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Abstract

The purpose of this paper is to derive the structure of optimal

multilateral contracts in a costly state verification model with mul-

tiple agents who may be risk averse and need not be identical. We
consider'two different verification technology specifications. When the

verification technology is deterministic, we show that the optimal con-

tract is a multilateral debt contract in the sense that the monitoring

set is a lower interval. When the verification technology is stochastic,

we show that transfers and monitoring probabilities are decreasing

functions of wealth. The key economic problem in this environment

is that optimal contracts are interdependent. We are able to resolve

this externality problem using abstract measure theoretic tools.

"Address of the authors: Department of Economics, University of Illinois, 1206 South

Sixth Street, Champaign, IL 61820

We wish to thank Mark Feldman, Wayne Shafer and Nicholas Yannelis for useful com-

ments. We also gratefully acknowledge financial support from the National Science Foun-

dation (SES 89-09242).





1 Introduction

In the Arrow-Debreu model complete insurance markets exist and agents

are able to attain unconstrained Pareto efficient consumption allocations. In

addition, the structure of the set of financial securities that support these

allocations is indeterminate (i.e., the Modigliani-Miller Theorem states that

a firm's debt-equity ratio is irrelevant when there are no market imperfec-

tions). Casual observation and systematic study, however, suggest that firms

have determinate debt-equity ratios and that insurance markets are incom-

plete. The costly state verification model, proposed by Townsend (1979),

provides one plausible explanation of these outcomes that is consistent with

(constrained) Pareto efficient behavior. In particular, Townsend introduces

an information friction into the Arrow-Debreu model with two essential el-

ements. First, agents have asymmetric information: All agents know the

(common) distribution of random variables (i.e., endowments) in the econ-

omy, but the realization of a particular agent's random variable is costlessly

observed only by the agent himself. Second, a technology exists that can

be used to publicly announce the realization to all agents ex post, but it is

costly to use. The model has proved useful for analyzing economic problems

with both deterministic and stochastic verification technologies.

When costly state verification is deterministic (i.e., monitoring occurs

with either probability one or zero), Townsend proves that the optimal

contract that supports (information and resource) constrained Pareto effi-

cient consumption allocations resembles debt because the monitoring set is a

"lower interval." That is, it is optimal to monitor all announcements below

a certain cut-off point, and these outcomes are interpreted as states of costly

(but efficient) bankruptcy. All announcements above the cutoff point are not

monitored, and these outcomes are interpreted as states of solvency. The
lower interval result establishing the optimality of debt is important because

it is consistent with many stylized facts observed in actual markets. 1 For ex-

ample, it is consistent with the prevalent issue of debt by firms, its payment

1 Lower interval results are also obtained by Gale and Hellwig (1985), but they assume

that only the agent who pays for monitoring gets the information. The distinction between

public and private monitoring does not matter in a two agent economy, but it is important

when there are many agents. See Williamson (1986) and Krasa and Villamil (1991a) for

multiple agent costly state verification environments with private monitoring reports.



characteristics, and key institutional features of bankruptcy procedures. 2

Unfortunately, existing lower interval results have been established only

under several restrictive assumptions: Agents are either assumed to be risk

neutral or their trades are exogenously restricted to be symmetric, separable

in endowments, and bilateral.
3 Townsend (1979, p. 281) notes that these

restrictions are "unpleasant" because they are motivated by technical, rather

than economic considerations. Further, they may preclude optimal risk shar-

ing arrangements even in two-agent contracting problems. 4 More fundamen-

tally, however, Boyd and Prescott (1987) argue that coalitional structures

are important for understanding many economic phenomena. 5 For exam-

ple, Boyd and Prescott (1986) study explicitly multilateral contracts which

(p. 217) "condition the consumption allocations of [agents] on group experi-

ence as well as on observables for individual(s)." Their model (with adverse

selection and two agent types) gives rise to welfare-improving financial in-

termediary coalitions which exhibit key characteristics displayed by actual

intermediaries. They (p. 231) note: "An extension which is not so easy [in

their model] is to allow for more than two agent or project types." Such an

extension may prove to be straightforward in our framework (cf., Section 5).

The second class of problems that the costly state verification model has

proved useful for analyzing are environments where the verification technol-

ogy is stochastic (i.e., monitoring need not occur with probability one). In

this case the optimal contract that supports (information and resource) con-

strained Pareto efficient consumption allocations specifies transfer and mon-

itoring procedures that resemble those commonly used by insurance compa-

nies and tax revenue collection agencies: The optimal contract has transfers

and monitoring probabilities that are monotonically decreasing functions of

an agent's reported wealth. Border and Sobel (1987) prove this result in

a model with stochastic monitoring, two risk neutral agents (one having a

2We discuss relevant aspects of US bankruptcy procedures in Section 5.

3Recently, Winton (1991) considers the case where all but one agent (say the firm)

have a riskless endowment. He shows that contracts which resemble subordinated debt

are optimal in this framework.
4Townsend (1979, p. 281) provides an example where two agents have utility functions

of the form u(c) = c
a+1 /(a + 1), where — 1 < a < 0. The optimal symmetric transfer

function implied by this common utility specification is not separable in endowments as

required by the exogenous restriction.
5 Wilson (1968) also argues that group, i.e., syndicate, structures are important in

finance and insurance problems.



random endowment of wealth), and information conditions that are identical

to those in Townsend's model. However, Border and Sobel note (p. 533)

that their arguments "use risk neutrality in an essential way" and that "it

is not known if the monotonicity result . . . extends to the risk averse case."

This open question is particularly important for insurance applications of

the model as risk aversion is typically thought to be the driving force be-

hind most insurance arrangements. Further, we argue in Section 4 that the

multilateral framework is important for many (costly) auditing problems.

The monotonicity result establishing the optimality of transfers and mon-

itoring probabilities that are monotonically decreasing functions of agents'

wealth reports is important because it is consistent with the following styl-

ized facts. In insurance markets, a large loss can be viewed as a low wealth

realization. Thus, a monotonic contract implies that policy holders receive

higher transfers when they claim larger losses, and the probability of being

audited is correspondingly higher for such reports. Border and Sobel (1987,

p. 531) note that the tax interpretation of the monotonicity result is "more

subtle." Taxes can be viewed as negative transfers and low wealth reports

can be viewed as high itemized deduction claims. Thus, the monotonicity

result implies that larger (total) tax payments are associated with larger

wealth reports, but the probability of a tax audit is decreasing in reported

wealth. The key insight is that a low wealth claim, not low wealth itself,

makes a tax audit more likely.

The purpose of this paper is to generalize the costly state verification

model to resolve the difficulties noted by Townsend and Border and Sobel

that preclude its application to economic problems involving risk aversion

and/or multiple agents (e.g., financial intermediation, insurance, and tax

problems). Thus, we specify a model with multiple asymmetrically informed

agents who have access to a costly state verification technology. We study

the nature of contracts that support (information and resource) constrained

Pareto efficient consumption allocations in the model when contracts are not

restricted a priori to be symmetric, bilateral, or separable in endowments, and

agents may be risk averse. We show that even in this more general environ-

ment, "debt-like" securities remain optimal when the monitoring technology

is deterministic (i.e., the optimal multilateral contract has a lower interval),

and transfer functions and monitoring probabilities remain monotonically

decreasing functions of wealth when the monitoring technology is stochastic.

We use abstract measure theoretic arguments to derive the form of the



optimal contracts in our more general economic setting. The key problem

when agents are risk averse and contracts are explicitly multilateral is that

non-trivial interdependencies among agents exist. Thus, strong measure the-

oretic tools such as the Isomorphism Theorem (cf., Section 3) and Lusin's

Theorem (cf., Section 4) appear to be necessary to solve this interdepen-

dency problem. These tools allow us to change contracts in such a way that

only the expected utility of one agent is affected while the expected utility

of all other agents remains the same. We are then able to show that given

any arbitrary initial contract, unless we start with lower intervals as moni-

toring sets (when monitoring is deterministic), or monotonically decreasing

transfer and monitoring functions (when monitoring is stochastic), at least

one agent can be made better off, which contradicts the (constrained) Pareto

optimality of the arbitrary initial contract. These results are stated formally

in Theorem 1, and Theorem 2 and Corollary 1, respectively.

