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Abstract

The paper introduces to the capital budgeting literature the problem

of how to select the amount of capital required to exploit a stock resource,

Simulation is used to examine the solutions of a discounted cash flow,

pretax model of venture profit. The sensitivity of solutions to model

parameters is examined with special attention to the counterintuitive

result that, for this problem, an increased cost of capital, r, results

in higher investment over wide ranges of the value of r. Effects of

depreciation and after-tax maximization are also examined as well as the

possible impact of capital investment on output demand.





Optimal Exploitation of a Stock Resource

A problem that has not received adequate attention in the capital

budgeting literature is the problem of providing long-lived assets for the

development of a stock resource. The mining industry provides many examples

of this kind, such as extraction of marble from a quarry, gravel from a

pit, oil from a reservoir. A related problem is that of outfitting with

special capital assets the firm which has a one-time, fixed-quantity con-

tract. An example of the second kind would be the production of a given

number of special units in a government contract for which there is no

guarantee of renewal.

In such situations, the entrepreneur must often decide simultaneously

whether to engage in the venture and if so, how large the capital equip-

ment used to produce the stock resource (or the fixed output) should be.

In many capital budgeting models, the size of the capital asset is not

a control variable but rather is given. B. Rapp does cite a few examples

of approaches in which researchers have treated size of investment as a

continuous variable [4] and Weingartner dealt with the combined problem

of capital asset variability and indivisibility by his integer programming

model [5], Usually however, optimal plant size, if it is not assumed to

have already been decided on, is handled by the incremental analysis of

larger and larger sizes of plant [2]

.

In this note, the capital budgeting model integrates the decision

to invest with the selection of optimal fixed asset size, dealing with

assets as continuous or integer valued as each situation requires. For

stock resource development, the asset size decision will depend on how
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much freedom the entrepreneur has in controlling the rate of production

and thus the length of life of each particular venture. In the case of

mineral extraction, the miner can usually decide, subject to market con-

ditions, his rate of production; in the case of fixed quantity contracts,

the buyer may impose conditions on delivery dates and eliminate many

of the entrepreneur's options regarding the rate of production and

thus the necessary size of capital. The capital budgeting decision may

be further complicated by the fact that, by increasing the size of the

capital equipment utilized in order to achieve higher rate of output,

the entrepreneur may affect the demand price for his product.

We shall first consider the situation in which the entrepreneur is

a pricetaker and his decision to van,' output will not affect the price

of that output. We assume that the businessman faced with the simultaneous

decision of whether to invest or not and if so, how to decide on the optimal

level of capital investment will base his decision on net present value

maximization. A discounted cash flow model will be presented in its least

complicated form and primary reliance made on simulation for solutions

and discussions of the model. Two reasons have led to greater dependence

on simulation than on analysis: first, even for the most straight-forward

models, reduced form solutions quickly become mathematically complex and

second, simulation is relatively easy even after simplifying assumptions

are dropped to accommodate "real world" intricacies.

Model 1

A businessman owns a quarry containing an estimated stock of Y units

of gravel. The price of a single unit of gravel is p. Exploitation of
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the quarry requires a shovel which produces y units per period; production

per period can be increased proportionally by the purchase of additional

shovels. The initial cost of acquiring one shovel is CC and its operating

cost per period is VC per shovel. Finally, if the venture is undertaken,

fixed costs per period, FC, are incurred. Letting X be the decision vari-

able (i.e., the number of shovels to be purchased), the net present value

of the venture is

N N N
rr = x • p • y z x • vc z fc z cc • x

n=l (1 + r)
n

n=l (1 + r)
n

n=l (1 + r)
n

where r is the discount rate and N is the life of the project.

Assuming that the project meets the firm's hurdle rate for the cost

of capital, i.e., II is positive for some values of X (or N since alterna-

tive solutions can be obtained in terms of optimal N), the optimal number

of shovels may be selected. One approach to solving this problem is

to take the first derivative of equation (1) with respect to X (or N)

and set it equal to zero and solve for X (or N) . The second derivative

test can be performed to check that the point is the maximum. From the

point of view of maximization of a function, if a function is strictly

concave over the interval (a, b), there is a single unique global maxi-

mum that may be either in the interval or at one of the end points. See

Appendix for the first and second order conditions for equation (la) below.

At this point, a numerical example is provided to illustrate the

capital budgeting decision.

