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ON THE

USE OF EQUIYALENT NUMBERS

METHOD OF LEAST SQUAHES.

One of the most important applications which has been made of mathematics to

investigations in physical science has for its object to ascertain the best manner of

combining data affected by unknown errors of observation, so that the probable effect

of these errors shall be the least possible. The method of least squares proposes

to accomplish this, by reducing to a minimum value the sum of the squares of the out-

standing errors, and, by conforming to this single criterion, to fulfil the condition, so

desirable in the prosecution of thorough and exact research, of reducing to its least

possible amount the influence of errors in the data employed.

The investigations here presented have been entered upon with the design of deter-

mining the degree of numerical exactness proper to be observed in making use of the

method of least squares, in order to secure its peculiar advantages with the least out-

lay of labor.

Some detail in the discussion seems to be called for from the prevalence of a practice,

almost universal among computers, of adhering to the letter of the method of least

squares with a strictness which implies a misapprehension of its true spirit. It is

impossible to adduce any valid reasons to justify such a course when it must be fol-

lowed at a serious expense of time and labor in the computations.

It has not escaped the observation of Gauss, in his original exposition of the method,

that some freedom of interpretation may be allowed when its theoretical results are

applied in practice, as the following passage, referring to the solution of equations by

least squares, will show :
—

I/) 9 1.59



4 ON THE USE OF EQUIVALENT NUMBERS

" When the number of functions or equations proposed for solution is considerable,

the computations become laborious, the more so from the circumstance that the co-

efficients by which the primitive equations are to be multiplied are almost always com-

plicated decimal fractions. If it is not thought worth the trouble in such a case to

calculate the products with exactness by means of logarithms, it will generally be suf-

ficient to substitute for them (i.
e. for the multiplying factors) more simple numbers

differing but slightly from them." *

In his subsequent researches, it does not appear that Gauss has given any further

development to the suggestion here put forth. Indeed, the introduction of modifications

of a like nature, however desirable in a practical point of view, would have deprived

a purely theoretical discussion of much of its elegance and symmetry. Yet the passage

above quoted lends the support of the highest authority to the leading proposition

which we shall have occasion most frequently to insist upon ; namely, the propriety of

allowing some relaxation of theory in applying the calculus of probabilities to the dis-

cussion of data affected by ordinary errors of observation, whenever the modification

conduces to convenience and the saving of labor at the sacrifice of no appreciable ad-

vantages.

Even an unqualified admission of the superior probability of results which exactly

fulfil the criterion proposed in the method of least squares, does not relieve us from the

necessity of restricting it to examples which never actually occur, that is, if the ques-

tion be made a rigorous one ; f
— to such, for instance, as involve the discussion of obser-

vations which are entirely free from unknown constant errors, or errors foUomng any

law of facility which does not imply the assumption that the mean error is proportional

to the square root of the mean of the squares of the individual errors. But we know

that this proposition, which lies at the foundation of the whole subject, is not suscepti-

ble of absolute demonstration by any process of mathematical reasoning. Further than

this, we know from constant experience that the law of distribution of errors recognized

in the method of least squares practically faUs, in extreme cases, both for very large and

for very small errors. If any illustration of the failure of the assumed law be needed,

it will be found in the familiar instance of computing by it the probable error of the

arithmetical mean of a very large number of observations, where common sense assures

us that the theoretical probable errors of the result are invariably smaller than they

should be.

Why, then, should an implicit adherence to its minutest details be required as essen-

* Theoria Motus, § 185. t Theor. Comb., % 17.



IN THE METHOD OF LEAST SQUARES. 9

tial to its successful application, or to the attainment of all the advantages which its

employment may confer upon the discussion of any practical problem ?

It is true that no other system can be proposed which is free from similar objections,

or which can be mathematically demonstrated to be exclusively the best, without quali-

fication, and therefore the arguments above stated are of no force whatever, if employed

as reasons for the rejection of the method of least squares. They nevertheless greatly

weaken the position of those who Avould insist upon a strict compliance with its pre-

cepts, and effectually preclude all alignments of a purely theoretical character in support

of such a course. Still it is desirable that the force of any objections which may be

made to an attempt to modify the theoretical conditions for eiFecting the most favorable

combination of equations should be appreciated at their true value. We therefore pro- ^
pose to show that the spirit of the method of least squares, rightly apprehended, in

reality rather invites than discountenances a liberal construction of its rules.

Admitting that the best possible solution is attained when the sum of the squares

of the outstanding errors, represented by S2, is a minimum, it is evident that /2 is a

minimum relatively to the manner in which the original equations have been treated.

And since the peculiarity of the solution consists in the employment of a system of

factors, a, a, &c., by which the original equations are multiplied before combination,

the first differential coefficient of fl relatively to either of these factors, in the case of

the least-square solution, must have the value for each factor,

dJl

a a

When, therefore, the factors are varied by small amounts, Ba, B a, &c., the conse-

quent variations of fl developed in a series, will contain only terms multiplied by the

second and higher powers of 8 a ; or, in general terms, if we deviate from the exact

(1.) precepts of the method of least squares hy small variations of the first order, we shall fail

to satisfy itsfundamental criterion hy small terms of the second order only.

Looking thus at the most elementary principle of the method, we find a warrant

for some degree of liberty in applying it,
— a liberty which we can scarcely hesitate to

avail ourselves of, if we further consider the peculiar circumstances attending its actual

employment in the discussion of data furnished directly by observation.

Among its first requirements is the assignment of weights to the original observations ;

but it is one which it is not possible to fulfil correctly, for we are provided neither with

a theory nor with data for the purpose. All that can be done is to accept, as indices of

the relative value of the different observations, certain numbers depending either proxi-

mately or remotely upon no other authority than the mere exercise of the judgment
2
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alone. No one can pretend that this is a process susceptible of strict accuracy ; yet an

error here is as fatal as if we had disregarded any other of the precepts of the method.

This step being an arbitrary one, although one of fundamental importance, we may

properly appeal to it as a precedent for the modification of others suggested by con-

siderations of convenience, though they may not, like this, be justified on the plea of

actual necessity. In this view of the subject, we find support for the modification

suggested by Gauss, in the passage we have quoted above. Each of the complicated

factors which it is there proposed to simplify is itself a product of two other factors,

one of which is the weight of the equation under treatment ; if one of these, that

is, the number representing the weight, is erroneous, the product is of course errone-

ous, with whatever accuracy the other is expressed.

