treatises on Algebra.

It is to be recollected that in every algebraical

formula which is true of all numbers, any algebraical

expression may be substituted for one of the letters,

provided care is taken to make the substitution wher

ever that letter occurs. Thus from the formula :

we may deduce the following by making substitutions

for a. If this formula be always true, it is true when

a is equal to p-\-g, that is, it is true if p-\- q be put

instead of a wherever that letter occurs in the form

ula. Therefore,

Similarly, (b + /)
2 P= (2 + m}m,

= 4:xy, and so on.

We have already established the formula,

(/ q}a= ap aq.

Instead of a let us put r j, and this formula be

comes



ELEMENTARY RULES OF ALGEBRA. 71

But

(r s)p=prps, and (r s)q= qr.g,

Therefore

(P f)(T J)=/&amp;gt;- ps (qr qs}

By reasoning in the same way we may prove that

(/ 4)(r + *)=pr+ps qr qs

A few examples of this sort will establish what is

called the rule of signs in multiplication; viz., that a

term of the multiplicand multiplied by a term of the

multiplier has the sign -f- before it if the terms have

the same sign, and if they have different signs.

But here the student must avoid using an incorrect

mode of expression, which is very common, viz., the

saying that -f- multiplied by -f- gives -f; multiplied

by -)- gives ;
and so on. He must recollect that

the signs -)- and are not quantities, but directions

to add and subtract, and that, as has been well said

by one of the most luminous writers on algebra in our

language, we might as well say, that take away multi

plied by take away gives add, as that multiplied by

gives +.*

The only way in which the student should accus

tom himself to state this rule is the following : &quot;In

*Frend, Principles of Algebra. The author of this treatise is far from

agreeing with the work which he has quoted in the rejection of the isolated

negative sign which prevails throughout it, but fully concurs in what is there

said of the methods then in use for explaining the difficulties of the negative

sign.
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multiplying two algebraical expressions, multiply each

term of the one by each term of the other, and wher

ever two terms are preceded by the same sign put -f-

before the product of the two
;
when the signs are

different put the sign before their product.&quot;

If the student should meet with an equation in

which positive and negative signs stand by them

selves, such as

let him, for the present, reject the example in which

it occurs, and defer the consideration of such equa

tions until he has read the explanation of them to

which we shall soon come. Above all, he must reject

the definition still sometimes given of the quantity

a, that it is less than nothing. It is astonishing that

the human intellect should ever have tolerated such

an absurdity as the idea of a quantity less than noth

ing;* above all, that the notion should have outlived

the belief in judicial astrology and the existence of

witches, either of which is ten thousand times more

possible.

These remarks do not apply to such an expression

as b -f- a, which we sometimes write instead of a b,

as long as it is recollected that the one is merely used

to stand for the other, and for the present a must be

considered as greater than b.

*For a full critical and historical discussion of this point, see Duhamel.

Des mtthodes dans les sciences de raisonnement, 2me partie, chap. XIX. (third

edition, Paris, Gauthier-Villars, 1896). Editor.
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In writing algebraical expressions, we have seen

that various arrangements may be adopted. Thus

ax* bxA^ c may be written as c-^-ax* bx, or bx

-\-c-\-a x-. Of these three the first is generally chosen,

because the highest power of x is written first
;
the

highest but one comes next; and last of all the term

which contains no power of x. When written in this

way the expression is said to be arranged in descend

ing powers of x; had it been written thus, c bx -\- ax2
,

it would have been arranged in ascending powers of

x; in either case it is said to be arranged in powers

of x, which is called the principal letter. It is usual

to arrange all expressions which occur in the same

question in powers of the same letter, and practice

must dictate the most convenient arrangement. Time

and trouble is saved by this operation, as will be evi

dent from multiplying two unarranged expressions to

gether, and afterwards doing the same with the same

expressions properly arranged.

In multiplying two arranged expressions together,

while collecting such terms into one as will admit of

it, it will always be evident that the first and last of

all the products contain powers of the principal letter

which are found in no other part, and stand in the

product unaltered by combination with any other

terms, while in the intermediate products there are

often two or more which contain the same power of

the principal letter, and can be reduced into one.

This will be evident in the following examples :
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td

v
&amp;lt;\

4

g
c

td
*

.&quot;0*5*. ^
0,

^ 0- .
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the term in which there is no power of x, is made by

multiplying the last terms in each factor. These be

ing the highest and lowest, there can be no other such

power, consequently neither of these terms can co

alesce with any other, as is the case in the intermedi

ate products. This remark will be of most convenient

application in division, to which we now come.

Division is in all respects the reverse of multipli

cation. In dividing a by b we find the answer to this

question : If a be divided into b equal parts, what is

the magnitude of each of those parts? The quotient

is, from the definition of a fraction, the same as the

fraction -, and all that remains is to see whether that
b

fraction can be represented by a simple algebraical

expression without fractions or not; just as in arith

metic the division of 200 by 26 is the reduction of the

fraction 2. to a whole number, if possible. But we

must here observe that a distinction must be drawn

between algebraical and arithmetical fractions. For

example, is an algebraical fraction, that is, there

is no expression without fractions which is always

equal to . But it does not follow from this that
a b

a + b
the number which - - represents is always an arith-

a o

metical fraction
;
the contrary may be shown. Let a

stand for 12, and b for 6, then ^--
J is 3. Again,

a b

a*-{-ab is a quantity which does not contain algebrai

cal fractions, but it by no means follows that it may
not represent an arithmetical fraction. To show that
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it may, let a= % and 6 2, then a2
-\-afr= li or J.

Other examples will clear up this point if any doubt

yet exist in the mind of the student. Nevertheless,

the following propositions of arithmetic and algebra,

which only differ in this, that &quot;whole number&quot; in the

arithmetical proposition is replaced by &quot;simple ex

pression&quot;* in the algebraical one, connect the two

subjects and render those demonstrations which are

in arithmetic confined to whole numbers, equally true

in algebra as far as regards simple expressions :

The sum, difference, or pro
duct of two whole numbers, is a

whole number.

One number is said to be a

measure of another when the

quotient of the two is a whole

number.

The greatest common meas

ure of two whole numbers is the

greatest whole number which

measures both, and is the pro
duct of all the prime numbers

which will measure both.

When one number measures

two others, it measures their

sum, difference, and product.

In the division of one number

by another, the remainder is

measured by any number which

measures the dividend and di

visor.

The sum, difference, or pro
duct of two simple expressions

is a simple expression.

One expression is said to be a

measure of another when the

quotient of the two is a simple

expression

The greatest common meas

ure of two expressions is the

common measure which has the

highest exponents and coeffi

cients, and is the product of all

prime simple expressions which

measure both.

When one expression meas

ures two others, it measures

their sum, difference, and pro
duct.

In the division of one expres

sion by another, the remainder

is measured by any expression

which measures the dividend

and divisor.

*By a simple expression is meant one which does not contain the princi

pal letter in the denominator of any fraction.
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A fraction is not altered by A fractional expression is not

multiplying or dividing both its altered by multiplying or divid-

numerator and denominator by ing both its numerator and de-

the same quantity. nominator by the same expres
sion.

In the term simple expression are included those

quantities which contain arithmetical fractions, pro

vided there is no algebraical quantity, or quantity rep

resented by letters in the denominator; thus a -f J

is called a simple expression. We now proceed to

the division of one simple expression by another, and

we will take first the case where neither quantity con

tains more than one term. For example, what is

42 fl
4 ft c divided by 6 a2 b t? that is, what quantity must

be multiplied by cPbc, in order to produce 42 #4 b* c.

This last expression written at length, is Z a a a abb be,

and 42 is GX?. We can then separate this expression

into the product of two others, one of which shall be

bcPbc, or aabc\ it will then be Saab &amp;lt;: X ? a abb,

and it is 7 aabb which must be multiplied by aabc

in order to produce 42 cfib* c. A few examples worked

in this way, will lead the student to the rule usually

given in all cases but one, to which we now come.

We have represented cc, ccc, cccc, etc., by c1
, &amp;lt;:*, c*,

etc., and have called them the second, third, fourth,

etc., powers of c. The extension of this rule would

lead us to represent c by r1
,
and call it the first power

of c. Again, we have represented c-\-c, c -\-c-\-c,

c -j- c -\- c -j- c, etc. by 2c, 3r, 4&amp;lt;r,
and have called 2, 3,

4, etc., the coefficients of c. The extension of this
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rule would lead us to write c thus, Ir, or, rather, if we

attend to the last remark, I*:
1

. This instance leads us

to observe the gradual progress of our language. We
begin with the quantity c by itself

;
we proceed in our

course, shortening by new signs the more complicated

combinations of c, and the original quantity c forces

itself anew upon our attention as a part of the series,

c, 2&amp;lt;r, 3&amp;lt;r, 4c, etc., and c, c2
,

r3
, c*, etc.,

in each of which, except the first, there is a distinct

figure, which is called a coefficient or exponent, ac

cording to its situation. We then deduce rules in

which the terms coefficient or exponent occur, but

which, of course, cannot apply to the first term in

each series, because, as yet, it has neither coefficient

nor exponent. Among such rules are the following :

I. To add two terms of the first series, add the co

efficients, and affix to the sum the letter c. Thus

4^-j- 3c= 7c. II. To multiply two terms of the sec

ond series, add the exponents, and make this sum the

exponent of c. Thus &amp;lt;;

4 X^3= ^7
- III. To divide a term

of the second series by one which comes before it, sub

tract the exponent of the divisor from the exponent

of the dividend, and make this difference the exponent

of c. Thus,

These rules are intelligible for all terms of the

series except the first, to which, nevertheless, they

will apply if we agree that lc l shall represent c, as

will be evident by applying either of them to find
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r4

&amp;lt;r

4
X^, or -

. We therefore agree that U 1 shall

stand for
&amp;lt;r,

and although c is not written thus, it must

be remembered that c is to be considered as having

the coefficient 1 and the exponent 1, which is an

amendment and enlargement of our algebraical lan

guage, derived from experience. It may be said that

this is all superfluous, because, if c* stand for cc, and

c* for ccc, what can c 1 stand for but r? But it must

be recollected that, since the symbol c 1 has not yet re

ceived a meaning, we are at liberty to make it stand

for anything which we please, for example, for -
,

or c c1
,
or any other. If we did this, there would,

indeed, be a great violation of analogy, that is, what

c 1 stands for would not be as like that which c1 has

been made to stand for, as the meaning of &amp;lt;r

3 is to

that of &amp;lt;r

4
; but, nevertheless, we should not be led to

any incorrect results as long as we remembered to

make c 1

always stand for the same thing. These re

marks are here introduced in order to show the man

ner in which analogy is followed in extending the lan

guage of algebra, and to prove that, after a certain

period, we may rather be said to discover new symbols

than to make them. The immense importance of this

branch of the subject makes it necessary that it should

be fully and early understood by all who intend to

pursue their mathematical studies to any depth. To

illustrate it still further, we subjoin another instance,

which has not been noticed in its proper place.
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The signs -|- and were first used to connect one

quantity with others, and to show what arithmetical

operations were performed on other quantities by

means of the first. But the first quantity on which

we begin the operation is not preceded by any sign,

not being considered as added to or subtracted from

any previous one. Rules were afterwards deduced for

the addition and subtraction of the total result of sev

eral expressions in which these signs occur, as follows :

To add two expressions, form a third, which has

all the quantities in the first two, with the same signs.

To subtract one expression from another, change

the sign of each term of the subtrahend, and proceed

as in the last rule.

The only terms in which these rules do not apply

are those which have no sign, viz., the first of each.

But they will apply to those terms, and will produce

correct results, if we place the sign -j- before each of

them. We are thus led to see that an algebraical

term which has no sign is equivalent in all operations

to one which is preceded by the sign -(-. We, there

fore, consider this sign as prefixed, though it is not

always written, and thus we are furnished with a

method of containing under one rule that which would

otherwise require two.

From these considerations the following appears

to be the best and most natural course of proceeding

in the invention of additional symbols. When a rule

has been discovered which is not quite general, and
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which only fails in its application to a few instances,

annex such additional symbols to those already in use,

or change and modify these so as to make the rule

applicable in all cases, provided always this can be

done without making the same symbol stand for two

different things, and without any violation of analogy.

If the rule itself, by its application to any case, should

produce a new symbol hitherto unexplained, it is a

sign that the rule has been applied to a case which

was never intended to fall under it when it was made.

For the solution of this case we must have recourse

to first principles, but when, by these means, the re

sult has been found, it will be best to agree that the

new symbol furnished by the rule shall stand for the

result furnished by the principle, by which means the

generality of the rule will be attained and the analogy

of language will not be injured. Of this the following

is a remarkable instance :

To divide &amp;lt;r

8
by r5 the rule tells us to subtract 5

from 8, and make the result the exponent of c, which

gives the quotient &amp;lt;r

3
. If we apply the same rule to di

vide r6 by &amp;lt;r

6
, since 6 subtracted from 6 leaves 0, the

result is
&amp;lt;r,

a new symbol, to which we have attached

no meaning. The fact is that the rule was formed

from observation of different powers of c, and was

never intended to apply to the division of a power of

c by the same power. If we apply the common prin

ciples to the division of &amp;lt;:

6
by &amp;lt;r

6
,
the result is 1. We,

therefore, agree that &amp;lt;r shall stand for 1, and the least
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inspection will show that this agreement does not af

fect the truth of any result derived from the rule. If,

in the solution of any problem, the symbol &amp;lt;: should

appear, we must consider it is a sign that we have, in

the course of the investigation, divided a power of c

by itself by the common rule, without remarking that

the quotient is 1. We must, therefore, replace CQ by

1, but it is entirely indifferent at what stage of the

process this is done.

Several extensions might be noticed, which are

made almost intuitively, to which these observations

will apply. Such, for example, is the multiplication

and division of any number by 1, which is not con

templated in the definition of these operations. Such

is also the continual use of as a quantity, the addi

tion and subtraction of it from other quantities, and

the multiplication of it by others, neither of which

were contemplated when these operations were first

thought of.

We now proceed to the principles on which more

complicated divisions are performed. The question

proposed in division, and the manner of answering it,

may be explained in the following manner. Let A be

an expression which is to be divided by H, and let Q
be the quotient of the two. By the meaning of divi

sion, if there be no remainder A = QH, since the quo

tient is the expression which must multiply the di

visor, in order to produce the dividend. Now let the



ELEMENTARY RULES OF ALGEBRA. 83

quotient be made up of different terms, a, b, c, etc.,

let it be a-\-b c-\-d. That is, let

A = QH (1)

Q=a+b c + d. (2)

By putting, instead of Q in (1), that which is equal

to it in (2), we find

A = (a + b c + d)ff=aff+bffcir+dH (3)

Now suppose that we can by any method find the

term a of the quotient, that is, that we can by trial or

otherwise find one term of the quotient. In (3), when

the term a is found, since H is known, the term aH
is found. Now if two quantities are equal, and from

them we subtract the same quantity, the remainders

will be equal. Subtract aH irom the equal quantities

A and aH+ bHcH+ dH, and we shall find

A aH= bH cH+ dH= (b c + d^H. (4)

If, then, we multiply the term of the quotient found

by the divisor, and subtract the product from the divi

dend, and call the remainder B; then

B=(b c + d}H. (5)

That is, if B be made a dividend, and H still continue

the divisor, the quotient is b c -\- d, or all the first

quotient, except the part of it which we have found.

We then proceed in the same manner with this new

dividend, that is, we find b and also bH, and subtract

it from B, and let B ^Zfbe represented by C, which

gives by the process which has just been explained

C=( c + d)H=cH+dH. (6)

We now come to a negative term of the quotient.
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Let us suppose that we have found c, and that its sign

in the quotient is . If two quantities are equal, and

we add the same quantity to both, the sums are equal.

Let us therefore add cH to both the equal quantities

in (6), and the equation will become

C+cH=dff; (7)

or if we denote C-\- cH by D, this is

There is only one term of the quotient remaining, and

if that can be found the process is finished. But as

we cannot know when we have come to the last term,

we must continue the same process, that is, subtract

dH from D, in doing which we shall find that dH is

equal to D, or that the remainder is nothing. This

indicates that the quotient is now exhausted and that

the process is finished.

We will now apply this to an example in which

the quotient is of the same form as that in the last

process, namely, consisting of four terms, the third of

which has the negative sign. This is the division of

A?
4

jy
4 3 x1

y* -f- x*y -f 2 xy* by x y.

Arrange the first quantity in descending powers of x

which will make it stand thus :

One term of the quotient can be found immediately,

for since it has been shown that the term containing

the highest power of x in a product is made up of

nothing but the product of the terms containing the

highest powers of x which occur in the multiplier and
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multiplicand, and considering that the expression (A)

is the product of x y and the quotient, we shall re

cover the highest power of x in the quotient by divid

ing x*, the highest power of x in (A), by x, its highest

power in x y. This division gives x3 as the first

term of the quotient. The following is the common

process, and with each line is put the corresponding

step of the process above explained, of which this is

an example :
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The second and following terms of the quotient

are determined in exactly the same manner as the

first. In fact, this process is not the finding of a quo

tient directly from the divisor and dividend, but one

term is first found, and by means of that term another

dividend is obtained, which only differs from the first

in having one term less in the quotient, viz., that

which was first found. From this second dividend

one term of its quotient is found, and so on until we

obtain a dividend whose quotient has only one term,

the finding of which finishes the process. It is usual

also to neglect all the terms of the first dividend,

except those which are immediately wanted, taking

down the others one by one as they become necessary.

This is a very good method in practice but should be

avoided in explaining the principle, since the first

subtraction is made from the whole dividend, though

the operation may only affect the form of some part

of it.

If the student will now read attentively what has

been said on the greatest common measure of two

numbers, and then examine the connexion of whole

numbers in arithmetic and simple expressions in alge

bra with which we commenced the subject of division,

he will see that the greatest algebraical common meas

ure of two expressions may be found in exactly the

same manner as the same operation is performed in

arithmetic. He must also recollect that the greatest

common measure of two expressions A and B is not
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altered by multiplying or dividing either of them, A,

for example, by any quantity, provided that quantity

has no measure in common with B. For example,

the greatest common measure of a 1 x2 and bo? bx*

is the same with that of 2 a2 2x2 and aB x3
,
since

though a new measure is now introduced into the first

and taken away from the second, nothing is introduced

or taken away which is common to both. The same

observation applies to arithmetic also. For example,

take the numbers 162 and 180. We may, without

altering their greatest common measure, multiply the

first by 7 and the second by 11, etc. The rule for

finding the greatest common measure should be prac

tised with great attention by all who intend to proceed

beyond the usual stage in algebra. To others it is not

of the same importance, as the necessity for it never

occurs in the lower branches of the science.

In proceeding to the subject of fractions, it must

be observed that, in the same manner as in arithmetic,

when there is a remainder which cannot be further

divided by the divisor, that is, where the dividend is

so reduced that no simple term multiplied by the first

term of the divisor will give the first term of the re

mainder, as in the case where the divisor is a*x-\-bx
2

and the remainder ax-{-b; in this case a fraction

must be added to the quotient, whose numerator is

this remainder, and whose denominator is the divisor.

Thus, in dividing a* -\- b* by a-\-&, the quotient is

tf
1 ^3

,
and the remainder 2 ^4

, whence
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2 b^

The arithmetical rules for the addition, etc., of frac

tions hold equally good when the numerators and de-
3 1

nominators are themselves fractions. Thus -f and -|

f I
are added, etc., exactly in the same way as f and f,

the sum of the second being

7x2+5x3
5X7

and that of the first

*-X|
The rules for the addition, etc., of algebraic fractions

are exactly the same as in arithmetic
;
for both the

numerator and denominator of every algebraic frac

tion stands either for a whole number or a fraction,

and therefore the fraction itself is either of the same

form as
-| or-J. Nevertheless the student should at-

i&amp;gt;

tend to some examples of each operation upon alge

braic fractions, by way of practice in the previous

operations. As the subject is not one which presents

any peculiar difficulties, we shall now pass on to the

subject of equations, concluding this article with a

list of formulas which it is highly desirable that the

student should commit to memory before proceeding

to any other part of the subject.

-K-~*)=fci (i)

) (a b}=2b (2)

(a b}
= b (3)
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CHAPTER VIII.

EQUATIONS OF THE FIRST DEGREE.

TT 7E have already defined an equation, and have

* come to many equations of different sorts. But

all of them had this character, that they did not de

pend upon the particular number which any letter

stood for, but were equally true, whatever numbers

might be put in place of the letters. For example, in

the equation

the truth of the assertion made in this algebraical sen

tence is the same, whether a be considered as repre

senting 1, 2, 2J, etc., or any other number or fraction

whatever. The second side of this equation is, in

fact, the result of the operation pointed out on the

first side. On the first side you are directed to divide

a2 1 by a-\- 1
;
the second side shows you the result

of that division. An equation of this description is

called an identical equation, because, in fact, its two

sides are but different ways of writing down the same
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number. This will be more clearly seen in the iden

tical equations

a-\- a= 2a, 7a 30 -j- b= a 3 -f 4, and ^- X ^= a.
b

The whole of the formulae at the end of the last

article are examples of identical equations. There is

not one of them which is not true for all values which

can be given to the letters which enter into them, pro

vided only that whatever a letter stands for in one

part of an equation, it stands for the same in all the

other parts.

If we take, now, such an equation as -(- 1 =8, we

have an equation which is no longer true for every

value which can be given to its algebraic quantities.

It is evident that the only number which a can repre

sent consistently with this equation is 7, as any other

supposition involves absurdity. This is a new spe

cies of equation, which can only exist in some partic

ular case, which particular case can be found from

the equation itself. The solution of every problem

leads to such an equation, as will be shown hereafter,

and, in the elements of algebra, this latter species of

equation is of most importance. In order to distin

guish them from identical equations, they are called

equations of condition, because they cannot be true when

the letters contained in them stand for any number

whatever, and their very existence makes a condition

which the letters contained must fulfil. The solution

of an equation of condition is the process of finding
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what number the letter must stand for in order that

the equation may be true. Every such solution is a

process of reasoning, which, setting out with suppos

ing the truth of the equation, proceeds by self-evident

steps, making use of the common rules of arithmetic

and algebra. We shall return to the subject of the

solution of equations of condition, after showing, in a

few instances, how we come to them in the solution

of problems. In equations of condition, the quantity

whose value is determined by the equation is usually

represented by one of the last letters of the alphabet,

and all others by some of the first. This distinction

is necessary only for the beginner ;
in time he must

learn to drop it, and consider any letter as standing

for a quantity known or unknown, according to the

conditions of the problem.

In reducing problems to algebraical equations no

.general rule can be given. The problem is some prop

erty of a number expressed in words by which that

number is to be found, and this property must be

written down as an equation in the most convenient

way. As examples of this, the reduction of the fol

lowing problems into equations is given :

I. What number is that to which, if 56 be added,

the result will be 200 diminished by twice that num

ber?

Let x stand for the number which is to be found.

Then x-\- 56= 200 2jc.

If, instead of 56, 200, and 2, any other given num-
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bers, &amp;lt;7, b, and c, are made use of in the same man

ner, the equation which determines x is

x -\- a= b ex.

II. Two couriers set out from the same place, the

second of whom goes three miles an hour, and the

first two. The first has been gone four hours, when

the second is sent after him. How long will it be be

fore he overtakes him ?

Let x be the number of hours which the second

must travel to overtake the first. At the time when

this event takes place, the first has been gone #-j-4

hours, and will have travelled (^-f 4)2, or 2x-\-8

miles. The second has been gone x hours, and will

have travelled 3x miles. And, when the second over

takes the first, they have travelled exactly the same

distance, and, therefore,

3*=2*+ 8.

If, instead of these numbers, the first goes a miles

an hour, the second b, and c hours elapse before the

second is sent after the first,

b x= ax -j- ac.

Four men, A, B, C, and D, built a ship which

cost ;2607, of which B paid twice as much as A, C

paid as much as A and B, and D as much as C and

B. What did each pay?

Suppose that A paid x pounds,

then B paid 2^- ...

C paid x -f 2 x or 3 x . . .

D paid 2x + 3x or 5# . . .
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All together paid x-\-2x + 3x + 5x, or 11 *, there

fore

There are two cocks, from the first of which a cis

tern is filled in 12 hours, and the second in 15. How

long would they be in filling it if both were opened

together?

Let x be the number of hours which would elapse

before it was filled. Then, since the first cock fills

the cistern in 12 hours, in one hour it fills T̂ of it, in

two hours T
2
^, etc., and in x hours y^. Similarly, in

x hours, the second cock fills T̂ of the cistern. When
the two have exactly filled the cistern, the sum of

these fractions must represent a whole or 1, and,

therefore,

- + --1
12
+

15&quot;

If the times in which the two can fill the cistern are a

and b hours, the equation becomes

A person bought 8 yards of cloth for & 2s., giving

9s. a yard for some of it and 7j. a yard for the rest
;

how much of each sort did he buy?

Let x be the number of yards at Is. Then 1 x is

the number of shillings they cost. Also 8 x is the

number of yards at 9s.
,
and (8 x&quot;)g,

or 72 9#, is

the number of shillings they cost. And the sum of
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these, or 7 x + 72 9jr, is the whole price, which is

^3 2.$-., or 62 shillings, and, therefore,

7*4-72 9#= 62.

These examples will be sufficient to show the

method of reducing a problem to an equation. As

suming a letter to stand for the unknown quantity, by

means of this letter the same quantity must be found

in two different forms, and these must be connected

by the sign of equality. However, the reduction into

equations of such problems as are usually given in the

treatises on algebra rarely occurs in the applications

of mathematics. The process is a useful exercise of

ingenuity, but no student need give a great deal of

time to it. Above all, let no one suppose, because he

finds himself unable to reduce to equations the conun

drums with which such books are usually filled, that,

therefore, he is not made for the study of mathemat

ics, and should give it up. His future progress de

pends in no degree upon the facility with which he

discovers the equations of problems ;
we mean as far

as power of comprehending the subsequent sciences

is concerned. He may never, perhaps, make any con

siderable step for himself, but, without doing this, he

may derive all the benefits which the study of mathe

matics can afford, and even apply them extensively.

There is nothing which discourages beginners more

than the difficulty of reducing problems to equations,

and yet, as respects its utility, if there be anything

in the elements which may be dispensed with, it is
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this. We do not wish to depreciate its utility as an

exercise for the mind, or to hinder all from attempt

ing to conquer the difficulties which present them

selves
;
but to remind every one that, if he can read

and understand all that is set before him, the essen

tial benefit derived from mathematical studies will be

gained, even though he should never make one step

for himself in the solution of any problem.

We return now to the solution of equations of con

dition. Of these there are various classes. Equations

of the first degree, commonly called simple equations,

are those which contain only the first power of the un

known quantity. Of this class are all the equations

to which we have hitherto come in the solution of

problems. The principle by which they are solved is,

that two equal quantities may be increased or dimin

ished, multiplied, or divided by any quantity, and the

results will be the same. In algebraical language,

if a b, a + c b-\-c, a c= b c, ac= bc, and

= . In every elementary book it is stated that

any quantity may be removed from one side of the

equation to the other, provided its sign be changed.

This is nothing but an application of the principle

just stated, as may be shown thus : Let a-\-b c= d
t

add c to both quantities, then

a-\-b c+ c= d-\- c or a-\-b

Again subtract b from both quantities, then a -f- b

c b= d b
t or a c= d b. Without always re-
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peating the principle, it is derived from observation,

that its effect is to remove quantities from one side of

an equation to another, changing their sign at the

same time. But the beginner should not use this rule

until he is perfectly familiar with the manner of using

the principle. He should, until he has mastered a

good many examples, continue the operation at full

length, instead of using the rule, which is an abridg

ment of it. In fact it would be better, and not more

prolix, to abandon the received phraseology, and in

the example just cited, instead of saying &quot;bring the

term b to the other side of the equation,&quot; to say &quot;sub

tract b from both sides,&quot; and instead of saying &quot;bring

c to the other side of the equation,&quot; to say
&quot; add c to

both sides.&quot;

Suppose we have the fractions f, ^, and -f. If we

multiply them all by the product of the denominators

4x7x1*4, or 392, all the products will be whole num-

TU -11 u 3x392 1X392 , 5x392
bers. They will be -^ , --^= ,

and
^-

,

and since 392 is measured by 4, 3 X 392 is also meas

ured by 4, and - - is a whole number, and so on.

But any common multiple of 4, 7, and 14 will serve

as well. The least common multiple will therefore be

the most convenient to use for this purpose. The

least common multiple of 4, 7, and 14 is 28, and if the

three fractions be multiplied by 28, the results will be

whole numbers. The same also applies to algebraic

fractions. Thus -
, ,

and -r-j-,, will become simple
b ae oaf
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expressions, if they are multiplied by b X deX bdf, or

tPd** ef. But the most simple common multiple of b,

de, and ^//, is bdefy
which should be used in pref

erence to lPd?ef.

This being premised, we can now reduce any equa
tion which contains fractions to one which does not.

For example, take the equation

x_
2* _ 7_ _

3 2*
3&quot; 5&quot;

:

~10~ 6

If we multiply both these equal quantities by any

other, the results will be equal. We choose, then,

the least quantity, which will convert all the fractions

into simple quantities, that is, the least common mul

tiple of the denominators 3, 5, 10, and 6, which is 30.

If we multiply both equal quantities by 30, the equa

tion becomes

30* 60*__210 30(3 2*)
IT ~5~

:

~HT
&quot;

~~6~~

30*. 30 60*. 60
But -= is X x&amp;gt;

or 10*, is -=- X x, or 12*, etc.;
o O 00

so that we have

10*-fl2*= 21 5(3 2*), (2)

or 10*+12*= 21 (15 10*), (3)

or 10*+ 12*r=21 15 + 10*. (4)

Beginners very commonly mistake this process, and

forget that the sign of subtraction, when it is written

before a fraction, implies that the whole result of

the fraction is to be subtracted from the rest. As

long as the denominator remains, there is no need to
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signify this by putting the numerator between brack

ets, but when the denominator is taken away, unless

this be done, the sign of subtraction belongs to the

first term of the numerator only, and not to the whole

expression. The way to avoid this mistake would be

to place in brackets the numerators of all fractions

which have the negative sign before them, and not to

remove those brackets until the operation of subtrac

tion has been performed, as is done in equation (4).