Let

Y = a total stock of 1,000,000 units of gravel

y = 50,000 units of gravel per shovel/per period

p = $5 sales price per unit of gravel
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CC = $400,000 per shovel
VC = S 20,000 per shovel/per period
FC = $ 80,000 per period
r = 10% cost of capital per period

Note that N, the life of venture, varies as a function of X, i.e., M = Y/yX.

For the above parameter values, equation (1) becomes

. .-20/X
H = (230.000X - 80,000) [-

K- 1̂1
]

- 400,000X

Equation (la) takes its the maximum value when X equals 3.112 and the

corresponding life of the venture is 6.426 periods. If we assume shovels

(units of capital, X) to be integer values, for X rounded to 3 the net

present value of II is $1,668,690. If X is rounded to 4, the net

present value of E is $1,584,260. Therefore, due to the convexity of

equation (la) , the optimal number of shovels is 3 for the numerical

example.

Figure 1 graphs profit and shows that the advantages of increasing

discounted total net revenue and decreasing discounted total fixed costs

on the one hand must be balanced against the disadvantages of purchasing

more shovels. Grant, et al. on page 203 [3] have a good example of a

comparable situation. They show that when installing an oil pipeline

the firm must consider the tradeoff between the immediate capital expen-

diture on larger pipe versus the increased annual expenditure incurred

to run a pumping station. Economists would point out that profit is

maximized when X is acquired so as to make the value of the discounted

net revenue less the discounted savings in fixed costs due to an incre-

mental shovel equal to the cost of one shovel. The poinc A on Figure 1

($800,000) can be thought of as a consol value, i.e., the present value

of the fixed ccsts in perpetuity which would be incurred if the property
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were held but the project was never started. Mining companies which

hold properties for future development incur such costs in the form of

required land taxes and other annual fees.

Note that model (la) assumes that the lives of the capital assets

and the project are coterminous, i.e., that capital assets are committed

to the project with no allowance for salvage value. The assumption

of zero salvage value is reasonable for many investments in stock resource

development such as soil removal for open pit mining or intangible cost

of oil well drilling. If, however, some percentage of COX, (aCCX) is expec-

-20/X
ted to be recovered at the end of project life, a term aCOX (1 + r)

would have to be added to IT. It should be pointed out that, depending

on the values of N, salvage values may change. The observation that

salvage value can be a function of N has its parallel in the use of a

bail-out factor in payback period analysis. We should also point out

that variable costs (VC) have been made a function of the number of

shovels rather than a function of output as is perhaps more commonly done.

The same costs result, if we assume that once a shovel is acquired it is

operated at capacity throughout the life of the project. If inflation is

anticipated for p, VC and/or FC, the model can be expanded to take it into

account.

Sensitivity Analysis

Obviously solutions depend on the particular values of the

model's parameters. Most of the effects of parameter changes on optimal

capital investment are predictable, at least directionally. Higher values

of Y, p, and FC for example lead to higher values of X. Where the cost

of capital, r, is concerned though, the effects are contrary to usual
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capital budgeting results and somewhat couterintuitive. In order to

increase the present value of net revenue and to diminish the present

value of fixed cost outlays over time by shortening N, there are inducements

to increase X, even when r is increasing. Figure 2 shows that for the

same model [with Y = 3,000,000], optimal units of X increase as the cost

of capital increases. Whereas the marginal efficiency of capital and

the firm's investment opportunity schedule (Ackley [1], p. 473) are

generally conceded to be downward sloping to the right (refer to line

A3, in Figure 3), the firm's optimal demand for capital and for funding

the development of a stock resource increases up to some level of

higher interest rates and then gradually recedes, as in line CD. For

example, if we examine optimal investment levels for model la allowing

the cost of capital to vary from percent to 50 percent and select for

each interest rate the profit maximizing non-integer number of shovels,

we see that investment in capital, line CD, increases as r increases

from percent to 28 percent, the point of maximum investment, after

which it gradually decreases (profit itself becomes negative at 49%).

As the ratio of fixed costs, FC, to capital cost CC, increases, so does

the demand for capital, i.e., line CD moves directionally to C'D'.

