
raffia mm

m
—IHP

1HH
rallKilllll





Faculty Working Papers

\

OPTIMUM SUPPLY CONTROL OF
A MONOPOLIST IN A DYNAMIC MARKET

M. Simian and T. Takayama

#172

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





FACULTY WORKING PAPERS

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

March 25, 1974

OPTIMUM SUPPLY CONTROL OF
A MONOPOLIST IN A DYNAMIC MARKET

M. Simian and T. Takayama

#172





t
Optimum Supply Control of a Monopolist in a Dynamic Market

M. Simaan and T. Takayama

Abstract

In this paper, we develop a model for a monopolist in a

dynamic market who tries to maximize his overall profits over a certain

planning horizon. Conditions for his optimal supply curve for both

finite and infinite horizon problems are obtained and some interesting

properties of the optimal paths are explored. A special (linear-

quadratic) case is then treated and explicit characterizations of the

optimal supply curve and the market price -supply behaviors are obtained
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Optimum Supply Control of a Monopolist in a Dynamic Market

M. Simaan and T. Takayama

Introduction

Since the time Cournot investigated the economic rationale of

firms in various markets, many economists have touched on the subject of

"monopoly" to varying extents and depths. Analytical framework of the theory

of monopoly has remained mainly static; Marshall (1920) in his Principles

of Economics , Chapter XIVj Zeuthen (1955) in Part Four of his Economic

Theory and Method ,and Malinvaud (1971) on pages 70-75 in his Lectures on

Microeconomic Theory , to mention only a few, all developed their theory

in & static framework. Obviously, "monopoly" theory has its historical

counterparts in real economic life. The most interesting examples are

the Aluminum Company of America from 1888 until World War II (see Cohen

and Cyert (1965), pp. 200-203), IBM in recent history, other big business

firms mentioned elsewhere, and other government monopolies (for instance,

the Japan Tobacco Monopoly Corporation). Except for those government

monopoly cases, the firms referred lo above seem to be under a continuous

threat from potential newcomers in both domestic and international markets.
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Urbana -Champaign

,





Thus, for these private industries, any monopoly theory, whether static

or dynamic in isolation of competitive firms may prove ineffective in either

explaining the monopolist's behavior or providing quantitative information for

the improvement of the monopolist's performance.

Irrespective of the above observation, in this paper we plan to

develop a model of a monopolist who is completely free from the threat of

his potential or imaginary competitors, and who tries to maximize his

profit over his planning horizon [0,T) where I may be either finite or

infinite. It is interesting to note that as early as 1924, several

references have been made in the mathematical economics literature to

dynamic monopoly models such as the models developed and analyzed by

Evans (1924), and Tintner (1937). However, due mainly to the lack of well

developed dynamic optimization theory, most of these models were left

without thorough analysis. In this paper, we plan to study both qualitative

and quantitative aspects of our dynamic monopoly model by effectively

exploiting techniques developed in optimal control theory. Another aspect

that interests us is a similarity etween our dynamic monopoly model and

a dynamic economic planning model developed by Arrow (1968) in the same

spirit as ours* Thus, a micro -economic model such as a monopoly model

will find a way of dynamizing itself in the framework of optimal control

theory.

In our model, we assume that the monopolist is placed in an

environment where a dynamic demand function, instead of a static demand

function, of the form:





p(t) * f(p(t),x(t))

leads the firm to draw a rationale or optimal supply program. In the

1
above differential equation. p(t) and x(t) are the price and consumption

quantities at time t respectively. In the first section of thi3 paper, we

develop this model and formulate the profit maximization problem that the

monopolist faces in the market. In the second section, necessary conditions

for the optimal supply quantities are obtained and some important properties

of the finite and infinite horizon solutions are derived. In this develop-

ment we follow closely Simaan and Takayama (1974). In the third section of

this paper, we develop a special but easily tractable model in which the

dynamic demand function is linear and the total production cost function

is quadratic (Linear -Quadratic model) and show some of the interesting

properties of the optimal trajectories in both finite and infinite horizons.

Finally, in the fourth section we solve an example problem and in the last

section we summarize the spectrum of results.