2 The Model

Consider a two period exchange economy with finitely many individuals

indexed by i = l,...,n. Each trader is described by a von Neumann-

Morgenstern utility function, u,, which is defined over second period con-

sumption, c,-, and a random endowment, X t
. Let u, be concave and mono-

tonically increasing in consumption. Assume that the A', are independent

random variables. Denote a particular realization of X t
by x

t , let F
x
be the

distribution of A',, let Fn be the joint distribution of A' x , . .
.

, A'n , and as-

sume that all distributions are non-atomic.6
Finally, to ensure non-negative

consumption, assume that the support of F, is contained in [m,oo), where

m > 0. The information conditions are as follows (cf., Townsend (1979,

p. 281)). Each agent i privately observes the realization of his/her endow-

ment, Xi, ex-post, but all agents have access to a costly state verification

technology that can be used to publicly announce the realization to all other

agents.

Let (j>i(-) be the cost incurred by agent i from using the verification

technology. 7 Denote by £,(xi, . .
.

, xn ) the net transfer function of agent i,

6A distribution is non-atomic if every single point has probability zero. This follows

automatically if the distribution has a density.

Verification is perfect in the sense that after monitoring occurs the true endowment



which describes the payment between the coalition and each agent i. This

payment may be positive (indicating a state-contingent payment from the

coalition to the agent), negative (indicating a payment by the agent to the

coalition), or zero. Throughout our analysis we assume that agents' ver-

ification costs are an arbitrary positive function of the transfer payments,

</>,(£,(•)). Because transfers need not be identical across agents, verification

costs may differ as well. Townsend (1979, p. 269) considers two verification

cost specifications, and our cost function includes both as special cases. In

his first case, the verification cost is a fixed constant, and hence independent

of the actual realization. In the second case, the verification cost of agent i

depends on the transfer £,-, where the costs are strictly monotonic.

Resources are allocated in this economy via binding contracts. At time

zero, agents have the opportunity to write contracts to provide for consump-

tion next period. The structure of optimal contracts that emerge depends on

the specification of agents' preferences, the distributions of random variables,

the verification technology, and the nature of information in the economy.

Three alternative ex-post information conditions are possible:

When <f>i(ti(-)) = for i = l,...,n, there is costless, and consequently

complete public information about the realization of each X, ex post.

When agents have identical utility functions and weights and if the X,

are identically distributed, it follows that

1
n

Ci(X\ , . .
.

, Xn )
= — / , Xj ,

for all i = l,...,n. See Caspi (1978, p. 270, Theorem 2) for a formal

proof of this result for the core.

When
(f> t (t{(-)) = oo for i = 1, . .

.
, n, information is infinitely costly, so no

verification is undertaken and information about each X
t
remains com-

pletely private. The optimal multilateral contract which is individually

rational in this case is autarky.

In the remainder of the paper, we characterize the nature of optimal

multilateral contracts under deterministic and stochastic verification, re-

spectively, when information need not be entirely private nor public.
8

•

is publicly reported without error.
8 Existence of optimal contracts for the model with either deterministic or stochastic

monitoring follows from Krasa and Villamil (1991b).



3 The Case of Deterministic Verification

In this section we study the form of Pareto efficient multilateral contracts

that arise among agents under deterministic monitoring. Note that transfers,

£,(•), can be contingent only on endowment realizations of agent i which are

publicly verified. In private information states, all transfers must be non-

contingent. Let Si denote the set of all announced realizations of X{ for

which verification occurs, and let 5,
c denote the complement of S

x
. We begin

by defining a multilateral contract for this economy.

Definition 1. A multilateral contract with deterministic verification for

each agent i: = 1, . .
.

, n is a pair (£,-, 5,), where t
t (xi , . .

.
, xn ) is a net-transfer

function for agent i from IRn into IR and S, is a set of endowment realizations

announced by agent i for which monitoring occurs (with probability one). If

agent i is verified, the endowment becomes public information.

We restrict the analysis to the class of incentive compatible contracts:

Definition 2. A collection of multilateral contracts (£,-,S,) with determin-

istic verification is incentive compatible if Si = 5, and £,(•) = £,() for every

i = 1, . .
.

, n, where (£,, St ) denotes the pre-state contractual commitment and

(t
t ,Si) denotes the post-state outcome.

Definition 2 indicates that under an incentive compatible contract, agents

do not misrepresent their private information (i.e., pre-state commitments are

fulfilled ex post). Townsend (1988, pp. 416-418) uses a revelation principle

argument to prove that incentive compatibility can be imposed without loss

of generality. The following conditions generalize the incentive compatibility

specification of Lemma 5.1 in Townsend (1979):

(ICl) Xi y—> ti(xi, . .

.

, X{, . .

.

, x n ) is constant on 5
t

c
, for a.e. Xj, j ^ i.

(IC2) ti(xi,...,Xi,...,xn )
- </>,(£,(•))) > t

t
{xu ...,y,...,xn ))] for a.e. x, <E 5,,

for every y £ Sf, and for a.e. x
; , j ^ i.

ICl says that when agent z's endowment announcement is not verified

(ceteris paribus), his/her net-transfer is constant (because transfers cannot

depend on private information). IC2 says that it is (at least weakly) optimal

for agent i to request verification when the endowment realization is in the

verification set. Thus, it ensures that agent i requests verification when x
t €



Si. We assume that the incentive constraints are satisfied a.e. Thus, there

exists a set of realizations of the agent's endowment which has measure zero

in which it might be optimal to misreport. See Section 5 for a discussion of

implementation, alternative specifications, and institutional interpretations

of the incentive constraints.

We now state an information constrained optimization problem whose so-

lutions characterize optimal multilateral contracts. The objective is to choose

Pareto efficient net transfer functions, U(X\, . .
.

, Xn ), and sets of endowment

realizations for which verification occurs, 5,-, to maximize a weighted average

of agents' utilities, subject to feasibility and information constraints. The A,

denote weights on agents' utility functions.

Problem 3.1. Choose t
t
and 5,- for i = 1, . .

.
, n to maximize

n
f

2JA; / u
t
[c

t
(xu ...,xn )}

dFn
{xu ...,x n ), (3.1)

t=i
J

subject to

< c, < X{ -r U(xi, . . . ,xn )
— <f>i(ti(-)) a.e. for all i, (3.2)

n

X><0a.e., (3.3)

t
t

is incentive compatible for every i (3.4)

Si is a measurable set for every i. (3.5)

The optimal multilateral contract maximizes the expected utility of all

agents (3.1), subject to: (3.2) a budget constraint for each agent which holds

almost everywhere; (3.3) an aggregate feasibility constraint which holds al-

most everywhere; (3.4) incentive-compatibility conditions ICl and IC2; and

(3.5) a standard measurability condition.

The purpose of this section is to characterize the nature of optimal con-

tracts when verification is deterministic. Our main result is that (con-

strained) Pareto efficient multilateral contracts have lower interval monitor-

ing sets, except for nullsets. Thus, we show that there exists a 7, such that

S{ = [to, 7,) for all z, except for a set of measure zero, where the lower interval

may be trivial. Because monitoring is deterministic, it follows immediately

from this result that the transfer function is constant for all x
t 6 S? (for

8



fixed £j, j ^ i). As we noted at the outset, Townsend (1979, p. 283) proves

a related lower interval result under several exogenous restrictions which he

describes as "unpleasant" because they are necessary for technical reasons,

but are not motivated by economic considerations. Specifically, he assumes:

(i) all transfers and verification costs are symmetric;

(ii) all trades are bilateral; and further

(iii) when both agents are verified, the transfer function is separable in en-

dowment realizations (i.e., in our notation t(x\,X2) = ti(xi) + t 2 (x2))-
9

Before beginning our formal analysis we describe the relationship between

our result and Townsend's, and give an overview of the proof of Theorem 1.