The following operations will afford exercise to the

student, sufficient, perhaps, to enable him to avoid

this error :

b c-\- d e af-\- b c -J- d e

~T~ ~T~

a -
f = f

a + b a + b

We can now proceed with the solution of the equa

tion. Taking up the equation (4) which we have de

duced from it, subtract 10* from both sides, which

gives 10# + 12* 10#= 21 15, or 12#= 6: divide
12 v 6

these equal quantities by 12, which gives ^- =^, or

A:= J. This is the only value which x can have so as

to make the given equation true, or, as it is called, to

satisfy the equation. If instead of x we substitute J,

we shall find that
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j 2XI = 7 3-2 X j fr
1 1 ^ _2

3 5 &quot;10 6 6 &quot;*&quot; 5
~~

10
~
T1

this we find to be true, since

I 1 U 7 2 _ 22
,1
n _ 22

6&quot;

&quot;&quot;

5
1S

30
S d

10
~~

IT
&quot;~

60
S d

30
~

60

In these equations of the first degree there is one un

known quantity and all the others are known. These

known quantities may be represented by letters, and,

as we have said, the first letters of the alphabet are

commonly used for that purpose. We will now take

an equation of exactly the same form as the last, put

ting letters in place of numbers :

_|_ ^ __ f^gJ?L~
l

c
~ ~

e

&quot;

h

The solution of this equation is as follows : multi

ply both quantities by aceh, the most simple multiple

of the denominators, it then becomes :

ace hoc abcehx acdeh aceh(f gx)
a ~7~ ~~e~ ~~JT

or, c ehx -\- ab ehx= acdh ace(f gx},

or, c ehx -f- abehx acdh acef-\- ac egx.

Subtract acegx from both sides, and it becomes

cehx-\-abehx ac egx= acdh acef,

or, (c e h -j- a b e h a c eg) x= acdh a c ef.

Divide both sides by ceh^abeh aceg, which gives

ac dh ac ef
1

^

ceh-\-abeh ac eg

The steps of the process in the second case are ex

actly the same as in the first
;
the same reasoning es-
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tablishes them both, and the same tfrfo.rs, aye to^be

avoided in each. If from this we wish to find the so

lution of the equation first given, we must substitute

3 for a, 2 for b, 5 for c, 7 for //, 10 for e, 3 for /, 2 for

g, and 6 for h, which gives for the value of x,

5X10X6 + 3X2X10X6 3X5X10X2
3X5X12 180

3X2X10 X 6 360

which is ^, the same as before.

If in one equation there are two unknown quanti

ties, the condition is not sufficient to fix the values of

the two quantities ;
it connects them, nevertheless, so

that if one can be found the other can be found also.

For example, the equation x-\-y= S admits of an in

finite number of solutions, for take x to represent any

whole number or fraction less than 8, and let y repre

sent what x wants of 8, and this equation is satisfied.

If we have another equation of condition existing be

tween the same quantities, for example, 3jc 2y= 4;

this second equation by itself has an infinite number

of solutions: to find them, y may be taken at pleasure,
4 _i_ 2y

and x= ~
. Of all the solutions of the second

o

equation, one only is a solution of the first
;
thus there

is only one value of x and y which satisfies both the

equations, and the finding of these values is the solu

tion of the equations. But there are some particular

cases in which every value of x and y which satisfies

one of the equations satisfies the other also; this hap-
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pens .whenever oiie of the equations can be deduced

from the other. For example, when ,r-|-j 8, and

4x 29= 3 4y, the second of these is the same as

4# + 4y= 3 + 29, or 4^-f 4^= 32, which necessarily

follows from the first equation.

If the solution of a problem should lead to two

equations of this sort, it is a sign that the problem

admits of an infinite number of solutions, or is what

is called an indeterminate problem. The solution of

equations of the first degree does not contain any pe

culiar difficulty ;
we shall therefore proceed to the

consideration of the isolated negative sign.



CHAPTER IX.

ON THE NEGATIVE SIGN, ETC.

IF
we wish to say that 8 is greater than 5 by the

number 3, we write this equation 8 5 3. Also

to say that a exceeds b by c, we use the equation a b

= c. As long as some numbers whose value we know

are subtracted from others equally known, there is no

fear of our attempting to subtract the greater from

the less; of our writing 3 8, for example, instead of

8 3. But in prosecuting investigations in which let

ters occur, we are liable, sometimes from inattention,

sometimes from ignorance as to which is the greater

of two quantities, or from misconception of some of

the conditions of a problem, to reverse the quantities

in a subtraction, for example to write a I) where b

is the greater of two quantities, instead of b a. Had

we done this with the sum of two quantities, it would

have made no difference, because a-\-b and b -j- a are

the same, but this is not the case with a b and b a.

For example, 8 3 is easily understood; 3 can be

taken from 8 and the remainder is 5
;
but 3 8 is an
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impossibility, it requires you to take from 3 more than

there is in 3, which is absurd. If such an expression

as 3 8 should be the answer to a problem, it would

denote either that there was some absurdity inherent

in the problem itself, or in the manner of putting it

into an equation. Nevertheless, as such answers will

occur, the student must be aware what sort of mis

takes give rise to them, and in what manner they af

fect the process of investigation.

We would recommend to the beginner to make

experience his only guide in forming his notions of

these quantities, that is, to draw his rules from the

observation of many results, not from any theory.

The difficulties which encompass the theory of the

negative sign are explained at best in a manner which

would embarrass him : probably he would not see the

difficulties themselves
;

too easy belief has always

been the fault of young students in mathematics, and

it is a great point gained to get them to start an ob

jection. We shall observe the effect of this error in

denoting a subtraction on every species of investiga

tion to which we have hitherto come, and shall de

duce rules which the student will recollect are the re

sults of experience, not of abstract reasoning. The

extensions to which he will be led have rendered Al

gebra much more general than it was before, have

made it competent to the solution of many, very many

questions which it could not have touched had they

not been attended to. They do, in fact, constitute
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part of the groundwork of modern Algebra and should

be considered by the student who is desirous of mak

ing his way into the depths of the science with the

highest degree of attention. If he is well practised in

the ordinary rules which have hitherto been explained,

few difficulties can afterwards embarrass him, except

those which arise from some confusion in the notions

which he has formed upon this part of the subject.

For brevity s sake we hereafter use this phrase.

Where the signs of every term in an expression are

changed, it is said to have changed its form. Thus

-\- a b and -j- b a are in different forms, and if a

be greater than b, the first is the correct form and the

second incorrect. An extension of a rule is made by

which such a quantity as 3 8 is written in a different

way. Suppose that -f 3 8 is connected with any

other number thus, 56 -f- 3 8. This may be written

56 -|- 3 (3 + 5), or 56 -f 3 3 5, or 56 5. It ap

pears, then, that -(- 3 8, connected with any number

is the same as 5 connected with that number; from

this we say that +3 8, or 3 8 is the same thing

as 5, or 3 8= 5. This is another way of writ

ing the equation 8 3= 5, and indicates equally that

8 is greater than 5 by 3. In the same way, a b=
c indicates that b is greater than a by the quantity

c. If a be nothing, this equation becomes b= c,

which indicates that b= c, since if the equation a b

= c be written in its true form b a= c, and if
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a= 0, then b= c. We can now understand the follow

ing equations :

a b-\-c d= e, or b-\- d a c= e,

ai b2= de, or a2
-f

2 2ab= d-{- e.

We must not commence any operations upon such

an equation as a b= c, until we have satisfied our

selves of the manner in which they should be per

formed, by reference to the correct form of the equa

tion. This correct form is b a= c. This gives

d-\- b a= d-\-c, or d (a b}= d-\-c. Write in

stead of a b its symbol c, and then d ( c}
=

d-\- c. Here we have performed an operation with

a b, which is no quantity, since a is less than b, but

this is done because our present object is, in applying

the common rules to such expressions, to watch the

results and exhibit them in their real forms. The first

side d (
&amp;lt;:)

is in a form in which we can attach no

meaning to it, and the second side gives its real form

d-\- c. The meaning of this expression is, that if with

a b, which we think to be a quantity, but which is

not, since a is less than b, we follow the algebraical

rule in subtracting a b from d, we shall thereby get

the same result as if we had added the real quantity

b a to d. If we make use of the form d ( ^), it

is because we can use it in such a manner as never to

lose sight of its connexion with its real form d-^-c,

and because we can establish rules which will lead us

to the end of a process without any error, except those
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which we can correct as certainly at the end as at-the

beginning.

The rule by which we proceed, and which we shall

establish by numerous examples, is, that wherever

two like signs come together, the corresponding part

of the real form has a positive sign, and wherever two

unlike signs come together, the real form has a nega

tive sign. Thus the real form of d ( c~}
is d-\-c.

Again, take the real form b a= c of the equation

a 1&amp;gt;
= c, and it follows that d

(/&amp;gt; a)= d
&amp;lt;r,

or d b-\-a = d
&amp;lt;:,

or d -\- a b d c, or d -\-

(a b}= d c. This is d-\- ( c)
= d c, another

case in which the rule is verified. Again, multiply

together a b and m
,
the product is am an

bm-\-bn. This is the same product as arises from

multiplying b a by n m, written in a different or

der. If, then, b a= c, and n m=p, or a b=
r, and m = /, we find that ( OX( f) =

cp. By which result we mean that a mistake, in the

form of both a b and m
,
will not produce a mis

take in the form of their product, which remains what

it would have been had the mistake not been made.

Again

(n ni)(b a}= bn bm an-}- am

(n m) (a b^
= an a m b n -j- b m,

If the first product be real and equal to P, the second

is represented by P. The first is cp, the second is

( OXA which gives
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That is, a mistake in the form of one factor only alters

the form of the product. To distinguish the right

form from the wrong one, we may prefix -f to the

first, and to the second, and we may then recapit

ulate the results, and add others, which the student

will now be able to verify.

The sign -j- placed before single quantities shows

that the form of the quantity is correct
;
the sign

shows that it has been mistaken or changed.

= a--b b = a b

(-M)X(- )
= -

, _

+ b~ b

-f- a a

+ T

etc. etc.

We see, then, that a change in the form of any

quantity changes the form of those powers whose ex

ponent is an odd number, but not of those whose ex

ponent is an even number. By these rules we shall
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be able to tell what changes would be made in an ex

pression by altering the forms of any of its letters. It

may be fairly asked whether we are not changing the

meaning of the signs -(- and
,
in making -|- a stand

for an expression in which we do not alter the signs,

and a for one in which the signs are altered. The

change is only in name, for since the rule of addition

is, &quot;annex the expressions which are to be added

without altering the signs of either,&quot; or &quot;annex the

expressions without altering the form of either
;

&quot; the

quantity a -f- &, which is the sum of the two expres

sions a and b, stands for the same as -\-a-\-b, in

which the new notion of the sign -(- is used, viz., the

expressions a and b are annexed with unaltered forms,

which is denoted by writing together -f a and -f b.

Again, the rule for subtraction is,
&quot;

change the sign

of the subtrahend or expression which is to be sub

tracted, and annex the result to the other expression,&quot;

or &quot;change the form of the subtrahend and annex it

to the other, which, the expressions being a and b, is

written a b, which answers equally well to the sec

ond notion of the sign ,
since -|- a b indicates that

a and b are to be annexed, the first without, the sec

ond with a change of form. These ideas of the signs

-f and give, therefore, in practice, the same results

as the former ones, and, in future, the two meanings

may be used indiscriminately. But when a single

term is used, such as -f- a or a, the last acquired

notions of -f- and are always understood.
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This much being premised, we can see, by num

berless instances, that, if the form of a quantity is to

be changed, it matters nothing whether it is changed

at the beginning of the process, or whether we wait

till the end, and then follow the rules above men

tioned. This is evident to the more advanced stu

dent, from the nature of the rules themselves, but the

beginner should satisfy himself of this fact from expe

rience. We now give a proof of this, as far as one

expression can prove it, in the solution of the equa

tions,

a2
a&amp;gt;x

. a2 a 2 x
and --ax= --- a o

which two equations only differ in the form in which

a appears. For, if the form of a in the first equation
CL CL 3C

be altered, that of and is unaltered, -4- ax be-
b b

comes ax, and -}- a becomes a. We now solve

the two equations in opposite columns.

a 1 a? x a2 a2 x
-=~ -4- ax= -4-a b --- a x= --- a b
b b b b

cP + abx^cPx + ab fi a^ abx a^ x ab P

= a*x -f abx

The only difference between these expressions
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arises from the different form of a in the two. If, in

either of them, a be put instead of -\- a, and the

rules laid down be followed, the other will be pro

duced. We see, then, that a simple alteration of the

form of a in the original equation produces no other

change in the result, or in any one of the steps which

lead to that result, except a simple alteration in the

form of a. From this it follows that, having the so

lution of an equation, we have also the solution of all

the equations which can be formed from it, by altering

the form of the different known quantities which are

contained in it. And, as all problems can be reduced

to equations, the solution of one problem will lead us

to the solution of others, which differ from the first in

producing equations in which some of the known

quantities are in different forms. Also, in every iden

tical equation, the form of one or more of its quanti

ties may be altered throughout, and the equation will

still remain identically true. For example,

a o

Change -j- b into
/&amp;gt;,

and this equation will become

which last, common division will show to be true.

Again, suppose than when a, /&amp;gt;,

and c are in a

given form, which we denote by -\- a, -\- 1), and -}- c,

the solution of a problem is,
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The following table will show the alterations which

take place in x when the forms of a, b, and c are

changed in different manners, and the verification of

it will be an exercise for the student.

FORMS OF a, b, AND C. VALUES OF X.

P lac
+*,

c b

a c b

-\-a, b y c

a, by
b a c

Also, the expression for x may be written in the

following different ways, the forms of a, b, and c re

maining the same :

b b a c a-\-c 1&amp;gt; b a c

We now proceed to apply these principles to the

solution of the following problems :

q-- 1

---
1

--
1

--\D
A B H

Two couriers, A and B, in the course of a journey

between the towns C and D, are at the same moment
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of time at A and B. A goes m miles, and B, n miles

an hour. At what point between C and D are they

together? It is evident that the answer depends upon

whether they are going in the same or opposite direc

tions, whether A goes faster or slower than B, and so

on. But all these, as we shall see, are included in

the same general problem, the difference between them

corresponding to the different forms of the letters

which we shall have occasion to use. After solving

the different cases which present themselves, each

upon its own principle, we shall compare the results

in order to establish their connexion. Let the dis

tance AB be called a,

Case first. Suppose that they are going in the

same direction from C to
Z&amp;gt;,

and that m is greater than

n. They will then meet at some point between B and

D. Let that point be H, and let AH be called x.

Then A travels through AH, or x, in the time during

which B travels through BH, or x a. But, since A

goes ;;/ miles an hour, he travels the distance x in
*

hours. Again, B travels the distance x a inm n
hours. These times are the same, and, therefore,

x x a ma= - - or *= - - =AHm n m n

and x a=- =BH.
m n

The time which elapses before they meet is

x a
or- .

m m-
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Case second. Suppose them now moving in the

same direction as before, but let B move faster than

A. They never will meet after they come to A and

B, since B is continually gaining upon A, but they

must have met at some point before reaching A and

B. Let that point be H, and, as before, let AH=x.

c\

Then since A travels through HA or x in the time

during which B travels through HB, or x -j- a, in the

same manner as in the last case, we show that

x x -- a ma
or x=

m n n m

, na
and x 4- a= - = BH.

n m

The time elapsed is ...
-m

Case third. If they are moving from D to C, and

if B moves faster than A, the point Zfis the same as

in the last case, since, if having in the last case ar

rived at A and B, they move back again at the same

rate, they will both arrive at the point H together.

The answers in this case are therefore the same as in

the last.

Case fourth. Similarly, if they are moving from D
to C, and A moves faster than B, the answers are the

same as in the first case, since this is a reverse of the

first case, as the third is of the second. We reserve
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for the present the case in which they move equally

fast, as another species of difficulty is involved which

has no connexion with the present subject. We shall

return to it hereafter.

Case fifth. Suppose them now moving in contrary

directions, viz.: A towards D and B towards C.

Whether A moves faster or slower than B, they must

now meet somewhere between A and B\ as before let

them meet in H, and let Aff=x.

cl 4_|
lg

p

Then A moves through AH, or x, in the same time as

B moves through BH, or a x. Therefore

x a x=
, or

m n

ma
x =

a x=

The time elapsed is . . .

m-\-n

na

m-\- n

a

m -4- n

Case sixth. Let them be moving in contrary direc

tions, but let A be moving towards C, and B towards

D. They will then have met somewhere between A
and B, and as this is only the reverse of the last case,

just as the fourth is of the first, or the third of the

second, the answers are the same. We now exhibit

the results of these different cases in a table, stating
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the circumstances of each case, and also whether the

time of meeting is before or after the instant which

finds them at A and B.

Circumstances of the case.
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in the second. Again, in the same cases, in the first

of which the time of meeting is after, and in the sec

ond before the moment of being at A and B, we see a

difference of form in the value of that time
;
in the

first it is
,
and in the second ,

or .

m n m n n m
The same remarks apply to the third and fourth ex

amples. Again, in the first and fifth cases, which only

differ in this, that B is moving towards D in the first,

and in the contrary direction towards C in the fifth,

the values of AH, and of the time, may be deduced

from the first by changing the form of n, and writing

-f n, instead of n. The expression for BH in the

first, if the form of n be likewise changed, becomes

,
which is the value of BHm the fifth, but in

m-\- n
a different form. But we observe that BH falls to the

left of B in the fifth, whereas it fell to the right in the

first. Again, in the first and sixth examples, which

differ in this that A moves towards D in the first and

towards C in the sixth, the value of AH in the sixth

may be deduced from that of AH in the first by

changing the form of m, which change makes Affbe-
ma ma ma

come-
, or -.

, or . If we alter the
m n (m-\-n) m-\-n

value of the time in the first, in the same manner, it

becomes
,
or

,
which is of a different

m n m -\- n
form from that in the sixth ; but it must also be ob

served that the first is after and the other before the

moment when they are at A and B. In the fifth and

sixth examples which differ in this, that the direction
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in which both are going is changed, since in the fifth

they move towards one another, and in the sixth away
from one another, the values of AH and BH in the

one may be deduced from those in the other by a

change of form, both in m and n, which gives the

same values as before. But if m and n change their

forms in the expression for the time, the value in the

sixth case is -, or .

n m -j- n
Also the time in

Circumstances of the case.
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second case from those of the first, this is done by

changing the sign of all those quantities whose direc

tions are opposite in the second case to what they are

in the first, and if any answer should appear in a neg

ative form, such as , when m is less than n.
m n ma

which may be written thus ,
it is a sign that

n ni

the quantity which it represents is different in direc

tion in the first and second cases. If it be a right

line measured from a given point in all the cases,

such as AH, it is a sign that AH falls on the left in

the second case, if it fell on the right in the first case,

and the converse. If it be the time elapsed between

the moment in which the couriers are at A and B and

their meeting, it is a sign that the moment of meeting

is before the other, in the second case, if it were after

it in the first, and the converse. We see, then, that

these six cases can be all contained in one if we apply

this rule, and it is indifferent which of the cases is

taken as the standard, provided the corresponding

alterations are made to determine answers to the rest.

This detail has been entered into in order that the

student may establish from his own experience the

general principle which will conclude this part of the

subject. Further illustration is contained in the fol

lowing problem :

A workman receives a shillings a day for his labor

or a proportion of a shillings for any part of a day

which he works. His expenses are b shillings every
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day, whether he works or no, and after m days he

finds that he has gained c shillings. How many days

did he work? Let x be that number of days, x being

either whole or fractional
;
then for his work he re

ceives ax shillings, and during the m days his expen

diture is Inn shillings, and since his gain is the differ

ence between his receipts and expenditure:

a x bm=c
b m 4- c

or x= !

a

Now suppose that he had worked so little as to lose c

shillings instead of gaining anything. The equation

from which x is derived is now

b m a x= c,

which, when its form is changed, becomes

a x bm=. c,

an equation which only differs from the former in hav

ing c written instead of c. The solution of the equa

tion is

bm c

~~^~&amp;gt;

which only differs from the former in having c in

stead of -f c. It appears then that we may alter the

solution of a problem which proceeds upon the sup

position of a gain into the solution of one which sup

poses an equal loss, by changing the form of the ex

pression which represents that gain; and also that if

the answer to a problem which we have solved upon

the supposition of a gain should happen to be nega-
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tive, suppose it c, we should have proceeded upon

the supposition that there is a loss and should in that

case have found a loss, c. When such principles as

these have been established, we have no occasion to

correct an erroneous solution by recommencing the

whole process, but we may, by means of the form of

the answer, set the matter right at the end. The

principle is, that a negative solution indicates that

the nature of the answer is the very reverse of that

which it was supposed to be in the solution
;
for ex

ample, if the solution supposes a line measured in

feet in one direction, a negative answer, such as c,

indicates that c feet must be measured in the opposite

direction
;

if the answer was thought to be a number

of days after a certain epoch, the solution shows that

it is c days before that epoch ;
if we supposed that A

was to receive a certain number of pounds, it denotes

that he is to pay c pounds, and so on, In deducing

this principle we have not made any supposition as

to what c is
;
we have not asserted that it indicates

the subtraction of c from
;
we have derived the re

sult from observation only, which taught us first to

deduce rules for making that alteration in the result

which arises from altering -f c into c at the com

mencement
;
and secondly, how to make the solution

of one case of a problem serve to determine those of

all the others. By observation then the student must

acquire his conviction of the truth of these rules, re

serving all metaphysical discussion upon such quanty
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ties as -f c and c to a later stage, when he will be

better prepared to understand the difficulties of the

subject. We now proceed to another class of difficul

ties, which are generally, if possible, as much miscon

ceived by the beginner as the use of the negative sign.

Take any fraction . Suppose its numerator to

remain the same, but its denominator to decrease, by

which means the fraction itself is increased. For ex-

5 5
ample, ^ is greater than

^
or the twelfth part of 5

is greater than its twentieth part. Similarly, f is

2i
4i

greater than
|,

etc. If, then, b be diminished more

and more, the fraction - - becomes greater and greater,

and there is no limit to its possible increase. To show

this, suppose that b is a part of a, or that b= . Then

or is m. Now since b may diminish so as to be
m

equal to any part of a, however small, that is, so as

to make m any number, however great, which is

=m may be any number however great. This dimi

nution of b, and the consequent increase of, may be

carried on to any extent, which we may state in these

words : As the quantity b becomes nearer and nearer

to 0, the fraction increases, and in the interval in
b

which b passes from its first magnitude to 0, the frac

tion - passes from its first value through every pos

sible greater number. Now, suppose that the solution

of a problem in its most general form is , but that
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in one particular case of that problem b is =0. We
have then instead of a solution ,

a symbol to which

we have not hitherto given a meaning.

To take an instance : return to the problem of the

two couriers, and suppose that they move in the same

direction from C to D (Case first} at the same rate, or

i T -r T r- i i
Mia m (I

that m= n. We find that Aff= or - or

ma m n n n

-=-. On looking at the equation which produced this
*Y* &amp;lt;Y*

jy

result we find that it becomes =
,
or x=x a,m m

which is impossible. On looking at the manner in

which this equation was formed, we find that it was

made on the supposition that A and B are together at

some point, which in this case is also impossible, since

if they move at the same rate, the same distance which

separated them at one moment will separate them at

any other, and they will never be together, nor will

they ever have been together on the other side of A.

The conclusion to be drawn is, that such an equation

as x= indicates that the supposition from which x

was deduced can never hold good. Nevertheless in

the common language of algebra it is said that they

meet at an infinite distance, and that
-^

is infinite.

This phrase is one which in its literal meaning is an

absurdity, since there is no such thing as an infinite

number, that is a number which is greater than any

other, because the mind can set no bounds to the

magnitude of the numbers which it can conceive, and
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whatever number it can imagine, however great, it

can imagine the next to it. But as the use of the

phrase is very general, the only method is to attach a

meaning which shall not involve absurdity or con

fusion of ideas. The phrase used is this : When

c= b,
- - and is infinitely great. The student

should always recollect that this is an abbreviation of

the following sentence. &quot;The fraction becomes
c b

greater and greater as c approaches more and more

near to b
;
and if c, setting out from a certain value,

should change gradually until it becomes equal to b,

the fraction 7- setting out also from a certain value,

will attain any magnitude however great, before c be

comes equal to b.&quot; That is, before a fraction can as

sume the form
-^

,
it must increase without limit. The

symbol oc is used to denote such a fraction, or in gen

eral any quantity which increases without limit. The

following equation will tend to elucidate the use of

this symbol. In the problem of the two couriers, the

,
ma x x a

equation which gave the result ^ was = -
,
orm m

x= x a, which is evidently impossible. Neverthe

less, the larger x is taken the more near is this equa

tion to the truth, as may be proved by dividing both

sides by x, when it becomes 1 = 1
,
which is never

x

exactly true. But the fraction decreases as x in

creases, and by taking x sufficiently great may be re

duced to any degree of smallness. For example, if it
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is required that should be as small as ^ ,.,. of a
x

unit, take x as great as 10000000 #, and the fraction

becomes
looooooo.-

or - But

smaller and smaller, the equation 1 = 1 - be-
&

comes nearer and nearer the truth, which is expressed

by saying that when 1=1-- ,
or x =x a, the so

lution is x = oc. In the solution of the problem of

the two couriers this does not appear to hold good,

since when m= n and x = ~- the same distance a

always separates them, and no travelling will bring

them nearer together. To show what is meant by

saying that the greater x is, the nearer will it be a so

lution of the problem, suppose them to have travelled

at the same rate to a great distance from C. They

Cl

ean never come together unless CA becomes equal to

CBt
or A coincides with B, which never happens,

since the distance AB is always the same. But if we

suppose that they have met, though an error always

will arise from this false supposition, it will become

less and less as they travel farther and farther from

C. For example, let CA= 10000000 AB, then the

supposing that they have met, or that B and A co

incide, or that BA-=Q, is an error which involves no

more than of AC; and though AB is always

of the same numerical magnitude, it grows smaller
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and smaller in comparison with AC, as the latter

grows greater and greater.

Let us suppose now that in the problem of the two

couriers they move in the same direction at the same

rate, as in the case we have just considered, but that

moreover they set out from the same point, that is,

let # 0. It is now evident that they will always be

together, that is, that any value of x whatever is an

answer to the question. On looking at the value of

AH, or
,
we find the numerator and denomina-

m n

tor both equal to 0, and the value of AH appears in

the form --. But from the problem we have found

that one value cannot be assigned to AH, since every

point of their course is a point where they are to

gether. The solution of the following equation will

further elucidate this. Let

ax -\- by= c

dx + ey=ft

from which, by the common method of solution, we

find

c e bf af c d
x= -

&amp;gt; y=ae bd ae bd

Now, let us suppose that &amp;lt;r^
= ^/and ae bd. Divid

ing the first of these by the second, we find

ce bf c f- =
f^r, or = ^, or cd=^af.ae bd a d

The values both of x and y in this case assume the

form -- to find the cause of this we must return to
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the equations. If we divide the first of these by c,

and the second by/, we find that

a . b

But the equations ce= bfan& cd=afgivt us = -pad c J
and =

-, that is, these two are, in fact, one and

the same equation repeated, from which, as has been

explained before, an infinite number of values of x

and y can be found
;
in fact, any value may be given

to x provided jy be then found from the equation. We
see that in these instances, when the value of any

quantity appears in the form
j- t

that quantity admits

of an infinite number of values, and this indicates that

the conditions given to determine that quantity are

not sufficient. But this is not the only cause of the

appearance of a fraction in the form . Take the

identical equation

a&amp;gt; P a-\-b

When a approaches towards b, a -f b approaches to

wards 2, and a2 ft and a b approach more and

more nearly towards 0. If a= b the equation assumes

this form :

_2
&quot;o

~ = T
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This may be explained thus : if we multiply the nu-
^

merator and denominator of the fraction by a b

(which does not alter its value) it becomes .

J3a Bb
If in the course of an investigation this has been

done when the two quantities a and b are equal to... . A Aa Ab ...

one another, the fraction or will appear
Q

&amp;gt; i) a no
in the form -=-. But since the result would have been
A

had that multiplication not been performed, this
&amp;gt;

last fraction must be used instead of the unmeaning
t TU *u r *

&amp;lt;*

2 6* (a + &)(* 6)form . Thus the fraction or -
, ,

a
,

b c(a b~} c(a b-)

18 the fraction after its numerator and denomi-
c

nator have been multiplied by a ^, and may be used

in all cases except that in which a= b. When the

form
-^ occurs, the problem must be carefully ex

amined in order to ascertain the reason.



CHAPTER X.

EQUATIONS OF THE SECOND DEGREE.

T7VERY operation of algebra is connected with an-.

* other which is exactly opposite to it in its effects.

Thus addition and subtraction, multiplication and di

vision, are reverse operations, that is, what is done

by the one is undone by the other. Thus a-\-b b is

a, and is a. Now in connexion with the raising of

powers is a contrary operation called the extraction

of roots. The term root is thus explained : We have

seen that a a, or #2
,

is called the square of a\ from

which a is called the square root of a 1
. As 169 is

called the square of 13, 13 is called the square root of

169. The following table will show how this phrase

ology is carried on.

a is called the square root of a 2
,

. . denoted by V a2

a &quot; &quot; &quot; cube root of 3
,

. .