Again, as a matter of convenience, it is usual to express the conditional equations

proposed for solution in a linear form, by reducing the indeterminates to small quanti-

ties and neglecting the terms multiplied by their second and higher powers, and to con-

struct, from them normal equations, as they are called, previously to applying the

method of least squares. Both of these may be practices perfectly allowable under the

circumstances, but since they are almost always theoretically incorrect, their admis-

sion is a virtual relinquishment of all pretensions to a rigorous course of computation,

and cannot be compensated for by any subsequent refinements.

We will now proceed to examine the limits of accuracy appropriate to the arithmeti-

cal operations required in the combination of conditional equations by the method of

least squares, and afterwards to develop in detail some proposed modifications of that

method, having for their object the reduction to its minimum value of the amount of

labor requisite for its successful application.

It is scarcely necessary to remark, that the subject .is plainly one which is in its

nature somewhat vague and insusceptible of rigorous treatment, though it is at the

same time interesting from its practical bearings. If no very precise or definite rules

for regulating the degree of numerical exactness suited to the discussion of any given

problem can be arrived at, it may still be of service to point out the principles which

ought to guide the computer in the choice of such limits as shall perfectly meet all

reasonable requirements of accuracy, without imposing upon him the unprofitable labor

of multiplying the extent and difficulties of calculation, to no useful purpose, and

without the remotest prospect of sensibly improving the real value of the results.

Let us suppose a series of equations,

a X -\- b y-j- -\- m =e,

a' X -|- J' y -j- -\- m' = e'l
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in which m is the element demed from observation, and e the unknown error of the

equation, to be solved by the method of least squares, giving for x the value x, with its

probable error, £, obtained from a compai-ison between the observed and the computed

values of m, after substituting x, y, &c. in the primitive equations.

If Xq be the true value of x, we may represent by x a quantity such that it is

an even chance whether Xq
— x is comprised between the limits s ~\- x and f — x.

The magnitude of the limit defined by x has an evident relation to the question how

far the simplification of the arithmetical processes may be carried without detriment

to the results.

For instance, the solution of the above equations may be repeated with small varia-

tions from the process at first applied, giving for x a new value Xi with a probable

error E^ , differing but little from a. If we were in entire ignorance of the relative

amount of the probable errors f, and s, there would be no reason at all for giving

the preference to x rather than to Xi . If only the single circumstance were known

that fi exceeded £ by a given small amount, we should be equally at a loss, while

the value of s remained unknown, to state the relative weight of Xi compared with

X, and should, in fact, be again obliged to resort to the hypothesis that £ and fj were

sensibly equal. And in general, the greater the uncertainty of f, or, in other words,

the larger the value of x, the less reason would there be for excluding from competition

with X any other determination of x, such as x^, of which the probable error e^ dif-

fered but little from s.

In order to employ the limit x as here proposed, its value must be known before the

computations have reached an advanced stage. That this is not ordinarily practicable

will readily appear. On the other hand, it must be left entirely to the judgment of the

computer to decide as to the precise manner in which x is to be applied in limiting the

allowable amount of difference fj
— £.

Objections of a similar character apply equally to other standards which might be

proposed for the same object. As has before been remarked, the question must be

treated, if at all, upon a somewhat arbitrary basis, and we must be content with sug-

gestions addressed to the judgment or common sense of the computer, in cases where

no fixed rule is admissible.

Viewed in this light, there will ordinarily be no difficulty in recognizing the point

at which there will be danger of compromising accuracy in the attempt to simplify the

computations, nearly enough at least for practical purposes, if we are prepared to

admit, at least in its general spirit and tendency, the truth of the following propo-

sition :
—
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The application of the method of least squares to the discussion of observations ofphysi-

cal phenomena, with the exception of a few special cases of rare occurrence, requires the

(2.) use of such numbers only, in the arithmetical processes peculiar to it and characteristic of

the method, as may be designated by one of the numerals 0, 1, 2 9, or of the fractions

—
,
— —, or by a product of one of these numbers by an integral power of 10.

An idea may be formed of the amount of the intentional errors occasioned by these

substitutions, by noticing that if by N is represented any number whatsoever, and by

N' a number chosen from the proposed series which most nearly coincides with N, we

shall have

N— isr 1

/„ , The maximum value of —— := -
nearly.

\o.) iV "

JV— iV' 1

The probable value of —
zr^

—
<^

—
.

Before proceeding to a detailed investigation of the consequences of the changes pro-

posed, it will be useful to point out the degree of insecurity attaching to the values

which must ordinarily be adopted to represent the probable error of x ; the different

sources which may be supposed to contribute to the increase of s ; and their relative

importance in connection with the question of the comparative accuracy of the two

results X and Xi.

s may be referred to the combined influence of two mutually independent errors

r) and rj, T) being the probable value of Xg
— x which would result from the errors of

observation alone, supposing the theory of the method of least squares and its applica-

tion to the data to be rigorously exact, and V the probable amount of error in x having

its origin in errors necessarily committed in the discussion of the observed data, sup-

posing the mode of discussion, although the best practicable, to fall short of strict

conformity with the theory. tjI represents the value of rf when the same data have

been reduced, by a process made intentionally still less exact, to a small extent, both

in its theory and in its arithmetic, than that which gives the error •??'. tjI will bear

to Xi a relation similar to that which >/ bears to x. j; cannot be completely eliminated,

so long as the errors of observation remain unknoAvn, by any treatment, and the same

may be said of rf ; but 7)1 can always be reduced to its least limit, •»?', by suitable refine-

ments of theory and of computation. In view of the fact that ij and rj' must have

always sensible, but very uncertain values, it will be of but little consequence that

ij'i
should be reduced to its utmost limit without regard to the labor and inconvenience

which it may cost. At all events, the attempt will be ineffectual as a means of im-

proving the substantial accuracy of the results, as we shall presently see.
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Since ;; is independent of ij and Vi » we have, assuming ?;' to be the least attainable

value of
9;'i,

If rl' be used to designate the probable value of x— x^ vphich would result from

small intentional deviations from that treatment of the data which is recognized to be

the best, we have

(4.) ,;a = ,'^ + ,"2, ,2 ^,,2 + ,'3^ ,,2 = ,2 ^ ,'2 _|_ ,"2.