Townsend specifies an optimization problem which involves the maxi-

mization of a weighted average of utilities, subject to information and re-

source constraints. However, instead of characterizing t
l
and Si directly as

in our Problem 3.1, Townsend reformulates an analog of Problem 3.1 as a

standard constrained maximization problem. The key difference between our

approaches is that the maximizer in his reformulated problem is a function of

only one variable. This follows from restrictions (i) and (iii), as they immedi-

ately imply that the transfer function is of the form t{x\,X2) = t(xi) + t{x 2 ).

Under these restrictions it is only necessary to choose a one-dimensional

transfer function, t. Townsend considers the multilateral case (pp. 278-283)

but reduces it to a similar one-dimensional problem by using (ii). This ap-

proach has two limitations. First, it precludes certain types of agent het-

erogeneity (i.e., (i) rules out transfer and cost function differences). Second,

even when agents' transfer and cost functions are identical, restrictions (ii)

and (iii) preclude certain economically plausible risk-sharing arrangements

as noted in the Introduction.

In contrast, we characterize the solutions to Problem 3.1 directly. The

maximizers are explicitly multi-dimensional transfer functions and verifica-

tion sets, where transfer and verification cost functions need not be sym-

metric. We use abstract measure theoretic arguments to obtain our results,

and these mathematical tools appear to be essential in our more general set-

ting. We proceed as follows: Our main result in this Section is Theorem 1,

which establishes that in a multi-agent economy with deterministic costly

state verification, all solutions to Problem 3.1 have lower interval verification

Separability is equivalent to the slope of the net-transfer function of agent i depending

only on agent i's realization. This precludes most interesting externalities among agents.



sets (except for sets of measure zero). We prove the Theorem indirectly by

assuming that there exists some arbitrary initial contract (2 t'(*)i Si) which

is optimal but is not a lower interval. We then define a measure preserving

mapping, g, which allows us to transform the transfer functions, monitoring

sets, and monitoring costs associated with the initial contract into an alter-

native contract (<(, S-) such that the new contracts are feasible, incentive

compatible, strictly increase the expected utility of at least one agent, and

leave the expected utility of all other agents unaffected. This contradicts the

optimality of the original (non-lower monitoring interval) contract, hence it

establishes the optimality of contracts with lower monitoring intervals.

Roughly speaking, we contradict the optimality of non-lower intervals in

the following way. We move a part of the original (non-lower interval) moni-

toring set of one agent (say agent one) to the left, mapping it into a set where

there was previously no state verification. Such sets (with positive measure)

always exist if the initial contract was not a lower monitoring interval, and

we construct these sets to be compact. The existence of a measure preserving

one-to-one mapping, </, between these two sets follows from the Isomorphism

Theorem which says that measure preserving one-to-one mappings exist be-

tween all separable and complete measure spaces (where both spaces have

the same measure). Since compact subsets of HI are separable and complete

(in the induced topology) the Theorem can be applied.

Feasibility and incentive compatibility of the alternative contract are

straightforward to show because g is measure preserving and one-to-one. It is

also reasonably straightforward to show that the expected utility of agent one

increases by a Rothschild and Stiglitz increasing risk argument. Townsend

(1979, p. 288) uses a similar argument in the proof of Proposition 3.2, which

is his lower-interval result for two-agents, one risk neutral, with fixed monitor-

ing costs. Thus, the reader may wonder why we use abstract measure theory

to obtain our results. The remaining and key step in the proof is to show

that the utility of all other agents does not decrease under the alternative

contract. In Townsend's proof, this follows immediately from risk neutrality

and fixed verification costs.
1

In our setting with multiple risk-averse agents

10Townsend (1979, p. 287, Proposition 3.1) proves a second lower interval result for a

bilateral contracting problem where agents may be risk averse and the monitoring cost

function is convex with <f>i(Q) < 1. The Euler equation argument he uses to obtain his

result depends crucially on restrictions (i), (ii), and (iii). It does not appear that this

approach can be readily extended to the multilateral case because of the interdependency

10



and arbitrary verification cost functions his argument breaks down exactly

at this step because all contracts are interdependent. Without an additional

argument, it is not possible to avoid affecting other agents' expected util-

ity nor to see in which direction their utilities change. Measure preserving

mappings impose the necessary structure to overcome this problem.

We begin our analysis by defining a measure preserving mapping. As

indicated above, this concept is crucial for the arguments that follow.

Definition 3. Let (Y{, {3{, p. t ), i — 1,2 be two measure spaces and let g: Y\ —

>

Y2 be a measurable function. For every A 6 /32 define gA = {ga:a £ A}.

Then g is measure preserving iff p~\{g~
l A) = fi 2 (A).

The following Remark is an immediate consequence of Definition 3
11

Remark 1. Let f be an integrable function on Y2 , and let g be a measure

preserving transformation as defined above. Then f o g
12

is integrable and

the following holds:

f(x)dn 2 {x) = f{g(x))dfi x {:

JY-> J Y\

Remark 1 corresponds to Theorem 1.6.12 of Ash (1972) or Remark 28.14

of Parthasarathy (1977). For completeness we give the proof in the Appendix.

This Remark is essential for the proofs of our main results as it establishes

that whenever we change the payoffs to one agent in a measure preserving way

(i.e., choose a measure preserving function g), then the expected utility from

an arbitrary initial contract t
t (Xi, . . . ,Xn ) and a transformed alternative

contract t
l
(g{X

x ), X2 , • , Xn ) is the same for all other agents.

problem.
n Consider the following example of a measure preserving mapping. Let Y\ — [0, 1]U{2}

and Y2 = [1,2]. On both sets consider the standard Lebesgue measure. Then the function

a(x)-l x + 1 if *€ [0,1];^ ; "\1 if* = 2;

is measure preserving in this example (though not a one-to-one mapping).
12
/ o g is the composition of / and g, i.e. / o g(x) = f(g{x)).

11



To construct measure preserving mappings we use the Isomorphism The-

orem from measure theory (cf., Parthasarathy (1977) Proposition 26.6).

Isomorphism Theorem. Let Y{, i = 1,2, be complete and separable metric

spaces, and let p t
be non-atomic Borel measures on Y

x
such that p(Yx )

=

//(V^) > 0. Then the two measure spaces are isomorphic, i.e., there exist

two sets of measure zero, Nlt i = 1,2, and there exists a measure preserving

transformation, g: Y\\Ni i—» i^\A^2, whose inverse exists and is also measure

preserving. 13

We now state our main result concerning the nature of optimal contracts

in a multi-agent economy with deterministic costly state verification.

Theorem 1. Assume that the utility functions of all agents are twice con-

tinuously differentiable and that u" < 0. Furthermore assume that 4> l
(t) >

for every agent i and for every t £ JR. Let the endowments of the agents

be described by independent random variables X{ for all i = 1, . . . , n. Then

all solutions to Problem 3.1 have lower interval verification sets, except for

sets of measure zero (i.e., there exists a 7, such that Si A {X l :Xl < 7,} has

measure zero.)
14

Proof. We proceed indirectly. Without loss of generality, assume that the

monitoring set of agent one is not a lower interval. Let fi be the distribution

of the endowment of agent one. Then there exist compact sets K{, 1 — 1,2

with positive measure, and such that k
x
< k2 for all k

x £ A', and such

that K\ C M \ S\ and K2 C Si. By regularity
15 and non-atomicity of the

measure, we can assume that p(K\) — //(A'2 ). Note that the A', are separable

and complete because they are compact. Thus, by the Isomorphism Theorem

there exists a measure preserving mapping h: K X \NX
—* A'2 \-/V2 such that h~ x

exists and is also measure preserving, where N
t , 1 = 1,2 are sets of measure

13 "\" denotes set theoretic subtraction.
14 "A" denotes the symmetric difference: A A B = (A \ B) U (B \ A), for arbitrary sets

A and B.
15 Regularity means that p.(A) = inf{ji(0):0 D A, O open} = sup{p(F): F C A, F

closed}. Our measure /i is regular, since every probability measure on a metric space is

regular (cf., Parthasarathy (1977) Proposition 19.13).

12



zero. Note that h can be extended to JR by

9(x) =
h(x) tfxeKi\Ni\
h-\x) if x G K2 \ N2 ;

X otherwise.

Clearly, g is again measure preserving.

