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INTRODUCTION

This paper is concerned with managemer.t ' s control over a group of

productive activities whose performances tend to deteriorate over time.

The objective of the manager is to maintain their performances at high

levels through the execution of proper control actions at the right times.

In this paper performance is assumed to be measured by the net value

produced per period. However, it could just as well be measured by the total

value produced with a constant periodic inputs of labor and material, by the

total cost of labor and material , computed at the standard prices , required

for a constant periodic demand for the product, or by the labor or material

quantity variance per unit product from the standard rate.

It is assumed that contingent changes in the performance of each •

activity are mostly changes for the worse owing to cumulative degrading

conditions of operation. Such a situation is commonly found in mechanical

processes where the rate of defective production increases as the machine

gradually gets out of the original alignment, or as the machine's parts

and tools accumulate their wear with time. Although the activity may

occasionally improve its performance a little without external aids , the

performance improvement is normally achieved by the execution of a control

action. The control action is expected to produce a positive result, but

it may sometimes result in no improvement in performance or even in

further deterioration.

To describe the general tendency, all contingent changes in performance,

including occasional improvements, will be aggregately referred to as

"performance deterioration" and all performance changes after the execution





of a control action, v/hether successful or unsuccessful, by "performance

improvement." The performance level of an activity in any period depends

only on the level in the preceding period, unless a control action is "''

initiated, in vjhich case it will depend on the success of this action as

well. Relying on this assumption, performance deterioration and improvement

can be represented by discrete state Markov chains. The use of a Markov

approach was originally proposed by Charnes and Stedry in the model

describing a budget-aspiration-performance relationship [2, p. 212-229].

Management control is an iterative process involving three tasks

:

the collection of information on the conditions of activities, the

evaluation of this information, and the execution of proper control

actions when they are needed. Figure 1 shows the phases comprising the

cycle of management control. The cycle starts with the "information

processing" phase. It is followed by either the "control" and "operation"

phases or the "operation" phase alone depending on whether a control action

is executed. (These alternatives are indicated by the two paths between

tj^ and tg in Figure 1.)

The tasks related to the collection and evaluation of information

may be carried out at regular intervals irrespective of the conditicus of

activities. However, processing information on a regular basis may be

\indesirable depending on the time interval involved. For example, if

the deterioration of the activity's performance is slow, the execution of

the management control process at relatively short intervals is unnecessarily

costly. But, if the deterioration is relatively fast, processing information
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at relatively long intervals will result in ineffective control. There may be

no single interval that can always resolve the above dilenima, in which case

information processing should be executed at irregular intervals determined

on the basis of observed conditions of the activities.

One simple strategy for control that is commonly practiced in industry is

to set a threshold level for evaluating the performance of an activity and

to execute a control action only if the performance is at or below this level.

Such an approach assumes that future performances will remain below this

level unless a control action is initiated. The main disadvantage with this

approach is that it does not incorporate an evaluation of the benefits of

a control action against the costs of implementation at each specific

level. In the model below, optimal control strategies are developed for each

of the possible performance levels at a decision point, regarding whether

a control action should be executed and how long a period is allowed to

elapse before the subsequent collection of information.

Solutions to the optimal stationary strategies are obtained by the

linear programming method for sequential decisions proposed by Manne [7].

The objective of the model is to maximize the sum of the expected values

produced per period by individual activities , net of the total cost of

control covering the collection and evaluation of information regarding the

conditions of the activities , and the selection and execution of control

actions. In addition to the basic constraints, the model has a constraint

on the average total time available for processing information or executing

control actions

.

Thus, the model determines both optimal strategies for control

and an optimal allocation of the manager and his staff's time, or the

processing time of computers to individual activities. On the basis

of this time allocation, individual activities may be charged





witli various costs of coTilrol not incluclod in the model, such as the

salaries of the manaiiOP and his staff, tlie rents or defrx^eciation costs

of computer facilities, and the materials and supplies used in information

processing or execution of control actions.

The model determines optimum strateg5.es for controlling each activity

independent of the other implying the manager can take care of any number

of activities simultaneously. This assumes that his capacity for processing

information or executing control actions is considerab].y larger than the

possible total requirement by all the activities. Vfith or without such a

time constraint, however, the formulation is valid only in terms of the

average time requirement and simply ignores possible conflicts between

activities simultaneously demanding the manager's service. In reality, such

conflicts may arise, and a manager may have to determine priority rules for

controlling the activities. For such cases , a state will then represent

each possible combination of the performance levels of the activities,

instead of each performance level of a single activity as in the present

formulation. As a consequence, the state space in the new case will be

substantially larger than the relatively small one in the present formulation.