Effect of Depreciation

Far from exhausting the subject, this note is intended primarily to

open up a new direction for capital budgeting research. Two more points

however will be made. The first relates to depreciation and its effect

on taxes

.
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INVESTMENT OPPORTUNITY CURVE (AB)

TO OPTIMAL INVESTMENT IN CAPITAL
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(Y = 1,000,000)
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If we examine net present value after taxes, H', equation (1)

becomes

:

N
1

n 1 = (1 - t)(II + CC • X) + (t • depreciation) ( Z —=— ) - CC • X
n=l (l=r)

n

for t equal to the tax rate.

If we maintain the assumption that all assets are committed to the

venture at hand, and that no salvage will be recovered, then CC • X must

be charged off completely (as mentioned above not unrealistic for develop-

ment cost such as intangible well drilling, mineshafts and excavation

CCX Y
costs). Therefore depreciation per period is ——. Since N = =—

,

N
9 Xy

CCX" 'V
straightline depreciation in terms of X only is —-—^ where y/Y is

a constant.

Thus Equation (2) becomes

2 N

n
1 = u-t)Ci + cc x) + [

tCC ' x y
] • [ z —^—

]
- cc • x

Y
n-l (l+r)

n

and equation (la) becomes

-20/X
n ' = [(l-t)(230,000X - 80,000) + t20,000X

2
][-

" (1+r)
] - 400,000X

In all of the cases we have examined the combined effect of taxes and

the quadratic tax shield is to push the profit function down and to the

right as in Figure 4 and to increase investment in X, again a counter-

intuitive result.

Effect of Investment on Firms Demand

Finally, we consider the case where the level of output can affect the

price of output. Now in order to make an optimal capital budgeting decision,

the firm must have an estimate of demand. Demand functions are usually
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expressed in terms of output per period such as P = a - b-yX or

P = a - b'X (since y has been defined as output per period per unit of X)

As an example, assume that the demand function is

P = 6.5 - (-rrjr)yX or P = 6.5 - 0.5X then (equation la) can be

restated as

N N

II" = (50000X)(6.5 - 0.5X) E =— - 20000X E

n=l (l+r)
n

n=l (l+r)
n

N
1

- FC I 400000X
n=l (l+r)

n

The integer solution to equation (3a) is 2 shovels, and the resulting net

present value is $1,843,163. Recall that, for the case of a fixed price

of S5 (i.e., equation la), the optimal number of shovels and net present

value are 3 and $1,668,690 respectively. Based on the given demand

function, the firm can increase the net present value by lowering its

periodic production to 100,000 units (as opposed to 150,000 per period)

thereby extending the life of venture and increasing the unit price.

Extension of the life of a venture may not affect the optimal number of

shovels when the discount rate is very low. For example, the optimal

value of X is 2 for both equations (la) and (3a) when the discount rate

is 3% per period.

Conclusion

This note considers a problem in capital budgeting which has been

largely neglected, namely the simultaneous decision to invest and to

select the optimal amount of capital asset investment when a stock resource

is to be developed. The relevance of this model is to extractive in-

dustries and especially to energy development is suggested. How the cost
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of capital affects optimal size of plant is shown as are the effects of

depreciation on this particular capital budgeting situation. Finally,

the note considers the possibility that the investment decision will

impact on output demand and price.
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Appendix

This appendix shows the first- and second-order conditions for

equation (la) . It also shows that the net present value function is

strictly concave for X _> 1 . This is done by showing that the second

derivative is negative for all X >_ 1 . Differentiating with respect to

X we get the following first-order conditions (000' s omitted)

.

. .-20/X
n = (230X-80) [-

" u r;
] -400X

ATI 1 fH ^" 2°/ X~ = 230 [

l " U r;
] - (230X-80)

dA r

[i (l+r)"
20/X

(^) ln(l+r)] - 400

X~

the second-order condition is

^ o™ r
1 m^" 20^ 2^ i /1A m——r = -230 [- (1+r) (—) ln(l+r) J

dX
r

X~

460 ... v-20/Xn ,^,,2.20, 460 ... ,-20/X . ....
- —=- (1+r) [ln(l+r)J (—=) +

—

x (1+r) ln(l+r)

X rX~

, 160 ... ,-20/Xn ... ,,2,20, 320 ... ,-20/X , .

