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AUTHOR'S  PREFACE  —  SECOND  FRENCH  EDITION 

The  first  part  of  this  volume  has  undergone  only  slight  changes, 

while  the  rather  important  modifications  that  have  been  made 

appear  only  in  the  last  chapters. 

In  the  first  edition  I  was  able  to  devote  but  a  few  pages  to  par- 

tial differential  equations  of  the  second  order  and  to  the  calculus 

of  variations.  In  order  to  present  in  a  less  summary  manner  such 

broad  subjects,  I  have  concluded  to  defer  them  to  a  third  volume, 

which  will  contain  also  a  sketch  of  the  recent  theory  of  integral 

equations.  The  suppression  of  the  last  chapter  has  enabled  me  to 

make  some  additions,  of  which  the  most  important  relate  to  linear 

differential  equations  and  to  partial  differential  equations  of  the 

firSt  Order"  E.  GOUESAT 
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TRANSLATORS'  PREFACE 

As  the  title  indicates,  the  present  volume  is  a  translation  of  the 

first  half  of  the  second  volume  of  Goursat's  "Cours  d' Analyse."  The 
decision  to  publish  the  translation  in  two  parts  is  due  to  the  evi- 

dent adaptation  of  these  two  portions  to  the  introductory  courses  in 

American  colleges  and  universities  in  the  theory  of  functions  and 

in  differential  equations,  respectively. 

After  the  cordial  reception  given  to  the  translation  of  Goursat's 
first  volume,  the  continuation  was  assured.  That  it  has  been 

delayed  so  long  was  due,  in  the  first  instance,  to  our  desire  to  await 

the  appearance  of  the  second  edition  of  the  second  volume  in 

French.  The  advantage  in  doing  so  will  be  obvious  to  those  who 

have  observed  the  radical  changes  made  in  the  second  (French) 

edition  of  the  second  volume.  Volume  I  was  not  altered  so  radi- 

cally, so  that  the  present  English  translation  of  that  volume  may  be 

used  conveniently  as  a  companion  to  this ;  but  references  are  given 

here  to  both  editions  pf  the  first  volume,  to  avoid  any  possible 

difficulty  in  this  connection. 

Our  thanks  are  due  to  Professor  Goursat,  who  has  kindly  given 

us  his  permission  to  make  this  translation,  and  has  approved  of  the 

plan  of  publication  in  two  parts.  He  has  also  seen  all  proofs  in 

English  and  has  approved  a  few  minor  alterations  made  in  transla- 

tion as  well  as  the  translators'  notes.  The  responsibility  for  the 
latter  rests,  however,  with  the  translators. 

E.  R.  HEDRICK 

OTTO  DUNKEL 
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THEOEY  OF  FUNCTIONS  OF  A 

COMPLEX  VARIABLE 

CHAPTER  I 

ELEMENTS  OF  THE  THEORY 

I.   GENERAL  PRINCIPLES.     ANALYTIC  FUNCTIONS 

1.  Definitions.  An  imaginary  quantity,  or  complex  quantity,  is  any 
expression  of  the  form  a  +  bi  where  a  and  b  are  any  two  real  num- 

bers whatever  and  i  is  a  special  symbol  which  has  been  introduced 

in  order  to  generalize  algebra.  Essentially  a  complex  quantity  is 
nothing  but  a  system  of  two  real  numbers  arranged  in  a  certain 

order.  Although  such  expressions  as  a  -f-  bi  have  in  themselves  no 
concrete  meaning  whatever,  we  agree  to  apply  to  them  the  ordinary 

rules  of  algebra,  with  the  additional  convention  that  i2  shall  be 
replaced  throughout  by  •  -  1. 

Two  complex  quantities  a  -\-bi  and  a'  -f-  b'i  are  said  to  be  equal  if 
a  —  a'  and  b  =  b1.  The  sum  of  two  complex  quantities  a  -\-  bi  and 
c  +  di  is  a  symbol  of  the  same  form  a  +  c  +(b  -f-  d)i-,  the  differ- 

ence a  +  bi  —  (c  -f-  di)  is  equal  to  a  —  c  -f-  (b  —  d)L  To  find  the 
product  of  a  -f-  bi  and  c  -f-  di  we  carry  out  the  multiplication  accord- 

ing to  the  usual  rules  for  algebraic  multiplication,  replacing  i*  by 
- 1,  obtaining  thus 

(a  +  bi)  (c  -f-  di)  =  ac  —  bd  -f-  (ad  -f-  &c)  i. 

The  quotient  obtained  by  the  division  of  a  +  bi  by  c  4-  di  is 
defined  to  be  a  third  imaginary  symbol  x  -f-  ?/£,  such  that  when  it  is 
multiplied  by  c  -f  di,  the  product  is  a  +  &i.  The  equality 

a  +  bi  =  (c  -\-  di)  (x  +  y&) 

is  equivalent,  according  to  the  rules  of  multiplication,  to  the  two 

relations  ex  -  dy  =  a,         dx  +  cy  =  b, 
whence  we  obtain 

ac  -\-od  be  —  ad 

~~  <?  +  d?  '  ''<?  +  &' 
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The  quotient  obtained  by  the  division  of  a  +  bi  by  c  +  di  is  repre- 
sented by  the  usual  notation  for  fractions  in  algebra,  thus, 

a  -|-  bi 

x  -}-  iii  =    • c  +  di 

A.  convenient  way  of  calculating  x  and  y  is  to  multiply  numerator 

and  denominator  of  the  fraction  i  by  c  —  di  and  to  develop  the 
indicated  products. 

All  the  properties  of  the  fundamental  operations  of  algebra  can  be 

shown  to  apply  to  the  operations  carried  out  on  these  imaginary  sym- 
bols. Thus,  if  A,  B,  C,  •  •  •  denote  complex  numbers,  we  shall  have 

A-B=B-A,  A'B-C=A-(B>C),  A  (B  +  C)  =  AB  +AC,  ••• 

and  so  on.  The  two  complex  quantities  a  -f-  bi  and  a  —  bi  are  said 
to  be  conjugate  imaginaries.  The  two  complex  quantities  a  -\-  bi  and 
—  a  —  bi,  whose  sum  is  zero,  are  said  to  be  negatives  of  each  other 
or  symmetric  to  each  other. 

Given  the  usual  system  of  rectangular  axes  in  a  plane,  the  complex 
quantity  a  +  bi  is  represented  by  the  point  M  of  the  plane  xOy,  whose 
coordinates  are  x  =  a  and  y  =  b.  In  this  way  a  concrete  representa- 

tion is  given  to  these  purely  symbolic  expressions,  and  to  every 

proposition  established  for  complex  quantities  there  is  a  correspond- 
ing theorem  of  plane  geometry.  But  the  greatest  advantages  resulting 

from  this  representation  will  appear  later.  Real  numbers  correspond 

to  points  on  the  x-axis,  which  for  this  reason  is  also  called  the  axis 
of  reals.  Two  conjugate  imaginaries  a  -f-  bi  and  a  —  bi  correspond  to 
two  points  symmetrically  situated  with  respect  to  the  tf-axis.  Two 
quantities  a  -\-bi  and  --  a  —  bi  are  represented  by  a  pair  of  points 
symmetric  with  respect  to  the  origin  0.  The  quantity  a  -{-  bi,  which 
corresponds  to  the  point  M  with  the  coordinates  (a,  6),  is  sometimes 

called  its  affix.*  When  there  is  no  danger  of  ambiguity,  we  shall 
denote  by  the  same  letter  a  complex  quantity  and  the  point  which 
represents  it. 

Let  us  join  the  origin  to  the  point  If  with  coordinates  (a,  b)  by  a 
segment  of  a  straight  line.  The  distance  OM  is  called  the  absolute 
value  of  a  +  bi,  and  the  angle  through  which  a  ray  must  be  turned 
from  Ox  to  bring  it  in  coincidence  with  OM  (the  angle  being  measured, 

as  in  trigonometry,  from  Ox  toward  Oy)  is  called  the  angle  of  a  -f-  bi. 

*  This  term  is  not  much  used  in  English,  but  the  French  frequently  use  the  corre- 
sponding word  affixe.  — TRANS. 
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Let  p  .and  o>  denote,  respectively,  the  absolute  value  and  the  angle  of 

a  -\-  bi ;  between  the  real  quantities  a,  b,  p,  a>  there  exist  the  two  rela- 
tions a  =  p  cos  o>,  b  =  p  sin  <o,  whence  we  have 

b 
    _  /  __<z     i      7_2  r»r»«  *.«  —    .  cin  x.»  ̂ —  .   

COS  (0  = sm<o  = 

The  absolute  value  p,  which  is  an  essentially  positive  number,  is 

determined  without  ambiguity ;  whereas  the  angle,  being  given  only 
by  means  of  its  trigonometric  functions,  is  determined  except  for  an 
additive  multiple  of  2  TT,  which  was  evident  from  the  definition  itself. 

Hence  every  complex  quantity  may  have  an  infinite  number  of 
angles,  forming  an  arithmetic  progression  in  which  the  successive 
terms  differ  by  2  TT.  In  order  that  two  complex  quantities  be  equal, 
their  absolute  values  must  be  equal,  and  moreover  their  angles  must 

differ  only  by  a  multiple  of  2  TT,  and  these  conditions  are  sufficient. 
The  absolute  value  of  a  complex  quantity  z  is  represented  by  the 

same  symbol  \z\  which  is  used  for  the  absolute  value  of  a  real 
quantity. 

Let  z  =  a  -{-  bij  z'  =  a'  -\-  b'i  be  two  complex  numbers  and  m,  m' 

the  corresponding  points ;  the  sum  z  -f-  %'  is  then  represented  by  the 
point  m",  the  vertex  of  the  parallelogram  constructed  upon  Om,  Om'. 
The  three  sides  of  the  triangle  Om  m" 
(Fig.  1)  are  equal  respectively  to  the 

absolute  values  of  the  quantities  z,  z', 
z  +  z1.  From  this  we  conclude  that  the 
absolute  value  of  the  sunn  of  two  quanti- 

ties is  less  than  or  at  most  equal  to  the 

sum  of  the  absolute  values  of  the  two  — 
quantities,  and  greater  than  or  at  least 

equal  to  their  difference.  Since  two 
quantities  that  are  negatives  of  each 
other  have  the  same  absolute  value,  the  theorem  is  also  true  for 

the  absolute  value  of  a  difference.  Finally,  we  see  in  the  same  way 
that  the  absolute  value  of  the  sum  of  any  number  of  complex 
quantities  is  at  most  equal  to  the  sum  of  their  absolute  values,  the 

equality  holding  only  when  all  the  points  representing  the  different 
quantities  are  on  the  same  ray  starting  from  the  origin. 

If  through  the  point  m  we  draw  the  two  straight  lines  mx'  and 
my1  parallel  to  Ox  a.  d  to  Oy,  the  coordinates  of  the  point  m'  in  this 

system  of  axes  will  be  a'  —  a  and  b'  —  b  (Fig.  2).  The  point  m' 
then  represents  z'  —  z  in  the  new  system ;  the  absolute  value  of 

O 

FIG.  1 



6 ELEMENTS  OF  THE  THEORY 

x 

2'  —  z  is  equal  to  the  length  mm',  and  the  angle  of  .3!  -^z  is  equal  to 

the  angle  0  which  the  direction  mm'  makes  with  mx'.   Draw  through 
O  a  segment  Om^  equal  and  par- 

allel to  mm'  ;  the  extremity  ml  of 

this  segment  represents  z'  —  z  in 
the  system  of  axes  Ox,  Oy.  But 

the  figure  Om'ml  is  a  parallelo- 
gram ;  the  point  ml  is  therefore 

the  symmetric  point  to  m  with 
respect  to  c,  the  middle  point 

of  Om'. Finally,  let  us  obtain  the  for- 
mula which  gives  the  absolute  value  and  angle  of  the  product  of  any 

number  of  factors.    Let 

%  =  />*(cos  <»*  +  i  sin  oij.),         (k  =  1,  2,  .  .  .,  ri), 

be  the  factors  ;  the  rules  for  multiplication,  together  with  the  addi- 
tion formulae  of  trigonometry,  give  for  the  product 

<o  H  -----  h  *•>» 

O 

FIG.  2 

which  shows  that  the  absolute  value  of  a  product  is  equal  to  the 

product  of  the  absolute  values,  and  the  angle  of  a  product  is  equal  to 

the  sum  of  the  angles  of  the  factors.  From  this  follows  very  easily 
the  well-known  formula  of  De  Moivre  : 

cos  m<a  -f-  i  sin  mo>  =  (cos  w  +  i  sin  o>)m, 

which  contains  in  a  very  condensed  form  all  the  trigonometric  for- 
mulae for  the  multiplication  of  angles. 

The  introduction  of  imaginary  symbols  has  given  complete  gener- 
ality and  symmetry  to  the  theory  of  algebraic  equations.  It  was  in 

the  treatment  of  equations  of  only  the  second  degree  that  such  ex- 
pressions appeared  for  the  first  time.  Complex  quantities  are  equally 

important  in  analysis,  and  we  shall  now  state  precisely  what  mean- 
ing is  to  be  attached  to  the  expression  a  function  of  a  complex 

variable. 

2.  Continuous  functions  of  a  complex  variable.  A  complex  quantity 

z  =  x  -f-  yi,  where  x  and  y  are  two  real  and  independent  variables, 
is  a  complex  variable.  If  we  give  to  the  word  function  its  most 
general  meaning,  it  would  be  natural  to  say  that  every  other  complex 
quantity  u  whose  value  depends  upon  that  of  z  is  a  function  of  z. 
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Certain  familiar  definitions  can  be  extended  directly  to  these  func- 
tions. Thus,  we  shall  say  that  a  function  u  =  f(z)  is  continuous  if 

the  absolute  value  of  the  difference  f(z  -f  1i)  —  f(z)  approaches  zero 
when  the  absolute  value  of  h  approaches  zero,  that  is,  if  to  every 

positive  number  e  we  can  assign  another  positive  number  rj  such  that 

provided  that  \h\  be  less  than  77. 
A.  series,  /  \  ,        /  \  ,  /  \  , 

w0(f)  -f  «!(*)H  -----  1-  w,(«)  H  ----  , 

whose  terms  are  functions  of  the  complex  variable  z  is  uniformly 

convergent  in  a  region  A  of  the  plane  if  to  every  positive  number  e 
we  can  assign  a  positive  integer  N  such  that 

*4=  «*+i(«)  +  «to+i(*)H  ----   <£ 
for  all  the  values  of  z  in  the  region  A,  provided  that  n  ̂   N.  It 

can  be  shown  as  before  (Vol.  I,  §  31,  2d  ed.  ;  §  173,  1st  ed.)  that  if  a 
series  is  uniformly  convergent  in  a  region  A,  and  if  each  of  its 
terms  is  a  continuous  function  of  z  in  that  region,  its  sum  is  itself 
a  continuous  function  of  the  variable  z  in  the  same  region. 

Again,  a  series  is  uniformly  convergent  if,  for  all  the  values  of  z 
considered,  the  absolute  value  of  each  term  un  is  less  than  the 

corresponding  term  vn  of  a  convergent  series  of  real  positive  con- 
stants. The  series  is  then  both  absolutely  and  uniformly  convergent. 

Every  continuous  function  of  the  complex  variable  z  is  of  the 

form  u  —  P  (x,  y)  +  Q  (x,  y)  i,  where  P  and  Q  are  real  continuous 
functions  of  the  two  real  variables  x,  y.  If  we  were  to  impose  no 

other  restrictions,  the  study  of  functions  of  a  complex  variable 
would  amount  simply  to  a  study  of  a  pair  of  functions  of  two  real 
variables,  and  the  use  of  the  symbol  i  would  introduce  only  illusory 

simplifications.  In  order  to  make  the  theory  of  functions  of  a  com- 
plex variable  present  some  analogy  with  the  theory  of  functions  of  a 

real  variable,  we  shall  adopt  the  methods  of  Cauchy  to  find  the  con- 
ditions which  the  functions  P  and  Q  must  satisfy  in  order  that  the 

expression  P  -+-  Qi  shall  possess  the  fundamental  properties  of  func- 
tions of  a  real  variable  to  which  the  processes  of  the  calculus  apply. 

3.  Analytic  functions.  If  f(x)  is  a  function  of  a  real  variable  x 
which  has  a  derivative,  the  quotient 

h 
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approaches  f(x)  when  h  approaches  zero.     Let  us  determine  in  the 
same  way  under  what  conditions  the  quotient 

AP  +  i 

Az        Ax  -h 

will  approach  a  definite  limit  when  the  absolute  value  of  A«  approaches 

zero,-  that  is,  when  Ax  and  Ay  approach  zero  independently.  It  is 
easy  to  see  that  this  will  not  be  the  case  if  the  functions  P  (x,  y)  and 

Q(x,  y)  are  any  functions  whatever,  for  the  limit  of  the  quotient 
Aw/Az  depends  in  general  on  the  ratio  Ay/Ax,  that  is,  on  the  way 
in  which  the  point  representing  the  value  of  z  +  h  approaches  the 
point  representing  the  value  of  z. 

Let  us  first  suppose  y  constant,  and  let  us  give  to  x  a  value  x  -f  Ax 
differing  but  slightly  from  x  ;  then 

AM_P(a?  +  Aa;,  y)  —  P(x,  y)       .  Q  (x  +  Ax,  y}  —  Q  (x,  y) 
A#  Ax  Ax 

In  order  that  this  quotient  have  a  limit,  it  is  necessary  that  the 
functions  P  and  Q  possess  partial  derivatives  with  respect  to  x,  and 
in  that  case  dp 

Ilia—  =  —  +  i  —  . Az       ox         ex 

Next  suppose  x  constant,  and  let  us  give  to  y  the  value  y  -f-  Ay  ;  we 
have 

^  P(x,  y  -f  Ay)  -  P(x,  y)       Q(x,  y  +  Ay)  -  Q(x,  y) 
A«  iky  Ay 

and  in  this  case  the  quotient  will  have  for  its  limit 

_ 
dy         dy 

if  the  functions  P  and  Q  possess  partial  derivatives  with  respect  to  y. 
In  order  that  the  limit  of  the  quotient  be  the  same  in  the  two  cases, 
it  is  necessary  that 

m  ap_^Q        ap_  _dQ 
dx       dy  dy  dx 

Suppose  that  the  functions  P  and  Q  satisfy  these  conditions,  and 

that  the  partial  derivatives  dP/dx,  dP/dy,  dQ/dx,  dQ,/dy  are  con- 
tinuous functions.  If  we  give  to  x  and  y  any  increments  whatever, 

Ax,  Ay,  we  can  write 

AP  =  P(x  +  Ax,  y  +  Ay)  -  P(x  +  Ax,  y)  +P(x  -f  Ax,  y)  -  P(x,  y) 

=  AyP;  (x  +  Ax,  y  +  0Ay)  -f  AxP;  (x  +  0'Ax,  y) 
=  Ax  [P;  (x,  y)  +  c]  +  Ay  [PJ  (x,  y)  +  «J, 
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where  6  and  6'  are  positive  numbers  less  than  unity  ;  and  in  the 
same  way 

AQ  =  Aaj[%(aj,.y)  +  e']  +  Ay  [<£(«,  y)  +  el], 

where  e,  e',  cv  t{  approach  zero  with  Ace  and  Ay.     The  difference 
AM  =  AP  -f-  tAQ  can  be  written  by  means  of  the  conditions  (1)  in 
the  form, 

/dP       .dQ\  /     dQ       . *'++~ 

where  77  and  >/  are  infinitesimals.   We  have,  then, 

AM  =  ̂P     .ao    r/Ax  +  r/Ay 
As       dx         dx        Ax  -|-  iAy 

If  1  77  1  and  rj'  are  smaller  than  a  number  a,  the  absolute  value  of  the 
complementary  term  is  less  than  2  a.  This  term  will  therefore  ap- 

proach zero  when  Aic  and  Ay  approach  zero,  and  we  shall  have 
dP       .  dQ 

lim  —  =  —  +  i-  — As       ox         ox 

The  conditions  (1)  are  then  necessary  and  sufficient  in  order  that  the 
quotient  AM/AS  have  a  unique  limit  for  each  value  of  «,  provided  that 
the  partial  derivatives  of  the  functions  P  and  Q  be  continuous.  The 

function  u  is  then  said  to  be  an  analytic  function  *  of  the  variable  2, 

and  if  we  represent  it  by  /(«),  the  derivative  /*(«)  is  equal  to  any 
one  of  the  following  equivalent  expressions  : 

.dP      dP       .dP      dQ       .dQ 
(2) Ox         vx       oy         cy       ox         cy       cy         ox 

It  is  important  to  notice  that  neither  of  the  pair  of  functions 

P(x,  y),  Q(x,  y)  can  be  taken  arbitrarily.  In  fact,  if  P  and  Q  have 
derivatives  of  the  second  order,  and  if  we  differentiate  the  first  of 

the  relations  (1)  with  respect  to  x}  and  the  second  with  respect  to  y, 
we  have,  adding  the  two  resulting  equations, 

_  _ 
A-P  —  7T~o   T  "o~T  — 

dy2- 

*  Cauchy  made  frequent  use  of  the  term  monogene,  the  equivalent  of  which,  mono- 
genie,  is  sometimes  used  in  English.  The  term  synectique  is  also  sometimes  used  in 
French.  We  shall  use  by  preference  the  term  analytic,  and  it  will  be  shown  later 
that  this  definition  agrees  with  the  one  which  has  already  been  given  (I,  §  197, 
2d  ed. ;  §  191,  1st  ed.) 
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We  can  show  in  the  same  way  that  AQ  ==  0.  The  two  functions 

P(x>  2/)>  Q(x>  y)  mus^  therefore  be  a  pair  of  solutions  of  Laplace's 
equation. 

Conversely,  any  solution  of  Laplace's  equation  may  be  taken  for 
one  of  the  functions  P  or  Q.  For  example,  let  P  (x,  y)  be  a  solution 

of  that  equation ;  the  two  equations  (1),  where  Q  is  regarded  as  an 
unknown  function,  are  compatible,  and  the  expression 

u  = 
which  is  determined  except  for  an  arbitrary  constant  C,  is  an  analytic 
function  whose  real  part  is  P(x,  y). 

It  follows  that  the  study  of  analytic  functions  of  a  complex  vari- 
able «  amounts  essentially  to  the  study  of  a  pair  of  functions 

P(x,  y),  Q(x,  y)  of  two  real  variables  x  and  y  that  satisfy  the 

relations  (1).  It  would  be  possible  to  develop  the  whole  theory  with- 
out making  use  of  the  symbol  i.* 

We  shall  continue,  however,  to  employ  the  notation  of  Cauchy,  but 
it  should  be  noticed  that  there  is  no  essential  difference  between  the 

two  methods.  Every  theorem  established  for  an  analytic  function 

f(z)  can  be  expressed  immediately  as  an  equivalent  theorem  relat- 
ing to  the  pair  of  functions  P  and  Q,  and  conversely. 

Examples.  The  function  u  —  x'2  —  y2  +  2xyi  is  an  analytic  function,  for  it 
satisfies  the  equations  (1),  and  its  derivative  is  2x  +  2yi  —  2  z ;  in  fact,  the  func- 

tion is  simply  (x  +  yi)2  =  z2.  On  the  other  hand,  the  expression  v  =  x  —  yi  is  not 
an  analytic  function,  for  we  have 

1  —  i  — Av      Ax  —  i  Ay  Ax 
Az      Ax  +  *Ay  .Ay 

1  +  i  — 
Ax 

and  it  is  obvious  that  the  limit  of  the  quotient  Av/Az  depends  upon  the  limit  of 
the  quotient  Ay/ Ax. 

If  we  put  x  =  p  cos  w,  y  =  p  sin  w,  and  apply  the  formulae  for  the  change  of 
independent  variables  (I,  §  63,  2d  ed. ;  §  38,  1st  ed.,  Ex.  II),  the  relations 

(1)  become 
,ov  SP  dQ         dQ        dP 
(6)  =- p  =p 

CM  dp  c<t>          dp 

and  the  derivative  takes  the  form 

/(z)  =  (   1-  i_*)(Cosw—  isinw). 
\ty  dp/ 

*  This  is  the  point  of  view  taken  by  the  German  mathematicians  who  follow 
Riemann. 
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It  is  easily  seen  on  applying  these  formulae  that  the  function 

zm  =  pm  (cos  ma  +  i  sin  raw) 

is  an  analytic  function  of  z  whose  derivative  is  equal  to 

mpm-1(cosmw  +  i  sin  raw)  (cosw  —  i  sinw)  = 

4.  Functions  analytic  throughout  a  region.  The  preceding  general 
statements  are  still  somewhat  vague,  for  so  far  nothing  has  been 
said  about  the  limits  between  which  z  may  vary. 

A  portion  A  of  the  plane  is  said  to  be  connected,  or  to  consist  of 
a  single  piece,  when  it  is  possible  to  join  any  two  points  whatever 
of  that  portion  by  a  continuous  path  which  lies  entirely  in  that 
portion  of  the  plane.  A  connected  portion  situated  entirely  at  a 
finite  distance  can  be  bounded  by  one  or  several  closed  curves, 

among  which  there  is  always  one  closed  curve  which  forms  the 
exterior  boundary.  A  portion  of  the  plane  extending  to  infinity  may 
be  composed  of  all  the  points  exterior  to  one  or  more  closed  curves  ; 
it  may  also  be  limited  by  curves  having  infinite  branches.  We  shall 
employ  the  term  region  to  denote  a  connected  portion  of  the  plane. 

.  A  function  f(z)  of  the  complex  variable  z  is  said  to  be  analytic  * 
in  a  connected  region  A  of  the  plane  if  it  satisfies  the  following 
conditions  : 

1)  To  every  point  z  of  A  corresponds  a  definite  value  of  f(z)  ; 

2)  f(z~)  is  a  continuous  function  of  z  when  the  point  z  varies  in 
A  ,  that  is,  when  the  absolute  value  of  f(z  -f-  A)  —  /(«)  approaches 
zero  with  the  absolute  value  of  h  ; 

3)  At  every  point  z  of  A,f(z)  has  a  uniquely  determined  deriva- 
tive y(«)  ;  that  is,  to  every  point  z  corresponds  a  complex  number 

f(z)  such  that  the  absolute  value  of  the  difference 

approaches  zero  when   h  approaches  zero.    Given  any  positive  num- 
ber c,  another  positive  number  rj  can  be  found  such  that 

(4) 

if  \h\  is  less  than  77. 
For  the  moment  we  shall  not  make  any  hypothesis  as  to  the  values 

of  f(z)  on  the  curves  which  limit  A.  When  we  say  that  a  function 
is  analytic  in  the  interior  of  a  region  A  bounded  by  a  closed  curve  T 

*  The  adjective  holomorphic  is  also  often  used.  —  TRANS. 
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and  on  the  boundary  curve  itself,  we  shall  mean  by  this  that  f(z)  is 
analytic  in  a  region  j4  containing  the  boundary  curve  T  and  the 

region  A. 
A  function  f(z)  need  not  necessarily  be  analytic  throughout  its 

region  of  existence.  It  may  have,  in  general,  singular  points,  which 

may  be  of  very  varied  types.  It  would  be  out  of  place  at  this  point 
to  make  a  classification  of  these  singular  points,  the  very  nature  of 
which  will  appear  as  we  proceed  with  the  study  of  functions  which 
we  are  now  commencing. 

5.  Rational  functions.  Since  the  rules  which  give  the  derivative  of 

a  sum,  of  a  product,  and  of  a  quotient  are  logical  consequences  of  the 

definition  of  a  derivative,  they  apply  also  to  functions  of  a  complex 
variable.  The  same,  is  true  of  the  rule  for  the  derivative  of  a  func- 

tion of  a  function.  Let  u  —  f(Z}  be  an  analytic  function  of  the 
complex  variable  Z  ;  if  we  substitute  for  Z  another  analytic  function 

<£  (z)  of  another  complex  variable  2,  u  is  still  an  analytic  function  of 
the  variable  z.  We  have,  in  fact, 

Aw  v 

Az  =          X 
when  |A«|  approaches  zero,  |AZ  approaches  zero,  and  each  of  the 
quotients  Aw/AZ,  AZ/Az  approaches  a  definite  limit.  Therefore  the 

quotient  Aw/Az  itself  approaches  a  limit  : 

We  have  already  seen  (§3)  that  the  function 

zm  =  (x  +  yi)m 

is  an  analytic  function  of  2,  and  that  its  derivative  is  mzm~l.  This 
can  be  shown  directly  as  in  the  case  of  real  variables.  In  fact,  the 

binomial  formula,  which  results  simply  from  the  properties  of  multi- 
plication, obviously  can  be  extended  in  the  same  way  to  complex 

quantities.  Therefore  we  can  write 

(z  +  h)m  =  zm  +  ̂  zm~lh 1  1  .  2i 

where  m  is  a  positive  integer  ;  and  from  this  follows 

(z  +  li)m  —  z v m~l 
h 

7 mzm~l  +  h \m(m  —  1)  J 

\    0     <  z1*-2  H  -----  h  Aw~2 
1.2 
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It  is  clear  that  the  right-hand  side  has  mzm~l  for  its  limit  when  the 
absolute  value  of  h  approaches  zero. 

It  follows  that  any  polynomial  with  constant  coefficients  is  an 
analytic  function  throughout  the  whole  plane.  A  rational  function 

(that  is,  the  quotient  of  two  polynomials  P(«),  Q(«),  which  we  may 
as  well  suppose  prime  to  each  other)  is  also  in  general  an  analytic 
function,  but  it  has  a  certain  number  of  singular  points,  the  roots  of 

the  equation  Q  (z)  =  0.  It  is  analytic  in  every  region  of  the  plane 
which  does  not  include  any  of  these  points. 

6.  Certain  irrational  functions.  When  a  point  z  describes  a  continu- 
ous curve,  the  coordinates  x  and  y,  as  well  as  the  absolute  value  p, 

vary  in  a  continuous  manner,  and  the  same  is  also  true  of  the  angle, 

y 

O x 
.r 

M 

FIG.  3  a FIG.  3  6 

provided  the  curve  described  does  not  pass  through  the  origin.  If 

the  point  z  describes  a  closed  curve,  x,  y,  and  p  return  to  their 

original  values,  but  for  the  angle  o>  this  is  not  always  the  case.  If 

the  origin  is  outside  the  region  inclosed  by  the  closed  curve  (Fig.  3  a), 

it  is  evident  that  the  angle  will  return  to  its  original  value ;  but  this 

is  no  longer  the  case  if  the  point  z  describes  a  curve  such  as  MQNPMQ 

or  MnpqMQ  (Fig.  3  b).  In  the  first  case  the  angle  takes  on  its  original 

value  increased  by  2  TT,  and  in  the  second  case  it  takes  on  its  original 

value  increased  by  4  TT.  It  is  clear  that  z  can  be  made  to  describe 

closed  curves  such  that,  if  we  follow  the  continuous  variation  of  the 

angle  along  any  one  of  them,  the  final  value  assumed  by  o>  will  differ 

from  the  initial  value  by  2  mr,  where  n  is  an  arbitrary  integer,  posi- 

tive or  negative.  In  general,  when  z  describes  a  closed  curve,  the 
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angle  of  z  —  a  returns  to  its  initial  value  if  the  point  a  lies  outside 
of  the  region  bounded  by  that  closed  curve,  but  the  curve  described 

by  z  can  always  be  chosen  so  that  the  final  value  assumed  by  the 

angle  of  z  —  a  will  be  equal  to  the  initial  value  increased  by  2mr. 
Let  us  now  consider  the  equation 

(5)  u™  =  2, 

where  m  is  a  positive  integer.  To  every  value  of  z,  except  z  =  0, 
there  are  m  distinct  values  of  u  which  satisfy  this  equation  and 

therefore  correspond  to  the  given  value  of  z.  In  fact,  if  we  put 

z  =  p  (cos  <o  -j-  i  sin  o>),         u  =  r(cos  (f>  -\-  i  sin  <£), 

the  relation  (5)  becomes  equivalent  to  the  following  pair  : 

,         m<fj  =  to  -f-  2/cTT. 

From  the  first  we  have  r  =  /»1/m,  which  means  that  r  is  the  rath  arith- 
metic root  of  the  positive  number  p  ;  from  the  second  we  have 

<£  =  (a)  -\-  2  7v7r)/ra. 

To  obtain  all  the  distinct  values  of  u  we  have  only  to  give  to  the 

arbitrary  integer  k  the  ra  consecutive  integral  values  0,  1,  2,  •  •  •  ,  ra  —  1  ; 
in  this  way  we  obtain  expressions  for  the  m  roots  of  the  equation  (5) 

If       /<o  +  27c7r\  ,  /<o  +  2&7rYj 
(6)  uk  =  pm   cos  (  —  !  -   4-  'i  sin    -  -  1  1  > L       \       ra       /  V       ra       /J 

(&  =  0,  1,  2,  -..,  ra-1). 

It  is  usual  to  represent  by  zl/r*  any  one  of  these  roots. 
When  the  variable  z  describes  a  continuous  curve,  each  of  these 

roots  itself  varies  in  a  continuous  manner.  If  z  describes  a  closed 

curve  to  which  the  origin  is  exterior,  the  angle  w  comes  back  to  its 

original  value,  and  each  of  the  roots  u  ,  u^  -  •  •,  um_1  describes  a 
closed  curve  (Fig.  4  a).  But  if  the  point  z  describes  the  curve 

MQNPMQ  (Fig.  3  &),  CD  changes  to  CD  +  2  TT,  and  the  final  value  of  the  root 
u{  is  equal  to  the  initial  value  of  the  root  ui+1.  Hence  the  arcs 
described  by  the  different  roots  form  a  single  closed  curve  (Fig.  4  &). 

These  ra  roots  therefore  undergo  a  cyclic  permutation  when  the 

variable  z  describes  in  the  positive  direction  any  closed  curve  with- 
out double  points  that  incloses  the  origin.  It  is  clear  that  by  making 

z  describe  a  suitable  closed  path,  any  one  of  the  roots,  starting  from 

the  initial  value  w0,  for  example,  can  be  made  to  take  on  for  its  final 
value  the  value  of  any  of  the  other  roots.  If  we  wish  to  maintain 

continuity,  we  must  then  consider  these  ra  roots  of  the  equation  (5) 
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not  as  so  many  distinct  functions  of  «,  but  as  m  distinct  branches  of  the 

same  function.    The  point  z  =  0,  about  which  the  permutation  of  the  ' 
m  values  of  u  takes  place,  is  called  a  critical  point  or  a  branch  point. 

'ji     c-a  -<XI 

V\J£ 

FIG.  4  a 

In  order  to  consider  the  m  values  of  u  as  distinct  functions  of  2, 
it  will  be  necessary  to  disrupt  the  continuity  of  these  roots  along  a 
line  proceeding  from  the  origin  to  infinity.  We  can  represent  this 
break  in  the  continuity  very  concretely  as  follows  :  imagine  that  in 
the  plane  of  2,  which  we  may  regard  as  a  thin  sheet,  a  cut  is  made 

along  a  ray  extending  from  the  origin  to  infinity,  for  example,  along 
the  ray  OL  (Fig.  5),  and  that  then  the  two  edges  of  the  cut  are 
slightly  separated  so  that  there  is  no  path  along  which  the  variable 

z  can  move  directly  from  one  edge  to  the  other.  Under  these  circum- 
stances no  closed  path  whatever  can  inclose  the  origin;  hence  to 

each  value  of  »  corresponds  a  completely  determined  value  u{  of  the 

m  roots,  which  we  can  obtain  by  tak- 
ing for  the  angle  w  the  value  included 

between  a  and  a  —  2  TT.  But  it  must 
be  noticed  that  the  values  of  u{  at  two 

points  m,  ra'  on  opposite  sides  of  the 
cut  do  not  approach  the  same  limit  as 
the  points  approach  the  same  point  of 
the  cut.  The  limit  of  the  value  of  u{ 

at  the  point  m'  is  equal  to  the  limit  of 
the  value  of  u{  at  the  point  m,  multi- 

plied by  [cos  (2  7T/m)  +  i  sin  (2  ir/m)~\. 
Each  of  the  roots  of  the  equation  (5)  is  an  analytic  function.  Let 

UQ  be  one  of  the  roots  corresponding  to  a  given  value  #0  ;  to  a  value 
of  z  near  z  corresponds  a  value  of  u  near  UQ.  Instead  of  trying  to 

x 

FIG.  5 
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find  the  limit  of  the  quotient  (u  — 
limit  of  its  reciprocal 

ELEMENTS  OF  THE  THEORY  [I,  §  6 

—  £0),  we  can  determine  the 

.m     n.m 

1C  ~~~ '   *>VfL  M*  w~ 

and  that  limit  is  equal  to  mu™~1.   We  have,  then,  for  the  derivative 
of  u 1      1 

u  —  — 
m  u m-l 

1    U 

or,  using  negative  exponents, 

1    i- 
u  =  —  z 

In  order  to  be  sure  of  having  the  value  of  the  derivative  which  corre- 
sponds to  the  root  considered,  it  is  better  to  make  use  of  the  expres- 

sion (l/m)(u/£). 
In  the  interior  of  a  closed  curve  not  containing  the  origin  each 

of  the  determinations  of  Vz  is  an  analytic  function.  The  equation 

um  =  A  (z  —  a)  has  also  m  roots,  which  permute  themselves  cyclically 
about  the  critical  point  z  =  a. 