However, minor modifications in the present formulation should be able to

incorporate these additions.





FORKULATION

A niana^^r supervises n independent activities; the performance

of each activity is described by one of ni levels representing values

produced in a period. The value produced by activity a at level i

is V . civen as the i eleir.ent of vector V , where a is an element

of set A = {1, ..., n}, and i is an element of set J = {1, ..., m}.

^^> \= ^^al ^m> aeA

where

V , > ... > V
al am

Performance deteriox^ation from level i to lower levels in one poi^iod

is given by a stationary transition probability matrix P for activity
3

(2) P^ =
ai '£1.3

acA; i,JEj

In (2), p . is the i row vector and p . . the i-j*" element of t
_ f.1 »

H

matrix such that

he

I. , P . . = 1,
jcJ ai,j P . . > ,

In each row of P , the stronger the skewness of distribution toward the
a_»

right, the slower the tendency of deterioration. Positive entries v/ould





normally be located on and above the main diagonal line of P indicating no

change or no deterioration. However, positive entries may also exist below

the diagonal line if there is slight natural performance improvement. The

assumption of a stationary deterioration matrix implies that control actions

produce no structural change in the matrix, (i.e., no technological change

in machines and no learning by human operators).

The course of action, z, available for activity a_ is an element of

set Z = {0, 1, . .
. , M }. No control action is executed if z = 0, whereas— £

a control action is executed if z is an element of subset Z" = {1 M >
a^ a

of Z_^. When a control action is executed, the performance improvement vf

activity £ is given by the stationary transition matrix Q^:

(4)
^ai,]

acA; zeZ ; i,jeJ
3.

rth ,• ^th
where q^. is the i row vector of the matrix and qf- ^ is the i-j

^ai fL-"- »

J

element representing the conditional probability that the performance of

activity a improves to level j after the execution of a control action ,
given

that it was at level i before the execution. Since each row is a probability

vector, it must satisfy

E. T q • . = 1, of'. • >

Although most control actions will produce performance improvements

and vdll be indicated by positive entries below the main diagonal line

of matrix Q^, positive values may exist on or above its diagonal line to





represent the probabilities of no improvciriant or inadvertent perform-

ance deterioration. The stationary ty aGsurr.Dtion on Q means that the

effects of conti-'ol actions stay constant, implying the skill of the manager

has passed the learning stage.

The existing level of perforinance determines the amount of time

requi.red for processing its information. If the performance at time t

is at level i, the process lasts r . periods. This is shown by the interval

between t and t, in Figure 1, during which the activity continues its

operation usually with a declining performance. At the completion of

information processing at t-j^, the next course of action starting at t,

is decided on the basis of the performance level at t.. If no control

action is executed follov?ing the information processing, the operation,

.of the activity is continued with a farther decline in performance over

the interval between t, and to (illustrated by the upper time-path

in Figure 1). But if a control action is executed starting at ti,

the operation is suspended until the completion of the control action

at ±2- The time required for completing a control action is a function of

the activity, its level, and the control action, and is represented by s
ai

At time t,^ , the activity resumes its operation presumably with an

improved performance. Thereafter its performance gradually deteriorates

over the interval betv/een t ^ and to , as is illustrated by the lower

time-path of Figure 1.

Let us now introduce a state variable, x^r, for activity a. This
' ai

'

-' —

variable represents the probability of the manager making the following

decision for activity a with performance level i at a decision point:





he executes action 7- lasting s • periods and then lets the activity-

operate for d periods before the subsequent collection of information on

its porforiTiance. Specifically, x^. is given a positive value if the
3.3.

coirbination of i , z, and d is acceptable; otliervJise , it is given zero. The

objective nov/ is to determine an optimum value for this variable satisfying

zd
I Z Z X , = 1 aeA

iej zeZ deD —

subject to

x^! > 0.
ai —

The variable x^. is sometimes more appropriately called the probability

decision variable. In Figure 1, if no control action is executed, s • equals

and d, represents d ; and if a control action is executed, s^j- takes a positive

value and d2 represents d.