Recall that <
t
-(x 1? . . . ,xn )

are transfer functions associated with some ar-

bitrary initial contract, where the monitoring set of agent one is not a lower

interval. Thus for every agent i, now define new transfers t[ by

t
t
(xi, . . . ,x n )

= U{g[Xi),X2, • • . ,xn ).

Further, define the new monitoring set of agent one by S[ = g~ l

(Si) and

SI = Si for i = 2, . .
.

, n. The strategy of the proof is to show the following:

(i) The transfer functions associated with the new contracts ( ^ ^

(
- )

, .S",' ) are

feasible; (ii) the new contracts are incentive compatible; (iii) the utility of

all other agents i ^ 1 does not change; and (iv) the utility of agent one

strictly increases. This gives the contradiction to the assumed optimality of

a non-lower interval contract, (i)-(iv) are proved as follows:

(i) Let A = {{xu . . . ,x„):£"=1 *iO*ii- • •
i
xn) > 0}. Define g on Rn by

(xi, . .
.

, xn )
h-> (g(xi), x 2 ,

. .
.

, x n ). Clearly, g is measure preserving with re-

spect to the joint distribution of the X,. Then, g~ l A = {(j/i, . • • , yn )'- g(l/\) —

xi] yi = X{ for all i > 1, and £"_, t
t
(x u . ..,xn )

> 0} = {(t/i,. . . ,yn )- such

that Yl?=i ^(^(yi), V2i •
, Vn) > 0}. Since g is measure preserving, (3.3) im-

plies that g~ x A has measure zero. Hence,

n

^2U(g(x l ),x2 , ...,xn )
< a.e.

which proves feasibility.

(ii) Incentive compatibility requires ICl and IC2 to be fulfilled. ICl

is obvious. Let U{xi, . .

.

, £,•_!, x,-+i, . . . ,xn )
denote the constant payment to

agent i in non-monitoring states. We first show that IC2 is satisfied for i > 2,

(the argument is similar to that given for (i)). Define g as above, but now let

A = {(xi,...,xn):ti(xi,...,xn )
- 4>i(t(xu . . . ,xn )

< t t (xi,... ,xn )}. Then it

follows that g~ l A = {(xu . . . ,xn ):ti(g(xi),. . . ,xn )
- ^ f-(i(^(xi), • - • ,xn )) <

t
t (g(xx),. . . ,xn )}. Since g is measure preserving, IC2 implies that g~ l A has

measure zero. Hence IC2 holds for the new contract for all agents i > 2. It

13



remains to give the proof for i = 1. This, however, follows immediately from

the argument for i > 2 and the fact that

t
,

l
(x 2 ,...,xn )

= sup t l (g(yl ),..., zn )

= sup <i(yi, • • • ,i„) = <"i(x2, • • • ,En),
yi€5{

because g is one-to-one. This proves (ii).

(iii) Apply Remark 1 and Fubini's Theorem (cf., Ash (1972), Theo-

rem 2.6.4). Let c'
x
denote consumption under the new contract, and let c,

denote consumption under the original contract for agent i. Note that for

every z / 1 we have c
t (g(xx), x 2 , . , x n )

= c[(xi, . . . ,xn ). We must show

that / Ui(c{) dFn = f w t"(cj) dFn
, which means that the expected utilities are

the same. This follows from Fubini's Theorem since

//•••/ u.(c,(#(xi), x2 ,
. .

.
, x n )) dFx (x x

)dF2{x2 ), . . . dFn {xn )

= // / w
t
(c,(a; 1 ,X2,...,xn ))c/F1 (x 1

)(fF2(x2) ...dFn {xn ).

Equality follows from Remark 1, i.e., the fact that g is measure preserving.

This proves (iii).

(iv) For given (x 2 ,
. . . ,x n )

define

f(xi) =h(xu Xn )-(j)1 (t l (x 1 ,...,Xn )).

Because of ICl and IC2, transfers (net of monitoring costs) in monitoring

states are always higher than transfers in non-monitoring states, g moves

these high transfers to the left (i.e., to low income states) and vice versa.
16

By Lemma 2 in the Appendix, agent one is strictly better off under the new

contract. This contradicts the assumed optimality of the original contract,

proving the Theorem.

4 The Case of Stochastic Verification

In this section we study the form of Pareto efficient multilateral contracts

that arise among agents under stochastic monitoring. We begin by defining

a multilateral contract for this economy.

16That is f(ki) < /(fc2 ) for every k
x € K x

and for every k2 G A'2 . This is exactly the

condition under which Lemma 2 holds.

14



Definition 4. A multilateral contract with stochastic verification for each

agent i = l,...,n is a pair (£ t ,p t ), where i,-(xi, . .
.

, x n ) is a net-transfer

function for agent i from IR
n

into M, and p t
: [m,oo] n —> [0, 1] is a function

which indicates the probability that agent i 's endowment announcement is

verified. If agent i is verified, the endowment becomes public information.

Alternative formulations of the stochastic monitoring problem have been

studied previously by other authors. In particular, Townsend (1988, p. 424)

reports the results of systematic numerical analyses of costly state verification

economies with stochastic monitoring and gives examples of non-monotonic

monitoring probabilities. His results stem from the fact that the monitoring

probability function, p,, in his model is defined on [ra,oo]. That is, whether

or not an agent is verified depends only on the agent's own announcement,

and is independent of all other agents' announcements. 1
' In contrast, in our

model monitoring depends on the agent's own endowment announcement and

on the announcements of all other agents (i.e., p, is defined on [m, oo]
n

in

Definition 4). This specification seems reasonable for the stochastic auditing

applications of the model described at the outset. For example, the proba-

bility of a tax audit by the IRS is related not only to an individual's own

income tax return, but also to the returns filed by all other individuals in

the economy. 18
Finally, Border and Sobel also prove a monotonicity result.

However, as we noted in the Introduction, their arguments depend crucially

on risk neutrality.

Our main goal in this section is to characterize the solutions to an infor-

mation constrained optimization problem with stochastic monitoring. Be-

fore beginning our formal analysis we first discuss an inherent difficulty that

emerges in economies with stochastic monitoring and risk averse agents.
19

The problem stems from the fact that stochastic monitoring generates addi-

17Townsend's example is for a discrete (hence atomic) distribution. However, because

it is an equal distribution our proof immediately goes through (but it breaks down for

discrete distributions which are not equal distributions). We are not aware of an example

where the "discreteness" is solely responsible for the non-monotonicity.
18That is, an individual with a university salary is more likely to be audited in a small

college town (Urbana, IL) than in the Silicon Valley (Palo Alto, CA).
19 Randomness is inherent in a stochastic monitoring technology. Thus, one may in-

terpret the optimal consumption allocations derived from Problem 4.1 as "consumption

lotteries," but they differ from the consumption lotteries in Prescott and Townsend (1984)

(which are introduced as a device to obtain a concave programing problem).

15



tional uncertainty into expected consumption allocations, and this additional

uncertainty decreases the expected utility of risk averse agents.
20 The key

problem is that states with low endowment realizations are the same states

where the probability of monitoring is the highest. These high variance states

are precisely the states of most concern to risk averse agents. In general it

is difficult to precisely characterize the marginal loss of utility to an agent

from the additional uncertainty caused by stochastic monitoring. Transfers

which are contingent not only on all agents' endowment realizations (as they

are in our model), but also on whether or not monitoring is actually per-

formed (which does not occur in our model) might ameliorate the negative

utility effects associated with stochastic monitoring somewhat. However, it

is unlikely that such transfers would eliminate these effects entirely.

We consider two polar cases which are designed to address the "marginal

utility loss" problem experienced by risk averse agents. We first consider the

case where monitoring costs are borne by each individual agent, but restrict

agents' utility functions to be separable in consumption and monitoring cost.

This approach is often employed in the literature (e.g., Moohkerjee and Png

(1989)), hence we use it in the statement of Problem 4.1 below. However,

our proofs also apply to an alternative specification where agents are able

to diversify their individual specific monitoring cost risk (e.g., if monitoring

occurs, the monitoring costs of agent i are borne by all other agents i ^ j).