Let  us  consider  now  the  equation 

(7)  :          u*  =  A(z-e^(z-e^...(z-e^ 

where  ev  e-2,  •  •  •,  en  are  n  distinct  quantities.  We  shall  denote  by 
the  same  letters  the  points  which  represent  these  n  quantities.  Let 

us  set  A  =  R  (cos  a  -f  i  sin  a), 
i  sin  o> 

>t),      (k  =  1,  2,  .  .  .,  n), 
u  =  r(cos  0  +  i  sin  0), 

where  tok  represents  the  angle  which  the  straight-line  segment  ekz 
makes  with  the  direction  Ox.    From  the  equation  (7)  it  follows  that 

r2  =  Rp^  •  •  -  pn,         20  =  a  +  o^  H  ----  +  o>H  +  2m?r; 
hence  this  equation  has  two  roots  that  are  the  negatives  of  each  other, 

(8) 

i  =  (^PiP2 '  '  '  /O*[cos(*  +  (°1+2''
'+<U" 

.     .      /*  +  «»!+-•• 

+  *  sm  (   — 
a 

-\- 1 

(a  -f-  <«>i  +  •  •  • 

  

2 
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When  the  variable  z  describes  a  closed  curve  C  containing  within 

it  p  of  the  points  e1?  #2,  •  •  •  ,  en,  p  of  the  angles  tav  o>2,  •  •  -,  wn  will 
increase  by  2  TT  ;  the  angle  of  u^  and  that  of  u^  will  therefore  in- 

crease by  pir.  If  p  is  even,  the  two  roots  return  to  their  initial 
values ;  but  if  p  is  odd,  they  are  permuted.  In  particular,  if  the 
curve  incloses  a  single  point  ei}  the  two  roots  will  be  permuted.  The 

n  points  e{  are  branch  points.  In  order  that  the  two  roots  u^  and  u 
shall  be  functions  of  z  that  are  always  uniquely  determined,  it  will 
suffice  to  make  a  system  of  cuts  such  that  any  closed  curve  whatever 
will  always  contain  an  even  number  of  critical  points.  We  might, 
for  example,  make  cuts  along  rays  proceeding  from  each  of  the 
points  et  to  infinity  and  not  cutting  each  other.  But  there  are  many 

other  possible  arrangements.  If,  for  example,  there  are  four  criti- 
cal points  ev  ea,  e&,  e^  a  cut  could  be  made  along  the  segment  of  a 

straight  line  e^,  and  a  second  along  the  segment  e&e^. 

7.  Single-valued  and  multiple-valued  functions.  The  simple  exam- 
ples which  we  have  just  treated  bring  to  light  a  very  important  fact. 

The  value  of  a  function  f(z)  of  the  variable  z  does  not  always  depend 

entirely  upon  the  value  of  z  alone,  but  it  may  also  depend  in  a  cer- 
tain measure  upon  the  succession  of  values  assumed  by  the  variable 

*  in  passing  from  the  initial  value  to  the  actual  value  in  question, 
or,  in  other  words,  upon  the  path  followed  by  the  variable  z. 

Let  us  return,  for  example,  to  the  function  u  =  Vz.  If  we  pass 

from  the  point  MQ  to  the  point  M  by  the  two  paths  MQNM  and  M  PM 
(Fig.  3  £),  starting  in  each  case  with  the  same  initial  value  for  u,  we 
shall  not  obtain  at  M  the  same  value  for  u,  for  the  two  values 

obtained  for  the  angle  of  z  will  differ  by  2  TT.  We  are  thus  led  to 
introduce  a  new  distinction. 

An  analytic  function  f(z)  is  said  to  be  single-valued  *  in  a  region 
A  when  all  the  paths  in  A  which  go  from  a  point  «0  to  any  other  point 
whatever  z  lead  to  the  same  final  value  for  f(z).  When,  however, 
the  final  value  of  f(z)  is  not  the  same  for  all  possible  paths  in  A, 

the  function  is  said  to  be  multiple-valued.^  A  function  that  is 

analytic  at  every  point  of  a  region  A  is  necessarily  single-valued  in 

that  region.  In  general,  in  order  that  a  function  f(z)  be  single- 
valued  in  a  given  region,  it  is  necessary  and  sufficient  that  the  func- 

tion return  to  its  original  value  when  the  variable  makes  a  circuit  of 

*  In  French  the  term  uniforms  or  the  term  monodrome  is  used.  — TRANS. 

•t  In  French  the  term  multiforme  is  used.  —  TRANS. 
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any  closed  path  whatever.  If,  in  fact,  in  going  from  the  point  A  to 

the  point  B  by  the  two  paths  A  MB  (Fig.  6)  and  ANB,  we  arrive  in 

the  two  cases  at  the  point  B  with  the  same  determination  of  /(«),  it 

is  obvious  that,  when  the  variable  is  made  to  describe  the  closed 

curve  A  MBNA,  we  shall  return  to  the  point 
A  with  the  initial  value  of /(«). 

Conversely,  let  us  suppose  that,  the  varia- 
ble having  described  the  path  A  MBNA,  we 

return  to  the  point  of  departure  with  the 

initial  value  UQ  ;  and  let  ul  be  the  value  of  the 

function  at  the  point  B  after  »  has  described  the  path  A  MB.  When 

z  describes  the  path  BNA,  the  function  starts  with  the  value  w  and 

arrives  at  the  value  UQ\  then,  conversely,  the  path  ANB  will  lead 

from  the  value  UQ  to  the  value  uv  that  is,  to  the  same  value  as  the 

path  A  MB. 
It  should  be  noticed  that  a  function  which  is  not  single-valued  in  a 

region  may  yet  have  no  critical  points  in  that  region.  Consider,  for 

example,  the  portion  of  the  plane  included  between  two  concentric  cir- 

cles C,  C"  having  the  origin  for  center.  The  function  u  =  zl/m  has  no 
critical  point  in  that  region ;  still  it  is  not  single-valued  in  that  region, 

for  if  z  is  made  to  describe  a  concentric  circle  between  C  and  C',  the 

function  zl/m  will  be  multiplied  by  cos  (2  ir/m)  +  i  sin  (2  ir/m). 

II.   POWER  SERIES  WITH  COMPLEX  TERMS.     ELEMENTARY 

TRANSCENDENTAL  FUNCTIONS 

8.  Circle  of  convergence.  The  reasoning  employed  in  the  study  of 

power  series  (Vol.  I,  Chap.  IX)  will  apply  to  power  series  with 

complex  terms  ;  we  have  only  to  replace  in  the  reasoning  the  phrase 

"  absolute  value  of  a  real  quantity  "  by  the  corresponding  one, 

"  absolute  value  of  a  complex  quantity.77  We  shall  recall  briefly  the 
theorems  and  results  stated  there.  Let 

(9)  «0  +  a^z  +  a2z*  +  .  -  .  +  anzn  +  .  .  •  . 

be  a  power  series  in  which  the  coefficients  and  the  variable  may  have 

any  imaginary  values  whatever.  Let  us  also  consider  the  series  of 
absolute  values, 

(10)  A^+AS  +Aj*  +  .  -  .  +  Anr"  -f  .  •  ., 

where  A{  =  at  ,r=  z  .     We   can  prove   (I,   §  181,  2d  ed.  ;    §  177, 

1st  ed.)  the  existence  of  a  positive  number  R  such  that  the  series 
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(10)  is  convergent  for  every  value  of  r  <  7t,  and  divergent  for  every 
value  of  r  >  R.  The  number  R  is  equal  to  the  reciprocal  of  the 

greatest  limit  of  the  terms  of  the  sequence 

A        ̂ TA        -\/~A  VA~ AV  ^^2>  V^3>  >  V^n>  '  ') 

and,  as  particular  cases,  it  may  be  zero  or  infinite. 
From  these  properties  of  the  number  R  it  follows  at  once  that  the 

series  (9)  is  absolutely  convergent  when  the  absolute  value  of  z  is 

less  than  R.  It  cannot  be  convergent  for  a  value  z0  of  z  whose  abso- 
lute value  is  greater  than  R,  for  the  series  of  absolute  values  (10) 

would  then  be  convergent  for  values  of  r  greater  than  R  (I,  §  181, 

2d  ed.  ;  §  177,  1st  ed.).  If,  with  the  origin  as  center,  we  describe  in 
the  plane  of  the  variable  z  a  circle  C  of  radius  R  (Fig.  7),  the  power 

series  (9)  is  absolutely  convergent  for  every  value  of  z  inside  the 
circle  C,  and  divergent  for  every  value  of  z  outside  ;  for  this  reason 
the  circle  is  called  the  circle  of  convergence.  In  a  point  of  the  circle 
itself  the  series  may  be  convergent  or  divergent,  according  to  the 

particular  series.* 
In  the  interior  of  a  circle  C'  concentric  with  the  first,  and  with  a 

radius  R'  less  than  R,  the  series  (9)  is  uniformly  convergent.  For 

at  every  point  within  C'  we  have  evidently 

and  it  is  possible  to  choose  the  integer  n  so  large  that  the  second 
member  will  be  less  than  any  given  positive  number  e,  whatever  p 

may  be.  From  this  we  conclude  that  the  sum  of  the  series  (9)  is  a 

continuous  function  /(z)  of  the  variable  z  at  every  point  within  the 
circle  of  convergence  (§2). 

By  differentiating  the  series  (9)  repeatedly,  we  obtain  an  unlimited 

number  of  power  series,  f^(z),  /2(--)>  •  •  •  >  fn(z)>  "  "t  which  have  the 
same  circle  of  convergence  as  the  first  (I,  §  183,  2d  ed.  ;  §  179, 

1st  ed.).  We  prove  in  the  same  way  as  in  §  184,  2d  ed.,  that  j^(«) 
is  the  derivative  of  /(«),  and  in  general  that  /„(«)  is  the  derivative 

*  Let/(z)  =  Sa/iZ71  be  a  power  series  whose  radius  of  convergence  R  is  equal  to  1. 
If  the  coefficients  a0,  alf  a2,  •••,  are  positive  decreasing  numbers  such  that  an  ap- 

proaches zero  when  n  increases  indefinitely,  the  series  is  convergent  in  every  point 

of  the  circle  of  convergence,  except  perhaps  for  z=  1.  In  fact,  the  series  22?*,  where 
|  z  |  =  1,  is  indeterminate  except  for  2  =  1,  for  the  absolute  value  of  the  sum  of  the  first 
n  terms  is  less  than  2/|  1  -  z  |  ;  it  will  suffice,  then,  to  apply  the  reasoning  of  §  166,  Vol.  I, 
based  on  the  generalized  lemma  of  Abel.  In  the  same  way  the  series  a0  -  at  z  +  o2  z2  ----  , 
which  is  obtained  from  the  preceding  by  replacing  z  by  -  z,  is  convergent  at  all  the 
points  of  the  circle  |  z  |  -=  1,  except  perhaps  for  z  =  -  1.  (Cf  .  I,  §  166.) 
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of  fn-i(z).    Every  power  series  represents  therefore  an  analytic  func- 
tion in  the  interior  of  its  circle  of  convergence.    There  is  an  infinite 

sequence  of  derivatives  of  the 
given  function,  and  all  of  them 
are  analytic  functions  in  the 
same  circle.  Given  a  point  z 
inside  the  circle  C,  let  us 

draw  a  circle  c  tangent  to 

'C  the  circle  C  in  the  interior, 

with  the  given  point  as  cen- 
ter, and  then  let  us  take  a 

point  z  +  h  inside  c ;  if  r  and 

p  are  the  absolute  values  of 

z  and  A,  we  have  r  -|-  p  <  R 
(Fig.  7).  The  sum  f(z  +  h) 
of  the  series  is  equal  to  the 
sum  of  the  double  series 

(H) 

FIG.  7 

a^h  -|-  2a^zh 

~t~  anh2 
-f  nanzn~lh , 
+ 

*n-2. 
1.2 

when  we  sum  by  columns.  But  this  series  is  absolutely  convergent, 
for  if  we  replace  each  term  by  its  absolute  value,  we  shall  have  a 
double  series  of  positive  terms  whose  sum  is 

We  can  therefore  sum  the  double  series  (11)  by  rows,  and  we  have 

then,  for  every  point  z  -}-  h  inside  the  circle  c,  the  relation 

(12) +  h)  =  f(*)+  V,(*)+ + 

The  series  of  the  second  member  is  surely  convergent  so  long  as 

the  absolute  value  of  h  is  less  than  R  —  r,  but  it  may  be  convergent 

in  a  larger  circle.  Since  the  functions  f^z),  /2(^),  •  •  •,  fn(z)i  •  •  •  are 
equal  to  the  successive  derivatives  of  /(«),  the  formula  (12)  is 
identical  with  the  Taylor  development. 

If  the  series  (9)  is  convergent  at  a  point  Z  of  the  circle  of  con- 
vergence, the  sum  f(Z)  of  the  series  is  the  limit  approached  by  the 

sum  f(z)  when  the  point  z  approaches  the  point  Z  along  a  radius 
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which  terminates  in  that  point.  We  prove  this  just  as  in  Volume  I 

(§  182,  2d  ed. ;  §  178,  1st  ed.),  by  putting  z  =  OZ  and  letting  0  in- 
crease from  0  to  1.  The  theorem  is  still  true  when  z,  remaining  inside 

the  circle,,  approaches  Z  along  a  curve  which  is  not  tangent  at  Z  to 

the  circle  of  convergence.* 
When  the  radius  R  is  infinite,  the  circle  of  convergence  includes 

the  whole  plane,  and  the  function  f(z)  is  analytic  for  every  value 
of  z.  We  say  that  this  is  an  integral  function ;  the  study  of  tran- 

scendental functions  of  this  kind  is  one  of  the  most  important 
objects  of  Analysis.t  We  shall  study  in  the  following  paragraphs 
the  classic  elementary  transcendental  functions. 

9.  Double  series.  Given  a  power  series  (9)  with  any  coefficients  whatever,  we 

shall  say  again  that  a  second  power  series  SanzM,  whose  coefficients  are  all  real 
and  positive,  dominates  the  first  series  if  for  every  value  of  n  we  have  |  an  \  ̂  an. 

All  the  consequences  deduced  by  means  of  dominant  functions  (I,  §§  186-189, 
2d  ed. ;  §§  181-184,  1st  ed.)  follow  without  modification  in  the  case  of  complex 
variables.  We  shall  now  give  another  application  of  this  theory. 

Let 

(13)  /0(z)  +  /t(z)  +  /2(z)  +  •  •  •  +  fn(z)  +  •  -  • 

be  a  series  of  which  each  term  is  itself  the  sum  of  a  power  series  that  converges 
in  a  circle  of  radius  equal  to  or  greater  than  the  number  E  >  0, 

fi(z)  -  aio  +  anz  +   h  ainzn  +  •  •  •. 

Suppose  each  term  of  the  series  (13)  replaced  by  its  development  according  to 
powers  of  z  ;  we  obtain  thus  a  double  series  in  which  each  column  is  formed  by 

the  development  of  a  function  fi(z) .  When  that  series  is  absolutely  convergent 
for  a  value  of  z  of  absolute  value  p,  that  is,  when  the  double  series 

is  convergent,  we  can  sum  the  first  double  series  by  rows  for  every  value  of  z 

whose  absolute  value  does  not  exceed  p.  We  obtain  thus  the  development  of 
the  sum  F(z)  of  the  series  (13)  in  powers  of  z, 

F(z)  =  b0    +V+  ...  +  &wz»  +  ..., 
bn  =  aQn+  aln+  •••  +  ain    +•••,  (n  =  0,  1,  2,  ...). 

This  proof  is  essentially  the  same  as  that  for  the  development  of  f(z  +  h)  in 
powers  of,  h. 

Suppose,  for  example,  that  the  series  fi(z)  has  a  dominant  function  of  the 

form  Mir/(r  —  z),  and  that  the  series  ZMi  is  itself  convergent.   In  the  double 

*  See  PICARD,  Traite  d  'Analyse,  Vol.  II,  p.  73. 
f  The  class  of  integral  functions  includes  polynomials  as  a  special  case.  If  there 

are  an  infinite  number  of  terms  in  the  development,  we  shall  use  the  expression 

integral  transcendental  function.  —  TRANS. 
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series  the  absolute  value  of  the  general  term  is  less  than  Mi  \  z  \  n/rn.  If  |  z  \  <  r, 
the  series  is  absolutely  convergent,  for  the  series  of  the  absolute  values  is 

convergent  and  its  sum  is  less  than  rSlft-/(r  —  |z|). 

10.  Development  of  an  infinite  product  in  power  series.   Let 

F(z)  =  (1  +  UQ)  (1  +  wx)  •  • .  (1  +  un)  • . . 

be  an  infinite  product  where  each  of  the  functions  wt-  is  a  continuous  function 
of  the  complex  variable  z  in  the  region  D.  If  the  series  S£7t-,  where  U{  =  |u,-|, 
is  uniformly  convergent  in  the  region,  F(z)  is  equal  to  the  sum  of  a  series  that 
is  uniformly  convergent  in  J),  and  therefore  represents  a  continuous  function 

(I,  §§  175,  176,  2d  ed.).  When  the  functions  w;  are  analytic  functions  of  z,  it  fol- 
lows, from  a  general  theorem  which  will  be  demonstrated  later  (§  39),  that  the 

same  is  true  of  F(z). 
For  example,  the  infinite  product 

represents  a  function  of  z  analytic  throughout  the  entire  plane,  for  the  series 

S|z|2/n2  is  uniformly  convergent  within  any  closed  curve  whatever.  This 
product  is  zero  for  z  =  0,  ±  1,  ±  2,  •  •  •  and  for  these  values  only. 

We  can  prove  directly  that  the  product  F(z)  can  be  developed  in  a  power 
series  when  each  of  the  functions  U{  can  be  developed  in  a  power  series 

Ui(z)  =  aio  +  anz  +  •  •  •  +a,-nz»  +  •  •  •,  (i  =  0,  1,  2,  •  •  •), 
such  that  the  double  series 

is  convergent  for  a  suitably  chosen  positive  value  of  r. 
Let  us  set,  as  in  Volume  I  (§  174,  2d  ed.), 

VQ  -  1  +  M0,  Vn  =  (1  +  W0)  (1  +  %)•••  (1  +  Un-l 

It  is  sufficient  to  show  that  the  sum  of  the  series 

(14)  v0  +  vi  +•••  +  "«+'••> 

which  is  equal  to  the  infinite  product  -F(z),  can  be  developed  in  a  power  series. 
Now,  if  we  set 

\OH\Z  +  •••  +  |at-n|z»  +  •-., 
it  is  clear  that  the  product 

is  a  dominant  function  for  vn.   It  is  therefore  possible  to  arrange  the  series  (14) 
according  to  powers  of  z  if  the  following  auxiliary  series 

(15)  «J  +  *i  +  -  -•  +  <+••• 

can  be  so  arranged. 

If  we  develop'  each  term  of  this  last  series  in  power  series,  we  obtain  a 
double  series  with  positive  coefficients,  and  it  is  sufficient  for  our  purpose  to 
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prove  that  the  double  series  converges  when  z  is  replaced  by  r.   Indicating  by 

U'n  and  V'n  the  values  of  the  functions  u'n  and  v'n  for  z  =  r,  we  have 

K  =  a+tfo)a+^)---a+^-i)^ 
and  therefore 

Fo  +  F1/+...  +  K  =  (l+^)...(l+^), 
or,  again, 

When  n  increases  indefinitely,  the  sum  U'Q  +  •  •  •  +  U'n  approaches  a  limit,  since 
the  series  St/^  is  supposed  to  be  convergent.  The  double  series  (15)  is  then 
absolutely  convergent  if  |  z  \  ̂  r  ;  the  double  series  obtained  by  the  development 
of  each  term  vn  of  the  series  (14)  is  then  a  fortiori  absolutely  convergent  within 
the  circle  C  of  radius  r,  and  we  can  arrange  it  according  to  integral  powers  of  z. 

The  coefficient  bp  of  z*>  in  the  development  of  F(z)  is  equal,  from  the  above,  to  the 
limit,  as  n  becomes  infinite,  of  the  coefficient  &pwof  ZP  in  the  sum  VQ+V^  •••  +  »„, 
or,  what  amounts  to  the  same  thing,  in  the  development  of  the  product 

Hence  this  coefficient  can  be  obtained  by  applying  to  infinite  products  the 
ordinary  rule  which  gives  the  coefficient  of  a  power  of  z  in  the  product  of  a 
finite  number  of  polynomials.  For  example,  the  infinite  product 

F(z)  =  (1  +  z)  (I  +  z2)  (1  +  z4)  -  -  •  (1  +  z2")  •  •  • 
can  be  developed  according  to  powers  of  z  if  |  z  \  <  1.  Any  power  of  z  whatever, 

say  ZN,  will  appear  in  the  development  with  the  coefficient  unity,  for  any  posi- 
tive integer  N  can  be  written  in  one  and  only  one  way  in  the  form  of  a  sum  of 

powers  of  2.  We  have,  then,  if  |  z  \  <  1  , 

(16)  F(z)  =  I  +  z+z2+  ...  +«»+  ...  =  _!_, 

which  can  also  be  very  easily  obtained  by  means  of  the  identity 

l^2-  =  (!  +  «)(!+  z2)  (1  +  **)...  (1  +  z2"-1). 1  —  z 

11.  The  exponential  function.  The  arithmetic  definition  of  the  ex- 
ponential function  evidently  has  no  meaning  when  the  exponent  is 

a  complex  number.  In  order  to  generalize  the  definition,  it  will  be 

necessary  to  start  with  some  property  which  is  adapted  to  an  exten- 
sion to  the  case  of  the  complex  variable.  We  shall  start  with  the 

property  expressed  by  the  functional  relation 

axx  ax'  =  ax  +  x/. 

Let  us  consider  the  question  of  determining  a  power  series  /(«),  con- 
vergent in  a  circle  of  radius  R,  such  that 

(17)  ,  /(*  +  *')=/(*)/(*') 

when  the  absolute  values  of  z,  z',  z-{-z'  are  less  than  R,  which  will 
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surely  be  the  case  if  z  and  |«'|  are  less  than  R/2.    If  we  put  z*  =  0 
in  the  above  equation,  it  becomes 

/(*)=/(*)/(<>). 
Hence  we  must  have  /(O)  =  1,  and  we  shall  write  the  desired  series 

=  ...  .... 

Let  us  replace  successively  in  that  series  z  by  A/,  then  by  \'t,  where 
X  and  X'  are  two  constants  and  t  an  auxiliary  variable  ;  and  let  us 
then  multiply  the  resulting  series.  This  gives 

f(\t)f(\'t)  = 

On  the  other  hand,  we  have 

The  equality  /(A*  + A7)  =/(A*)/(A'£)  is  to  hold  for  all  values  of 

X,  X',  t  such  that  |X  <  1,  X'  <  1,  t  <  R/2.  The  two  series  must 
then  be  identical,  that  is,  we  must  have 

and  from  this  we  can  deduce  the  equations 

an  =  an -  1  al  1  an=  an-2a2l  '  '  '  ) 

all  of  which  can  be  expressed  in  the  single  condition 

(18)  ap  +  q  =  apaq, 

where  p  and  q  are  any  two  positive  integers  whatever.  In  order  t6 

find  the  general  solution,  let  us  suppose  q  =  1,  and  let  us  put 

successively  p  =  1,  p  =  2,  jo  =  3,  •  •  • ;  from  this  we  find  a2  =  a%,  then 

ag  =  «2a1  =  af ,  •  •  • ,  and  finally  an  =  a\.  The  expressions  thus  obtained 
satisfy  the  condition  (18),  and  the  series  sought  is  of  the  form 
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This  series  is  convergent  in  the  whole  plane,  and  the  relation 

/(*  +  *')==/(*)/(*') 

is  true  for  all  values  of  z  and  z'. 
The  above  series  depends  upon  an  arbitrary  constant  ar    Taking 

al  =  1,  we  shall  set 

so  that  the  general  solution  of  the  given  problem  is  eas.  The  inte- 
gral function  ez  coincides  with  the  exponential  function  ex  studied  in 

algebra  when  z  is  real,  and  it  always  satisfies  the  relation 
ez  +  z'  __  ez  x  ez^ 

whatever  z  and  z'  may  be.  The  derivative  of  ez  is  equal  to  the  func- 
tion itself.  Since  we  may  write  by  the  addition  formula 

(&  +  yt  _ 

in  order  to  calculate  ez  when  «  has  an  imaginary  value  x  +  yi,  it  is 

sufficient  to  know  how  to  calculate  eyi.  Now  the  development  of  evi 
can  be  written,  grouping  together  terms  of  the  same  kind, 

We  recognize  in  the  second  member  the  developments  of  cos  y  and 
of  sin  y,  and  consequently,  if  y  is  real, 

eyi  =  cos  y  +  i  sin-y. 

Replacing  eyi  by  this  expression  in  the  preceding  formula,  we  have 

(19)  ex  +  yi~  =  ex(cos  y  +  i  sin  y) ; 

the  function  ex  +  yi  has  ex  for  its  absolute  value  and  y  for  its  angle. 
This  formula  makes  evident  an  important  property  of  ez ;  if  z 
changes  to  z  -\-  2  TTI,  x  is  not  changed  while  y  is  increased  by  2  TT, 
but  these  changes  do  not  alter  the  value  of  the  second  member  of 

the  formula  (19).  We  have,  then, 

that  is,  the  exponential  function  ez  has  the  period  2  iri. 
Let  us  consider  now  the  solution  of  the  equation  ez  =  A,  where  A 

is  any  complex  quantity  whatever  different  from  zero.  Let  p  and  <u 
be  the  absolute  value  and  the  angle  of  A  ;  we  have,  then, 

/i  _  e*(cos  y  _|_  I  sin  y)  =  p  (cos  w  -f-  i  sin  <o), 
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from  which  it  follows  that 

ex  =  p,         y  =  Q>  +  2  &TT. 

From  the  first  relation  we  find  x  =  log  p,  where  the  abbreviation  log 
shall  always  be  used  for  the  natural  logarithm  of  a  real  positive 
number.  On  the  other  hand,  y  is  determined  except  for  a  multiple 

of  2  TT.  If  A  is  zero,  the  equation  ex  =  0  leads  to  an  impossibility. 
Hence  the  equation  ez  =  A,  where  A  is  not  zero,  has  an  infinite  num- 

ber of  roots  given  by  the  expression  log  p  -\-  i  (o>  -f-  2  &TT)  ;  the  equation 
ez  =  0  has  no  roots,  real  or  imaginary. 

Note.  We  might  also  define  ez  as  the  limit  approached  by  the  poly- 

nomial (1  +  z/m)m  when  m  becomes  infinite.  The  method  used  in 
algebra  to  prove  that  the  limit  of  this  polynomial  is  the  series  e*  can 
be  used  even  when  z  is  complex. 

12.  Trigonometric  functions.  In  order  to  define  sin  z  and  cos  z 

when  z  is  complex,  we  shall  extend  directly  to  complex  values  the 
series  established  for  these  functions  when  the  variable  is  real. 
Thus  we  shall  have 

(20) 

z       z8       z* 

z2       z1 cosz=l-^-  +  -^   . 

These  are  integral  transcendental  functions  which  have  all  the 

properties  of  the  trigonometric  functions.  Thus  we  see  from  the 

formulae  (20)  that  the  derivative  of  sin  z  is  cos  z,  that  the  derivative 

of  cos  z  is  —  sin  z,  and  that  sin  z  becomes  —  sin  z,  while  cos  z  does 

not  change  at  all  when  z  is  changed  to  —  z. 
These  new  transcendental  functions  can  be  brought  into  very  close 

relation  with  the  exponential  function.  In  fact,  if  we  write  the  ex- 

pansion of  ezi,  collecting  separately  the  terms  with  and  without  the 
factor  i,  2  4 

we  find  that  that  equality  can  be  written,  by  (20),  in  the  form 

ezi  =  cos  z  -|-  i  sin  z. 

Changing  z  to  —  z,  we  have  again 

e~zi  =  cos  z  —  i  sin  z, 

and  from  these  two  relations  we  derive 
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(21)  cos  z  =  -  -  --  >         sin  z  — 

These  are  the  well-known  formulae  of  Euler  which  express  the 
trigonometric  functions  in  terms  of  the  exponential  function.  They 

show  plainly  the  periodicity  of  these  functions,  for  the  right-hand 
sides  do  not  change  when  we  replace  z  by  z  +  2  TT.  Squaring  and 
adding  them,  we  have 

cos2  z  4-  sin2  »  =  1. 

Let  us  take  again  the  addition  formula  e(2  +  2/)f  =  e*Vf,  or 

cos  (z  4-  *')  4-  *  sin  («  4-  «') 
=  (cos  z  4-  *  sin  «)  (cos  «'  +  *  sin  z1) 
=  cos  «  cos  «'  —  sin  «  sin  2'  +  i(sin  «  cos  *'  4-  sin  z1  cos  2), 

and  let  us  change  z  to  —  «,  z1  to  —  «f.    It  then  becomes 

cos  (z  4-  z')  —  i  sin  («  -f  z') 
=  cos  £  cos  z'  —  sin  2  sin  z'  —  t(sin  2  cos  2'  +  sin  #'  cos  2), 

and  from  these  two  formulas  we  derive 

cos  (z  4-  z')  =  cos  z  cos  «'  —  sin  z  sin  «' 
sin  (2  +  #')  =  sin  2  cos  z'  +  sin  2  cos  «'. 

The  addition  formulae  and  therefore  all  their  consequences  apply  for 
complex  values  of  the  independent  variables.  Let  us  determine,  for 

example,  the  real  part  and  the  coefficient  of  i  in  cos  (x  4-  y%)  and 

sin  (x  4-  yi).  We  have  first,  by  Euler's  formulae, 

e~v  +  ev  e~y  —  ev 
cos  yi  =  -  -  -  =  cosh  y,         sin  i/i  =  —  —  —  =  i  smh  y  ; w  2   i 

whence,  by  the  addition  formulae, 

cos  (x  4-  2/0  =  cos  x  cos  yz!  —  sin  x  sin  y£  =  cos  x  cosh  ;?/  —  i  sin  #  siiih  y, 

sin  (a;  4-  yi)  =  sin  x  cos  yi  +  cos  x  sin  yi  =  sin  x  cosh  y  -f-  i  cos  se  sinh  y. 

The  other  trigonometric  functions  can  be  expressed  by  means  of 
the  preceding.    For  example, 

sin£      1  ezi  —  e~zi tan  z  —  -  =  —  —  :  -  .  > 

cos  z      i  ezl  -f-  e~  ' 
which  may  be  written  in  the  form 

1  a***  _  1 -L     tJ  -    JL. 

tan  «  =  -  -r-.  —  -  • i  e*zl  4-  1 

The  right-hand  side  is  a  rational  function  of  e2  zi  ;  the  period  of  the 
tangent  is  therefore  TT. 
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13.  Logarithms.  Given  a  complex  quantity  2,  different  from  zero, 

we  have  already  seen  (§  11)  that  the  equation  eu  =  z  has  an  infinite 
number  of  roots.  Let  u  =  x  +  yi,  and  let  p  and  o>  denote  the  absolute 
value  and  angle  of  2,  respectively.  Then  we  must  have 

e?  =  p,         y  =  <o  +  2  &TT. 

Any  one  of  these  roots  is  called  the  logarithm  of  z  and  will  be 
denoted  by  Log  (z).  We  can  write,  then, 

Log  (z)  =  log  p  +  i  (01  +  2  &TT), 

the  symbol  fo^  being  reserved  for  the  ordinary  natural,  or  Napierian, 
logarithm  of  a  real  positive  number. 

Every  quantity,  real  or  complex,  different  from  zero,  has  an 
infinite  number  of  logarithms,  which  form  an  arithmetic  progres- 

sion whose  consecutive  terms  differ  by  2  iri.  In  particular,  if  z  is  a 

real  positive  number  x,  we  have  o>  =  0.  Taking  k  =  0,  we  find  again 
the  ordinary  logarithm ;  but  there  are  also  an  infinite  number  of 
complex  values  for  the  logarithm,  of  the  form  log  x  +  2  kiri.  If  z  is 
real  and  negative,  we  can  take  o>  =  TT  ;  hence  all  the  determinations 
of  the  logarithm  are  imaginary. 

Let  z'  be  another  imaginary  quantity  with  the  absolute  value  p1 
and  the  angle  a/.  We  have 

Log  (z1)  =  log  p1  +  i  (<o'  +  2  k'Tr). 
Adding  the  two  logarithms,  we  obtain 

Log  (z)  +  Log  (z1)  =  log  pp'  +  i  [«  +  «'  +  2  (k  +  k')  TT]. 

Since  ppf  is  equal  to  the  absolute  value  of  zz',  and  o>  +  «'  is  equal  to 
its  angle,  this  formula  can  be  written  in  the  form 

L°g  (*)  +  L°g  00  =  L°g  (««% 

which  shows  that,  when  we  add  any  one  whatever  of  the  values  of 

Log  (z)  to  any  one  whatever  of  the  values  of  Log  (z1),  the  sum  is  one 
of  the  determinations  of  Log  (««*). 

Let  us  suppose  now  that  the  variable  z  describes  in  its  plane  any 
continuous  curve  whatever  not  passing  through  the  origin;  along 
this  curve  p  and  o>  vary  continuously,  and  the  same  thing  is  true  of 
the  different  determinations  of  the  logarithm.  But  two  quite  distinct 
cases  may  present  themselves  when  the  variable  z  traces  a  closed 
curve.  When  z  starts  from  a  point  ZQ  and  returns  to  that  point  after 
having  described  a  closed  curve  not  containing  the  origin  within  it, 

the  angle  <o  of  z  takes  on  again  its  original  value  o>0,  and  the  different 
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determinations  of  the  logarithm  come  back  to  their  initial  values.  If 

we  represent  each  value  of  the  logarithm  by  a  point,  each  of  these 
points  traces  out  a  closed  curve.  On  the  contrary,  if  the  variable  z 

describes  a  closed  curve  such  as  the  curve  MQNMP  (Fig.  3b),  the 
angle  increases  by  2  TT,  and  each  determination  of  the  logarithm 
returns  to  its  initial  value  increased  by  2?ri.  In  general,  when  z 
describes  any  closed  curve  whatever,  the  final  value  of  the  logarithm 
is  equal  to  its  initial  value  increased  by  2  kiri,  where  k  denotes  a 

positive  or  negative  integer  which  gives  the  number  of  revolutions 
and  the  direction  through  which  the  radius  vector  joining  the  origin 

to  the  point  z  has  turned.  It  is,  then,  impossible  to  consider  the  dif- 
ferent determinations  of  Log(z)  as  so  many  distinct  functions  of  z 

if  we  do  not  place  any  restriction  on  the  variation  of  that  variable, 
since  we  can  pass  continuously  from  one  to  the  other.  They  are  so 
many  branches  of  the  same  function,  which  are  permuted  among 

themselves  about  the  critical  point  z  =  0. 
In  the  interior  of  a  region  which  is  bounded  by  a  single  closed  curve 

and  which  does  not  contain  the  origin,  each  of  the  determinations  of 

Log  (z)  is  a  continuous  single-valued  function  of  z.  To  show  that  it 
is  an  analytic  function  it  is  sufficient  to  show  that  it  possesses  a 

unique  derivative  at  each  point.  Let  z  and  z^  be  two  neighboring 
values  of  the  variable,  and  Log(V),  Log(^)  the  corresponding  values 
of  the  chosen  determination  of  the  logarithm.  When  zl  approaches 

2,  the  absolute  value  of  Log  (z^)  —  Log  (z)  approaches  zero.  Let  us  put 
Log  (z)  =  u,  Log  (z^)  =  ul ;  then 

Log  fa)  —  Log  (z)  _    M!  -  u 

—  z 

When  Wj  approaches  u,  the  quotient 
—  u 

approaches  as  its  limit  the  derivative  of  eu ;  that  is,  eu  or  z.  Hence 
the  logarithm  has  a  uniquely  determined  derivative  at  each  point, 

and  that  derivative  is  equal  to  \jz.  In  general,  Log  (z  —  a)  has  an 
infinite  number  of  determinations  which  permute  themselves  about 

the  critical  point  z  =  a,  and  its  derivative  is  !/(£  —  a). 

The  function  zm,  where  ra  is  any  number  whatever,  real  or  complex, 
is  defined  by  means  of  the  equality 
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Unless  m  be  a  real  rational  number,  this  function  possesses,  just  as 

does  the  logarithm,  an  infinite  number  of  determinations,  which  per- 
mute themselves  when  the  variable  turns  about  the  point  z  =  0.  It  is 

sufficient  to  make  an  infinite  cut  along  a  ray  from  the  origin  in 
order  to  make  each  branch  an  analytic  function  in  the  whole  plane. 

The  derivative  is  given  by  the  expression 
171        T      ,  . 

_emLog(2)_  mzm-l Z 

and  it  is  clear  that  we  ought  to  take  the  same  value  for  the  angle 
of  z  in  the  function  and  in  its  derivative. 

14.  Inverse  functions  :  arc  sin  z,  arc  tan  z.  The  inverse  functions 

of  sin  2,  cos  2,  tan  z  are  defined  in  a  similar  way.  Thus,  the  function 

u  =  arc  sin  z  is  defined  by  the  equation 

z  =  sin  u. 

In  order  to  solve  this  equation  for  u,  we  write 
lit          />2«i   1 

2  i  2  ieui 
and  we  are  led  to  an  equation  of  the  second  degree, 

(22)  '•    •'      ;  t/2-2«tf-l=0, 
to  determine  the  auxiliary  unknown  quantity  U  ==  eui.    We  obtain 
from  this  equation 

(23)  U  =  iz±  Vl  -  z3, 
or 

(24)  u  =  arc  sin  z  =  -7  Log  (12  ±  Vl  —  22). 

The  equation  2  =  sin  u  has  therefore  two  sequences  of  roots,  which 

arise,  on  the  one  hand,  from  the  two  values  of  the  radical  V 1  —  #2, 
and,  on  the  other  hand,  from  the  infinite  number  of  determinations 

of  the  logarithm.  But  if  one  of  these  determinations  is  known, 

all  the  others  can  easily  be  determined  from  it.  Let  Uf  =  p'e™'  and 
U"  =  p"ei<a"  be  the  two  roots  of  the  equation  (22)  ;  between  these 
two  roots  exists  the  relation  U'U"  =  —  1,  and  therefore  p'p"  =  1, 

to' -f-  <o"  =  (2  n  +  1)  TT.  It  is  clear  that  we  may  suppose  to"  =  TT  —  to', 
and  we  have  then 

Log  (U')  =  logp'  +  i(o>'  +  2  k'ir), 

Log  (U")  =  -logp'  +  i(7r-  to'  +  2  k"ir). 
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Hence  all  the  determinations  of  arc  sin  z  are  given  by  the  two 
formulae 

arc  sin  z  =  o>'  -j-  2  k'ir  —  i  log  p', 

arc  sin  z  =  TT  -f  2  k"7r  —  <o'  +  i  log  pf, 

and  we  may  write 

(A)  arc  sin  z  =  u'  -f  2  k'jr, 

(B)  arc  sin  z  =  (2  &"  + 1)  TT  -  < 

where  u'  =  <a'  —  i  log  /of. 
When  the  variable  2  describes  a  continuous  curve,  the  various 

determinations  of  the  logarithm  in  the  formula  (24)  vary  in  general 
in  a  continuous  manner.  The  only  critical  points  that  are  possible 

are  the  points  z  =  ±  1,  around  which  the  two  values  of  the  radical 

Vl  —  z2  are  permuted;  there  cannot  be  a  value  of  z  that  causes 
iz  ±  Vl—  z*  to  vanish,  for,  if  there  were,  on  squaring  the  two  sides 
of  the  equation  iz  =  ±  Vl—  z2  we  should  obtain  1=0. 