As regards the uncertainty of £, some estimate of its extent may be obtained in the

following manner.

If it is an even chance that the error of which the probable value is 17 is comprised"

somewhere between the limits ?? -f- \ and 17
—

X, «? having been derived from compari-

sons of a given system of equations with observation, the number of individual equa-

tions thus compared being represented by n, and the number of unknown quantities

entering into them by «', \ may be found from the expression*

(5.)
X = 0.477

^/n— nf

Any value of «— w' less than 100 gives

^
21

'

The scale of substituted numbers (2) admits, as we have before stated, of represent-

ing 17 within the probable amount of — ??; hence, for any value of ?i— «' less than 100,

the series will afford numbers representing t? with a probable error less than \. A
slight examination M'ill show that a similar remark applies still more decisively to £.

The considerations which oblige us to attribute a sensible value to ij are too many
and too obvious to require to be specified in detail. It will be sufficient to cite one or

two which have already been alluded to. The existence of unknown constant errors in

the data will render the application of the method of least squares, strictly speaking,

inexact. From this source »?' will inevitably acquire some influence. Again, the un-

certainty incident to any attempt to assign to the original data their proper relative

weights, will have a similar effect. No process more loose and arbitrary can well be

conceived, than that by which the relative precision of the elements afforded directly by
observation is graduated. Yet, imperfect as it is, improvement in this particular is

scarcely to be hoped for. Exact conformity with a theory which requires a previous

knowledge of the relative weight of observations is quite impossible.

•
Gauss, Zeitschrift fiir Astr., B. I. Theor. Comb.,§ 40.
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At the same time, theij, that the existence and influence of i?' are admitted, its amount

is altogether uncertain, to an extent suiRcient at least to make the uncertainty of e

which is dependent on that of 17 and 7?' not less in proportional amount than that of ij ;

consequently we shall obtain from (5) the expression

(5 a.) x> 0.477
v/n— n'

by which to measure the uncertainty of e. If n — n' < 100,

(55.) K>^..

When £ is represented by a number chosen from the series (2), the probable error of

the representation is, by (3), less than — £ ;
in other words, it is more than an even

chance that this number will fall within the limits s -\- —£ and £ — — £ ; and since
I 25 25

the inherent uncertainty of £ makes it more than an even chance that its actual value is

outside of the limits £ -f- ^ « and £ — — f
,
in accordance with the above determination

of X, we conclude that £ can be represented by one of the series of numbers 0, 1, 2

9, or of the fractions -,
-

-, or by a product of one of these numbers by

an integral power of 10, with more accuracy than we can determine its amount by

one hundred comparisons between the observed and the computed values of m. It

would be easy to show, from the probable existence of constant errors alone, that an

indefinite increase of the number of comparisons with observation would not sensibly

diminish the uncertainty of £ below the amount stated. The proposition (2) would thus

be sustained, as far as relates to all expressions for probable errors and weights, since

they must depend upon conditions similar to those limiting the accuracy of f .

An immediate consequence of this admission will be the extension of the proposition

in question, in the qualified sense, at least, in which alone it is to be understood, to all

other arithmetical expressions required in the application of the method of least squares,

since the peculiar province of the latter is restricted entirely to the solution of equations

of the form

(5 c.) a (a;
—

ar,) -f J (y
—

y,) 4- -f (m — m,) = e,

in which each separate term and factor may be defined as proposed in (2).

To illustrate this, let us suppose for the moment that <r, has been derived from the

same primitive equations, but by an essentially difiierent process from that by which

X has been obtained ; Xi would still be precisely equal to x, if it were not for the errors

e, e', &c. Any such process, not intentionally bad, must evidently lead to a determina^

tion of .Vi differing from x by an amount of an order not higher than that of f, while
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one adopted expressly on account of its good qualities, though without bearing any in-

tended resemblance to the method of least squares in its characteristic features, will

diminish the difference x— Xi to a value either less in absolute amount than f , or very

nearly equal to it; so that
(cZ?
—

Xi), {y
—

^J, &c. may be sufficiently well expressed

by the series (2) in the same sense that s may be. The equations

ax -\-hy -\- -\- m ^ e,

axi + hyi-]- -f m, = 0,

in which e is the value of e obtained by substituting x, y, &c. in the primitive equa-

tions, give at once

(5 c.)
a

(a:
—

a;,) + J (y
—

y,) + + (m — m,) = e,

The solution of which by the method of least squares gives {x
—

^i), {y
—

^i) ,

and thence
X ^= Xi -\- {x

—
a;, ) ,

y = yi + {y
—

yd,,

Therefore the application of that method may be confined to the equations (5 c) alone.

But by what has already been said, (x
—

x^), (y
—

yi) , and e, are quantities

sufficiently well expressed by the series (2), from which we readily infer that there can

be rib appreciable advantage in giving to (m
—

m,) or to the products a(x— Xi),

b(y
—

yi), &c., or to the factors a, b, &c., any higher exactness of expression. Hence

the proposition (2) may be extended to every term and factor of the equations (5 c),

and therefore to all the niunerical processes peculiar to, arid characteristic of, the meth-

od of least squares.

This extreme application cannot, however, be recommended even on the ground of

convenience or simplicity; on the contrary, the indiscriminate use of the fractional

terms of the series would often be highly inconvenient ; and a form of solution like

that just indicated would not always be deskable.

In considering the different sources of error from which s and Si acquire their value,

it will be convenient to compare the increase given to s by the introduction of small

intentional inaccuracies, in consequence of which s becomes Si, either with f itself or

with £ — 17, by means of the following relations derived from (4) :
—

(6.)
«i
—

<K:-)'' ^:<(^y
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Used in connection with (3) and the limit defining the uncertainty of s,

X > 0.477  , or usually x > — £.-^
sfn— n' 21

«, will thus be comprised between the limits £ -f- ^ x and t— ^ x, when 17" has such a

value that

\ £ J 10 n — n''

The relative accuracy of x and x^ will now be investigated for some special exam-

ples of deviation from a strict compliance with the method of least squares.