1 . A General Dynamic Monopolist Model

In this paper, we consider a monopolist who at time t of a certain

planning horizon [0,T) produces a single commodity at the rate x(t) and

incurs a total production co3t of

(1.1) TC - g(x(t))

For early development of different types of economic dynamics

see Zeuthen (1955), Chapter 23, and Frisch referenced therein.





where g(*) is a convex function, at least twice differentiate and having

a minimum at x » 0. The commodity is then sold at a price p(t) which is

determined dynamically in the market, to be defined later, and the monopolist

secures the total revenues of

(1.2) TR « p(t)x(t)

and a total profit at time t of

(1.3) TP - p(t)x(t) -g(x(t)).

In contrast to the static monopolist model where the price p(t)

is instantaneously related to the production level x(t) through a static

demand function of the form h(p(t)) ~x(t) » 0; we shall assume in this

paper that the monopolist faces a dynamic market where the price at time

t is determined through a dynamic demand function of the form

(1.4) p(t) - ^&U f(p(t),x(t)> , p(0) « po

where p is the initial price of the commodity at time t * 0, the. start of

the planning horison. Equation (1.4) essentially says that at each time t;

the rate of change of the price p(t) depends on the price level and consump-

tion rate (s production, rate, in our model as in Evans (1924)) at that

particular time t* Stated in different terms (1.4) relates the price at

time t, to the initial price p and to the entire history of consumption

(supply or production) function x(t) fur t in the interval of time [0,t).

Functionally this can be written as





(1.5) p(t) «0(p
o i X(T), T€[0,t))

2
where is the trajectory of the solution of (1.4) for a given p and

o

supply function x(t). There are various assumptions that f(p,x) must

satisfy in order for (1.4) to make sense as a demand function. These are:

(i) £(p>x) aiust satisfy the usual conditions for existence and

. uniqueness of solutions of differential equations, and further-

more we assume that for each function x(t) > defined over a

certain planning horizon [0»T), where T may be infinite, (1.4)

has a solution p(t) > for all t€ [0,T)

(ii) f (p,x) must be such that for each x > there is a unique p >

such that f (p ;x) * 0, and for each p > 0, f (p,x) is concave and

there is a unique x > such that f(p,x) •

(ill) we also assume that r~< 0, r-5- <^ for all x > and p > 0,

and that f (p»x) « divides the positive p-x quadrant in two

regions: (a) the upper region where f(p,x) < and (b) the

lower region where f(p,x) > 0.

The market: "memory" in the price adjustment process (1.5) is essentially

what makes the dynamic market different from the static one. While sudden

changes in the supply will cause sudden changes in the price in a static

market (see Fig. 1(a)); they will only cause gradual, slow (or delayed)

2
Thus our actual dynamic demand function is a mapping from

R X Cr[0,t) -» R+, where. C^O.t) is the space of measurable nonnegative
functions on [Q»t) and R+ is the nonnegative part of the real line.





3
changes in the price in a dynamic market as illustrated in Fig. 1(b)

below:

*»<'>

t

x(t)

iPCO
p(t)

-

(a ) Static Marke t (b) Dynamic Market

Fig. 1. Market behavior ur !er sudden changes in supply.

Thus in a dynamic market, it "cakes time" for the price to adjust itself

when there are time variations (noc necessarily sudden as in Fig. 1) in

the consumption or supply rate. Hence, the monopolist does not enjoy an

instantaneously responsive market, and he is put in a situation where he

The problem of identifying this dynamic demand function (i.e.

P a f (P i*)) from market data is an interesting problem by itself (for

instance see Athans (1973) and Mendel (1973)) but will not be treated in

this paper. In this paper we assume that the function f (p,x) is known to

the monopolist.





has to plan his supply, knowing that variations in it could cause variations

in the price that will propagate over a certain period of time in the

future

.

The price-supply relationship of (1„4) can be studied in the p-x plane

as shown in Fig. 2. For instance, if x(t) x constant, then the price

moves in the direction stipulated by the sign of £(p,x) and eventually

reaches an equilibrium value p such that f(p,x). 0. Thus, the dynamic

demand function (or price adjustment function, the closest terminology we

can find in static stability argument of a general equilibrium (see Nikaido

(1970)) may be written in the form

(1.6) f(p(t),x(t» « G(h(x(t))-p(t))

where G(u) is a monotone increasing function of u and satisfies (see

Samuelson (1947))

(1.7) 6(0) * and ^|^1 > Vu€R.