Let  us  suppose  that  two  cuts  are  made  along  the  axis  of  reals,  one 

going  from  —  oo  to  the  point  —  1,  the  other  from  the  point  -f- 1  to 
4-  oo  .  If  the  path  described  by  the  variable  is  not  allowed  to  cross 
these  cuts,  the  different  determinations  of  arc  sin  z  are  single-valued 
functions  of  z.  In  fact,  when  the  variable  z  describes  a  closed  curve 

not  crossing  any  of  these  cuts,  the  two  roots  U',  U"  of  equation  (22) 
also  describe  closed  curves.  None  of  these  curves  contains  the 

origin  in  its  interior.  If,  for  example,  the  curve  described  by  the 

root  U'  contained  the  origin  in  its  interior,  it  would  cut  the  axis  Oy 
in  a  point  above  Ox  at  least  once.  Corresponding  to  a  value  of  U  of 

the  form  ia(a  >  0),  the  relation  (22)  determines  a  value  (1  +  °^}l^  a 
for  z,  and  this  value  is  real  and  >  1.  The  curve  described  by  the 
point  z  would  therefore  have  to  cross  the  cut  which  goes  from 
+  1  to  +00. 

The  different  determinations  of  arc  sin  z  are,  moreover,  analytic 

functions  of  «.*  For  let  u  and  u^  be  two  neighboring  values  of 

*  If  we  choose  in  U=iz  +  Vl-z2  the  determination  of  the  radical  which  reduces  to 
1  when  2=0,  the  real  part  of  U  remains  positive  when  the  variable  z  does  not  cross 
the  cuts,  and  we  can  put  U=Rei*,  where  <£  lies  between  -Tr/2  and  +ir/2.  The  cor- 

responding value  of  (1/i)  Log  U,  namely, 

arc  sin  z=  -  Log  U=  $-i Log  R, i 

is  sometimes  called  the  principal  value  of  arc  sin  z.   It  reduces  to  the  ordinary  deter- 
mination when  z  is  real  and  lies  between  - 1  and  + 1. 



32  ELEMENTS  OF  THE  THEORY  [I,  §  14 

arc  sin  z,  corresponding  to  two  neighboring  values  z  and  z1  of  the 
variable.    We  have 

ut  —  u  _         u±  —  u 

2j  —  z       sin  u^  —  sin  u 

When  the  absolute  value  of  u^  —  u  approaches  zero,  the  preceding 
quotient  has  for  its  limit 

1  ±1 

cosu 

The  two  values  of  the  derivative  correspond  to  the  two  sequences 

of  values  (A)  and  (B)  of  arc  sin  z. 
If  we  do  not  impose  any  restriction  on  the  variation  of  2,  we  can 

pass  from  a  given  initial  value  of  arc  sin  z  to  any  one  of  the  deter- 
minations whatever,  by  causing  the  variable  z  to  describe  a  suitable 

closed  curve.  In  fact,  we  see  first  that  when  z  describes  about  the 

point  z  =  1  a  closed  curve  to  which  the  point  z  =  —  1  is  exterior, 

the  two  values  of  the  radical  Vl  —  z2  are  permuted  and  so  we  pass 
from  a  determination  of  the  sequence  (A)  to  one  of  the  sequence  (B). 

Suppose  next  that  we  cause  z  to  describe  a  circle  of  radius  R  (R  >  1) 

about  the  origin  as  center ;  then  each  of  the  two  points  U',  U"  describes 
a  closed  curve.  To  the  point  z  =  -f-  R  the  equation  (22)  assigns  two 

values  of  U,  U'  =  ia,  U"  —  ift,  where  a  and  ft  are  positive ;  to  the 
point  z  =  —  R  there  correspond  by  means  of  the  same  equation  the 

values  U'  =  —  ia',  U"  =  —  ift1,  where  a'  and  ft'  are  again  positive. 

Hence  the  closed  curves  described  by  these  two  points  U',  U"  cut  the 
axis  Oy  in  two  points,  one  above  and  the  other  below  the  point  0 ; 

each  of  the  logarithms  Log  (£/'),  Log(C7")  increases  or  diminishes 
by  2iri. 

In  the  same  way  the  function  arc  tan  z  is  defined  by  means  of 
the  relation  tan  u  =  z,  or 

1  e2ui  -  1 z  =  -    2Mt.  ,  .  ; ^  &*m  + 1 

whence  we  have  2w.  _  1  -f-  iz  _  i  —  z 

1  —  iz      i  -\-  zj 
and  consequently  1 

arc  tan  z  =  — 

This  expression  shows  the  two  logarithmic  critical  points  ±  i  of  the 
function  arc  tan  z.  When  the  variable  z  passes  around  one  of  these 

points,  Log  [(i  —  z)/(i  +  «)]  increases  or  diminishes  by  2  TTI,  and 
arc  tan  z  increases  or  diminishes  by  TT. 
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15.  Application  to  the  integral  calculus.  The  derivatives  of  the  func- 
tions which  we  have  just  defined  have  the  same  form  as  when  the 

variable  is  real.  Conversely,  the  rules  for  finding  primitive  functions 

apply  also  to  the  elementary  functions  of  complex  variables.  Thus, 

denoting  by  ff(z)dz  a  function  of  the  complex  variable  z  whose 
derivative  is  /(«),  we  have 

Adz  A  1 
  r- =   77   ^T~V          (m>l)> 
:  —  a)m          m  —  1  (z  —  a)m' 

Adz 

z  —  a 
=  A  Log  (z  —  a). 

These  two  formulae  enable  us  to  find  a  primitive  function  of  any 

rational  function  whatever,  with  real  or  imaginary  coefficients,  pro- 
vided the  roots  of  the  denominator  are  known.  Consider  as  a  special 

case  a  rational  function  of  the  real  variable  x  with  real  coefficients. 

If  the  denominator  has  imaginary  roots,  they  occur  in  conjugate 
pairs,  and  each  root  has  the  same  multiplicity  as  its  conjugate. 

Let  a  -\-  pi  and  a  —  pi  be  two  conjugate  roots  of  multiplicity  p.  In 
the  decomposition  into  simple  fractions,  if  we  proceed  with  the 

imaginary  roots  just  as  with  the  real  roots,  the  root  a  -f-  pi  will 
furnish  a  sum  of  simple  fractions 

M,  +  NJ  M2  +  N2i  Mp  +  Npi 
~*  " 

x  -  a  -  fii      (x  -  a  -  (3i)2  (x  -  a  -  /3i)p 

and  the  root  a  —  pi  will  furnish  a  similar  sum,  but  with  numerators 
that  are  conjugates  of  the  former  ones.  Combining  in  the  primitive 
function  the  terms  which  come  from  the  corresponding  fractions,  we 
shall  have,  if  p  >  1, 

C 
J (x  -  a  -  piy          (x  -  a  +  fry 

d  - 
^ 

1      r       Mp  +  N9i  Mp 

"  p  -  1  [(x  -  a  -  pi)P~l   h  (x  -  a 

-  Npi 

+ 

1       (Mp  +  Npi)  (x-a  +  piy~l  4 
p-l  [(x  -  of  4- 1 

- 

and  the  numerator  is  evidently  the  sum  of  two  conjugate  imaginary 

polynomials.    If  p  =  1,  we  have 

C 

J x  —  a  —  (3i          J  x—  a  +  pi 

=  (Ml  +  Nj)  Log  [(x  -a)-  pi]  +  (Ml  -  Nf)  Log  [(aj  -  a)  + 
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[I,  §  15 If  we  replace  the  logarithms  by  their  developed  expressions,  there 

remains  on  the  right-hand  side 

M.  log  [(x  —  a}2  +  82~\  -f  2  JV,  arc  tan  —   x  —  a 

It  suffices  to  replace 

/?  TT  cc  —  a arc  tan  — - —     by     —  —  arc  tan  — - — x  —  a  2  (3 

in  order  to  express  the  result  in  the  form  in  which  it  is  obtained 

when  imaginary  symbols  are  not  used. 
Again,  consider  the  indefinite  integral 

dx 

which  has  two  essentially  different  forms,  according  to  the  sign  of 
A.  The  introduction  of  complex  variables  reduces  the  two  forms  to  a 

single  one.  In  fact,  if  in  the  formula 
=  Log(i 

we  change  x  to  ix,  there  results 
dx 

=  -  Log(ia?  +  Vl  —  a;2), 
Vl-ar2       * 

and  the  right-hand  side  represents  precisely  arc  sin  x. 
The  introduction  of  imaginary  symbols  in  the  integral  calculus 

enables  us,  then,  to  reduce  one  formula  to  another  even  when  the 

relationship  between  them  might  not  be  at  all  apparent  if  we  were 

to  remain  always  in  the  domain  of  real  numbers. 
We  shall  give  another  example  of  the  simplification  which  comes 

from  the  use  of  imaginaries.  If  a  and  b  are  real,  we  have 

a 
bi       a2  + 

bx  +  i  sin  bx). 

Equating  the  real  parts  and  the  coefficients  of  i,  we  have  at  one  stroke 

two  integrals  already  calculated  (I,  §  109,  2d  ed.  ;  §  119,  1st  ed.)  : 

cos  bx  dx _  e°*  (a  cos  bx  -f-  b  sin  bx) 
a 

„ 

b2 

e°*  (a  sin  bx  —  b  cos  bx) 
sin  bx  dx  =  —  »  -        7t,  -  L  • 

b2 

a 
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In  the  same  way  we  may  reduce  the  integrals 

/  xm  e"*  cos  bx  dx,  I  xmeaxsinbxdx 

to  the  integral  fxme<a  +  bi>xdx,  which  can  be  calculated  by  a  succession 
of  integrations  by  parts,  where  m  is  any  integer. 

16.  Decomposition  of  a  rational  function  of  sinz  and  cosz  into 
simple  elements.  Given  a  rational  function  of  sin  z  and  cos  2, 

jP(sin  2,  cos  2),  if  in  it  we  replace  sin  2  and  cos  2  by  their  expressions 

given  by  Euler's  formula,  it  becomes  a  rational  function  R  (t)  of 
t  =  ezi.  This  function  R  (£),  decomposed  into  simple  elements,  will  be 
made  up  of  an  integral  part  and  a  sum  of  fractions  coming  from 
the  roots  of  the  denominator  of  R  (t).  If  that  denominator  has  the 

root  t  =  0,  we  shall  combine  with  the  integral  part  the  fractions  aris- 
ing from  that  root,  which  will  give  a  polynomial  or  a  rational  function 

Rl  (t)  =  2,Km  tm,  where  the  exponent  m  may  have  negative  values. 
Let  t  =  a  be  a  root  of  the  denominator  different  from  zero.  That 

root  will  give  rise  to  a  sum  of  simple  fractions 
A  A  A 

t  —  a       (t  —  of  (t  —  a)n 

The  root  a  not  being  zero,  let  a  be  a  root  of  the  equation  eai  =  a ; 
then  !/(£  —  a)  can  be  expressed  very  simply  by  means  of  ctn  [(2  —  a] 
We  have,  in  fact, 

ctn z  —  a       .ezl  +  eai       ./  2  eai 

whence  it  follows  that 

1  1 

Hence  the  rational  fraction  f(t)  changes  to  a  polynomial  of  degree 
n  in  ctn     #  — 

The  successive  powers  of  the  cotangent  up  to  the  nth  can  be  ex- 
pressed in  turn  in  terms  of  its  successive  derivatives  up  to  the 

(n  —  l)th;  we  have  first 
d  ctn  z  1 

dz  sin2 
=  —  1  —  ctn2 «, 
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which  enables  us  to  express  ctn2  2  in  terms  of  d(ctnz)/dz,  and  it  is 
easy  to  show,  by  mathematical  induction,  that  if  the  law  is  true  up 

to  ctnw  «,  it  will  also  be  true  for  ctnn  +  1  z.  The  preceding  polynomial 
of  degree  n  in  ctn  [(2  —  #)/2]  will  change  to  a  linear  expression  in 

ctn  [(2  —  #)/2]  and  its  derivatives, 

z  —  a  d  I       z  —  a  d n~l 

Let  us  proceed  in  the  same  way  with  all  the  roots  &,  c,  •  •  •  ,  I  of  the 
denominator  of  R  (£)  different  from  zero,  and  let  us  add  the  results 

obtained  after  having  replaced  t  by  ezi  in  Rt(t).  The  given  rational 
function  F(sinz,  cos  2)  will  be  composed  of  two  parts, 

(25)  F(sin  z,  cos  z)  =  $  (z)  +  *  (z). 

The  function  $(«),  which  corresponds  to  the  integral  part  of  a 
rational  function  of  the  variable,  is  of  the  form 

(26)  <£  (z)  =  C  +  2  (am  cos  mz  +  &,  sin  mz), 

where  m  is  an  integer  not  zero.  On  the  other  hand,  ¥(*),  which  cor- 
responds to  the  fractional  part  of  a  rational  function,  is  an  expression 

of  the  form 

»T»  /  »A yf    x-x4-»-.  1 

— a\ 
i     ,j 

/z 

—  a 

)i         
  i 

^«-
 

/Z 

— o:\ 

*(*)=: ,/^ctnf / 
2 ) 

P\ 
^"^^ 

^ 

rtn(*
 

2 T  *'  •  T 

r\. 

dzn~l 

tr> 

2 

^ 

J_ 

1     V 
2 ) 

r  So  7 

z  dz 

ctni 2 

PT  '  '  ' 

^Pdz?-1 Cull  1 2 / 

It  is  the  function  ctn  [(2  —  «)/2]  which  here  plays  the  role  of  the 

simple  element,  just  as  the  fraction  l/(z  —  a)  does  for  a  rational 
function.  The  result  of  this  decomposition  of  F(sm  z,  cos  z)  is  easily 
integrated  ;  we  have,  in  fact, 

(27)  fctn  (^p)  d*  =  2  Log  [sin 

and  the  other  terms  are  integrable  at  once.  In  order  that  the  primi- 
tive function  may  be  periodic,  it  is  necessary  and  sufficient  that  all 

the  coefficients  C,  ̂   t  3X,  •  •  •  be  zero. 

In  practice  it  is  not  always  necessary  to  go  through  all  these  suc- 
cessive transformations  in  order  to  put  the  function  jP(sin  z,  cos  z)  into 

its  final  form  (25).  Let  a  be  a  value  of  z  which  makes  the  function 
F  infinite.  We  can  always  calculate,  by  a  simple  division,  the 
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coefficients  of  (z  —  a)"1,   (z  —  a)~2,   •  •  • ,  in  the  part  that  is  infinite 
for  *  =  a  (I,  §  188, 2d  ed. ;  §  183, 1st  ed.).  On  the  other  hand,  we  have 

ctn 

2    /      z-a  ' 
where  P(z  —  a)  is  a  power  series ;  equating  the  coefficients  of  the 

successive  powers  of  (z  —  a)~l  in  the  two  sides  of  the  equation  (25), 
we  shall  then  obtain  easily  jtv  ̂ 2,  •  •  •,  Jln. 

Consider,   for  example,   the   function   l/(cos  z  —  cos  a).     Setting 
ezi  =  t,  eai  =  a,  it  takes  the  form 

  2  at   
/j.2     |     "1  \  j.  //^2     i     "|  \ CL  (  T/     *~|     \~  )  ~~~  v  (  Us    "\         / 

The  denominator  has  the  two  simple  roots  t  =  a,  t  =  I/a,  and  the 

numerator  is  of  lower  degree  than  the  denominator.  We  shall  have, 

then,  a  decomposition  of  the  form 

cos  z  —  cos  a 

In  order  to  determine  jl,  let  us  multiply  the  two  sides  by  z  —  a,  and 

let  us  then  put  z  =  a.  This  gives  j4  —  —  l/(2  sin  a).  In  a  similar 

manner,  we  find  ®  =  V(2  sin  a).  Replacing  ̂   and  fB  by  these  values 

and  setting  z  =  0,  it  is  seen  that  C  =  0,  and  the  formula  takes  the  form 

1                     1       /       z  +  a  z  —  a\ 
  =  TT~-   (  ctn  — - —  —  ctn  — - —  1  • 
cos  z  —  cos  a,      2  sin  a  \  2,  2,    / 

Let  us  now  apply  the  general  method  to  the  integral  powers  of  sinz  and 
of  cosz.   We  have,  for  example, 

/ezi  +  e-zi\m (cosz)m=(   1    • 

Combining  the  terms  at  equal  distances  from  the  extremities  of  the  expansion 

of  the  numerator,  and  then  applying  Euler's  formulae,  we  find  at  once 

(2  cosz)m  =  2  cos  mz  +  2  m  cos  (m  —  2)  z  +  2  — - —    — -  cos  (m  —  4)  z  ̂    . 1  .  a 

If  m  is  odd,  the  last  term  contains  cos  z  ;  if  m  is  even,  the  term  which  ends  the 

expansion  is  independent  of  z  and  is  equal  to  m  !/[(m/2)  !]2.  In  the  same  way, 
if  m  is  odd, 

?n(m  —  1) 
(2  i  sin  z)OT  =  2  i  sin  mz  —  2  im  sin  (m  —  2)  z  +  2  i  — '    sin  (m  —  4)  z  •  •  • ; 

and  if  m  is  even, 
-    ml 

(2  i  sin  z)m  =  2  cosmz  —2m  cos  (m  —  2)  z  +  •••+(—  1) 2  ̂   '    • 

These  formulae  show  at  once  that  the  primitive  functions  of  (sinz)m  and  of 
(cosz)w  are  periodic  functions  of  z  when  m  is  odd,  and  only  then. 
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[I,  §  16 Note.  When  the  function  F(sin  z,  cos  z)  has  the  period  TT,  we  can 

express  it  rationally  in  terms  of  e2zi  and  can  take  for  the  simple 
elements  ctn (z  —  a),  ctn(z  —  /?),  «... 

17.  Expansion  of  Log  (1  +  z).  The  transcendental  functions  which 

we  have  denned  are  of  two  kinds  :  those  which,  like  ez,  sin  z,  cos  z,  are 
analytic  in  the  whole  plane,  and  those  which,  like  Log  z,  arc  tan  z,  •  -  -, 
have  singular  points  and  cannot  be  represented  by  developments  in 
power  series  convergent  in  the  whole  plane.  Nevertheless,  such 
functions  may  have  developments  holding  for  certain  parts  of  the 
plane.  We  shall  now  show  this  for  the  logarithmic  function. 

Simple  division  leads  to  the  elementary  formula 

1+2 
=  1_Z  +  Z2_ 

± 

and  if  z|<l,  the  remainder  £n+1/(l+  z)  approaches  zero  when  n 
increases  indefinitely.  Hence,  in  the  interior  of  a  circle  C  of  radius  1 
we  have  H 

Let  F(z)  be  the  series  obtained  by  integrating  this  series  term  by  term  : 
„  s2  «8  24 

this  new  series  is  convergent  inside  the  unit  circle  and  represents 

an  analytic  function  whose  derivative  F\z)  is  l/(l-f-  «).  We  know, 
however,  a  function  which  has  the  same  derivative,  Log  (1-f  «).  It 

follows  that  the  difference  Log  (!+«)—  F(z)  reduces  to  a  constant.* 
In  order  to  determine  this  constant  it  will  be  necessary  to  fix  pre- 

cisely the  determination  chosen  for  the  logarithm.  If  we  take  the 
one  which  becomes  zero  for  z  =  0,  we  have  for  every  point  inside  C 

(28) 

Let  us  join  the  point  A  to  the  point  M,  which  represents  z  (Fig.  8). 
The  absolute  value  of  1  +  z  is  represented  by  the  length  r  =  AM. 
For  the  angle  of  1  +  «  we  can  take  the  angle  a  which  AM  makes 

with  AO,  an  angle  which  lies  between  —  Tr/2  and  -{-  Tr/2  as  long  as 
the  point  M  remains  inside  the  circle  C.  That  determination  of  the 

*  In  order  that  the  derivative  of  an  analytic  function  X+  Yi  be  zero,  it  is  neces- 
sary that  we  have  (§3)  dX/fa=0,  dY/dx  =  Q,  and  consequently 

X  and  Y  are  therefore  constants. 
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logarithm  which   becomes  zero  for  z  =  0  is  log  r  +  ia ;   hence  the 
formula  (28)  is  not  ambiguous. 

FIG.  8 

Changing  z  to  —  z  in  this  formula  and  then  subtracting  the  two 
expressions,  we  obtain 

'1  + 

If  we  now  replace  z  by  iz,  we  shall  obtain  again  the  development  of 
arc  tan  z  ..  , 

1  l  +  iz\      z      z3      z5 arc  tan  z  —  —.  Log   -=-—  _  +  _  _  .... 
2 1         \1  —  iz/      I       35 

The  series  (28)  remains  convergent  at  every  point  on  the  circle  of  convergence 
except  the  point  A  (footnote,  p.  19),  and  consequently  the  two  series 

cos  2  0      cos  3  0      cos  4  0 cos  0 

sin  6 

2 

sin  20 

3 

sin  30 

4 

sin  40 

are  both  convergent  except  for  0  =  (2  k  +  1)  TT  (cf .  I,  §  166).  By  Abel's  theorem 
the  sum  of  the  series  at  W  is  the  limit  approached  by  the  sum  of  the  series  at 

a  point  M  as  M  approaches  M'  along  the  radius  OM'.  If  we  suppose  0  always 
between  —  TT  and  +  TT,  the  angle  a  will  have  for  its  limit  0/2,  and  the  absolute 
value  AM  will  have  for  its  limit  2  cos  (0/2).  We  can  therefore  write 

cos  2  0      cos  3  0      cos  4  0 

log 

H)-
 

_ cos  0 

0       :•-      sin  20 
-  =  sin  0   1- 2  2 

2 
sin  30 

(-•7T<0<7T). 

If  in  the  last  formula  we  replace  0  by  0  —  TT,  we  obtain  again  a  formula  pre- 
viously established  (I,  §  204,  2d  ed.;  §  198,  1st  ed.). 



(29) 
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18.  Extension  of  the  binomial  formula.  In  a  fundamental  paper  on 

power  series,  Abel  set  for  himself  the  problem  of  determining  the 
sum  of  the  convergent  series 

m         m  (m  —  1)    2 

m  (m  —  !)•••  (m  —  p  4- 1) \   /   \   J.    /       -.TJ         I 
I  •     "  -~         '  —    Zf          -  I-'      •     •     f 

f\ 

for  all  the  values  of  m  and  2,  real  or  imaginary,  provided  we 

have  \z\  <1.  We  might  accomplish  this  by  means  of  a  differential 
equation,  in  the  manner  indicated  in  the  case  of  real  variables 

(I,  §  183,  2d  ed. ;  §  179, 1st  ed.).  The  following  method,  which  gives 

an  application  of  §  11,  is  more  closely  related  to  the  method  fol- 
lowed by  Abel.  We  shall  suppose  z  fixed  and  \z\  <  1,  ai^d  we 

shall  study  the  properties  of  </>  (m,  z)  considered  as  a  function  of  m. 
If  m  is  a  positive  integer,  the  function  evidently  reduces  to  the 

polynomial  (1  +  z)m-  If  m/  ana  m'  are  any  tw°  values  whatever  of 
the  parameter  m,  we  have  always 

(30)  <f>  (m,  z)  <£  (m'}  2)  =  <£  (w  +  m',  z). 

In  fact,  let  us  multiply  the  two  series  <£  (m,  2),  <£  (mf,  z)  by  the  ordi- 
nary rule.  The  coefficient  of  zp  in  the  product  is  equal  to 

/OH  \  I  '        I  '       I  I  '  J^  ' 

\d-L)          7flp  -f-  mp  _ j  TW-j  -p  Wlp  _  2  ffl<i  ~r"  •  •  •  ~f~  ft^\  f^p  _i  ~T~  ?ftp , 

where  we  have  set  for  abbreviation 

m  (m  —  1)  •  •  •  (m  —  k  -f  1) *  kl 

The  proposed  functional  relation  will  be  established  if  we  show 

that  the  expression  (31)  is  identical  with  the  coefficient  of  zp  in 

<£  (m  -|-  m'j  z),  that  is,  with  (m  -f-  m')p.  We  could  easily  verify  directly 
the  identity 

(32)  (m  -f  m\  =  mp  +  mp_,m{  +  .  .  .  +  m'p, 

but  the  computation  is  unnecessary  if  we  notice  that  the  relation 

(30)  is  always  satisfied  whenever  m  and  m'  are  positive  integers. 

The  two  sides  of  the  equation  (32)  are  polynomials  in  m  and  m' 
which  are  equal  whenever  m  and  m'  are  positive  integers ;  they 
are  therefore  identical. 

On  the  other  hand,  <£(m,  z)  can  be  expanded  in  a  power  series 
of  increasing  powers  of  m.  In  fact,  if  we  carry  out  the  indicated 

products,  </>(m,  z)  can  be  considered  as  the  sum  of  a  double  series 
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m         m   „  .  m   ,  m 

(33) 
m*   ,       ra2 

m*    ,  mp —  z»  ----  +  —  - 6  p\ 

if  we  sum  it  by  columns.  This  double  series  is  absolutely  convergent. 

For,  let  |  z  \  =  p  and  |  m  \  =  <r ;  if  we  replace  each  term  by  its  absolute 
value,  the  sum  of  the  terms  of  the  new  series  included  in  the 

(p  +  1)  th  column  is  equal  to 

a-  (<r  -f-  1)  •  •  •  ((r  -f-  p  —  1) 

p\ 

which  is  the  general  term  of  a  convergent  series.  We  can  therefore 

sum  the  double  series  by  rows,  and  we  thus  obtain  for  <£(ra,  z)  a 

development  in  power  series 

From  the  relation  (30)  and  the  results  established  above  (§  11), 

this  series  must  be  identical  with  that  for  eaim.  Now  for  the  coeffi- 
cient of  m  we  have 

O  Q 

_  z       zz      z3 hence 

(34)  <£  (m,  2)  = 

where  the  determination  of  the  logarithm  to  be  understood  is  that 

one  which  becomes  zero  when  z  =  0.  We  can  again  represent  the 

last  expression  by  (1  +  z)m  >  but  in  order  to  know  without  ambiguity 
the  value  in  question,  it  is  convenient  to  make  use  of  the  expression 

0m  Log  (1+2) 

Let  m  =  /u,  -f  vi ;  if  r  and  a  have  the  same  meanings  as  in  the 
preceding  paragraph,  we  have 

^m  Log  (1+  2)  __  g(M  +  vi)  (log  r  +  ia) 

—.  &****-*« [QQ&(fjux  -f-  v  logr)  +  i  sin  (pa  -f  v  logr)]. 

In  conclusion,  let  us  study  the  series  on  the  circle  of  convergence.  Let  Un 
be  the  absolute  value  of  the  general  term  for  a  point  z  on  the  circle.  The  ratio  of 

two  consecutive  terms  of  the  series  of  absolute  values  is  equal  to  |  (m— n+  l)/n  | , 
that  is,  if  m  =  /*  +  i/i,  to 

  —  1   — |   , 
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where  the  function  <f>(ri)  remains  finite  when  n  increases  indefinitely.  By  a 
known  rule  for  convergence  (I,  §  163)  this  series  is  convergent  when  /*+!>! 

and  divergent  in  every  other  case.  The  series  (29)  is  therefore  absolutely  con- 
vergent at  all  the  points  on  the  circle  of  convergence  when  JJL  is  positive. 

If  fj.  +  1  is  negative  or  zero,  the  absolute  value  of  the  general  term  never 

decreases,  since  the  ratio  Un+i/Un  is  never  less  than  unity.  The  series  is  diver- 

gent at  all  the  points  on  the  circle  when  /t  =  —  1  . 
It  remains  to  study  the  case  where  —  1  <  /*  ̂   0.  Let  us  consider  the  series 

whose  general  term  is  U?  ;  the  ratio  of  two  consecutive  terms  is  equal  to 

LI     t~   •     i     y  \"7   l        -j      J*  \r~    i     •••/     i     -ri  v/ 

n            n2  J  n  n2 

and  if  we  choose  p  large  enough  so  that  p  (/A  +  1)  >  1,  this  series  will  be  conver- 
gent. It  follows  that  U%,  and  consequently  the  absolute  value  of  the  general 

term  Z7re,  approaches  zero.  This  being  the  case,  in  the  identity 

0  (m,  z)  (1  +  z)  =  <t>  (m  +  1,  z) 

let  us  retain  on  each  side  only  the  terms  of  degree  less  than  or  equal  to  n ; 
there  remains  the  relation 

Sn  (1  +  Z)  =  S^  +    
71  ! 

where  Sn  and  S^  indicate  respectively  the  sum  of  the  first  (n  +  1)  terms  of 

0(m,  z)  and  of  <j>(m  +  1,  z).  If  the  real  part  of  m  lies  between  —  1  and  0,  the 
real  part  of  m  +  1  is  positive.  Suppose  |  z  \  =1;  when  the  number  n  increases 
indefinitely,  S^  approaches  a  limit,  and  the  last  term  on  the  right  approaches 
zero  ;  it  follows  that  Sn  also  approaches  a  limit,  unless  1  +  2  =  0.  Therefore, 

when  —  1  <  ju  =  0,  the  series  is  convergent  at  all  the  points  on  the  circle  of  conver- 

gence, except  at  the  point  z  =—  1. 

III.   CONFORMAL  REPRESENTATION 

19.  Geometric  interpretation  of  the  derivative.  Let  u  =  X  +-  Yi  be  a 
function  of  the  complex  variable  z,  analytic  within  a  closed  curve  C. 
We  shall  represent  the  value  of  u  by  the  point  whose  coordinates  are 
X,  Y  with  respect  to  a  system  of  rectangular  axes.  To  simplify  the 

following  statements  we  shall  suppose  that  the  axes  OX,  OY  are  par- 
allel respectively  to  the  axes  Ox  and  Oy  and  arranged  in  the  same  order 

of  rotation  in  the  same  plane  or  in  a  plane  parallel  to  the  plane  xOy. 
When  the  point  z  describes  the  region  A  bounded  by  the  closed 

curve  C,  the  point  u  with  the  coordinates  (X,  F)  describes  in  its 

plane  a  region  A  '  ;  the  relation  u  =  f(z)  defines  then  a  certain  corre- 
spondence between  the  points  of  the  two  planes  or  of  two  portions  of 

a  plane.  On  account  of  the  relations  which  connect  the  derivatives  of 
the  functions  X,  Y,  it  is  clear  that  this  correspondence  should  possess 
special  properties.  We  shall  now  show  that  the  angles  are  unchanged. 
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Let  z  and  zl  be  two  neighboring  points  of  the  region  A,  and  u  and 

Wj  the  corresponding  points  of  the  region  A '.  By  the  original  defini- 
tion of  the  derivative  the  quotient  (u^  —  u)/(z^  —  z)  has  for  its  limit 

f(z)  when  the  absolute  value  of  zl  —  z  approaches  zero  in  any 
manner  whatever.  Suppose  that  the  point  z^  approaches  the  point 
z  along  a  curve  C,  whose  tangent  at  the  point  z  makes  an  angle  a 

with  the  parallel  to  the  direction  Ox ;  the  point  u^  will  itself  de- 

scribe a  curve  C'  passing  through  u.  Let  us  discard  the  case  in 
which  f(z)  is  zero,  and  let  p  and  <o  be  the  absolute  value  and  the 

angle  of  f(z)  respectively.  Likewise  let  r  and  r'  be  the  distances 

zzl  and  uu^  a1  the  angle  which  the  direction  zzl  makes  with  the 
parallel  zx'  to  Ox,  and  ft'  the  angle  which  the  direction  uul  makes 
with  the  parallel  uX'  to  OX.  The  absolute  value  of  the  quotient 

\c' 

O x O 

u 

FIG.  9a FIG.  9b 

(u^  —  u)/(zl  —  z)  is  equal  to  rjr,  and  the  angle  of  the  quotient  is 
equal  to  ft'  —  a'.   We  have  then  the  two  relations 

(35) lim a1)  = 

ft> 

Let  us  consider  only  the  second  of  these  relations.  We  may  sup- 
pose k  =  0,  since  a  change  in  k  simply  causes  an  increase  in  the 

angle  o>  by  a  multiple  of  2  TT.  When  the  point  zl  approaches  the 

point  z  along  the  curve  C,  a'  approaches  the  limit  a,  ft'  approaches  a 
limit  ft,  and  we  have  ft  =  a  -f-  o>.  That  is  to  say,  in  order  to  obtain  the 
direction  of  the  tangent  to  the  curve  described  by  the  point  u,  it  suffices 

to  turn  the -direction  of  the  tangent  to  the  curve  described  by  z  through 
a  constant  angle  o>.  It  is  naturally  understood  in  this  statement  that 
those  directions  of  the  two  tangents  are  made  to  correspond  which 

correspond  to  the  same  sense  of  motion  of  the  points  z  and  u. 
Let  D  be  another  curve  of  the  plane  xOy  passing  through  the  point 

z,  and  let  D'  be  the  corresponding  curve  of  the  plane  XOY.  If  the 
letters  y  and  $  denote  respectively  the  angles  which  the  corresponding 
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directions  of  the  tangents  to  these  two  curves  make  with  zx'  and 

uX  '  (Figs.  9  a  and  9  £),  we  have 
=          0 

and  consequently  8  —  ft  =  y  —  a.  The  curves  C'  and  D'  cut  each 
other  in  the  same  angle  as  the  curves  C  and  D.  Moreover,  we  see  that 
the  sense  of  rotation  is  preserved.  It  should  be  noticed  that  if 

f'(z)  =  0,  the  demonstration  no  longer  applies. 

If,  in  particular,  we  consider,  in  one  of  the  two  planes  xOy  or  A'OF, 
two  families  of  orthogonal  curves,  the  corresponding  curves  in  the 

other  plane  also  will  form  two  families  of  orthogonal  curves.  For 

example,  the  two  families  of  curves  X  =  C,  Y  =  C',  and  the  two 
families  of  curves 

(36)  \f(»)\=C,        angle  /(*)  =  C" 

form  orthogonal  nets  in  the  plane  xOy,  for  the  corresponding  curves 

in  the  plane  XOY  are,  in  the  first  case,  two  systems  of  parallels  to  the 
axes  of  coordinates,  and,  in  the  other,  circles  having  the  origin  for 

center  and  straight  lines  proceeding  from  the  origin. 

Example  1.  Let  z'  =  z*,  where  a  is  a  real  positive  number.  Indicating  by 
r  and  B  the  polar  coordinates  of  z,  and  by  r'  and  B'  the  polar  coordinates  of  z', 
the  preceding  relation  becomes  equivalent  to  the  two  relations  r'  =  r",  B'  =  aO. 
We  pass  then  from  the  point  z  to  the  point  z'  by  raising  the  radius  vector  to 
the  power  a  and  by  multiplying  the  angle  by  a.  The  angles  are  preserved,  ex- 

cept those  which  have  their  vertices  at  the  origin,  and  these  are  multiplied  by 
the  constant  factor  a. 

Example  2.  Let  us  consider  the  general  linear  transformation 

az  +  6 

(37)  z'  = cz  +  d 

where  a,  6,  c,  d  are  any  constants  whatever.  In  certain  particular  cases  it  is 

easily  seen  how  to  pass  from  the  point  z  to  the  point  z'  .  Take  for  example  the 
transformation  z'  =  z  +  b  ;  let  z  =  x  +  yi,  z'  —  x'  +  y'i,  b  =  a  +  pi  ;  the  preced- 

ing relation  gives  x'  =  x  +  nr,  y'  =  y  +  £,  which  shows  that  we  pass  from  the 
point  z  to  the  point  z'  by  a  translation. 

Let  now  z'  =  az  ;  if  p  and  w  indicate  the  absolute  value  and  angle  of  a  respec- 
tively, then  we  have  r'  =  /or,  0'  =  w  +  6.  Hence  we  pass  from  the  point  z  to  the 

point  z'  by  multiplying  the  radius  vector  by  the  constant  factor  p  and  then  turning 
this  new  radius  vector  through  a  constant  angle  w.  We  obtain  then  the  transfor- 

mation defined  by  the  formula  z'  =  az  by  combining  an  expansion  with  a  rotation. 
Finally,  let  us  consider  the  relation 

where  r,  0,  r7,  6'  have  the  same  meanings  as  above.    We  must  have  rr'  =  1, 
9  +  0'  =  0.   The  product  of  the  radii  vectores  is  therefore  equal  to  unity,  while 
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the  polar  angles  are  equal  and  of  opposite  signs.  Given  a  circle  C  with  center 
A  and  radius  .R,  we  shall  use  the  expression  inversion  with  respect  to  the  given 
circle  to  denote  the  transformation  by  which  the  polar  angle  is  unchanged  but 

the  radius  vector  of  the  new  point  is  R2/r.  We  obtain  then  the  transformation 

defined  by  the  relation  z'z  =  1  by  carrying,  out  first  an  inversion  with  respect  to 
a  circle  of  unit  radius  and  with  the  origin  as  center,  and  then  taking  the  sym- 

metric point  to  the  point  obtained  with  respect  to  the  axis  Ox. 

The  most  general  transformation  of  the  form  (37)  can  be  obtained  by  com- 
bining the  transformations  which  we  have  just  studied.  If  c  =  0,  we  can  replace 

the  transformation  (37)  by  the  succession  of  transformations 

a  ,   ,  b *1=-z,    *=*,  +  -. 
If  c  is  not  zero,  we  can  carry  out  the  indicated  division  and  write 

a      be—  ad 
z  =-  +  -         -  » 

c      c2z  +  cd 

and  the  transformation  can  be  replaced  by  the  succession  of  transformations 

,  d  1 
Z1  =  Z  +  -  >  Z2  =  C  Z\  ,  ZS  =  —  > C  Z2 

OL 

z4  =  (be  —  ad)  zs ,        z'  —  z4  -\   C 

All  these  special  transformations  leave  the  angles  and  the  sense  of  rotation 

unchanged,  and  change  circles  into  circles.  Hence  the  same  thing  is  then  true 
of  the  general  transformation  (37),  which  is  therefore  often  called  a  circular 
transformation.  In  the  above  statement  straight  lines  should  be  regarded  as 
circles  with  infinite  radii. 