Let the equations proposed for solution be the following :
—

ax-j-iy-j- 4-m =e, weight = w,

(7.)
a' x' + J' y + + ?n' = e',

" = w',

where e is the difference between the observed and computed value oi m ; m being the

element derived from observation.

In solving these by least squares, the final equation for x is formed by taking the

sum of all the equations after multiplying the first by a w, the second by a w', and

so on, and then making

a w e -\- a' w' e' -\- =0,

and for y
h w e -\-

I' w' e' -\- =0, •

continuing in succession to form new equations until a final equation is obtained for

each unknown quantity.

We shall compare the results of two solutions of the above equations (7), in one of

which (I.) the factors aw, a w' conform strictly to the method of least squares. In

the other (II.}, these factors are replaced respectively hy a, al ; a being that one of

the numbers 0, 1, 2 9, or of the fractions j, y ^1
or of their products by an in-

tegral power of 10, which approaches most nearly to a given ratio with aw, and a that

which approaches most nearly to the same ratio with a w, 8cc. In a similar manner,

)8, y are used in the place of bw, cw

The true values of x and y we will indicate by Xq, y^ Those deduced by

(I.) will be denoted hy x,y , and those deduced by (II.) will be denoted by Xi,

yi For the final equation for x, we make

a w e + o! w' e' + := 0.
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For the final equation for Xi

« ei + «' ej' + = 0.

For the corresponding final equations for c^o, which must be rigorous, we make either

a w ec, -{- a' ra' e'o -\-
^ a w e,, -\- a' w' e'o -\-

or

o Co + «' e'o + = a Co + ce' e'o +

according as the first (I.) or the second (II.) form of combination is adopted.

Co, e, and Si are the values of e when the indeterminates Xq, y^ , x, y

Xi,yi , &c., replace x, y in (7).

The final equations for the combination (I.) are :
—

P x-\- P' y-{- P" Z+ + I, = 0,

. P'x+Q y-j-Q'z-\- + M=0,
^ ''

P"a;4- Q'2/+ Q"«4- + iV = 0,

P = waa -{- w' a' a' -{- , Q = to i b -{- w' b' h' -\- , R = w c c -{- w' c' c' -\-

(9.) P' = wab-\-w' a'b' -}- , Q — ivb c -\- w' b' c' -\- , R' = w c d -\- w'c'd' -\-

From the conditions I. and II. applied to the original equations (7), if we make

Aa =^ a W -{- da , Bj3=&«)-f-8i3, Cy — c w -\- 8y ,

Aa' = a'w' -\-8a' , B/3' = 5'w' + 8/3' , Cy' = c'^mj' + Sy' ,

may be obtained

P{x-x,)-\-P{y-y,)-\- -^L+Px,-\-Py, + =
L + Pa;, + P'3/', + — — e^da — e\da'—  

Hence,

P (x
—

xi) + P' (y
—

y,) + = 8« e, + 8a' e'. -(-

(10.) P'{x— x,) + Q {y
—

y,) + = 8^e. + 8^' e'. +

And in a similar manner,

P (xo
—

x) -\- P' {yo
—

y) -\-
= a w e, + a' w' e'o +

(11.) P' (a;„
_

a;) + Q (y„
_

y) + = bwe,-\-b'to'e'o-{-

Since e is the probable value of Xq— x, and 17" the probable value of (x
—

Xi), to ob-

3
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n
tain the ratio — , we will compare the probable values of Xq

— x and x— Xi, having, as

above,

/in\ n" Probable value of {x
—

a;,)

f Probable value of {xg
— x)

Xq — OS and x — w^ must be derived from a solution of equations (10) and (11), but

since (II.) differs from (I.) by small variations only, we have, very nearly,

(13.) w e,= _|_ «,/ e',2 _(-
= ^e'' + w'e" +

For the second member of (13) is a minimum relatively to the mode of solution, and,

as has already been shown, (1), it differs from the first member by small terms of the

second order only, those of the first order vanishing with the first differential coefficient

oi SI = w e^ -\- vf e'^ -\-

If, then, /^o, /i, and ^i represent the probable values of Bq, e, and Ci corresponding

to the unit of weight of the equations (7), we may assume, for the purpose of deter-

mining X — ,2?!, that /i
—

/lii
is a small quantity compared with /i, since we have

a w e'' -I- tti' e" -I-— = ri 7-^-7
= 1, very nearly.

/ti w e, -|- w' e'c -\-

Moreover, in the absence of exact knowledge of the magnitude of the errors of e^,

e'o, , it is necessary to admit that they are best represented by the errors e, e, ;

hence we have — = 1, and consequently
- = 1, very nearly.

The conditions of the solution (II.) give for the probable value of either of the ratios

0' w'

aw ^ bw ^
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Probable value of
(a;
—

a;,) _ /i, ^ _
Probable value of {y

—
y,) _ ^i

Probable value of
(a?o
—

a;) ims

And from (12) the general expression

''
Probable value of

(a?o
—

a;) im, Probable value of (^o
—

y) p-a

(16.)
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(Q -
1^

P')2/ + (Q'
-
jP") z+ + ilf_

I'
L = 0,

/iw\ pii pii pi I

^ ^^

{q-yP')y + {R -^P")z+ + jv_£-L = o,

to whicli we shall give the following notation :

Q, 2/ + Q', z + + M. = 0,

(18.) Q'.2/+E, 2 + + JV, =0,

Let y be eliminated from these new equations (18) in the same manner that x was

from the equations (8), multiplying the first by -~ and subtracting it from the second,

(J?,-2-'Qg.+ 4-iV,-|-'M.
= 0,

with the corresponding notation,

(19.) K,,z + + iV,,
= 0.

For a more complete illustration of the notation, we will collect in one view the

equations obtained by the successive eliminations :

(a) P a; + P' y + P" 2 + + i =
^

(5) F' ^J^qyj^q ^J^ + M =
(e) P" a; + Q' jr + R z + + iV =

(20.) (J.) Q, y + Q'. 2 + + m; =
(c.) Q'^y + R, 2 + + iV, =

Final

Equations.

Equations formed by

eliminating x.

(c,y) ^xy2 + + -^iy^ I Equations formed by

. ) eliminating x and y.