As mentioned earlier in this paper, the monopolist is assumed to

be manipulating the supply function x(t). We shall assume that his objective

is to maximize his total profits over his planning horizon [0,7)!

4,
Lindahl, in the framework of a discrete dynamics or "period

analysis" called this type of process "disequilibrium method" in comparison
with the Marsha 11 ian "equilibrium method." However, in our continuous
dynamics, these two methods turn out to be identical if one carefully
examines the content of the following development (see Baumol (1970)

,

pp. 127-141).
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P*

f(p,x) <0

f(P,x)

(1.8)

Fig. 2. Price variations for a fixed supply.

T
ft

TT(P ,x(t» » J e"
;

(p(t)x(t) -g(x(t)))dt
o

where r is a suitable discount rate. Equation (1*8) explicitly defines

the. profits as a function, of the initial price p and the supply x(t) for

all t€[0,T) which is obvious in view of the dynamics of the market (1.4)

2. The Optimal Supply Function

The problem of profit maximization (1*8) subject to the market

dynamics (1.4) can be solved by applying well known results in optimal

control theory (see Pontryagin et al. (1962)). First the Hamiltonian is





defined by

(2.1) K- p(t)x(t)-g(x(t / ) +X(t)f(p(t),x(t))

The necessary conditions for optitoality are then obtained as follows:

(2.2)

(i) p « f (p,x) , P(0) - p -

(ii) X

and

(iii) P

Sf,
(r - ~)\ - x , X (T) -

dx dx
» for x(t) >0 , or

(iii) ?

p - ^^ + X ~< Q for x(t) - .

dx dx

Thus for each p , the optimal supply function x*(t) can be

obtained by solving (2.2). There are several properties that follow from

these conditions, and these are summarized below.

Proposition 1 : The costate variable X (t) satisfies X(t) > and it follows

that

:

(2.3) p(t) ^ ^dxlt)
21 Vt€[0,T),

and equality holds at t * T.

Proof: The proof follows easily by contradiction. Suppose X(t) < 0, then

since X(T) = there must exist a t- € [t,T) such that X (t, ) < and

Note that the conditions on f(p.x) and g(x) insure that H is

concave is x.
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£(t.) > 0, However, from (2.2 ii) we see that this is impossible. Thus

X (t) > 0, and (2.3) follows from (?.2 iii), and the fact that \ (T) - 0.

Irrespective of the differences between the static and dynamic

models there is, as Tintner (1937) pointed out earlier, a remarkable

resemblance between the static profit maximising condition (marginal

revenue a marginal cost) and its dynamic counterpart (2.2 iii):

(2.4) marginal cost - fi v V. & p + ^ c~~ ^ marginal revenue.

The end of horizon condition X (T) which leads to

(2 cc\ v(T\ * S?£i2LiI21

profcrays the benevolent monopolist profit maximization condition

(Takayama and Judge (1971), pp. 225-230). This is due to our assumption

in (1.8) that the terminal profit or salvage value is independent of p(T);

however if a terminal profit F(p(T)) is introduced in (1.8) then the

boundary condition of (2.2 ii) will become

(2.6) \(T) *
d*

fa£ffi .

P(T)

One of the interesting aspects of the. above analysis is to examine the

nature of the price-supply dynamics in the p-x plane. By simple

differentiation ana algebraic manipulations of (2.2 i, ii and iii) \(t)

can be eliminated and the following system of differential equations can

be easily obtained:
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(2.7)

p * £(p,x)

x « h(p,x)

P(0)

om « <*s(x(T))_Pm dx(T)

where

h(p,x)
gx -ax

y .dx ;vt ,axa P
2 2

vp dx' „ 2
3x

(r -^)
°x dx

2

Let us assume that the equation h(p,x) generates a single -valued

function p ** H(x) such that at each pair (p,x) in the (p,x) plane,

h(p,x) is positive if p < H(x) and h(p,x) is negative if p > H(x)* We can

now draw a phase-plane diagram for (2.7) as shown in Fig. 3. For each

initial price p , (2.7) can be solved and the corresponding optimal

initial supply quantity x(0) « x can be obtained. This, therefore,

generates an optimal initial manifold from which all optimal paths are

started. On the other hand, as the terminal time T is reached, all

optimal paths must, terminate on the terminal manifold given by (2.5).