If the information collected at t^ shows the performance during

the period iirimediately preceding t , the expected net value associated

zd
with decision variable x . can be given by one of the following ti.'o

zd
"~

• -

E(w .)'s depending on whether a control action is to be executed:

7d r . + d

(5) E{w :) = e.(P + ... + P 2.^
) V -£ . for z=0, aeA, ieJ, deD; or

ai 1 a a a ^^ai —

, r . r . d-1

(6) E(w .) = e.{(P + ... + P -^) + P ~V(I + P + ... + P, )} Vaiia a aaa as
_p .jjZ for zeZ|, aeA, ieJ, deD,

^ai ai





3.0

where

I = an identity rnatr-ix

,

e. = a unit rovj vector' with .1 in the i"^ elennent and 5-n the- rest,

g • = the cost of information processing when the observed performance

of activity a_ is at level i,

h^. = the cost of control action z applied to activity a at level i,
a^i —

D = {1, • • • s'^max-^ ' ^^^ ^^^ °^ alternative values considered for d,

the number of periods of operation between the end of action z and

the subsequent time for collecting information.
'^j,iax

^^ ^'^

arbitrary maximum value considered for d.

The objective of the model is to maximize the average net value

produced per pex-'iod given by the following W:

I. ,1 ^ E,^,, F,(w^f)x^^
leo zeZ deb ai ai

a — —
(7) W = I

I. J. ., r, ., (r . + s . + d)x .

leJ zeZ dCi) ai ai ai

z
w;iere s . = for z = and

ai

zd
X . > for al], a, i, z, and d.

In stationary state, a statistical equilibrium exists for each

performance level cf each activity. This is given by

(8) I. r ^ l^ ^ (f'^Lx"" - I ^ l^ ^x^"? = acA, jeJ,
leJ zeZ deD I aJ /] :.i zeZ deD a^ „ »

-
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( 7.c\ . th Zrl
v;hc;rc \i ."} . is ta-.! -j Glo;.-ent of t'-4e follo^'lnf train-.ilion vector- F Th SI

and reprGcents th'i coa'f.itional pi'-ohability thct, f^ivcn iiiit.i.al

level i, activity a ir.oveo into level i after r . + s '. t d periods

during; v.'hicli ths course of action z is executed:

'' r . t d

c.P - for z =
X a

(9) F^^ = (
ai (1^)

ai„z.,d-l
e.P — Q P for ztZ" i,ieJ, ar.A, deD
1 a ^a a a '-<»_'

zd
Finally, since x .'s are probability variables, the follov/ing unitary

3 X

constraint exists for each activity:

(10) I. r „ I, „ x^"'? = 1 aeA
icJ zeZ deD ai —

a —

The above formulation (7)-(10) completes the model under unlimited

capacities for processing information and executing control actions.

In reality various types of restrictions usually exist on those

capacities. Some of the mere important ones are on the total available

time, the budget, and the m^iximum rate of digesting information. Here the

first restriction is taken into consideration, assuming that the average

amounts of time per period availabJe to the manager and his staff for

processing inforr^ation and executing conti''ol actions are limited to H

and Hg, respectively, expressed in fractions of the period. The budget

restriction vrill not be considered, and the rate of digesting information is

assumed to be fixed in each state of an activity.

Since the average num.bers of hours required for processing information

and executing control actions for all activities under selected decisions

can not exceed H and H , the following constraints must be satisfied:





<li)

L

icA

:tJ y.zl^ cr.l) ai. ai

-, f < H , and

(12^

'aeA

i^iej'zeZ^^d.D ^^ai ^''ai ^ ^^^•^?

< H .

s

ai

Witli (11) and (12) in addition to (7)-(10)j the formulation of the

problem under time restrictions has been completed. Hov/ever, since

the fractional expressions in (7), (11), and (12) are not amenable to

zdlinear prograr.iraing , original variables x . are now transformed to
ai

7.dnew variables X'., using the transformations suggested by Derman [3]

and Klein [6]:

(13) X
zd ^ax
ai aeA, ievJ, zeZ , deD

where

(111) L = r.. .E ., i:^ , (r , + s^. + d) x/*?
a le.vJ zcZ ds;.' cJ. ai ai

acA

,7.d . za.By substituting X'. in place of x '. , the objective function (7) isai aj

changed to

(15) W = I ^Z. r „ E, . E(w''^)Z^'^acA It J 7,eZ aeu ai ai
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SUb-.tCt to