Example  3.  Let 

z'  -  (z  —  ej™!  (z  —  ez)mt  "-(z  —  ep)mP, 

where  ex,  e2,  •••,%>  are  any  quantities  whatever,  and  where  the  exponents  mv 

ra2,  •  • .,  mp  are  any  real  numbers,  positive  or  negative.  Let  M,  E^,  E2,  •  •  •,  Ep 
be  the  points  which  represent  the  quantities  z,  ev  e2,  •  •  •,  ep\  let  also  rj?  r2,  •  •  •, 

rp  denote  the  distances  ME^  ME^,  •  •  •,  MEP  and  #,,  02,  •  •  •,  9P  the  angles  which 
E^M,  E^M,  -  •  - ,  EPM  make  with  the  parallels  to  Ox.  The  absolute  value  and 

the  angle  of  z'  are  respectively  r^ir^z  -  •  •  rpmP  and  ml6l  +  ra202  +  •  •  •  +  mp6p, 
Then  the  two  families  of  curves 

rmirm2 . . .  ,j.p  =  (^        miffi  +  W2#2  +  . . .  +  mpep  =  C' 

form  an  orthogonal  system.  When  the  exponents  ra^,  m2,  •  •  •,  mp  are  rational 
numbers,  all  the  curves  are  algebraic.  If,  for  example,  p  =  2,  mt  =  m2  =  1,  one 
of  the  families  is  composed  of  Cassinian  ovals  with  two  foci,  and  the  second 
family  is  a  system  of  equilateral  hyperbolas. 

20.  Conformal  transformations  in  general.  The  examination  of  the 

converse  of  the  proposition  which  we  have  just  established  leads  us  to 

treat  a  more  general  problem.  Two  surfaces,  2,  2',  being  given,  let 
us  set  up  between  them  any  point-to-point  correspondence  whatever 



46 ELEMENTS  OF  THE  THEORY 

[I,  §  20 (except  for  certain  broad  restrictions  which  will  be  made  later), 
and  let  us  examine  the  cases  in  which  the  angles  are  unaltered  in 
that  transformation.  Let  x,  y,  z  be  the  rectangular  coordinates  of 

a  point  of  S,  and  let  x',  y\  z1  be  the  rectangular  coordinates  of  a 
point  of  2'-  We  shall  suppose  the  six  coordinates  x,  y,  z,  x',  y',  z1 
expressed  as  functions  of  two  variable  parameters  u,  v  in  such  a  way 
that  corresponding  points  of  the  two  surfaces  correspond  to  the  same 

pair  of  values  of  the  parameters  u,  v : 

(38) =  *  (M,  v), 
.z  =  if/(u,  v), 

*  =  f'(u>  v)> 

'       =  #(u,  v), 
'  =  if/'(u,  v). 

Moreover,  we  shall  suppose  that  the  functions  /,  <£,  •  •  .,  together  with 
their  partial  derivatives  of  the  first  order,  are  continuous  when  the 

points  (sc,  y,  z)  and  (x',  y',  z')  remain  in  certain  regions  of  the  two 
surfaces  S  and  %'.  We  shall  employ  the  usual  notations  (I,  §  131) : 

(39) 

/"»  —    C*  I 

(JT        O    I   ~ZT~ 

du  dv 

ds*  =Edu?  +  2Fdu  dv  +  Gdv*, 
ds®=E'du2  +  2F'dudv  4-  G'dv2. 

Let  C  and  D  (Figs.  10  a  and  10  b)  be  two  curves  on  the  surface  2, 

passing  through  a  point  ra  of  that  surface,  and  C'  and  D'  the  corre- 
sponding curves  on  the  surface  S'  passing  through  the  point  m'. 

FIG. 10  a FIG.  106 

Along  the  curve  C  the  parameters  u,  v  are  functions  of  a  single 
auxiliary  variable  t,  and  we  shall  indicate  their  differentials  by  du 

and  dv.  Likewise,  along  D,  u  and  v  are  functions  of  a  variable  t',  and 
we  shall  denote  their  differentials  here  by  8^  and  Sv.  In  general,  we 
shall  distinguish  by  the  letters  d  and  8  the  differentials  relative  to 
a  displacement  on  the  curve  C  and  to  one  on  the  curve  D.  The 
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following  total  differentials  are  proportional  to  the  direction  cosines 
of  the  tangent  to  the  curve  C, 

ex  _     ,  dx  .  dy  dy  dz  ,      ,   dz  _ 
ax  =  -r-  du  +  —  av,     dy  =  -7^-  du  -\-  -^-  dv,     dz  =  •%-  au  -\-  •%-  dv, cu  cv  cu  ov  cu  ov 

and  the  following  are  proportional  to  the  direction  cosines  of  the 
tangent  to  the  curve  D, 

Let  to  be  the  angle  between  the  tangents  to  the  two  curves  C  and 
D.    The  value  of  cos  <o  is  given  by  the  expression 

COS  to)  =        .   ~.       ,   , 

Vdz2  +  df  -f  dz2  VSx2  4-  fy2  +  8^2 

which  can  be  written,  making  use  of  the  notation  (39),  in  the  form 

Edu  Bu  +  F(du  Bv  +  dv  Bu)  +  Gdv  Bv 

(40)    cos  w  = 
v  +  Gdv*     EBu2  +  2FBu  Bv  +  GBv2 

If  we  let  a)'  denote  the  angle  between  the  tangents   to  the  two 
curves  C'  and  D',  we  have  also 

E'du  Bu  +  F'(du  Bv  +  ̂v  SM)  +  G'dv  Bv 

(41)  cos  to'  —  — 

In  order  that  the  transformation  considered  shall  not  change  the 

value  of  the  angles,  it  is  necessary  that  cos  o/  =  cos  w,  whatever  du, 
dv}  Bu,  Bv  may  be.  The  two  sides  of  the  equality 

COS2  to)'  =  COS2  to) 

are  rational  functions  of  the  ratios  Bv/8u,  dv/du,  and  these  functions 

must  be  equal  whatever  the  values  of  these  ratios.  Hence  the  corre- 
sponding coefficients  of  the  two  fractions  must  be  proportional ;  that 

is,  we  must  have 

/42\  £!  _£[_£!_  X2 
E"  F"  G~    A' 

where  X  is  any  function  whatever  of  the  parameters  u,  v.  These 
conditions  are  evidently  also  sufficient,  for  cos  to,  for  example,  is  a 
homogeneous  function  of  E,  F,  G,  of  degree  zero. 

The  conditions  (42)  can  be  replaced  by  a  single  relation  ds®  =  X?ds2,  or 

(43)  ds'  =  \ds. 
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This  relation  states  that  the  ratio  of  two  corresponding  infinitesimal 

arcs  approach  a  limit  independent  of  du  and  of  dv,  when  these  two 
arcs  approach  zero.  This  condition  makes  the  reasoning  almost 
intuitive.  For,  let  abc  be  an  infinitesimal  triangle  on  the  first  surface, 

and  a'b'c'  the  corresponding  triangle  on  the  second  surface.  Imagine 
these  two  curvilinear  triangles  replaced  by  rectilinear  triangles  that 

approximate  them.  Since  the  ratios  a'b'/ab,  a'c'/ac,  b'c'/bc  approach 
the  same  limit  \(u,  v),  these  two  triangles  approach  similarity  and 
the  corresponding  angles  approach  equality. 
We  see  that  any  two  corresponding  infinitesimal  figures  on  the 

two  surfaces  can  be  considered  as  similar,  since  the  lengths  of  the 

arcs  are  proportional  and  the  angles  equal  ;  it  is  on  this  account  that 

the  term  conformal  representation  is  often  given  to  every  correspond- 
ence which  does  not  alter  the  angles. 

Given  two  surfaces  2,  2'  and  a  definite  relation  which  establishes 
a  point-to-point  correspondence  between  these  two  surfaces,  we  can 
always  determine  whether  the  conditions  (42)  are  satisfied  or  not, 
and  therefore  whether  we  have  a  conformal  representation  of  one 
of  the  surfaces  on  the  other. 

But  we  may  consider  other  problems.  For  example,  given  the  sur- 

faces 3  and  2',  we  may  propose  the  problem  of  determining  all  the 
correspondences  between  the  points  of  the  two  surfaces  which  pre- 

serve the  angles.  Suppose  that  the  coordinates  (x,  y,  z)  of  a  point 

of  2  are  expressed  as  functions  of  two  parameters  (u,  v),  and  that 

the  coordinates  (x',  y\  z')  of  a  point  of  2'  are  expressed  as  functions 
of  two  other  parameters  (u',  v').  Let 

ds2  =  Edu2  +  2Fdudv  +  G  dv*,      ds'2  =  E'  du'2  +  2F'  du1  dv'  +  G'dv92 

be  the  expressions  for  the  squares  of  the  linear  elements.  The  prob- 

lem in  question  amounts  to  this  :  To  find  two  functions  u'  =  TT^U,  v), 

v'  =  7T2(w,  v)  suck  that  we  have  identically 

E'  dir\  +  2  F1  djr^  d7T2  +  G'  dir\  =  \2(E  du2  +  2  F  du  dv  +  G  dv2), 

A.  being  any  function  of  the  variables  u,  v.  The  general  theory  of  dif- 
ferential equations  shows  that  this  problem  always  admits  an  infinite 

number  of  solutions  ;  we  shall  consider  only  certain  special  cases. 

21.  Conformal  representation  of  one  plane  on  another  plane.  Every 

correspondence  between  the  points  of  two  planes  is  defined  by 
relations  such  as 

(44)  X=P(x,y),          Y=Q(x,y), 
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where  the  two  planes  are  referred  to  systems  of  rectangular  coordi- 
nates (x,  y)  and  (X,  Y).  From  what  we  have  just  seen,  in  order  that  this 

transformation  shall  preserve  the  angles,  it  is  necessary  and  sufficient 
that  we  have 

where  A  is  any  function  whatever  of  x,  y  independent  of  the  differ- 
entials. Developing  the  differentials  dX,  dY  and  comparing  the  two 

sides,  we  find  that  the  two  functions  P(x,  y)  and  Q(x,  y)  must 
satisfy  the  two  relations 

,,~      /8P\*/dQ\*      (dP 
(45)      (j-  )  +(3-)  =    - \cx/       \cx/ dy       dx  dy 

The  partial  derivatives  dP/dy,  dQ,/dy  cannot  both  be  zero,  for  the 

first  of  the  relations  (45)  would  give  also  dQ/dx  =  dP/dx  =  0,  and 
the  functions  P  and  Q  would  be  constants.  Consequently  we  can 
write  according  to  the  last  relation, 

^P_-    dQ          ̂ Q_          dP 
dx          dy  dx  dy 

where  /z  is  an  auxiliary  unknown.  Putting  these  values  in  the  first 

condition  (45),  it  becomes 

and  from  it  we  derive  the  result  /*  =  ±  1.    We  must  then  have 
either 

(46)  ?£  =  ̂ ,  ̂   =  _^ 
dx       dy  dy  dx 

or 

(47) D 

dy       dx 

The  first  set  of  conditions  state  that  P  +  Qi  is  an  analytic  func- 
tion of  x  -f-  yi.  As  for  the  second  set,  we  can  reduce  it  to  the  first 

by  changing  Q  to  —  Q,  that  is,  by  taking  the  figure  symmetric  to  the 
transformed  figure  with  respect  to  the  axis  OX.  Thus  we  see,  finally, 
that  to  every  conformal  representation  of  a  plane  on  a  plane  there 
corresponds  a  solution  of  the  system  (46),  and  consequently  an 

analytic  function.  If  we  suppose  the  axes  OX  and  OY  parallel  re- 
spectively to  the  axes  Ox  and  O?/,  the  sense  of  rotation  of  the  angles 

is  preserved  or  not,  according  as  the  functions  P  and  Q  satisfy  the 
relations  (46)  or  (47). 
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r 

22.  Riemann's  theorem.  Given  in  the  plane  of  the  variable  z  a  region  A 

bounded  by  a  single  curve  (or  simple  boundary),  and  in  the  plane  of  the  vari- 
able u  a  circle  (7,  Riemann  proved  that  there  exists  an  analytic  function  u  =  /(z), 

analytic  in  the  region  J.,  such  that  to  each  point  of  the  region  A  corresponds 

a  point  of  the  circle,  and  that,  conversely,  to  a  point  of  the  circle  corresponds 
one  and  only  one  point  of  A.  The  function  /(z)  depends  also  upon  three 
arbitrary  real  constants,  which  we  can  dispose  of  in  such  a  way  that  the  center 
of  the  circle  corresponds  to  a  given  point  of  the  region  J.,  while  an  arbitrarily 

chosen  point  on  the  circumference  corresponds  to  a  given  point  of  the  boundary 
of  A.  We  shall  not  give  here  the  demonstration  of  this  theorem,  of  which  we 
shall  indicate  only  some  examples. 

We  shall  point  out  only  that  the  circle  can  be  replaced  by  a  half -plane. 
Thus,  let  us  suppose  that,  in  the  plane  of  it,  the  circumference  passes  through  the 

origin ;  the  transformation  u'  =  l/u  replaces  that  circumference  by  a  straight 
line,  and  the  circle  itself  by  the  portion  of  the  w'-plane  situated  on  one  side  of 
the  straight  line  extended  indefinitely  in  both  directions. 

Example  1.  Let  u  =  z1/*,  where  a  is  real  and  positive.  Consider  the  portion 
A  of  the  plane  included  between  the  direction  Ox  and  a  ray  through  the  origin 

making  an  angle  of  air  with  Ox  (a  =5  2).  Let  z  =  re*'*,  u  =  R&»  ;  we  have. 

B=-4  =- 

~  a 

When  the  point  z  describes  the  portion  A  of  the  plane,  r  varies  from  0  to 
+  oo  and  6  from  0  to  CCJT  ;  hence  R  varies  from  0  to  +  oo  and  u  from  0  to  TT. 

y 

O 

!   i 

-ft" 
-+-4— 

FIG. 11 

The  point  u  therefore  describes  the  half -plane  situated  above  the  axis  OJT,  and 
to  a  point  of  that  half -plane  corresponds  only  one  point  of  A,  for  we  have, 

inversely,  r  =  Ra,  6  =  au. 
Let  us  next  take  the  portion  B  of  the  z-plane  bounded  by  two  arcs  of  circles 

which  intersect.  Let  z0,  zl  be  the  points  of  intersection ;  if  we  carry  out  first  the 
transformation z  —  zn 

Z'  = 

Z  ~~~  Z-t 

the  region  B  goes  over  into  a  portion  A  of  the  z'-plane  included  between  two 
rays  from  the  origin,  for  along  the  arc  of  a  circle  passing  through  the  points 
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Z0,  Zj,  the  angle  of  (z  —  z0)/(z  —  zt)  remains  constant.    Applying  now  the  pre- 
ceding transformation  u  =  (z')1/*,  we  see  that  the  function 

u 

=  /*-*oV 
\z  —  zj 

enables  us  to  realize  the  conformal  representation  of  the  region  B  on  a  half- 
plane  by  suitably  choosing  a. 

Example  2.  Let  u  =  cosz.  Let  us  cause  z  to  describe  the  infinite  half-strip 

B,  or  AOBA'  (Fig.  11),  defined  by  the  inequalities  0  ==  x  =  rr,  y  ̂   0,  and  let 
us  examine  the  region  described  by  the  point  u  =  X  +  Yi.  We  have  here  (§  12) 

e^+e-v  e^ 
(48)  X  =  cos  x  -  ,        T  =  —  sm  x 

When  x  varies  from  0  to  TT,  Y  is  always  negative  and  the  point  u  remains  in 

the  half  -plane  below  the  axis  X'OX.  Hence,  to  every  point  of  the  region  R 
corresponds  a  point  of  the  u  half-plane,  and  when  the  point  z  is  on  the  bound- 

ary of  R,  we  have  Y  =  0,  for  one  of  the  two  factors  sin  x  or  (&  —  e~  v)/2  is  zero. 
Conversely,  to  every  point  of  the  u  half-plane  below  OX  corresponds  one  and 

only  one  point  of  the  strip  R  in  the  z-plane.  In  fact,  if  z'  is  a  root  of  the  equa- 
tion u  —  cos  z,  all  the  other  roots  are  included  in  the  expression  2  for  ±  z'.  If 

the  coefficient  of  i  in  z1  is  positive,  there  cannot  be  but  one  of  these  points  in  the 
strip  R,  for  all  the  points  2  for  —  z'  are  below  Ox.  There  is  always  one  of 
the  points  2  kir  +  z'  situated  in  R,  for  there  is  always  one  of  these  points  whose 
abscissa  lies  between  0  and  2  TT.  That  abscissa  cannot  be  included  between  TT 

and  2  TT,  for  the  corresponding  value  of  Y  would  then  be  positive.  The  point  is 
therefore  located  in  R. 

It  is  easily  seen  from  the  formulae  (48)  that  when  the  point  z  describes  the 
portion  of  a  parallel  to  Ox  in  ,R,  the  point  u  describes  half  of  an  ellipse.  When 

the  point  z  describes  a  parallel  to  Oy,  the  point  u  describes  a  half-branch  of  a 

hyperbola.  All  these  conies  have  as  foci  the  points  C,  C'  of  the  axis  OX,  with 
the  abscissas  +  1  and  —  1. 

Example^.  Let  n-z 

(49)  u  = irz e2«+  1 

where  a  is  real  and  positive.  In  order  that  \u\  shall  be  less  than  unity,  it  is 
easy  to  show  that  it  is  necessary  and  sufficient,  that  cos  [(Try)/(2  a)]  >  0.  If  y 
varies  from  —  a  to  +  a,  we  see  that  to  the  infinite  strip  included  between  the 
two  straight  lines  y  =  —  a,  y  =  +  a  corresponds  in  the  tt-plane  the  circle  C 
described  about  the  origin  as  center  with  unit  radius.  Conversely,  to  every 
point  of  this  circle  corresponds  one  and  only  one  point  of  the  infinite  strip,  for 
the  values  of  z  which  correspond  to  a  given  value  of  u  form  an  arithmetical  pro- 

gression with  the  constant  difference  of  4  ai.  Hence  there  cannot  be  more  than 
one  value  of  z  in  the  strip  considered.  Moreover,  there  is  always  one  of  these 

roots  in  which  the  coefficient  of  i  lies  between  —  a  and  3  a,  and  that  coefficient 
cannot  lie  between  a  and  3  a,  for  the  corresponding  value  of  |  u  \  would  then  be 
greater  than  unity. 
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23.  Geographic  maps.  To  make  a  conformal  map  of  a  surface 

means  to  make  the  points  of  the  surface  correspond  to  those  of  a 
plane  in  such  a  way  that  the  angles  are  unaltered.  Suppose  that  the 

coordinates  of  a  point  of  the  surface  2  under  consideration  be  ex- 

pressed as  functions  of  two  variable  parameters  (u,  v),  and  let 

ds2  =  E  du2  +  2  Fdu  dv  +  G  dv2 

be  the  square  of  the  linear  element  for  this  surface.  Let  (a,  ft)  be 
the  rectangular  coordinates  of  the  point  of  the  plane  P  which  cor- 

responds to  the  point  (u,  v)  of  the  surface.  The  problem  here  is  to 
find  two  functions 

of  such  a  nature  that  we  have  identically 

E  du2  +  2  Fdu  dv+  G  dv2  =  \(da2  +  dfP), 

where  X  is  any  function  whatever  of  a,  ft  not  containing  the  differ- 
entials. This  problem  admits  an  infinite  number  of  solutions,  which 

can  all  be  deduced  from  one  of  them  by^  means  of  the  conformal 
transformations,  already  studied,  of  one  plane  on  another.  Suppose 
that  we  actually  have  at  the  same  time 

ds2  =  X  (da2  +  dff),         ds2  =  X'  (da*2  +  dft'2)  ; 

tfren  we  shall  also  have 

da2  +  dff.m*ij-  (da12  +  dp"), 

so  that  a  -\-  fti,  or  a  —  fti,  will  be  an  analytic  function  of  a'  -\-  ft'i. 
The  converse  is  evident. 

Example  1.  Mercator's  projection.  We  can  always  make  a  map  of  a 
surface  of  revolution  in  such  a  way  that  the  meridians  and  the  paral- 

lels of  latitude  correspond  to  the  parallels  to  the  axes  of  coordinates. 
Thus,  let 

x  =  p  cos  to,         y  =  p  sin  <o,         z  =  f(p) 

be  the  coordinates  of  a  point  of  a  surface  of  revolution  about  the 
axis  Oz ;  we  have 

[1 
   _l_

   fV(n
\  ~] 

7      9        I                   I      . /         \P )      7     Q    I 

dco2  H   2  vr/  dp*  i 

which  can  be  written 

ds2  =  p2(dX2  -f-  dY2) 
if  we  set 

X  =  co,          Y  = 
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In  the  case  of  a  sphere  of  radius  R  we  can  write  the  coordinates  in 
the  form 

x  =  R  sin  0  cos  <£,         y  =  R  sin  6  sin  <£,         z  =  R  cos  0, 

ds*  = 
Sill 

and  we  shall  set 

We  obtain  thus  what  is  called  Mercator's  projection,  in  which  the 
meridians  are  represented  by  parallels  to  the  axis  0  Y,  and  the  paral- 

lels of  latitude  by  segments  of  straight  lines  parallel  to  OX.  To 
obtain  the  whole  surface  of  the  sphere  it  is  sufficient  to  let  <f>  vary 

from  0  to  2  TT,  and  0  from  0  to  TT  ;  then  X  varies  from  0  to  2  TT  and  Y 

from  —  oo  to  -f-  oo.  The  map  has  then  the  appearance  of  an  infinite 
strip  of  breadth  2  TT.  The  curves  on  the  surface  of  the  sphere  which 
cut  the  meridians  at  a  constant  angle  are  called  loxodromic  curves 

or  rhumb  lines,  and  are  represented  on  the  map  by  straight  lines. 

Example  2.  Stereograpldc  projection.  Again,  we  may  write  the 
square  of  the  linear  element  of  the  sphere  in  the  form 

ds2  =  4  cos4  - 

4  cos4  ̂  
or 

if  we  set 

But  dp2  -f-  p2da>2  represents  the  square  of  the  linear  element  of  the 
plane  in  polar  coordinates  (/o,  o>)  ;  hence  it  is  sufficient,  in  order  to 
obtain  a  conformal  representation  of  the  sphere,  to  make  a  point  of 

the  plane  with  polar  coordinates  (p}  o>)  correspond  to  the  point  (0,  <£) 
of  the  surface  of  the  sphere.  It  is  seen  immediately,  on  drawing  the 

figure,  that  p  and  w  are  the  polar  coordinates  of  the  stereographic 

projection  of  the  point  (0,  <£)  of  the  sphere  on  the  plane  of  the 

equator,  the  center  of  projection  being  one  of  the  poles.* 

*  The  center  of  projection  is  the  south  pole  if  0  is  measured  from  the  north  pole 
to  the  radius.  Using  the  north  pole  as  the  center  of  projection,  the  point  (IP/p,  &>), 

symmetric  to  the  first  point  (see  Ex.  17,  p.  58),  would  be  obtained.  — TRANS. 
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Example  3.  Map  of  an  anchor  ring.  Consider  the  anchor  ring  generated  by 
the  revolution  of  a  circle  of  radius  R  about  an  axis  situated  in  its  own  plane  at 
a  distance  a  from  its  center,  where  a  >  R.  Taking  the  axis  of  revolution  for  the 

axis  of  z,  and  the  median  plane  of  the  anchor  ring  for  the  xy-plane,  we  can 
write  the  coordinates  of  a  point  of  the  surface  in  the  form 

x  =  (a  +  R  cos  0)  cos  0,        y  =  (a  +  R  cos  6}  sin  0,        z  =  R  sin  0, 

and  it  is  sufficient  to  let  6  and  0  vary  from  —  TT  to  +  TT.   From  these  formulae 
we  deduce  r  #2  ,7/32 

+  -  fLrf 

r 

ds*  =  (a  +  R  cos0)2 L 

and,  to  obtain  a  map  of  the  surface,  we  may  set 
-*=*, 

d6  2e      arc  tan  > 

tan  i  • 

where 

Thus  the  total  surface  of  the  anchor  ring  corresponds  point  by  point  to  that 

of  a  rectangle  whose  sides  are  2  TT  and  2  ire/  Vl  —  e2. 

24.  Isothermal  curves.   Let  U(x,  y)  be  a  solution  of  Laplace's  equation 

the  curves  represented  by  the  equation 

(50)  U(x,  y)  =  C, 

where  (7  is  an  arbitrary  constant,  form  a  family  of  isothermal  curves.  With  every 

solution  U(x,  y)  °^  Laplace's  equation  we  can  associate  another  solution, 
F(x,  y),  such  that  U  +  Vi  is  an  analytic  function  of  x  +  yi.  The  relations 

dU_dV         d_£_   _dV 

dx       dy'        8y  ~        dx 
show  that  the  two  families  of  isothermal  curves 

U  (x,  y)  =  0,        V(x,  y)  =  C' 

are  orthogonal,  for  the  slopes  of  the  tangents  to  the  two  curves  C  and  C'  are 

respectively  
_™_^JL,  _?I^2Z. 

dx       dy'  dx       dy 
Thus  the  orthogonal  trajectories  of  a  family  of  isothermal  curves  form  another 
family  of  isothermal  curves.  We  obtain  all  the  conjugate  systems  of  isothermal 
curves  by  considering  all  analytic  functions  f(z)  and  taking  the  curves  for 
which  the  real  part  of  /(z)  and  the  coefficient  of  i  have  constant  values.  The 
curves  for  which  the  absolute  value  R  and  the  angle  ft  of  /(z)  remain  constant 
also  form  two  conjugate  isothermal  systems  ;  for  the  real  part  of  the  analytic 
function  Log  [/(z)]  is  log  E,  and  the  coefficient  of  i  is  0. 

Likewise  we  obtain  conjugate  isothermal  systems  by  considering  the  curves 
described  by  the  point  whose  coordinates  are  X,  F,  where  /(z)  —  X  +  Fi,  when 
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we  give  to  x  and  y  constant  values.  This  is  seen  by  regarding  x  +  yi  as  ari 
analytic  function  of  X  +  Yi.  More  generally,  every  transformation  of  the 
points  of  one  plane  on  the  other,  which  preserves  the  angles,  changes  oile  family 
of  isothermal  curves  into  a  new  family  of  isothermal  curves.  Let 

x=p(x',  /),        y  =  q(x',y') 

be  equations  defining  a  transformation  which  preserves  angles,  and  let  F(x',  y') 
be  the  result  obtained  on  substituting  p  (x',  y')  and  q  (x',  y')  for  x  and  y  in  t/(x,  y). 
The  proof  consists  in  showing  that  F(x',  y')  is  a  solution  of  Laplace's  equation, 
provided  that  U(x,  y)  is  a  solution.  The  verification  of  this  fact  does  not  offer 

any  difficulty  (see  Vol.  I,  Chap.  Ill,  Ex.  8,  2d  ed.;  Chap.  II,  Ex.  9,  1st  ed.), 
but  the  theorem  can  be  established  without  any  calculation.  Thus,  we  can  sup- 

pose that  the  functions  p  (x',  y')  and  q  (x',  y')  satisfy  the  relations 

dp  _  8q  dp  _        dq 

dx'  ~  dy''        dy/~       8x'  ' 
for  a  symmetric  transformation  evidently  changes  a  family  of  isothermal  curves 
into  a  new  family  of  isothermal  curves.  The  function  x  +  yi  =  p  +  qi  is  then 

an  analytic  function  of  z'  =  x'  +  y'i,  and,  after  the  substitution,  U  +  Vi  also 

becomes  an  analytic  function  F(x',  y')+i$(x',  y')  of  the  same  variable  z' 
(§  5).  Hence  the  two  families  of  curves 

F(x',  2/0  =C,        *(*',  y')=C' 
give  a  new  orthogonal  net  formed  by  two  conjugate  isothermal  families. 

For  example,  concentric  circles  and  the  rays  from  the  center  form  two  con- 

jugate isothermal  families,  as  we  see  at  once  by  considering  the  analytic  func- 
tion Log  z.  Carrying  out  an  inversion,  we  have  the  result  that  the  circles 

passing  through  two  fixed  points  also  form  an  isothermal  system.  The  conjugate 
system  is  also  composed  of  circles. 

Likewise,  conf  ocal  ellipses  form  an  isothermal  system.  Indeed,  we  have  seen 
above  that  the  point  u  =  cos  z  describes  conf  ocal  ellipses  when  the  point  z  is 

made  to  describe  parallels  to  the  axis  Ox  (§  22).  The  conjugate  system  is  made 
up  of  confocal  and  orthogonal  hyperbolas. 

Note.  In  order  that  a  family  of  curves  represented  by  an  equation  P  (x,  y)  =  C 
may  be  isothermal,  it  is  not  necessary  that  the  function  P(x,  y)  be  a  solution  of 

Laplace's  equation.  Indeed,  these  curves  are  represented  also  by  the  equation 
0[P(x,  y)]  =  (7,  whatever  be  the  function  <f>  ;  hence  it  is  sufficient  to  take  for 

the  function  0  a  form  such  that  U(x,  y)  =  0(P)  satisfies  Laplace's  equation. 
Making  the  calculation,  we  find  that  we  must  have 

=  o  - 

-  — 
L  W      \dy/  ]     dP  \8x2      dyz 

hence  it  is  necessary  that  the  quotient 

\dy 

depend  only  on  P,  and  if  that  condition  is  satisfied,  the  function  0  can  be 
obtained  by  two  quadratures. 
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EXERCISES 

1.  Determine  the  analytic  function  f(z)  =  X  +  Ti  whose  real  part  X  is 
equal  to  2sin2x 

ezy  +  e-2^—  2  cos2z' 
Consider  the  same   question,  given  that  X  +  Y  is  equal  to  the  preceding 
function. 

2.  Let  0  (w,  p)  =  0  be  the  tangential  equation  of  a  real  algebraic  curve,  that 
is  to  say,  the  condition  that  the  straight  line  y  =.  mx  +  p  be  tangent  to  that 

curve.   The  roots  of  the  equation  <f>  (£,  —  zi)  —  0  are  the  real  foci  of  the  curve. 

3.  If  p  and_</  are  two  integers  prime  to  each  other,  the  two  expressions 

(~v/z)p  and  VZP  are  equivalent.    What  happens  when  p  and  q  have  a  greatest 
common  divisor  d  >  1  ? 

4.  Find  the  absolute  value  and  the  angle  of  ev  +  v1'  by  considering  it  as 
the  limit  of  the  polynomial   [1  -f  (x  +  yi)/rri]m  when  the  integer  m  increases 
indefinitely. 

5.  Prove  the  formulae  In  +  1  ,\ 
sml  -  61 

cos  a  +  cos(a  +  &)+•••+  cos(a  +  n&)  =  -^—  —  ̂ —  cos  (a  H  --  )  , 
.    /b\  \         2/ 

sin   - 

sin(^6\ \    2       /         /        n6\ 

siii  a  +  sin  (a  +  6)  +  •  •  •  +  sin  (a  +  rib)  =   —   sm  ( a  +  —  j . 
sin(-) 

W 

6.  What  is  the  final  value  of  arc  sinz  when  the  variable  z  describes  the  seg- 
ment of  a  straight  line  from  the  origin  to  the  point  1  +  i,  if  the  initial  value  of 

arc  sin  z  is  taken  as  0  ? 

7.  Prove  the  continuity  of  a  power  series  by  means  of  the  formula  (12)  (§  8) 

_  hz  hn 
2  !   2  n  I 

[Take  a  suitable  dominant  function  for  the  series  of  the  right-hand  side.] 

8.  Calculate  the  integrals 

I  xmeax cosbxdx,          I  xmeaxsmbxdx, 

ctn  (x  —  a)  ctn  (x  —  b)  •  •  •  ctn  (x  —  I)  dx. 

9.  Given  in  the  plane  xOy  a  closed  curve  C  having  any  number  whatever  of 
double  points  and  described  in  a  determined  sense,  a  numerical  coefficient  is 

assigned  to  each  region  of  the  plane  determined  by  the  curve  according  to  the  rule 

of  Volume  I  (§  97,  2d  ed. ;  §  96, 1st  ed).  Thus,  let  -B,  E'  be  two  contiguous  regions 
separated  by  the  arc  ah  of  the  curve  described  in  the  sense  of  a  to  6  ;  the  coeffi- 

cient of  the  region  to  the  left  is  greater  by  unity  than  the  coefficient  of  the 

region  to  the  right,  and  the  region  exterior  to  the  curve  has  the  coefficient  0. 
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Let  z0  be  a  point  taken  in  one  of  the  regions  and  N  the  corresponding  coeffi- 

cient. Prove  that  2  NTT  represents  the  variation  of  the  angle  of  z  —  Z0  when 
the  point  z  describes  the  curve  C  in  the  sense  chosen. 

10.  By  studying  the  development  of  Log[(l+  z)/(l  —  z)]  on  the  circle  of 
convergence,  prove  that  the  sum  of  the  series 

sin  0      sin  3  9      sin  5  0  sin  (2  n  +  1)  0 
—   1   1   r  •  •  •  H   — —   r  ••• 
1  3  5  2n  + 1 

is  equal  to  ±  Tr/4,  according  as  sin  d  ̂   0.  (Cf .  Vol.  I,  §  204, 2d  ed.;  §  198, 1st  ed.) 

11.  Study  the  curves  described  by  the  point  Z  =  z2  when  the  point  z  describes 
a  straight  line  or  a  circle. 

12.  The  relation  2Z  =  z  +  c2/z  effects  the  conforinal  representation  of  the 
region  inclosed  between  two  conf  ocal  ellipses  on  the  ring-shaped  region  bounded 
by  two  concentric  circles.   

[Take,  for  example,  z  =  Z  +  Vz2  —  c2,  make  in  the  Z-plane  a  straight-line 
cut  (—  c,  c),  and  choose  for  the  radical  a  positive  value  when  Z  is  real  and 
greater  than  c.] 

13.  Every  circular  transformation  z'  =  (az  +  b)/(cz  +  d)  can  be  obtained  by 
the  combination  of  an  even  number  of  inversions.   Prove  also  the  converse. 

14.  Every  transformation  defined  by  the  relation  z'  =  (az0  +  b)/(cz0  +  d), 
where  z0  indicates  the  conjugate  of  z,  results  from  an  odd  number  of  inversions. 
Prove  also  the  converse. 

15.  Fuchsian    transformations.     Every    linear    transformation    (§  19,  Ex.  2) 

z'  =  (az  +  b)/(cz  +  d),  where  a,  6,  c,  d  are  real  numbers  satisfying  the  relation 
ad  —  be  =  1,  is  called  a  Fuchsian  transformation.    Such  a  transformation  sets 
up  a  correspondence  such  that  to  every  point  z  situated  above  Ox  corresponds  a 

point  z'  situated  on  the  same  side  of  Ox'. 
The  two  definite  integrals 

Veto2  +  dyz  CCdxdy 

  v   JJ  ~f- 
are  invariants  with  respect  to  all  these  transformations. 

The  preceding  transformation  has  two  double  points  which  correspond  to 

the  roots  a,  ft  of  the  equation  cz2  +  (d  —  a)  z  —  b  =  0.  If  a  and  ft  are  real  and 

distinct,  we  can  write  the  equation  z'  =  (az  +  b)/(cz  +  d)  in  the  equivalent  form 

z'  —  a  _     z—  a   —  /C   
z'  —  ft         z-  ft 

where  k  is  real.    Such  a  transformation  is  called  hyperbolic. 

If  a  and  ft  are  conjugate  imaginaries,  we  can  write  the  equation 

z'  —  a  _    {<a  z  —  a 

where  «  is  real.    Such  a  transformation  is  called  elliptic. 

If  ft  =  a,  we  can  write 

z  —  a      z—  a 

where  a  and  k  are  real.    Such  a  transformation  is  called  parabolic. 
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16.  Let  z'  =f(z)  be  a  Fuchsian  transformation.    Put 

Z1=f(z),  «2=/(*l)»  I"'  Zn=/(Z«-l)- 

Prove  that  all  the  points  z,  zt ,  z2 ,  •  •  • ,  zn  are  on  the  circumference  of  a  circle. 
Does  the  point  zn  approach  a  limiting  position  as  n  increases  indefinitely  ? 

17.  Given  a  circle  C  with  the  center  0  and  radius  7?,  two  points  M,  M' 
situated  on  a  ray  from  the  center  O  are  said  to  be  symmetric  with  respect  to 

that  circle  if  OM  x  OM'  =  R2. 
Let  now  (7,  C'  be  two  circles  in  the  same  plane  and  M  any  point  whatever 

in  that  plane.  Take  the  point  M^  symmetric  to  M  with  respect  to  the  circle  C, 

then  the  point  M{  symmetric  to  M^  with  respect  to  C',  then  the  point  Nz  sym- 
metric to  M{  with  respect  to  C,  and  so  on  forever.  Study  the  distribution  of  the 

points  M j ,  M [ ,  Mz ,  M'2 ,  •  •  • . 

18.  Find  the  analytic  function  Z  =  /(z)  which  enables  us  to  pass  from 

Mercator's  projection  to  the  stereographic  projection. 

19*.  All  the  isothermal  families  composed  of  circles  are  made  up  of  circles 
passing  through  two  fixed  points,  distinct  or  coincident,  real  or  imaginary. 

[Setting  z  =  x  +  yi,  ZQ  =  x  —  yi,  the  equation  of  a  family  of  circles  depending 
upon  a  single  parameter  X  may  be  written  in  the  form 

zz0  +  az  +  6z0  +  c  =  0, 

where  a,  &,  c  are  functions  of  the  parameter  X.  In  order  that  this  family  be 

isothermal,  it  is  necessary  that  d2\/dzdz0  =  0.  Making  the  calculation,  the 
theorem  stated  is  proved.] 

20*.  If  | q\  <  1,  we  have  the  identity 

[EULER.] 

[In  order  to  prove  this,  transform  the  infinite  product  on  the  left  into  an  infinite 

product  with  two  indices  by  putting  in  the  first  row  the  factors  1  +  <7,  1  +  <72, 

1  -f.  g*?  ...?  l  +  qf2w?  .  .  .  •  in  the  second  row  the  factors  1  +  q8,  1  +36,  •••» 
1  +  (#3)2W,  •  •  •  ;  and  then  apply  the  formula  (16)  of  the  text.] 

21.  Develop  in  powers  of  z  the  infinite  products 

F(z)  =  (l  +  xz)  (1  +  z2z)  .  •  .  (1  +  xnz)  •  •  •  , 
$  (Z)  =  (1  +  XZ)  (1  +  X*Z)  •  .  •  (1  +  Z2»+  Ig)  .  .  .  . 

[It  is  possible,  for  example,  to  make  use  of  the  relation 

F(xz)  (1  +  xz)  =  F(z),        $  (z2z)  (1  +  xz)  =  *  (z)  .] 