Several such optimal paths are illustrated in Fig. 3.

The fact that these assumptions indeed hold for the general
model (2.7) is very involved and lengthy to prove; however they will
be shown to hold for the special case of linear demand and quadratic cost
functions to be discussed in the following section.

An interesting question from the monopolist point of view may
be raised at this point: Is there an initial price p* that gives the
monopolist the maximum possible profit? The answer to this question is

straightforward: select p" such that X (0) - (which is obvious since

dn(p ,x<t))
d (

o
X ( ) . .„

) # ^g condition implies (2.2 iii) that p - -2rsH°PQ
o ax

J
tssQ

and it essentially means that the optimal initial price, (if it exists)
must be the intersection point of the initial and terminal manifolds (Fig. 3)





Optimal trajectory for
12

h(p,x) -.0

ial Manifold

Terminal Manifold

f(P.x) =

tories

Fig. 3. Phase plane trajectories.
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We now discuss the Infinite horizon case where T -» °°. The

conditions of optlmality are the. seme as (2.2) except that the boundary

condition for (2.2 ii) mast be changed (see Arrow (1968)) to

(2.8) lim e~
rt

\<t)p(t) * 0.

t-»»
*

Thus for each initial price p , the optimal system (2.2) with (2.8) as

boundary condition for \(t) t can be solved for the optimal path

(p*(t)»x*(t)} s which will satisfy (2.8) if an equilibrium point (p ,x ) is

eventually reached as t — «* . Thus this equilibrium point must be the

intersection of f(p,x) (i.e. p * 0) and h(p,x) ~ (i.e. x « 0) as

shown in Fig. 3, Obviously, there is only one optimal trajectory passing

through {p ,x } and this trajectory (curve CL CL In Fig. 3) is also the

optimal initial manifold for this infinite horizon problem. Hence for

each initial price p , the monopolist must adjust his initial supply to

be on the curve C,C
5

, and as the price moves upwards or downwards, he must

keep on adjusting his supply so that at each t, the point {p(t),x(t)} stays

always on C.C, until fp ,x ) is reached. This trajectory will guarantee

the monopolist maximum profit. Finally, it may be worthwhile to mention

at this point, the resemblance between this dynamic monopolist profit

maximizing behavior and the dynamic economic planning model discussed in

Arrow (1968). We will sharpen these results in the next section and fully

investigate various aspects of the initial and terminal manifolds and

optimal trajectories of our linear-quadratic monopoly model .
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3. The Linear Demand and Quadratic Cost Monopolist Model

An interesting special case of the previous analysis which leads

to an analytically tractable solution is when the demand function (1.4) is

linear and the production cost function (1.1) is quadratic. That is when
8

(3.1) p * c - ap - bx , p(0) p„

and

(3.2) g(x) J QfX .

The parameters c, a, b and a are assumed to be known and positive. The

profits over the time horizon [0,T) are then;

(3.3) n(p ,x(t)) - J e"
rc

[p(t)x(t) -f ax
Z
(t)]dt

1 2

2

a
and the necessary conditions (2.2) can be easily written as:

(3.4)

(d) • p * c - ap - bx P

(ii) i * (r+a)X -x X

< (ill) p - ax - b\ * for

any p - ax - bX < for

Uiii)" p * ax - bX > for

p(0) - p
c

X (T) -

0<xir

c

b

Q
Note that the function f(p,x) * c - ap - bx satisfied the conditions

in Section 1 only in a compact rectangle in the p-x plane defined by
c c

0<^p£— and 0<^x<r • In the necessary conditions of optimality (2.2) account

must then be taken of the constraint x(t) ^ r in addition to x(t) > 0. The

constraint that 0^p(t)^ ~ will then be automatically satisfied in view of

the solution of (3.1):

> )e~
at

- be~
at

j e
aT

x(T)dr,
e

a v
a

and for 0^x(t)^ r>and need not be accounted for in the necessary conditions
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By exploiting the results obtained for our general dynamic monopoly model,

let us study the dynamic properties of the phase-plane diagram based on

(2.7), which now can be written as:

(3.5) i

p f (p,x) « c - ap - bx p(0) « p

x h(p,x) * 9-.L±M.
p + (r+a )x , X (T) • i p(T)

by eliminating \(t) from (3.4) (i), (ii) and (iii). The phase plane is now

clearly divided into four regions by the two lines f(p,x) and h(p,x)

and the general discussions made on Fig. 3 apply exactly to this case. The

phase-plane and trajectories are shown in Fig. 4. Let us first discuss the

finite horizon problem.