Let
/t4

be the probable error of one of the original equations of the unit of weight.

The probable errors of the second members of the equations (20) will be,

Probable error of the equation (a)
=

/i /^p
(I) =a*VQ
(c) =,.vr

(21.)
" « "

(J,) =m\/q:
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When the final equations obtained by (II.) are solved in an analogous manner, and

the notation is changed so as to indicate the coefficients of x^, y^, &c., Pj , P'l ,

which replace P, P, &c., we have

(a) F. a;. + P', y, + P", 2, + + L,
=0-|

(6) 'Q.-i;i+ Qi yi+Q'i zi + + M. =o[ Final

(c) "-Ri a-i + 'P, 2/i + Ki z, + + JV, =
I
Equations.

(22.) (5.) Qi,y,+ Q',. 2, + + ilf., =0]
,

., , r> I T> I 1 AT « I Equations formed by

I eliminating Xi.

(c,y) Pi »j, Zi -|- + -^i^j,
= •» Equations formed by

. , . . j eliminating Si and y^.

1 IF
Probable error of the equation (22) (a)

=
(1 ± -

^) M ^
—

i

(( u

t( (t

(23.)

(c,,)
=

(1 ±
i^^'^Jf"^'

To demonstrate these results, (23), it is to be observed that the probable errors of the

second members of the equations (22), (a), (6^), are the probable sums of the

second members of the equations

i'l (^0
—

a;,) + P', (yo
—

2/,) + = « eo + a' e'o +
Q,.(y«-!/,) + =

(i3-^ «)fo+(^'-^«')e'„ +

The probable value of (j?e\ is, by (13) and (14),
. , .

«''ej
= —- a ej

:= w ej 1
-^

— =
/* (1 iff) — ,
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and the probable value of the sum of the terms aco -\- a' e'^ -\- is

«e„+«'e'„ + =
_^ ^(1 ± g) V« a + «' a' + = ^ {1 ± I

g) \^
,

which is the probable error of the equation (22), (a).

Again, since

Au = aw(l + —'), Bp^bw(l + ^-^\,
\ a id) \ b loj

and
Pi = a a -{- a' a' -\- , Q, = J + 0' J' +
P\ = a b -\- a' b' -\- , 'Q,=pa-]-^'a' -\-

or, substituting the probable values

\ awJ \ bwj
we have

Moreover,

The sum of all the terms ('^ „a—'-^^a\ = ('-^ p, _ !^ /Q \ = o,

Therefore the probable sum of the terms

0-^„)e„ + 0'-^a')e'„ +
will be

which is the probable error of the equation (22), (b^).

The other probable errors in (23) are readily supplied by analogy.

If we neglect
-
g, of which the probable value is less than — , the probable errors of

(22), (a), (b^) become

Probable error of equation (22) (a)
=

/*
—

,•
Probable error of equation (22) (b^)

=
fi

-^ •

We shall now proceed to explain a third form of solution, (III.)-
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Returning to the equations (10),

P (x
—

ic,) + -P' (y
—

yi) + = e,8« +e'.8«' +
(24.) p/(^_^,)_^Q (y-y.) + = e,d^+e',8^'4-,

we find, for the probable values of their second numbers,

g li \/w a a -\- w' a' a' -\- =
g' F V^" >

(25.) g /* Vwb J 4- w' J' J' + =
g- ^ VQ ,

It is evident that the probable sum CiS a-j-e\S a,' -^ , being proportional to the

square root of the sum of the squares of the individual terms, depends mainly upon the

large terms ; or, since e^Sa = ei -v/mT—^ and e^ \/w'= fi, this sum will be

+^'+w'

S a J. , . Sa ^ i a'

If any two or more of the coefiicients -7=, as, for instance, -7=. and -7==, were equal,

any small change increasing the former and diminishing the latter by equal amounts

would not alter the coefficient of u: but if -7-^ were much smaller than —7=^, we

shoidd have, very nearly,

www'
and a small change in -7^ would affect the coefficient of /x by an amount insensible

compared with the effect of an equal change in —r^.

Let (P) represent the sum of a certain number of the largest of the terms composing

the series

P =^ w aa-\- w' a' a' -\-

and (p) the sum of a number of the smallest of the terms of the same series. Let also

(S P) be the sum of the terms —^ corresponding to the series (P), and (Bp) the sum of

the terms — , corresponding to the series (p).

Then we have the probable values

For the large terms, (8 P) = g' (P),

For the small terms, (^p) =^ g' (p),

g representing the general probable value of — for all the terms, whether of large,

small, or medium value.

^ Or irti

if UNIVERSITY
OF J
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Let US suppose the mode of solution (II.) to be itself varied by changing the factors

«, a , &c., corresponding to the large and small terms, so that for the large tenns, g, or

the probable value of — , -7^, ,
for these particular terms, becomes^ a 10 a IB

g=H,
and for the small terms,

We shall then have the probable values,

For the large terms (8 P,) = IP (P),
^ ''

For the small terms (S;?,)
= A' {p).

(8 P) and (pp) becoming (S Pj) and {^Pi) when g becomes H and h.

In order that the probable sum of the second member of the equation.

P{x — x,) + P'{y — y,)^ = e, 8 « + e'l S «' +
should not be increased by the proposed changes of S a, we must have

(8P) +{hp) >(8P,)+(Si.,)>
or, by (26) and (27), W (P) + h- (p)< g= (P) + g^ (p).

We shall assume, for the terms corresponding to {p), that the probable value of A is

A = —1.

This condition involves only small changes in the factors a, a' , because, for the

terms corresponding to {p), a w being small, B a ^ aw h = — aw, will also be small ;

we then have

H^(P)<^(P) + (^-l)(p),

or, since we can put ^^
— 1 = — 1 very nearly, g being small compared with imity,

we obtain

(28.) g^
_ H^ >— ,

H^ < g^
——

,s ^
(P)

^ ®
(P)

representing the condition to be observed in order that the second members of (24)

should not be increased by the changes made in the large and small values of a.