We defer discussion of this second specification until after we have proved

our main results (Theorem 2 and Corollary 1).

We now state the optimization problem for this economy:

Problem 4.1. Choose £,-(•) and /?,-(•) fori = l,...,n to maximize:

J2 A, f[vi {Xi + *,-(•)) - Pi(')MU)] dF
n
(xu . .

. , xn ), (4.1)

i=i
J

subject to

< c, < x
l + ti{x\, . .

.

, xn ) a.e. for all i, (4.2)

n

X><0, <z.e. (4.3)

t=l

20 Note that stochastic monitoring also has the countervailing beneficial effect of reducing

expected monitoring costs (relative to deterministic monitoring).
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V((Xi + t
t
(xU . . . ,!,-, ...,X n )) - pj(xi,... , Xn )</>,(£,(-)) >

(1 - p,-(xi, . .
. , y, .

.

. , xn))vi(xi + i(x, , . .
. , y, .

.

. , xn ))

+ P»(*ii- • • ,J/, • • • ,a;n )[ui(0) - </>.(<,)], /or a// i,

/or a// y, and for a.e. x
t ; and (4-4)

< pt(xx,... ,zn ) < 1, for every x
t

. (4.5)

Equation (4.1) reflects the consumption and monitoring cost separability

restriction described previously. Separability implies that each agent's utility

from consumption is independent of the non-pecuniary (effort cost) imposed

on the agent by the monitoring procedure. Loosely speaking, the idea is that

the monitoring process causes no additional utility or disutility other than

the direct costs. Equation (4.3) is the same as in Problem 3.1. Equation

(4.4) is the incentive compatibility constraint under stochastic monitoring. 21

The left-hand side of (4.4) is the expected utility of agent i from truthfully

reporting endowment realization x,; and the right-hand side is the expected

utility of agent i from announcing any other realization y ^ x
t

. When agent

i misreports and is verified, he/she receives a zero transfer and the entire

endowment is confiscated, so utility is t\-(0) — <f>i(t {(•)). We have implicitly

assumed that it is optimal to punish an agent as much as possible (by seizing

the entire endowment) for misreporting. This, however, is straightforward

to show since maximizing the penalty minimizes the propensity to cheat.

We again refer the reader to Section 5 for further discussion of incentive

compatibility. Finally, (4.5) states that the p, are probabilities.

We now give an overview of the proof of Theorem 2. This Theorem shows

that the transfer function associated with the optimal contract is a decreasing

function of wealth when monitoring is stochastic. As in Theorem 1, we

proceed indirectly: Assume that the transfer function of an agent (say agent

one) is not a monotonically decreasing function of wealth over the entire

support of the distribution. We again wish to use the Isomorphism Theorem

to find a measure preserving one-to-one function g which maps arbitrary

initial contracts into an alternative contract which is "more monotonic." 22

We show that this "more monotonic" alternative contract: (i) is feasible;

21 Townsend (1988, pp. 416-418) uses a revelation principle argument to prove that this

restriction can be imposed without loss of generality.
22

In general it is not possible (even for very simple cases) to construct a monotonic con-

tract directly with a measure preserving transformation. Consider the following example:

Choose the interval [0, 1] with the standard Lebesgue measure. Let f(x) = x(l — x). Now



(ii) is incentive compatible; (iii) does not decrease the expected utility of all

other agents; and (iv) strictly increases the expected utility of agent one.

This establishes the optimality of contracts with monotonically decreasing

transfer functions.

The first step of the proof, since the argument is indirect, is to estab-

lish a uniform violation of (decreasing) monotonicity of an arbitrary initial

(non-monotonic) transfer function. We begin by showing that it is possible

to find two compact sets with positive measure, denoted U and V, where U
is strictly to the left of V, and such that all values of the transfer function in

U are strictly below the values which the transfer function assumes in V.
23

To construct such sets, we use Lusin's Theorem (cf., Parthasarathy (1977)

Proposition 24.21 and Corollary 24.22), which says that for any integrable

function (on a complete and separable metric space) there exist arbitrary

large compact subsets of the domain such that the restriction of a function

on this compact subset is continuous. We use this continuity to establish the

desired (uniform) violation of monotonicity of the transfer function on U and

V. The main insight in this part of the proof is that it is not sufficient to

establish a violation of monotonicity of the transfer function for single points

as the analysis necessarily excludes sets of measure zero. Hence, starting

with two points z1? z2 for which monotonicity is violated, we must estab-

lish a violation which also holds on a set of positive measure contained in

neighborhoods of these two points. For continuous functions this is obviously

always the case. Fortunately, Lusin's Theorem implies that this is also true

almost everywhere for arbitrary measurable functions (by continuity of such

a function on compact subsets).

The remainder of the proof is similar in structure to Theorem 1: We
apply a version of the Isomorphism Theorem (proved in Lemma 3) to get a

assume (indirectly) that there exists a measure preserving transformation g on [0, 1] such

that / o g(x) = g(x)(l — g(x)) is monotonic. The function is quadratic, so there are two

solutions X{, i = 1,2 to any equation x(l — x) = z. Hence, there exist x
Y ^ x 2 such that

/ o g{x\) = f o g(x-i). Assume that x x < 12- Since / o g is monotonic, / is constant on

the image of the interval [11,2:2] under g. This, however, means that g([xi,X2]) contains

at most two points. This is a contradiction to g being measure preserving.
23 For technical reasons we prove an even stronger violation of monotonicity. In partic-

ular, we show that if the endowment realization x lies in U and a transfer corresponding

to an arbitrary state in V is used instead of the transfer t\{x), then the consumption of

agent one strictly increases. A similar condition holds if the realized state is an element

of V.
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measure preserving mapping h between the arbitrary initial (non-monotonic)

contract and a (more monotonic) alternative contract, on the two compact

sets U and V. We then show that (i)-(iv) hold. However, unlike in Theorem 1

with deterministic monitoring, when we apply the Isomorphism Theorem in

the stochastic case, we must apply it "slice-wise."
24 The basic problem is

that the sets U and V do not necessarily have a product structure, i.e., we

cannot represent U or V in the form A x C where A C M and C C IRn
~ x

and V as B x C where B C M. If the sets had the product structure, then

we could apply the Isomorphism Theorem to construct a measure preserving

mapping between A and B for agent one when the realizations of all other

agents are fixed. In Lemma 3 we generalize the Isomorphism Theorem so that

for fixed realizations (x 2 ,
. .

.
, xn ) of all other agents we can still establish an

isomorphism between respective "slices" of the sets A and B. We define the

mapping on every slice in Lemma 3 in a way which ensures that we get a

measure preserving "slice-wise" mapping, and then use Fubini's Theorem to

get a measure preserving mapping h between the sets A and B. The technical

problem in applying the argument is to ensure measurability of h, but this

follows from a measurable selection Theorem (also contained in Lemma 3).

The strategies of the arguments for (i), (ii), (iii), and (iv) remain similar to

those used in Theorem 1.

We now state our main result concerning the nature of optimal contracts

in a multi-agent economy with stochastic verification.

Theorem 2. Let (U,pi) for i = l,...,n be a collection of Pareto optimal

contracts. Then there exists a set of measure zero N such that for every agent

i and for every Z\ — (x l5 . .
.

, x
t , . . . ,xn ), and z 2 — (x u ...,?/,,..., x n ) with

Z\,Z2 (E Mn
\ N it follows that t

t
(z\) > £,(22) tf x i ^ ?A> i- e -> ^le transfers are

monotonically decreasing a.e.

Proof. We proceed indirectly. Without loss of generality we can assume that

the transfer function of agent one is not monotonic a.e. Let O be the union of

all open sets with measure zero. Then O itself is open and has measure zero.