*

3. a. The Finite Horizon Case

The terminal manifold in this case is given by the line x(T) *

— p(T). In order to determine which trajectory is optimal for a given

initial p , it is necessary to 3olve the two point boundary value system

given by (3.5) (or (3.4)). However since our system is of the linear

quadratic type, a transformation of the Riccati type, well known in optimal

control theory (see Athans and Falb (1966)), can reduce it to a single

point boundary value problem. We shall express this transformation as

follows

(3.6) x(t) - K(t)p(t) + E(t)

where K(t) and E(t) are functions of time to be computed. This transformation
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Pi

c
a

Optimal In:.tial Manifold

Fig. 4. Phase plane for the Linear Quadratic Problem.
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has a physical significance; it expresses the supply at time t as a

function of the price of time t. T is will then be tfca optimal supply

curve that will determine the monopolist's output based on the current

price prevailing in the market, that is a "feedback" supply function.

Upon differentiating (3.6) with respect to time and making use of (3.5),

the following differential equations for K(t) and E(t) are obtained:

{(i) K * K(r+2a) •*- bK
2

- Z±l*
> K(T) « I

o> or

(ii) E « (r+a+bK)E + c(~ ~ K) , E(T) - 0.

Thus by solving (3.7) backward in time from t T to t » 0, we get K(t)

and E(t) Vt€[0,T). Equation (3.7)(i) is a first order quadratic

equation of the Riccati-type which has a solution (obtained by simple

integrat ion) t

/a r+2awh . r+2a , . . ^ , r-K2a N ,b , r-t-2a aN -23(T~t)

where

p;«

/(r+2a)
2 ~

lr+2aik
4 a

Equation (3.7) (ii) is linear time-varying, and has a solution of the form;

t

T J (r-hi-fbKk))d>

(3,9) E(t)«.fc(--K(T))e T
dT.

t
*
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By simple algebraic manipulations, it is easy to obtain the following

bound8 on K(t) and E(t)

(i) < K(t) <L £

(ii) E(t) < .

Equations (3.10) (i) and (3.6) reveal an interesting property of the optimal

marginal supply function; namely:

(3.11) o< ~r^= K(t)< i
dp(t; — of

whenever (3.4) (iii) holds. From the above analysis, the optimal initial

manifold is therefore a line of the form

(3.12) x(0) - K(0)p
o
+E(0),

and every optimal trajectory must start on this manifold, satisfy (3.6) at

each t and move along the solution of:

(3.13) p(t) » (c -bE(t)) - (a+bK(t»p(t) ,p(0) - PQ

and finally terminate on the line

(3.14) x(T) - ~ p(T).
a

It is important at this stage to mention the following three interesting

observations

:
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(a) K(0) and E(0) in (3.12) are both functions of T; and a simple

analysis of (3.8) reveals that the larger is T, the smaller is its

corresponding K(0); i.e. if ^ > T
()

then ^(0) < 1^(0).

(b) As indicated in (3.4)(iii) c and (iii)", the initial manifold (3.12)

holds for all initial prices p such that the condition < x(0) < r
O — — D

is satisfied. In other words such that:

(3 ' 15) R(0)^ po^ K(0) *

If however (3.15) is not satisfied for a certain p , then according to

(3.4) (iii)' and (iii)" the supply function must be kept at either x(t)=0

or x(t) * r- according to the following rule:

(i) x(t) * if p(t) < - §&*
.16) J

KkZ)

I

at) «(t>-& if p(t)> c/v(t)
(t )

(3.16)

which will cause the price to rise for case (1) and to fall for case

(ii) until a time t^ is reached where the price p(t-) is on the

manifold (3.12), and then the pcimal trajectory will continue

according to (3.12) until the terminal manifold is reached. This

situation is clearly illustrated in Fig. 4.