22*.  Supposing  \x\  <  1,  prove  Euler's  formula 

(1  -  x)  (1  -  x2)  (1  -  x3)  ...  (1  -  x»)  ... 

—  n 

3n2-f  n 

=  1  —  X  —  X2  +  X5  —  XT  +  X12  —  •  •  •  +  X      2        —  X 

(See  J.  BERTRAND,  Calcul  difftrentiel,  p.  328.) 
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23*.  Given  a  sphere  of  unit  radius,  the  stereographic  projection  of  that  sphere 
is  made  on  the  plane  of  the  equator,  the  center  of  projection  being  one  of  the 
poles.  To  a  point  M  of  the  sphere  is  made  to  correspond  the  complex  number 
s  =  x  +  yi,  where  x  and  y  are  the  rectangular  coordinates  of  the  projection  ra  of 
M  with  respect  to  two  rectangular  axes  of  the  plane  of  the  equator,  the  origin 
being  the  center  of  the  sphere.  To  two  diametrically  opposite  points  of  the 

sphere  correspond  two  complex  numbers,  s,  —  l/s0,  where  s0  is  the  conjugate 
imaginary  to  8.  Every  linear  transformation  of  the  form 

s'  —  a        .  s  —  a 
(A)  _  =  e»u>_    _, s' -  ft  s-p 

where  /3a0  +1  =  0,  defines  a  rotation  of  the  sphere  about  a  diameter.  To  groups 
of  rotations  which  make  a  regular  polyhedron  coincide  with  itself  correspond 
the  groups  of  finite  order  of  linear  substitutions  of  the  form  (A).  (See  KLEIN, 
Das  Ikosaeder.) 



CHAPTER  II 

THE  GENERAL  THEORY  OF  ANALYTIC  FUNCTIONS 
ACCORDING  TO  CAUCHY 

I.   DEFINITE  INTEGRALS  TAKEN  BETWEEN 
IMAGINARY  LIMITS 

25.  Definitions  and  general  principles.  The  results  presented  in  the 

preceding  chapter  are  independent  of  the  work  of  Cauchy  and,  for 

the  most  part,  prior  to  that  work.  We  shall  now  make  a  system- 
atic study  of  analytic  functions,  and  determine  the  logical  conse- 

quences of  the  definition  of  such  functions.  Let  us  recall  that  a 
function  f(z)  is  analytic  in  a  region  A  :  1)  if  to  every  point  taken 
in  the  region  A  corresponds  a  definite  value  of  f(z)  ;  2)  if  that 
value  varies  continuously  with  z  ;  3)  if  for  every  point  z  taken  in  A 
the  quotient  ,  , 

h 

approaches  a  limit  /*(*)  when  the  absolute  value  of  h  approaches  zero. 
The  consideration  of  definite  integrals,  when  the  variable  passes 

through  a  succession  of  complex  values,  is  due  to  Cauchy  *  ;  it  was 
the  origin  of  new  and  fruitful  methods. 

Let  /(*)  be  a  continuous  function  of  z  along  the  curve  A  MB 
(Fig.  12).  Let  us  mark  off  on  this  curve  a  certain  number  of  points 

of  division  «0,  zlt  «2,  •  •  •,  zn_l9  *',  which  follow  each  other  in  the  order 
of  increasing  indices  when  the  arc  is  traversed  from  A  to  B,  the 

points  ZQ  and  z'  coinciding  with  the  extremities  A  and  B. 
Let  us  take  next  a  second  series  of  points  £1?  £2,  •  •  •,  £„  on  the  arc 

AB,  the  point  £k  being  situated  on  the  arc  zfc__lzk,  and  let  us  consider 
the  sum 

When  the  number  of  points  of  division  zv  •  •  -,  zn_l  increases  indefi- 
nitely in  such  a  way  that  the  absolute  values  of  all  the  differences 

*  Afdmoire  sur  les  integrates  denies,  prises  entre  des  limites  imaginaires,  1825. 
This  memoir  is  reprinted  in  Volumes  VII  and  VIII  of  the  Bulletin  des  Sciences  mathf- 

tiques  (1st  series). matiques  (1st  series) 
00 
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Zl  ~ 

«2  —  «,...  become  and  remain  smaller  than  any  positive 
number  arbitrarily  chosen,  the  sum  S  approaches  a  limit,  which  is 

called  the  definite  integral  of  /(«)  taken  along  AMB  and  which  is 
represented  by  the  symbol 

/  J 

J(AMB) 

/(*)**. To  prove  this,  let  us  separate  the  real  part  and  the  coefficient  of  i 
in  S,  and  let  us  set 

/(«)  =  -Y  +  Yi, z   =  x 

y 

o 

FIG. 12 

where  X  and  Y  are  continuous  functions  along  AMB.    Uniting  the 
similar  terms,  we  can  write  the  sum  S  in  the  form 

k,  tit)  (xk  -  xt_ 

When  the  number  of  divisions  increases  indefinitely,  the  sum  of  the 
terms  in  the  same  row  has  for  its  limit  a  line  integral  taken  along 

A  MB,  and  the  limit  of  S  is  equal  to  the  sum  of  four  line  integrals:* 

I         f(z)dz  —  i       (Xdx  —  Ydy)  +  i  \         (  Ydx  +  Xdy). 
J(AMB)  J(AMB)  J(AMB) 

*  In  order  to  avoid  useless  complications  in  the  proofs,  we  suppose  that  the  coor- 
dinates x,  y  of  a  point  of  the  arc  AMB  are  continuous  functions  x  =  <f>  (t),  y  =  \f/  (t)  of 

a  parameter  t,  which  have  only  a  finite  number  of  maxima  and  minima  between  A 
and  B.  We  can  then  break  up  the  path  of  integration  into  a  finite  number  of  arcs 
which  are  each  represented  by  an  equation  of  the  form  y  =  F(x),  the  function  F  being 
continuous  between  the  corresponding  limits  ;  or  into  a  finite  number  of  arcs  which 
are  each  represented  by  an  equation  of  the  form  x=G(y).  There  is  no  disadvantage 
in  making  this  hypothesis,  for  in  all  the  applications  there  is  always  a  certain  amount 
of  freedom  in  the  choice  of  the  path  of  integration.  Moreover,  it  would  suffice  to 
suppose  that  0  (x)  and  ̂   (x)  are  functions  of  limited  variation.  We  have  seen  that 
in  this  case  the  curve  AMB  is  then  rectifiable  (I,  ftns.,  §§  73,  82,  95,  2d  ed.). 
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From  the  definition  it  results  immediately  that 

f      /(«)<&  +  / 
J(AMB)  J  \B («)<&  =  0. (AMB)  BMA) 

It  is  often  important  to  know  an  upper  bound  for  the  absolute  value 
of  an  integral.  Let  s  be  the  length  of  the  arc  AM,  L  the  length  of 
the  arc  AB,  sk_lf  sk,  <rk  the  lengths  of  the  arcs  Azt_lf  Azk)  A£k  of 

the  path  of  integration.  Setting  F(s)  =  |/(«)  |,  we  have 

for  \zk  —  zk_1\  represents  the  length  of  the  chord,  and  sk  —  sk_l  the 
length  of  the  arc.  Hence  the  absolute  value  of  S  is  less  than  or  at 

most  equal  to  the  sum  ̂ lF(<rk)(sk  —  s^_i);  whence,  passing  to  the 
limit,  we  find  -  ~L 

|        /(z)d2  ̂   /     .F(*)ds. J(AMB)  Jo 

Let  Af  be  an  upper  bound  for  the  absolute  value  of  f(z)  along  the 
curve  AB.  It  is  clear  that  the  absolute  value  of  the  integral  on  the 

right  is  less  than  ML,  and  we  have,  a  fortiori, 

J(A 

/<«)<* 
<  ML. 

'(AMB) 

26.  Change  of  variables.  Let  us  consider  the  case  that  occurs  fre- 
quently in  applications,  in  which  the  coordinates  x,  y  of  a  point  of 

the  arc  AB  are  continuous  functions  of  a  variable  parameter  £, 

x  =  <j>  (t),  y  =  \l/  (£),  possessing  continuous  derivatives  <£'  (£),  \j/'  (t)  ;  and 
let  us  suppose  that  the  point  (x,  y)  describes  the  path  of  integra- 

tion from  A  to  B  as  t  varies  from  a  to  ft.  Let  P(t)  and  Q,(f)  be  the 
functions  of  t  obtained  by  substituting  $(t)  and  ̂ (£),  respectively, 
for  x  and  y  in  X  and  Y. 

By  the  formula  established  for  line  integrals  (I,  §  95,  2d  ed.  ;  §  93, 
1st  ed.)  we  have 

f     Xdx  -  Ydy  =  f  [P(t)  <J>'(t)  —  Q(t)  $'  (t)]dt, 
J(AB)  Ja 

C     X  dy  +  Ydx  =  f  [P(Q  ̂ '(#)  +  Q(Q  <#>'  (*)]<ft. 
J(AB)  Ja 

Adding  these  two  relations,  after  having  multiplied  the  two  sides 
of  the  second  by  i,  we  obtain 

(i)        f t/U,B) 
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This  is  precisely  the  result  obtained  by  applying  to  the  integral 

ff(z)  dz  the  formula  established  for  definite  integrals  in  the  case  of 
real  functions  of  real  variables  ;  that  is,  in  order  to  calculate  the 

integral  ff(z)dz  we  need  only  substitute  <£  (0  +  ̂ (0  ̂ or  z  an<^ 

\$'  (f)  +  ty(f)]dt  for  dz  m  f(z)dz.  The  evaluation  of  Jf(z)dz  is 
thus  reduced  to  the  evaluation  of  two  ordinary  definite  integrals.  If 

the  path  A  MB  is  composed  of  several  pieces  of  distinct  curves,  the 
formula  should  be  applied  to  each  of  these  pieces  separately. 

Let  us  consider,  for  example,  the  definite  integral 

We  cannot  integrate  along  the  axis  of  reals,  since  the  function  to  be 

integrated  becomes  infinite  for  z  =  0,  but  we  can  follow  any  path 
whatever  which  does  not  pass  through  the  origin.  Let  z  describe  a 
semicircle  of  unit  radius  about  the  origin  as  center.  This  path  is 

given  by  setting  z  =  efi  and  letting  t  vary  from  TT  to  0.  Then  the 
integral  takes  the  form 

+ldz     r°  r°  r° 
-Y=J    ie-^dt^il    costdt+  I    sin i    ̂       Jit  Jit  Jit 

This  is  precisely  the  result  that  would  be  obtained  by  substituting 

the  limits  of  integration  directly  in  the  primitive  function  —  1/2 
according  to  the  fundamental  formula  of  the  integral  calculus 

(I,  §78,  2ded.;  §  76,  1st  ed.). 

More  generally,  let  z  =  0  (u)  be  a  continuous  function  of  a  new  complex 
variable  u  =  %  +  rji  such  that,  when  u  describes  in  its  plane  a  path  CND,  the 
variable  z  describes  the  curve  AMB.  To  the  points  of  division  of  the  curve 

AMB  correspond  on  the  curve  CND  the  points  of  division  w0,  uv  M2,  •  -  •  ,  Mfc_i, 

uk  ,  •  •  •  ,  u'.  If  the  function  0  (u)  possesses  a  derivative  <f>'(u)  along  the  curve 
we  can  write 

Uk—  Uk- 

where  e^  approaches  zero  when  UK  approaches  Uk-i  along  the  curve  CND. 

Taking  &_i  =  Zk-i  and  replacing  zk  —  z/t-i  by  the  expression  derived  from  the 
preceding  equality,  the  sum  S,  considered  above,  becomes 

S  =f(Zk-i)<j>'(uk-l)  (Uk  -  Mvfc- 
Jfc=l 

The  first  part  of  the  right-hand  side  has  for  its  limit  the  definite  integral 

f 

*/( 
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As  for  the  remaining  term,  its  absolute  value  is  smaller  than  yML',  where  17  is  a 

positive  number  greater  than  each  of  the  absolute  values  |  e^  |and  where  L'  is  the 
length  of  the  curve  CND.  If  the  points  of  division  can  be  taken  so  close  that 

all  the  absolute  values  |  e^  |  will  be  less  than  an  arbitrarily  chosen  positive  num- 
ber, the  remaining  term  will  approach  zero,  and  the  general  formula  for  the 

change  of  variable  will  be 

(2)  C        f(z)dz=C        f[<t>(u)-]<t>'(u)du. J(AMB)  J(CND) 
'{AMB) 

This  formula  is  always  applicable  when  0  (u)  is  an  analytic  function  ;  in  fact, 
it  will  be  shown  later  that  the  derivative  of  an  analytic  function  is  also  an 

analytic  function*  (see  §  34). 

27.  The  formulae  of  Weierstrass  and  Darboux.  The  proof  of  the  law 
of  the  mean  for  integrals  (I,  §  76,  2d  ed. ;  §  74,  1st  ed.)  rests  upon 
certain  inequalities  which  cease  to  have  a  precise  meaning  when 
applied  to  complex  quantities.  Weierstrass  and  Darboux,  however, 
have  obtained  some  interesting  results  in  this  connection  by  con- 

sidering integrals  taken  along  a  segment  of  the  axis  of  reals.  We 
have  seen  above  that  the  case  of  any  path  whatever  can  be  reduced 
to  this  particular  case,  provided  certain  mild  restrictions  are  placed 
upon  the  path  of  integration. 

Let  /  be  a  definite  integral  of  the  following  form : 
=  f 

j. 
*  If  this  property  is  admitted,  the  following  proposition  can  easily  be  proved. 
Letf(z)  be  an  analytic  function  in  a  finite  region  A  of  the  plane.  For  every  posi- 

tive number  e  another  positive  number  17  can  be  found  such  that 

h 

when  z  and  z  +  h  are  two  points  of  A  ivhose  distance  from  each  other  \h\  is  less  than  77. 
For,  let/ (2)  =P(x,  y)  +  iQ(x,  y),  h  =  Ax  +  iAy.  From  the  calculation  made  in  §3,  to 

find  the  conditions  for  the  existence  of  a  unique  derivative,  we  can  write 

h)  -f(z)  _  [P^(x  +  0Ax,  y)  -  P'x  (x,  y)]  Ax -r  /  (z)  - 

Ax  + 
[Py  (x  +  Ax,  y  +  6 }Ay)  -Py(x,  y)]  Ay Ax  +  iAy 

+   

Since  the  derivatives  P'X,  Py,  Q%,  Qy  are  continuous  in  the  region  A,  we  can  find  a  num- ber t]  such  that  the  absolute  values  of  the  coefficients  of  Ax  and  of  Ay  are  less  than  c/4, 

when  VAx2  +  A?/2  is  less  than  17.  Hence  the  inequality  written  down  above  will  be 
satisfied  if  we  have  |  h  \  <  tj.  This  being  the  case,  if  the  function  0  (u)  is  analytic  in 
the  region  A,  all  the  absolute  values  |  e*  |  will  be  smaller  than  a  given  positive  number  e, 
provided  the  distance  between  two  consecutive  points  of  division  of  the  curve  CND 
is  less  than  the  corresponding  number  17,  and  the  formula  (2)  will  be  established. < 
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where  /(£),  <£(0>  ̂ (0  are  three  real  functions  of  the  real  variable  t 
continuous  in  the  interval  (a,  ft).  From  the  very  definition  of  the 
integral  we  evidently  have 

1=  f  /(*)  *(*)&+*  f  f(t)^(t)dt. U  a  U  a 

Let  us  suppose,  for  definiteness,  that  a  <  ft  ;  then  £  —  a  is  the  length 
of  the  path  of  integration  measured  from  a,  and  the  general  formula 
which  gives  an  upper  bound  for  the  absolute  value  of  a  definite 
integral  becomes 

^  f 

U a 

or,  supposing  that  f(t)  is  positive  between  a  and  ft, 

C^ 

~  Ja 

Applying  the  law  of  the  mean  to  this  new  integral,  and  indicating 
by  £  a  value  of  t  lying  between  a  and  ft,  we  have  also 

Setting  F(t)  =  <£(£)  +  *^(0>  this  result  m^y  also  be  written  in  the 
form 

(3)  /=AF(£)  f  /(O^, i/<r 

where  X  is  a  complex  number  whose  absolute  value  is  less  than  or 

equal  to  unity  /  this  is  Darboux's  formula. 
To  Weierstrass  is  due  a  more  precise  expression,  which  has  a  rela- 

tion to  some  elementary  facts  of  statics.  When  t  varies  from  a  to  ft, 

the  point  with  the  coordinates  x  =  <f>  (t),  y  =  \fr  (t)  describes  a  certain 

curve  L.  Let  (o50,  y0),  (x^  y^,  •  •  •  ,  (xk_l}  yk-i),  •  •  •  be  the  points  of 
i  which  correspond  to  the  values  a,  tv  •  •  -  ,  tk_lt  •  -  -  of  t\  and  let 

According  to  a  known  theorem,  JT  and  F  are  the  coordinates  of  the 

center  of  gravity  of  a  system  of  masses  placed  at  the  points  (a?0,  y  ), 
(x1?  ̂j),  •  •  •  ,  (xk_1,  yk_i),  •  -  •  of  the  curve  L,  the  mass  placed  at  the 

point  (xt_ly  yk_^  being  equal  to  f(tk_l)(tk  -  tk_^),  where  f(t)  is 
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still  supposed  to  be  positive.  It  is  clear  that  the  center  of  gravity 
lies  within  every  closed  convex  curve  C  that  envelops  the  curve  Z. 
When  the  number  of  intervals  increases  indefinitely,  the  point  (X,  Y) 
will  have  for  its  limit  a  point  whose  coordinates  (u,  v)  are  given  by 
the  equations 

j*f(f)+(t)dt  f 

which  is  itself  within  the  curve  C.  We  can  state  these  two  formulae 

as  one  by  writing 

(4)  I  =  (u  +  w)  f  /(*)  dt=Z  C  f(t)  dt, J  a  U  a 

where  Z  is  a  point  of  the  complex  plane  situated  within  every  closed 
convex  curve  enveloping  the  curve  L.  It  is  clear  that,  in  the  general 

case,  the  factor  Z  of  Weierstrass  is  limited  to  a  much  more  restricted 

region  than  the  factor  \F(£)  of  Darboux. 

28.  Integrals  taken  along  a  closed  curve.  In  the  preceding  para- 
graphs, it  suffices  to  suppose  that  f(z)  is  a  continuous  function  of 

the  complex  variable  z  along  the  path  of  integration.  We  shall  now 

suppose  also  that  f(z)  is  an  analytic  function,  and  we  shall  first  con- 
sider how  the  value  of  the  definite  integral  is  affected  by  the  path 

followed  by  the  variable  in  going  from  A  to  B. 

If  a  function  f(z)  is  analytic  within  a  closed  curve  and  also  on  the 

curve  itself,  the  integral  ff(z~)dz,  taken  around  that  curve,  is  equal 
to  zero.  / 

In  order  to  demonstrate  this  fundamental  theorem,  which  is  due 

to  Cauchy,  we  shall  first  establish  several  lemmas  : 

1)  The  integrals  fdz,  fz  dz,  taken  along  any  closed  curve  what- 
ever, are  zero.  In  fact,  by  definition,  the  integral  fdz,  taken  along 

any  path  whatever  between  the  two  points  a,  b,  is  equal  to  b  —  a, 

and  the  integral  is  zero  if  the  path  is  closed,  since  then  b  —  a.  As 
for  the  integral  fz  dz,  taken  along  any  curve  whatever  joining  two 

points  a,  b,  if  we  take  successively  £k  =  zk_l7  then  £k  =  zk  (§  25), 
we  see  that  the  integral  is  also  the  limit  of  the  sum 

hence  it  is  equal  to  zero  if  the  curve  is  closed. 

2)  If  the  region  bounded  by  any  curve   C  whatever  be  divided 
into  smaller  parts  by  transversal  curves  drawn  arbitrarily,  the  sum 

of  the  integrals  ff(z)  dz  taken  in  the  same  sense  along  the  boundary 

"  •  > 
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of  each  of  these  parts  is  equal  to  the  integral  ff(z)dz  taken  along 

the  complete  boundary  C.  It  is  clear  that  each  portion  of  the  auxil- 
iary curves  separates  two  contiguous  regions  and  must  be  described 

twice  in  integration  in  opposite  senses.  Adding  all  these  inte- 
grals, there  will  remain  then  only  the  integrals  taken  along  the 

boundary  curve,  whose  sum  is  the  integral  ̂ C)f(z)dz. 
Let  us  now  suppose  that  the  region  A  is  divided  up,  partly  in 

smaller  regular  parts,  which  shall  be  squares  having  their  sides 
parallel  to  the  axes  Ox,  Oy ;  partly  in  irregular  parts,  which  shall  be 
portions  of  squares  of  which  the  remaining  part  lies  beyond  the 

boundary  C.  These  squares  need  not  necessarily  be  equal.  For  ex- 
ample, we  might  suppose  that  two  sets  of  parallels  to  Ox  and  Oy 

have  been  drawn,  the  distance  between  two  neighboring  parallels 
being  constant  and  equal  to  I ;  then  some  of  the  squares  thus  obtained 

might  be  divided  up  into  smaller  squares  by  new  parallels  to  the 
axes.  Whatever  may  be  the  manner  of  subdivision  adopted,  let  us 

suppose  that  there  are  N  regular  parts  and  N'  irregular  parts ;  let 
us  number  the  regular  parts  in  any  order  whatever  from  1  to  N,  and 

the  irregular  parts  from  1  to  N'.  Let  l{  be  the  length  of  the  side  of 

the  iih  square  and  l'k  that  of  the  square  to  which  the  &th  irregular 
part  belongs,  L  the  length  of  the  boundary  C,  and  jl  the  area  of  a 
polygon  which  contains  within  it  the  curve  C. 

Let  abed  be  the  ith  square  (Fig.  13),  let  zi  be  a  point  taken  in  its 
interior  or  on  one  of  its  sides,  and  let  z  be  any  point  on  its  boundary. 
Then  we  have 

j?/..\      ./>/..  \ 

(5) 

Z  — 

s\ 
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FIG. 13 

where  |ef|  is  small,  provided  that  the  side  of  the  square  is  itself 
small.    It  follows  that 

/(*)  =  */(*,-)+/(*.)  -  *,/(*<)  +  *(*  ~  *<)» 
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Cf(z)dz=f(zi)  C 
«/(«<)  J(c-) 

)-]  C  dz  +  C  ̂z-zjdz, J(C-)  J(Ci) 

where  the  integrals  are  to  be  taken  along  the  perimeter  c{  of  the 
square.    By  the  first  lemma  stated  above,  this  reduces  to  the  form 

f /<*)<&=?/«,(«-*,; *J  (Cj)  U  (Cj) 

Again,  let  pqrst  be  the  kth  irregular  part,  let  zk  be  a  point  taken 
in  its  interior  or  on  its  perimeter,  and  let  z  be  any  point  of  its 
perimeter.  Then  we  have,  as  above, 

(7) 

Z  — 

where  e*  is  infinitesimal  at  the  same  time  as  l'k  ;  whence  we  find 

Let  rj  be  a  positive  number  greater  than  the  absolute  values  of 

all  the  factors  ct-  and  ek.  The  absolute  value  of  z  —  z{  is  less  than 
If  V2  ;  hence,  by  (6),  we  find 

f(z)dz 
where  <*>,•  denotes  the  area  of  the  ith  regular  part.    From  (8)  we  find, 
in  the  same  way, 

f(z)dz 
<  ff'k  V2  (4  l'k  +  arc  rs)  =  4  ̂   V2  u'k  +  -qlk  V2  arc  rs, 

where  o^  is  the  area  of  the  square  which  contains  the  &th  irregular 

part.   Adding  all  these  integrals,  we  obtain,  a  fortiori,  the  inequality 

f «/0 
<r?[4 

where  \  is  an  upper  bound  for  the  sides  lk.  When  the  number  of 

squares  is  increased  indefinitely  in  such  a  way  that  all  the  sides  l{ 

and  lk  approach  zero,  the  sum  Sco,-  +  2<4  finally  becomes  less  than  j4. 

On  the  right-hand  side  of  the  inequality  (9)  we  have,  then,  the  product 
of  a  factor  which  remains  finite  and  another  factor  77  which  can  be 
supposed  smaller  than  any  given  positive  number.  This  can  be  true 

only  if  the  left-hand  side  is  zero ;  we  have  then 

/(*)  dz  =  0. 
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29.  In  order  that  the  preceding  conclusion  may  be  legitimate,  we  must  make 
sure  that  we  can  take  the  squares  so  small  that  the  absolute  values  of  all  the 

quantities  e<,  e*  will  be  less  than  a  positive  number  17  given  in  advance,  if  the 

points  z<  and  z'k  are  suitably  chosen.*  We  shall  say  for  brevity  that  a  region 
bounded  by  a  closed  curve  7,  situated  in  a  region  of  the  plane  inclosed  by  the 

curve  C,  satisfies  the  condition  (a)  with  respect  to  the  number  rj  if  it  is  possible 

to  find  in  the  interior  of  the  curve  7  or  on  the  curve  itself  a  point  z'  such  that 
we  always  have 

when  z  describes  the  curve  7.  The  proof  depends  on  showing  that  we  can  choose 
the  squares  so  small  that  all  the  parts  considered,  regular  and  irregular,  satisfy  the 

condition  (a)  with  respect  to  the  number  ij. 

We  shall  establish  this  new  lemma  by  the  well-known  process  of  successive 
subdivisions.  Suppose  that  we  have  first  drawn  two  sets  of  parallels  to  the  axes 
Ox,  Oy,  the  distance  between  two  adjacent  parallels  being  constant  and  equal 

to  I.  Of  the  parts  obtained,  some  may  satisfy  the  condition  (a),  while  others 

do  not.  Without  changing  the  parts  which  do  satisfy  the  condition  (a),  we  shall 
divide  the  others  into  smaller  parts  by  joining  the  middle  points  of  the  opposite 
sides  of  the  squares  which  form  these  parts  or  which  inclose  them.  If,  after 

this  new  operation,  there  are  still  parts  which  do  not  satisfy  the  condition  (a), 
we  will  repeat  the  operation  on  those  parts,  and  so  on.  Continuing  in  this  way, 
there  can  be  only  two  cases  :  either  we  shall  end  by  having  only  regions  which 

satisfy  the  condition  (a),  in  which  case  the  lemma  is  proved  ;  or,  however  far 
we  go  in  the  succession  of  operations,  we  shall  always  find  some  parts  which  do 
not  satisfy  that  condition. 

In  the  latter  case,  in  at  least  one  of  the  regular  or  irregular  parts  obtained 
by  the  first  division,  the  process  of  subdivision  just  described  never  leads  us  to 

a  set  of  regions  all  of  which  satisfy  the  condition  (a)  ;  let  A^  be  such  a  part. 
After  the  second  subdivision,  the  part  Al  contains  at  least  one  subdivision  Az 
which  cannot  be  subdivided  into  regions  all  of  which  satisfy  the  condition  (a)  . 
Since  it  is  possible  to  continue  this  reasoning  indefinitely,  we  shall  have  a  suc- 

cession of  regions 

-"•n  -A2,  -d3,  •  •  •  ,  An,  -  •  • 

which  are  squares,  or  portions  of  squares,  such  that  each  is  included  in  the  pre- 
ceding, and  whose  dimensions  approach  zero  as  n  becomes  infinite.  There  is, 

therefore,  a  limit  point  z0  situated  in  the  interior  of  the  curve  or  on  the  curve 

itself.  Since,  by  hypothesis,  the  function  f(z)  possesses  a  derivative  /'(z0)  for 
z  =  z0  ,  we  can  find  a  number  p  such  that 

provided  that  |z  —  z0\  is  less  than  p.  Let  c  be  the  circle  with  radius  p  described 
about  the  point  z0  as  center.  For  large  enough  values  of  n,  the  region  An  will 
lie  within  the  circle  c,  and  we  shall  have  for  all  the  points  of  the  boundary  of  An 

*  GOURSAT,  Transactions  of  the  American  Mathematical  Society,  1900,  Vol.  I,  p.  14. 
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Moreover,  it  is  clear  that  the  point  z0  is  in  the  interior  of  An  or  on  the  boundary ; 
hence  that  region  must  satisfy  the  condition  (a)  with  respect  to  ij.  We  are 
therefore  led  to  a  contradiction  in  supposing  that  the  lemma  is  not  true. 

30.  By  means  of  a  suitable  convention  as  to  the  sense  of  integra- 
tion the  theorem  can  be  extended  also  to  boundaries  formed  by 

several  distinct  closed  curves.  Let  us  consider,  for  example,  a  func- 

tion f(z)  analytic  within  the  region  A  bounded  by  the  closed  curve  C 

and  the  two  interior  curves  C',  C",  and  on  these  curves  themselves 
(Fig.  14).  The  complete  boundary  T  of  the  region  A  is  formed  by 
these  three  distinct  curves,  and  we  shall  say  that  that  boundary  is 

described  in  the  positive  sense  if  the  region 
A  is  on  the  left  hand  with  respect  to  this 

sense  of  motion ;  the  arrows  on  the  figure 

indicate  the  positive  sense  of  description 

for  each  of  the  curves.  With  this  agree- 
ment, we  have  always 

C 

FIG.  14  the  integral  being  taken  along  the  complete 
boundary  in  the  positive  sense.    The  proof 

given  for  a  region  with  a  simple  boundary  can  be  applied  again 
here ;  we  can  also  reduce  this  case  to  the  preceding  by  drawing  the 
transversals  ab,  cd  and  by  applying  the  theorem  to  the  closed  curve 

abmbandGpcdqa  (I,  §  153). 

It  is  sometimes  convenient  in  the  applications  to  write  the  preced- 
ing formula  in  the  form 

c J(C) c 
J(C") 

where  the  three  integrals  are  now  taken  in  the  same  sense  ;  that  is, 
the  last  two  must  be  taken  in  the  reverse  direction  to  that  indicated 

by  the  arrows. 
Let  us  return  to  the  question  proposed  at  the  beginning  of  §  28  ; 

the  answer  is  now  veryveasy.  Let  f(z)  be  an  analytic  function  in  a 
region  ./?  of.  the  plane.  Given  two  paths  A  MB,  ANB,  having  the  same 
extremities  and  lying  entirely  in  that  region,  they  will  give  the  same 

value  for  the  integral  ff(z)  dz  if  the  function  f(z)  is  analytic  within 
the  closed  curve  formed  by  the  path  A  MB  followed  by  the  path 
BNA.  We  shall  suppose,  for  defmiteness,  that  that  closed  curve 



II,  §30]  DEFINITE  INTEGRALS  71 

does  not  have  any  double  points.  Indeed,  since  the  sum  of  the  two 

integrals  along  A  MB  and  along  BNA  is  zero,  the  two  integrals  along 
AMB  and  along  ANB  must  be  equal.  We  can  state  this  result  again 
as  follows  :  Two  paths  AMB  and  ANB,  having  the  same  extremities, 

give  the  same  value  for  the  integral  ff(z)  dz  if  we  can  pass  from  one 
to  the  other  by  a  continuous  deformation  without  encountering  any 
point  where  the  function  ceases  to  be  analytic. 

This  statement  holds  true  even  when  the  two  paths  have  any  num- 
ber whatever  of  common  points  besides  the  two  extremities  (I,  §  152). 

From  this  we  conclude  that,  when  f(z)  is  analytic  in  a  region 
bounded  by  a  single  closed  curve,  the  integral  ff(z)dz  is  equal  to 
zero  when  taken  along  any  closed  curve  whatever  situated  in  that 
region.  But  we  must  not  apply  this  result  to  the  case  of  a  region 

bounded  by  several  distinct  closed  curves.  Let  us  consider,  for  exam- 

ple, a  function  f(z)  analytic  in  the  ring-shaped  region  between  two 

concentric  circles  C,  C'.  Let  C"  be  a  circle  having  the  same  center 

and  lying  between  C  and  C';  the  integral  ff(z)dz,  taken  along  C", 
is  not  in  general  zero.  Cauchy's  theorem  shows  only  that  the  value 
of  that  integral  remains  the  same  when  the  radius  of  the  circle  C" 
is  varied.* 

*  Cauchy's  theorem  remains  true  without  any  hypothesis  upon  the  existence  of 
the  f  unction /(z)  beyond  the  region  A  limited  by  the  curve  (7,  or  upon  the  existence 
of  a  derivative  at  each  point  of  the  curve  C  itself.  It  is  sufficient  that  the  f  unction  /(z) 
shall  be  analytic  at  every  point  of  the  region  A,  and  continuous  on  the  boundary  C, 
that  is,  that  the  value /(Z)  of  the  function  in  a  point  Z  of  C  varies  continuously  with 
the  position  of  Z  on  that  boundary,  and  that  the  difference /(Z)  -/(z),  where  z  is  an 
interior  point,  approaches  zero  uniformly  with  |  Z  -  z  | .  In  fact,  let  us  first  suppose 
that  every  straight  line  from  a  fixed  point  a  of  A  meets  the  boundary  in  a  single 

point.  When  the  point  z  describes  C,  the  point  a  +  9  (z  -  a)  (where  Q  is  a  real  number 
between  0  and  1)  describes  a  closed  curve  C'  situated  in  A.  The  difference  between 
the  two  integrals,  along  the  curves  C  and  C',  is  equal  to 

and  we  can  take  the  difference  1  -  B  so  small  that  1  5  1  will  be  less  than  any  given 
positive  number,  for  we  can  write  the  function  under  the  integral  sign  in  the  form 

Since  the  integral  along  C'  is  zero,  we  have,  then,  also 

In  the  case  of  a  boundary  of  any  form  whatever,  we  can  replace  this  boundary  by  a 
succession  of  closed  curves  that  fulfill  the  preceding  condition  by  drawing  suitably 
placed  transversals. 



72          THE  GENERAL  CAUCHY  THEORY       [II,  §  31 

31.  Generalization  of  the  formulae  of  the  integral  calculus.  Let/(V) 

be  an  analytic  function  in  the  region  A  limited  by  a  simple  boundary 
curve  C.  The  definite  integral 

=  f 
Jz 

taken  from  a  fixed  point  20  up  to  a  variable  point  Z  along  a  path 
lying  in  the  region  A,  is,  from  what  we  have  just  seen,  a  definite 
function  of  the  upper  limit  Z.  We  shall  now  show  that  this  function 

<£(Z)  is  also  an  analytic  function  of  Z  whose  derivative  is 
For  let  Z  +  h  be  a  point  near  Z  ;  then  we  have 

f
*
 

=  / 

Jz 

and  we  may  suppose  that  this  last  integral  is  taken  along  the  seg- 

ment of  a  straight  line  joining  the  two  points  Z  and  Z  -f  h.  If  the 
two  points  are  very  close  together,  f(z)  differs  very  little  from/(Z) 
along  that  path,  and  we  can  write 

where  1  8  1  is  less  than  any  given  positive  number  17,  provided  that  |  h  \ 
is  small  enough.   Hence  we  have,  after  dividing  by  h, 

h 

Z+h 

The  absolute  value  of  the  last  integral  is  less  than  17 1  h  \ ,  and  there- 
fore the  left-hand  side  has  for  its  limit  f(Z)  when  h  approaches  zero. 

If  a  function  F(Z)  whose  derivative  is  f(Z)  is  already  known,  the 

two  functions  <&(Z)  and  F(Z)  differ  only  by  a  constant  (footnote, 
p.  38),  and  we  see  that  the  fundamental  formula  of  integral  calculus 
can  be  extended  to  the  case  of  complex  variables : 

(10) 

This  formula,  established  by  supposing  that  the  two  functions  /(«), 

F(z)  were  analytic  in  the  region  A,  is  applicable  in  more  general 
cases.  It  may  happen  that  the  function  F(z),  or  both/(;s)  and  F(z) 

at  the  same  time,  are  multiple-valued ;  the  integral  has  a  precise 
meaning  if  the  path  of  integration  does  not  pass  through  any  of  the 
critical  points  of  these  functions.  In  the  application  of  the  formula 

it  will  be  necessary  to  pick  out  an  initial  determination  F(zQ)  of  the 
primitive  function,  and  to  follow  the  continuous  variation  of  that 
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function  when  the  variable  z  describes  the  path  of  integration. 

Moreover,  if  /(«)  is  itself  a  multiple-valued  function,  it  will  be  neces- 
sary to  choose,  among  the  determinations  of  F(z),  that  one  whose 

derivative  is  equal  to  the  determination  chosen  for  /(#). 
Whenever  the  path  of  integration  can  be  inclosed  within  a  region 

with  a  simple  boundary,  in  which  the  branches  of  the  two  functions 
f(z),  F(z)  under  consideration  are  analytic,  the  formula  may  be 
regarded  as  demonstrated.  Now  in  any  case,  whatever  may  be  the 
path  of  integration,  we  can  break  it  up  into  several  pieces  for  which 
the  preceding  condition  is  satisfied,  and  apply  the  formula  (10)  to 
each  of  them  separately.  Adding  the  results,  we  see  that  the  for- 

mula is  true  in  general,  provided  that  we  apply  it  with  the  necessary 

precautions. 

Let  us,  for  example,  calculate  the  definite  integral  jTZl2mefe,  taken 
along  any  path  whatever  not  passing  through  the  origin,  where  m  is 
a  real  or  a  complex  number  different  from  —  1.  One  primitive  func- 

tion is  zm  +  1/(m  -f  1),  and  the  general  formula  (10)  gives 
1  */m  +  1     A/wi  +  1 

<-  ]  ''"(I 

&     \L7*  •••"  ~~ 
m 

In  order  to  remove  the  ambiguity  present  in  this  formula  when  m 
is  not  an  integer,  let  us  write  it  in  the  form : 

+  1)  Log  (2t)     g(m  +  1)  Log  («0) 

/'
 

t/z- 

dz  — 

The  initial  value  Log  (20)  having  been  chosen,  the  value  of  zm  is 
thereby  fixed  along  the  whole  path  of  integration,  as  is  also  the  final 
value  Log  (z^).  The  value  of  the  integral  depends  both  upon  the 
initial  value  chosen  for  Log(z0)  and  upon  the  path  of  integration. 
Similarly,  the  formula 

de  =  Log  [/(*,)]  -  Log  [/(*„)] 

does  not  present  any  difficulty  in  interpretation  if  the  function  f(z) 
is  continuous  and  does  not  vanish  along  the  path  of  integration. 