&quot; &quot; f/a?

a&quot;
&quot; &quot; fourth root of 4

,
.. &quot; &quot; i/a*

a &quot; &quot; &quot; fifth root of a5
,

. .
&quot; &quot; v~a*

etc. etc. etc.
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If b stand for #5
, \/b stands for a, and the foregoing

table may be represented thus :

If a*= b,a=VH\
if a2 =

Z&amp;gt;,a
= it

/
J, etc.

The usual method of proceeding is to teach the

student to extract the square root of any algebraical

quantity immediately after the solution of equations

of the first degree. We would rather recommend him

to omit this rule until he is acquainted with the solu

tion of equations of the second degree, except in the

cases to which we now proceed. In arithmetic, it

must be observed that there are comparatively very

few numbers of which the square root can be ex

tracted. For example, 7 is not made by the multipli

cation either of any whole number or fraction by

itself. The first is evident
;

the second cannot be

readily proved to the beginner, but he may, by taking

a number of instances, satisfy himself of this, that no

fraction which is really such, that is whose numerator

is not measured by its denominator, will give a whole

number when multiplied by itself, thus | X f or -^
6- is

not a whole number, and so on. The number 7,

therefore, is neither the square of a whole number, nor

of a fraction, and, properly speaking, has no square

root. Nevertheless, fractions can be found extremely

near to 7, which have square roots, and this degree

of nearness may be carried to any extent we please.

Thus, if required, between 7 and 7 T-jytnTFo^ iro o~
cou^

be found a fraction which has a square root, and the
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fraction in the last might be decreased to any extent

whatever, so that though we cannot find a fraction

whose square is 7, we may nevertheless find one whose

square is as near to 7 as we please. To take another

example, if we multiply 1-4142 by itself the product

is 1-99996164, which only differs from 2 by the very

small fraction -00003836, so that the square of 1-4142

is very nearly 2, and fractions might be found whose

squares are still nearer to 2. Let us now suppose the

following problem. A man buys a certain number of

yards of stuff for two shillings, and the number of

yards which he gets is exactly the number of shillings

which he gives for a yard. How many yards does he
2

buy? Let x be this number, then is the price of

2
x

one yard, and x= or x1= 2. This, from what we
oc

have said, is impossible, that is, there is no exact

number of yards, or parts of yards, which will satisfy

the conditions
; nevertheless, 1-4142 yards will nearly

do it, ! 4142136 still more nearly, and if the problem

were ever proposed in practice, there would be no

difficulty in solving it with sufficient nearness for any

purpose. A problem, therefore, whose solution con

tains a square root which cannot be extracted, maybe
rendered useful by approximation to the square root.

Equations of the second degree, commonly called

quadratic equations, are those in which there is the

second power, or square of an unknown quantity:

such as *2 3= 4#2
15, *2

-f 3.*= 2.*:
2 * 1, etc.
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By transposition of their terms, they may always be

reduced to one of the following forms :

ax2 b x c 0.

For example, the two equations given above, are

equivalent to 3 *2 12= Q, and *2 4# 1 =0, which

agree in form with the second and last. In order to

proceed to each of these equations, first take the equa

tion x2= a2
. This equation is the same as x2 #2

0,

or (x-\-a)(x 0)= 0. Now, in order that the pro

duct of two or more quantities may be equal to noth

ing, it is sufficient that one of those quantities be noth

ing, and therefore a value of x may be derived from

either of the following equations:

or x-{-a= Q

the first of which gives x= a, and the second x= a.

To elucidate this, find x from the following equation :

(3 x -f a) (a
3
-f A:

8
)
= (x

2
-f a x] (a* -f a x -f 2 *2

)

develop this equation, and transpose all its terms on

one side, when it becomes

or x #

or (x
2

tf
2
) ax ^ = .

This last equation is true when x 2 #2= 0, or when
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x2= a2
,
which is true either when x=-\-a, or x= a.

If in the original equation -f a is substituted instead

of x, the result is 4# X 2 a*= 2 a* X 4 ^2
5

if be

substituted instead of #, the result is 0, which

show that -\- a and a are both correct values of x.

We have here noticed, for the first time, an equation

of condition which is capable of being solved by more

than one value of x. We have found two, and shall

find more when we can solve the equation x2 2 ax

a2= Q, or x2 2ax= a 2
. Every equation of the sec

ond degree, if it has one value of x, has a second, of

which x2 a2 is an instance, where x=a, in which

by the double sign d= is meant, that either of them

may be used at pleasure. We now proceed to the so

lution of ax1
bx-\-c. In order to understand

the nature of this equation, let us suppose that we

take for x such a value, that ax2
bx-\-ct instead of

being equal to 0, is equal to j, that is

y= ax* bx+c* (1)

in which the value of y depends upon the value given

to x, and changes when x changes. Let m be one of

those quantities which, when substituted instead of x,

makes ax2
bx-\- c equal to nothing, in which case m

is called a root of the equation,

ax2
bx-\- c= b (2)

and it follows that

am 2 bm + c-= (3)

*In the investigations which follow, a, 6, and c are considered as having
the sipn which is marked before them, and no change of form is sujjoosed to

tane iut.
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Subtract (3) from (1), the result of which is

Here y is evidently equal to 0, when x=m, as we

might expect from the supposition which we made
;

but it is also nothing when a(x-\- m&quot;)

&amp;lt; 0; there

is, therefore, another value of x, for which j= ;
if

we call this n we find it from the equation a (n -\-nt)

= 0,

or n -f- m= -
(4)

In (3) substitute for b its value derived from (4), from

which &.= a(n-}-m ) &amp;gt;

it then becomes

am 2
am(n-\- m}-\- &amp;lt;r 0, or c amn=^0,

which gives m n . (5)

Substitute in (1) the values of b and c derived from

(4) and (5), which gives

= a (x
2 m -f- n x -\- m ri}

.

Now the second factor of this expression arises from

multiplying together x m and x n
; therefore,

/ V ) \ ) V )

To take an example of this, let y= 4x2
5#-|-l.

Here when x= l, y= 4 5-)-l= 0, and therefore

m= l. If we divide 4 x2
5#-}-l by x 1, the quo

tient (which is without remainder) is 4x 1, and

therefore

This is also nothing when 4* 1 = 0, or when x is J.

Therefore n= i, and y= 4 (x 1
) (x J) ,

a result
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coinciding with that of (6).* If, therefore, we can find

one of the values of x which satisfy the equation

a x2 b x -f- c 0, we can find the other and can divide

ax2
bx-\-c into the factors a, x m and x n, or

ax2 b x -j- c= a(x ni) (jc ri)
.

If we multiply x-\-m by x -{- n, the only difference be

tween (x -f- #0 (x -f #) and (x m)(x )
is in the

sign of the term which contains the first power of x.

If, therefore,

ax2 b x -\- c= a(x m~) (x ),

it follows that

a x 2
-j- b x -\- c a (x -f- m) (x + )

.

We now take the expression ax2 bx c. If there

is one value of x which will make this quantity equal

to 0, let this be ;//, and

Let y= ax2 bx c

Then Q= am* 6m c,

from which y= a (x
2 m 2

)
b (x m)

= (x m}(a x -\- m )

= (x m) (a x -f- a m b) .

Let -be called //, or let am b= an ; then
a

y= (x m}(ax-\-an)
= a(x m) (x -\- ri)

.

As an example, it may be shown that

Again, with regard to ax2
-\- bx t

t
since (x -\- m)

(x ) only differs from (x ni} (x-{-ri) m the sign
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of the term which contains the first power of x, it is

evident that

if a x 1 b x c= a (x nf) (x -(- )

a x2
-\- b x c= a(x -{- m) (x ).

Results similar to those of the first case may be ob

tained for all the others, and these results may be ar

ranged in the following way. In the first and third,

m is a quantity, which, when substituted for x, makes

j= 0, and in the second and fourth m and n are the

same as in the first and third.

1st. . . y= ax2 bx-\-c^=a(x m)(x n)

b
m -j- n =.

a

2d . . . y= ax2 + bx-\- c= a (x + m) (x + n)

b c
m -4- n= mn= .

a a

3d . . . y a x2 b x c= a (x m)(x-\-n)

b c
m n = mn= .

a a

4th . . y= a x2
-f- b x c= a (x -f- m) (x n)

b c
m = mn= .

a a

We must now inquire in what cases a value can be

found for x, which will make jy in these different

expressions, and in this consists the solution of equa

tions of the second degree.

Let y= ax2 bx + c (1)
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and observe that (2 ax ^= 4a2 x2 abx + b*.

Multiply both sides of (1) by 4 a, which gives

4ay= 4a2 x- abx + ac (2)

Add ^2 to the first two terms of the second side of (2),

and subtract it from the third, which will not alter the

whole, and this gives

4&amp;lt;jy
= 402 *2 ab x + ^2 + 4acP=

(2ax b)
i + a&amp;lt;: b si

(3)

Now it must be recollected that the square of any

quantity is positive whether that quantity is positive

or negative. This has been already sufficiently ex

plained in saying that a change of the form of any ex

pression does not change the form of its square. Com
mon multiplication shows that

(&amp;lt;r ^/)
2 and (d

&amp;lt;:)

2

are the same thing ; and, since one of these must be

positive, the other must be also positive. Whenever,

therefore, we wish to say that a quantity is positive, it

can be done by supposing it equal to the square of an

algebraical quantity. In equation (3) there are three

distinct cases to be considered.

I. When ^2 is greater than
4#&amp;lt;r,

that is, when

ft1 \ac is positive, let ft ac k~, which expresses

the condition.

Then 4 ay= (2 a x b^ & (4)

and we determine those values of x, which make y=Q,
from the equation,

(2ax ^)
2 &= Q.

We have already solved such an equation, and we

find that
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where either sign may be taken. This shows that y

or ax2
bx-\-cis equal to nothing either when

b + k b + VP ac
instead of x is put -~ = = =m,&a a

b k_
~2a

the second values being formed by putting, instead of

k its value l^2 ^ac. They are both positive quan

tities, because /
2
being equal to ft 4ac is less than

b -\- k
ft, and therefore k is less than b, and therefore -

b k * a
and

p
are both positive. These are the quantities

which we have called m and n in the former investiga

tions, and, therefore,

a x2 b x -f c= a (x m) (x ri)

a
2a ] \ 2a f

Actual multiplication of the factors will show that this

is an identical equation.

II. When ft, instead of being greater than 4ac, is

equal to it, or when ft 40^= and k= Q. In this

case the values of m and n are equal, each being -=-

and

= ax* b X -f c= a(x-m\(x n^=a(x^
\ 2 a,

In this case y is said, in algebra, to be a perfect

square, since its square root can be extracted, and is

V a\x
j.

Arithmetically speaking, this would
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not be a perfect square unless a was a number whose

square root could be extracted, but in algebra it is

usual to call any quantity a perfect square with re

spect to any letter, which, when reduced, does not

contain that letter under the sign I/. This result is

one which often occurs, and it must be recollected

that when V1 ac= ft, ax*1 bx-\-c is a perfect

square.

III. When 2 is less than 4ac, or when ft

is negative and ac /;
2

positive, let ac &2=
and equation (3) becomes

In this case no value of x can ever makejy= 0, for

the equation v2
-\-w

2= Q indicates that v2 is equal to

w2 with a contrary sign, which cannot be, since all

squares have the same sign. The values of x are said,

in this case, to be impossible, and it indicates that

there is something absurd or contradictory in the con

ditions of a problem which leads to such a result.

Having found that whenever

a x2 b x -f- c= a (x m) (x ) ,

it follows that a x2
-\- b x -j- c= a (x -f- m) (x -f- ) , we

know that

(1) when ^2 is greater than

a x2
-f b x -f c=

(2) when b*=
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ax2

and y is a perfect square ;

(3) when ft1 is less than 4#&amp;lt;r,

be divided into factors.

Now, let

= ax2 bx c

As before,

Let P + 4:at= &2
. Then

4 ay= (2 ax )
2

Therefore jy is when (2 ax

+ c cannot

(1)

b^=
.(2)

(3)

= /
2

,
or when

_ .

That is, w = -gr =

2a 2a

Now, because ^2 is less than 2
-f4&amp;lt;2&amp;lt;r,

^ is less

than Vb* -\-ac, therefore n is a negative quantity.

Leaving, for the present, the consideration of the

negative quantity, we may decompose (3) into factors

by means of the general formula

,
which gives

k b

from which y or
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ax2 bx c =
b + ac+ b

Therefore, from what has been proved before,

- b x c =
l/*-U4tf*-4-\/ l///2 + 4tf&amp;lt;r b

a\x-\ -

The following are some examples, of the truth of

which the student should satisfy himself, both by ref

erence to the ones just established, and by actual

multiplication :

7 + 1/49 24
x II*.

22= 5(* 2)
2

1/221 9W 1/22T 9

If we collect together the different results at which

we have arrived, to which species of tabulation the

student should take care to accustom himself, we have

the following :

* Recollect that V
7

^= ^6&amp;gt;&amp;lt;4

= V 6~x ^4&quot;= 2 ^
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ax? bx-\-c

ax2
-j- b x c =

ax2 b x c=

a \ x
* &quot; &quot;&quot;&quot;-

i

&quot;

1*4- (D)
\ 2a J \ 2a J

These four cases may be contained in one, if we

apply those rules for the change of signs which we

have already established. For example, the first side

of (C) is made from that of (A) by changing the sign

of c; the second side of (C) is made from that of (A)

in the same way. We have also seen the necessity

of taking into account the negative quantities which

satisfy an equation, as well as &quot;the positive ones
;

if

we take these into account, each of the four forms of

a x1
-\- b x -\- c can be made equal to nothing by two

values of x. For example, in (1), when

. ,
,either x -\ _

Z a

A a

If we call the values of x derived from the equations

m and n, we find that
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In the cases marked (B), (C^ and (D), the results

are

~~
iac

m=~ *=- -

and in all the four cases the form of a x* -\- b x -\- c

which is used, is the same as the corresponding form

of

a (x ni) (x )

and the following results may be easily obtained. In

(A )
both m and n, if they exist at all, are negative.

I say, if they exist at all, because it has been shown

that if b^ 4ac is negative, the quantity a x2
-f b x -}- c

cannot be divided into factors at all, since l/^ 2 ac

is then no algebraical quantity, either positive or neg

ative.

In (B ) both, if they exist at all, are positive.

In (C )
there are always real values for ;// and n,

since &amp;lt;$

2
-{-40&amp;lt;r is always positive; one of these values

is positive, and the other negative, and the negative

one is numerically the greatest.

In (D )
there are also real values of m and n, one

positive and the other negative, of which the positive

one is numerically the greatest. Before proceeding

any further, we must notice an extension of a phrase
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which is usually adopted. The words greater and less,

as applied to numbers, offer no difficulty, and from

them we deduce, that if a be greater than b, a c is

greater than b c, as long as these subtractions are

possible, that is, as long as c can be taken both from

a and b. This is the only case which was considered

when the rule was made, but in extending the mean

ing of the word subtraction, and using the symbol

3 to stand for 5 8, the principle that if a be greater

than b, a c is greater than b c, leads to the follow

ing results. Since 6 is greater than 4, 6 12 is greater

than 4 12, or 6 is greater than 8; again 6 6

is greater than 4 6, or is greater than 2. These

results, particularly the last, are absurd, as has been

noticed, if we continue to mean by the terms greater

and less, nothing more than is usually meant by them

in arithmetic
;
but in extending the meaning of one

term, we must extend the meaning of all which are

connected with it, and we are obliged to apply the

terms greater and less in the following way. Of two

algebraical quantities with the same or different signs,

that one is the greater which, when both are connected

with a number numerically greater than either of them,

gives the greater result. Thus 6 is said to be greater

than 8, because 20 6 is greater than 20 8, is

greater than 4, because 6 -j- is greater than 6 4
;

+ 12 is greater than 30, because 40 -f 12 is greater

than 40 30. Nevertheless 30 is said to be numeri

cally greater than -f- 12, because the number contained
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in the first is greater than that in the second. For this

reason it was said, that in (C), the negative quantity

was numerically greater, than the positive, because any

positive quantity is in algebra called greater than any

negative one, even though the number contained in

the first should be less than that in the second. In

the same way 14 is said to lie between -f 3 and

20, being less than the first and greater than the

second. The advantage of these extensions is the

same as that of others
;
the disadvantage attached to

them, which it is not fair to disguise, is that, if used

without proper caution, they lead the student into

erroneous notions, which some elementary works, far

from destroying, confirm, and even render necessary,

by adopting these very notions as definitions
;
as for

example, when they say that a negative quantity is

one which is less than nothing ;
as if there could be

such a thing, the usual meaning of the word less being

considered, and as if the student had an idea of a

quantity less than nothing already in his mind, to

which it was only necessary to give a name.

The product (x ;) (x ri)
is positive when

(x ni) and (x )
have the same, and negative when

they have different signs. This last can never happen

except when x lies between m and
,
that is, when x

is algebraically greater than the one, and less than

the other. The following table will exhibit this, where

different products are taken with various signs of m
and n, and three values are given to x one after the
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other, the first of which is less than both m and n,

the second between both, and the third greater than

both.

VALUE OF THE
PRODUCT. VALUE OF X. PRODUCT WITH

ITS SIGN.

(#_4)(# 7) +1 +18

(#+10) (# 3)

01= 10

+ 5
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as a for all values of x, except when x lies between

these roots.

It only remains to consider those cases in which

a x2
-f- bx -\- c cannot be decomposed into different fac

tors, which happens whenever b 2 ac is 0, or nega

tive. In the first case when b2 4ac= Q, we have

,1

.-- +
&amp;lt;-4-}

-

and as these expressions are composed of factors, one

of which is a square, and therefore positive, they have

always the same sign as the other factor, which is a.

When b2 \ac is negative, we have proved that if

y= a x2 b x -j- c, 4 ay= (2 a x
&amp;lt;)

2
-f- &

2
,
where &

kac b^ t and therefore 4 ay being the sum of two

squares is always positive, that is, ax^^zbx-}- c has

the same sign as a, whatever may be the value of x.

When &amp;lt;r
= 0, the expression becomes ax^-^-bx, or

x(ax-\-b}, which is nothing either when x= Q, or

when ax-\-b-= and .#=
;
the general expres

sions for m and n become in this case - and

^ ,
which give the same results.

When ^ 0, the expression is reduced to ax2
-{-

= Q, which is nothing when x=\l ,
which is

\ a

not possible, except when c and a have different signs.

In this case, that is, when the expression assumes the

form ax2
c, it is the same as
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The same result might be deduced by making *$

in the general expressions for m and n.

When a 0, the expression is reduced to bx-\-c,

which is made equal to nothing by one value of x only,

that is . If we take the general expressions

for m and n, and make a= Q in them, that is, in

,
and -

,
we find as

9 h
the results

-^
and -= . These have been already ex

plained. The first may either indicate that any value

of x will solve the problem which produced the equa

tion ax**- -f- bx-\- r= 0, or that we have applied a rule

to a case which was not contemplated in its forma

tion, and have thereby created a factor in the numera

tor and denominator of x, which, in attempting to

apply the rule, becomes equal to nothing. The stu

dent is referred to the problem of the two couriers,

solved in the preceding part of this treatise. The

latter is evidently the case here, because in returning

to the original equation, we find it reduced to bx-\-

c= 0, which gives a rational value for x, namely, ---.

2b
The second value, or -- ,

which in algebraical lan

guage is called infinite, may indicate, that though

there is no other value of x, except --r ,
which

o

solves the equation, still that the greater the number

which is taken for x, the more nearly is a second so-
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lution obtained. The use of these expressions is to

point out the cases in which there is anything remark

able in the general problem ;
to the problem itself we

must resort for further explanation.

The importance of the investigations connected

with the expression a x* -f b x -f- c
t
can hardly be over

rated, at least to those students who pursue mathe

matics to any extent. In the higher branches, great

familiarity with these results is indispensable. The

student is therefore recommended not to proceed until

he has completely mastered the details here given,

which have been hitherto too much neglected in Eng
lish works on algebra.

In solving equations of the second degree, we have

obtained a new species of result, which indicates that

the problem cannot be solved at all. We refer to

those results which contain the square root of a nega

tive quantity. We find that by multiplication the

squares of c d and of d c are the same, both being

r2 Zcd-\- d*. Now either c d or d c is positive,

and since they both have the same square, it appears

that the squares of all quantities, whether positive or

negative, are positive. It is therefore absurd to sup

pose that there is any quantity which x can represent,

and which satisfies the equation x2= #2
,
since that

would be supposing that x2
,

a positive quantity, is

equal to the negative quantity a 2
. The solution is

then said to be impossible, and it will be easy to show

an instance in which such a result is obtained, and
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also to show that it arises from the absurdity of the

problem.

Let a number a be divided into any two parts, one

of which is greater than the half, and the other less.

Call the first of these
-^- -j- x, then the second must be

-jr- x, since the sum of both parts must be a. Mul-
a

tiply these parts together, which gives

As x diminishes, this product increases, and is great

est of all when x= Q, that is, when the two parts, into

which a is divided, are -=- and
-^-,

or when the number

a is halved. In this case the product of the parts is

ct a a f i i

~n X -nt or -T-, and a number a can never be divided
a*

into two parts whose product is greater than . This

being premised, suppose that we attempt to divide

the number a into two parts, whose product is b. Let

x be one of these parts, then a x is the other, and

their product is ax X
s

*.

We have, therefore,

ax x2= b

or x*
ax-\-b= Q.

If we solve this equation, the two roots are the two

parts required, since from what we have proved of

the expression x* ax-\-b the sum of the roots is a

and their product b. These roots are
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a
\aT~

~2

~

\ 4
&quot; ~&quot;~

2

a*
which are impossible when -j-

b is negative, or when

b is greater than
-j-,

which agrees with what has just

been proved, that no number is capable of being di

vided into two parts whose product is greater than
-^-.

We have shown the symbol V a to be void of

meaning, or rather self-contradictory and absurd.

Nevertheless, by means of such symbols, a part of

algebra is established which is of great utility. It

depends upon the fact, which must be verified by ex

perience, that the common rules of algebra may be

applied to these expressions without leading to any

false results. An appeal to experience of this nature

appears to be contrary to the first principles laid down

at the beginning of this work. We cannot deny that

it is so in reality, but it must be recollected that this

is but a small and isolated part of an immense sub

ject, to all other branches of which these principles

apply in their fullest extent. There have not been

wanting some to assert that these symbols may be

used as rationally as any others, and that the results

derived from them are as conclusive as any reasoning

could make them. I leave the student to discuss this

question as soon as he has acquired sufficient knowl

edge to understand the various arguments: at present

*The general expressions for m and n give ^_^i_ as the roots of
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let him proceed with the subject as a part of the

mechanism of algebra, on the assurance that by care

ful attention to the rules laid down he can never be

led to any incorrect result. The simple rule is, apply

all those rules to such expressions as y a, a -f- ]/ b,

etc., which have been proved to hold good for such

quantities as V a, a -{-}/&, etc. Such expressions as

the first of these are called imaginary, to distinguish

them from the second, which are called real; and it

must always be recollected that there is no quantity,

either positive or negative, which an imaginary ex

pression can represent.

It is usual to write such symbols as ]/ b in a dif

ferent form. To the equation fr= frx( 1) apply

the rule derived from the equation l/xy= l/xX V y&amp;gt;

which gives I/ ^= 1/^X V 1, of which the first

factor is real and the second imaginary. Let i/^= c,

then I/ b= cV/ 1. In this way all expressions

may be so arranged that j/ 1 shall be the only im

aginary quantity which appears in them. Of this re

duction the following are examples :

1/IT24= 1/24 I/ T = 2 1/6VZ.1

V a X V a= a

V~a? x V ~P = aV--\ X b = ab.

The following tables exhibit other applications of

the rules :
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c = aV- ,7= _07|/;

The powers of such an expression as aV 1 are

therefore alternately real and imaginary, and are posi
tive and negative in pairs.

(a -f b l/-^l)
2

=r&amp;lt;z
2

#&amp;gt;

(a + b l/-^l) (a b i/ITI )
= ^2 _|_

a + bV-^ = a? P
~

Let the roots of the equation ax2
-f- ^jc-j-r be im

possible, that is, let P ac be negative and equal
to 2

. Its roots, as derived from the rules estab

lished when ft \ac was positive, are

Take either of these instead of x
;

for example, let

b k
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/;
2 h k &

Then a x* = --.- - ~ V 1- \4a 2a 4a

Therefore, # x1
-4- b x -\- c= -- - ---

^ \- c, in
4a 4a Za

which, if 4ac ^2 be substituted instead of 2
,
the re

sult is 0. It appears, then, that.the imaginary expres

sions which take the place of the roots when ft 4ac

is negative, will, if the ordinary rules be applied, pro

duce the same results as the roots. They are thence

called imaginary roots, and we say that every equa

tion of the second degree has two roots, either both

real or both imaginary. It is generally true, that

wherever an imaginary expression occurs the same re

sults will follow from the application of these expres

sions in any process as would have followed had the

proposed problem been possible and its solution real.

When an equation arises in which imaginary and

real expressions occur together, such as a -j- b y 1 =
c-\- dV 1, when all the terms are transferred on one

side, the part which is real and that which is imagin

ary must each of them be equal to nothing. The

equation just given when its left side is transposed

becomes a c-\-(b ^)1// 1 = 0. Now, if b is not

equal to d, let b d=e; then a c + eV 1 = 0, and

T/ 1=
;

that is, an imaginary expression is

equal to a real one, which is absurd. Therefore, b= d
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and the original equation is thereby reduced to a= c.

This goes on the supposition that a, b, c, and d are

real. If they are not so there is no necessary absurd-
,_ / _ Sf

ity in y 1 = . If, then, we wish to express

that two possible quantities a and b are respectively

equal to two others c and d, it may be done at once by

the equation

a -f b V^l =

The imaginary expression V a and the negative ex

pression b have this resemblance, that either of

them occurring as the solution of a problem indicates

some inconsistency or absurdity. As far as real mean

ing is concerned, both are equally imaginary, since

a is as inconceivable as y a. What, then, is the

difference of signification? The following problems

will elucidate this. A father is fifty-six, and his son

twenty-nine years old : when will the father be twice

as old as the son? Let this happen x years from the

present time
;
then the age of the father will be 56 -j- x,

and that of the son 29 -f- x ;
and therefore, 56-f-.r=

2 (29 + *)= 58+ 2.Y, or x= 2. The result is ab

surd
; nevertheless, if in the equation we change the

sign of x throughout it becomes 56 .#= 58 2x, or

x= 2. This equation is the one belonging to the

problem : a father is 56 and his son 29 years old
;

when was the father twice as old as the son ? the an

swer to which is, two years ago. In this case the

negative sign arises from too great a limitation in the
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terms of the problem, which should have demanded

how many years have elapsed or will elapse before the

father is twice as old as his son ?

Again, suppose the problem had been given in this

last-mentioned way. In order to form an equation, it

will be necessary either to suppose the event past or

future. If of the two suppositions we choose the

wrong one, this error will be pointed out by the nega

tive form of the result. In this case the negative re

sult will arise from a mistake in reducing the problem

to an equation. In either case, however, the result

may be interpreted, and a rational answer to the ques

tion may be given. This, however, is not the case in

a problem, the result of which is imaginary. Take

the instance above solved, in which it is required to

divide a into two parts, whose product is b. The re

sulting equation is

a
or x= -=-

the roots of which are imaginary when b is greater
a1

than . If we change the sign of x in the equation

it becomes

and the roots of the second are imaginary, if those of

the first are so. There is, then, this distinct difference
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between the negative and the imaginary result. When
the answer to a problem is negative, by changing the

sign of x in the equation which produced that result,

we may either discover an error in the method of

forming that equation or show that the question of the

problem is too limited, and may be extended so as to

admit of a satisfactory answer. When the answer to

a problem is imaginary this is not the case.



CHAPTER XI.

ON ROOTS IN GENERAL, AND LOGARITHMS.

THE
meaning of the terms square root, cube root,

fourth root, etc., has already been defined. We
now proceed to the difficulties attending the connex

ion of the roots of a with the powers of a. The fol

lowing table will refresh the memory of the student

with respect to the meaning of the terms :

NAME OF JT. NAME OF X.

Square of a ..... x=aa Square Root of a - - xx=a

Cube of a ...... x=aaa Cube Root of a - - - xxx=a

Fourth Power of a - x=aaaa Fourth Root of a - - xxxx=a

Fifth Power of a - - x=aaaaa Fifth Root of a - - - xxxxx=a

The different powers and roots of a have hitherto

been expressed in the following way :

Powers tf
2 a3 a* a5

. . am . . am + H
,
etc.

Roots W* Pa ya Va Va +fa, etc.

which series are connected together by the following

equation,

*The 2 is usually omitted, and the square root is written thus Va.
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There has hitherto been no connexion between the

manner of expressing powers and roots, and we have

found no properties which are common both to powers

and roots. Nevertheless, by the extension of rules,

we shall be led to a method of denoting the raising of

powers, the extraction of roots, and combinations of

the two, to which algebra has been most peculiarly

indebted, and the importance of which will justify the

length at which it will be treated here.

Suppose it required to find the cube of 202 ^3
;
that

is, to find 2 a2 fi X 2 a 1 P X 2 a 1 fi. The common rules

of multiplication give, as the result, 8#6 ^9
,
which is

expressed in the following equation,

Similarly (

1 ^~
64 &quot;^

;

and the general rule by which any single term may be

raised to the power whose index is n, is : Raise the co

efficient to the power n, and multiply the index of

every letter by n, that is,

In extracting the root of any simple term, we are

guided by the manner in which the corresponding

power is found. The rule is : Extract the required root

of the coefficient, and divide the index of each letter

by the index of the root. Where these divisions do

not give whole numbers as the quotients, the expres-
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sion whose root is to be extracted does not admit of

the extraction without the introduction of some new

symbol. For example, extract the fourth root of

16 a 12
*&amp;lt;:*,

or find V\&d*W?. The expression here

given is the same as the following :

or (20
3
^V)

4
,
the fourth root of which is 2#3 ^, con

formably to the rule.