This, it will be remembered, can be applied only when the condition h ^ — 1 in-

volves only small changes in the factors a, a of the order of the mean value of

S a for all the factors. ^^ being necessarily a positive quantity, H must always be

less than g.
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(28) may easily be extended to the analogous cases of the second members of the

equations
P' {x

—
X,) -\- Q {y

-
Vr) + = e.«j3 + e',8^' 4-

P" (x
—

a;.) + Q' (y
—

2/i) + = ei8y + e'l 8 y +

so that

(?) (r)w «'-^>^- ''-•''>wy

give the limits within which the proposed changes of the factors ^, ^ 7, 7'

will not increase the probable sums eiB^-{-e\B^ -\- and ejBy-\-e\Sy-\-

For the factors a, a' , /3, /3' corresponding to the equations most important

in their influence upon the final determination of a?, y respectively, if we use num-
JV N' . 1

hers chosen from a series for which——— is only
— as large as it is for the series (2),

we shall have

And if at the same time we omit altogether a certain number of the unfavorable

equations by making in these instances a = 0, /S = , that is, S a = — aw,

S /3 ^ — b IV, ov h = — 1, we find

^631
We shall therefore keep within the limits (28) and (29) as long as the coefiicients in

the omitted equations satisfy the conditions

(P)^68l' (Q)^68l'

The probable values of a? — a?!, j/
—

i/^,
will not have been increased, and conse-

quently the solution may be accepted as equivalent to II.

A general method, III., of adjusting the degree of numerical accuracy which should

be observed in the expression of the factors a, a' , P, ^' > inay be derived

from the following considerations.

In II. the adjustment is evidently not so favorable as it might be, since the limit of

the intentional inaccuracies S a, S a' ,B^,B0 has been fixed by the relations

ha — aw g, 6 a' =^ a' w' g', 8^ = hwg, 8^' = b' w' g',

g having the same average value whether aw, bw be large or small ; thus the

4
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largest iaaccuracies are committed when aw,bw are largest, that is, when the

equation has most influence upon the final result for any particular indeterminate.

In order to secure a more advantageous distribution, it will be necessary to recur

again to the equations (10). It appears that, for a given limit of inaccuracy in the

expression of the factors, the probable values of 07 — <3?i, 3/
—

2/i
• ^'^^^ ^^ least

when the separate terms of the second members of these equations, irrespective of their

signs, are equal to each other, or

e,8a = e',fi«'= Ci 8 /3
=

e'l 8 /3' =

S a, S /3 ought therefore to be inversely proportional to the probable errors of the

primitive equations, or directly as the square roots of their weights.

We shall, then, define III. hy the relations

ba—kgs/w, 8fi=BgVw,

(30.) da' = A.gVw', 8^'=BgVw

A, B and g heing constant quantities.

To secure the equivalency of II. and III., the values of A, B must depend on

the condition that the probable values of the second members of (10) should remain

unchanged, or

g/i Va? + A^ + = gM Vp, g/. Vb' + b" + = ^^ Vq,

lL.\/n= VP, BV'»= V'Q,

Hence it is easy to conclude, that, if we make in (30)

A = mean value of a \^w, B = mean value of b Vw,

the means being in every instance taken without regard to signs, the probable values of

X — cVi, t/
—

y, will be smaller in III. than in II., while III. in point of facility

has a decided advantage over II.
; since by making a = 0, ;S

= in all cases in

which a Vw <. Ag, b \/w <Bg, ,
a considerable amount of unnecessary computa-

tion may often be avoided.

The following will then be the limits of intentional numerical inaccuracies allowed

in the expression of the factors a, a' , /S, /3' in the three methods.

I. 11. III.

8a=0, 8^=0 8a=awg,8^=hwg 8a = Ag Vw , 8 ^ = B ^ l/w

8 a' = 0, 8 ^' = ,

8 a' = a'w'g,8^' = h'v}' g 8 «' = A g Vw', 8 ^' = B g Vw'



IN THE METHOD OF LEAST SQUARES. 23

The following tests of tlie correctness of all the numbers entering into the final equa-

tions will be found useful. They apply equally to the three methods.

Let the sums S, S' , 2, 2 be formed as follows :
—

«+'^+ +'«=S, «+^+y+ =2,
(31-) a' + 5'+ + m' = S', „' + /3' + y + =^,

We shall then have the following test controlling at once all the computed quan-

tities, Pi, P'l , 'Qi, Q, , ii, Jfi

2:{Pi,Qi,Ri L„M„N, )
= 2" (S 2).

For we have

P,-\- P\-i- -^L, =aa-\-ah-\-
+ a' a' + «' J' +

J>

= S « + S' a' + ,

+
'Qi + Q. + + M, = ^ a + ^ J +

(32.) _|- ^' a' + iS' 5' + }
= S^ + S'/3' +

"Ri + 'Ri-\- + JV. = y a + y J +
+ ya' + yj' + } =Sy + S'y' + ,

The sum of all the equations (32) is

(A + P', + -{- i,) + CQ. + Q. 4. + ilf.) + = S-?+S'-S'+
or

(33.) Jr(Pi,Qt,Ki Ly,M„N, )
= ^(S^).

When this is not fulfilled, the particular equation at fault may be detected by using
the partial tests,

Pi + P'. + X. = Sa + S'«' +
(^^•^ 'Q1+Q1+ Jii;=s/3 + s'j3' + •..

If all the numbers are not carried out to the same number of figures beyond the

decimal point, it will be advisable, in order to apply the test to the best effect, to alter

arbitrarily the decimal point, making, for the time being, the number of figures to the

right hand of it the same in all the equations.

The successive stages in the computations by (II.) and (III.) will be as follows :
—

a) To assign the values of the equivalent factors a, /3 , which can readily be

done by simple inspection. The factors once adopted must be used rigorously in mul-

tiplying every term of the equations to which they belong.
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b) After the multiplications have been performed, and the sums taken, the numbers

adopted in the final equations are to be tested by (33).

c) The solution of the final equations.

d) The determination of weights.

If changes have been made in the decimal pointing, or otherwise, by introducing

the constants A, B , it must be remembered that, although the final equations

thus formed will give the same values of o^i , j/, , &c. that Avould have been obtained

if no such alteration had been made, the determination of the weights and probable

errors of Xi, ^i ,
&c. requires that the correct pointing be restored in the coefficients,

or else that the probable errors be computed in conformity with the formulse (23).