The  point  u  —  f(z)  describes  in  its  plane  an  arc  of  a  curve  not  pass- 

ing through  the  origin,  and  the  right-hand  side  is  equal  to  the 'vari- 
ation of  Log(^)  along  this  arc.  Finally,  we  may  remark  in  passing 

that  the  formula  for  integration  by  parts,  since  it  is  a  consequence 
of  the  formula  (10),  can  be  extended  to  integrals  of  functions  of  a 
complex  variable. 
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32.  Another  proof  of  the  preceding  results.  The  properties  of  the 

integral  ff(z)dz  present  a  great  analogy  to  the  properties  of  line 
integrals  when  the  condition  for  integrability  is  fulfilled  (I,  §  152). 

Eiemann  has  shown,  in  fact,  that  Cauchy's  theorem  results  im- 
mediately from  the  analogous  theorem  relative  to  line  integrals. 

Let  f(z)  =  X  -j-  Yi  be  an  analytic  function  of  z  within  a  region  A 
with  a  simple  boundary  ;  the  integral  taken  along  a  closed  curve  C 

lying  in  that  region  is  the  sum  of  two  line  integrals  : 

C  f(z)dz  =  C  Xdx  -  Ydy  +  i  \    Ydx  +  Xdy, 
J(C)  J(C)  J{C) 

and,  from  the  relations  which  connect  the  derivatives  of  the  func- 

,  Y, 
=       t  ^__> 

dx       dy  dy  dx 

we  see  that  both  of  these  line  integrals  are  zero  *  (I,  §  152). 

It  follows  that  the  integral  fzzf(z)dz,  taken  from  a  fixed  point  ZQ 
to  a  variable  point  «,  is  a  single-valued  function  <fc(V)  in  the  region  A. 
Let  us  separate  the  real  part  and  the  coefficient  of  i  in  that  function  : 

/»  (*»  y)  /»  (*i  v) 

P  (X}  y)  =  I         Xdx  —  Ydy,          Q  (x,  y)  =  I          Ydx  -f  Xdy. 
lA^o'^o)  J&vVj 

The  functions  P  and  Q  have  partial  derivatives, 

?L-X      *L-     v      ̂      Y      £3--T 
dx~  dy~  dx~  dy~ 

which  satisfy  the  conditions 

dP__dQ          dP^_    _3Q 
dx       dy  dy  dx 

Consequently,  P  +  Qi  is  an  analytic  function  of  z  whose  derivative 
is  X+  Yi  or/0). 

If  the  function  f(z)  is  discontinuous  at  a  certain  number  of  points 
of  A,  the  same  thing  will  be  true  of  one  or  more  of  the  functions  X, 

Y,  and  the  line  integrals  P(x,  ?/),  Q(x,  ?/)  will  in  general  have  periods 

that  arise  from  loops  described  about  points  of  discontinuity  (I,  §  153). 

The  same  thing  will  then  be  true  of  the  integral  fgzf(z)  dz.  We  shall 
resume  the  study  of  these  periods,  after  having  investigated  the  nature 

of  the  singular  points  off(z). 

*  It  should  be  noted  that  Riemann's  proof  assumes  the  continuity  of  the  deriva- 
tives dX/8x,  dY/dy,  •  •  •  ;  that  is,  of/'(z). 
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To  give  at  least  one  example  of  this,  let  us  consider  the  integral  fzdz/z. 
After  separating  the  real  part  and  the  coefficient  of  i,  we  have 

(*zdz       /»(a;»y)dx  +  idy       r^v)xdx  +  ydy      .  r(x>v)xdy  —  ydx 

Ji    z      «/(i,  o)     x  +  iy       «/(i,  o>      x2  +  y2          t/<i,  o>       x2  +  y2 

The  real  part  is  equal  to  [log  (x2  +  2/2)]/2,  whatever  may  be  the  path  followed. 
As  for  the  coefficient  of  i,  we  have  seen  that  it  has  the  period  2  TT  ;  it  is  equal 

to  the  angle  through  which  the  radius  vector  joining  the  origin  to  the  point 

(x,  y)  has  turned.  We  thus  find  again  the  various  determinations  of  Log(z). 

II.   CAUCHY'S  INTEGRAL.     TAYLOR'S  AND  LAURENT'S 
SERIES.     SINGULAR  POINTS.     RESIDUES 

We  shall  now  present  a  series  of  new  and  important  results,  which 
Cauchy  deduced  from  the  consideration  of  definite  integrals  taken 

between  imaginary  limits. 

33.  The  fundamental  formula.  Let/(V)  be  an  analytic  function  in 

the  finite  region  A  limited  by  a  boundary  F,  composed  of  one  or  of 
several  distinct  closed  curves,  and  continuous  on  the  boundary  itself. 

If  x  is  a  point  *  of  the  region  A,  the  function 

is  analytic  in  the  same  region,  except  at  the  point  z  =  x. 
With  the  point  x  as  center,  let  us  describe  a  circle  y  with  the 

radius  p,  lying  entirely  in  the  region  A  ;  the  preceding  function  is 
then  analytic  in  the  region  of  the  plane  limited  by  the  boundary  T 

and  the  circle  y,  and  we  can  apply  to  it  the  general  theorem  (§  28). 
Suppose,  for  definiteness,  that  the  boundary  T  is  composed  of  two 

closed  curves  C,  C"  (Fig.  15).  Then  we  have 

r/(«)<fe=  r  /(*)<** ,  r 
JC)  Z  —  X  J(C')    Z  —  X  J(y) 

where  the  three  integrals  are  taken  in  the  sense  indicated  by  the 
arrows.    We  can  write  this  in  the  form 

x 

*  In  what  follows  we  shall  often  have  to  consider  several  complex  quantities  at  the 
same  time.  We  shall  denote  them  indifferently  by  the  letters  x,  z,  u,  •  •  • .  Unless  it  is 
expressly  stated,  the  letter  x  will  no  longer  be  reserved  to  denote  a  real  variable. 
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where  the  integral  j^r)  denotes  the  integral  taken  along  the  total 
boundary  T  in  the  positive  sense.  If  the  radius  p  of  the  circle  y  is 
very  small,  the  value  of  f(z)  at  any  point  of  this  circle  differs  very 

little  from /(*):  /W=/(z)  +  8( 
where  1 8 1  is  very  small.   Keplacing  /(«)  by  this  value,  we  find ~~  X 

~  X 

—  X 

The  first  integral  of  the  right-hand  side  is  easily  evaluated;  if  we 

put  z  =  x  +  pe6*,  it  becomes 

r   dz 

i  „   ~  ~~~ 
«/M 

0   . 

=  2  7ri- 

The  second  integral  jT  8  dz/(z  —  x)  is  therefore  independent  of  the 
radius  p  of  the  circle  y ;  on  the  other  hand,  if  1 8 1  remains  less  than 

FIG. 15 

a  positive  number  77,  the  absolute  value  of  this. integral  is  less  than 

(rj/p)  2  rrrp  =  2  Try.  Now,  since  the  function  f(z)  is  continuous  f or 
z  =  x,  we  can  choose  the  radius  p  so  small  that  77  also  will  be  as 
small  as  we  wish.  Hence  this  integral  must  be  zero.  Dividing  the 

two  sides  of  the  equation  (11)  by  2  TTI,  we  obtain 

(12) 

—  X 

This  is  Cauchy's  fundamental  formula.    It  expresses  the  value  of  the 
function  /(#)  at  any  point  x  whatever  within  the  boundary  by  means 
of  the  values  of  the  same  function  taken  only  along  that  boundary. 

Let  x  +  Ax  be  a  point  near  x,  which,  for  example,  we  shall  suppose 

lies  in  the  interior  of  the  circle  y  of  radius  p.    Then  we  have  also 

—  x  —  Ax 

J 
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and  consequently,  subtracting  the  sides  of  (12)  from  the  correspond- 
ing sides  of  this  equation  and  dividing  by  Ax,  we  find 

f(x)=    1      r  _  f(z)dz 

Ax  2  TTI  J(r}  (z  —  x)(z  —  x  —  Ax) 

When  Ax  approaches  zero,  the  function  under  the  integral  sign  ap- 

proaches the  limit  f(z)/(z  —  x)2.  In  order  to  prove  rigorously  that 
we  haye  the  right  to  apply  the  usual  formula  for  differentiation,  let 
us  write  the  integral  in  the  form 

r       /(*)<*«       =  r  f  (*><**  ,  r      *xf(z)d* 
•/CD  (*  -  X)  0  -  X  -  AX)        J(r)  (Z  -  X)2       J(r)  (*  -  X)2  (Z  -  X  -  AX)  ' 

Let  M  be  an  upper  bound  for  |/(V)|  along  r,  L  the  length  of  the 
boundary,  and  8  a  lower  bound  for  the  distance  of  any  point  what- 

ever of  the  circle  y  to  any  point  whatever  of  r.  The  absolute  value 

of  the  last  integral  is  less  than  ML  Ax|/S8  and  consequently  ap- 
proaches zero  with  |  Ax  .  Passing  to  the  limit,  we  obtain  the  result 

It  may  be  shown  in  the  same  way  that  the  usual  method  of  differ- 
entiation under  the  integral  sign  can  be  applied  to  this  new  integral  * 

and  to  all  those  which  can  be  deduced  from  it,  and  we  obtain 
successively 

and,  in  general, 

f(*)dz 
Hence,  if  a  function  f(z)  is  analytic  in  a  certain  region  of  the  plane, 
the  sequence  of  successive  derivatives  of  that  function  is  unlimited, 
and  all  these  derivatives  are  also  analytic  functions  in  the  same 
region.  It  is  to  be  noticed  that  we  have  arrived  at  this  result  by 
assuming  only  the  existence  of  the  first  derivative. 

Note.    The  reasoning  of  this  .paragraph  leads  to  more  general  con- 
clusions.   Let  <f>(z)  be  a  continuous  function  (but  not  necessarily 

*  The  general  formula  for  differentiation  under  the  integral  sign  will  be  established 
later  (Chapter  V). 
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analytic)  of  the  complex  variable  z  along  the  curve  F,  closed  or  not. 
The  integral 

—  x 

has  a  definite  value  for  every  value  of  x  that  does  not  lie  on  the 

path  of  integration.  The  evaluations  just  made  prove  that  the  limit 

of  the  quotient  \F(x  4-  A#)  —  F(x)~]/kx  is  the  definite  integral 

when  Ace  |  approaches  zero.  Hence  F(x)  is  an  analytic  function  for 
every  value  of  x,  except  for  the  points  of  the  curve  T,  which  are  in 

general  singular  points  for  that  function  (see  §  90).  Similarly,  we 

find  that  the  nth  derivative  F(n^(x)  has  for  its  value 

_  ~\n+l 

34,  Morera's  theorem.   A  converse  of  Cauchy's  fundamental  theorem  which 
was  first  proved  by  Morera  may  be  stated  as  follows :  If  a  Junction  /(z)  of  a 
complex  variable  z  is  continuous  in  a  region  J.,  and  if  the  definite  integral  f^C)  f(z)  dz, 
taken  along  any  closed  curve  C  lying  in  A,  is  zero,  then  f(z)  is  an  analytic  func- 

tion in  A. 

For  the  definite  integral  F(z)  =  fe*f(t)dt,  taken  between  the  two  points  z0,  z 
of  the  region  A  along  any  path  whatever  lying  in  that  region,  has  a  definite 
value  independent  of  the  path.  If  the  point  z0  is  supposed  fixed,  the  integral 
is  a  function  of  z.  The  reasoning  of  §  31  shows  that  the  quotient  AF/Az  has 
f(z)  for  its  limit  when  Az  approaches  zero.  Hence  the  function  F(z)  is  an 
analytic  function  of  z  having  /(z)  for  its  derivative,  and  that  derivative  is 
therefore  also  an  analytic  function. 

35.  Taylor's  series.   Let  f(z)  be  an  analytic  function  in  the  interior 
of  a  circle  with  the  center  a  ;  the  value  of  that  function  at  any  point 
x  within  the  circle  is  equal  to  the  sum  of  the  convergent  series 

(15) 

x a 

2! n 

In  the  demonstration  we  can  suppose  that  the  function  /(«)  is 

analytic  on  the  circumference  of  the  circle  itself ;  in  fact,  if  x  is  any 

point  in  the  interior  of  the  circle  C,  we  can  always  find  a  circle  C', 
with  center  a  and  with  a  radius  less  than  that  of  C,  which  contains 
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the  point  x  within  it,  and  we  would  reason  with  the  circle  C'  just  as 
we  are  about  to  do  with  the  circle  C.  With  this  understanding,  x 

being  an  interior  point  of  C,  we  have,  by  the  fundamental  formula, 

(121) 
f(~\  _  /       J\z)    fj~ J  \x)  —  o  _;        ,  2        1      . 

£l^riJlO*         <C 

Let  us  now  write  !/(«  —  x)  in  the  following  way : 

1  1  1/1 

z  —  x      z  —  a  —  (x  —  a)      z  —  a\         x  —  a 

1 1 

2  — 

or,  carrying  out  the  division  up  to  the  remainder  of  degree  n  +  1  in 
x  —  a, 

1  -|  ~     n  (v  —  a\^ 
-1-         _  _.   -1-  i        X          a        ,     {.^          U)     _L  .  .  . 

z  —  x      z  —  a,      (z  —  of      (z  —  (if 
(*  _  /»v*  (x  _  a)w+! , 

i + 

Let  us  replace  l/(#  —  cc)  in  the  formula  (12')  by  this  expression, 
and  let  us  bring  the  factors  x  —  a,  (x  —  of,  •  •  -,  independent  of  2, 
outside  of  the  integral  sign.  This  gives 

-  a)+  -  -  -  +  Jn(x  -  «)«  +  R 

where  the  coefficients  JQ,  J^ 
values 

(16) 

/„  = 

,  Jn  and  the  remainder  Rn  have  the 

1      r    f(z)dz 

i~"  2W    /     fst  —  a\*'  "  '' 
^7riJ(C)\z  ~  a) 

As  w  becomes  infinite  the  remainder  7?M  approaches  zero.  For  let 

M  be  an  upper  bound  for  the  absolute  value  of  f(z)  along  the  circle 

C,  R  the  radius  of  that  circle,  and  r  the  absolute  value  of  x  —  a.  We 

have  z  —  x  ̂ R  —  r,  and  therefore  | !/(«  —  £c)  |  =!/(#  —  r),  when  s 
describes  the  circle  C.  Hence  the  absolute  value  of  Rn  is  less  than 

12  -  r 
> 

and  the  factor  (r/R~)n+l  approaches  zero  as  w  becomes  infinite.    From 
this  it  follows  that  f(x)  is  equal  to  the  convergent  series 
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Now,  if  we  put  x  =•  a.  in  the  formulae  (12),  (13),  (14),  the  boundary 
r  being  here  the  circle  C,  we  find 

J,=f(a),  ./!=/(«),  ••',  Ju  = 

The  series  obtained  is  therefore  identical  with  the  series  (15)  ;  that 

is,  with  Taylor's  series. 
The  circle  C  is  a  circle  with  center  a,  in  the  interior  of  which  the 

function  is  analytic ;  it  is  clear  that  we  would  obtain  the  greatest 
circle  satisfying  that  condition  by  taking  for  radius  the  distance 
from  the  point  a  to  that  singular  point  of  f(z)  nearest  a.  This  is. 

also  the  circle  of  convergence  for  the  series  on  the  right.* 
This  important  theorem  brings  out  the  identity  of  the  two  defini- 

tions for  analytic  functions  which  we  have  given  (I,  §  197,  2d  ed. ; 
§  191,  1st  ed. ;  and  II,  §  3).  In  fact,  every  power  series  represents 
an  analytic  function  inside  of  its  circle  of  convergence  (§  8) ;  and, 
conversely,  as  we  have  just  seen,  every  function  analytic  in  a  circle 
with  the  center  a  can  be  developed  in  a  power  series  proceeding 

according  to  powers  of  x  —  a  and  convergent  inside  of  that  circle. 
Let  us  also  notice  that  a  certain  number  of  results  previously  estab- 

lished become  now  almost  intuitive ;  for  example,  applying  the 

theorem  to  the  functions  Log  (1  -f-  z)  and  (1  -f-  z)m,  which  are  ana- 
lytic inside  of  the  circle  of  unit  radius  with  the  origin  as  center, 

we  find  again  the  formulas  of  §§17  and  18. 
Let  us  now  consider  the  quotient  of  two  power  series  f(x)/<f>  (x), 

each  convergent  in  a  circle  of  radius  R.  If  the  series  <f>(x)  does  not 
vanish  for  x  =  0,  since  it  is  continuous  we  can  describe  a  circle  of 
radius  r  ̂ =  R  in  the  whole  interior  of  which  it  does  not  vanish.  The 

f  unction  f(x)/<j>(x)  is  therefore  analytic  in  this  circle  of  radius  r  and 
can  therefore  be  developed  in  a  power  series  in  the  neighborhood 
of  the  origin  (I,  §  188,  2d  ed. ;  §  183,  1st  ed.).  In  the  same  way,  the 
theorem  relative  to  the  substitution  of  one  series  in  another  series 

can  be  proved,  etc. 

Note.  Let  f(z)  be  an  analytic  function  in  the  interior  of  a  circle  C 
with  the  center  a  and  the  radius  r  and  continuous  on  the  circle 

itself.  The  absolute  value  |/(z)|  of  the  function  on  the  circle  is  a 
continuous  function,  the  maximum  value  of  which  we  shall  indicate 

by  JXC(r).  On  the  other  hand,  the  coefficient  an  of  (a;  —  a)n  in  the 

*  This  last  conclusion  requires  some  explanation  on  the  nature  of  singular  points, 
which  will  be  given  in  the  chapter  devoted  to  analytic  extension. 
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development  of  f(z)  is  equal  to  f(n)(a)/n\,  that  is,  to 

we  have,  then, 

(17)  An  =  \an  \< 2  7T 

so  that  c9&T(r)  is  greater  than  all  the  products  Ajr*.*    We  could  use 
•JW(r)  instead  of  Af  in  the  expression  for  the  dominant  function 
(I,  §  186,  2d  ed. ;  §  181,  1st  ed.). C.63 

36.  Liouville's  theorem.    If  the  function /(x)  is  analytic  for  every 
finite  value  of  x,  then  Taylor's  expansion  is  valid,  whatever  a  may  be, 
in  the  whole  extent  of  the  plane,  and  the  function  considered  is  called 
an  integral  function.  From  the  expressions  obtained  for  the  coeffi- 

cients we  easily  derive  the  following  proposition,  due  to  Liouville : 

Every  integral  function  whose  absolute  value  is  always  less  than  a 
fixed  number  M  is  a  constant. 

For  let  us  develop  f(x)  in  powers  of  x  —  a,  and  let  an  be  the 
coefficient  of  (x  —  a)n.  It  is  clear  that  MC(r)  is  less  than  M,  what- 

ever may  be  the  radius  r,  and  therefore  \an  is  less  than  M/r".  But 
the  radius  r  can  be  taken  just  as  large  as  we  wish ;  we  have,  then, 
an  =  0  if  n  ̂   1,  and/(cc)  reduces  to  a  constant /(a). 

More  generally,  let  f(x)  be  an  integral  function  such  that  the 

absolute  value  of  f(x)/xm  remains  less  than  a  fixed  number  M  for 
values  of  x  whose  absolute  value  is  greater  than  a  positive  number 
R  ;  then  the  function  f(x)  is  a  polynomial  of  degree  not  greater  than 
m.  For  suppose  we  develop  f(x)  in  powers  of  x,  and  let  an  be  the 

coefficient  of  xn.  If  the  radius  r  of  the  circle  C  is  greater  than  R,  we 

have  c#r(r)  <  Mr"1,  and  consequently  an  <  Mrm~n.  If  n  >  m,  we 
have  then  an  =  0,  since  Mrm~n  can  be  made  smaller  than  any  given 
number  by  choosing  r  large  enough. 

37.  Laurent's  series.     The  reasoning  by  which  Cauchy  derived 
Taylor's  series  is  capable  of  extended  generalizations.     Thus,  let 
/(z)  be  an  analytic  function  in  the  ring-shaped  region  between  the 

*  The  inequalities  (17)  are  interesting,  especially  since  they  establish  a  relation 
between  the  order  of  magnitude  of  the  coefficients  of  a  power  series  and  the  order  of 
magnitude  of  the  function;  3SC(r)  is  not,  in  general,  however,  the  smallest  number 
which  satisfies  these  inequalities,  as  is  seen  at  once  when  all  the  coefficients  an  are 
real  and  positive.  These  inequalities  (17)  can  be  established  without  making  use  of 

Cauchy's  integral  (MERAY,  Lemons  nouvelles  sur  I1  analyse  infinitesimale,  Vol.  I,  p.  99). 
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two  concentric  circles  C,  C'  having  the  common  center  a.  We  shall 
show  that  the  value  f(%)  of  the  function  at  any  point  x  taken  in  that 
region  is  equal  to  the  sum  of  two  convergent  series,  one  proceeding  in 

positive  powers  of  x  —  a,  the  other  in  positive  powers  of\./(x  —  a)* 
We  can  suppose,  just  as  before,  that  the  function  f(z)  is  analytic 

on  the  circles  C,  C'  themselves.  Let  R,  R'  be  the  radii  of  these  circles 

and  r  the  absolute  value  of  x  —  a ;  if  C'  is  the  interior  circle,  we  have 

R'  <  r  <  R.  About  x  as  center  let  us  describe  a  small  circle  y  lying 

entirely  between  C  and  C'.  We  have  the  equality 

+ 
__    /•>•  ^    —    OP  &         W 
*£/  7/-y-f*v     &  *^  /  x..v      &     ̂ ^     •*-> 

the  integrals  being  taken  in  a  suitable  sense  ;  the  last  integral,  taken 

along  y,  is  equal  to  2  7rif(x),  and  we  can  write  the  preceding  relation 
in  the  form 

/(x)=  i  rm 27riJ(Cz- 

(C)-x
 

where  the  integrals  are  all  taken  in  the  same  sense. 

Repeating  the  reasoning  of  §  35,  we  find  again  that  we  have 

where  the  coeflBcients  JQ,  J19  -  •  •  ,  /„,-••  are  given  by  the  formulae 
(16).  In  order  to  develop  the  second  integral  in  a  series,  let  us 
notice  that 

1  z-a 

•    /_.         \o  ~r  •  •  • x  —  z      x  —  a\.       z  —  a  |      x  —  a      (x  —  a)5 

i  -i-  ~~ 

&)  4.  V         "/          _|_ 
(f  —  n  \n  i  np  —  f  \  i  m*  —  n  \" aj  (A        z)\^        a) 

and  that  the  integral  of  the  complementary  term, 

2  vriLc\&  —  a/  x  —  z 

approaches  zero  when  n  increases  indefinitely.  In  fact,  if  M'  is  the 

maximum  of  the  absolute  value  of  f(z)  along  C',  the  absolute  value 
of  this  integral  is  less  than 

rU?i 

*  Compies  rendus  de  V Academic  des  Sciences,  Vol.  XVII.  See  CEuvres  de  Cauchy, 
1st  series,  Vol.  VIII,  p.  115. 
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and  the  factor  R'/r  is  less  than  unity.    We  have,  then,  also 

/OA\               I         J  \    /  __.  1        _j   2  I     ̂        ̂    _i   n  i 

)     2iri  J(C>)  x  —  z       x  —  a       (x  —  a)2  (x  —  a)n 

where  the  coefficient  Kn  is  equal  to  the  definite  integral 
1     r  B_X A  7T*  J{Qr) 

Adding  the  two  developments  (19)  and  (20),  we  obtain  the  proposed 
development  of  /(#). 

In  the  formulae  (16)  and  (21),  which  give  the  coefficients  Jn  and  Kn, 
we  can  take  the  integrals  along  any  circle  F  whatever  lying  between  C 

and  C'  and  having  the  point  a  for  center,  for  the  functions  under  the 
integral  sign  are  analytic  in  the  ring.  Hence,  if  we  agree  to  let  the 

index  n  vary  from  —  oo  to  +  oo ,  we  can  write  the  development  of 

f(x)  in  the  form 

(22)  f(x)  —  'V  /  (x  —  a)n n=— oo 

where  the  coefficient  Jn,  whatever  the  sign  of  n,  is  given  by  the 
formula 

Example.  The  same  function  /(x)  can  have  developments  which  are  entirely 
different,  according  to  the  region  considered.  Let  us  take,  for  example,  a 
rational  fraction  /(x),  of  which  the  denominator  has  only  simple  roots  with 

different  absolute  values.  Let  a,  6,  c,  •  •  • ,  I  be  these  roots  arranged  in  the  order 
of  increasing  absolute  values.  Disregarding  the  integral  part,  which  does  not 
interest  us  here,  we  have 

B  C     I  L • 
x—a     x—b     x—c  x—l 

In  the  circle  of  radius  a  about  the  origin  as  center,  each  of  the  simple  frac- 
tions can  be  developed  in  positive  powers  of  x,  and  the  development  of /(x)  is 

identical  with  that  given  by  Maclaurin's  expansion 

In  the  ring  between  the  two  circles  of  radii  |  a|  and  |6|  the  fractions  l/(x—  6), 

l/(x  —  c),  •  •  •,  l/(x  —  I)  can  be  developed  in  positive  powers  of  x,  but  l/(x  —  a) 
must  be  developed  in  positive  powers  of  1/x,  and  we  have 

B  L  A      Aa 

h+~ 
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In  the  next  ring  we  shall  have  an  analogous  development,  and  so  on.   Finally, 
exterior  to  the  circle  of  radius  |  IL  we  shall  have  only  positive  powers  of  1/x : 

38.  Other  series.  The  proofs  of  Taylor's  series  and  of  Laurent's  series  are 
based  essentially  on  a  particular  development  of  the  simple  fraction  l/(z  —  x) 
when  the  point  x  remains  inside  or  outside  a  fixed  circle.  Appell  has  shown  that 
we  can  again  generalize  these  formulae  by  considering  a  function  f(x)  analytic 
in  the  interior  of  a  region  A  bounded  by  any  number  whatever  of  arcs  of 

FIG. 16 

circles  or  of  entire  circumferences.*  Let  us  consider,  for  example,  a  function 
f(x)  analytic  in  the  curvilinear  triangle  PQR  (Fig.  16)  formed  by  the  three 
arcs  of  circles  PQ,  QR,  UP,  belonging  respectively  to  the  three  circumferences 

C,  C",  C".  Denoting  by  x  any  point  within  this  curvilinear  triangle,  we  have 

(24) *-* 2  -* 
r)dz 

—  x 

Along  the  arc  PQ  we  can  write 

1  1  x-a 
I       i  v  n      I | 

i    /s-q\»* 
—  x  \z  —  a) 

z  —  x      z—  a      (z  —  a)2  (z  —  a)n  + J  '  z 
where  a  is  the  center  of  C  ;  but  when  z  describes  the  arc  PQ,  the  absolute  value 

of  (x  —  a)/(z  —  a)  is  less  than  unity,  and  therefore  the  absolute  value  of  the 
integral 

—  X"»  ft  t      \  /  \   ».      I     t 

f(z)   /x-ay  +  i^ 

approaches  zero  as  n  becomes  infinite.   We  have,  therefore, 

(a)      - 

*  Acta  mathematical,  Vol.  I,  p.  145. 
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where  the  coefficients  are  constants  whose  expressions  it  would  be  easy  to  write 

out.    Similarly,  along  the  arc  QR  we  can  write 

1  1  z  —  h  (z—  b\n  - 1  1        /z  — -L  <v   ̂ ^    L/  IX*   ̂ ^    "I  J.  /  &   ̂ ^ 

x  —  z      x—  b      (x  —  6)2  (x  —  6)»        x  —  z  \x  — 

where  6  is  the  center  of  C'.  Since  the  absolute  value  of  (z  —  b)n/(x  —  b)n  ap- 
proaches zero  as  n  becomes  infinite,  we  can  deduce  from  the  preceding  equation 

a  development  for  the  second  integral  of  the  form 

J  \    /  ***'          •*•*•  ̂         -  2  i^  i^  n          i 

Similarly,  we  find 

i    C  f(z^dz     Li       L*  L*   =   r  -;   r^  +  * ' '  +  •;   

where  c  is  the  center  of  the  circle  C".  Adding  the  three  expressions  (a),  (/3), 
(y),  we  obtain  for/(x)  the  sum  of  three  series,  proceeding  respectively  accord- 

ing to  positive  powers  of  x  —  a,  of  l/(x  —  &),  and  of  l/(x  —  c).  It  is  clear  that 
we  can  transform  this  sum  into  a  series  of  which  all  the  terms  are  rational  func- 

tions of  x,  for  example,  by  uniting  all  the  terms  of  the  same  degree  in  x  —  a, 

l/(x  — 6),  l/(x  — c).  The  preceding  reasoning  applies  whatever  may  be  the 
number  of  arcs  of  circles. 

It  is  seen  in  the  preceding  example  that  the  three  series,  (a),  (/3),  (7),  are 

still  convergent  when  the  point  x  is  inside  the  triangle  P'Q'R',  and  the  sum  of 
these  three  series  is  again  equal  to  the  integral 

f(z)dz 
z  —  x 

taken  along  the  boundary  of  the  triangle  PQR  in  the  positive  sense.  Now,  when 

the  point  x  is  in  the  triangle  P'Q'R',  the  function  f(z)/(z  —  x)  is  analytic  in 
the  interior  of  the  triangle  PQR,  and  the  preceding  integral  is  therefore  zero. 
Hence  we  obtain  in  this  way  a  series  of  rational  fractions  which  is  convergent 

when  x  is  within  one  of  the  two  triangles  PQR,  P'Q'R',  and  for  which  the  sum 
is  equal  tof(x)  or  to  zero,  according  as  the  point  x  is  in  the  triangle  PQR  or  in  the 

triangle  P'Q'R'. 
Painleve*  has  obtained  more  general  results  along  the  same  lines.*  Let  us  con- 

sider, in  order  to  limit  ourselves  to  a  very  simple  case,  a  convex  closed  curve  r 

having  a  tangent  which  changes  continuously  and  a  radius  of  curvature  which 
remains  under  a  certain  upper  bound.  It  is  easy  to  see  that  we  can  associate 

with  each  point  If  of  r  a  circle  C  tangent  to  T  at  that  point  and  inclosing  that 
curve  entirely  in  its  interior,  and  this  may  be  done  in  such  a  way  that  the  center 

of  the  circle  moves  in  a  continuous  manner  with  M.  Let/(z)  be  a  function  ana- 
lytic in  the  interior  of  the  boundary  r  and  continuous  on  the  boundary  itself. 

Then,  in  the  fundamental  formula 

f(x)=    l *  Sur  les  lignes  singulieres  desfonctions  anatytiques  (Annales  de  la  Faculte  de 
Toulouse,  1888). 
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where  x  is  an  interior  point  to  T,  we  can  write 

i    _Z   IL_  j.   .  .  .    i        v~         ")"       i         *        /&—  <A 
-x\z-a/ x—  a  (x  —  a)n  1     /x  —  a\n  + * 

z  —  x     z—  a      (z  —  a)2  (z—  a)n  +  l      z  —  x\z  —  a) 

where  a  denotes  the  center  of  the  circle  C  which  corresponds  to  the  point  z  of 
the  boundary  ;  a  is  no  longer  constant,  as  in  the  case  already  examined,  but  it 
is  a  continuous  function  of  z  when  the  point  M  describes  the  curve  r.  Never- 

theless, the  absolute  value  of  (x  —  a)/(z  —  a),  which  is  a  continuous  function  of 
z,  remains  less  than  a  fixed  number  p  less  than  unity,  since  it  cannot  reach  the 
value  unity,  and  therefore  the  integral  of  the  last  term  approaches  zero  as  n 
becomes  infinite.  Hence  we  have 

'<'> 
and  it  is  clear  that  the  general  term  of  this  series  is  a  polynomial  Pn(z)  of 
degree  not  greater  than  n.  The  function  f(x)  is  then  developable  in  a  series  of 
polynomials  in  the  interior  of  the  boundary  F  . 

The  theory  of  conf  ormal  transformations  enables  us  to  obtain  another  kind 
of  series  for  the  development  of  analytic  functions.  Let  f(x)  be  an  analytic 
function  in  the  interior  of  the  region  A,  which  may  extend  to  infinity.  Suppose 
that  we  know  how  to  represent  the  region  A  conf  ormally  on  the  region  inclosed 
by  a  circle  C  such  that  to  a  point  of  the  region  A  corresponds  one  and  only 
one  point  of  the  circle,  and  conversely  ;  let  u  =  <f>  (z)  be  the  analytic  function 
which  establishes  a  correspondence  between  the  region  A  and  the  circle  C  hav- 

ing the  point  u  =  0  for  center  in  the  w-plane.  When  the  variable  u  describes 
this  circle,  the  corresponding  value  of  z  is  an  analytic  function  of  u.  The  same 
is  true  of  /(z),  which  can  therefore  ,be  developed  in  a  convergent  series  of 
powers  of  w,  or  of  0(2),  when  the  variable  z  remains  in  the  interior  of  A. 

Suppose,  for  example,  that  the  region  A  consists  of  the  infinite  strip  included 
between  the  two  parallels  to  the  axis  of  reals  y  =  ±  a.  We  have  seen  (§  22) 

that  by  putting  u  =  (enz/2a  —  l)/(enz/2a  +  1)  this  strip  is  made  to  correspond  to 
a  circle  of  unit  radius  having  its  center  at  the  point  u  =  0.  Every  function 
analytic  in  this  strip  can  therefore  be  developed  in  this  strip  in  a  convergent 
series  of  the  following  form  : 

+  00 
»=o 

39.  Series  of  analytic  functions.  The  sum  of  a  uniformly  conver- 
gent series  whose  terms  are  analytic  functions  of  z  is  a  continuous 

function  of  «,  but  we  could  not  say  without  further  proof  that  that 

sum  is  also  an  analytic  function.  It  must  be  proved  that  the  sum  has 

a  unique  derivative  at  every  point,  and  this  is  easy  to  do  by  means 

of  Cauchy's  integral. 
Let  us  first  notice  that  a  uniformly  convergent  series  whose  terms 

are  continuous  functions  of  a  complex  variable  z  can  be  integrated 

term  by  term,  as  in  the  case  of  a  real  variable.  The  proof  given  in 
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the  case  of  the  real  variable  (I,  §  114,  2d  ed.  ;  §  174,  1st  ed.)  applies 
here  without  change,  provided  the  path  of  integration  has  a  finite 
length. 

The  theorem  which  we  wish  to  prove  is  evidently  included  in  the 
following  more  general  proposition  : 

Let 

(26) 

be  a  series  all  of  whose  terms  are  analytic  functions  in  a  region  A 
bounded  by  a  closed  curve  F  and  continuous  on  the  boundary.  If  the 

series  (26)  is  uniformly  convergent  on  F,  it  is  convergent  in  every  point 
of  A,  and  its  sum  is  an  analytic  function  F(z)  whose  pth  derivative 
is  represented  by  the  series  formed  by  the  pth  derivatives  of  the  terms 

of  the  series  (26). 

Let  <£  (z)  be  the  sum  of  (26)  in  a  point  of  F  ;  <j>  (z)  is  a  continuous 
function  of  z  along  the  boundary,  and  we  have  seen  (§  33,  Note) 
that  the  definite  integral 

(27)     F(x)=  i  cm±=  i 
2  in  J(r)  z-x        2m 

where  x  is  any  point  of  A,  represents  an  analytic  function  in  the 
region  A,  whose  pth  derivative  is  the  expression /-»    +<*> 

I      ̂ ^  f  f  \ 

m\    F<*>(x)--£l-  f  _£M^i_  =  JLL    I    >-  1  '  _rfz 2  «  jm(f  -  *r+1  2  «  Jv  (*  -  *r+i 
Since  the  series  (26)  is  uniformly  convergent  on  F,  the  same  thing 

is  true  of  the  series  obtained  by  dividing  each  of  its  terms  by  *  —  x, 
and  we  can  write 

or  again,  since  /„  (z)  is  an  analytic  function  in  the  interior  of  F, 
we  have,  by  formula  (12), 

Similarly,  the  expression  (28)  can  be  written  in  the  form 

Hence,  if  the  series  (26)  is  uniformly  convergent  in  a  region  A  of 
the  plane,  x  being  any  point  of  that  region,  it  suffices  to  apply  the 
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preceding  theorem  to  a  closed  curve  T  lying  in  A  and  surrounding 
the  point  x.  This  leads  to  the  following  proposition  : 

Every  series  uniformly  convergent  in  a  region  A  of  the  plane,  whose 
terms  are  all  analytic  functions  in  A,  represents  an  analytic  function 

F(z)  in  the  same  region.  Thepth  derivative  of  F(z)  is  equal1  to  the 
series  obtained  by  differentiating  p  times  each  term  of  the  series 

which  represents  F(z).* 

40.  Poles.  Every  function  analytic  in  a  circle  with  the  center  a  is 
equal,  in  the  interior  of  that  circle,  to  the  sum.  of  a  power  series 

(29)         /(«)=  AQ  +  AJz  _  a)  +  -  .  .  +  Am(z  -*)«+.... 
We  shall  say,  for  brevity,  that  the  function  is  regular  at  the  point  a, 
or  that  a  is  an  ordinary  point  for  the  given  function.  We  shall  call  the 
interior  of  a  circle  C,  described  about  a.  as  a  center  with  the  radius  p, 
the  neighborhood  of  the  point  a,  when  the  formula  (29)  is  applicable. 
It  is,  moreover,  not  necessary  that  this  shall  be  the  largest  circle  in  the 

interior  of  which  the  formula  (29)  is  true  ;  the  radius  p  of  the  neigh- 
borhood will  often  be  defined  by  some  other  particular  property. 

If  the  first  coefficient  AQ  is  zero,  we  have  f(a)  =  0,  and  the  point 
a  is  a  zero  of  the  f  unction  /(z).  The  order  of  a  zero  is  defined  in  the 
same  way  as  for  polynomials  ;  if  the  development  of  f(z)  commences 
with  a  term  of  degree  m  in  z  —  a, 

f(z)  =  Am(z  -  a)™  +  Am  +  l(z  -  a)>»^+  .  .  .,        (m  >  0), 
where  Am  is  not  zero,  we  have 

and  the  point  a  is  said  to  be  a  zero  of  order  m.    We  can  also  write 
the  preceding  formula  in  the  form 

<f>  (z)  being  a  power  series  which  does  not  vanish  when  z  =  a.  Since 
this  series  is  a  continuous  function  of  z,  we  can  choose  the  radius  p 
of  the  neighborhood  so  small  that  <£(#)  does  not  vanish  in  that 
neighborhood,  and  we  see  that  the  function  f(z)  will  not  have  any 
other  zero  than  the  point  a  in  the  interior  of  that  neighborhood. 
The  zeros  of  an  analytic  function  are  therefore  isolated  points. 