+ —2 ( 1+r ) [ln(l+r)] (—y) r (1+r) ln(l+r)
rX X rX

920 ... ,-20/X M ... ..2
,

320 ... ,-20/X . ... ,,2= x (1+r) [ln(l+r)] +

—

t (1+r) [ln(l+r)j

rX rX

. 220
(1+r)

-20/X
ln(1+r) __ Q

rX

The second-order condition is always negative for X >_ 1 . The first term

is obviously negative. By examining the second and the third term we

can see the sum of the two are also negative.
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3 9 3°0
That is, since X > 1, -=~ > —=7

rX rX

and since < r < 1, < ln(l+r) < 1

ln(l+r) > [ln(l+r)]
2

. . 320
,

,-20/X . .... ^ 320 ... ,-20/XM ..^ ,.2therefore —- (1+r) ln(l+r) > —- (1+r) [ln(l+r)]
rX rx

4

Since the left-side term is negative and the right-side term is positive,

the sum of the two are negative. Therefore the function is concave.

This result can also be derived if the assumption of continuous

discounting is made. For this case equation (la) can be rewritten as:

n = (230X-80) - [1 - exp (-20r/X)] - 400X (4a)

Taking the first derivative equation 4a we get

||» i2£ [i- exp(-20r/X)] -
230
^

8Q
[ (2 exp (-20r/X) ] - 400 =

X

The second-order conditions of equation 4a are

£-f = -^ [exp (-20r/X)] (20) - -^ [20 exp (-20r/X) ] C^1 )

dX" X
z A

x
Z

+ -^f [20 exp (-20r/X) ] =

X

Simplifying we get

-(9 20rX-3 20r+320X) (rj [exp (-20r/X)]) =

X
4

Notice that =-r [exp (-20r/X)] > 0.

X"*

And since < r < 1 and X >_ 1 , then -320r < 320X.

Thus the second-order condition is negative for all X >_ 1 and all r.

Q.E.D



Table 1

Discounted Costs and Net Present Value When Y = 1,000,000

Discounted Cost of Total Net Present
X Fixed Cost

681,088

Fixed Cost

400,000

Costs

1,081,088

Value

1 877,034

2 491,568 800,000 1,291,568 1,534,935

3 375.920 1,200,000 1,575,920 1,668,690

4 303,264 1,600,000 1,903,264 1,584,260

5 253,592 2,000,000 2,253,592 1,391.756

6 217,144 2,400,000 2,617,144 1,138,331

7 190,536 2,800,000 2,990,536 847,298

S 168,896 3,200,000 3,368,896 531,453

9 152,064 3,600,000 3,752,064 198,388

10 138,840 4,000,000 4,138,840 -147,107



Table 2

Net Present Value When Y = 3,000,000

8% 10" X 4- /o 20?

: 2024214.,16 1456482.77 1095073.,59 848607.39 349986.69

2 4430635.,34 3477957.67 2782227. 50 2260969.91 1091995.83

3 5796651.,94 4789069.92 3993273.,87 3356360.61 1770443.64

4 6558289,,15 5589962.10 4789106.,78 4121126.17 2327397.02

5 6970713.,02 6063603.48 5290650,,25 4627980.42 2749961.90

h 7168113,,17 6323105.82 5587937,,24 4945289.94 3050213.71

7 7224924,,95 6436916.82 5740773.,71 5123398.77 3246883.66

8 7185156,.55 6447794.32 5788723,,60 5197695.80 3358063.40

iJ 7076324 .77 6383513.48 5758513,,86 5193078.24 3399143.39

10 6916460 .00 6262792.85 5668678,.75 5127324.26 3382632.46

11 6717847 .06 6698664.69 5532406,.92 5013368.12 3318537.53

12 6489139 .95 5900462.90 5359308 .54 4860800.22 3214840.53

13 6236584 .58 5675039.06 5156537 .28 4676860.58 3077927.23

14 5964837 .40 5427531.65 4929520 .56 4467106.21 2912936.95

15 5677405 .91 5161867.45 4682446 .55 4235867.30 2724045.49



Table 3

Optimal Investment

Interest Rate Optimal X

2 2.329
4 2.588
6 2.794
8 2.969

10 3.112
12 3.233
14 3.334
16 3.417
18 3.485
20 3.540
22 3.581
24 3.611
26 3.629
28 3.637
30 3.634
32 3.620
34 3.596
36 3.561
38 3.514
40 3.455
42 3.384
44 3.297
46 3.193
48 3.068
50 2.917
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