Any root of a product, such as AB, may be ex

tracted by extracting the root of each of its factors.

Thus, I^Ztf = i^A -&~B. For, raise ^~A -fit to the

third power, the result of which is,

or -A A i A X
or AB.

In the same way it may be proved generally, that

{/ABCV^dVB \/C. The most simple way of rep

resenting any root of any expression is the dividing it

into two factors, one of which is the highest which it

admits of whose root can be extracted by the rule just

given. For example, in finding IQa^b 1 ? we must

observe that 16 is 8 X 2, a* is a* X a, b 1 is b* X ,
and

the expression is 8 a3 b* X 2 a b cy the cube root of which,

found by extracting the cube root of each factor, is

The second factor has no cube root

which can be expressed by means of the symbols

hitherto used, but when the numbers which a, b, and

c stand for are known, ^^abc maybe found either
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exactly, or, when that is not possible, by approxima

tion.

We find that a power of a power is found by affix

ing, as an index, the product of the indices of the two

powers. Thus O2
)

4
or a? X a1 X a2 X &amp;lt;? is a s

,
or 4X2

.

This is the same as (V)
2

,
which is #4 X #*, or #8

-

Therefore, generally (a
m
)

n
== (a

n
}

m
== amn . In the same

manner, a root of a root is the root whose index is the

product of the indices of the two roots. Thus

For since a = V~a v^a J/0 X V~a v/tf t/a, the square

root of a is \/a i/a v^a, the cube root of which is \/a.

This is the same as V f/rt, and generally

Again, when a power is raised and a root extracted,

it is indifferent which is done first. Thus f7^2 is the

same thing as (^ a
)

2
. For since a*= ay^a, the cube

root may be found by taking the cube root of each of

these factors, that is l
37^2 = f/a X f/a = (f

/
a)

2

,
and

generally

In the expression i/a&quot;
1

,
n and m may both be mul

tiplied by any number, without altering the expres

sion, that is

&quot;{/a*= \fcT.

To prove this, recollect that



l62 ON THE STUDY OF MATHEMATICS.

But am*&amp;gt; is (a) ,
and by definition {/(a

m
y= a H

. There

fore \/cT*= i/a. This multiplication is equivalent

to raising a power of v a, and afterwards reducing

the result to its former value, by extracting the corre-

m P . m
spending root, in the same way as signifies that -

np n

has been multiplied by/, and the result has been re

stored to its former value by dividing it by/.

The following equations should be established by

the student to familiarise him with the notation ai d

principles hitherto laid down.

a -f- by~
m X

, 2
(a

1

n \ab v ab \/a i/
7
^ n \a n\bW ^=

VTct
^
VTVd ***& ^\d

b v a&quot;~
l b

The quantity v am is a simple expression when m
can be divided by ,

without remainder, for example

v/fl
12 = aQ

, \/a2Q= a*, and in general, whenever m can
M

be divided by without remainder, jX^=dP. This

symbol, viz., a letter which has an exponent appear

ing in a fractional form, has not hitherto been used.

We may give it any meaning which we please, pro

vided it be such that when is fractional in form only,
n

and not in reality, that is, when m is divisible by
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n, and the quotient is /, an shall stand for ap
,

or
rn

a a a (/)* It will be convenient to let a&quot; always

stand for i/ar, in which case the condition alluded to

is fulfilled, since when =/, a&quot; or i/a&quot;
1 = ap . This

n

extension of a rule, the advantages of which will soon

be apparent, is exemplified in the following table,

which will familiarise the student with the different

cases of this new notation :

c& stands for v a 1 or Va
a% stands for va

a* stands for v^
a% stands for V~cP or (f/a)*

a* stands for I/a 7 or (I/a )

7

ytt-\-n

a&quot;

1 &quot; stands for
n!

~i/aM+ft

stands for !/(/ +

stands for

\a
n
j stands for V \/~a

The results at which we have arrived in this chap

ter, translated into this new language, are as follows :

(*)&quot;=(*)&quot;=* a)

\AC)&quot;
= A&quot;

&quot;

C&quot; (2)

*This is a notation in common use, and means that a a a ..... is to be

continued until it has been repeated/ times. Thus

a + a +a+ ..... (/}=/,
a X a X a X ..... (/;=*.
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(3)

a=a (4)

a n = (5)

The advantages resulting from the adoption of this

notation, are, (1) that time is saved in writing alge

braical expressions ; (2) all rules which have been

shown to hold good for performing operations upon

such quantities as am
,
hold good also for performing

m
the same operations upon such quantities as an

,
in

which the exponents are fractional. The truth of this

last assertion we proceed to establish.

Suppose it required to multiply together an and
_

an
,
or v/0 and \/al

. From (2) this is Vani X or
m+l

i/am+l ,
or a n

. Suppose it now required to multiply
m

p_

an and a q
. From (5) the first of these is the same as

ing ttp

anq
,
and the second is the same as anq . The product

mq-\-np

of these by the last case is a ng
,
or *{/am9+nf

. But
m a -4- n p . m py ^

is --h ,
and therefore

nq n q

an X a q =at + L re-.

This is the same result as was obtained when the

indices were whole numbers. The rule is : To multi

ply together two powers of the same quantity, add

the indices, and make the sum the index of the pro

duct. It follows in the same way that
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or, to divide one power of a quantity by another, sub

tract the index of the divisor from that of the divi

dend, and make the difference the index of the result.

( -Y
Suppose it required to find \a

n
) . It is evident

m m mm 2t / tn\ 2
2&amp;gt;

that a&quot; X a* = a&quot;

+
&quot; =

&quot;&quot;&quot;,

or
(a&quot;J

= a*. Similarly
/ ,\3 yn / ,n\P mfi

\a
n
)
= a&quot; , and so on. Therefore \a

n
)
= a &quot;

.

( \ i/~. !L

Again to find \a
n
)

q

,
or V an

. Let this be a? .

. i/~ ( *Y ZL
Then ay = V a&quot;

,
or (a*) = a&quot;,

or a y --=an . There-

xq m x m ( f\~
fore ---

,
or - =

,
and (a&quot; )

= anq
.

y n y nq

( -\~ q/ ( V
Again to find \f.j or ]/ \a

n
) . Apply the last

/
m-y

mf
two rules, and it appears that \a

n
j
= a H

,
and

/ nip rnp / m\$- tn XV a n anq . Therefore \a
n
)

q = anq an q
.

The rule is : To raise one power of a quantity to

another power, multiply the indices of the two powers

together, and make the product the index of the re

sult. All these rules are exactly those which have

been shown to hold good when the indices are whole

numbers. But there still remains one remarkable ex

tension, which will complete this subject.

We have proved that whether m and n be whole
a&quot;

1

or fractional numbers, = am
~n

. The only cases

which have been considered in forming this rule are
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those in which ;// is greater than n, being the only

ones in which the subtraction indicated is possible. If

we apply the rule to any other case, a new symbol is

produced, which we proceed to consider. For exam

ple, suppose it required to find. If we apply the

rule, we find the result aB~7
,
or

~4
,
for which we have

hitherto no meaning. As in former cases, we must

apply other methods to the solution of this case, and

when we have obtained a rational result, #~4 may be

used in future to stand for this result. Now the frac-

a3 1
tion

7
is the same as -^, which is obtained by divid

ing both its numerator and denominator by #3
. There

fore -^ is the rational result, for which we have ob

tained &amp;lt;2~

4
by applying a rule in too extensive a manner.

Nevertheless, if a~^ be made to stand for ., and
1

a

a~m for
,
the rule will always give correct results,

and the general rules for multiplication, division, and

raising of powers remain the same as before. For

example, a~m X a~n
is X &amp;gt;

or ,
which is

-j

a a a a

^-,
or a~(m+n

\ or a-m
~n

. Similarly

,
or

, is ,
or a&quot;~

m
,
or

a

Again

, or -, or &amp;lt;r-,

and so on.
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It has before been shown that # stands for 1 when

ever it occurs in the solution of a problem. We can

now, therefore, assign a meaning to the expression am
,

whether m be whole or fractional, positive, negative,

or nothing, and in all these cases the following rules

hold good :

am X a&quot; = &amp;lt;i

&quot;+n

= a &quot;-&quot;= a &quot;

or&quot;

an

(,,,\
&quot; ( K \ &quot;

a&quot;

1

)
= (a

n
)

= a&quot;

tn
.

The student can now understand the meaning of such

an expression as 10 - 301
,
where the index or exponent

is a decimal fraction. Since .301 is
$}$&amp;gt;

^ ls stands

for
1

1/
/
(10J

301
,
an expression of which it would be im

possible to calculate the value by any method which

the student has hitherto been taught, but which may
be shown by other processes to be very nearly equal

to 2.

Before proceeding to the practice of logarithmic

calculations, the student should thoroughly under

stand the meaning of fractional and negative indices,

and be familiar with the operations performed by

means of them. He should work many examples of

multiplication and division in which they occur, for

which he can have recourse to any elementary work.

The rules are the same as those to which he has been

accustomed, substituting the addition, subtraction,

and so forth, of fractional indices, instead of these

which are whole numbers.
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In order to make use of logarithms, he must pro

vide himself with a table. Either of the following

works may be recommended to him :

[1. Bruhns, A New Manual of Logarithms to Seven

Places of Decimals (English preface, Leipsic).

2. Schron, Seven-Figure Logarithms (English edi

tion, London).

3. Bremiker s various editions of Vega s Logarith

mic Tables (Weidmann, Berlin). With English pref

ace.]

4. Callet, Tables portatives de Logarithmes. (Last

impression, Paris, 1890).

5. V. Caillet, Tables des Logarithmes et Co-Loga-

rithmes des nombres (Paris).

6. Hutton s Mathematical Tables (London).

7. Chambers s Mathematical Tables (Edinburgh).

8. The American six-figure Tables of Jones, of

Wells, and of Haskell.

For fuller bibliographical information on the sub

ject of tables of logarithms, see the Encyclopaedia Bri-

tannica, Article &quot;Tables,&quot; Vol. XXIII. Ed.~\*

The limits of this treatise will not allow us to enter

*The original text of De Morgan, for which the above paragraph has

been substituted, reads as follows : &quot;Either of the following works may be

recommended to him: (i) Taylor s Logarithms. (2) Hutton s Logarithms.

(3) Babbage, Logarithms of Numbers; Callet, Logarithms of Sines, Cosines,

etc. (4) Bagay, Tables Astronomiques et Hydrographiques. The first and last

of these are large works, calculated for the most accurate operations of

spherical trigonometry and astronomy. The second and third are better

suited to the ordinary student. For those who require a pocket volume there

are Lalande s and Hassler s Tables, the first published in France, the second

in the United States.&quot; Ed.
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into the subject of the definition, theory, and use of

logarithms, which will be found fully treated in the

standard text-books of Arithmetic, Algebra, and Trig

onometry. There is, however, one consideration con

nected with the tables, which, as it involves a princi

ple of frequent application, it will be well to explain

here. On looking into any table of logarithms it will

be seen, that for a series of numbers the logarithms

increase in arithmetical progression, as far as the first

seven places of decimals are concerned
;
that is, the

difference between the successive logarithms continues

the same. For example, the following is found from

any tables :

Log. 41713 = 4.6202714

Log. 41714= 4.6202818

Log. 41715 = 4.6202922

The difference of these successive logarithms and of

almost all others in the same page is .0000104. There

fore in this the addition of 1 to the number gives an

addition of .0000104 to the logarithm. It is a general

rule that when one quantity depends for its value upon

another, as a logarithm does upon its number, or an

algebraical expression, such as oc
1
-J- x upon the letter

or letters which it contains, if a very small addition be

made to trie-value of one of these letters, in conse

quence of which the expression itself is increased or

diminished; generally speaking, the increment* of the

* When any quantity is increased, the quantity by which it is increased is

called its increment.
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expression will be very nearly proportional to the in

crement of the letter whose value is increased, and the

more nearly so the smaller is the increment of the let

ter. We proceed to illustrate this. The product of

two fractions, each of which is less than unity, is itself

less than either of its factors. Therefore the square,

cube, etc., of a fraction less than unity decrease, and

the smaller the fraction is the more rapid is that de

crease, as the following examples will show :

Let x = .01 Let x =.00001

#2= .0001 x*= .0000000001

x*= . 000001 x*= . 000000000000001

etc. etc.

Now quantities are compared, not by the actual

difference which exists between them, but by the num

ber of times which one contains the other, and, of two

quantities which are both very small, one may be very

great as compared with the other. In the second ex

ample x2 and x9 are both small fractions whem com

pared with unity ; nevertheless, x* is very great when

compared with ^c
3

, being 100,000 times its magnitude.

This use of the words small and great sometimes em

barrasses the beginner; nevertheless, on considera

tion, it will appear to be very similar to the sense in

which they are used in common life. We do not form

our ideas of smallness or greatness from the actual

numbers which are contained in a collection, but from

the proportion which the numbers bear to those which
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are usually found in similar collections. Thus of 1000

men we should say, if they lived in one village, that

it was extremely large ; if they formed a regiment,

that it was rather large ; if an army, that it was ut

terly insignificant in point of numbers. Hence, in

such an expression as Ah -j- BW -{- Chz
, we may, if h is

very small, reject h?-\- Ch*, as being very small com

pared with Ah. An error will thus be committed, but

a very small one only, and which becomes smaller as

h becomes smaller.

Let us take any algebraical expression, such as

#2
-f x, and suppose that x is increased by a very small

quantity h. The expression then becomes C#-f^)
2
-f

(x+ h), or #a+ #-f (2* +!) + #. But it was x2 + x\

therefore, in consequence of x receiving the increment

h, x*-\-x has received the increment (2x-\-V)ti-\--X*9

for which (2x-{-l)A may be written, since h is very

small. This is proportional to h, since, if h were

doubled, (2x-\-\}h would be doubled; also, if the

first were halved the second would be halved, etc. In

general, if y is a quantity which contains x, and if x

be changed into x + h, y is changed into a quantity of

the form y -f Ah -f BW -f Ch* -f etc.
; that is, y re

ceives an increment of the form Ah -f BK* -j- Ch*+ etc.

If h be very small, this may, without sensible error,

be reduced to its first term, viz., Ah, which is propor

tional to h. The general proof of this proposition be

longs to a higher department of mathematics
; never

theless, the student may observe that it holds good in
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all the instances which occur in elementary treatises

on arithmetic and algebra.

For example :

O -f- h}
m= xm -+- m xm~l h + m

M~
xm~2 A2

-f etc.
a

Here A=mxm~ l
,
B= m

m~
xm~2

, etc.; and if h be

very small, (x -|- h} = xm -\- mxm
~ l

h, nearly,
}{i ft*

Again, e
h= 1 -f h + -=- -f --^+ etc. Therefore,

Lt A.O

e
x X e

h or e*+h= e* -j- e* h -}- ^ ti* + etc. And if h be
a

very small, ^*+A= ^* -j- e* h, nearly.

Again, log. (1 -f- n )
= M(n %n

2 + ^
_

etc&amp;lt; ^
To each side add log.jc, recollecting that

log. * + log. (l4- )
= log. x(l + )

= log. (^ + ^
),

and let

xn = h or ==.̂

Making these substitutions, the equation becomes

M
If ^ is very small, log. (x-\- fc)

= log. ^r -f
&quot; - h.

We can now apply this to the logarithmic example

with which we commenced this subject. It appears

that

Log. 41713 =4.6202714

Log. (41713 + 1)
= 4. 6202714 + .0000104

Log. (41713 -f-2)
= 4. 6202714 -f-. 0000104 X 2.

From which, and the considerations above-men

tioned,
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Log. (41713 -f h-)
= log. 41713 + . 0000104 X h,

which is extremely near the truth, even when h is a

much larger number, as the tables will show. Sup

pose, then, that the logarithm of 41713.27 is required.

Here /i= .21. It therefore only remains to calculate

.0000104 X-27, and add the result, or as much of it

as is contained in the first seven places of decimals,

to the logarithm of 41713. This trouble is saved in

the tables in the following manner. The difference of

the successive logarithms is written down, with the

exception of the cyphers at the beginning, in the

column marked D or Diff., under which are registered

the tenths of that difference, or as much of them as is

contained in the first seven decimal places, increasing

the seventh figure by 1 when the eighth is equal to or

greater than 5, and omitting the cyphers to save room.

From this table of tenths the table of hundredth parts

may be made by striking off the last figure, making

the usual change in the last but one, when the last is

equal to or greater than 5, and placing an additional

cypher. The logarithm of 41713.27 is, therefore, ob

tained in the following manner :

Log. 41713 =4.6202714
. 0000104 X- 2 = .0000021

. 0000104 x -07= .0000007

Log. 41713.27 =4.6202742

This, when the useless cyphers and parts of the opera

tion are omitted, is the process given in all the books

of logarithms. If the logarithm of a number contain-
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ing more than seven significant figures be sought, for

example 219034.717, recourse must be had to a table,

in which the logarithms are carried to more than seven

places of decimals. The fact is, that in the first seven

places of decimals there is no difference between

log. 219034.7 and log. 219034.717. For an excellent

treatise on the practice of logarithms the reader may
consult the preface to Babbage s Table of Logarithms

*

Copies of Babbage s Table ofLogarithms are now scarce, and the reader

may accordingly be referred to the prefaces of the treatises mentioned no

page 168. The article on &quot;

Logarithms, Use of&quot; in the English Cyclopedia,

may also be consulted with profit. Ed,



CHAPTER XII.

ON THE STUDY OF ALGEBRA.

IN
this chapter we shall give the student some ad

vice as to the manner in which he should prose

cute his studies in algebra. The remaining parts of

this subject present a field infinite in its extent and in

the variety of the applications which present them

selves. By whatever name the remaining parts of

the subject may be called, even though the ideas on

which they are based may be geometrical, still the

mechanical processes are algebraical, and present con

tinual applications of the preceding rules and devel

opments of the subjects already treated. This is the

case in Trigonometry, the application of Algebra to

Geometry, the Differential Calculus, or Fluxions, etc.

I. The first thing to be attended to in reading any

algebraical treatise, is the gaining a perfect under

standing of the different processes there exhibited,

and of their connexion with one another. This can

not be attained by a mere reading of the book, how

ever great the attention which may be given. It is
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impossible, in a mathematical work, to fill up every

process in the manner in which it must be filled up in

the mind of the student before he can be said to have

completely mastered it. Many results must be given,

of which the details are suppressed, such are the ad

ditions, multiplications, extractions of the square root,

etc., with which the investigations abound. These

must not be taken on trust by the student, but must

be worked by his own pen, which must never be out

of his hand while engaged in any algebraical process.

The method which we recommend is, to write the

whole of the symbolical part of each investigation,

filling up the parts to which we have alluded, adding

only so much verbal elucidation as is absolutely neces

sary to explain the connexion of the different steps,

which will generally be much less than what is given

in the book. This may appear an alarming labor to

one who has not tried it, nevertheless we are con

vinced that it is by far the shortest method of pro

ceeding, since the deliberate consideration which the

act of writing forces us to give, will prevent the con

fusion and difficulties which cannot fail to embarrass

the beginner if he attempt, by mere perusal only, to

understand new reasoning expressed in new language.

If, while proceeding in this manner, any difficulty

should occur, it should be written at full length, and

it will often happen that the misconception which oc

casioned the embarrassment will not stand the trial to

which it is thus brought. Should there be still any
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matter of doubt which is not removed by attentive re

consideration, the student should proceed, first mak

ing a note of the point which he is unable to perceive.

To this he should recur in his subsequent progress,

whenever he arrives at anything which appears to

have any affinity, however remote, to the difficulty

which stopped him, and thus he will frequently find

himself in a condition to decypher what formerly

appeared incomprehensible. In reasoning purely geo

metrical, there is less necessity for committing to writ

ing the whole detail of the arguments, since the sym
bolical language is more quickly understood, and the

subject is in a great measure independent of the mech

anism of operations ; but, in the processes of algebra,

there is no point on which so much depends, or on

which it becomes an instructor more strongly to in

sist.

II. On arriving at any new rule or process, the

student should work a number of examples sufficient

to prove to himself that he understands and can apply

the rule or process in question. Here a difficulty will

occur, since there are many of these in the books, to

which no examples are formally given. Nevertheless,

he may choose an example for himself, and his pre

vious knowledge will suggest some method of proving

whether his result is true or not. For example, the
7

development of (tf-f--*)
3 will exercise him in the use

of the binomial theorem
; when he has obtained the

series which is equivalent to (dt-j-^c) ,
let him, in the
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same way, develop (a-\-x)^ ; the product of these,

since -|-f f 3, ought to be the same as the develop

ment of (0-j-.*)
3
, or as 3

-f 3rt2 *-|-3tf.x
2
-J-.x

3
. He

may also try whether the development of {a-\-x)^ by

the binomial theorem, gives the same result as is ob

tained by the extraction of the square root of a-\- x.

Again, when any development is obtained, it should

be seen whether the development possesses all the

properties of the expression from which it has been

derived. For example, =- is proved to be equiv

alent to the series

1 -f- x -f x
2
-f xz

-J-, . etc. , ad infinitum.

This, when multiplied by 1 x, should give 1
;
when

multiplied by 1 x2
,
should give !-}-.#, because

etc.

Again,

etc .

Now, since a* X ay= a*+y9 the product of the two

first series should give the third. Many other in

stances of the same sort will suggest themselves, and

a careful attention to them will confirm the demon

stration of the several theorems, which, to a beginner,
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is often doubtful, on account of the generality of the

reasoning.

III. Whenever a demonstration appears perplexed,

on account of the number and generality of the sym

bols, let some particular case be chosen, and let the

same demonstration be applied. For example, if the

binomial theorem should not appear sufficiently plain,

the same reasoning may be applied to the expansion

of (1 -f *)
?

, or any other case, which is there applied
trt

to (1 -f *)&quot; Again, the general form of the product

C*-f-0), (x^- &amp;lt;), (#-}-&amp;lt;-), etc., . . . containing n factors,

will be made apparent by taking first two, then three,

and four factors, before attempting to apply the rea

soning which establishes the form of the general pro

duct. The same applies particularly to the theory of

permutations and combinations, and to the doctrine

of probabilities, which is so materially connected with

it. In the theory of equations it will be advisable at

first, instead of taking the general equation of the

form

x&quot; + Ax~l + Bx&quot;-* -f + Lx +M= 0,

to choose that of the third, or at most of the fourth

degree, or both, on which to demonstrate all the

properties of expressions of this description. But in

all these cases, when the particular instances have

been treated, the general case should not be neglected,

since the power of reasoning upon expressions such

as the one just given, in which all the terms cannot
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be written down, on account of their indeterminate

number, must be exercised, before the student can

proceed with any prospect of success to the higher

branches of mathematics.

IV. When any previous theorem is referred to, the

reference should be made, and the student should

satisfy himself that he has not forgotten its demon

stration. If he finds that he has done so, he should

not grudge the time necessary for its recovery. By
so doing, he will avoid the necessity of reading over

the subject again, and will obtain the additional ad

vantage of being able to give to each part of the sub

ject a time nearly proportional to its importance,

whereas, by reading a book over and over again until

he is a master of it, he will not collect the more prom
inent parts, and will waste time upon unimportant

details, from which even the best books are not free.

The necessity for this continual reference is particu

larly felt in the Elements of Geometry, where allusion

is constantly made to preceding propositions, and

where many theorems are of no importance, consid

ered as results, and are merely established in order to

serve as the basis of future propositions.

V. The student should not lose any opportunity

of exercising himself in numerical calculation, and

particularly in the use of the logarithmic tables. His

power of applying mathematics to questions of prac

tical utility is in direct proportion to the facility which

he possesses in computation. Though it is in plane
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and spherical trigonometry that the most direct nu

merical applications present themselves, nevertheless

the elementary parts of algebra abound with useful

practical questions. Such will be found resulting from

the binomial theorem, the theory of logarithms, and

that of continued fractions. The first requisite in this

branch of the subject, is a perfect acquaintance with

the arithmetic of decimal fractions
;
such a degree of

acquaintance as can only be gained by a knowledge

of the principles as well as of the rules which are de

duced from them. From the imperfect manner in

which arithmetic is usually taught, the student ought

in most cases to recommence this study before pro

ceeding to the practice of logarithms.

VI. The greatest difficulty, in fact almost the only

one of any importance which algebra offers to the rea

son, is the use of the isolated negative sign in such

expressions as a, a~x
,
and the symbols which we

have called imaginary. It is a remarkable fact, that

the first elements of the mathematics, sciences which

demonstrate their results with more certainty than any

others, contain difficulties which have been the sub

jects of discussion for centuries. In geometry, for

example, the theory of parallel lines has never yet

been freed from the difficulty which presented itself to

Euclid, and obliged him to assume, instead of proving,

the 12th axiom of his first book. Innumerable as have

been the attempts to elude or surmount this obstacle,

no one has been more successful than another. The
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elements of fluxions or the differential calculus, of

mechanics, of optics, and of all the other sciences, in

the same manner contain difficulties peculiar to them

selves. These are not such as would suggest them

selves to the beginner, who is usually embarrassed by

the actual performance of the operations, and no ways

perplexed by any doubts as to the foundations of the

rules by which he is to work. It is the characteristic

of a young student in the mathematical sciences, that

he sees, or fancies that he sees, the truth of every re

sult which can be stated in a few words, or arrived at

by few and simple operations, while that which is long

is always considered by him as abstruse. Thus while

he feels no embarrassment as to the meaning of the

equation -}- a X = #2
&amp;gt;

he considers the multipli

cation of am -f a&quot; by bm -{- b&quot; as one of the difficulties

of algebra. This arises, in our opinion, from the man

ner in which his previous studies are usually con

ducted. From his earliest infancy, he learns no fact

from his own observation, he deduces no truth by the

exercise of his own reason. Even the tables of arith

metic, which, with a little thought and calculation, he

might construct for himself, are presented to him

ready made, and it is considered sufficient to commit

them to memory. Thus a habit of examination is not

formed, and the student comes to the science of alge

bra fully prepared to believe in the truth of any rule

which is set before him, without other authority than

the fact of finding it in the book to which he is recom-
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mended. It is no wonder, then, that he considers the

difficulty of a process as proportional to that of re

membering and applying the rule which is given,

without taking into consideration the nature of the

reasoning on which the rule was founded. We are

not advocates for stopping the progress of the student

by entering fully into all the arguments for and against

such questions, as the use of negative quantities, etc.,

which he could not understand, and which are incon

clusive on both sides
;
but he might be made aware

that a difficulty does exist, the nature of which might

be pointed out to him, and he might then, by the con

sideration of a sufficient number of examples, treated

separately, acquire confidence in the results to which

the rules lead. Whatever may be thought of this

method, it must be better than an unsupported rule,

such as is given in many works on algebra.

It may perhaps be objected that this is induction,

a species of reasoning which is foreign to the usually

received notions of mathematics. To this it may be

answered, that inductive reasoning is of as frequent

occurrence in the sciences as any other. It is certain

that most great discoveries have been made by means

of it ; and the mathematician knows that one of his

most powerful engines of demonstration is that pecu

liar species of induction which proves many general

truths by demonstrating that, if the theorem be true

in one case, it is true for the succeeding one. But the

beginner is obliged to content himself with a less rig-
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orous species of proof, though equally conclusive, as

far as moral certainty is concerned. Unable to grasp

the generalisations with which the more advanced

student is familiar, he must satisfy himself of the

truth of general theorems by observing a number of

particular simple instances which he is able to com

prehend. For example, we would ask any one who

has gone over this ground, whether he derived more

certainty as to the truth of the binomial theorem from

the general demonstration (if indeed he was suffered

to see it so early in his career), or from observation

of its truth in the particular cases of the development

of (a -|- )
2
, (a -f- &amp;lt;)

3
, etc.

, substantiated by ordinary

multiplication. We believe firmly, that to the mass

of young students, general demonstrations afford no

conviction whatever ; and that the same may be said

of almost every species of mathematical reasoning,

when it is entirely new. We have before observed,

that it is necessary to learn to reason
;
and in no case

is the assertion more completely verified than in the

study of algebra. It was probably the experience of

the inutility of general demonstrations to the very

young student that caused the abandonment of rea

soning which prevailed so much in English works on

elementary mathematics. Rules which the student

could follow in practice supplied the place of argu

ments which he could not, and no pains appear to

have been taken to adopt a middle course, by suiting

the nature of the proof to the student s capacity. The
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objection to this appears to have been the necessity

which arose for departing from the a] pearance of rig

orous demonstration. This was the cry of those who,

not having seized the spirit of the processes which

they followed, placed the force of the reasoning in the

forms. To such the authority of great names is a

strong argument; we will therefore cite the words of

Laplace on this subject.

11 Newton extended to fractional and negative

powers the analytical expression which he had found

for whole and positive ones. You see in this exten

sion one of the great advantages of algebraic language

which expresses truths much more general than those

which were at first contemplated, so that by making

the extension of which it admits, there arises a multi

tude of new truths out of formulae which were founded

upon very limited suppositions. At first, people were

afraid to admit the general consequences with which

analytical formulae furnished them ; but a great number

of examples having verified them, we now, without fear,

yield ourselves to the guidance of analysis through all

the consequences to which it leads us, and the most

happy discoveries have sprung from the boldness.