Every  point  which  is  not  an  ordinary  point  for  a  single-valued 
function  f(z)  is  said  to  be  a  singular  point.   A  singular  point  a  of  the 

*  This  proposition  is  usually  attributed  to  Weierstrass. 
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function  f(z)  is  a,  pole  if  that  point  is  an  ordinary  point  for  the  re- 
ciprocal function  l/f(z).  The  development  of  l//(^)  in  powers  of 

z  —  a  cannot  contain  a  constant  term,  for  the  point  a  would  then  be 
an  ordinary  point  for  the  function  f(z).  Let  us  suppose  that  the 

development  commences  with  a  term  of  degree  ra  in  z  —  a, 

(30)  •  ^  =  (»-«)"  +  (*), 

where  $(z)  denotes  a  regular  funcfcfolf  in  the  neighborhood  of  the 
point  a  which  is  not  zero  when  z  =  a.  From  this  we  derive 

1  * 

(z-a)m<t>(z)       (z-a)m 

where  $(z)  denotes  a  regular  function  in  the  neighborhood  of  the 
point  a  which  is  not  zero  when  z  =  a.  This  formula  can  be  written 
in  the  equivalent  form 

(31')    f(z)=       Bm.m+,    ̂ -1       +...  +  -gL-  +  P(*-a), (z  —  a)m       (z  —  a)m    *•  z  —  a 

where  we  denote  by  P(z  —  a),  as  we  shall  often  do  hereafter,  a 
regular  function  for  z  =  a,  and  by  Bm,  Bm_lt  •  •  •,  B1  certain  con- 

stants. Some  of  the  coefficients  BI}  B2,  •  -  •  ,  Bm_1  may  be  zero,  but 
the  coefficient  Bm  is  surely  different  from  zero.  The  integer  ra  is 

called  the  order  of  the  pole.  It  is  seen  that  a  pole  of  order  m  of  f(z] 
is  a  zero  of  order  ra  of  1  //(£),  and  conversely. 

In  the  neighborhood  of  a  pole  a  the  development  oif(z)  is  com- 

posed of  a  regular  part  P  (z  —  a)  and  of  a  polynomial  in  l/(z  —  a)  ; 
this  polynomial  is  called  the  principal  part  of  f(z)  in  the  neighbor- 

hood of  the  pole.  When  the  absolute  value  ofz  —  a  approaches  zero, 
the  absolute  value  of  f(z)  becomes  infinite  in  whatever  way  the  point 
z  approaches  the  pole.  In  fact,  since  the  function  if/(z)  is  not  zero  for 
z  =  &,  suppose  the  radius  of  the  neighborhood  so  small  that  the 
absolute  value  of  *(/(z)  remains  greater  than  a  positive  number  M  in 

this  neighborhood.  Denoting  by  r  the  absolute  value  of  z  —  a,  we 

have  |  f(z)  \  >  M/rmy  and  therefore  |  f(z)  \  becomes  infinite  when  r 
approaches  zero.  Since  the  function  \f/(z)  is  regular  for  z  =  a,  there 
exists  a  circle  C  with  the  center  a  in  the  interior  of  which  if/  (z)  is 

analytic.  The  quotient  \f/(z)/(z  —  a)m  is  an  analytic  function  for  all 
the  points  of  this  circle  except  for  the  point  a  itself.  In  the  neigh- 

borhood of  a  pole  a,  the  function  f(z)  has  therefore  no  other  singular 
point  than  the  pole  itself;  in  other  words,  poles  are  isolated  singular 

points. 
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41.  Functions  analytic  except  for  poles.  Every  function  which  is 
analytic  at  all  the  points  of  a  region  A,  except  only  for  singular 
points  that  are  poles,  is  said  to  be  analytic  except  for  poles  in  that 

region.*  A  function  analytic  in  the  whole  plane  except  for  poles 
may  have  an  infinite  number  of  poles,  but  it  can  have  only  a  finite 
number  in  any  finite  region  of  the  plane.  The  proof  depends  on  a 
general  theorem,  which  we  must  now  recall :  If  in  a  finite  region  A 
of  the  plane  there  exist  an  infinite  number  of  points  possessing  a 
particular  property,  there  exists  at  least  one  limit  point  in  the  region 
A  or  on  its  boundary.  (We  mean  by  limit  point  a  point  in  every 
neighborhood  of  which  there  exist  an  infinite  number  of  points 
possessing  the  given  property.)  This  proposition  is  proved  by  the 
process  of  successive  subdivisions  that  we  have  employed  so  often. 

For  brevity,  let  us  indicate  by  (E*)  the  assemblage  of  points  con- 
sidered, and  let  us  suppose  that  the  region  A  is  divided  into  squares, 

or  portions  of  squares,  by  parallels  to  the  axes  Ox,  Oy.  There  will 
be  at  least  one  region  Al  containing  an  infinite  number  of  points  of 

the  assemblage  (£").  By  subdividing  the  region  A  l  in  the  same  way, 
and  by  continuing  this  process  indefinitely,  we  can  form  an  infinite 

sequence  of  regions  Alt  A2,  •  •  •,  An,  -  •  •  that  become  smaller  and 
smaller,  each  of  which  is  contained  in  the  preceding  and  contains 
an  infinite  number  of  the  points  of  the  assemblage.  All  the  points  of 

An  approach  a  limit  point  Z  lying  in  the  interior  of  or  on  the  bound- 
ary of  A.  The  point  Z  is  necessarily  a  limit  point  of  (£),  since  there 

are  always  an  infinite  number  of  points  of  (E)  in  the  interior  of  a 
circle  having  Z  for  center,  however  small  the  radius  of  that  circle 

may  be. 
Let  us  now  suppose  that  the  function  f(z)  is  analytic  except  for 

poles  in  the  interior  of  a  finite  region  A  and  also  on  the  boundary  r 
of  that  region.  If  it  has  an  infinite  number  of  poles  in  the  region, 
it  will  have,  by  the  preceding  theorem,  at  least  one  point  Z  situated 
in  A  or  on  T,  in  every  neighborhood  of  which  it  will  have  an  infinite 
number  of  poles.  Hence  the  point  Z  can  be  neither  a  pole  nor  an 
ordinary  point.  It  is  seen  in  the  same  way  that  the  function  f(z) 
can  have  only  a  finite  number  of  zeros  in  the  same  region.  It  follows 
that  we  can  state  the  following  theorem  : 

Every  function  analytic  except  for  poles  in  a  finite  region  A  and  on 
its  boundary  has  in  that  region  only  a  finite  number  of  zeros  and  only 
a  finite  number  of  poles. 

*  Such  functions  are  said  by  some  writers  to  be  meromorphic.  —  TRANS. 
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In  the  neighborhood  of  any  point  a,  a  function  f(z)  analytic 

except  for  poles  can  be  put  in  the  form 

(32)  ^  .  /(*)=(*-«r*«» 
where  <£  (2)  is  a  regular  function  not  zero  for  z  =  a.  The  exponent 
/-i  is  called  the  order  off(z)  at  the  point  a.  The  order  is  zero  if  the 
point  a  is  neither  a  pole  nor  a  zero  for  f(z)  ;  it  is  equal  to  m  if 

the  point  a  is  a  zero  of  order  m  for  /(z),  and  to  —  n  if  a  is  a  pole 
of  order  n  for  /(z). 

42.  Essentially  singular  points.  Every  singular  point  of  a  single- 
valued  analytic  function,  which  is  not  a  pole,  is  called  an  essen- 

tially singular  point.  An  essentially  singular  point  a  is  isolated 
if  it  is  possible  to  describe  about  a  as  a  center  a  circle  C  in  the 

interior  of  which  the  function  f(z)  has  no  other  singular  point 
than  the  point  a  itself;  we  shall  limit  ourselves  for  the  moment 
to  such  points. 

Laurent's  theorem  furnishes  at  once  a  development  of  the  func- 
tion/^) that  holds  in  the  neighborhood  of  an  essentially  singular 

point.  Let  C  be  a  circle,  with  the  center  a,  in  the  interior  of  which 

the  function  f(z)  has  no  other  singular  point  than  a  ;  also  let  c  be  a 
circle  concentric  with  and  interior  to  C.  In  the  circular  ring  included 

between  the  two  circles  C  and  c  the  function  f(z)  is  analytic  and 
is  therefore  equal  to  the  sum  of  a  series  of  positive  and  negative 

powers  of  z  —  a} 

(33)  /(«)  =         A.(*  -  a)". 

This  development  holds  true  for  all  the  points  interior  to  the  circle 
C  except  the  point  a,  for  we  can  always  take  the  radius  of  the  circle 

c  less  than  z  —  a  for  any  point  z  whatever  that  is  diiferent  from  a 
and  lies  in  C.  Moreover,  the  coefficients  Am  do  not  depend  on  this 

radius  (§  37).  The  development  (33)  contains  first  a  part  regular 

at  the  point  a,  say  P  (z  —  a),  formed  by  the  terms  with  positive 
exponents,  and  then  a  series  of  terms  in  powers  of  !/(#  —  a), 

(34) . 
z  —  a       (z  —  ay  (z  —  a)m 

This  is  the  principal  part  of  /(«)  in  the  neighborhood  of  the  singular 
point.  This  principal  part  does  not  reduce  to  a  polynomial  in 

(z  —  a)"1,  for  the  po'int  z  =  a  would  then  be  a  pole,  contrary  to  the 
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hypothesis.1*  It  is  an  integral  transcendental  function  of  l/(z  —  a). 
In  fact,  let  r  be  any  positive  number  less  than  the  radius  of  the 

circle  C;  the  coefficient  A_m  of  the  series  (34)  is  given  by  the 
expression  (§  37) 

A—  =  £i  f  (*  -  a)-'  V(*)A 

*  7ri  J(C') 

the  integral  being  taken  along  the  circle  C'  with  the  center  a  and 
the  radius  r.  We  have,  then, 

(35)  :f;          "  \A_m   <M(r)i~, 
where  t^T(r)  denotes  the  maximum  of  the  absolute  value  of  f(z) 

along  the  circle  C'.  The  series  is  then  convergent,  provided  that 
z  —  a  |  is  greater  than  r,  and  since  r  is  a  number  which  we  may 
suppose  as  small  as  we  wish,  the  series  (34)  is  convergent  for  every 
value  of  z  different  from  a,  and  we  can  write 

where  P  (z  —  a)  is  a  regular  function  at  the  point  a,  and  G  \l/(z  —  a)] 
an  integral  transcendental  function!  of  !/(#  —  a). 
When  the  absolute  value  of  z  —  a  approaches  zero,  the  value  of 

f(z)  does  not  approach  any  definite  limit.  More  precisely,  if  a  circle 
C  is  described  with  the  point  a  as  a  center  and  with  an  arbitrary 

radius  p,  there  always  exists  in  the  interior  of  this  circle  points  z  for 

which  f(z)  differs  as  little  as  we  please  from  any  number  given  in 
advance  (WEIERSTRASS). 

Let  us  first  prove  that,  given  any  two  positive  numbers  p  and  M, 

there  exist  values  of  z  for  which  both  the  inequalities,  z  —  a  \  <  p, 
\f(z)  |  >  Mj  hold.  For,  if  the  absolute  value  of  f(z)  were  at  most 

equal  to  M  when  we  have  \z  —  a  <  p,  J%T(r)  would  be  less  than 
or  equal  to  M  for  r  <  p,  and,  from  the  inequality  (35),  all  the  coeffi- 

cients A_m  would  be  zero,  for  the  product  JK(r)rm  ̂   Mrm  would 
approach  zero  with  r. 

Let  us  consider  now  any  value  A  whatever.  If  the  •  equation 

f(z)  =  A  has  roots  within  the  circle  C,  however  small  the  radius  p 

*  To  avoid  overlooking  any  hypothesis,  it  would  be  necessary  to  examine  also  the 
case  in  which  the  development  of  f(z)  in  the  interior  of  C  contains  only  positive 

powers  of  z-  a,  the  value /(a)  of  the  function  at  the  point  a  being  different  from  the 
term  independent  of  z  -  a  in  the  series.  The  point  z=  a  would  be  a  point  of  discon- 

tinuity for/(z).  We  shall  disregard  this  kind  of  singularity,  which  is  of  an  entirely 
artificial  character  (see  below,  Chapter  IV) . 

f  We  shall  frequently  denote  an  integral  function  of  x  by  G(x) . 
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may  be,  the  theorem  is  proved.  If  the  equation  f(z)  =  A  does  not 
have  an  infinite  number  of  roots  in  the  neighborhood  of  the  point  a, 
we  can  take  the  radius  p  so  small  that  in  the  interior  of  the  circle  C 

with  the  radius  p  and  the  center  a  this  equation  does  not  have  any 

roots.  The  function  <f>(z)=  !/[/(«)  —  A~\  is  then  analytic  for  every 
point  z  within  C  except  for  the  point  a ;  this  point  a  cannot  be  any- 

thing but  an  essentially  singular  point  for  <£(V),  for  otherwise  the 

point  would  be  either  a  pole  or  an  ordinary  point  for/(V).  There- 
fore, from  what  we  have  just  proved,  there  exist  values  of  z  in  the 

interior  of  the  circle  C  for  which  we  have 

>-     or 
c 

however  small  the  positive  number  e  may  be. 

This  property  sharply  distinguishes  poles  from  essentially  singu- 
lar points.  While  the  absolute  value  of  the  function  /(z)  becomes 

infinite  in  the  neighborhood  of  a  pole,  the  value  of  /(«)  is  completely 
indeterminate  for  an  essentially  singular  point. 

Picard  *  has  demonstrated  a  more  precise  proposition  by  showing 
that  every  equation  f(z)  =  A  has  an  infinite  number  of  roots  in  the 
neighborhood  of  an  essentially  singular  point,  there  being  no  excep- 

tion except  for,  at  most,  one  particular  value  of  A. 

Example.   The  point  z  =  0  is  an  essentially  singular  point  for  the  function 

z      2~!  z2  n\  z» 

It  is  easy  to  prove  that  the  equation  el/z  =  A  has  an  infinite  number  of  roots 
with  absolute  values  less  than  p,  however  small  p  may  be,  provided  that  A  is 
not  zero.  Setting  A  =  r  (cos  6  +  i  sin  #),  we  derive  from  the  preceding  equation 

-  =  logr+  i(0  +  2far). 

We  shall  have  \z\  <  p,  provided  that 

(log  r)2  +  (0  +  2  A;7r)2  ̂   — 

P2 

There  are  evidently  an  infinite  number  of  values  of  the  integer  k  which  satisfy 

this  condition.  In  this  example  there  is  one  exceptional  value  of  A*  that  is, 
-4=0.  But  it  may  also  happen  that  there  are  no  exceptional  values ;  such  is 
the  case,  for  example,  for  the  function  sin(l/z),  near  z  =  0. 

*Annales  de  I'Ecole  Normale  superieure,  1880. 
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43.  Residues.  Let  a  be  a  pole  or  an  isolated  essentially  singular 
point  of  a  function  /(#).  Let  us  consider  the  question  of  evaluating 
the  integral  ff(z)dz  along  the  circle  C  drawn  in  the  neighborhood 

of  the  point  a  with  the  center  a.  The  regular  part  P  (z  —  a)  gives 
zero  in  the  integration.  As  for  the  principal  part  G\\/(z  —  a)],  we 
can  integrate  it  term  by  term,  for,  even  though  the  point  a  is  an 
essentially  singular  point,  this  series  is  uniformly  convergent.  The 
integral  of  the  general  term 

J(C 
A_mdz 

is  zero  if  the  exponent  ra  is  greater  than  unity,  for  the  primitive 

function  —  A_m/\_(m  —  1)(z  —  a)™-1]  takes  on  again  its  original 
value  after  the  variable  has  described  a  closed  path.  If,  on  the  con- 

trary, m  =  1,  the  definite  integral  A_^fdz/(z  —  a)  has  the  value 
2  7riA_l}  as  was  shown  by  the  previous  evaluation  made  in  §  34J  We 
have  then  the  result  „ 

_l  =  I    f(z)dz, 

which  is  essentially  only  a  particular  case  of  the  formula  (23)  for 
the  coefficients  of  the  Laurent  development.  The  coefficient  A_l  is 
called  the  residue  of  the  function  f(z)  with  respect  to  the  singular 

point  a. 
Let  us  consider  now  a  function  f(z)  continuous  on  a  closed 

boundary  curve  T  and  having  in  the  interior  of  that  curve  T  only  a 
finite  number  of  singular  points  a,  b,  c,  -  •  •,  1.  Let  A,  B,  C,  •  •  •,  L  be 
the  corresponding  residues  ;  if  we  surround  each  of  these  singular 
points  with  a  circle  of  very  small  radius,  the  integral  ff(z)dz,  taken 
along  T  in  the  positive  sense,  is  equal  to  the  sum  of  the  integrals 
taken  along  the  small  curves  in  the  same  sense,  and  we  have  the 
very  important  formula 

(36)  C  f(z)dz  =  27ri(A  +  B  +  C  +  •  .  •  +  L), 

•/(I1) 

which  says  that  the  integral  ff(z)  dz}  taken  along  T  in  the  positive 
sense,  is  equal  to  the  product  of  2  iri  and  the  sum  of  the  residues  with 

respect  to  the  singular  points  of  f(z)  within  the  curve  T. 

It  is  clear  that  the  theorem  is  also  applicable  to  boundaries  F  com- 
posed of  several  distinct  closed  curves.  The  importance  of  residues 

is  now  evident,  and  it  is  useful  to  know  how  to  calculate  them  rapidly. 

If  a  point  a  is  a  pole  of  order  m  for  f(z),  the  product  (z  —  a)mf(z) 
is  regular  at  the  point  a,  and  the  residue  of  f(z)  is  evidently  the 
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coefficient  of  (z  —  a)m~l  in  the  development  of  that  product.  The 
rule  becomes  simple  in  the  case  of  a  simple  pole  ;  the  residue  is  then 

equal  to  the  limit  of  the  product  (z  —  a)f(z)  for  z  =  a.  Quite  fre- 
quently the  function  f(z)  appears  under  the  form 

where  the  functions  P  (2)  and  Q  (z)  are  regular  for  z  —  a,  and  P  (a) 
is  different  from  zero,  while  a  is  a  simple  zero  for  Q(z).  Let 

Q  (2)  =  (z  —  a)  R  (z)  ;  then  the  residue  is  equal  to  the  quotient 

P(a)/R(a),  or  again,  as  it  is  easy  to  show,  to  P(d)/Q'(a). 

III.  APPLICATIONS  OF  THE  GENERAL  THEOREMS 

The  applications  of  the  last  theorem  are  innumerable.  We  shall 

now  give  some  of  them  which  are  related  particularly  to  the  evalua- 
tion of  definite  integrals  and  to  the  theory  of  equations. 

44.  Introductory  remarks.  Let  f(z)  be  a  function  such  that  the 

product  (z  —  a)f(z)  approaches  zero  with  z  —  a  .  The  integral  of 
this  function  along  a  circle  y,  with  the  center  a  and  the  radius  p, 
approaches  zero  with  the  radius  of  that  circle.  Indeed,  we  can  write 

C  f(z)d*=  f  (*_ J(y)  Jew (y)  ew 

If  77  is  the  maximum  of  the  absolute  value  of  (z  —  a)f(»)  along  the 

circle  y,  the  absolute  value  of  the  integral  is  less  than  2  77-77,  and  con- 
sequently approaches  zero,  since  rj  itself  is  infinitesimal  with  p.  We 

could  show  in  the  same  way  that,  when  the  product  (z  —  a)  f(z) 
approaches  zero  as  the  absolute  value  of  z  —  a  becomes  infinite,  the 

integral  j£C)/(«X«>  taken  along  a  circle  C  with  the  center  a,  ap- 
proaches zero  as  the  radius  of  the  circle  becomes  infinite.  These 

statements  are  still  true  if,  instead  of  integrating  along  the  entire 

circumference,  we  integrate  along  only  a  part  of  it,  provided  that 

the  product  (z  —  a)f(z)  approaches  zero  along  that  part. 
Frequently  we  have  to  find  an  upper  bound  for  the  absolute  value 

of  a  definite  integral  of  the  form  Jabf(x)  dx,  taken  along  the  axis  of 
reals.  Let  us  suppose  for  definiteness  a  <  b.  We  have  seen  above 

(§  25)  that  the  absolute  value  of  that  integral  is  at  most  equal  to  the 

integral  ̂   f(x)  |  dx,  and,  consequently,  is  less  than  M  (b  —  a)  if  M 
is  an  upper  bound  of  the  absolute  value  o 
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45.  Evaluation  of  elementary  definite  integrals.  The  definite  inte- 

gral r^*F(x)dx9  taken  along  the  real  axis,  where  F(x)  is  a  rational 
function,  has  a  sense,  provided  that  the  denominator  does  not  vanish 

for  any  real  value  of  x  and  that  the  degree  of  the  numerator  is  less 
than  the  degree  of  the  denominator  by  at  least  two  units.  With  the 

origin  as  center  let  us  describe  a  circle  C  with  a  radius  R  large 
enough  to  include  all  the  roots  of  the  denominator  of  F(z),  and  let 
us  consider  a  path  of  integration  formed  by  the  diameter  BA  ,  traced 

along  the  real  axis,  and  the  semicircumference  C',  lying  above  the 
real  axis.  The  only  singular  points  of  F(z)  lying  in  the  interior  of 

this  path  are  poles,  which  come  from  the  roots  of  the  denominator 

of  F(z)  for  which  the  coefficient  of  i  is  positive.  Indicating  by 
the  sum  of  the  residues  relative  to  these  poles,  we  can  then  write 

F(z)dz  +  C  F(z)dz  = 
R  J(C') 

As  the  radius  R  becomes  infinite  the  integral  along  C1  approaches 
zero,  since  the  product  zF(z)  is  zero  for  z  infinite  ;  and,  taking  the 
limit,  we  obtain 

'    00 

We  easily  reduce  to  the  preceding  case  the  definite  integrals 

j  cos  x)  dx, 

s* 

I 

Jo 

where  F  is  a  rational  function  of  sin  x  and  cos  x  that  does  not 

become  infinite  for  any  real  value  of  #,  and  where  the  integral  is  to 
be  taken  along  the  axis  of  reals.  Let  us  first  notice  that  we  do  not 

change  the  value  of  this  integral  by  taking  for  the  limits  XQ  and 

XQ  4-  2  TT,  where  XQ  is  any  real  number  whatever.  It  follows  that  we 
can  take  for  the  limits  —  TT  and  +  TT,  for  example.  Now  the  classic 
change  of  variable  tan  (x/2)  =  t  reduces  the  given  integral  to  the 

integral  of  a  rational  function  of  t  taken  between  the  limits  —  oo 

and  +  oo,  for  tan  (x/2)  increases  from  —  co  to  +  oo  when  x  increases 
from  —  TT  to  +  TT. 

We  can  also  proceed  in  another  way.   By  putting  e*  =  z  we  have 

dx  =  dz/iz,  and  Euler's  formulae  give 

cos  x  = 
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so  that  the  given  integral  takes  the  form 

z 

As  for  the  new  path  of  integration,  when  x  increases  from  0  to  2  TT 
the  variable  z  describes  in  the  positive  sense  the  circle  of  unit  radius 

about  the  origin  as  center.  It  will  suffice,  then,  to  calculate  the  resi- 
dues of  the  new  rational  function  of  z  with  respect  to  the  poles 

whose  absolute  values  are  less  than  unity. 

Let  us  take  for  example  the  integral  J^27rctn  \_(x  —  a  —  bi)/2]dx, which  has  a  finite  value  if  b  is  not  zero.    We  have 

.(x  —  a  —  bi (x  —  a  —  bi 

<• 

ULIll 
2 

otJX~ 

e  > 

-a  —  bi\ 

x-a-bi\            . /x  —  a  —  bi\ 2        )  —  e 

ete  _|_  e-*>  + at 
CLI1  1 2         ) 

gix     e~  6  + 

at 
or 

Hence  the  change  of  variable  e**  =  z  leads  to  the  integral 

z  4-  e~b  +  ai  dz 
J(.C.    g—b  +  ai    g 

The  function  to  be  integrated  has  two  simple  poles 

2  =  0,         z  =  e~b+ai, 
and  the  corresponding  residues  are  —  1  and  +  2.  If  b  is  positive, 
the  two  poles  are  in  the  interior  of  the  path  of  integration,  and  the 

integral  is  equal  to  2  TTI  ;  if  b  is  negative,  the  pole  z  =  0  is  the  only 

one  within  the  path,  and  the  integral  is  equal  to  —  2  iri.  The  pro- 
posed integral  is  therefore  equal  to  ±  2  TTI,  according  as  b  is  posi- 

tive or  negative.  We  shall  now  give  some  examples  which  are 
less  elementary. 

46.  Various  definite  integrals.  Example  1.  The  function  eimz/(l  +  z2)  has  the 
two  poles  +  i  and  —  i,  with  the  residues  er  m/2  i  and  —  em/2  i.  Let  us  suppose 
for  definiteness  that  m  is  positive,  and  let  us  consider  the  boundary  formed  by 

a  large  semicircle  of  radius  R  about  the  origin  as  center  and  above  the  real 
axis,  and  by  the  diameter  which  falls  along  the  axis  of  reals.  In  the  interior  of 

this  boundary  the  function  emiz/(l  +  z2)  has  the  single  pole  z  =  i,  and  the  integral 

taken  along  the  total  boundary  is  equal  to  Tre~m.  Now  the  integral  along  the 
semicircle  approaches  zero  as  the  radius  R  becomes  infinite,  for  the  absolute 

alue  of  the  product  zeim*/(l  +  z2)  along  that  curve  approaches  zero.  Indeed, 
ii  we  replace  z  by  I?  (cos  0  +  i  sin  0),  we  have 

te  —  Q—  mR  sin  B  +  imR  cos  Q 



98 THE  GENERAL  CAUCHY  THEORY 

[II,  §  46 
and  the  absolute  value  e-mJtBin&  remains  less  than  unity  when  6  varies  from  0 
to  TT.  As  for  the  absolute  value  of  the  factor  z/(l  +  z2),  it  approaches  zero  as 
z  becomes  infinite.  We  have,  then,  in  the  limit 

ft  +00 J-« -'dx  =  ire-  m. 

If  we  replace  emix  by  cos  rax  +  i  sin  rax,  the  coefficient  of  i  on  the  left-hand  side 
is  evidently  zero,  for  the  elements  of  the  integral  cancel  out  in  pairs.   Since  we 

have  also  cos  (—  rax)  =  cos  rax,  we 
can  write  the  preceding  formula  in 
the  form 

r  +  °°  cos  rax  ,        TT 

(37)       /  -dx  =  -e~m. Jo        1  +  x2  2 

Example  2.  The  function  eiz/z  is 
analytic  in  the  interior  of  the  bound- 

ary ABMB'A'NA  (Fig.  17)  formed 

by  the  two  semicircles  BMB',  A'NA, 
described  about  the  origin  as  center 

with  the  radii  R  and;r,  and  the  straight  lines  AB,  I? A'. 
We  have,  then,  the  relation 

rKeix          r       eiZ          r~r  <?*          C 
^dx+          Tdz+  /      ~^dx+  / Jr  J(BMB')  J-R  J(A' '(BMB') 

which  we  can  write  also  in  the  form 

NA) 

/"*•-'-'•*,+  f    f 
Jr  X  J(BMB')  Z 

f>lZ 

- 
z 

'(BMB') 

When  r  approaches  zero,  the  last  integral  approaches  —  iri ;  we  have,  in  fact, 
eiz         1 

dz 

z 

where  P  (z)  is  a  regular  function  at  the  origin,  so  that 

C       -dz  =  C         P(z)dz  +   C 
LAUVA^  Z  J(A'NA)  ],A'\TA\ iJ(A'NA)  */ (A  A/A) 

The  integral  of  the  regular  part  P  (z)  becomes  infinitesimal  with  the  length  of 
the  path  of  integration ;  as  for  the  last  integral,  it  is  equal  to  the  variation  of 

Log  (z)  along  A'NA,  that  is,  to  —  Tri. 
The  integral  along  BMB'  approaches  zero  as  R  becomes  infinite.   For  if  we 

put  z  =  R  (cos  6  +  i  sin  0),  we  find 

Jd 

piz 

-dz  =  i 

(BMB') 
and  the  absolute  value  of  this  integral  is  less  than 

IT 

/»  I"  /»  — i    e-s sine (j[ff  —  2  i   2e 
Jo  Jo 
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When  6  increases  from  0  to  7T/2,  the  quotient  sin  6/0  decreases  from  1  to 

2/7T,  and  we  have 

hence 

d6 

7T    F   -^"
ll 

=--    \e     »       = 2E[_  Jo 
IT 

which  establishes  the  proposition  stated  above. 

Passing  to  the  limit,  we  have,  then  (see  I,  §  100,  2d  ed.), 

+  00 
_  e- 

or 

f. +  00 
X  . 

smx 

dx  —  Tri, 

TT 

Example  3.   The  integral  of  the  integral  transcendental  function  e~  z2  along 
the  boundary  OABO  formed  by  the  two  radii  OA  and  OB,  making  an  angle  of 

45°,  and  by  the  arc  of  a  circle  AB  (Fig.  18),  is 
equal  to  zero,  and  this  fact  can  be  expressed 
as  follows  : 

y 

f    e~x*dx+  C      e-**dz=  C t/O  J(AB)  J( 

'(OB) 

When  the  radius  R  of  the  circle  to  which 

the  arc  AB  belongs  becomes  infinite,  the  in- 
tegral along  the  arc  AB  approaches  zero.  In 

fact,  if  we  put  z  =  R  [cos  (0/2)  +  i  sin  (0/2)], 
that  integral  becomes 

_  C  2  e-  R\coa  <f>  +  i  sin  </>)  e~2 2  Jo 

and  its  absolute  value  is  less  than  the  integral 

;/ 

Jo 

As  in  the  previous  example,  we  have 

7?        —  7? 

2  Jo  2  Jo 

The  last  integral  has  the  value 
7T 

_^re-2-^?=-^( 4tf|_  Jo       4B 

and  approaches  zero  when  R  becomes  infinite. 

0 M 

FIG. 18 

7?      - £*  fi 

2  Jo 

2  Jo 
E        2fi2<f> 
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Along  the  radius  OB  we  can  put  z  =  p[cos(7r/4)  +  isin(?r/4)],  which  gives 

e  -*2  =  e-l>2,  and  as  E  becomes  infinite  we  have  at  the  limit  (see  I,  §  135,  2d  ed. ; 
§  134,  1st  ed.) 

/*  +  °°  „  /          7T  7T\  /*  +  °°  "Y/TT 

f        e-*P2(cos-  +  isin-)dp  =  f        e-*2^  =  Jl^, Jo  \       4  4/  Jo  2 
or,  again, 

f+a°      ,-«2,        Vir/       TT  TT\ e~  *P  dp  =   ( cos   i  sm  — ) . Jo  2    \       4  4/ 

Equating  the  real  parts  and  the  coefficients  of  i,  we  obtain  the  values  of 

Fresnel's  integrals, 

(38) 
r  +  0°  1      fir  /•+«  .  1      fir 

cos p2ap  =  --*/—,  smp2dp  =  -  -*/— . Jo  2  \2          Jo  2  \2 

47.  Evaluation  of  T  (/>)  T(l—  />).   The  definite  integral 

/ 
Jo 

where  the  variable  x  and  the  exponent  p  are  real,  has  a  finite  value,  provided 

that  p  is  positive  and  less  than  one  ;  it  is  equal  to  the  product  T  (p)  F  (1  —  p).* 
In  order  to  evaluate  this  integral,  let 

us  consider  the  f  unction  ZP~I/(\  +  z), 
which  has  a  pole  at  the  point  z  =  —  1 
and  a  branch  point  at  the  point 

z  =  0.  Let  us  consider  the  boundary 

abmb'a'na  (Fig.  19)  formed  by  the 

two  circles  C  and  <7X,  described  about 
the  origin  with  the  radii  r  and  p  re- 

spectively, and  the  two  straight  lines 

ab  and  a'6',  lying  as  near  each  other 
as  we  please  above  and  below  a  cut 

along  the  axis  Ox.  The  function 

ZP~l/(l  +  z)  is  single-valued  within 
this  boundary,  which  contains  only 

~Fio.  19  °ne  singular  point,  the  pole  z  =  —  1. 
In  order  to  calculate  the  value  of  the 

integral  along  this  path,  we  shall  agree  to  take  for  the  angle  of  z  that  one 
which  lies  between  0  and  27r.  If  E  denotes  the  residue  with  respect  to  the 

pole  z  =  —  1,  we  have  then 
dz  + 

h 

dz  + 

ZP-I 

=  2  iirE. 

The  integrals  along  the  circles  C  and  C'  approach  zero  as  r  becomes  infinite 
and  as  p  approaches  zero  respectively,  for  the  product  ZP/(\  +  z)  approaches 
zero  in  either  case,  since  0  <p  <  1. 

*  Replace  t  by  1/(1  +  x)  in  the  last  formula  of  §  135,  Vol.  I,  2d  ed. ;  §  134,  1st  ed. 
The  formula  (39),  derived  by  supposing  p  to  be  real,  is  correct,  provided  the  real  part 
of  p  lies  between  0  and  1. 
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Along  afr,  z  is  real.  For  simplicity  let  us  replace  z  by  x.  Since  the  angle  of 

z  is  zero  along  a&,  ZP-I  is  equal  to  the  numerical  value  of  XP~I.  Along  a'b' 
also  z  is  real,  but  since  its  angle  is  2  TT,  we  have 

The  sum  of  the  two  integrals  along  ah  and  along  b'af  therefore  has  for  its  limit 
'  +  «  ~  ._i 

-/ 

Jo 

1  +  X 

•dx. 

The  residue  E  is  equal  to  (— 
angle  of  —1.   We  have,  then, 

-1,  that  is,  to  eCp-1)1™',  if  TT  is  taken  as  the 

2-n-i 

—  7T 

— !)TT 

or,  finally, 

(39) 

Jo        l  +  * 

7T 

48.  Application  to  functions  analytic  except  for  poles.  Given  two 

functions,  /(#)  and  <f>  (z),  let  us  suppose  that  one  of  them,  /(z),  is 
analytic  except  for  poles  in  the  interior  of  a  closed  curve  C,  that  the 

other,  <f)  (z),  is  everywhere  analytic  within  the  same  curve,  and  that  the 

three  functions  f(z),  /'(X)>  <£(X)  are  continuous  on  the  curve  (7;  and 

let  us  try  to  find  the  singular  points  of  the  function  <£  (^)/'(^)//(2;) 
within  C.  A  point  a  which  is  neither  a  pole  nor  a  zero  for  f(z)  is 

evidently  an  ordinary  point  for  the  function  jf  (*)//(*)  and  conse- 

quently for  the  function  <f>  («)/'(«)//(«).  If  a  point  a  is  a  pole  or  a 
zero  of  /(V),  we  shall  have,  in  the  neighborhood  of  that  point, 

where  /x  denotes  a  positive  or  negative  integer  equal  to  the  order  of 

the  function  at  that  point  (§  41),  and  where  \(/(z)  is  a  regular  func- 
tion which  is  not  zero  for  &  —  a.  Taking  the  logarithmic  derivatives 

on  both  sides,  we  find 

f(z)  =     p       i  ̂) 
/(*)       *  -  «       fK*) 

Since,  on  the  other  hand,  we  have,  in  the  neighborhood  of  the  point  a, 

it  follows  that  the  point  a  is  a  pole  of  the  first  order  for  the  product 

<£(£)/'(£)//(£),  and  its  residue  is  equal  to  fjL<f>(a),  that  is,  to  m<f>(a), 
if  the  point  a  is  a  zero  of  order  m  for  /(V),  and  to  —  n<j>  (a)  if  the 
point  a  is  a  pole  of  order  n  for/(^).  Hence,  by  the  general  theorem 
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of  residues,  provided  there  are  no  roots  of  f(z)  on  the  curve  C,  we 
have 

where  a  is  any  one  of  the  zeros  of  /(z)  inside  the  boundary  C,  b  any 
one  of  the  poles  of  /(#)  within  C,  and  where  each  of  the  poles  and 

zeros  are  counted  a  number  of  times  equal  to  its  degree  of  multi- 
plicity. The  formula  (40)  furnishes  an  infinite  number  of  relations, 

since  we  may  take  for  <£(#)  any  analytic  function. 

Let  us  take  in  particular  <£  (z)  =  1  ;  then  the  preceding  formula 
becomes 

(41)  N  -  P  =  ̂-.   C 

S^Jc 

where  N  and  P  denote  respectively  the  number  of  zeros  and  the 

number  of  poles  of  f(z)  within  the  boundary  C.  This  formula  leads 

to  an  important  theorem.  In  fact,  f*(z)/f(z)  is  the  derivative  of 
Log  [y(^)]  ;  to  calculate  the  definite  integral  on  the  right-hand  side 
of  the  formula  (41)  it  is  therefore  sufficient  to  know  the  variation  of 

log  |  /(*)|+  /angle  [/(*)] 

when  the  variable  z  describes  the  boundary  C  in  the  positive  sense. 

But  !/(«)  |  returns  to  its  initial  value,  while  the  angle  of  /(#)  increases 
by  2  KTT,  K  being  a  positive  or  negative  integer.  We  have,  therefore, 

(42)  N-P- 

that  is,  the  difference  N  —  P  is  equal  to  the  quotient  obtained  by  the 
division  of  the  variation  of  the  angle  off(z)  by  2  TT  when  the  variable 
z  describes  the  boundary  C  in  the  positive  sense. 

Let  us  separate  the  real  part  and  the  coefficient  of  i  in  f(z)  : 

f(z)=X+YL 

When  the  point  z  =  x  -f-  yi  describes  the  curve  C  in  the  positive. 
sense,  the  point  whose  coordinates  are  X,  Y,  with  respect  to  a  system 
of  rectangular  axes  with  the  same  orientation  as  the  first  system, 

describes  also  a  closed  curve  C19  and  we  need  only  draw  the  curve 

Cl  approximately  in  order  to  deduce  from  it  by  simple  inspection 
the  integer  K.  In  fact,  it  is  only  necessary  to  count  the  number  of 

revolutions  which  the  radius  vector  joining  the  origin  of  coordinates 

to  the  point  (X,  F)  has  turned  through  in  one  sense  or  the  other. 
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We  can  also  write  the  formula  (42)  in  the  form 

i    r  /Y\      i    r  XdY-  Ydx 

(43)       N  -  P  =  —  J^d  arctany  =  —j^———-. 