By Lusin's Theorem (cf. Ash (1972), Corollary 4.3.17(b)) there exists for

24A "slice" of an arbitrary set A C JR is given by

A( X7t . ..,r„) = {(xi,x2,...,xn ):(xi,x2 ,...,xn ) € A}

.
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every e > 0, a compact subset K C JRn with fi{M \ K) < e and such that t\

is continuous on K . Without loss of generality we can assume that Of]K =
(otherwise take K \ O). Hence, we can construct an increasing sequence of

compact sets A'
t
- such that t^ is continuous on each of the K

t
and such that

Mn
\ U^i Ki nas measure zero. Since t x is not monotonic a.e. there must

exist z
1 = (xi, X2, • • • , xn ), and z

2 = (?/i, x 2 , • . • , xn ) such that X\ < y\, and

t\{z
l

)
< ti(z

2
), and such that z

l
,z

2
£ U^Li Kn- For a sufficiently large n we

can assure that z
1

, z
2
E A'n- Thus, t x is continuous on Kn .

25 Choose 71 and

72 such that x l +t l (z
l

) < 71 < Xj +^(z 2
)) and yi+t^z 1

)
< 72 < J/i +ii(z

2
).

Then there exist compact neighborhoods U of z
1 and V of z

2 such that

(a) «! + ti(u) < 71 < Mi + ^i(^); and

(b) v t +^(u) < 72 < ui +<i(v),

for every u £ U and u 6 V, where Ui and ui are the first coordinates of u and

v, respectively. Furthermore, we can assume that U is to the left of V, i.e., for

every u (E U and for every v £ V we have u x < v\. Since £/ and V are neigh-

borhoods, they must have positive measure (since their intersection with O is

empty). By the "generalized Isomorphism Theorem" (Lemma 3) there exist

subsets A dU and B C V and measure preserving mappings. h 1
: A —> B and

h 2
: B — A such that for fixed (x 2 , • • • 1 xn) the mappings x i— /i*(x l5 . .

.
, x n )

are measure preserving on A(r2 Tn )
and B(X2 Xn \, respectively.

26

Now define

{h x
(xu . . . ,xn )

if x e A;

h
2
{xu ...,xn )

ifx<=5;

(x l5 x 2 , . .
.

, x n ) otherwise.

Then for fixed (x 2 ,...,x n )
the mapping x

t
1—* /(x l5 . . . ,xn ) is a measure

preserving transformation on R? v, where JR? . is given by the

set {(x l5 x 2 , . . . ,xn ): x x 6 M}. Let </ denote the first coordinate of /(x) =

(/i(x), . .
. , fn (x)). Then Xi h-* g(x\

1
. . . ,xn ) is a measure preserving trans-

formation on IR for fixed (x 2 , . . . ,x n ).

Now define new transfers denoted by t
t
(g(x

i ,
.

.

. , x„), x 2 , . .
.

, xn ) and new
monitoring probabilities denoted by pi(g(xi, . . . ,xn ), x 2 , . .

.
, xn ). We show

Note that all neighborhoods are in the induced topology on Kn and not in the original

topology of Rn
, i.e., U is a neighborhood of x € Kn if there exists a neighborhood W of

x in Rn such that W = A'„nW.
26Ar 2 , ..,*„) = {( x i: I 2, • ,xn ):(xi, .. . ,xn ) € A} and similar for B.
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that these new contracts are: (i) feasible, (ii) incentive compatible, (iii) pre-

serve the utility of all agents i ^ 1, (iv) increase the utility of agent one.

(i) Feasibility follows as in the proof of Theorem 1.

(ii) Incentive compatibility requires (4.4) to be satisfied. There are three

possible cases. First, assume the true realization (xj,...,x n )
lies in B.

If it is profitable to cheat in this situation under the alternative contract,

then it must also have been profitable with the initial contract in state

g~ 1
(xi,X2, ,xn ), because the transfers are the same under the two con-

tracts but under the initial contract the endowment of agent one was lower

(hence the penalty if detected cheating was less severe). This contradicts in-

centive compatibility of the initial contract. Second, assume the realization

lies in A. If it is profitable to cheat in this situation under the alternative

contract, then it must have been even more profitable under the initial con-

tract as the transfer was lower. This again contradicts optimality of the

initial contract. Finally, for all other realizations the two contracts are the

same. This proves (ii). However, also note that the monitoring probabilities

can be reduced slightly without violating incentive compatibility.

(iii) The expected utility of all other agents is unchanged, cf. Theorem 1.

(iv) Since (a) and (b) are fulfilled, and since A is to the left of B we

can apply Lemma 1 for agent one for fixed x 2 , . . . x n . Agent one is therefore

strictly better off with the alternative contract (we exchange high transfers

to low income states and vice versa). Since the monitoring probabilities can

be reduced slightly without violating incentive compatibility because of (ii).

the utility of agent one can be strictly increased. Thus, FubinTs Theorem

implies that the expected utility of agent one is strictly greater under the

alternative contract. Thus, contracts which are non-monotonic cannot be

optimal. This proves the Theorem.

The following Corollary follows immediately from Theorem 2.

Corollary 1. Under the assumptions of Theorem 2 it follows that pi(z
l

) >

p{z 2
), i.e., the probabilities of verification are monotonically decreasing a.e.

in endowments.

2 'The utility of an agent depends on Xi, . . . , x n . Using Fubini's theorem, we can first

integrate over the realization Xj in order to compute the expected utility. However, for

fixed X2, . . • , x n , the mapping X\ \—- g(xi, . . . , xn ) is measure preserving. Thus, g drops

out of the integral when integrating over x\ (cf., Remark 1).
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Proof. The Corollary follows immediately from the fact that the transfers

are monotonically decreasing: Let X\ <y\. Consider two endowments z
1 =

(xi, . .
.

, x n ) and z
2 = (r/x, z 25 • • • > x n), and assume that monotonicity of the

probabilities is violated for agent one. By Theorem 2, t\{z
x

)
> t

l
(z

2
). Now

choose the same probabilities of monitoring for z
1 and z

2
, and suppose it were

profitable for the agent to cheat in some other state and announce z
2

. Then it

would be at least as profitable to announce z
1
since the transfer is at least as

high and the probability that cheating is detected is lower. This contradicts

incentive compatibility of the original contract. Hence J)\{z
l

) > pi(z ).

We conclude this section by discussing the alternative monitoring cost

specification described before the statement of Problem 4.1. That is, instead

of assuming that each risk averse agent i privately bears the entire "utility

loss" stemming from stochastic monitoring, Theorem 2 and Corollary 1 con-

tinue to hold if we assume that a mechanism exists whereby the monitoring

costs of agent i are borne by all agents j ^ i (when monitoring occurs). This

follows from the fact that steps (i), (ii) and (iii) from the proof of Theorem 2

remain valid under either specification of the model because the transfers

and monitoring probabilities have the same expected value and the same

distribution (although we did not use this fact in the proof of Theorem 2

because of the assumed separability of the utility function). Examples of

mechanisms in actual economies which appear to be qualitatively similar to

this second (publicly borne) cost specification are tax surcharges (levied by

a government) or a reduction in the "dividend credits" commonly rebated to

policy holders by insurance companies (e.g., TIAA-CREF and many other

insurance companies follow this practice).

5 Discussion of Results and Extensions

In this paper we generalize the costly state verification model to allow risk

averse agents who need not be identical ex ante to write multilateral con-

tracts. Bilateral versions of the model have proved useful for many economic

applications, and we believe that this multilateral extension will expand the

class of economic problems that can be addressed in this framework. Of

course, whether a problem is best analyzed in a bilateral or multilateral con-

tracting framework depends on its underlying economic structure. However,
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a multilateral version of the model seems necessary for many types of insur-

ance problems and certain types of financial intermediation problems (cf.,

Boyd and Prescott (1986)). In the remainder of this section we will discuss

the implications of our results and extensions.

We first focus on the incentive compatibility constraint used in our anal-

ysis. Townsend (1988) notes that in order to justify this restriction in costly

state verification models it is necessary to formulate the underlying revela-

tion game. This works as follows: Contracts are written before uncertainty is

revealed. Uncertainty is then privately revealed, and each agent sends a mes-

sage (i.e., reports a state). Thus, agents play a Nash game in messages where

each agent has beliefs over whether all other agents tell the truth. When the

analysis is restricted to truth-telling equilibria, it follows that each agent

expects all other agents to tell the truth. In such a framework the point-

wise incentive constraints commonly used in costly state verification models

follow. This formulation implicitly contains a great deal of communication

among agents, in the sense that decisions are made based on the expected

announcements by all other agents.