X . > lor all a, 1, z, and d

zd 5^d
By repj.acing x . by XT, the constraint (6) is rewritten to

a \ — J — '^ ~-

Hultiplying both sides of ClS) by (^ . t s^. + d) £.v.d. sunminp; them
ai ai '^

for all i, z, and d for each a, the following relation is obtained:

C + ^ + H V^'^

^icJ^..z/d.D (-ai ^ ^ai ' ^> ^^5 = ^ieJ^.cZ ^d.D
-^y^' "^^ acA.

a - - -- a ^'a
"~

Since the right hand side of the above equation equals 1 (owing to

(lu)), this equation is rewritten as the following:

v-.f.d

ItO Zc^- ut-L' c;- c*.! ai —
3 — c-v. __

Constraints (11) and (12) can ho rewritten by sul^stituting

C-^ in pT--« r.^ --^^ ^-^

from ( 7

)

X". in place of x^. in a manner similar to that used in obtaining (15)
ci-^ 3.1

7d
(18)1: ,1. J. ^ I, ^ r . X 7 < H , and

acA leJ zeZ deD ai ai ^ r

('°^^acA^i£j"zeZ^deD
s^ X^^ < H
aj. ax = s





I'-i

Thus the ojp5 fa ;i .tl n--n- 1 JT-eMr forrnulati.on (7)- (.12) has been trc'.n;;fo-x"'i.i-,;d

to the linear- progranu-ninf; model (15)- (1'^) proposed by Mann>-; [7]. The

number of constraints given by (16) for each activity a is identical

to the nuiribcr of levels of the activity given by the possible combinations

of 3, z, and d. Since any one of the,',c constraints is dependent on the

rest, it can be taken out of the linear program. VJith (16) aiul (17),

it is possible to obtain a solution maximizing the objective function

in (5) v;hich can handle cases without tine restrictions on the information

processing and the execution of conLrol actions. Following Wagn;;r's proof

[11], it is a2v7ays possible to find a solution v/ith pure strategies if

all levels of each activity are occupied by positive values. However,

the imposition of the additional, non-redundant constraints (18) and (19)

representing time restrictions usually deprive the model of the existence

of a solution v/ith all pure strategies.

7.6.
Optimum values of X . obtained by solving the above linear program

ar-e to Lc converted to the values of original variables x 7 . For this.

first suinming up hozh sides of (I3 ) and substituting flC) into the

righthand side of the summed-up equation, the follovring i'clation

is found:

(20 ^ ^. ,1 ^, Z.\ X^^ = L- aeAlej zcZ CiEJ ai i. —
a — a

Substituting optimum values of X .' on the lefthand side of (20) wiJlai

give the value of I. . V.'ith this L and (I3l, individual x'''''r's area a ' ai





I';

convortcd to coi-^responding orif.inal variables x .':.:^
oX

Finally, the expected amounts of time required per period for process

ing information and executing control actions for activity a are given by

the follovring E(r^) and E(s_), expressed in a fraction of the period:

— a a — —

(22) Us ) = L.Z. T. ^ Z, .. s^.x^'? aeA
a L lEJ zcA cej ai ai— a a _ _

Using L(r ) and i:(s ) obtained in (21) and (22), the total amounts of
a a

time required for processing inforriettion and executing control actions'

are allocated to individual activities in the following proportions a and
a

& , respectively:
a

(23) a = £(7 )/!_ E(F ) acA , anda a at,i^ a -_ '

(210 B. = ECr )/Z^ . E(7 ) aeA.
ci a aeA a —

The al->ove a or g.^ may be used to esta]Dlish the standard rates for

distributing among individual activities the portions of the manager and

his staff's salaries assignable to the tasks of processing information or

executing control actions. Furthei'inore , these rates may be used to charge

those activities with the indirect costs of additional labor, equipment and

facilities, or materials and supplies necessary for the manager and his

staff in carrying out the information processing and control tasks.