(c) It is Interesting to point out that a fixed end-point version of this

finite horizon linear quadratic problem was treated by Evans as early

as 1924 using calculus of variations techniques. Even though his

treatment focused mainly on obtaining the optimal price trajectory

by solving a second oider differential equation, it may be worthwhile
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to point out how the present treatment can be adapted to generate

Evans optimal trajectory . If we assume that the price at time T is

fixed at p(T) p., and if r-0 (as in Evans (1924)) then an optimal

trajectory inside <L x < c and <^ p <^ — must satisfy the necessary

conditions (3.4):

(i) p « c ~ap-bx p(0) - pQ , p(T) » p
x

(3.17) I

I

(ii) i » aX -x X(T) is free

(iii) p -ax - bX * .

By differentiating (3.17) (i) and eliminating X(t) and x(t), we can

easily obtain Evans' equation for the optimal price trajectory:

(3.18) p(t) -a(a + —)p + (a + ~)c * 0.
Of 0/

The solution of this equation exhibits two exponential modes and is

of the form

(3.19) p(t) - p+ C
x

mt
+ C

2
e"
mt

where y~----_^
m <* J a (a +•-*) and p * -r- (a + —);

cx «,* a

and C. and C* are constants that: can be obtained from the conditions

P(0) as P and p(T) « pv
These results are nicely reflected on the phase plane diagram of

Fig. 4, where an optimal trajectory is now connecting two horizontal lines

at p and p . The shape of this optimal trajectory is easily revealed from
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the location of the lines p and p, on the diagram. We will now discuss
o 1

the infinite horizon problem.

3.b. The Infinite Horizon Case

As T -* «», it can be easily shown that the functions K(t) and E(t)

in (3*6) will converge to some constant values (K and E in (3.7) will tend

to zero) say K and E. Following our discussion in Section 2, the corres-

ponding trajectory will be optimal if an equilibrium level (p ,x ) is

eventually reached. Thus upon solving the algebraic equations (3.7) after

setting R B E 0, the following solutions are obtained:

(3.20)

r
1

+ rr-VOH-aar + — (r+2a)
4b

or

~,/(r+2a)
2
+ — (r+2a)

t +a+b!l

We now identify the pair (K. >£, ) as corresponding to the optimal path since
A. A

the corresponding "feedback" supply law:

(3.21) .*/x"(t) - KjP<t) + £
t

leads to a price trajectory satisfying

(3.22) p - (c -blj) ~ (a+bK^p , p(0) = P(
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and which (since a + bK- > 0) as t - *> reaches asymptotically the equilibrium

price level

c - b£,

- a-rbK,
J

or

r —a *—
(3.23) p_

1 r+a+- (2+£)« a'

The corresponding equilibrium supply level, easily computed from (3.21) if

k (1+ £)

(3.24) x
r+a+- (2+-)

a a

At this stage, we note that this eauilibrium point (p ,x ) is also the
e e

intersection point of the two linear functions f(?,x) and h(p,x) =

given in (3=5).

On the other hand, the pair (IC,S
5

) corresponds to the supply

function

(3.25) x(t) - EjP
2
'(t) +E

2

which (since a+biv, < 0) '^-.a.ds to an unstable price trajectory satisfying:

(3o26) p « (c -b£
2

) - (a+b£
, p(0) - pQ

.

The phase-plane representation corresponding to this infinite horizon

problem is shown in Fig. 5. The optiiiiai supply curve is clearly composed

of three pares

:
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instable trajectory

*ftj.

\ VfcjTt-

e
b

X

Fig. 5c Optimal supply carve for infinite horizon linear
quadratic case.,
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E
1

(i) x(t) - if £ p(t) < - ~~

_ _ E, c/b - S,

27 ^
(it) x(t) - K.

(

p(t) + K, if - zr <;.. P(t) *.—=—
c/b -E-

(iii) x(t) « £ if -——A,.
p(t > < S.

.