The other extreme that we now consider is a game with no communica-

tion among agents. We are concerned with two issues. First, what are the

implications of such an environment for the form of the incentive constraints.

Second, which environment (one with communication or one with no com-

munication) seems most plausible for the economic problems which motivate

this paper. We begin with the first issue. In a game with no communica-

tion among agents, each agent makes an announcement with no knowledge

of other agents' announcements. This corresponds to a Harsanyi (1967) type

Bayesian Nash game, where the incentive constraints need not hold point-

wise but only in expected value. 28 Theorem 2 and Corollary 1 immediately

28IC1 would be written: X, i— J t{(xi, . . . , X{, . . . , x„) dF(x\, . .

.

, x,_i , x, + i, . .
.

, x n ) is

constant on 5,? ; and IC2 would be written:

/ U(xi,... t Xi,...,xn )
-</>(•) dF(xi, .. .,x,_ 1 ,x, +1 ,. . .,x n )

> / i
l
(x,...,y,...,x n )(fF(x 1 ,...,x,_i,x 1+ i,...xn );

for all x, 6 5, and for every y 6 Sf . In both cases dF{ ) denotes integration with respect

to the joint distribution of the random variables Xj, j ^ t. Unlike in the pointwise

specification, these constraints need only hold on average.
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go through under this alternative formulation of the constraint because we

do not use incentive compatibility in any essential way in the proof. Rather,

we need only check that it remains satisfied.
29 From a technical point of

view, this step of the proof requires us to show that our construction does

not move us out of the set of all incentive compatible contracts—and this is

of course easier to show if the constraint set is bigger. Thus, the expected

value form of the incentive constraint does not change the structure of the

optimal contract in an environment with stochastic monitoring. In fact, it

facilitates the technical arguments necessary to prove the result.

In contrast, in Theorem 1 we again check that incentive compatibility

conditions ICl and IC2 are satisfied in step (ii) of the proof, but we also use

these conditions in step (iv) in an essential way. In particular, we use them in

(iv) to show that the transfer in every non-monitoring state is always higher

than the transfer in every monitoring state. Thus, the final step in the proof

of Theorem 1 does not go through with an incentive constraint which holds

only in expected value. In fact, it turns out that under the mathematically

weaker expected value constraint, the transfers associated with the optimal

contract need no longer be constant on the non-monitoring set. We first

show this in a simple (but not pathological) example and then provide an

economic interpretation of the result.

Example 1. Consider a discrete distribution and two agents: agent one is

risk neutral and agent two is very risk averse. The same kind of example

also goes through for continuous distributions and if one agent is (slightly)

risk averse. Assume that there are four states which occur with equal prob-

ability. The endowment of agent one is given by (7,7,3,3) and of agent two

by (7,3,7,3). Clearly, the two endowments are independent. Let
<f>

be a

constant monitoring cost. Choose S\ = and 52 = {3}, i.e., agent one is

never monitored and agent two is monitored in the low state. Pareto optimal

contracts are given by t
x
= —t 2 — (2 + c, —2, 2 + c, —2), since under this con-

tract agent two is completely insured, i.e., consumption is state-independent

(net of monitoring costs). However, agent one's net-transfer is not constant

even though the agent is never monitored. Incentive compatibility for agent

two is straightforward. Incentive compatibility for agent one is fulfilled in ex-

pected value: Assume that agent one gets the high realization. The expected

29To check this use the same argument as in step (ii) of the proof of Theorem 2, and
take the expected value.
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net transfer is c/2, the same expected net-transfer the agent would get in

the low state. The argument goes through even if agent one is slightly risk

averse because this arrangement economizes on monitoring costs: Choosing

Si = {3} increases monitoring costs by a discrete amount since monitoring

is deterministic.

Some readers may be tempted to construe Example 1 as refuting the

optimality of debt even under deterministic verification. We regard this in-

terpretation as misguided. As Townsend (1987, p. 382) notes, the motivation

for an analysis such as our Theorem 1 is to "begin with some striking ar-

rangement [e.g, debt] in an actual economy and ask whether any theoretical

environment might yield such an arrangement . . . without making the [model]

too complicated or implausible." We view the question— is a model with an

expected value incentive constraint better than a model with a point-wise

constraint?—to be methodologically equivalent to the question— is a model

with stochastic monitoring better than a model with deterministic monitor-

ing? In our opinion the answer is clearly no. Mathematical generality is not

the desideratum per se, rather it is the consistency of the structure and results

of alternative models with those observed in actual economic environments

which determines which model is more appropriate for the problem at hand.

In fact, the appropriateness of the point-wise constraint appears to be

directly linked to the appropriateness of deterministic monitoring. Both

specifications seem to be consistent with key institutional features of US
bankruptcy procedures. 30 When a firm petitions for bankruptcy protection

under Chapter 7 of the US Bankruptcy Code, a trustee is appointed by the

court. This trustee is bound by law to give a full account of the status of

the claims owed by and to the insolvent firm, by every individual involved in

transactions with it. Formally, this corresponds to the game with commu-

nication which leads to the (point- wise) incentive constraints ICl and IC2.

Thus, even though an insolvent firm's creditors are likely to have information

about the firm's assets, the Bankruptcy Code prohibits them by law from

attempting to secure direct payments from the firm or from those who owe

payments to it. One interpretation of the co-existence of different institutions

30See White (1989) for a detailed discussion of the corporate bankruptcy decision in the

US. Note that we take the procedures associated with Chapter 7 of the US Bankruptcy

Code as given. An analysis of why these particular legal structures have emerged is beyond

the scope of this paper.
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is that there are different equity versus efficiency tradeoffs in bankruptcy and

auditing problems. Perhaps society is willing to pay a higher price for fair-

ness in bankruptcy settings because all agents are potentially subject to a

random shock which could render them insolvent.

We conclude by discussing the Boyd and Prescott problem noted in the

Introduction: the nature of optimal multilateral contracts in economies with

additional information imperfections such as adverse selection and moral

hazard. Boyd and Smith (1991) introduce adverse selection into the (de-

terministic) costly state verification model when contracts are restricted to

be bilateral and agents are risk neutral. Agent heterogeneity is clearly es-

sential for such problems, and our model permits agents to differ on several

different dimensions (i.e., preferences, (endowment) distribution functions,

transfer functions, and monitoring cost functions need not be identical). We
believe that our multilateral results will be robust even when these additional

imperfections are introduced, but this remains for future research.

6 Appendix

Proof of Remark 1. Let t be a simple function on Y2 , i.e., there exist

Ai E /?2 , and A, £ JR such that t = £?=i A, 1
j4i , where

W*) = (i
x

t t
At]

.

I (J otherwise.

Then t(g(x)) = E"=i Mj-M.-M- Hence,

f
n

f
n

/
t{g{x)) dn x {x) = J2 X

< I
1 g- i A,{x)d^i l {x) = Y^^rfh{g~

l

Ar)

n n

= 51 ^'/^M) = 5I^« / IaM dfi2 (x) = t{x)dfi 2 {x).

The third inequality follows because g is measure preserving. Since the Re-

mark holds for all simple functions, it also holds for all integrable functions.
31

Lemma 1. Let // be a measure on JR and let A, B be two subsets of M
with the same measure. Let f be an integrable function on JR. Assume that

31This is a standard approximation argument in measure theory: All integrable functions

can be approximated by simple functions.
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a < b for every a E A and for every b E B . Assume that f is bounded on

A U B . Let g be a measure preserving isomorphism on M such that g(x) = x

for every x E JR \ A U B. Assume that there exist 7^, 75 E M such that

x -r f(x) < 7,4 < x + f(g(x)), for every x E A; and x + f{g(x)) < 7^ <
x + f(x), for every x E B . Then x-\- f(g(x)) is less risky than x + f(x) in the

Rothschild and Stiglitz sense (i.e., every risk averse agent prefers x + f(g(x))

over x + f{x)).

Proof. Here we need only check that the integral condition of Rothschild

and Stiglitz (1970) holds. Let F be the distribution of x + f{g{x)) and let G
be the distribution of x + f(x). Then

(i) G(t) - F(t) > for every t < lA .