A ui:i:i:iachL exa::?le

In fbj.s c;'.a"pl« a ri3na;.cr> supervisee 3 production lines —

lines 1, 2, an' 3. The perfo-- • nee of c.iic)\ 3 ine id described by one

of 4 levC'ls representing net values produced by the line p^er day. Tno value

produced Ly lino a at level i is givcvi by the ith entry of the follov.'ing

vector V :

V, =

V„ =

(5.0, 4.0, 3.0, 2,0)

{5.0, 3.5, 2.0, 1.0)

(5.0, 3.0, 1.5, 0.)

in $1000's/day

The performance of line a deteriorates day by day v;ith transition

matrix P :

.60 .25 .10 .05

.00 .70 .20 .10

.00 .00 .80 .20

.00 .00 .00 1.03_

P
• -2

.73 .15 .08 .OU

.00 .80 .13 .07

.00 .00 .85 .15

.00 .00 .00 i.og_

> Po =

.87 .09 .03 .01

.00 ,83 .12 .05

.00 .00 .78 .22

J.00 .00 .00 1.00;

There are 3 corrective actions -- action 1, action 2, and action 3 —

available to tr»e jnar^a^er for improvin^c the deteriorated performance of each

prodviction line. The effectiveness of action 7.(z = 1, 2, 3) is represented

b;; a single ir;:prove.r,.cnt r:';atrix, Q (a = 1, 2, 3), corr.;-on to all production

lines

:

790 .07 .02 .01

.85 .09 .01+ .02

.60 .22 .14 .04

,^30 .35 .24 .2 0_

.88 .09 .02 .01

.82 .10 .06 .02

.56 .22 .09 .03

_.43 .32 .17 .OP;,

a = 1, 2, 3

, q:

.85 .09 .04 .02j

.80 .11 .06 .03

.70 .20 .07 .03

.46 .30 .16 .Or;



X
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The Icrit^th oZ lirp.s s . days and the co:.t h . dollarti r'eauired for
81 ^ ax

executing corrective actiovi z for line a are ansurned to be indcpGndent

th
of the p:'i-forr:.«p.ce 3:;V5l i and given by the z ' entries of the folloHinf,

vectors S and T (a = 1, 2, 3);

(1» 2, 3)

(2. 3, li)

S3 = (2, 2, 3)

T, = (1.0, 1.2 l.H)

T^ = (1.3. 1.5, 1.7)

Tg = (1.6, 1.7, 1.8)

in days in $1000' s.

The length of time r . davs and the cost g , dollars reauired for^ ai ' ''ai

processing information regarding the performance of production line a at

level i arc riven by the i entries of the following, vectors R and G
a a

(a = 1, 2, 3):

R, = (1, 1, 1, 2)

R^ = (1, 1, 2, 2)

R., = (1, 2, 2, 3)

in days

G^ = (1.0, 1.1, 1.2, 1.3)

G^ = (1.0, 1.2, 1.4, 1.6)

G3 = (1.2, 1.3, l.U, 1.5)

in $1000' s.

Nine days is the maximum allowable time to elapse betvjeen

the end of a control action and the collection of nev; infornaticn on

any production line. Finally, the average amounts of tirr.s per day

allov;able for processing inforrr^ation and executing corrective actions for

all production lines are .6 day and .5 day, rospectlvelj'. Summarily,

those allowable amounts of time are





3.8

d
max

= 9 df:y;:

.5 day

H = .5 d_iy

Given the al>ov£ conditions, this linear prOf~ro:n haj; 12 constraints in

(16) ciud 3 constraints in (j7), v.-ithout the time restrictions H and H , With
' r s

thcr.e rastrict ions, it has two additional constraints in (10) and

(19). In either case, it has ^^32 variables fcriiied by 3 production lines,

^ performance levels for each production line, 4 control decisions selecting

either no control action or one of 3 control actions, and 9 alternative

pei"-iods of operation before collecting new inforr-.ation.

The program v?ithout the time constraints was computed by MPS

(an IBM linear prograr.'Tr;ing code) on an IBM 300/75, producing a solution

with a s.int^le strategy at each level of each production line and the total

expected net value of $7,075. Then, this linear proi;,ram vas computed v.'ith the

two tir:;ij consti-^aints. Its solution produced the total expected net value

of $5,705 and gave mixed sti'ategies at level 4 of line 1, levels 1 and 3 of

line 2, and level 1 of line 3, as is shown in Table 1. At each of these

levels, the raanager should randomly select one of its str-ategies in proportion

to the values of their decision variables. For exatuple , if the performance

of line 2 at a decision point is at level 3, Table 1 indicates strategies

(z"l, d-o) and(z=l, d-7) are available to him. Therefore, he should select

one of then by a rando.n method in the following proportions

:

strategy (z--., a-.): -^j^—jj = -;^^ - .5oo

^23 "" '^23
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Strategy (.^1, d=7): ^3 ^ ^13 ^ ^^,,