We must observe, however, that precautions should

be taken to avoid giving to formulae a greater exten

sion than they really admit, and that it is always well

to demonstrate rigorously the results which are ob

tained.&quot;

We have observed that beginners are not disposed
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to quarrel with a rule which is easy in practice, and

verified by examples, on account of difficulties which

occur in its establishment. The early history of the

sciences presents occasion for the same remark. In

the work of Diophantus, the first Greek writer on al

gebra, we find a principle equivalent to the equations

-f-#X 1&amp;gt;
= ab, and #X b -\-ab, admitted

as an axiom, without proof or difficulty. In the Hin

doo works on algebra, and the Persian commentators

upon them, the same thing takes place. It appears,

that struck with the practical utility of the rule, and

certain by induction of its truth, they did not scruple

to avail themselves of it. A more cultivated age, pos

sessed of many formulae whose developments pre

sented striking examples of an universality in alge

braic language not contemplated by its framers, set

itself to inquire more closely into the first principles

of the science. Long and still unfinished discussions

have been the result, but the progress of nations has

exhibited throughout a strong resemblance to that of

individuals.

VII. The student should make for himself a sylla

bus of results only, unaccompanied by any demonstra

tion. It is essential to acquire a correct memory for

algebraical formulae, which will save much time and

labor in the higher departments of the science. Such

a syllabus will be a great assistance in this respect,

and care should be taken that it contain only the most

useful and most prominent formulae. Whenever that
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can be done, the student should have recourse to the

system of tabulation, of which he will have seen sev

eral examples in this treatise. In this way he should

write the various forms which the roots of the equa

tion ax2
-{- b x -f c= Q assume, according to the signs

of a, b, and
c&amp;gt;

etc. Both the preceptor and the pupil,

but especially the former, will derive great advantage

from the perusal of Lacroix, Essais sur rEnseignement

en general et sur celui des Mathtmatiques en particulier,
*

Condillac, La Langue des Calculs, and the various ar

ticles on the elements of algebra in the French En

cyclopedia, which are for the most part written by

D Alembert. The reader will here find the first prin-

*The books mentioned in the present passage, while still very valuable,

are now not easily procurable and, besides, do not give a complete idea of

the subject in its modern extent. A recent work on the Philosophy and Teach

ing of Mathematics is that of C. A. Laisant (La Mathhnatique. Philosophie-

Enseignement, Paris, 1^98, Georges Carre et C. Naud, publishers.) Perhaps
the most accessible and useful work in English for the elements is David

Eugene Smith s new book The Teaching of Elementary Mathematics. (New
York : The Macmillan Company, 1900). Mention might be made also of W. M.

Gillespie s translation from Comte s Cours de Philosophie Positive, under the

title of The Philosophy of Mathematics (New York : Harpers, 1851), and of the

Cours de Mlthodologie Mathtrnptique of Felix Dauge (Deuxieme edition, revue

etaugmentee. Gand, Ad. Hoste ; Paris, Gauthier-Villars, 1896). The recent

work of Freycinet on the Philosophy ofthe Sciences (Paris, 1896, Gauthier-Vil

lars) will be found valuable. One of the best and most comprehensive of the

modern works is that of Duhamel, Des Methodcs dans les Sciences de Raisonne-

ntent, (5 parts, Paris, Gauthier-Villars), a work giving a comprehensive expo
sition of the foundations of all the mathematical sciences. The chapters in

Diihring s Kritische Geschichte d?r Prinzipien der Mechanik and his Neue

Crundmittel on the study of mathematics and mechanics is replete with orig

inal, but hazardous, advice, and may be consulted as a counter-irritant to

the traditional professional views of the subject. The articles in the English

Cyclopedia, by DeMorgan himself, contain refreshing hints on this subject.

But the greatest inspiration is to be drawn from the works of the masters

themselves; for example, from such works as Laplace s Introduction to the

Calculus of Probabilities, or from the historical and philosophical reflexions

that uniformly accompany the later works of Lagrange. The same remark

applies to the later mathematicians of note Ed.
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ciples of algebra, developed and elucidated in a mas

terly manner. A great collection of examples will be

found in most elementary works, but particularly in

Hirsch, Sammlung von Beispielen, etc., translated into

English under the title of Self-Examinations in Algebra,

etc., London: Black, Young and Young, 1825.* The

student who desires to carry his algebraical studies

farther than usual, and to make them the stepping-

stone to a knowledge of the higher mathematics,

should be acquainted with the French language, f A

knowledge of this, sufficient to enable him to read the

simple and easy style in which the writers of that na

tion treat the first principles of every subject, may be

acquired in a short time. When that is done, we re

commend to the student the algebra of M. Bourdon, J

* Hirsch s Collection, enlarged and modernised, can be obtained in vari

ous recent German editions. The old English translations of the original

are not easily procured. Ed.

t German is now of as much importance as French. But the French text

books still retain their high standard. Ed.

\ Bourdon s Elements ofAlgebra is still used in France, having appeared
in 1895 in its eighteenth edition, with notes by M. Prouhet (Gauthier-Villars,

Paris.) A more elementary French work of a modern character is that of

J. Collin (Second edition, 1888, Paris, Gauthier-Villars). A larger and more

complete treatise which begins with the elements and extends to the higher
branches of the subject is the Traitt d Algtbre of H. Laurent, in four small

volumes (Gauthier-Villars, Paris). This work contains a large collection of

examples. Another elementary work is that of C. Bourlet, Lecons d Alglbre

Elementatre, Paris, Colin, 1896. A standard and exhaustive work on higher

algebra is the Cours d Alglbre Suptrieure, of J. A. Serret, two large volumes

(Fifth edition, 1885, Paris, Gauthier-Villars).

The number of American and English text-books of the intermediate and

higher type is very large. Todhunter s Algebra and Theory of Equations

(London: Macmillan & Co.) were for a long time the standards in England
and this country, but have now (especially the first-mentioned) been virtually

superseded. An exce lent recent text-book for beginners, and one that skil

fully introduces modern notions, is the Elements of Algebra of W. W. Beman
and D. E. Smith (Boston, 1900). Fisher and Schwatt s elementary text-books
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a work of eminent merit, though of some difficulty to

the English student, and requiring some previous

habits of algebraical reasoning.

VIII. The height to which algebraical studies

should be carried, must depend upon the purpose to

which they are to be applied. For the ordinary pur

poses of practical mathematics, algebra is principally

useful as the guide to trigonometry, logarithms, and

the solution of equations. Much and profound study

of algebra are also recommendable from both a practical and theoretical

point of view, Valuable are C. Smith s Treatise on Algebra (London : Mac-

millan), and Oliver, Wait, and Jones s Treatise on Algebra (Ithaca, N. Y.,

1887), also Fine s Nitmber System of Algebra (Boston : Leach). The best Eng
lish work on the theory of equations is Burnside and Panton s (Longmans).

A very exhaustive presentation of the subject from the modern point
of view is the Algebra of Professor George Chrystal (Edinburgh : Adam and
Charles Black, publishers), in two large volumes of nearly six hundred pages
each. Recently Professor Chrystal has published a more elementary work
entitled Introduction to Algebra (same publishers).

A few German works may also be mentioned in this connexion, for the

benefit of readers acquainted with that language. Professor Hermann Schu
bert has, in various forms, given systematic expositions of the elementary
principles of arithmetic, (e. g., see his Arithmetik und Algebra, Sammlung
Goschen, Leipsic, an extremely cheap series containing several other ele

mentary mathematical works of high standard; also, for a statement of

Schubert s views in English consult his Mathematical Recreatio?is, Chicago,
1898). Professor Schubert has recently begun the editing of a new and larger
series of mathematical text-books called the Sammhing Schubert (Leipsic :

Goschen), which contains three works treating of algebra. In this connexion

maybe mentioned also Matthiessen s admirable Grundzuge der antiken und
modernen Algebra (Leipsic: Teubner) for literal equations. The following
are all excellent: (i) Otto Biermann s Elemente der hbheren Mathematik

(Leipsic, 1895); (2) Petersen s Theorie der algebraischen Gleichungen (Copen
hagen: Host; also in French, Paris: Gauthier-Villars); (3) Richard Baltzer s

Elemente der Mathematik (2 vols., Leipsic: Hirzel); (4) Gustav Holzmiiller s

Methodisches Lehrbuch der Elementarmathematik (3 parts, Leipsic: Teubner);
(5) Werner Jos. Schuller s Arithmetik und Algebra fur hohere Schulen und
Lehrerseminare, besonders zum Selbstunterricht, etc. (Leipsic, 1891, Teubner; ;

(6) Oskar Schlomilch s Handbuch der algebraischen Analysis (Frommann,
Stuttgart); (7) Eugen Netto s Vorlesungen iiber Algebra (Leipsic : Teubner, 2

vols.); (8) Heinrich Weber s Lehrbuch der Algebra (Braunschweig: Vieweg, 2

vols ). This last work is the most advanced treatise that has yet appeared.
A French translation has been announced. Ed.- April, 1902.
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is not therefore requisite ;
the student should pay

great attention to all numerical processes and particu

larly to the methods of approximation which he will

find in all the books. His principal instrument is the

table of logarithms of which he should secure a knowl

edge both theoretical and practical. The course which

should be adopted preparatory to proceeding to the

higher branches of mathematics is different. It is still

of great importance that the student should be well

acquainted with numerical applications ; nevertheless,

he may omit with advantage many details relative to

the obtaining of approximative numerical results, par

ticularly in the theory of equations of higher degrees

than the second. Instead of occupying himself upon

these, he should proceed to the application of algebra

to geometry, and afterwards to the differential cal

culus. When a competent knowledge of these has

been obtained, he may then revert to the subjects

which he has neglected, giving them more or less at

tention according to his own opinion of the use which

he is likely to have for them. This applies particu

larly to the theory of equations, which abounds with

processes of which very few students will afterwards

find the necessity.

We shall proceed in the next number to the diffi

culties which arise in the study of Geometry and Tri

gonometry.



CHAPTER XIII.

ON THE DEFINITIONS OF GEOMETRY.

TN this treatise on the difficulties of Geometry and

-*
Trigonometry, we propose, as in the former part

of the work, to touch on those points only which, from

novelty in their principle, are found to present diffi

culties to the student, and which are frequently not

sufficiently dwelt upon in elementary works. Perhaps

it may be asserted, that there are no difficulties in

geometry which are likely to place a serious obstacle

in the way of an intelligent beginner, except the tem

porary embarrassment which always attends the com

mencement of a new study ; that, for example, there

is nothing in the elements of pure geometry compar

able, in point of complexity, to the theory of the nega

tive sign, of fractional indices, or of the decomposi

tion of an expression of the second degree into factors.

This may be true
;
and were it only necessary to study

the elements of this science for themselves, without

reference to their application, by means of algebra, to

higher branches of knowledge, we should not have



IQ2 ON THE STUDY OF MATHEMATICS.

thought it necessary to call the attention of our read

ers to the points which we shall proceed to place be

fore them. But while there is a higher study in which

elementary ideas, simple enough in their first form,

are so generalised as to become difficult, it will be an

assistance to the beginner who intends to proceed

through a wider course of pure mathematics than

forms part of common education, if his attention is

early directed, in a manner which he can compre

hend, to future extensions of what is before him.

The reason why geometry is not so difficult as al

gebra, is to be found in the less general nature of the

symbols employed. In algebra a general proposition

respecting numbers is to be proved. Letters are taken

which may represent any of the numbers in question,

and the course of the demonstration, far from making

any use of a particular case, does not even allow that

any reasoning, however general in its nature, is con

clusive, unless the symbols are as general as the argu

ments. We do not say that it would be contrary to

good logic to form general conclusions from reasoning

on one particular case, when it is evident that the

same considerations might be applied to any other,

but only that very great caution, more than a beginner

can see the value of, would be requisite in deducing

the conclusion. There occurs also a mixture of gen

eral and particular propositions, and the latter are

liable to be mistaken for the former. In geometry on

the contrary, at least in the elementary parts, any
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proposition may be safely demonstrated by reasonings

on any one particular example. For though in prov

ing a property of a triangle many truths regarding

that triangle may be asserted as having been proved

before, none are brought forward which are not gen

eral, that is, true for all instances of the same kind.

It also affords some facility that the results of elemen

tary geometry are in many cases sufficiently evident

of themselves to the eye ;
for instance, that two sides

of a triangle are greater than the third, whereas in

algebra many rudimentary propositions derive no evi

dence from the senses; for example, that a* b* is

always divisible without remainder by a b.

The definitions of the simple terms point, line, and

surface have given rise to much discussion. But the

difficulties which attend them are not of a nature to

embarrass the beginner, provided he will rest content

with the notions which he has already derived from

observation. No explanation can make these terms

more intelligible. To them may be added the words

straight line, which cannot be mistaken for one mo

ment, unless it be by means of the attempt to explain

them by saying that a straight line is &quot; that which lies

evenly between its extreme points.&quot;

The line and surface are distinct species of magni

tude, as much so as the yard and the acre. The first

is no part of the second, that is, no number of lines

can make a surface. When therefore a surface is di

vided into two parts by a line, the dividing line is not
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to be considered as forming a part of either. That

the idea of the line or boundary necessarily enters

into the notion of the division is very true ;
but if we

conceive the line abstracted, and thus get rid of the

idea of division, neither surface is increased or dimin

ished, which is what we mean when we say that the

line is not a part of the surface. The same considera

tions apply to a point, considered as the boundary of

the divisions of a line.

The beginner may perhaps imagine that a line is

made up of points, that is, that every line is the sum

of a number of points, a surface the sum of a number

of lines, and so on. This arises from the fact, that

the things which we draw on paper as the representa

tives of lines and points, have in reality three dimen

sions, two of which, length and breadth, are perfectly

visible. Thus the point, such as we are obliged to

represent it, in order to make its position visible, is

in reality a part of our line, and our points, if suffi

ciently multiplied in number and placed side by side,

would compose a line of any length whatever. But

taking the mathematical definition of a point, which

denies it all magnitude, either in length, breadth, or

thickness, and of a line, which is asserted to possess

length only without breadth or thickness, it is easy to

show that a point is no part of a line, by making it

appear that the shortest line can be cut in as many

points as the longest, which may be done in the fol

lowing manner. Let AB be any straight line, from
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the ends of which, A and B, draw two lines, AT7 and

CB, parallel to one another. Consider AF as pro

duced without limit, and in CB take any point C, from

which draw lines CE, CF, etc., to different points in

AF. It is evident that for each point E in AF there

is a distinct point in AB, viz., the intersection of CE
with AB

; for, were it possible that two points, E
and -Fin AF, could be thus connected with the same

point of AB, it is evident that two straight lines would

enclose a space, viz., the lines CE and CFt which

C B
Fig. i.

both pass through C, and would, were our supposi

tion correct, also pass through the same point in AB.

There can then be taken as many points in the finite

or unbounded line AB as in the indefinitely extended

line AF.

The next definition which we shall consider is that

of a plane surface. The word plane or flat is as hard

to define, without reference to any thing but the idea

we have of it, as it is easy to understand. Neverthe

less the practical method of ascertaining whether or

no a surface is plane, will furnish a definition, not
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such, indeed, as to render the nature of a plane sur

face more evident, but which will serve, in a mathe

matical point of view, as a basis on which to rest the

propositions of solid geometry. If the edge of a ruler,

known to be perfectly straight, coincides with a sur

face throughout its whole length, in whatever direc

tion it may be placed upon that surface, we conclude

that the surface is plane. Hence the definition of a

plane surface is that in which, any two points being,

taken, the straight line joining these points lies wholly

upon the surface.

Two straight lines have a relation to one another

independent altogether of their length. This we com

monly express (for among the most common ideas are

found the germ of every geometrical theory) by saying

that they are in the same or different directions. By
the direction of the needle we ascertain the direction in

which to proceed at sea, and by the direction in which

the hands of a clock are placed we tell the hour. It

remains to reduce this common notion to a more pre

cise form.

Suppose a straight line OA to be given in magni

tude and position, and to remain fixed while another

line OB, at first coincident with OA, is made to move

round OA, so as continually to vary its direction with

respect to OA. The process of opening a pair of com

passes will furnish an illustration of this, but the two

lines need not be equal to one another. In this case

the opening made by the two will continually increase,
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and this opening is a species of magnitude, since one

opening may be compared with another, so as to as

certain which of the two is the greater. Thus if the

figure CPD be removed from its place, without any

other change, so that the point P may fall on O, and

the line PC may lie upon and become a part of OA,

or OA of PC, according to which is the longer of the

two, then if the opening CPD is the same as the open

ing A OB, PD will lie upon OB at the same time as

PC lies upon OA. But if PD does not then lie upon

OB, but falls between OB and OA, the opening CPD

O A P C

Fig. 2.

is less than the opening A OB, and if PD does not

fall between OA and OB, or on OB, the opening

CPD is greater than the opening BOA. To this spe

cies of magnitude, the opening of two lines, the name

of angle is given, that is BO is said to make an angle

with OA. The difficulty here arises from this magni

tude being one, the measure of which has seldom fal

len under observation of those who begin geometry.

Every one has measured one line by means of another,

and has thus made a number the representative of a

length ;
but few, at this period of their studies, have
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been accustomed to the consideration, that one open

ing may be contained a certain number of times in

another, or may be a certain fraction of another.

Nevertheless we may find measures of this new spe

cies of magnitude either by means of time, length, or

number.

One magnitude is said to be a measure of another,

when, if the first be doubled, trebled, halved, etc., the

second is doubled, trebled, or halved, etc.; that is,

when any fraction or multiple of the first corresponds

to the same fraction or multiple of the second in the

same manner as the first does to the second. The two

quantities need not be of the same kind : thus, in the

barometer the height of the mercury (a length) meas

ures the pressure of the atmosphere (a weight) ;
for if

the barometer which yesterday stood at 28 inches, to

day stands at 29 inches, in which case the height of

yesterday is increased by its 28th part, we know that

the atmospheric pressure of yesterday is increased by

its 28th part to-day. Again, in a watch, the number

of hours elapsed since twelve o clock is measured by

the angle which a hand makes with the position it oc

cupied at twelve o clock. In the spring balances a

weight is measured by an angle, and many other sim

ilar instances might be given.

This being premised, suppose a line which moves

round another as just described, to move uniformly,

that is, to describe equal openings or angles in equal

times. Suppose the line OA to move completely
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round, so as to reassume its first position in twenty-

four hours. Then in twelve hours the moving line

will be in the position OB, in six hours it will be in

OC, and in eighteen hours in OD. The line OC is

that which makes equal angles with OA and OB, and

is said to be at right angles, or perpendicular to OA
and OB, Again, OA and OB which are in the same

C

D
Fig. 3-

right line, but on opposite sides of the point &amp;lt;?,
evi

dently make an opening or angle which is equal to

the sum of the angles AOC and COB, or equal to two

right angles. A line may also be said to make with

itself an opening equal to four right angles, since

after revolving through four right angles, the moving

line reassumes its original position. We may even

carry this notion farther : for if the moving line be in
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the position OE when P hours have elapsed, it will

recover that position after every twenty-four hours,

that is, for every additional four right angles de

scribed; so that the angle AOE is equally well repre

sented by any of the following angles :

4 right angles -|- A OE
8 right angles -\-AOE

12 right angles -f AOE, etc.

These formulae which suppose an opening greater

than any apparent opening, and which take in and

represent the fact that the moving line has attained

its position for the second, third, fourth, etc., time,

since the commencement of the motion, are not of

any use in elementary geometry ;
but as they play an

important part in the application of algebra to the

theory of angles, we have thought it right to mention

them here.

It is plain also that we may conceive the line OE
to make two openings or angles with the original po

sition OA : (1) that through which it has moved to re

cede from OA
; (2) that through which it must move

to reach OA again. The first (in the position in which

we have placed OA) is what is called in geometry the

angle AOE; the second is more simply described as

composed of the openings or angles EOC, COB,

BOD, DOA, and is not used except in the application

of algebra above mentioned.* Of the two angles just

*But use is made of it in some modern text-books of elementary geome

try. Ed.
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alluded to, one must be less than two right angles,

and the second greater ;
the first is the one usually

referred to.

It is plain that the angle or opening made by two

lines does not depend upon their length but upon

their position ;
if either be shortened or lengthened,

the angle still remains the same
;
and if while the an

gle increases or decreases one of the straight lines

containing it is diminished, the angle so contained

may have a definite and given magnitude at the mo-

/A V

Fig- 4

ment when the straight line disappears altogether and

becomes nothing. For example, take two points of

any curve Alt, and join A and B by a straight line.

Let the point B move towards A
;

it is evident that

the angle made by the moving line with AB increases

continually, while as much of one of the lines contain

ing it as is intercepted by the curve, diminishes with

out limit. When this intercepted part disappears en

tirely, the line in which it would have lain had it had

any length, has reached the line AG, which is called

the tangent of the curve.
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In elementary geometry two equal angles lying on

different sides of a line, such as AOE, A Off (fig. 3),

would be considered as the same. In the application

of algebra, they would be considered as having differ

ent signs, for reasons stated at length in pages 112 et

seq., of the first part of this Treatise. It is also com

mon in the latter branch of the science to measure

angles in one direction only ; for example, in Figure 3

the angles made by OE, OF, OG, and Off, if measured

upwards from OA, would be the openings through

which a line must move in the same direction from OA,

to attain those positions ; and the second, third, and

fourth angles would be greater than one, two, and

three right angles respectively.

We proceed to the method of reasoning in geom

etry, or rather to the method of reasoning in general,

since there is, or ought to be, no essential difference

between the manner of deducing results from first

principles, in any science.



CHAPTER XIV.

ON GEOMETRICAL REASONING.

IT
is evident that all reasoning, of what form soever,

can be reduced at last to a number of simple prop

ositions or assertions
;
each of which, if it be not self-

evident, depends upon those which have preceded it.

Every assertion can be divided into three distinct

parts. Thus the phrase, &quot;all right angles are equal,&quot;

consists of: (1) the subject spoken of, viz., right an

gles, which is here spoken of universally, since every

right angle is a part of the subject ; (2) the copula, or

manner in which the two are joined together, which

is generally the verb is, or is equal to, and can always

be reduced to one or the other : in this case the co

pula is affirmative ; (3) the predicate, or thing asserted

of the subject, viz., equal angles. The phrase, thus

divided, stands as written below under 1, and is called

a universal affirmative. The second is called a particu

lar affirmative proposition ;
the third a universal nega

tive; the fourth a particular negative:

1. All right angles are equal (magnitudes).
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2. Some triangles are equilateral (figures).

3. No circle is convex to its diameter.

4. Some triangles are not equilateral (figures).

Many assertions appear in a form which, at first

sight, cannot be reduced to one of the preceding ;
the

following are instances of the change which it is nec

essary to make in them :

1. Parallel lines never meet, or parallel lines are

lines which never meet.

2. The angles at the base of an isosceles triangle

are equal, or an isosceles triangle is a triangle having

the angles at the base equal .

The different species of assertions, and the argu

ments which are compounded of them, may be dis

tinctly conceived by referring them all to one species

of subject and predicate. Since every assertion, gen

erally speaking, includes a number of individual cases

in its subject, let the points of a circle be the subject

and those of a triangle the predicate. These figures

being drawn, the four species of assertions just alluded

to are as follows :

1. Every point of the circle is a point of the tri

angle, or the circle is contained in the triangle.

2. Some points of the circle are points of the tri

angle, or part of the circle is contained in the tri

angle.

3. No point of the circle is a point of the triangle,

or the circle is entirely without the triangle.
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4. Some points of the circle are not points of the

triangle, or part of the circle is outside the triangle.

On these we observe that the second follows from

the first, as also the fourth from the third, since that

which is true of all is true of some or any ;
while the

first and third do not follow from the second and

fourth, necessarily, since that which is true of some

only need not be true of all. Again, the second and

fourth are not necessarily inconsistent with each other

for the same reason. Also two of these assertions

must be true and the others untrue. The first and

the third are called contraries, while the first and

fourth, and the second and third are contradictory.

The converse of a proposition is made by changing the

predicate into the subject, and the subject into the

predicate. No mistake is more common than con

founding together a proposition and its converse, the

tendency to which is rather increased in those who

begin geometry, by the number of propositions which

they find, the converses of which are true. Thus all

the definitions are necessarily conversely true, since

the identity of the subject and predicate is not merely

asserted, but the subject is declared to be a name

given to all those magnitudes which have the proper

ties laid down in the predicate, and to no others.

Thus a square is a four-sided figure having equal

sides and one right angle, that is, let every four-sided

figure having, etc., be called a square, and let no other

figure be called by that name, whence the truth of the
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converse is evident. Also many of the facts proved,

in geometry are conversely true. Thus all equilateral

triangles are equiangular, from which it is proved that

all equiangular triangles are equilateral. Of the first

species of assertion, the universal affirmative, the con

verse is not necessarily true. Thus &quot;every point in

figure A is a point of B&quot; does not imply that &quot;every

point of B is a point of
-4,&quot; although this may be the

case, and is, if the two figures coincide entirely. The

second species, the particular affirmative, is conversely

true, since if some points of A are points of B, some

points of B are also points of A. The first species of

assertion is conversely true, if the converse be made

to take the form of the second species : thus from

&quot;all right angles are equal,&quot;
it may be inferred that

&quot;some equal magnitudes are right angles.&quot; The third

species, the universal negative, is conversely true,

since if
&quot; no point of B is a point of A&quot; it may be in

ferred that &quot;no point of A is a point of B.&quot; The

fourth species, the particular negative, is not neces

sarily conversely true. From &quot;some points of A are

not points of B,&quot; or A is not entirely contained within

B, we can infer nothing as to whether B is or is not

entirely contained in A. It is plain that the converse

of a proposition is not necessarily true, if it says more

either of the subject or predicate than was said before.

Now &quot;every equilateral triangle is equiangular,&quot; does

not speak of all equiangular triangles,.but asserts that

among all possible equiangular triangles are to be
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found all the equilateral ones. There may then, for

anything to the contrary to be discovered in our as

sertion, be classes of equiangular triangles not in

cluded under this assertion, of which we can therefore

say nothing. But in saying
&quot; no right angles are un

equal,&quot; that which we exclude, we exclude from all

unequal angles, and therefore &quot;no unequal angles are

right angles&quot; is not more general than the first.

The various assertions brought forward in a geo

metrical demonstration must be derived in one of the

following ways :

I. From definition. This is merely substituting,

instead of a description, the name which it has been

agreed to give to whatever bears that description. No

definition ought to be introduced until it is certain

that the thing defined is really possible. Thus though

parallel lines are defined to be &quot;lines which are in

the same plane, and which being ever so far produced

never meet,&quot; the mere agreement to call such lines,

should they exist, by the name of parallels, is no suffi

cient ground to assume that they do exist. The defi

nition is therefore inadmissible until it is really shown

that there are such things as lines which being in the

same plane never meet. Again, before applying the

name, care must be taken that all the circumstances

connected with the definition have been attended to.

Thus, though in plane geometry, where all lines are

in one plane, it is sufficient that two lines would never

meet though ever so far produced, to call them par-
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allel, yet in solid geometry the first circumstance must

be attended to, and it must be shown that lines are in

the same plane before the name can be applied. Some

of the axioms come so near to definitions in their na

ture, that their place may be considered as doubtful.

Such are,
&quot; the whole is greater than its

part,&quot;
and

&quot;magnitudes which entirely coincide are equal to one

another.&quot;

II. From hypothesis. In the statement of every

proposition, certain connexions are supposed to exist

from which it is asserted that certain consequences

will follow. Thus &quot;in an isosceles triangle the angles

at the base are equal,&quot; or,
&quot;

if a triangle be isosceles

the angles at the base will be equal.&quot; Here the hy

pothesis or supposition is that the triangle has two

equal sides, the consequence asserted is that the an

gles at the base or third side will be equal. The con

sequence being only asserted to be true when the an

gle is isosceles, such a triangle is supposed to be taken

as the basis of the reasonings, and the condition that

its two sides are equal, when introduced in the proof,

is said to be introduced by hypothesis.

In order to establish the result it may be necessary

to draw other lines, etc., which are not mentioned in

the first hypothesis. These, when introduced, form

what is called the construction.

There is another species of hypothesis much in

use, principally when it is required to deduce the con

verse of a theorem from the theorem itself. Instead
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of proving the consequence directly, the contradictory

of the consequence is assumed to hold good, and if

from this new hypothesis, supposed to exist together

with the old one, any evidently absurd result can be

derived, such as that the whole is greater than its

part, this shows that the two hypotheses are not con

sistent, and that if the first be true, the second cannot

be so. But if the second be not true, its contradic

tory is true, which is what was required to be proved.

III. Prom the evidence of the assertions themselves.

The propositions thus introduced without proof are

only such as are in their nature too simple to ad

mit of it. They are called axioms. But it is neces

sary to observe, that the claim of an assertion to be

called an axiom does not depend only on its being

self-evident. Were this the case many propositions

which are always proved might be assumed
;
for ex

ample, that two sides of a triangle are greater than

the third, or that a straight line is the shortest dis

tance between two points. In addition to being self-

evident, it must be incapable of proof by any other

means, and it is one of the objects of geometry to re

duce the demonstrations to the least possible number

of axioms. There are only two axioms which are dis

tinctly geometrical in their nature, viz., &quot;two straight

lines cannot enclose a space,&quot; and &quot;through each

point outside a line, not more than one parallel to

that line can be drawn.&quot; All the rest of the proposi

tions commonly given as axioms are either arithmet-
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ical in their nature; such as &quot;the whole is greater

than its
part,&quot;

&quot;the doubles of equals are equals,&quot;

etc.; or mere definitions, such as &quot;

magnitudes which

entirely coincide are equal&quot;; or theorems admitting

of proof, such as &quot;all right angles are equal.&quot; There

is however one more species of self-evident proposi

tion, the postulate or self-evident problem, such as

the possibility of drawing a right line, etc.

IV. From proof already given. What has been

proved once may be always taken for granted after

wards. It is evident that this is merely for the sake

of brevity, since it would be possible to begin from

the axioms and proceed direct to the proef of any one

proposition, however far removed from them ; and

this is an exercise which we recommend to the stu

dent. Thus much for the legitimate use of any single

assertion or proposition. We proceed to the manner

of deducing a third proposition from two others.