The optimal trajectory is shown by the segments O.A.E and CLA^E . Points

As and. A« are the "entry" points at which the monopolist should switch from

zero or maximum supply to his linear supply rule (3.21). They have an

interesting economic interpretation: Suppose, the initial price p is on

the segment CLA^ , then according to the previous analysis, a profit

maximizing monopolist would keep his supply at the zero level and wait

for the price to rise until a certain level (point A,) is reached when, it

becomes beneficial to place his output in the market and control, it

according to his linear supply curve. Similarly if the initial price p

is larger than point A«, then a profit maximizing monopolist would inject

his maximum supply in the market a"4 will switch to his linear supply

curve when the price has fallen to the level of point A~. As t -» », in

both cases , the optimal, price and supply will reach the equilibrium level

(p »x ) and remain there as long as there are no external disturbances to
e e

the market. It is inter as ting to observe that the poiiitt (p ,x ) is a

function only of the parameters a, b, c, r and or of the model; and that





ap
2

(3.28) -r* - - J V „ , <

u
or a''

J

and

dp ~f~" <Ha >

2

c a a
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(3.29) * " —S4-s-T "

—

?>°« '

aof tt r*+a+-<2+~)]L
cs? a -

The above expressions essentially confirm reasonable comparative dynamics

conclusions that:

i) The equilibrium price is lower for a higher discount rate, and

ii) The equilibrium price will be higher if the cost of production is

higher.

^^«^-ii^i^£L^LJ^ii§£'£ls.

In this section, we illustrate the linear-quadratic infinite

horiaon solution by the following simple numerical example. Let

p * 4 . 2p - x , p(0) * p

and
«<

*y o lL/» * <. . i .L «u

rr(p ,x(t» *
J e"

Uoi
Tp(t)x(t) -± x"(t)]dt.

The parameter values for this problem are: a 2, b 1, c « 4, a » r-

r * 0.1, From (3.20) we have K. * 2.50 and ^ " -0.13; and the optimal

supply function (3.27) is

and
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r
(i) x(t) * if < p(t) < 0.05

(ii) x(t) » 2.5 p(t) -0.13 if 0.05 < p(t) < 1.65

(iii) x(t) - 4 if 1.65 < p(t) < 2 .

Finally the equilibrium level is given by

:

p « 1.78
e

x ** 1.63 .

e

In this paper, an attempt has been made to formulate the profit

maximizing monopoly problem within the framework of optimal control theory.

It waa assumed that the price-consumption (* supply) relationship in the

market is governed by a dynamic demand function and that the objective of

the monopolist is to maximise his total discounted profit over a certain

time horizon that may be either finite or infinite. This model, in

contrast with the static model, accounts for the dependence of the

ccEEiodity price at future times on the current supply rate. Several

interesting results that are not apparent from the static model have been

obtained from this dynamic formulation. First, for the finite horizon

problem, the existence o£ two manifolds in the p**x plane has been

established: the initial optimal manifold, which is the starting point

of every optimal trajectory and the terminal manifold on which every optimal

trajectory must terminate. Furthermore, it was shown that the point of

intersection ox these two manifolds (if it exists) gives the best initial
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starting price p* for the monopolist in order to obtain his highest

maximum profit. Second, for the infinite horizon problem, a behavior

similar to Arrow's economic planning model (1968) has been pointed out and

it was shown that all optimal paths must follow one optimal stable

trajectory, in the p-x plane, which eventually converges to an equilibrium

point (p ,x ).
e e

The special, but highly operational case of linear demand and

quadratic cost functions has then been treated in detail and the monopolist's

optimal supply curve was shown explicitly to be composed of three sections

depending on the current market price of the commodity. These sections are

described as follows: (a) if the price is below a certain level the

monopolist should cut his supply to zero; (b) if the price is above a

certain level, then the monopolist should place his maximum supply capacity

in the market and (c) if the price is between these two levels, he should

use a linear supply curve. The optimal price -supply trajectories have been

illustrated on the p-x plane for both the finite horizon case where a

linear terminal manifold is reached and the infinite horizon case where an

equilibrium point is eventually attained. In addition, some conclusions

have been obtained with regards to the effect of the discount rate and

the coefficient of the quadratic cost function on the equilibrium price

level: a higher discount rate will lead to a lower equilibrium price

level and a higher production cost will lead to a higher equilibrium price

level

.

We feel that in this paper we have explored various features of

dynamic monopoly markets in the light of modern optimal control theory.
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Developments in this direction naturally lead us towards dynamic duopoly,

oligopoly, and perfect competition markets. A dynamic duopoly game has

been formulated and solved for its dynamic Cournot solutions (see Simaan

and Takayama (1974)) in the framework of differential game theory; however,

due to their complex structures dynamic oligopoly and perfect competition

models remain as challenging problems for future research in this area.
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