(ii) G(t) — F(t) is monotonically decreasing for 7^ < t < 7^; and

(iii) G(t) - F(t) < for every t > lB .

(i) follows from the fact that g is measure preserving. In particular:

H ({x <E A: x + f(x) <t}) = fi{{xe B:g(x) + f(g(x)) < t})

.

Note that fi({x G B: x + f{x) < t}) = 0, and fi{{x <E A: x + f{g{x)) < t}) =
for every f < 7^. Since ^(x) < x for every x E B this proves (i). (ii) follows

immediately from the definition of 7^ and 75. Finally, the argument for (iii)

is similar to the argument for (i).

Since / is bounded and since A and B are bounded there exists an M >
such that G{t) - F{t) = for every t $ [-M, Af].

32 Let T(y) = f
y
_M G{t) -

F(t) dt. By Rothschild and Stiglitz (1970, Theorem 2) it is sufficient to prove

that the following two conditions are satisfied.

(a) T(M) = fO?MlGi(x) - Fi(x)} dx = 0;

(b) T{y) > for -M <y < M.
(a) follows immediately from integration by parts and from the fact that g is

measure preserving. 33 (b) follows immediately from (a) and from conditions

32
In order to be able to apply the Theorem we need that the points of increase of the

distribution functions lie in a compact interval.

33 Measure preservingness implies f_M tdF(t) = f_M tdG(t). Partial integration there-

fore yields

/ G(t)-F(t)dt = t(G(t)-F(t))\"M -[ tdG(t)- tdF(t)
J-M \J-M J-M

J

= 0.
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(i), (ii) and (iii). This concludes the proof.

Lemma 2. Let u be a utility function which is twice continuously differen-

tiable. Assume that u"(x) < for every x. Let A, B be two subsets of JR

with the same measure. Let f be integrable and let g be a measure preserving

transformation such that g(g(x)) = x for every x, such that g(A) = B, and

f(x) = x for every x £ A U B. Assume that f(a) < f(b) for every a E A
and for. every b £ B. Then Lemma 1 holds with a strict inequality, i.e., the

agent strictly prefers the contract x + f(g(x)) to x + f{x).

Proof. Here we need only check that the integral condition of Rothschild and

Stiglitz holds with a strict inequality, and then use partial integration to show

that the agent strictly prefers x-{- f(g(x)) (cf., Rothschild and Stiglitz (1970),

footnote 10).

Let £ > 0. Then there exists a 8 > such that f(b) — f(a) > 6 except

on sets Sa C A and Sb C B with ^(Sa) = /J-{Sb) < £• Since g(g(x)) = x for

every i G I?, we can construct a finite partition A t , i = 1, . .
.

, n of A \ Sa

and a finite partition 5,-, 11
= 1, . .

.
, n of B \ Sb such that g{A

t ) = Bi and

such that the condition of Lemma 1 is fulfilled for each A, and B
t

.

34 Thus,

since we can subsequently exchange the transfers of A
t
with the transfers of

B
t
and since e was chosen arbitrarily, Lemma 1 implies that x + f(g(x)) is

less risky than x + f(x). Thus, the integral conditions of Rothschild and

Stiglitz (1970) hold. Note that T(y) > on a set of positive measure.

Integration by parts yields

u(x) dS(x) =u(x)S(x)\™M — / u'(x)S(x) dx
-M J-M

rM
= -u /

(x):Z>)I-m+ / u"{x)T(x)dx, (A.l)
J-M

•M

-M

since u(x)S(x)\ !

M̂ = by (a). Further, since T is strictly positive on a set

of positive measure, and since u" < it follows that

M
u"{x)T{x)dx <0. (A.2)

—ML
34That means that there exist ")&,, IB, for i = l,...,n such that x + f(x) < ja, <

x + f(g(x)), for every x € A{\ and x + f(g{x)) < 7b, < x + /(z), for every x 6 5,-.

28



(A.l), (A. 2) and u'{x)T{x)\ M̂ = immediately imply that the agent's utility

is strictly greater under contract x + f(g(x)). This proves the Lemma.

Next we state a "generalized" version of the Isomorphism Theorem. The
problem we face in the proof of Theorem 2 is that the sets hi and V are not

necessarily representable as the product of lower dimensional spaces. How-

ever, for the proof of the Theorem we need an isomorphism between subsets

A C U and B C V which is also an isomorphism between the corresponding

"slices" of A and B. The existence of such an isomorphism and of the subsets

is provided by the following Lemma. The central step of the argument is the

use of a theorem on measurable selections.

Lemma 3. Let K x

, i = 1,2 be two compact subsets of R x Rn
. Let p.\ and

pi n be probability measures on R and Rn
, respectively, and let [i denote the

product measure. Then there exist measurable subsets A' C A ! and measure

preserving mappings h x : A 1 — A 2 and h 2 : A 2 —> A 1 such that x >—* /i,(x,?/),

i = 1,2 are measure preserving mappings from A l

y
to A 2 and from A 2

to A 1

,

respectively, for every y £ Rn where A 1 = {(x,y): [x,y) £ A'}. 35

Proof. Define a function f:RxRn xR^R+ by

f(x,y,t) = |/i! ((-oo,x) x {y} nA'j) - fi t ((-oo,x-M) x {y} n K 2

)\.

Note that / is jointly measurable in x and y.
36 Furthermore, for fixed x and

?/, the function t \— f(x,y,t) is continuous on K x
. By compactness of K\

and K2 there always exists a i such that f(x,y,t) = inf
t
/(x, y, t). Thus,

Landers' Theorem [cf., 6.10 of Strasser (1985)]
3

' implies that there exists a

Borel measurable function
<f>: R x Rn — R such that

f(x,y,<f>(x,y)) = inf/(x,y,i).

35 Let B be a subset of A* Then B = B' x {y}. By slight abuse of notation, we define

Hi(B) to be m(B').
36This can be established as follows: Let g: K\ —- JR be defined by (x,y) h^

fi\ ((—oo,x) x {y} fl Ky). For fixed r, the mapping y •— g(x,y) is measurable by Fubini's

Theorem. Furthermore, note that for fixed y the mapping x i— g(x, y) is continuous. Thus,

g is jointly measurable [see Castaing and Valadier (1977)]. A similar argument shows that

(x, y, t) t— fi 1 ((— oo, x + t) x {y} fl A'y ) is also jointly measurable in x and y. This proves

the measurability of / in x and y.
37 Landers' Theorem: Let (Q, A, /i) be a measurable space and (A', d) a u-compact metric

space. Let h: Q x A — R be a function such that u; t— h(u,x) is measurable for every
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Note that <j> is part of the measure preserving transformation defined below,

however, we still must construct the sets A\ i.e., the sets where the measure

of the slices coincide. We do this as follows. Let

A 1 = {{x,y):f{x,y,<j>{x,y)) = 0}.

Then A 1
is measurable. Define h\ on A 1 by (x,y) i-> (x + <j>(x,y),y). In a

similar way we can construct a measurable subset A2
of K 2 and a mapping h 2

on A 2 . It immediately follows from the above construction that h
x
(A l

) C A 2

and h 2 {A
2

y ) C ,4*. Thus, h^A 1

) C A 2 and /i 2 (/l
2

) C A1
. It now remains to

show that the h
t are measure preserving. This can be established as follows:

Let y 6 IRn By construction, hi preserves the /ii-measure of all sets of

the form (— oo, a) x {y} D A^ for i = 1,2. These sets generate the cr-algebra

of all measurable sets. Thus hi is a measure preserving transformation on K l

for i = 1,2. Finally, note that FubinTs Theorem proves that the mappings

hi are measure preserving on A'
1

. This concludes the proof of the Lemma.

x G 5 and t >—> h(uj,t) is continuous for every u> € Q. If

B(w) = ^r € X:h(u,x) = inf ft(w,y)S 7^

I ve^ J

for a.e. u then there is a measurable function ^>:Q — X such that

h(uj,<f>(u;)) = inf {h(u,y):y e X)
,
/i-a.e.
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