It is evident that no assertion can be the direct

and necessary consequence of two others, unless those

two contain something in common, or which is spoken

of in both. In many, nay most, cases of ordinary con

versation and writing, we leave out one of the asser

tions, which is, usually speaking, very evident, and

make the other assertion followed by the consequence

of both. Thus, &quot;Geometry is useful, and therefore

ought to be studied,&quot; contains not only what is ex

pressed, but also the following, That which is useful

ought to be studied ;

&quot;

for were this not admitted, the
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former assertion would not be necessarily true. This

may be written thus :

Every thing useful is what ought to be stud

ied.

Geometry is useful, therefore geometry is

what ought to be studied.

This, in its present state, is called a syllogism, and

may be compared with the following, from which it

only differs in the things spoken of, and not in the

manner in which they are spoken of.

Every point of the circle is a point of the tri

angle.

The point B is a point of the circle.

Therefore the point B is a point of the tri

angle.

Here a connexion is established between the point

B and the points of the triangle (viz., that the first is

one of the second) by comparing them with the points

of the circle
;
that which is asserted of every point of

the circle in the first can be asserted of the point JB,

because from the second B is one of these points.

Again, in the former argument, whatever is asserted

of every thing useful is true of geometry, because ge

ometry is useful.

The common term of the two propositions is called

the middle term, while the predicate and subject of the

conclusion are called the major and minor terms, re

spectively. The two first assertions are called the

major and minor premisses, and the last the conclusion.



212 ON THE STUDY OF MATHEMATICS.

Suppose now the two premisses and conclusion of the

syllogism just quoted to be varied in every possible

way from affirmative to negative, from universal to

particular, and vice versa, where the number of changes

will be 4x4x4, or 64 (called moods); since each

proposition may receive four different forms, and each

form of one may be compounded with any of the other

two. And these may be still further varied, if instead

of the middle term being the subject of the first, and

the predicate of the second, this order be reversed, or

if the middle term be the subject of both, or the pred

icate of both, which will give four different figures, as

they are called, to each of the sixty-four moods above

mentioned. But of these very few are correct deduc

tions, and without entering into every case we will

state some general rules, being the methods which

common reason would take to ascertain the truth or

falsehood of any one of them, collected and general

ised.*

I. The middle term must be the same in both

*Whately s Logic, page 76, third edition. A work which should be read

by all mathematical students. [Whately s Logic is procurable in modern edi

tions, many of which were, until recently, widely read in our academies and

colleges. The following works in which the same material is presented in a

shape more comforming to modern methods may be mentioned : T. Fowler s

Elements of Deductive Logic ; Bain s Logic; Venn s Empirical Logic and Sym
bolical Logic ; Keynes s Formal Logic; Carveth Read s Logic, Deductive and
Inductive; Mill s System of Logic (a. discussion rather than a presentation).

Strictly contemporary logic will be found represented in the following works

in English: Jevons s Principles of Science and Studies in Deductive Logic:

Bradley s Principles of Logic ; Sidgwick s Process of Argument : Bosanquet s

Logic: or, the Morphology of Knowledge; and the same author s Essentials of

Logic; Sigwart s Logic, recently translated from the German
;
and Ueber-

weg s System of Logic and History ofLogical Doctrines. Ed.]
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premisses, by what has just been observed
;
since in

the comparison of two things with one and the same

third thing, in order to ascertain their connexion or

discrepancy, consists the whole of reasoning. Thus,

the deduction without further process of the equation

a*-}-b
*= c2 from the proposition, which proves that

the sum of the squares described on the sides of a

right-angled triangle is equal to the square on its hy-

pothenuse, a, b, and c being the number of linear units

in the sides and the hypothenuse, is incorrect, since

syllogistically stated the argument would stand thus :

The sum of the squares of the 1

lines a and b . . .....
\ are equal quantities,

and

the square of the line c

the sum of the squares of a and

are and

the square of c.

Therefore and are equal quantities.

Here the term square in the major premiss has its

geometrical, and in the minor its algebraical sense,

being in the first a geometrical figure, and in the sec

ond an arithmetical operation. The term of compari

son is not therefore the same in both, and the conclu

sion does not therefore follow from the premisses.

The same error is committed if all that can be con

tained under the middle term be not spoken of either

in the major or minor premiss. For if each premiss
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mentions only a part of the middle term, these parts

may be different, and the term of comparison really

different in the two, though passing under the same

name in both. Thus,

All the triangle is in the circle,

All the square is in the circle,

proves nothing, since the square may, consistently

with these conditions, be either wholly, partly, or not

at all contained in the triangle. In fact, as we have

before shown, each of these assertions speaks of a part

of the circle only. The following is of the same kind :

Some of the triangle is in the circle.

Some of the circle is not in the square, etc.

II. If both premisses are negative, no conclusion

can be drawn. For it can evidently be no proof either

of agreement or disagreement that two things both

disagree with a third. Thus the following is incon

clusive :

None of the circle is in the triangle.

None of the square is in the circle.

III. If both premisses are particular, no conclusion

can be drawn, as will appear from every instance that

can be taken, thus :

Some of the circle is in the triangle.

Some of the square is not in the circle,

proves nothing.

IV. In forming a conclusion, where a conclusion

can be formed, nothing must be asserted more gener-
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ally in the conclusion than in the premisses. Thus, if

from the following,

All the triangle is in the circle,

All the circle is in the square,

we would draw a conclusion in which the square

should be the subject, since the whole square is not

mentioned in the minor premiss, but only part of it,

the conclusion must be,

Part of the square is in the triangle.

V. If either of the premisses be negative, the con

clusion must be negative. For as both premisses can

not be negative, there is asserted in one premiss an

agreement between the term of the conclusion and

the middle term, and in the other premiss a disagree

ment between the other term of the conclusion, and

the same middle term. From these nothing can be

inferred but a disagreement or negative conclusion.

Thus, from

None of the circle is in the triangle,

All the circle is in the square,

can only be inferred,

Some of the square is not in the triangle.

VI. If either premiss be particular, the conclusion

must be particular. For example, from

None of the circle is in the triangle,

Some of the circle is in the square,

we deduce,

Some of the square is not in the triangle.

If the student-now applies these rules, he will find
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that of the sixty-four moods eleven only are admis

sible in any case; and in applying these eleven moods

to the different figures he will also find that some of

them are not admissible in every figure, and some not

necessary, on account of the conclusion, though true,

not being as general as from the premisses it might be.

This he may do either by reasoning or by actual in

spection of the figures, drawn and arranged according

to the premisses. The admissible moods are nineteen

in number, and are as follows, where A at the begin

ning of a proposition signifies that it is a universal

affirmative, E a universal negative, / a particular

affirmative, O a particular negative.

Figure I. The middle term is the subject of the

major, and the predicate of the minor premiss.

1.* A All the O is in the A

A All the n is in the O
. . A All the n is in the A

2. E None of the O is in the A

A All the n is in the O
.-. E None of the n is in the A

3. A All the O is in the A

/ Some of the n is in the O
. . / Some of the n is in the A

4. E None of the O is in the A

/ Some of the D is in the O
. -. O Some of the n is not in A

*This, and 3, are the most simple of all the combinations, and the most

frequently used, especially in geometry.
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Figure II. The middle term is the predicate of

both premisses.

1. E None of the A is in the O
A All the n is in the O

.-. E None of the n is in the A

2. A All the A is in the O
E None of the n is in the O

. . E None of the n is in the A

3. E None of the A is in the Q
/ Some of the n is in the O

. *. O Some of the n is not in A

4. A All the A is in the O
O Some of the n is not in O

.-. O Some of the n is not in A

Figure III. The middle term is the subject of both

premisses.

1. A All the O is in the A

A All the O is in the n

. . / Some of the n is in the A

2. I Some of the O is in the A
A All the O is in the n

. . / Some of the n is in the A

3. A All the O is in the A

/ Some of the O is in the n

. . / Some of the n is in the A

4. E None of the Q is in the A

A All the O is in the n

. . O Some of the n is not in A

5. O Some of the O is not in A
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A All the O is in the a

. . O Some of the n is not in A
6. E None of the O is in the A

/ Some of the O is in the a

. . O Some of the a is not in A

Figure IV. The middle term is the predicate of

the major, and the subject of the minor premiss.

1. A All the A is in the O
A All the O is in the n

. . / Some of the n is in the A
2. A All the A is in the O

E None of the O is in the D

;. . E None of the n is in the A

3. / Some of the A is in the O
A All the O is in the D

,. . / Some of the D is in the A

(4. E None of the A is in the O
A All the O is in the n

. . O Some of the D is not in A

5. E None of the A is in the Q
/ Some of the O is in the D

. . O Some of the n is not in A

We may observe that it is sometimes possible to

condense two or more syllogisms into one argument,

thus : Every A is B (1),

Every B is C (2),

Every C is D (3),

Every D is E (4),

Therefore Every A is E (5),
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is equivalent to three distinct syllogisms of the form

Fig. l.j these syllogisms at length being (1), (2), a\

a, (3), b-, b, (4), (5).

The student, when he has well considered each of

these, and satisfied himself, first by the rules, and

afterwards by inspection, that each of them is legiti

mate
;
and also that all other moods, not contained

in the above, are not allowable, or at least do not give

the most general conclusion, should form for himself

examples of each case, for instance of Fig. Ill, 3:

The axioms constitute part of the basis of

geometry.

Some of the axioms are grounded on the evi

dence of the senses.

. . Some evidence derived from the senses is

part of the basis of geometry.

He should also exercise himself in the first princi

ples of reasoning by reducing arguments as found in

books to the syllogistic form. Any controversial or

argumentative work will furnish him with a sufficient

number of instances.

Inductive reasoning is that in which a universal

proposition is proved by proving separately every one

of its particular cases. As where, for example, a

figure, ABCD, is proved to be a rectangle by proving

each of its angles separately to be a right angle, or

proving all the premisses of the following, from which

the conclusion follows necessarily :
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The angles at A, B, C, and D are all the an

gles of the figure ABCD.
A is a right angle,

B is a right angle,

C is a right angle,

D is a right angle,

Therefore all the angles of the figure ABCD
are right angles.

This may be considered as one syllogism of which

the minor premiss is,

A, B, C, and D are right angles,

where each part is to be separately proved.

Reasoning a fortiori, is that contained in Fig. I. 1.

in a different form, thus : A is greater than B, B is

greater than C
;
a fortiori A is greater than C\ which

may be also stated as follows :

The whole of B is contained in A,

The whole of C is contained in B,

Therefore C is contained in A.

The premisses of the second do not necessarily im

ply as much as those of the first
;
the complete reduc

tion we leave to the student.

The elements of geometry present a collection of

such reasonings as we have just described, though in

a more condensed form. It is true that, for the con

venience of the learner, it is broken up into distinct

propositions, as a journey is divided into stages ;
but

nevertheless, from the very commencement, there is

nothing which is not of the nature just described. We
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present the following as a specimen of a geometrical

proposition reduced nearly to a syllogistic form. To

avoid multiplying petty syllogisms, we have omitted

some few which the student can easily supply.

Hypothesis. ABC is a right-angled triangle the

right angle being at A.

Consequence. The squares on AB and A Care to

gether equal to the square on BC.

Construction-. Upon.Z?C

and BA describe squares,

produce DB to meet EF,

produced, if necessary, in

G, and through A draw

HAK parallel to BD.

Demonstration.

I. Conterminous sides

of a square are at right

angles to one another.

(Definition.)

EB and BA are conter

minous sides of a square.

(Construction.)

. . EB and BA are at right angles.

II. A similar syllogism to prove that DB and BC
are at right angles, and another to prove that GB and

BC are at right angles.

III. Two right lines drawn perpendicular to two

other right lines make the same angle as those others
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(already proved) ;
EB and BG and AB and BC are

two right lines, etc., (I. II
).

.-. The angle EBG is equal to ABC.

IV. All sides of a square are equal. (Definition.)

AB and BE are sides of a square. (Construction.)

. . AB and BE are equal.

V. All right angles are equal. (Already proved.)

BEG and BAC are right angles. (Hypothesis and

construction.)

... BEG and BAC are equal angles.

VI. Two triangles having two angles of one equal

to two angles of the other, and the interjacent sides

equal, are equal in all respects. (Proved.)

BEG and BAC are two triangles having BEG and

EBG respectively equal to BAC and ABC and the

sides EB and BA equal. (III. IV. V.)

. . The triangles BEG, BAC are equal in all re

spects.

VII. BG is equal to BC. (VI.)

BC is equal to BD. (Proved as IV.)

.-. BGis equal to BD.

VIII. A four-sided figure whose opposite sides

are parallel is a parallelogram. (Definition.) BGHA
and BPKD are four-sided figures, etc. (Construc

tion.)

. . BGHA and BPKD are parallelograms.

IX. Parallelograms upon the same base and be

tween the same parallels are equal. (Proved.) EBAF
and BGHA, are parallelograms, etc. (Construction.)
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.-. AFand BGHA are equal.

X. Parallelograms on equal bases and between the

same parallels, are equal. (Proved.)

BGHA and BDKP are parallelograms, etc. (Con

struction.)

. . BGHA and BDKP are equal.

XL EBAF is equal to BGHA. (IX.)

BGHA is equal to BDKP. (X.)

. . EBAF (that is the square on AB} is equal to

BDKP.
XII. A similar argument from the commencement

to prove that the square on AC is equal to the rectan

gle CPK.

XIII. The rectangles BK and CK are together

equal to the square on BC. (Self-evident from the

construction.)

The squares on BA and A Care together equal to

the rectangles BK and CK. (Self-evident from XI

and XII.)

. The squares on BA and ^Care together equal

to the square on BC.

Such is an outline of the process, every step of

which the student must pass through before he has

understood the demonstration. Many of these steps

are not contained in the book, because the most ordi

nary intelligence is sufficient to suggest them, but the

least is as necessary to the process as the greatest.

Instead of writing the propositions at this length, the
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student is recommended to adopt the plan which we

now lay before him.

Hyp.

Constr.

Demonst. 6

7

8

9

10

2, Def.

3

6, 7, &amp;lt;

2, 1, &amp;lt;/

ABC is a triangle, right-an

gled at A.

On BA describe a square

BAFE.
On BC describe a square.

Produce BD to meet EF, pro

duced if necessary, in G.

Through A draw HAK par

allel to BD.

EBA is a right angle.

(S^C is a right angle.

^_EBG is equal to /_ABC.

tBEG is equal to /_BAC.

,.# is equal to AB.

and ABC11 8, 9, 10, e The triangles

are equal.

12 11, 3 BG is equal to BD.

13 5, 2, Def. AHGB is a parallelogram.

14 5, 3, Def. BPDK is a parallelogram.

15 13, 2, / AHGB and ABEF are equal.

16 13, 14,
- ^ZfGT? and BPDK are equal.

17 15, 16 BPDK and the square on^
are equal.

isi similar \
CPK and

,

the S1uare on CA

{reasoning]
are e1ual -
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19 17, 18 The square on BC is equal to

the squares on BA and A C.

a, b Here refer to the necessary problems.

c If two lines be drawn at right angles to

two others, the angles made by the

first and second pair are equal.

d All right angles are equal.

e Two triangles which have two angles of

one equal to two angles of the other,

and the interjacent sides equal, are

equal in all respects.

/, g Parallelograms on the same or equal

bases, and between the same paral

lels, are equal.

The explanation of this is as follows : the whole

proposition is divided into distinct assertions, which

are placed in separate consecutive paragraphs, which

paragraphs are numbered in the first column on the

left
;
in the second column on the left we state the

reasons for each paragraph, either by referring to the

preceding paragraphs from which they follow, or the

preceding propositions in which they have been

proved. In the latter case a letter is placed in the

column, and at the end, the enunciation of the propo

sition there used is written opposite to the letter. By
this method, the proposition is much shortened, its

more prominent parts are brought immediately under

notice, and the beginner, if he recollect the preceding

propositions perfectly well, is not troubled by the
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} repetition of prolix enunciations, while in the contrary

case he has them at hand for reference.

In all that has been said, we have taken instances

only of direct reasoning, that is, where the required

result is immediately obtained without any reference

to what might have happened if the result to be proved

had not been true. But there are many propositions

in which the only possible result is one of two things

which cannot be true at the same time, and it is more

easy to show that one is not the truth, than that the

other is. This is called indirect reasoning ;
not that

it is less satisfactory than the first species, but be

cause, as its name imports, the method does not ap

pear so direct and natural. There are two proposi

tions of which it is required to show that whenever

the first is true the second is true
;
that is, the first

being the hypothesis the second is a necessary conclu

sion from it, whence the hypothesis in question, and

anything contradictory to, or inconsistent with, the

conclusion cannot exist together. In indirect reason

ing, we suppose that, the original hypothesis existing

and being true, something inconsistent with or con

tradictory to the conclusion is true also. If from com

bining the consequences of these two suppositions,

something evidently erroneous or absurd is deduced,

it is plain that there is something wrong in the as

sumptions. Now care is taken that the only doubtful

point shall be the one just alluded to, namely, the

supposition that one proposition and the contradictory
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of the other are true together. This then is incorrect,

that is, the first proposition cannot exist with anything

contradictory to the second, or the second must exist

wherever the first exists, since if any proposition be

not true its contradictory must be true, and vice versa.

This is rather embarrassing to the beginner, who finds

that he is required to admit, for argument s sake, a

proposition which the argument itself goes to destroy.

But the difficulty would be materially lessened, if in

stead of assuming the contradictory of the second

proposition positively, it were hypothetically stated,

and the consequences of it asserted with the verb

would be,&quot; instead of &quot;is.&quot; For example: suppose

it to be known that if A is B, then Cmust be Dt
and

it is required to show indirectly that when C is not
Z&amp;gt;,

A is not B. This put into the form in which such a

proposition would appear in most elementary works,

is as follows.

It being granted that if A is B, C is D, it is re

quired to show that when C is not D, A is not B. If

possible, let C be not D, and let A be B. Then by
what is granted, since A is B, C is D

;
but by hy

pothesis C is not D, therefore both C is D and is not

D, which is absurd
; that is, it is absurd to suppose

that C is not D and A is B, consequently when C is

not D
t
A is not B. The following, which is exactly

the same thing, is plainer in its language. Let Cbe
not D. Then if A were B, C would be D by the prop
osition granted. But by hypothesis C is not D, etc.
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This sort of indirect reasoning frequently goes by the

name of reductio ad absurdum.

In all that has gone before we may perceive that

the validity of an argument depends upon two distinct

considerations, (1) the truth of the relations assumed,

or represented to have been proved before
; (2) the

manner in which these facts are combined so as to

produce new relations
;

in which last the reasoning

properly consists. If either of these be incorrect in

any single point, the result is certainly false
;

if both

be incorrect, or if one or both be incorrect in more

points than one, the result, though not at all to be de

pended on, is not certainly false, since it may happen

and has happened, that of two false reasonings or

facts, or the two combined, one has reversed the effect

of the other and the whole result has been true
;
but

this could only have been ascertained after the cor

rection of the erroneous fact or reasoning. The same

thing holds good in every species of reasoning, and it

must be observed, that however different geometrical

argument may be in form from that which we employ

daily, it is not different in reality. We are accus

tomed to talk of mathematical reasoning as above all

other, in point of accuracy and soundness. This, if

by the term reasoning we mean the comparing together

of different ideas and producing other ideas from the

comparison, is not correct, for in this view mathemat

ical reasonings and all other reasonings correspond

exactly. For the real difference between mathematics
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and other studies in this respect we refer the student

to the first chapter of this treatise.

In what then, may it be asked, does the real ad

vantage of mathematical study consist? We repeat

again, in the actual certainty which we possess of the

truth of the facts on which the whole is based, and

the possibility of verifying every result by actual meas

urement, and not in any superiority which the method

of reasoning possesses, since there is but one method

of reasoning. To pursue the illustration with which

we opened this work (page the first), suppose this

point to be raised, was the slaughter of Caesar justifi

able or not? The actors in that deed justified them

selves by saying, that a tyrant and usurper, who med

itated the destruction of his country s liberty, made it

the duty of every citizen to put him to death, and that

Caesar was a tyrant and usurper, etc. Their reasoning

was perfectly correct, though proceeding on premisses

then extensively, and now universally, denied. The

first premiss, though correctly used in this reasoning,

is now asserted to be false, on the ground that it is

the duty of every citizen to do nothing which would,

were the practice universal, militate against the gen

eral happiness ; that were each individual to act upon

his own judgment, instead of leaving offenders to the

law, the result would be anarchy and complete de

struction of civilisation, etc. Now in these reasonings

and all others, with the exception of those which oc

cur in mathematics, it must be observed that there
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are no premisses so certain, as never to have been

denied, no first principles to which the same degree of

evidence is attached as to the following, that &quot;no

two straight lines can enclose a space.&quot; In mathe

matics, therefore, we reason on certainties, on notions

to which the name of innate can be applied, if it can

be applied to any whatever. Some, on observing that

we dignify such simple consequences by the name of

reasoning, may be loth to think that this is the pro

cess to which they used to attach such ideas of diffi

culty. There may, perhaps, be many who imagine

that reasoning is for the mathematician, the logician,

etc., and who, like the Bourgeois Gentilhomme, may
be surprised on being told, that, well or ill, they have

been reasoning all their lives. And yet such is the

fact ;
the commonest actions of our lives are directed

by processes exactly identical with those which enable

us to pass from one proposition of geometry to an

other. A porter, for example, who being directed to

carry a parcel from the city to a street which he has

never heard of, and who on inquiry, finding it is in

the Borough, concludes that he must cross the water

to get at it, has performed an act of reasoning, differ

ing nothing in kind from those by a series of which,

did he know the previous propositions, he might be

convinced that the square of the hypothenuse of a

right-angled triangle is equal to the sum of the squares

of the sides.



CHAPTER XV.

ON AXIOMS-

EOMETRY, then, is the application of strict logic

to those properties of space and figure which

are self-evident, and which therefore cannot be dis

puted. But the rigor of this science is carried one

step further ; for no property, however evident it may

be, is allowed to pass without demonstration, if that

can be given. The question is therefore to demon

strate all geometrical truths with the smallest possible

number of assumptions. These assumptions are called

axioms, and for an axiom it is requisite : (1) that it

should be self-evident
; (2) that it should be incapable

of being proved from the other axioms. In fulfilling

these conditions, the number of axioms which are

really geometrical, that is, which have not equal ref

erence to Arithmetic, is reduced to two, viz., two

straight lines cannot enclose a space, and through a

given point not more than one parallel can be drawn

to a given straight line. The first of these has never

been considered as open to any objection ; it has



232 ON THE STUDY OF MATHEMATICS.

always passed as perfectly self-evident.* It is on this

account made the proposition on which are grounded

all reasonings relative to the straight line, since the

definition of a straight line is too vague to afford any

information. But the second, viz., that through a

given point not more than one parallel can be drawn

to a given straight line, has always been considered

as an assumption not self-evident in itself, and has

*But see J. B. Stallo, Concepts and Theories ofModern Physics, New York,

1884, p. 242, p. 208 et seq., and p. 248 et seq. For popular philosophical dis

cussions of the subject of Axioms generally, in the light of modern psychol

ogy and pangeometry, the reader may consult the following works : Helm-
holtz s &quot;Origin and Meaning of Geometrical Axioms,&quot; Mind, Vol. III., p. 215,

and the article in the same author s Popular Lectures on Scientific Subjects,

Second Series, London, 1881, pp. 27-71; W. K. Clifford s Lectures and Essays,
Vol. I., p. 297, p. 317; Duhamel, Des M&thodes dans les Sciences de Raisonne-

ment, Part 2; and the articles &quot;Axiom&quot; and &quot;Measurement&quot; in the Encyclo

pedia Britannica, Vol. XV. See also Riemann s Essay on the Hypotheses
Which Lie at the Basis of Geometry, a translation of which is published in

Clifford s Works, pp. 55-69. For part of the enormous technical literature of

this subject cf. Halsted s Bibliography of Hyper-Space and Non-Euclidean

Geometry, American Journal of Mathematics, Vol. I., pp. 261 et seq., and Vol.

II., pp. 65 et seq. Much, however, has been written subsequently to the date

of the last-mentioned compilation, and translations of Lobachevski and Bo-

lyai, for instance, may be had in the Neomonic Series of Dr. G. B. Halsted

(Austin, Texas). A full history of the theory of parallels till recent times

is given in Paul Stackel s Theorie der Parallellinien von Euklid bis auf Gauss

(Leipsic, 1895). Of interest are the essays of Prof. J. Delboeuf on The Old

and the Neiv Geometries (Revue Philosophique , 1893-1895), and those of Profes

sor Poincare and of other controversialists in the recent volumes of the

Revue de Mltaphysique et de Morale, where valuable bibliographical refer

ences will be found to literature not mentioned in this note. See also P. Tan

nery in the recent volumes of the Revue gnrale and the Revuephilosophique,
Poincare in The Monist for October, 1898, and B. A. W. Russell s Foundations

of Geometry (Cambridge, 1897). In Grassmann sAusJe/tnung-slehre (1844),
&quot; as

sumptions&quot; and &quot;axioms&quot; are replaced by purely formal (logical) &quot;predica

tions,&quot; which presuppose merely the consistency of mental operations. (See
The Open Court, Vol. II. p. 1464, Grassmann, &quot;A Flaw in the Foundation of

Geometr-y,&quot; and Hyde s Directional Calculus, Ginn & Co., Boston). Dr. Paul

Carus in his Primer ofPhilosophy (Chicago), p. 51 et seq., has treated the sub

ject of Axioms at length, from a similar point of view. On the psychological

side, consult Mach s Analysis ofthe Sensations (Chicago, 1897), and the biblio

graphical references and related discussions in such works as James s Psy

chology and Jodl s Psychology (Stuttgart, 1896). Ed.
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therefore been called the defect and disgrace of geom

etry. We proceed to place it on what we conceive to

be the proper footing.

By taking for granted the arithmetical axioms only,

with the first of those just alluded to, the following

propositions may be strictly shown.

I. One perpendicular, and only one, can be let fall

from any point A to a given line CD. Let this be AB.

II. If equal distances BC and BD be taken on

both sides of B, AC and AD are equal, as also the

angles BAG and BAD.

F

Fig. 6.

III. Whatever may be the length of BC and BD,
the angles BAC and BAD are each less than a right

angle.

IV. Through A a line may be drawn parallel to

CD (that is, by definition, never meeting CD, though

the two be ever so far produced), by drawing any line

AD and making the angle DAE equal to the angle

ADB, which it is before shown how to do.

From proposition IV. we should at first see no
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reason against there being as many parallels to CD,

to be drawn through A, as there are different ways of

taking AD, since the direction for drawing a parallel

to CD is, &quot;take any line AD cutting CD and make

the angle DAE equal to ADB.&quot; But this our senses

immediately assure us is impossible.

It appears also a proposition to which no degree

of doubt can attach, that if the straight line AB, pro

duced indefinitely both ways, set out from the posi

tion AB and revolve round the point A, moving first

towards AE\ then the point of intersection D will

first be on one side of B and afterwards on the other,

and there will be one position where there is no point

of intersection either on one side or the other, and one

such position only. This is in reality the assumption of

Euclid
;
for having proved that AE and BF are par

allel when the angles BDA and DAE are equal, or,

which is the same thing, when EAD and ADF are

together equal to two right angles, he further assumes

that they will be parallel in no other case, that is, that

they will meet when the angles EAD and ADF are

together greater or less than two right angles; which

is really only assuming that the parallel which he has

found is the only one which can be drawn. The re

maining part of his axiom, namely, that the lines AE
and DF, if they meet at all, will meet upon that side

of DA on which the angles are less than two right

angles, is not an assumption but a consequence of his

proposition which shows that any two angles of a
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triangle are together less than two right angles, and

which is established before any mention is made of

parallels. It has been found by the experience of

two thousand years that some assumption of this sort

is indispensable. Every species of effort has been

made to avoid or elude the difficulty, but hitherto

without success, as some assumption has always been

involved, at least equal, and in most cases superior,

in difficulty to the one already made by Euclid. For

example, it has been proposed to define parallel lines

as those which are equidistant from one another at

every point. In this case, before the name parallel

can be allowed to belong to any thing, it must be

proved that there are lines such that a perpendicular

to one is always perpendicular to the other, and that

the parts of these perpendiculars intercepted between

the two are always equal. A proof of this has never

been given without the previous assumption of some

thing equivalent to the axiom of Euclid. Of this last,

indeed, a proof has been given, but involving consid

erations not usually admitted into geometry, though

it is more than probable that had the same come

down to us, sanctioned by the name of Euclid, it

would have been received without difficulty. The

Greek geometer confines his notion of equal magni

tudes to those which have boundaries. Suppose this

notion of equality extended to all such spaces as can

be made to coincide entirely in all their extent, what

ever that extent may be; for example, the unbounded
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spaces contained between two equal angles whose

sides are produced without end, which by the defini

tion of equal angles might be made to coincide entirely

by laying the sides of one angle upon those of the

other. In the same sense we may say, that, one

angle being double another, the space contained by

the sides of the first is double that contained by the

sides of the second, and so on. Now suppose two

O

Fig. 7-

lines Oa and Ob, making any angle with one another,

and produced ad infinitum* On Oa take off the equal

spaces OP, PQ, QR, etc., ad infinitum, and draw the

lines Pp, Qq, Rr, etc., so that the angles OPp, OQq,

etc., shall be equal to one another, each being such

as with bOP will make two right angles. Then Ob,

Pp, Qq, etc., are parallel to one another, and the in-

* Every line in this figure must be produced ad infinitum, from that ex

tremity at which the small letter is placed.
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finite spaces bOPp, pPQq, qQRr, etc., can be made

to coincide, and are equal. Also no finite number

whatever of these spaces will fill up the infinite space

bOa, since OP, PQ, etc., may be contained ad infini-

tum upon the line Oa. Let there be any line Ot, such

that the angles tOP and pPO are together less than

two right angles, that is, less than bOP and pPO;
whence tOP is less than bOP and tO falls between

bO and aO. Take the angles tOv, vOw, wOx, each

equal to bOt, and continue this until the last line Oz

falls beneath Oa, so that the angle bOz is greater than

bOa. That this is possible needs no proof, since it is

manifest that any angle being continually added to

itself the sum will in time exceed any other given an

gle ; again, the infinite spaces bOt, tOv, etc., are all

equal. Now on comparing the spaces bOt and bOPp,

we see that a certain number of the first is more than

equal to the space bOa, while no number whatever of

the second is so great. We conclude, therefore, that

the space bOt is greater than bOPp, which cannot be

unless the line Ot cuts Pp at last
;
for if Ot did never

cut Pp, the space bOt would evidently be less than

bOPp, as the first would then fall entirely within the

second. Therefore two lines which make with a third

angles together less than two right angles will meet if

sufficiently produced. [See Note on page 239.]