When the number of indeterminates is considerable, it will be advisable, in solving

the final equations, to eliminate x, y, z, &c., in succession, and then to repeat the

operation, commencing the elimination in the reverse order, s, y, x, &c. One of the

advantages of so doing is a complete check upon the work by the comparison of the

value of that indeterminate which is obtained last by both eliminations. It is, however,

mostly recommended from its facilitating the computation of the weights. In this case,

the following formulae may be used, if the number of indeterminates does not exceed

six. Let these be x, y, z, f, -n, ^, and their weights, W^^y , W^y , &c. The ordinary

formulae for computing the weights give

(35.) TF(0 = U^ y z i,, TFw = P< , 5 J y .

W^Q is the coefficient of f in the equation resulting from the elimination of x, y, z, f,

and r}, by the process indicated in (18), (19), and (20), and W^^^ the coefficient of x

after ^, r}, f, z, and y have been eliminated. We have, also,

(36.) W(,, = ^J-JTF(o, W^, = ^^^W,:.,.'-'X y z i
'

t, " i *

The factors and divisors required in (36) will have been already computed during

the eliminations which have preceded.

From the equations containing only f, 17, ?, the latter is to be eliminated ;
and from

the equations containing 2;, y, and x, x is to be eliminated. We then have

Trco = |^J^pr„, w,z, = ^;^^w,,,.ix y z Z Hi H i X

For the weight of Xi,yi, &c., when (II.) or (III.) is used, we shall have, from (23),

Weight o{xi= A T^d) ,

(37.)
«

yi = B W(y) ,
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The limits of effective accuracy appropriate to the numerical representation of the

coefficients a, 6 may be investigated in the following manner :
—

If we determine cr, , j/, by the method of least squares from the equations,

(38.) (a
—

da) Xi-{- {b
— dh) i/i-\- -\- m — d m = ei, weight = w,

we shall have from (8) and (38), i£ da, db
, which may be employed to represent

the errors of the adopted coefficients, are small,

(39.)
P(xi— x) -\- P' (yi

—
y) -\-

= aw( — e -\- xda-{- y dh -{- -\- dm) -\-

If fi is the probable value of dm \/w, the most suitable values of a; da, y dh .

evidently fulfil the conditions

(40.) xda\w =ydb\^w = dm\^w = ii', xda'Vw'^^ydb'Vw' := dm'\ w' =^
(>.'

.

Observing that we may substitute in the second members of (39) the probable values

e <^ a X, e' <. a' X
,
e Khy, e' <. Vy , we may conclude, by comparing (39)

with (11), (12), and (6), that, if;*' is less than the limit

(41.) ^ = -4^=,

'd denoting the number of indeterminates in (38), the difference Cj
— i of the probable

errors of x^,yi derived from (38) and of x,y derived from (8) will be

(42.) e.-e<ig'^..

Consequently, if^ < —
, i^
— f will be less than —— f or less than in 11.

When /a' is known, the limits for admissible values of da, db in (38) will be

(43.) da<C—^-^ , da'<C
—

^-^r db^-da, db'=:-da' dm = xda, dm'^xda'
xVw xVw' y y

If the mean values of ax, by , irrespective of their signs, are all of the same

order of magnitude, we may substitute in (43) the a priori probable values

(44.) a;<^ I
"

A-^Jn + n'— 1

a; _ B

y~A.

where n is the number of equations (38), n' the number of indeterminates, and, taking

the means without regard to signs,

(45.) A = mean value of a Vw , B = mean value of b \/w M = mean value of m 's/w .
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We will now proceed to compare the three methods of solution
(I.), (II.), (HI-)' ^7

applying them to the following series of equations of six indeterminates, taken from a

memoir, by Gauss, on the elliptic elements of the orbit of the planet Pallas.*

Original Equations.^

1 =— 183"93+ 0.79363(21,+ 143.66dy+ 0.39493d jr+ 0.95920 tZ 9— 0.18856 dS2+ 0.17387 df

2 =— 6.81— 0.02658(21.+ 46.71 (Zy+ 0.02658 (Ztt— 0.20858(2 9+ 0.15946(20+ 1.25782 di

3 =— 0.06+ 0.58880(21,+ 358. 12 (2 y+ 0.26208 (2 n-— 0.85234 (2
<p+ 0.149 12 (2 + 0.17775(2 i

4 =— 3.09+ 0.01318(21,+ 28.39(2y— 0.01318(2 ,r— 0.07861 (2q)+ 0.91704(2Q+ 0.54365<2i

5 = — 0.02+ 1.73436 (2 L+ 1846. 17 dy— 0.54603 dn— 2.05662 dcp
— 0. 18833 (2 a— 0. 17445 d i

6 0=— 8.98— 0.12606(21,— 227.42(2y+ 0.12606(27r— 0.38939 (29+ 0.17176(20— 1.35441 (2t

7 =— 2.31+ 0.99584 (21,+ 1579.03 dy-\- 0.06456 (2 tt+ 1.99545 d 9— 0.06040 da.— 0.33750 d i

8 0=+ 2.47— 0.08089 (2L— 67.22(2y+ 0.08089<2,r— 0.09970(2 9— 0.46359(20+ 1.22803(2*

9 = + O.01+ O.65311(2L+1329.09(2y+ O.38994(2jr— 0.08439(2 9— 0.04305 (2 + 0.34268(2 i

9, 0=+ 38.12— 0.00218 (2L+ 38.47 (2y+ 0.00218(27r— 0.18710(29+ 0.47301 (2o— 1.14371 (2i

10 =— 317.73+ 0.69957 (2L+ 1719.32 (2y+ 0.12913 (2 TT- 1.38787(2 9+ 0.17130(2 — 0.08360 (2i

11 = + 117.97— 0.01315(2i— 43.84(2y+ 0.01315(2,r+ 0.02929 (29+ 1.02138(20- 0.27187(2i

The probable error of one of these equations is /4
= + 90", the weights being

equal, excepting for 9^, which has been excluded from each of the solutions.

As an illustration of the mode of applying the limits (43), we will make in (41) and

(42) y = —
, we shall then have

V -/ ^ 25
'

p.
— ± 90", n — 11,
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able error of the same quantity obtained with the employment of the exact coefficients

by less than — of that error.^ 1250

We shall, however, for the present
confine our attention to a direct comparison be-

tween the results of the solutions I., II., and III., and retain in each the exact coeffi-

cients of the original equations, adopting the constants A, C, D, E, F = 1.0, and

B = 1000.0, and for the factors a/3 a somewhat ruder system of representation,

especially in II., than that upon Avhich the previous discussions have been based.