^23 ' ^23

The last two columns of Table 1 list tlie e;;pectcd amounts of time

required by the strategies selected at various levels of e;:cri production

line. The suns of these values are Jisted in Table 2, f.iving the expected

amounts of tine required per day for processing information and executing

control actions for each production line. These values sliow that the propor-

tions of the total time spent on production lines 1, 2, and 3 for processing

information are 19. 4-0, 31.1%, and 49.b^ii, respectively. Tnose proportions

for executing control actions are 20.8^6, 45.^1, and 33.8%, The total time

required for processing information is .537 day against the time

restriction of H =0.6 day, v/hereas the total time required for executing

control actions is .5 day, consvimj.ng the entire amount of the

available time, or H -.5 day. Thus, the time available for control actions

is the primary constraint on this management control.
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Tabic; 2. Expected Ai.iounts of Tirue Required for nanageriient

Control of Production Lines.

Expected Amounts of Tine Rcouircd Per Dav
r.anagcr^vit '^

Control Tasks
Production

Line Lino 1 Line 2 Line 3 Total

Processing
Information

Expected
Fraction
of Day

.lOM .167 .256 .537

Proportion of
Total Tir.-,e

.194 .311 .495 1.000

Executing
Control

Expected
Fraction
of Day

.104 .227 .169 .500

Actions
Proportion of
Total Time .208 .454 .338 1.000
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SUMMARY

Tlii.s paper' has analyzed a management control problcn; in which the

manager' controls activities vrhose performances datei-iorate with time.

The control is carried out in a sequence of tvro control tasks: the

processing of information regarding the condition of each activity and

the execution of a proper control action if it is needed. The process-

ing of information regarding the current condition creates a time lag

betv7een the collection of this information and the seJection of a control

action. The evaluated current condition and the selected control action

together determine the subsequent tine for collecting information.

Conseo^uontly , information on each activity v.'ill be collected most

probably at irregular intervals. Processing inforniation does not interrupt

the activity's operation, but executing a control action does. Thus the

control action incurs both the explicit cost of its execution and the

implicit cost of values not produced by the activity during the execution.

The cissuTP.cd natural performance deterioration of each activity and

the improvement of the deteriorated performance are represented by dis-

cr'HSte state Markov chains. The problem is formulated as a linear

programming problem for sequential decisions along the line proposed

by Manne [7] so as to maximize an objective function representing the

expected values produced per period by the activities, net of various

costs cf the control tavks. The basic formulation is then given

additional constraints regarding the amounts of time available for

processing in for;.iat ion and executing control actions.
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SoluLXons to the linco)'' program give optimum stationary strategies;

which dctorn^.inc for each activity the corrective action to execute and a

time interval to elapse before collecting new informatioTi. V/ithout the

time constraints, the solutions determine for each activity the expected

ideal ainounts of time necessary for the control tasks; V'ith those constraints,

they determine optimum allocations of the available amounts of time to

individual activities

.

Although in the present formulation the time constraints H and H

in (ll)-(12) or (1S)-(19) are imposed against r • and s^- representing

the entire lengths of the "information processing" and "control action"

phases, thiej/' may be imposed against certain segments of these phases. For

example, consider a case where the information processing phase includes

c •

r . hoiirs of computation by a computer. If the average; computer time
ai

availal)le to the entire group is H hours per day, the constraint in

this case is obtained by replacing r, .- in the numerator on the lefthand
-^ ' ^ at

of (11) or that in (18) v.'ith r,- . In such a case, unlike the entire

length of the phase r . , the com.puting time r^. or the time of any other

element in this phase need not be an integral multip].e of the unit

period of the Mar'kov process. This also applies to the control- action

phase

.

With tiie exclusion of the time constraints (18)-(19), the formulation

(15)-(17) is composed of the independent linear programs for individual

activities. When those constraints arc added to the formulation, they

unite the independent programs into an integral linear program having a decom-

posable foi^m. Therefore, if the nevj linear program has a large number of
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constraints, it may be reformulated using the decomposition principle

so as to reduce its computation time.-*-

Discussions on the decomposition principle are found in G. B. Danzic
Linear Progra;r,m ing S Extensions

, p. U48-U70, or G. Hadley, Linear
Progran-.ming, p. i+OO-Uil.

"
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