This demonstration involves the consideration of

a new species of magnitude, namely, the whole space

contained by the sides of an angle produced without
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limit. This space is unbounded, and is greater than

any number whatever of finite spaces, of square feet,

for example. No comparison, therefore, as to magni
tude can be instituted between it and any finite space

whatever, but that affords no reason against compar

ing this magnitude with others of the same kind.

Any thing may become the subject of mathemati

cal reasoning, which can be increased or diminished

by other things of the same kind
;
this is, in fact, the

definition given of the term magnitude; and geometri

cal reasoning, in all other cases at least, can be ap

plied as soon as a criterion of equality is discovered.

Thus the angle, to beginners, is a perfectly new spe

cies of magnitude, and one of whose measure they

have no conception whatever
; they see, however, that

it is capable of increase or diminution, and also that

two of the kind can be equal, and how to discover

whether this is so or not, and nothing more is neces

sary for them. All that can be said of the introduc

tion of the angle in geometry holds with some, (to us

it appears an equal force,) with regard to these unlim

ited spaces ;
the two are very closely connected, so

much so, that the term angle might even be defined

as &quot;the unlimited space contained by two right lines,&quot;

without alteration in the truth of any theorem in which

the word angle is found. But this is a point which

cannot be made very clear to the beginner.

The real difficulties of geometry begin with the

theory of proportion, to which we now proceed. The
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points of discussion which we have hitherto raised,

are not such as to embarrass the elementary student,

however much they may perplex the metaphysical in

quirer into first principles. The theory to which we

are coming abounds in difficulties of both classes.

[NOTE TO PAGE 237. The demonstration given on pp. 235-

237 is now regarded as fallacious by mathematicians; the consid

erations that apply to finite aggregates not being transferable to

infinite aggregates, for example, it is not true for infinite aggre

gates that the part is always less than the whole Even Plato is

cited for the assertion that equality is only to be predicated of

finite magnitudes. See the modern works on the Theory of the

Infinite. The demonstration in question is not De Morgan s, but

M. Bertrand s. Ed.]



CHAPTER XVI.

ON PROPORTION.

TN the first elements of geometry, two lines, or two

-^
surfaces, are mentioned in no other relation to

one another than that of equality or non-equality.

Nothing but the simple fact is announced that one

magnitude is equal to, greater than, or less than an

other, except occasionally when the sum of two equal

magnitudes is said to be double one of them. Thus

in proving that two sides of a triangle are together

greater than the third, the fact that they are greater

is the essence of the proposition ;
no measure is given

of the excess, nor does anything follow from the theo

rem as to whether it is, or may be, small or great.

We now come to the doctrine of proportion in which

geometrical magnitude is considered in a new light.

The subject has some difficulties, which have been

materially augmented by the almost universal use, in

this country at least,* of the theory laid down in the

fifth book of Euclid, f Considered as a complete con-

* In England. t See Todhunter s Euclid (Macmillan, London). Ed.
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quest over a great and acknowledged difficulty of prin

ciple, this book of Euclid well deserves the immortal

ity of which its existence, at the present moment, is

the guarantee ; nay, had the speculations of the math

ematician been wholly confined to geometrical magni

tude, it might be a question whether any other notions

would be necessary. But when we come to apply

arithmetic to geometry, it is necessary to examine well

the primary connexion between the two
;
and here

difficulties arise, not in comprehending that connexion

so much as in joining the two sciences by a chain of

demonstration as strong as that by which the propo

sitions of geometry are bound together, and as little

open to cavil and disputation.

The student is aware that before pronouncing upon

the connexion of two lines with one another, it is ne

cessary to measure them, that is, to refer them to some

third line, and to observe what number of times the

third is contained in the other two. Whether the two

first are equal or not is readily ascertained by the use

of the compasses, on principles laid down with the

utmost strictness in Euclid and other elementary

works. But this step is not sufficient
;
to say that two

lines are not equal, determines nothing. There are

an infinite number of ways in which one line may be

greater or less than a given line, though there is only

one in which the other can be equal to the given one.

We proceed to show how, from the common notion



24 2 ON THE STUDY OF MATHEMATICS.

of measuring a line, the more strict geometrical method

is derived.

To measure the line AB, apply to it another line

(the edge of a ruler), which is divided into equal parts

(as inches), each of which parts is again subdivided

into ten equal parts, as in the figure. This division is

made to take place in practice until the last subdivi

sion gives a part so small that anything less may be

neglected as inconsiderable. Thus a carpenter s rule

is divided into tenths or eighths of inches

only, while in the tube of a barometer a

process must be employed which will

mark a much less difference. In talking

of accurate measurement, therefore, any

where but in geometry, or algebra, we

only mean accurate as far as the senses

are concerned, and as far as is necessary

for the object in view. The ruler in the

figure shows that the line AB contains

more than two and less than three inches
;
and closer

inspection shows that the excess above two inches is

more than sixth-tenths of an inch, and less than

seven. Here, in practice, the process stops ; for, as

the subdivision of the ruler was carried only to tenths

of inches, because a tenth of an inch is a quantity

which may be neglected in ordinary cases, we may
call the line two inches and six-tenths, by doing

which the error committed is less than one-tenth of

an inch. In this way lines may be compared together

Fig.
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with a common degree of correctness; but this is not

enough for the geometer. His notions of accuracy

are not confined to tenths or hundredths, or hundred-

millionth parts of any line, however small it may be

at first. The reason is obvious ; for although to suit

the eye of the generality of readers, figures are drawn

in which the least line is usually more than an inch,

yet his theorems are asserted to remain true, even

though the dimensions of the figure are so far dimin

ished as to make the whole imperceptible in the

strongest microscope. Many theorems are obvious

upon looking at a moderately-sized figure ;
but the

reasoning must be such as to convince the mind of

their truth when, from excessive increase or diminu

tion of the scale, the figures themselves have past the

boundary even of imagination. The next step in the

process of measurement is as follows, and will lead us

to the great and peculiar difficulty of the subject.

The inch, the foot, and the other lengths by which

we compare lines with one another, are perfectly arbi

trary. There is no reason for their being what they

are, unless we adopt the commonly received notion

that our inch is derived from our Saxon ancestors,

who observed that a barley-corn is always of the same

length, or nearly so, and placed three of them together

as a common standard of measure, which they called

an inch. Any line&quot; whatever may be chosen as the

standard of measure, and it is evident that when two

or more lines are under consideration, exact compari-
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sons of their lengths can only be obtained from a line

which is contained an exact number of times in them

all. For even exact fractional measures are reduced

to the same denominator, in order to compare their

magnitudes. Thus, two lines which contain T
2
T and |

of a foot, are better compared by observing that
-j?r

and ^ being ^ and |^, the given lines contain one

77th part of a foot 14 and 33 times respectively. Any
line which is contained an exact number of times in

another is called in geometry a measure of it, and a

common measure of two or more lines is that which

is contained an exact number of times in each.

Again, a line which is measured by another is called

a multiple of it, as in arithmetic.

The same definition, mutatis mutandis, applies to

surfaces, solids, and all other magnitudes ;
and though

in our succeeding remarks we use lines as an illustra

tion, it must be recollected that the reasoning applies

equally to every magnitude which can be made the

subject of calculation.

In order that two quantities may admit of com

parison as to magnitude, they must be of the same

sort
;

if one is a line, the other must be a line also.

Suppose two lines A and B each of which is measured

by the line C ; the first containing it five times and

the second six. These lines A and 13, which contain

the same line C five and six times respectively, are

said to have to one another the ratio of five to six, or

to be in the proportion of five to six. If then we de-
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note the first by A,* and the second by B, and the

common measure by C, we have

A = 5C, or GA=3QC,
B= C, or 5^= 30C,

whence QA = 5B, or 6A 5^= 0.

Generally, when mA nB= Q, the lines, or what

ever they are, represented by A and B, are said to be

in the proportion of n to ;//, or to have the ratio of n

to m.

Let there be two other magnitudes P and (?, of

the same kind with one another, either differing from

the first in kind or not, (thus A and B may be lines,

and P and Q surfaces, etc.,) and let them contain a

common measure R, just as A and B contain C, viz.:

Let P contain ft five times, and let Q contain R six

times, we have by the same reasoning

and P and Q, being also in the ratio of five to six, as

well as A and B, are said to be proportional to A and

B, which is denoted thus

AiBiiP-.Q,

by which at present all we mean is this, that there are

* The student must distinctly understand that the common meaning of

algebraical terms is departed from in this chapter, wherever the letters are

large instead of small. For example, A, instead of meaning the number of

units of some sort or other contained in the line A, stands for the line A itself,

and mA (the small letters throughout meaning whole numbers) stands for the

line made by taking A, m times. Thus such expressions as mA + B, tnA nB,

etc., are the only ones admissible. AB, ,
A 2

, etc., are unmeaning, while
D tn

is the line which is contained m times in A, or the wth part of A. The capital

letters throughout stand for concrete quantities, not for their representations
in abstract numbers.
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some two whole numbers ;;/ and n such that, at the

same time

Nothing more than this would be necessary for the

formation of a complete theory of proportion, if the

common measure, which we have supposed to exist

in the definition, did always really exist. We have,

however, no right to as

sume that two lines A
and B, whatever may be

their lengths, both con

tain some other line an

exact number of times.

We can, moreover, pro

duce a direct instance in

which two lines have no

common measure what

ever, in the following

manner.

Let ABC be an isosceles right-angled triangle, the

side BC and the hypothenuse have no common meas

ure whatever. If possible let D be a common meas

ure of BC and AB
;

let BC contain D, n times, and

let AB contain D, m times. Let E be the square de

scribed on D. Then since AB contains D, m times,

the square described on AB contains
,
m X M or m2

times. Similarly the square described on BC contains

E n X n or n2 times. But, because AB is an isosce-

D
Fig 9.
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les right-angled triangle, the square on AB is double

that on BC, whence m X w= 2
(&amp;lt;v X ) or m&amp;lt;1= 2n2

. To

prove the impossibility of this equation (when m and

n are whole numbers), observe that ;;/
2 must be an

even number, since it is twice the number n 2
. But

/;/ X m cannot be an even number unless /// is an even

number, since an odd number multiplied by itself

produces an odd number.* Let m (which has been

shown to be even) be double m or m= 2m . Then

2m X 2m = 2 2 or 4;//2= 2n2 or n2= 2m 2
. By repeat

ing the same reasoning we show that n is even. Let

it be 2n . Then 2n X 2 = 2m 2 or m 2 = 2n 2
. By the

same reasoning m and n are both even, and so on ad

infinitum. This reasoning shows that the whole num

bers which satisfy the equation n2= 2m2
(if such there

be) are divisible by 2 without remainder, ad infinitum.

The absurdity of such a supposition is manifest: there

are then no such whole numbers, and consequently no

common measure to BA and BC.

Before proceeding any further, it will be necessary

to establish the following proposition.

If the greater of two lines A and B be divided into

;// equal parts, and one of these parts be taken away ;

if the remainder be then divided into m equal parts,

and one of them be taken away, and so on, the re-

* Every odd number, when divided by z, gives a remainder i, and is there

fore of the form zp + i where/ is a whole number. Multiply zp + i by itself,

which gives 4/2 -f ^p -f i, or z (2/2 -f- zp] -+- i, which is an odd number, since,

when divided by 2, it gives the quotient 2/2 -\-zp, a whole number, and the

remainder i.
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mainder of the line A shall in time become less than

the line B, how small soever the line B may be.

Take a line which is less than J3, and call it C. It

is evident that, by a continual addition of the same

quantity to C, this last will come in time to exceed A\

and still more will it do so if the quantity added to C
be increased at each step. To simplify the proof we

suppose that 20 is the number of equal parts into

which A and its remainders are successively divided,

so that 19 out of the 20 parts remain after subtraction.

Divide C into 19 equal parts and add to C a line

equal to one of these parts. Let the length of C, so

increased, be C . Divide C into 19 equal parts and

let C
,
increased by its 19th part, be C&quot;. Now, since

we add more and more each time to C, in forming C ,

C&quot;, etc, we shall in time exceed A. Let this have

been done, and let D be the line so obtained, which

is greater than A. Observe now that C contains 19,

and
C&quot;,

20 of the same parts, whence C is made by

dividing C&quot; into 20 parts and removing one of them.

The same of all the rest. Therefore we may return

from D to C by dividing D into 20 parts, removing

one of them, and repeating the process continually.

But C is less than B by hypothesis. If then we can,

by this process, reduce D below B, still more can we

do so with A, which is less than D, by the same

method.

This depends on the obvious truth, that if, at the

end of any number of subtractions (D being taken),
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we have left D, at the end of the same number of
q P

subtractions (A being taken), we shall have A, since

the method pursued in both cases is the same. But

since A is less than D, -A is less than
-Z&amp;gt;,

which be-
? p V

comes equal to C, therefore - A becomes less than C.*
?

We now resume the isosceles right-angled triangle.

The lines BC and AB, which were there shown to

have no common measure, are called incommensurable

quantities, and to their existence the theory of pro

portion owes its difficulties. We can nevertheless

show that A and B being incommensurable, a line can

be found as near to B as we please, either greater or

less, which is commensurable with A. Let D be any

line taken at pleasure, and therefore as small as we

please. Divide A into two equal parts, each of those

parts into two equal parts, and so on. We shall thus

at last find a part of A which is less than D. Let this

part be E, and let it be contained m times in A. In

the series E
t 2E, 3E, etc., we shall arrive at last at

two consecutive terms, pE and
(p-\-\&quot;)J&

of which the

first is less, and the second greater than B. Neither of

these differs from B by so much as E
;

still less by so

much as D
;
and both pE and (p-\-l)E are commen-

* Algebraically, let a be the given line, and let th part of the remainder

be removed at every subtraction. The first quantity taken away is and the
a ( i \ rn

remainder a orali I, whence the second quantity removed is

a ( i \ m
, ,

V
&quot;! , ( a \ / I \ / I \ 2

I i I
,
and the remainder \a 1 li 1 or # I i I .m V m V m / V m ) V m*

Similarly, the th remainder is-(i
I

I . Now, since i is less
&amp;gt;

}&amp;gt;i m
than unity, its powers decrease, and a power of so great an index may be

taken as to be less than any given quantity.
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surable with A, that is with m-E, since E is a common
measure of both. If therefore A and B are incommen

surable, a third magnitude can be found, either greater

or less than B, differing from B by less than a given

quantity, which magnitude shall be commensurable

with A.

We have seen that when A and B are incommen

surable, there are no whole values of m and n, which

will satisfy the equation;;/^ n = Q; nevertheless,

we can prove that values of ;;/ and n can be found

which will make mA nB less than any given magni

tude C, of the same kind, how small soever it may be.

Suppose, that for certain values of ;;/ and ,* we find

mA nB= E, and let the first multiple of E, which

is greater than B, beflE, so that pE=B -|- E where

E is less than E, for were it greater, (/ !)-# or

pE E, which is B + (E J5), would be greater

than B, which is against the supposition.

The equation mA- nB E gives

pmA p nB=pE= -}- ,

whence

* It is necessary here to observe, that in speaking of the expression mA
nB we more frequently refer to its form than to any actual value of it, derived

from supposing m and n to have certain known values. When we say that

mA nB can be made smaller than C, we mean that some values can be

given to m and n such that mA nB
&amp;lt; C, or that some multiple of B subtracted

from some multiple of A is less than C. The following expressions are all of

the same form, viz., that of some multiple of B subtracted from some mul

tiple of A;
mA nB
mpA (np^ i) B
zmA ^mB, etc., etc.
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Let

p m = m and fin-\-~L=n ,

whence
m A n B=E .

We have therefore found a difference of multiples

which is less than E. Let p E be the first multiple

of E which is greater than B, where / must be at

least as great as /, since E being greater than E
,

it

cannot take more* of E than of E to exceed B. Let

p E = B + E&quot;,

then, as before,

m p A (rip -f 1) B= E&quot;,

or

m&quot;A ri B=
E&quot;;

we have therefore still further diminished the differ

ence of the multiples ;
and the process may be re

peated any number of times
;

it only remains to show

that the diminution may proceed to any extent.

This will appear superfluous to the beginner, who

will probably imagine that a quantity diminished at

every step, must, by continuing the number of steps,

at last become as small as we please. Nevertheless

if any number, as 10, be taken and its square root ex

tracted, and the square root of that square root, and

so on, the result will not be so small as unity, although

ten million of square roots should have been extracted.

Here is a case of continual diminution, in which the

diminution is not without limit. Again, from the point

* It may require as many. Thus it requires as many of 7 as of 8 to exceed

33, though 7 is less than 8.
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D in the line AB draw DE, making an angle with

AB less than half a right angle. Draw BE perpen
dicular to AB, and take BC=BE. Draw CF perpen
dicular to AB, and take CC =CF, and so on. The

points C, C , C&quot;, etc., will always be further from A
than D is; and all the lines AC, AC, AC&quot;, etc.,

though diminished at every step, will always remain

greater than AD. Some such species of diminution,

for anything yet proved to the contrary, may take

place in mA- nB.

E

To compare the quantities E, E , etc., we have

the equations

pE =
p E

etc. etc.

The numbers/, / , /&quot;, etc., do not diminish; the

lines E, E ,
E&quot;

, etc., diminish at every step. If then

we can show that/, / , etc., can only remain the same

for a finite number of steps, and must then increase,

and after the increase can only remain the same for

another finite number of steps, and then must increase

again, and so on, we show that the process can be

continued, ~until one of them is as great as we please ;
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let this be/U)
, where z is not an exponent, but marks

the number which our notation will have reached, and

indicates the (z -f l)
th

step of the process. Let E(z} be

the corresponding remainder from the former step.

Then, sincepE is the first multiple of (

~~\ which

exceeds the given quantity B, if p (z} can be as great as

we please, E(z} can be as small as we please. To show

that/
U) can be as great as we please, observe, that/,

/ ,/&quot;, etc., must remain the same, or increase, since,

as appears from their method of formation, they can

not diminish. Let them remain the same for some

steps, that is, letp=p =p&quot;, etc. The equations be

come

pE =
pE =

etc. etc.

Then by subtraction,

E E&quot; =p(E E
)

E&quot; E&quot; =p(E &quot;)=&( )

E &quot;-
E&quot;&quot; =p (E&quot;

E
&quot;} =ppp (E-E )

etc. etc.

Now,

E-E&quot;=- +*&quot; =(

etc. etc. etc.

Generally,
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which is derived from w steps of the process. Now,

if this can go on ad infinitum, it can go on until 1 +
/ + /2 + +/?A ~1

is as great as we please; for,

since p is not less than unity, the continual addition

of its powers will, in time, give a sum exceeding any

given number. This is absurd, from the step at which

1 +/ +/2
-j- . . . -\-p~

1 becomes greater than the num

ber of times which E E is contained in E
; for,

from the above equation, E E is contained in

E E(w)
,
1 + / +/2

-f- . . . +/7*&quot;1 times
;
and it is con

tradictory to suppose that E E should be contained

in E E^ more times than it is contained in E.

To take an example : suppose that B is 55 feet,

and E is 54 feet
;
the first equation is

2 x 54 = 55 + 53
,

where .&quot;= 53 and E = !/, and is contained in

E 54 times. If, then, we continue the process, 2 can

not maintain its present place through so many steps

of the process as will, if the same number of terms be

taken, give l + 2 + 22 + 23 +, etc., greater than 54;

that is, it cannot be the same for six steps. And we

find, on actually performing the operations,

2 x 54 = 55 + 53

2x53 = 55 + 51

2x47 = 55 + 39

2x39 = 55 + 23

3x23 = 55 + 14

We do not say that /, / , etc., will remain the
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same until 1 -j-/-h/
2 + . . would be greater than the

number of times which E contains E E
,
but only

that they cannot remain the same longer. By repeti

tion of the same process, we can show that a further

and further increase must take place, and so on until

we have attained a quantity greater than any given

one. And it has already been shown to be a conse

quence of this, that mA nB can be diminished to

any extent we please. Similarly it may be shown that

when A and B are incommensurable, mA nB may
be brought as near as we please to any other quantity

C, of the same kind as A and B, so as not to differ

from C by so much as a given quantity E. For let m

and n be taken, by the last case, so that mA nB may
be less than E, and let mA nB, in this case, be

equal to E . Let C lie between pE and (/-{-!) ,

neither of which can differ from C by so much as E ,

and therefore not by so much as E. Then since

therefore pmA pnB=pE ,

and (p+l)mA (p+\)nB= (p

Both which last expressions differ from C by a. quan

tity less than
E&amp;gt;

the first being less and the second

greater than C, and both are of the form mA nB, m

and n being changed for other numbers.

The common ideas of proportion are grounded

entirely upon the false notion that all quantities of

the same sort are commensurable. That the supposi

tion is practically correct, if there are any limits to
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the senses, may be shown, for let any quantity be re

jected as imperceptible, then since a quantity can be

found as near to B as we please, which is commensur

able with A, the difference between B and its approx

imate commensurable magnitude, may be reduced be

low the limits of perceptible quantity. Nevertheless,

inaccuracy to some extent must infest all general con

clusions drawn from the supposition that A and B

being two magnitudes, whole numbers, m and ?z, can

always be found such that mA nB= 0. We have

shown that this can be brought as near to the truth as

we please, since mA nB can be made as small as we

please. This, however, is not a perfect answer, at

least it wants the unanswerable force of all the pre

ceding reasonings in geometry. A definition of pro

portion should therefore be substituted, which, while

it reduces itself, in the case of commensurable quan

tities to the one already given, is equally applicable

to the case of incommensurables. We proceed to ex

amine the definition already given with a view to this

object.

Resume the equations

mA n = Q, or A=~B
m

mPnQ= Q, or P= Qm

If we take any other expression of the same sort

.B and Q, it is plain that, according as the arith-
m m*

n
t

metical fraction is greater than, equal to, or less
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than
,
so will B be greater than, equal to, or less

than B
t and the same of Q and ,O. Let them m m

symbol

be the abbreviation of the following sentence : &quot;when

x is greater than y, z is greater than w
;
when x is

equal to jc, z is equal to w
;
when x is less than y t

z is

less than w.&quot; The following conclusions will be evi

dent :

}&amp;gt;H$&quot;
d

;}&amp;gt;=&amp;lt;!/

Then

f{ (d

v n/ w
And from the first of these alone it follows that

mb
nd

(2)

We have just noticed the following :

n

=
&amp;lt; &quot;&quot;, and

m }

Therefore (1)

n

m

1*

-^1/// I

}&amp;gt;-&amp;lt; ?

Therefore (2)
m A
m P

n B
n Q
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Or, if four magnitudes are proportional, according to

the common notion, it follows that the same multiples

of the first and third being taken, and also of the sec

ond and fourth, the multiple of the first is greater

than, equal to, or less than, that of the second, ac

cording as that of the third is greater than, equal to,

or less than, that of the fourth. This property* ne

cessarily follows from the equations

but it does not therefore follow that the equations are

necessary consequences of the property, since the lat

ter may possibly be true of incommensurable quanti

ties, of which, by definition, the former is not. The

existence of this property is Euclid s definition of pro

portion : he says, let four magnitudes, two and two,

of the same kind, be calledproportional, when, if equi

multiples be taken of the first and third, etc., repeat

ing the property just enunciated. What is lost and

gained by adopting Euclid s definition may be very

simply stated
;
the gain is an entire freedom from all

the difficulties of incommensurable quantities, and

even from the necessity of inquiring into the fact of

their existence, and the removal of the inaccuracy at

tending the supposition that, of two quantities of the

same kind, each is a determinate arithmetical fraction

of the other
;
on the other hand, there is no obvious

*It would be expressed algebraically by saying that if mA nB and

mP nQ are nothing for the same values of in and
, they are either both

positive or both negative, for every other value of in and n,
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connexion between Euclid s definition and the ordi

nary and well-established ideas of proportion ;
the

definition itself is made to involve the idea of infinity,

since all possible multiples of the four quantities enter

into it; and lastly, the very existence of the four

quantities, called proportional, is matter for subse

quent demonstration, since to a beginner it cannot

but appear very unlikely that there are any magni

tudes which satisfy the definition. The last objection

is not very strong, since the learner could read the

first proposition of the sixth book immediately after

the definition, and would thereby be convinced of the

existence of proportionals ;
the rest may be removed

by showing another definition, more in consonance

with common ideas, and demonstrating that, if four

magnitudes fall under either of these definitions, they

fall under the other also. The definition which we

propose is as follows: &quot;Four magnitudes, A, B, P,

and Q, of \vhich B is of the same kind as A, and Q
as P, are said to be proportional, if magnitudes B-\- C
and Q-\- R can be found as near as we please to B and

Q, so that A, B + C, P and Q + Jt, are proportional

according to the common notion, that is, if whole

numbers m and n can satisfy the equations

mA n(B-\- C)=0
mP n(Q-{- J?)=0.

We have now to show that Euclid s definition fol

lows from the one just given, and also that the last

follows from Euclid s, that is, if there are four magni-
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tudes which fall under either definition, they fall un

der the other also. Let us first suppose that Euclid s

definition is true of A, B, P, and Q, so that

mA\ (nB

mPy (nQ

This being true, it will follow that we can take ;;/ and

n, so as not only to make mA nB less than a given

magnitude E, which may be as small as we please,

but also so that mP nQ shall at the same time be

less than a given magnitude Ft
however small this

last may be. For if not, while m and n are so taken

as to make mA nB less than E (which it has been

proved can be done, however small E may be) sup

pose, if possible, that the same values of m and n will

never make mP nQ less than some certain quantity

F
9
and let pF be the first multiple of F which exceeds

Q, and also let E be taken so small that pE shall be

less than B, still more then shall p(mA nB), or

pmA pnB be less than B. But since pF\s greater

than Q, and mP nQ is by hypothesis greater than

F, still more shall mpP npQ be greater than Q.

We have then, if our last supposition be correct, some

value of mp and np, for which

mpA npB is less than B,

while

mpP npQ is greater than Q,

or

mpA is less than (np-\- 1)/?,

mpP is greater than (np -f !)(?,
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which is contrary to our first hypothesis respecting

A, B, P, and Q, that hypothesis being Euclid s defi

nition of proportion, from which if

mpA is less than (np -f- V)B

mpP is less than (/ + !)&amp;lt;?.

We must therefore conclude that if the four quantities

A, B, P, and Q satisfy Euclid s definition of propor

tion, then m and n may be so taken that mA nB and

mP nQ shall be as small as we please.

Let
mA nB=E and E= nC

mp nQ= F and F= nR.

Then mA n(B -f C)=

and since E and F can, by properly assuming m and

#, be made as small as we please, much more can the

same be done with C and R, consequently we can pro

duce B -f C and Q -f R as near as we please to B and

Q, and proportional to A and P, according to the

common arithmetical notion. In the same way it may
be proved, that on the same hypothesis B C and

Q R can be found as near to B and Q as we please,

and so that A, B C, P and Q R are proportional

according to the ordinary notion. It only remains to

show that if the last-mentioned property be assumed,

Euclid s definition of proportion will follow from it.

That is, if quantities can be exhibited as near to P
and Q as we please, which are proportional to A and

B, according to the ordinary notion, it follows that
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mA } ( nB

For let B-\- C and Q + R be two quantities, such that

fAg(J3+ C)=
fPf(Q+-*)=&,

in which, by the hypothesis, /and g can be so taken

that C andJ? are as small as we please. We have al

ready shown that in this case (m and n being any

numbers whatever) mA is never greater or less than

n(.B -\- C), without mP being at the same time the

same with regard to n(Q-\- R). That is, if

mA is greater than nB-\-nC,
then

mP is greater than nQ-\- nR.

Take some given* values for m and n, fulfilling the

first condition
; then, since C and R may be as small

as we please, the same is true of nC and nR; if then

mA is greater than nB

mP is greater than nQ.

For if not, let mA=nB-\-x, while mP=nQ y, x

and y being some definite magnitudes. Then if

&amp;gt;nB+ nC

which last equation is evidently impossible ; therefore

if mA&amp;gt;nB, mP&amp;gt;nQ. In the same way it may be

*It is very necessary to recollect that the relations just expressed are

true for every value of m and n; and therefore true for any particular case.

In this investigation f and g may both be very great in order that C and R
may be sufficiently small, and we must suppose them to vary with the values

we give to C and /?, or rather the limits which we assign to them
;
but m and*

n are given.
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proved that if mA&amp;lt;nB, mP&amp;lt;nQ, etc., so that Eu

clid s definition is shown to be a necessary consequence

of the one proposed.

The definition of proportion which we have here

given, and the methods by which we have established

its identity with the one in use, bear a close analogy

to the process used by the ancients, and denominated

by the moderns the method of exhaustions. We have

seen that the common definition of proportion fails in

certain cases where the magnitudes are what we have

called incommensurable, but at the same time we

have shown that though in this case we can never

take m and n, so that mA = nB, or mA nB= 0, we

can nevertheless find m and n, so that mA shall differ

from nB by a quantity less than any which we please

to assign. We therefore extend the definition of the

word proportion, and make it embrace not only those

magnitudes which fulfil a given condition, but also

others, of which it is impossible that they should fulfil

that condition, provided always, that whatever magni

tudes we call by the name of proportionals, they must

be such as to admit of other magnitudes being taken

as near as we please to the first, which are propor

tional, according to the common arithmetical notion.