If we employ the limits (28), (29), Ave find that the most favorable equations are (1),

(5), (7), and (10), and the least favorable (2), (4), (8), (11). Applying (III.) in the

particular form to which it is limited in (28) and (29), we shall omit (2), (4), (8), and

(11), as ineffective in the final equations for d L. (1), (5), (7), and (10) give

(P) = 1 X 0.8' + 1 X 1-7'' + 1 X 1.0' + 1 X 0.7' = 5.0000,

and (2), (4), (8), and (11),

(p)
= 1 X 0.03'+ 1 X 0.01' + 1 X 0.08' + 1 X 0.01' = 0.0075.

(P) 667
'

According to (28), we must have, in this case,

^100

in order to preserve the equivalency of (II.) and (III.), if the original equations (2),

(4), (8), and (11) are omitted in forming the final equation for d L. We may, then,

adopt the following system of factors.

d L.

No. of



28 ON THE USE OF EQUIVALENT NUMBERS

The mean value of H'=— for the equations (1), (5), (7), and (10) is

IT 1 ^1if = — or <[ — ,

200
^

100

as required by (28).

For the second indeterminate dy, the favorable equations are (5), (7), (9), (10).

The unfavorable ones are (2), (4), (8), and (11).

(Q) = 10600000, (?)
= 9400,

=
, H must be < —

(Q)
1130' ^37

dy.

Equivalent Equivalent
Factors. Factors.

n. III.

+ 0.1 +0.1
+ 0.05 0.0

+ 0.4 + 0.4

+ 0.03 0.0

+ 2.0 +(^-0— 0.2 — 0.2

+ 2.0 + 1.6

— 0.07 0.0

+1.0
+(i+-;)+ 2.0 + 1.7

— 0.04 0.0

The mean value of H= —^ fpr the equations (5), (7), (9), (10), is

H =: — or < —
,

125 87

the limit given by (29).

For dir the favorable equations are (1), (3), (5), (9) ; the unfavorable, (2), (4), (11).

(») 1 rr , ^ 1

y~ = — , H must be <; — .

(B) 675
' ^

92

No. of
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dir.

Equivalent
Factors.

m.

+ 4.0

0.0

+ 2.6

0.0

— 5.5

+ 1.0

+ 0.6

+ 1.0

+ 4.0

+ 1.0

0.0

For dq) the favorable equations are (1), (5), 7), (10); the unfavorable, (4), (8),

(9), (11).

(S) 465
 

The value of H is imaginary, or < I .

The rejection of the unfavorable equations cannot in this instance be compensated

for by increasing the accuracy of treatment of the favorable ones.

dq).

Equivalent Equivalent
Factors. Factors.

II. ffl.

+ 1.0

No. of
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For dil the favorable equations are (4) and (11); the unfavorable ones, (7) and (9).

(T) 344-

H is again imaginary. In rejecting (7) and (9), we have passed the prescribed limits.

dn.
No. of

Original Equation.
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The mean value of iT is — , the computed limit being i?< —
.

Applying these factors to the original equations, we obtain,
—

By the Method of Least Squares. I.

Oocf. of Coef. of Coef. of Coef. of Coef. of Coef. of

dL. dy. dn, da. da. di.

Coef. of
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In both cases, the agreement is as near as could be desired.

We have, then, the following equations by successive eliminations :
—
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I. II. III.

1 — 111.00
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III.

Coef. of Coef. of Coef. of Coef. of Coef. of Coef. of



IN THE METHOD OP LEAST SQUARES. 35

bility of the three systems, we obtain first the residual errors of the original equa-

tions as follows :
—

Residual Errors of Original Equations.

I. (Revised solution.) II. III.

// // "

1 — 125.45

2 — 9.14

3 + 86.62

. 4 — 53.78

5 + 32.12

6 + 22.92

7 + 21.00

8 + 35.51

9 + 149.37

10 — 169.77

11 + 66.95

The sums of the squares of these errors are

I.

Q = 85091

The probable value of a residual error for one of the original equations
— since there

are eleven equations* and six indeterminates— will be obtained from the expression

u= 0.67459 J—^— ,

giving the values

I. II. III.

(47.) f= ± 88".00 ± 89".77 ± 88".06.

The agreement of fi in I. and III. is a conclusive proof of the equivalency of the two

solutions, notwithstanding the freedom which has been exercised in the choice of fac-

tors for the latter. In the case of II., the discrepancy amounts to - of /x ; but it will

be noticed that the factors actually employed were based upon a system of representa-

tion considerably less exact than the series (2). It might easily be shown that this

difference would have been reduced to less than one fifth of its present amount if the

numbers for the factors had been selected from (2), agreeably to the conditions by

which II. has been defined.

•
Equation 9o having been excluded from each of the solutions.

— 155.51
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If we compute the limits of these values of /*, we find that it is only an even

chance that /*, for the best solution, is comprised within the limits

^= ± 69".3, and M = ± 106".7.

Such is the extreme uncertainty of the only element by which the question of pref-

erence between I., II., and III. can be decided. Compared with it, the inconsiderable

differences which we find between the values of fi in I., II., and III. will admit of

but the single inference, that either of the systems of values of di, dfl, dtp, &c.,

presented in (46), notwithstanding their great disagreements with each other, actu-

ally fulfils the criterion of accuracy proposed in the method of least squares so

nearly, that it is impossible to give a decisive reason for adopting one rather than

another as the most probable solution. It is worthy of notice, moreover, that the

arithmetical mean of the above residual errors, irrespective of their signs, is less

in II. and III. than in I. Thus in this instance the latter would rank lowest of

the three, if we were to compute the relative probabilities according to a process

recommended by the highest authorities* as the most suitable for ordinary use, in

which the probable error is directly proportional to the arithmetical mean of the errors

irrespective of their signs.

*
Laplace, Theorie Analytique des Probahilitis ; Gauss, Zeitschriftfur Astronomic, B. I. ; Peters, Astr.

NacJi., No. 1034.
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