It is on the same principle that in algebra we admit

the existence of such a quantity as 1/2, and use it in

the same manner as a definite fraction, although there

is no such fraction in reality as, multiplied by itself,

will give 2 as the product. But, however small a
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quantity we may name, we can assign a fraction which,

multiplied by itself, shall differ less from 2 than that

quantity.

Having established the properties of rectilinear

figures, as far as their proportions are concerned, it is

necessary to ascertain the properties of curvilinear

figures in this respect. And here occurs a difficulty

of the same kind as that which met us at the outset,

for no rectilinear figure, how small soever its sides

may be, or how great soever their number, can be

called curvilinear. Nevertheless, it may be shown

that in every curve a rectilinear figure may be in

scribed, whose area and perimeter shall differ from

the area and perimeter of the curve by magnitudes

less than any assigned magnitudes. The circle is the

only curve whose properties are considered in elemen

tary geometry, and the proposition in question is dis

cussed in all standard treatises on geometry. Indeed,

for this or any other curve the proposition is almost

self-evident. This being granted, the properties of

curvilinear figures are established by help of the fol

lowing theorem.

If A, B, C, and D are always proportional, and of

these, if C and D may be made as near as we please to

P and Q, than which they are always both greater or

both less, then A, B, P, and Q are proportional.

Let C=P+P ,
and D=Q+Q ,

where by hy

pothesis P and Q may be made as small as we please,

and A, B, P-\-P
r

,
and Q-\- Q are proportionals. If
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A, B, P, and Q are not proportionals, let P and Q+R
be proportional to A and B. Then, since A and B
are proportional to P-\- P and Q-\- Q , and also to P
and Q + R, therefore

in which all the magnitudes are of the same kind.

Now let P and Q
f

be so taken that Q is less than Rt

which may be done, since by hypothesis Q can be as

small as we please. Hence Q-\- Q is less than&amp;lt;2-h-#

and therefore P-\- P is less than Pt which is absurd.

In the same way it may be proved that P is not to

O R in the proportion of A to J3, and consequently

P is to Q in the proportion of A to B. This theorem,

with those which prove that the surfaces, solidities,

areas, and lengths, of curve lines and surfaces, may
be represented as nearly as we please by the surfaces,

etc., of rectilinear figures and solids, form the method

of exhaustions.* In this method are the first germs of

that theory which, under the name of Fluxions, or the

Differential Calculus, contains the principles of all

the methods of investigation now employed, whether

in pure or mixed mathematics.

*For a classical example, see Prop. II. of the twelfth book of Euclid

(Simson s edition). Consult also Beman and Smith s Plane and Solid Geom*

etry (Ginn & Co., Boston), pp. 144-145, and 190. &amp;lt;



CHAPTER XVII.

APPLICATION OF ALGEBRA TO THE MEASUREMENT
OF LINES, ANGLES, PROPORTION OF

FIGURES, AND SURFACES.

WE have already defined a measure, and have no

ticed several instances of magnitudes of one

kind being measured by those of another. But the

most useful measure, and that with which we are most

familiar, is number. We express one line by the num

ber of times which another line is repeated in it, or if

the second is not exactly contained in the first, by the

greatest number of the second contained in the first,

together with the fraction of the second, which will

complete the first. Thus, suppose the line A contains

B m times, with a remainder which can be formed by

dividing B into q parts, and taking / of them. Then

B is to A in the proportion of 1 to m + ,
or as q to

mq -\- p, and if B be a fixed line, which is used for the

comparison of all lines whatsoever, then the line A is

m 4- -, or , if it be understood that for every
9 q P

unit in m, B is to be taken, and also that for - the
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same fraction of B is to be taken that is of unity.

In this
1

case B is called the linear unit.

But here we suppose that a line B being taken,

the ratio of any other line A to B can be expressed by

that of the whole numbers mq-^-p to q, which we have

shown in some cases to be impossible. If we take

one of these cases, mA nB, though it can never be

made equal to nothing, can be made as small as we

please, by properly assuming m and n. Let mA nB
n E E= E, then A = B -\ ,

and since can be made as
;// m m

small as we please, A can be represented as nearly as

we please by a fraction
,
where B is the linear unit.

m
Hence, in practice an approximation may be found to

the value of A, sufficient for any purpose whatever,

in the following manner, which will be easily under

stood by the student who has a tolerable facility in

performing the operations of algebra. Let

A contain B, p times with a remainder P,

B contain P, q times with a remainder Q,

P contain Q, r times with a remainder R,

and so on. If the two magnitudes are commensur

able, this operation will end by one of the remainders

becoming nothing. For, let A and B have a common

measure E, then P has the same measure, for P is

A pB, of which both A and pB contain E an exact

number of times. Again, because B and P contain

the common measure E, Q has the same measure,

and so on. All the remainders are therefore multiples
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of E, and if E be the linear unit, are represented by

whole numbers. Now, if a whole number be contin

ually diminished by a whole number, it must, if the

operation can be continued without end, eventually

become nothing. If, therefore, the remainder never

disappears, it is a sign that the magnitudes A and B
are incommensurable. Nevertheless, approximate

whole numbers can be found whose ratio is as near as

we please to the ratio of A and B.

From the suppositions above mentioned it appears

that
*

(a)

(p)

etc., etc.

Substitute in () the value of P derived from (a), find

Q from the result, and substitute the values of P and

Q in (V) ;
find a value of R from the result, and sub

stitute the values of Q and R in (*/), and so on, which

give the following series of equations :

* Throughout these investigations the capital letters represent the lines
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On inspection it will be found that the coefficients

of A and B in these equations may be formed by a

very simple law. In each a letter is introduced which

was not in the preceding one, and every coefficient is

formed from the two preceding, by multiplying the

one immediately preceding by the new letter, and ad

ding to the product the one which comes before that.

Thus the third coefficient of B is pqr -f-/-f- r\ the

new letter is r, and the two preceding coefficients are

pq+*L and /, Mid/fr-|-/+r=(/f+l)r+/. The

remainders enter also with signs alternately positive

and negative. Let x, x\ and x&quot; be the th
, (-f- l)

th
*

and (/*-)- 2)
th numbers of the series /, ^, r, etc., and

X, X ,
and X&quot; the corresponding remainders. Let

the corresponding equations be

a A=b B + X
a A-^VBX
a&quot;A = b&quot;B + X&quot;

Here n must be supposed odd, since, were it even,

the first equation would be aA=bB X, as will be

seen by reference to the equations deduced. Hence,

from the law of formation of the coefficients, x&quot; being

the new letter in the last equation,

Eliminate x&quot; from these two, the result of which

is a&quot; b a b&quot; ab a b, the first side of which is

themselves, and not the numbers of units, which represent them, while the

small letters are whole numbers, as in the last chapter.
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rt lit it i

the numerator of --
r,, and the second of --

a a a a

It appears then that is either greater than both
b b&quot; . . . . b b&quot; . b b
and or less than both, since --

,T and --
a a a a a a
will both have the same sign, the numerators being

the same and the denominators positive. It may also

be proved that r lies between and by means of
a a a

the following lemma.

The fraction - must lie between and -
;
for

p+q p q
m . m n

let be the greater of the two last, or
&amp;gt; -, then

1 -L- 2.

therefore is less than unity, and any fraction

multiplied by this is diminished. But

4-n . m 1 -f-15
is X T-Pr

and is therefore less than , the greater of the two.
P

In the same way it may be proved to be greater than

,
the least of the two.

9

This being premised, since =
, , it lies

a&quot; a x -\-a

, b x&quot; , b , ? A*between -77-, and or between and .

a x a a a

Call the coefficients of A and B in the series of

equations, a\, 2 , etc., b\, b^, etc., and form the series

of fractions , , , etc. The two first of these
a\ #2 &8

will be v- and ^ . of which the second is the
1
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greater, since it is p-\
--

. Hence by what has been

proved is less than and greater than; and
a 3 a? #1

every fraction is greater or less than the one which

comes before it, according as the number of its equa

tion is even or odd. Again, as the numerator of the

difference of two successive fractions -^ and is the
i U U

same as that of-^ and -, whatever the numerator of
o b

the first difference is, the same must be that of the

second, third, etc., and of all the rest. But the nu

merator of the difference of ~- and ** q
is 1; there-

1 ? b
fore either ab a b, or a b ab

,
is 1 according as

;

b .

a

or is the greater of the two, that is according as

is odd or even.* Now since the th and (n -f l)
th

equa

tions, n being odd, are

and a A=b B X
\

by eliminating A we have

or B=a X+aX
since ab a b= 1

;
and since the remainders decrease

and the coefficients increase, &amp;lt;?

&amp;gt;
a and X&amp;gt; X ,

r&amp;gt;

whence 2 aX
&amp;lt;

a X+ aX
,
or 2aX &amp;lt;B and^ &amp;lt;^-;&a

the remainder therefore which comes in the (+!)*
equation is less than the part of B arising from divid

ing it into twice as many equal parts as there are

*We might say that ab a b is alternately + i and i; but we wish to

avoid the use of the isolated negative sign.
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units in the th coefficient of A
;
and as this number

of units may increase to any amount whatever, by
T)

carrying the process far enough, may be made as

small as we please, and a fortiori, the remainders may
be made as small as we please.

The same theorem may be proved in a similar

way, if we begin at an even step of the process. Re

suming the equations

a A=b B+X
a A=b B X
a&quot;A=b&quot;B + X&quot;

we obtain from the second,

n yf r&amp;gt;

and since X
&amp;lt; ^-, 7 &amp;lt; ^

--
,, or if B be taken as

a a Z a a
if

the linear unit, will express the line A with an error

1
a

less than ~
-.,
which last may be made as small as

Aaa
we please by continuing the process.

It is also evident that is too small, while , is
a a

too great; and since X and X are less than B,

aA&amp;lt;bB+ B, or is too great, while a A&amp;gt;b B B,V\ .

a
. b X

or-
,

is too small. Again, A-- B= and
b

a X a a

-7 B A = .
-

. Now X
&amp;lt;
X and a

&amp;gt;
a : whence

a a
yi -y-

it

&amp;lt; ; that is, ,
B exceeds A by a less quantity(Id Ct

than B falls short of it, so that r is a nearer repre-
*

b
a

sentation of A than
, though on a different side of it.
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We have thus shown how to find the representa

tion of a line by means of a linear unit, which is in

commensurable with it, to any degree of nearness

which we please. This, though little used in prac

tice, is necessary to the theory ;
and the student will

see that the method here followed is nearly the same

as that of continued fractions in algebra.*

We now come to the measurement of an angle ;

and here it must be observed that there are two dis

tinct measures employed, one exclusively in theory,

and one in practice. The latter is the well-known di

vision of the right angle into 90 equal parts, each of

which is one degree ;
that of the degree into 60 equal

parts, each of which is one minute
;
and of the minute

into 60 parts, each of which is one second. On these

it is unnecessary to enlarge, as this division is perfectly

arbitrary, and no reason can be assigned, as far as the

ory is concerned, for conceiving the right angle to be

so divided. But it is far otherwise with the measure

which we come to consider, to which we shall be nat

urally led by the theorems relating to the circle. As

sume any angle, AOBy as the angular unit, and any

other angle, AOC(Y\g. n). Let r be the numberf of

linear units contained in the radius OA, and / and s

the lengths, or number of units contained in the arcs

AB and AC. Then since the angles AOB and AOC

* See Lagrange s Elementary Mathematics (Chicago, 1898), p. 2 et seq. Ed.

t It must be recollected that the word number means both whole and

fractional number.
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are proportional to the arcs AB and AC, or to the

numbers / and s, we have

Angle AOC is- of the angle AOB ;

and the angle AOB being the angular unit, the num

ber - is that which expresses the angle AOC. This

number is the same for the same angle, whatever

circle is chosen
j
in the circle FD the proportion of

A
Fig. ii.

the arcs DE and DF is the same as that of AB and

AC: for since similar arcs of different circles are pro

portional to their radii,

AB:DE::OA .OD
Also AC\DF\\OA\OD

.-. AB-.DE\ .AC .DF\

therefore the proportion of DF to DE is that of s to /,

and - is the measure of the angle DOF, DOE being

the unit, as before. It only remains to choose the

angular unit AOB, and here that angle naturally pre

sents itself, whose arc is equal to the radius in length.

This, from what is proved in Geometry, will be the
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same for all circles, since in two circles, arcs which

have the same ratio (in this case that of equality) to

their radii, subtend the same angle. Let t= r, then

- is the number corresponding to the angle whose arc

is s. This is the number which is always employed

in theory as the measure of an angle, and it has the

advantage of being independent of all linear units
;

for suppose s and r to be expressed, for example, in

feet, then 12.$- and 12 rare the numbers of inches in

the same lines, and by the common theory of frac-

s 12s
tions - = -

. Generally, the alteration of the unit

does not affect the number which expresses the ratio

of two magnitudes. When it is said that the angle

= -T. ,
it is only meant that, on one particular sup

position, (namely, that the angle 1 is that angle whose

arc is equal to the radius,) the number of these units

in any other angle is found by dividing the number of

linear units in its arc by the number of linear units in

the radius. It only remains to give a formula for find

ing the number of degrees, minutes, and seconds in

an angle, whose theoretical measure is given. It is

proved in geometry that the ratio of the circumference

of a circle to its diameter, or that of half the circum

ference to its radius, though it cannot be expressed

exactly, is between 3.14159265 and 3.14159266. Tak

ing the last of these, which will be more than a suffi

cient approximation for our purpose, it follows that

the radius being r
t one-half of the circumference is
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3.14159266
;
and one-fourth of the circumference,

or the arc of a right angle, is rX 1.57079633. Hence

the number of units above described, in a right angle,

is
-j-. ,

or 1.57079633. And the number of seconds
radius

in a right angle is 90 X 60 X 60, or 324000. Hence if

$ be an angle expressed in units of the first kind, and

A the number of seconds in the same angle, the pro

portion of A to 324000 will also be that of 5 to

1.57079633. To understand this, recollect that the

proportion of any angle to the right angle is not al

tered by changing the units in which both are ex

pressed, so -that the numbers which express the two

for one unit, are proportional to the like numbers for

another.

Hence A : 324000 : : 3 : 1.57079633 :

324000
-
1.57079633

X ^ ;

or A = 206265 X S, very nearly.

Suppose, for example, the number of seconds in the

theoretical unit itself is required. Here $= 1 and

,4= 206265
; similarly if A be 1, 5= OA ^ong ,

which

is the expression for the angle of one second referred

to the other unit. In this way, any angle, whose

number of seconds is given, may be expressed in

terms of the angle whose arc is equal to the radius,

which, for distinction, might be called the theoretical

unit.* This unit is used without exception in analysis ;

*Also called a radian. See Beman and Smith s Geometry, p. igz.EJ.
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thus, in the formula, for what is called in trigonom

etry the sine of x, viz.:

9 *

etc&amp;gt;

If x be an angle of one second, it is not 1 which must

be substituted for x, but

The number 3.14159265, etc., is called TT, and is

the measure, in theoretical units, of two right angles.

Also
jj-

is the measure of one right angle ;
but it must

2

not be confounded, as is frequently done, with 90.

It is true that they stand for the same angle, but on

different suppositions with respect to the unit
;
the

unit of the first being very nearly times that of

the second.

There are methods of ascertaining the value of

one magnitude by means of another, which, though it

varies with the first, is not a measure of it, since the

increments of the two are not proportional ;
for exam

ple, when, if the first be doubled, the second, though

it changes in a definite manner, is not doubled. Such

is the connexion between a number and its common

logarithm, which latter increases much more slowly

than its number
; since, while the logarithm changes

from to 1, and from 1 to 2, the number changes

from 1 to 10, and from 10 to 100, and so on.

Now, of all triangles which have the same angles,

the proportions of the sides are the same. If, there

fore, any angle CAB be given, and from any points
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B, B , B&quot;, etc., in one of its sides, and b, b
, etc., in

the other, perpendiculars be let fall on the remaining

side, the triangles BAG, B AC, bAc, etc., having a

right angle in all, and the angle A common, are equi

angular ;
that is, one angle being given, which is not

a right angle, the proportions of every right-angled

triangle in which that angle occurs are given also
;

and, vice versa, if the proportion, or ratio of any two

sides of a right-angled triangle are given, the angles

of the triangle are given.

B&quot;

b

To these ratios names are given ;
and as the ra

tios themselves are connected with the angles, so that

one of either set being given, viz., ratios or angles,

all of both are known, their names bear in them the

name of the angle to which they are supposed to be

. , ,, BC side opposite to A . . ,

referred. Thus, -^, or -. ^-. ,
is calledAB hypothenuse

. AC side opposite to B ,

the sine of A
;
while -r-^, or : =-= , or theAB hypothenuse

sine of B, the complement* of
A&amp;gt;

is called the cosine

*When two angles are together equal to a right angle, each is called the

complement of the other. Generally, complement is the name given to one
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of A. The following table expresses the names which

, . BC AC BC AC AB
are given to the six ratios,_ _ _ _ _ and
AB
~BC

AB AB AC BC AC
, relatively to both angles, with the abbreviations

made use of. The terms opp., adj., and hyp., stand

for, opposite side, adjacent side, and hypothenuse, and

refer to the angle last mentioned in the table.

THE
RATIO
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We say sines, cosines, and tangents only, because it

is evident, from the table above made, that the co

secant, secant, and cotangent of any angle, are the

reciprocals of its sine, cosine, and tangent, respec

tively. Again, the table need only include 45, in

stead of the whole right angle, because, the sine of an

angle above 45 being the cosine of its complement,

which is less than 45, is already registered. Now, as

all rectilinear figures can be divided into triangles,

and every triangle is either right-angled, or the sum

or difference of two right-angled triangles, a table of

this sort is ultimately a register of the proportions of

all figures whatsoever. The rules for applying these

tables form the subject of trigonometry, which is one

of the great branches of the application of algebra to

geometry. In a right-angled triangle, whose angles

do not contain an exact number of minutes, the pro

portions may be found from the tables by the method

explained in Chapter XI. of this treatise. It must be

observed, that the sine, cosine, etc., are not measures

of their angle ; for, though the angle is given when

either of them is given, yet, if the angle be increased

in any proportion, the sine is not increased in the

same proportion. Thus, sin 2A is not double of sin^.

The measurement of surfaces may be reduced to

the measurement of rectangles ;
since every figure

may be divided into triangles, and every triangle is

half of a rectangle on the same base and altitude. The

superficial unit or quantity of space, in terms of which
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it is chosen to express all other spaces, is perfectly

arbitrary ; nevertheless, a common theorem points out

the convenience of choosing, as the superficial unit,

the square on that line which is chosen as the linear

unit. If the sides of a rectangle contain a and b units,

the rectangle itself contains ab of the squares de

scribed on the unit. This proposition is true, even

when a and b are fractional. Let the number of units

in the sides be and
,
and take another unit which

1 ..*...*
is of the first, or is obtained by dividing the first

nq
^

unit into nq parts, and taking one of them. Then,

by the proposition just quoted, the square described

on the larger unit contains nqy^nq of that described

on the smaller. Again, since and are the same

fractions as and
, they are formed by dividing

nq nq
the first unit into nq parts, and taking one of these

parts mq and np times
;
that is, they contain mq and

np of the smaller unit
; and, therefore, the rectangle

contained by them, contains mqy^np of the square

described on the smaller unit. But of these there are

ngX n
&amp;lt;l

in the square on the longer unit
; and, there-

m q X np mp Y^nq mp .

fore,
-

t or -^ -I or , is the number of
nq^nq nq^nq nq

the larger squares contained in the rectangle. But

is the algebraical product of and . This prop-
nq n q
osition is true in the following sense, where the sides

of the rectangle are incommensurable with the unit.

Whatever the unit may be, we have shown that, for
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any incommensurable magnitude, we can go on finding

b and a, two whole numbers, so that is too little, and
b4-l a

too great : until a is as great as we please. Let

AB and AC be the sides of a rectangle AK, and let

them be incommensurable with the unit M. Let the

lines AF and AG, containing and - units, be
a a

respectively less and greater than AC
;
and let AD

and AE, containing and units, be respectively

K
H

I .

Fig. 13-

F C G

less and greater than AB
;
and complete the figure.

The rectangles AH and AI contain, respectively,
b c . b A-\ c -\-\- X /

and ~ - X i square units,* and thead a a

first is less than the given rectangle, and the second

greater ; consequently the given rectangle does not

differ from either, so much as they differ from one

another. But the difference of Aff and Afis

(b -\- 1)(V -f- 1) be b -\-c-\-~\.

ad

or
ad

c

~od

*&quot; Square unit&quot; is the abbreviation of &quot;square described on the unit.&quot;
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1 b It 1
r
~~d^a~~~a~d^ ad

Proceed through two,* four, six, etc., steps of the

approximation. The linear unit being M, the results

will be such, that M will be always less than AC,
a

1 b
but continually approaching to it. Hence -r M is

AC a

always less than
;
and since AC remains the same,

and d is a number which may increase as much as we
AC

please, by carrying on the approximation, and
1 h

a fortiori M may be made as small a line as we
d a

1 /
please ;

that is, -= may be made as small as we
d a

1 c

please, and so may in the same manner. Also
i a a

j may be made as small as we please ;
and there-

aCl -1 7
-j -|

fore, also, the sum I 4- - =. But this num-
d a ad ad

ber, when the unit is the square unit, represents the

difference of the rectangles AH and AT, and is greater

than the difference of AK and AI
\ therefore, the ap

proximate fractions which represent AC and AB may
be brought so near, that their product shall, as nearly

as we please, represent the number of square units in

their rectangle.

In precisely the same manner it may be proved,

that if the unit of content or solidity be the cube de

scribed on the unit of length, the number of cubical

units in any rectangular parallelepiped, is the product

^
*This is done, because, by proceeding one step at a time, is alternately

too little and too great to represent AC; whereas we wish the successive

steps to give results always less than AC.
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of the number of linear units in its three sides, whether

these numbers be whole or fractional
;
and in the sense

just established, even if they be incommensurable with

the unit.

These algebraical relations between the sides and

content of a rectangle or parallelepiped were observed

by the Greek geometers ;
but as they had no distinct

science of algebra, and a very imperfect system of

arithmetic, while, with them, geometry was in an ad

vanced state
;
instead of applying algebra to geom

etry, what they knew of the first was by deduction

from the last : hence the names which, to this day,

are given to aa, aaa, ab&amp;gt;
which are called the square

of #, the cube of a, the rectangle of a and b. The stu

dent is thus led to imagine that he has proved that

square described on the line whose number of units

is a, to contain aa square units, because he calls the

latter the square of a. He must, however, recollect,

that squares in algebra and geometry mean distinct

things. It would be much better if he would accus

tom himself to call a a and aaa the second and third

powers of a, by which means the confusion would be

avoided. It is, nevertheless, too much to expect that

a method of speaking, so commonly received, should

ever be changed ;
all that can be done is, to point out

the real connexion of the geometrical and algebraical

signification. This, if once thoroughly understood,

will prevent any future misconception.
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75, 87-89, 97-99.

Fractional exponents, 163 et seq., 185.

French language, 188.

Frend, 71, foot-note.

Freycinet, 187.

Geometry, study of, 4 et seq.; defini

tions and study of, 191 et seq.; ele

mentary ideas of, 193 et seq.

Geometrical reasoning and proof, 203

et seq., 220 et seq.

German language, 188.

Grassmann, 232.

Greatest common measure, 25 et seq.,

86, 267 et seq.

Greater and less, the meaning of, 144,

Greatness and smallness, 170.

Halsted, 232.

Hariot, 38.

Haskell, 168.

Hassler, 168.

Helmholtz, 232.

Hindu algebra, 186.

Hirsch, 188.

Holzmuller, G., 189.

Hutton, 168.

Hyde, 232.

Hypothesis, 208.

Identical equations, 90.

Imaginary quantities, 151 et seq.

Impossible quantities, 149 et seq.

Incommensurables, 246 et seq., 281 et

seq.

Increment, 169.

Indirect reasoning, 226.

Indeterminate problems, 101.

Indices, theory of, 60, 158 et seq., 166,

185.

Induction, mathematical, 104, 179,183.

Inductive reasoning, 219.

Infinite quantity, meaning of, 123 et

seq.

Infinite spaces, compared, 235 et seq.

Instruction, principles of natural, 21

et seq.; faulty, 182; books on math

ematical, 187.

Interpolation, 169-174.
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James, W., 232.

Jevons, 212.

Jodl, F., 232.

Jones, 168.

Keynes, 212.

Lacroix, 187.

Lagrange, 187.

Laisant, 187.

Lallande, 168.

Language, 13, 37, 79.

Laplace, 185.

Laurent, H., 188.

Least common multiple, 28.

Leibnitz, 37.

Line, 193, 242.

Linear unit, 267.

Literal notation, 57 et seq.

Lobachevski, 232.

Locke, 9.

Logarithms, 167 et seq.

Logic of mathematics, 203-230.

Logics, bibliographical list of, 212.

Mach, E., 232.

Mathematics, nature, object, and

utility of the study of, i et seq.;

language of, 37 et seq.; advice on

study of, 175 ; philosophy of, 187.

Matthiessen, 189.

Measures, 198, 266 et seq.

Measurement, of lines, angles, pro

portion of figures, and surfaces,

266-284.

Measuring, 241 et seq.

Mill, J. S.,212.

Minus quantities, 72.

Mistaken suppositions, 106 et seq.

Moods, logical, 212 et seq.

Multiplication, 23 et seq., 34 et seq.,

68 et seq., 164.

Mysticism in numbers, 14.

Negative, quantities, 72; sign, iso

lated, 103 et seq., 181
; squares, 149,

151; indices, 166, 185.

Netto, E., 189.

Newton, 37, 185.

Notation, arithmetical, decimal, n
et seq.; general principle of, 15 et

seq.; algebraical, 55 et seq.; 79, 159,

extension of, 33, 80, 143, 163.

Numbers, representation of, 15 et

seq.

Numeration, systems of, 14 et seq.

Numerically greater, 144.

Oliver, Waite, and Jones, 189.

Panton, A. W., 189.

Parallels, theory of, 181, 231-237.

Particular affirmative and negative,

203.

Perfect square, 138.

Petersen, 189.

JT, 277.

Plane surface, 195.

Plato, 239.

Poincare, H., 232.

Point, geometrical, 194-195.

Postulate, 210.

Powers, theory of, 158 et seq.

Predicate, 203.

Premisses, 211 et seq.

Prime numbers and factors, 25.

Problems, reducing of, to equations,

92 etseq.; general disciplinary util

ity of, 95 ; of loss and gain as illus

trating changes of sign, 119 ;
of the

two couriers, 112 et seq.

Proportions, 170; theory of, 240-265.

Proportional parts, 173.

Propositions, 203 et seq.

Pythagorean proposition, 221 et seq,

Quadratic, equations, 129 et seq.;

roots, discussion of the character

of, 137 et seq.

Radian, 276.

Read, Carveth, 212.

Reasoning, geometrical, 203 et seq.;

direct and indirect, 226.

Reckoning. 13 et seq.

Riemann, 232.

Roots, 129 et seq., 137 et seq., 158 et

seq.

Rules, 42; mechanical, 184.

Rules, extension of meaning of, 33,

80, 143, 163.

Russell, B. A. W., 232.
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Schlomilch, O., 189.

Schron, 168.

Schubert, H., 189.

Schiiller, W. J., 189.

Self-evidence, 209.

Serret, J. A., 188.

Sexagesimal system of angular meas

urement, 273.

Shorthand symbols, 55.

Sidgwick, 212.

Signs, arithmetical and algebraical,

20 et seq.; 55 ;
rule of, 96, 186.

Sigwart, 212.

Simple expression, 76, 77.

Singular values, 122 et seq.

Smith, D. E., IV., 187, 265, 276.

Solutions, general algebraical, in.

Square, the term, 282, 284.

Stackel, Paul, 232.

Stallo, J. B., 232.

Straight line, 12, 193.

Subject, 203.

Subtraction, 23.

Subtractions, impossible, 103-104.

Surfaces, measurement of incom

mensurable, 280 et seq.

Syllogisms, 210 et seq.

Symbols, invention of, 80-81. See

Signs.

Syllabi, mathematical, 186.

Tables.mathematical.recommended,
168.

Tannery, P., 232.

Taylor, 168.

Terms, geometrical and algebraical

compared, 284.

Theory of equations, 132 et seq., 179,

190.

Todhunter, 189.

Triangles, measurement of propor
tions of, 277 et seq.

Trigonometrical ratios, 278 et seq.

Ueberweg, 212.

Universal affirmative and negative,

203.

Vega, 168.

Venn, 212.

Weber, H., 189.

Wells, 168.

Whately, 212.

Whole number, 76.

Zero, as a figure, 16; its varying sig

nificance as an algebraical icsult,

122 et seq.; exponents, 81, 166.



THE OPEN COURT MATHEMATICAL SERIES

Essays on the Theory of Numbers.

(1) Continuity and Irrational Numbers, (2) The Nature
and Meaning of Numbers. By RICHARD DEDEKIND. From
the German by W. W. BEMAN. Pages, 115. Cloth, 75
cents net. (3s. 6d. net.)
These essays mark one of the distinct stages in the devel

opment of the theory of numbers. They give the founda
tion upon which the whole science of numbers may be es

tablished. The first can be read without any technical,

philosophical or mathematical knowledge; the second re

quires more power of abstraction for its perusal, but power
of a logical nature only.
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reading. They deal, not with the dry side of mathematics, but with the
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compendious history of mathematics.&quot; The Outlook.

&quot;This book is the best that has appeared in English. It should find a
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