Since  the  function  Y/X  takes  on  the  same  value  after  z  has  described 
the  closed  curve  C,  the  definite  integral 

J(C 

XdY—  YdX 

is  equal  to  irI(Y/X\  where  the  symbol  I (Y/X)  means  the  index  of 
the  quotient  Y/X  along  the  boundary  C,  that  is,  the  excess  of  the 
number  of  times  that  that  quotient  becomes  infinite  by  passing  from 

-f-  oo  to  —  oo  over  the  number  of  times  that  it  becomes  infinite  by 

passing  from  -  oo  to  +  oo  (I,  §§  79, 154,  2d  ed.;  §§  77, 154, 1st  ed.). 
We  can  write  the  formula  (43),  then,  in  the  equivalent  form 

(44)  N—P  =  - 

49.  Application  to  the  theory  of  equations.  When  the  function  f(z) 
is  itself  analytic  within  the  curve  C,  and  has  neither  poles  nor  zeros 

on  the  curve,  the  preceding  formulae  contain  only  the  roots  of  the 

equation  f(z)  —  0  which  lie  within  the  region  bounded  by  C.  The 
formulae  (42),  (43),  and  (44)  show  the  number  N  of  these  roots  by 
means  of  the  variation  of  the  angle  of  f(z)  along  the  curve  or  by 
means  of  the  index  of  Y/X. 

If  the  function  f(z)  is  a  polynomial  in  z,  with  any  coefficients 
whatever,  and  when  the  boundary  C  is  composed  of  a  finite  number 

of  segments  of  unicursal  curves,  this  index  can  be  calculated  by  ele- 
mentary operations,  that  is,  by  multiplications  and  divisions  of 

polynomials.  In  fact,  let  AB  be  an  arc  of  the  boundary  which  can  be 

represented  by  the  expressions 

where  <f>(t)  and  ij/(t)  are  rational  functions  of  a  parameter  t  which 

varies  from  a  to  ft  as  the  point  (x,  y)  describes  the  arc  AB  in  the 

positive  sense.  Replacing  z  by  <£  (t)  +  if  (t)  in  the  polynomial  /(z), 
we  have  „.  N      r>/.\  ,    •»  t+\ 

/(*)  =  #(*)+*#*(*)» 

where  R  (t)  and  R^^  (t)  are  rational  functions  of  t  with  real  coefficients. 

Hence  the  index  of  Y/X  along  the  arc  AB  is  equal  to  the  index  of 

the  rational  function  RjR  as  t  varies  from  a  to  J3,  which  we  already 
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know  how  to  calculate  (I,  §  79,  2d  ed. ;  §  77,  1st  ed.).  If  the  bound- 

ary C  is  composed  of  segments  of  unicursal  curves,  we  need  only 
calculate  the  index  for  each  of  these  segments  and  take  half  of  their 

sum,  in  order  to  have  the  number  of  roots  of  the  equation  f(z)  =  0 
within  the  boundary  C. 

Note.  D'Alembert's  theorem  is  easily  deduced  from  the  preceding 
results.  Let  us  prove  first  a  lemma  which  we  shall  have  occasion  to 

use  several  times.  Let  F(z)j  ®(z)  be  two  functions  analytic  in  the 
interior  of  the  closed  curve  C,  continuous  on  the  curve  itself,  and 

such  that  along  the  entire  curve  C  we  have  I$(2)|<[-F{*)|;  under 
these  conditions  the  two  equations 

F(z)  =  0,         F(z)  +  ®  («)  =  0 

have  the  same  number  of  roots  in  the  interior  of  C.    For  we  have 

As  the  point  z  describes  the  boundary  C,  the  point  Z  =  1  +  <£  (z)/F(z) 
describes  a  closed  curve  lying  entirely  within  the  circle  of  unit  radius 

about  the  point  Z  =  1  as  center,  since  Z  —  1  <  1  along  the  entire 
curve  C.  Hence  the  angle  of  that  factor  returns  to  its  initial  value 

after  the  variable  z  has  described  the  boundary  C9  and  the  variation 

of  the  angle  of  F(z)-\-  $(«)  is  equal  to  the  variation  of  the  angle  of 
F(z).  Consequently  the  two  equations  have  the  same  number  of 
roots  in  the  interior  of  C. 

Now  let  f(z)  be  a  polynomial  of  degree  m  with  any  coefficients 
whatever,  and  let  us  set 

F(z)  =  Af~,         $>  (z)  =  Af-i  +  •  •  •  +  Am,         f(z)  =  F(z)+3>  (*). 
us  choose  a  positive  number  R  so  large  that  we  have 

11''
 

Then  along  the  entire  circle  C,  described  about  the  origin  as  center 

with  a  radius  greater  than  R,  it  is  clear  that  \®/F\  <  1.  Hence  the 

equation  /(«)  =  0  has  the  same  number  of  roots  in  the  interior  of 
the  circle  C  as  the  equation  F(z)  =  0,  that  is,  m. 

50.  Jensen's  formula.  .  Let/(z)  be  an  analytic  function  except  for  poles  in  the 
interior  of  the  circle  C  with  the  radius  r  about  the  origin  as  center,  and  ana- 

lytic and  without  zeros  on  C.  Let  av  a2,  •  •  •,  an  be  the  zeros,  and  61?  6 1?   2, 
the  poles,  of  f(z)  in  the  interior  of  this  circle,  each  being  counted  according  to 
its  degree  of  multiplicity.  We  shall  suppose,  moreover,  that  the  origin  is  neither 
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a  pole  nor  a  zero  for/(z).   Let  us  evaluate  the  definite  integral 

,dz 
(46)  I=f 

J( 

taken  along  C  in  the  positive  sense,  supposing  that  the  variable  z  starts,  for 
example,  from  the  point  z  =  r  on  the  real  axis,  and  that  a  definite  determina- 

tion of  the  angle  of  f(z)  has  been  selected  in  advance.  Integrating  by  parts, 
we  have 

(46)  I  =  {Log  (z)  Log  [/(*)]  }(C)  -  J^Log  (z)  ̂   dz, 

where  the  first  part  of  the  right-hand  side  denotes  the  increment  of  the  product 
Log  (z)  Log  [/(z)]  when  the  variable  z  describes  the  circle  C.  If  we  take  zero 
for  the  initial  value  of  the  angle  of  z,  that  increment  is  equal  to 

—  2  TTI  Log  [/(r)]  +  2  iri  (n  —  m)  log  r  —  4  (n  —  m)  7r2. 

In  order  to  evaluate  the  new  definite  integral,  let  us  consider  the  closed 
curve  r,  formed  by  the  circumference  C,  by  the  circumference  c  described 
about  the  origin  with  the  infinitesimal  radius  p,  and  by  the  two  borders  aft, 

a'V  of  a  cut  made  along  the  real  axis  from  the  point  z  =  p  to  the  point  z  =  r 
(Fig.  19).  We  shall  suppose  for  definiteness  that  f(z)  has  neither  poles  nor 
zeros  on  that  portion  of  the  axis  of  reals.  If  it  has,  we  need  only  make  a  cut 
making  an  infinitesimal  angle  with  the  axis  of  reals.  The  function  Logz  is 
analytic  in  the  interior  of  F,  and  according  to  the  general  formula  (40)  we 
have  the  relation 

f    Log(z)  f  Log(z)dz  +  f 
J(«6)  /(Z)  J<&  /(Z)  •/(&'<»') )          -V«')  /(z) 

f(z)dz  =  27 

/(*) 

The  integral  along  the  circle  c  approaches  zero  with  />,  for  the  product 
zLogz  is  infinitesimal  with  p.  On  the  other  hand,  if  the  angle  of  z  is  zero 

along  a&,  it  is  equal  to  2tr  along  «'&',  and  the  sum  of  the  two  corresponding 
integrals  has  for  limit 

-  f  *2 iri  £Q dz=-2m  Log  [/(r)]  +  2 iri  Log  [/(O)] . 
Jo          /(z) 

The  remaining  portion  is 

and  the  formula  (46)  becomes 

1=  27ri(n-  m)logr  +  2  TTZ  Log  [/(O)]  -  2  Tri  Log2  '  '      *   -  4  (n  -  m)  7r2. 

In  order  to  integrate  along  the  circle  0,  we  can  put  z  =  re**  and  let  0  vary 

from  0  to  2  TT.   It  follows  that  dz/z  =  id<f>.   Let/(z)  =  Be1'*,  where  R  and  *  are 
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continuous  functions  of  0  along  C.  Equating  the  coefficients  of  i  in  the  preced- 

ing relation,  we  obtain  Jensen's  formula* 

1        /•  2ir <47>          £/. 
in  which  there  appear  only  ordinary  Napierian  logarithms. 

When  the  function  /(z)  is  analytic  in  the  interior  of  C,  it  is  clear  that  the 

product  &J&2  •  •  •  &n  should  be  replaced  by  unity,  and  the  formula  becomes 

(48)  J-  C  2 "log  R  d<f,  =  log  |/(0)  |  +  log 2  7T  «/0 

This  relation  is  interesting  in  that  it  contains  only  the  absolute  values  of  the 
roots  of  f(z)  within  the  circle  C,  and  the  absolute  value  of  f(z)  along  that  circle 
and  for  the  center  of  the  same  circle. 

51.  Lagrange's  formula.  Lagrange's  formula,  which  we  have  already 

established  by  Laplace's  method  (I,  §  195,  2d  ed.;  §  189,  1st  ed.), 
can  be  demonstrated  also  very  easily  by  means  of  the  general 

theorems  of  Cauchy.  The  process  which  we  shall  use  is  due  to 
Hermite. 

Let  f(z)  be  an  analytic  function  in  a  certain  region  D  containing 
the  point  a.  The  equation 

(49)  F(z)  =  z-a-  a/0)  =  0, 

where  a  is  a  variable  parameter,  has  the  root  z  —  a,  for  a  =  O.t  Let 

us  suppose  that  a  =£  0,  and  let  C  be  a  circle  with  the  center  a  and 
the  radius  r  lying  entirely  in  the  region  D  and  such  that  we  have 

along  the  entire  circumference  |*^(*)|<  z  —  a\.  By  the  lemma 
proved  in  §  49  the  equation  F(z)=  0  has  the  same  number  of  roots 
within  the  curve  C  as  the  equation  z  —  a  =  0,  that  is,  a  single  root. 
Let  £  denote  that  root,  and  let  II  (z)  be  an  analytic  function  in  the 
circle  C. 

The  function  Ii(z)/F(z)  has  a  single  pole  in  the  interior  of  C,  at 

the  point  z  =  £,  and  the  corresponding  residue  is  II(£)/F'(£).  From 
the  general  theorem  we  have,  then, 

F(z)         27ri^z-a-  af(z) 

In  order  to  develop  the  integral  on  the  right  in  powers  of  a,  we 

shall  proceed  exactly  as  we  did  to  derive  the  Taylor  development, 

*  Acta  mathematica,  Vol.  XXII. 
t  It  is  assumed  that  /(a)  is  not  zero,  for  otherwise  F(z)  would  vanish  when  2=  a  for 

any  value  of  a  and  the  following  developments  would  not  yield  any  results  of 
interest.  —  TRANS. 
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and  we  shall  write 

1  1  af(z) 
/»/     \  /  ^ 

&  '       \Jj  '      \JL  I      I    /V    I  &  -         Cf/  I    ̂      "^^      €v 
V     \      /  \  J 

1  + 

(z  —  a)nH         z  —  a  —  af(z)  ]_z  —  a 

Substituting  this  value  in  the  integral,  we  find 

where 

J_ ' 

R =  J_  r    n(g> 2  TT&  «/(C)3  —  a  —  q 

Let  m  be  the  maximum  value  of  the  absolute  value  of  af(z)  along 
the  circumference  of  the  circle  C  ;  then,  by  hypothesis,  m  is  less 

than  r.  If  M  is  the  maximum  value  of  the  absolute  value  of  H  (z) 
along  C,  we  have  ,.n+l 

r-m 

which  shows  that  Rn+i  approaches  zero  when  n  increases  indefinitely. 

Moreover,  we  have,  by  the  definition  of  the  coefficients  J  ,  J  ,  •  •  •,  Jn, 
•  •  •  and  the  formula  (14), 

whence  we  obtain  the  following  development  in  series 

(5°)       ?B=n(«)- 
We  can  write  this  expression  in  a  somewhat  different  form.  If  we 

take  H(«)=c  $(«)[!  —  a/'(^)],  where  4>(«)  is  an  analytic  function  in 
the  same  region,  the  left-hand  side  of  the  equation  (50)  will  no  longer 
contain  a  and  will  reduce  to  <£(£).  As  for  the  right-hand  side,  we 
observe  that  it  contains  two  terms  of  degree  n  in  a;,  whose  sum  is 

•  + 
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and  we  find  again  Lagrange's  formula  in  its  usual  form  (see  I, 
formula  (52),  §  195,  2d  ed. ;  §  189,  1st  ed.) 

(51) 
a or 

n\ 

i-i 

We  have  supposed  that  we  have  |  af(»)  \  <  r  along  the  circle  C, 
which  is  true  if  a\  is  small  enough.  In  order  to  find  the  maximum 

value  of  a  \ ,  let  us  limit  ourselves  to  the  case  where  f(z)  is  a  poly- 
nomial or  an  integral  function.  Let  e^fT(r)  be  the  maximum  value  of 

\f(z)  |  along  the  circle  C  described  about  the  point  a  as  center  with  the 
radius  r.  The  proof  will  apply  to  this  circle,  provided  a\JXC(r)  <r. 
We  are  thus  led  to  seek  the  maximum  value  of  the  quotient  r/e^T(r), 
as  r  varies  from  0  to  -j-  co .  This  quotient  is  zero  for  r  =  0,  for  if 
«5W(r)  were  to  approach  zero  with  r,  the  point  z  —  a  would  be  a  zero 
for  /(#),  and  F(z)  would  vanish  for  z  =  a.  The  same  quotient  is 
also  zero  for  r  =  oo ,  for  otherwise  f(z)  would  be  a  polynomial  of  the 
first  degree  (§  36).  Aside  from  these  trivial  cases,  it  follows  that 
r/3KC(r)  passes  through  a  maximum  value  JJL  for  a  value  r  of  r.  The 
reasoning  shows  that  the  equation  (49)  has  one  and  only  one  root  £ 

such  that  |  £  —  a provided 
a < 

(50)  and  (51)  are  applicable  so  long  as 

Hence  the  developments 

:|  does  not  exceed  /*,  pro- 
vided  the  functions  II  (z)  and  3>(z)  are  themselves  analytic  in  the 
circle  Cl  of  radius 

Example.   Let/(z)  =  (z2  —  l)/2  ;  the  equation  (49)  has  the  root 

1  —  Vl  —  2  aa  +  «* 

which  approaches  a  when  a  approaches  zero.   Let  us  put  n(z)  =  1.   Then  the 
formula  (50)  takes  the  form 

+  0° 

(52) 
Vl  —  2aa+  cP n 

where  JTM  is  the  nth  Legendre's  polynomial  (see  I,  §§  90,  189,  2d  ed. ;  §§  88, 
184,  1st  ed.).  In  order  to  find  out  between  what  limits  the  formula  is  valid,  let 
us  suppose  that  a  is  real  and  greater  than  unity.  On  the  circle  of  radius  r  we 

have  evidently  JXC(r)  =  [(a  +  r)2  —  l]/2,  and  we  are  led  to  seek  the  maximum 
value  of  2 r/[(a  +  r)2—  1]  as  r  increases  from  0  to  +  cc.  This  maximum  is 
found  for  r  =  Va2  —  1,  and  it  is  equal  to  a  —  Va2  —  1 .  If,  however,  a  lies 
between  —  1  and  +  1,  we  find  by  a  quite  elementary  calculation  that 

The  maximum  of  2  r  Vl  — •  a?/(r2  +  1  —  a2)  occurs  when  r  =  Vl  —  a2,  and  it 
equal  to  unity. 
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It  is  easy  to  verify  these  results.  In  fact,  the  radical  Vl  —  2aa  +  a2,  con- 

sidered as  a  function  of  a,  has  the  two  critical  points  a  ±  Va2  —  1 .  If  a  >  1, 
the  critical  point  nearest  the  origin  is  a  —  Va2  —  1.  When  a  lies  between  —  1 
and  +  1,  the  absolute  value  of  each  of  the  two  critical  points  a  ±  i  Vl—  a2  is 
unity. 

In  the  fourth  lithographed  edition  of  Hermite's  lectures  will  be  found  (p.  185) 
a  very  complete  discussion  of  Kepler's  equation  z  —  a  =  sinz  by  this  method. 
His  process  leads  to  the  calculation  of  the  root  of  the  transcendental  equation 

er(r—  1),=  e~r(r  +  1)  which  lies  between  1  and  2.  Stieltjes  has  obtained  the 
values 

rx  =  1.199678640257734,         n  =  0.6627434193492. 

52.  Study  of  functions  for  infinite  values  of  the  variable.  In  order 

to  study  a  function  f(z)  for  values  of  the  variable  for  which  the 

absolute  value  becomes  infinite,  we  can  put  z  =  !/«'  and  study  the 

function  /(I /«')  in  the  neighborhood  of  the  origin.  But  it  is  easy  to 
avoid  this  auxiliary  transformation.  We  shall  suppose  first  that  we 
can  find  a  positive  number  R  such  that  every  finite  value  of  z  whose 
absolute  value  is  greater  than  R  is  an  ordinary  point  for/(V).  If  we 
describe  a  circle  C  about  the  origin  as  center  with  a  radius  R,  the 

function  f(z)  will  be  regular  at  every  point  z  at  a  finite  distance 
lying  outside  of  C.  We  shall  call  the  region  of  the  plane  exterior 
to  C  a  neighborhood  of  the  point  at  infinity. 

Let  us  consider,  together  with  the  circle  C,  a  concentric  circle  C' 

with  a  radius  R'  >  R.  The  function  /(z),  being  analytic  in  the 
circular  ring  bounded  by  C  and  C',  is  equal,  by  Laurent's  theorem, 
to  the  sum  of  a  series  arranged  according  to  integral  positive  and 

negative  powers  of  2, 

(53)  /(*) 

the  coefficients  A_m  of  this  series  are  independent  of  the  radius  R\ 
and,  since  this  radius  can  be  taken  as  large  as  we  wish,  it  follows 

that  the  formula  (53)  is  valid  for  the  entire  neighborhood  of  the  point 
at  infinity,  that  is,  for  the  whole  region  exterior  to  C.  We  shall  now 
distinguish  several  cases  : 

1)  When  the  development  of  /(«)  contains  only  negative  powers of  «, 

(54)  /(*)=  4,  +  ̂  +  A,±  +  ...  +  Am±n  +  ..., 

the  function /(z)  approaches  AQ  when  z\  becomes  infinite,  and  we 
say  that  the  function  f(z)  is  regular  at  the  point  at  infinity,  or, 
again,  that  the  point  at  infinity  is  an  ordinary  point  for  f(z).  If  the 
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coefficients  AQJ  AI}  •  •  •  ,  Am_1  are  zero,  but  Am  is  not  zero,  the  point 
at  infinity  is  a  zero  of  the  mth  order  for  f(z). 

2)  When  the  development  of  f(z)  contains  a  finite  number  of 

positive  powers  of  z, 

(55)         f(z)  =  Bmz™  +  Bm_^™-i  +  .'.. 

where  the  first  coefficient  Bm  is  not  zero,  we  shall  say  that  the  point 

at  infinity  is  a  pole  of  the  mth  order  for  f(z),  and  the  polynomial 

Bmzm  +  •  •  •  +  B^z  is  the  principal  part  relative  to  that  pole.  When 
z  becomes  infinite,  the  same  thing  is  true  of  |/(z)|,  whatever  may 
be  the  manner  in  which  z  moves. 

3)  Finally,  when  the  development  of  f(z)  contains  an  infinite 
number  of  positive  powers  of  z,  the  point  at  infinity  is  an  essentially 

singular  point  for  f(z).  The  series  formed  by  the  positive  powers  of 
z  represents  an  integral  function  G(z),  which  is  the  principal  part 
in  the  neighborhood  of  the  point  at  infinity.  We  see  in  particular 
that  an  integral  transcendental  function  has  the  point  at  infinity  as 

an  essentially  singular  point. 

The  preceding  definitions  were  in  a  way  necessitated  by  those 
which  have  already  been  adopted  for  a  point  at  a  finite  distance. 

Indeed,  if  we  put  z  =  !/#',  the  function  f(z)  changes  to  a  function  of 
z\  <f>(V)=  /Yl/z'),  and  it  is  seen  at  once  that  we  have  only  carried /f\/*/\///  »/ 

over  to  the  point  at  infinity  the  terms  adopted  for  the  point  z'  =  0 

with  respect  to  the  function  <£  (z1).  Reasoning  by  analogy,  we  might 
be  tempted  to  call  the  coefficient  A_1  of  z,  in  the  development  (53), 
the  residue,  but  this  would  be  unfortunate.  In  order  to  preserve  the 

characteristic  property,  we  shall  say  that  the  residue  with  respect  to 

the  point  at  infinity  is  the  coefficient  of  1/2  with  its  sign  changed, 

that  is,  —  Ar  This  number  is  equal  to 

(z)dz, 

where  the  integral  is  taken  in  the  positive  sense  along  the  boundary 

of  the  neighborhood  of  the  point  at  infinity.  But  here,  the  neighbor- 
hood of  the  point  at  infinity  being  the  part  of  the  plane  exterior  to 

C,  the  corresponding  positive  sense  is  that  opposite  to  the  usual 
sense.  Indeed,  this  integral  reduces  to 

-f 
!7rV(e 

A-^dz 
z 
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and,  when  z  describes  the  circle  C  in  the  desired  sense,  the  angle  of 

z  diminishes  by  2  TT,  which  gives  —  Al  as  the  value  of  the  integral. 
It  is  essential  to  observe  that  it  is  entirely  possible  for  a  function 

to  be  regular  at  the  point  at  infinity  without  its  residue  being  zero  ; 

for  example,  the  function  1  -\-  1/z  has  this  property. 
If  the  point  at  infinity  is  a  pole  or  a  zero  for  /(#),  we  can  write, 

in  the  neighborhood  of  that  point, 

where  fju  is  a  positive  or  negative  integer  equal  to  the  order  of  the 

function  with  its  sign  changed,  and  where  <f>(z)  is  a  function  which 
is  regular  at  the  point  at  infinity  and  which  is  not  zero  for  «==<». 
From  the  preceding  equation  we  deduce 

_ 

/(«)~* 
where  the  function  <£'  («)/<£  (z)  is  regular  at  the  point  at  infinity  but 
has  a  development  commencing  with  a  term  of  the  second  or  a  higher 

degree  in  l/«.  The  residue  of  f(z)/f(z)  is  then  equal  to  —  /Lt,  that 
is,  to  the  order  of  the  function  /(«)  at  the  point  at  infinity.  The  state- 

ment is  the  same  as  for  a  pole  or  a  zero  at  a  finite  distance. 

Let  f(z)  be  a  single-valued  analytic  function  having  only  a  finite 
number  of  singular  points.  The  convention  which  has  just  been 
made  for  the  point  at  infinity  enables  us  to  state  in  a  very  simple 
form  the  following  general  theorem  : 

The  sum  of  the  residues  of  the  function  f(z)  in  the  entire  plane, 
the  point  at  infinity  included,  is  zero. 

The  demonstration  is  immediate.  Describe  with  the  origin  as 

center  a  circle  C  containing  all  the  singular  points  of  f(z)  (except 
the  point  at  infinity).  The  integral  ff(z)dz,  taken  along  this  circle 
in  the  ordinary  sense,  is  equal  to  the  product  of  2  TTL  and  the  sum 

of  the  residues  with  respect  to  all  the  singular  points  of  /(*)  at  a 
finite  distance.  On  the  other  hand,  the  same  integral,  taken  along 

the  same  circle  in  the  opposite  sense,  is  equal  to  the  product  of  2  iri 
and  the  residue  relative  to  the  point  at  infinity.  The  sum  of  the  two 
integrals  being  zero,  the  same  is  true  of  the  sum  of  the  residues. 

Cauchy  applied  the  term  total  residue  (residu  integral)  of  a  func- 
tion f(z)  to  the  sum  of  the  residues  of  that  function  for  all  the 

singular  points  at  a  finite  distance.  When  there  are  only  a  finite 
number  of  singular  points,  we  see  that  the  total  residue  is  equal  to 
the  residue  relative  to  the  point  at  infinity  with  its  sign  changed. 
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Example.    Let 

where  P  (z)  and  Q  (z)  are  two  polynomials,  the  first  of  degree  p,  the 
second  of  even  degree  2  q.  If  R  is  a  real  number  greater  than  the 

absolute  value  of  any  root  of  Q(z),  the  function  is  single-  valued  out- 
side of  a  circle  C  of  radius  Rt  and  we  can  write 

/(*)  «**-«*<*), 

where  <f>  (z)  is  a  function  which  is  regular  at  infinity,  and  which  is 
not  zero  for  z  =  GO  .  The  point  at  infinity  is  a  pole  for  f(z)  if  p  >  q, 
and  an  ordinary  point  if  p  ̂   q.  The  residue  will  certainly  be  zero 

if  p  is  less  than  q  —  1. 

IV.  PERIODS  OF  DEFINITE  INTEGRALS 

53.  Polar  periods.  The  study  of  line  integrals  revealed  to  us  that 
such  integrals  possess  periods  under  certain  circumstances.  Since 
every  integral  of  a  function  f(z)  of  a  complex  variable  z  is  a  sum  of 
line  integrals,  it  is  clear  that  these  integrals  also  may  have  certain 
periods.  Let  us  consider  first  an  analytic  function  f(z)  that  has  only 
a  finite  number  of  isolated  singular  points,  poles,  or  essentially 
singular  points,  within  a  closed  curve  C.  This  case  is  absolutely 
analogous  to  the  one  which  we  studied  for  line  integrals  (I,  §  153), 
and  the  reasoning  applies  here  without  modification.  Any  path  that 
can  be  drawn  within  the  boundary  C  between  the  two  points  #0,  Z 
of  that  region,  and  not  passing  through  any  of  the  singular  points 
of  /(z),  is  equivalent  to  one  fixed  path  joining  these  two  points, 
preceded  by  a  succession  of  loops  starting  from  ZQ  and  surrounding 

one  or  more  of  the  singular  points  av  a2,  •  •  •  ,  an  off(z').  Let  Alf  A2, 
•  •  •  ,  An  be  the  corresponding  residues  of  f(z)  ;  the  integral  ff(z)  dz, 
taken  along  the  loop  surrounding  the  point  a  ,  is  equal  to  ±  2  TriA^ 
and  similarly  for  the  others.  The  different  values  of  the  integral 

(z)dz  are  therefore  included  in  the  expression 

Cz
 

(56)        /    /(*)  dz  =F(Z)+  2  iri  (m^  +  m2A2  +  .  .  .  -f  mnAn), 

«A> 

where  F(Z)  is  one  of  the  values  of  that  integral  corresponding  to 

the  determined  path,  and  miy  m2,  •  •  •  are  arbitrary  positive  or  nega- 
tive integers  ;  the  periods  are 

2  7riAn. 
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In  most  cases  the  points  av  &2,  •  •  •,  an  are  poles,  and  the  periods 
result  from  infinitely  small  circuits  described  about  these  poles ; 
whence  the  term  polar  periods,  which  is  ordinarily  used  to  distin- 

guish them  from  periods  of  another  kind  mentioned  later. 
Instead  of  a  region  of  the  plane  interior  to  a  closed  curve,  we  may 

consider  a  portion  of  the  plane  extending  to  infinity ;  the  function 
f(z)  can  then  have  an  infinite  number  of  poles,  and  the  integral  an 
infinite  number  of  periods.  If  the  residue  with  respect  to  a  singu- 

lar point  a  of  /(z)  is  zero,  the  corresponding  period  is  zero  and  the 
point  a  is  also  a  pole  or  an  essentially  singular  point  for  the  integral. 
But  if  the  residue  is  not  zero,  the  point  a  is  a  logarithmic  critical 
point  for  the  integral.  If,  for  example,  the  point  a  is  a  pole  of  the 
mth  order  for  f(z)t  we  have  in  the  neighborhood  of  that  point 

A*)  =  (z  -ma)m  +  (X  _7f- 1  +  '  '  '  +  J^~a  +  A  o  +  A  i (*  "  a)  +  '  * '  > 
and  therefore 

/ «^ZA 

-   —   
(m  —  ±)(z  —  a) 

where  C  is  a  constant  that  depends  on  the  lower  limit  of  integration 

ZQ  and  on  the  path  followed  by  the  variable  in  integration. 
When  we  apply  these  general  considerations  to  rational  functions, 

many  well-known  results  are  at  once  apparent.  Thus,  in  order  that 
the  integral  of  a  rational  function  may  be  itself  a  rational  function, 
it  is  necessary  that  that  integral  shall  not  have  any  periods ;  that  is, 
all  its  residues  must  be  zero.  That  condition  is,  moreover,  sufficient. 
The  definite  integral  ~z  -, 

/    z  —  a 

Jz0 

has  a  single  critical  point  z  =  a,  and  the  corresponding  period  is 
2  TTI  ;    it  is,  then,  in  the  integral  calculus  that  the  true  origin  of  the 

multiple  values  of  Log  (2  —  a)  is  to  be  found,  as  we  have  already 
pointed  out  in  detail  in  the  case  of  f^dz/z  (§  31). 

Let  us  take,  in  the  same  way,  the  definite  integral 

f 

V. 

dz 

,2> 

it  has  the  two  logarithmic  critical  points  +  i  and  —  i,  but  it  has  only 
the  single  period  TT.    If  we  limit  ourselves  to  real  values  of  the 
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variable,  the  different  determinations  of  arc  tan  x  appear  as  so  many 
distinct  functions  of  the  variable  x.  We  see,  on  the  contrary,  how 

Cauchy's  work  leads  us  to  regard  them  as  so  many  distinct  branches 
of  the  same  analytic  function. 

Note.  When  there  are  more  than  three  periods,  the  value  of  the  definite 
integral  at  any  point  z  may  be  entirely  indeterminate.  Let  us  recall  first  the 
following  result,  taken  from  the  theory  of  continued  fractions  *  :  Given  a  real 
irrational  number  or,  we  can  always  find  two  integers  p  and  g,  positive  or  nega- 

tive, such  that  we  have  \p  +  qa\  <  e,  where  e  is  an  arbitrarily  preassigned 
positive  number. 

The  numbers  p  and  q  having  been  selected  in  this  way,  let  us  suppose  that 
the  sequence  of  multiples  of  p  +  qa  is  formed.  Any  real  number  A  is  equal  to 
one  of  these  multiples,  or  lies  between  two  consecutive  multiples.  We  can 

therefore  find  two  integers  ra  and  n  such  that  |  m  +  na  —  A\  shall  be  less  than  e. 
With  this  in  mind,  let  us  now  consider  the  function 

2Tri\z  —  a      z  —  b      z—  c 

U. 
—  d/ 

where  a,  6,  c,  d  are  four  distinct  poles  and  or,  /3  are  real  irrational  numbers. 

The  integral  fzzf(z)dz  has  the  four  periods  1,  a:,  i,  i/3.  Let  I(z)  be  the  value  of 
the  integral  taken  along  a  particular  path  from  z0  to  z,  and  let  M  +  Ni  denote 

any  complex  number  whatever.  We  can  always  find  four  integers  m,  n,  m',  n' 
such  that  the  absolute  value  of  the  difference 

I(z)  +  m  +  na  +  i  (m'  +  n'/3)  —  (M  +  Ni) 
will  be  less  than  any  preassigned  positive  number  e.  We  need  only  choose 
these  integers  so  that 

\m+na—  A\<-,        \rnf  +  n'p  —  B\  <  -, 
2t  '— 

where  M  +  Ni  —  I(z)  =  A  +  Bi.  Hence  we  can  make  the  variable  describe  a 
path  joining  the  two  points  given  in  advance,  z0,  z,  so  that  the  value  of  the  inte- 

gral ff(z)  dz  taken  along  this  path  differs  as  little  as  we  wish  from  any  pre- 
assigned number.  Thus  we  see  again  the  decisive  influence  of  the  path  followed 

by  the  variable  on  the  final  value  of  an  analytic  function. 

54.  A  study  of  the  integral  f*  rdz/l  —  z2.  The  integral  calculus 
explains  the  multiple  values  of  the  function  arc  sin  z  in  the  simplest 
manner  by  the  preceding  method.  They  arise  from  the  different 
determinations  of  the  definite  integral z      dz 

(57) 
according  to  the  path  followed  by  the  variable.  For  definiteness  we 
shall  suppose  that  we  start  from  the  origin  with  the  initial  value  +  1 

*  A  little  farther  on  a  direct  proof  will  be  found  (§  66). 
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for  the  radical,  and  we  shall  indicate  by  /  the  value  of  the  integral 

taken  along  a  determined  path  (or  direct  path).  For  example,  the 
path  shall  be  along  a  straight  line  if  the  point  z  is  not  situated  on 
the  real  axis  or  if  it  lies  upon  the  real  axis  within  the  segment  from 

- 1  to  +  1 ;  but  when  z  is  real  and  z  >  1,  we  shall  take  for  the 
direct  path  a  path  lying  above  the  real  axis. 

Now,  the  points  «  =  + 1,  z  =—  1  being  the  only  critical  points  of 

Vl  —  22,  every  path  leading  from  the  origin  to  the  point  z  can  be 
replaced  by  a  succession  of  loops  described  about  the  two  critical 

points  + 1  and  --  1,  followed  by  the  direct  path.  We  are  then  led 
to  study  the  value  of  the 
integral  along  a  loop.  Let 
us  consider,  for  example, 
the  loop  OamaOj  described 

about  the  point  z  =  +  1 ; 
this  loop  is  composed  of  the  segment  Oa  passing  from  the  origin  to 

the  point  1  —  c,  of  the  circle  ama  of  radius  c  described  about  z  =  1 
as  center,  and  of  the  segment  aO.  Hence  the  integral  along  the  loop 
is  equal  to  the  sum  of  the  integrals 

-f  oo 

FIG.  20 

/*-*      dx  
r Vi-z2    J(ama) 

dz 
dx 

Vl-z2 The  integral  along  the  small  circle  approaches  zero  with  e,  for  the 

product  (z  —  V)f(z)  approaches  zero.  On  the  other  hand,  when  z 
has  described  this  small  circle,  the  radical  has  changed  sign  and  in 

the  integral  along  the  segment  aO  the  negative  value  should  be 

taken  for  Vl  —  x2.  The  integral  along  the  loop  is  therefore  equal  to 

the  limit  of  2fQ  ~edx/^/l  —  x2  as  c  approaches  zero,  that  is,  to  IT. 
It  should  be  observed  that  the  value  of  this  integral  does  not  depend 

on  the  sense  in  which  the  loop  is  described,  but  we  return  to  the 

origin  with  the  value  —  1  for  the  radical. 

If  we  were  to  describe  the  same  loop  around  the  point  z  =  -f  1 

with  —  1  as  the  initial  value  of  the  radical,  the  value  of  the  integral 

along  the  loop  would  be  equal  to  —  TT,  and  we  should  return  to  the 

origin  with  -j-  1  as  the  value  of  the  radical.  In  the  same  way  it  is 

seen  that  a  loop  described  around  the  critical  point  z  =  —  1  gives 

—  TT  or  +  TT  for  the  integral,  according  as  the  initial  value  + 1  or 

—  1  is  taken  for  the  radical  on  starting  from  the  origin. 
If  we  let  the  variable  describe  two  loops  in  succession,  we  return 

to  the  origin  with  -+- 1  for  the  final  value  of  the  radical,  and  the 

value  of  the  integral  taken  along  these  two  loops  will  be  -f-  2  TT,  0,  or 
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-  2  TT,  according  to  the  order  in  which  these  two  loops  are  described. 
An  even  number  of  loops  will  give,  then,  2  WITT  for  the  value  of  the 
integral,  and  will  bring  back  the  radical  to  its  initial  value  +  1. 

An  odd  number  of  loops  will  give,  on  the  contrary,  the  value  (2  m  -\- 1)  TT 
to  the  integral,  and  the  final  value  of  the  radical  at  the  origin  will 

be  —  1.  It  follows  from  this  that  the  value  of  the  integral  F(z)  will 
be  one  of  the  two  forms 

7+2  m-TT,          (2  m  +  1)  TT  —  7, \ 
according  as  the  path  described  by  the  variable  can  be  replaced  by 
the  direct  path  preceded  by  an  even  number  or  by  an  odd  number 
of  loops. 

55.  Periods  of  hyperelliptic  integrals.    We  can  study,  in  a  similar 
manner,  the  different  values  of  the  definite  integral 

(58) 

where  P  (z)  and  R  (z)  are  two  polynomials,  of  which  the  second,  R  (2), 
of  degree  n,  vanishes  for  n  distinct  values  of  z : 

We  shall  suppose  that  the  point  ZQ  is  distinct  from  the  points  elt  e2, 

•  -  • ,  en ;  then  the  equation  u2  =  R  (ZQ)  has  two  distinct  roots  -f  UQ  and 
—  UQ.  We  shall  select  UQ  for  the  initial  value  of  the  radical  R  (z).  If 
we  let  the  variable  z  describe  a  path  of  any  form  whatever  not  pass- 

ing through  any  of  the  critical  points  e^  #2,  •  •  •,  en)  the  value  of  the 
radical  ̂ /R(z)  at  each  point  of  the  path  will  be  determined  by  con- 

tinuity. Let  us  suppose  that  from  each  of  the  points  e ,  e2,  •  •  •,  en 
we  make  an  infinite  cut  in  the  plane  in  such  a  way  that  these  cuts  do 
not  cross  each  other.  The  integral,  taken  from  ZQ  up  to  any  point  z 
along  a  path  that  does  not  cross  any  of  these  cuts  (which  we  shall 
call  a  direct  path),  has  a  completely  determined  value  I(z)  for  each 
point  of  the  plane.  We  have  now  to  study  the  influence  of  a  loop, 
described  from  ZQ  around  any  one  of  the  critical  points  et,  on  the 
value  of  the  integral.  Let  2  Ei  be  the  value  of  the  integral  taken 

along  a  closed  curve  that  starts  from  ZQ  and  incloses  the  single  criti- 
cal point  e{,  the  initial  value  of  the  radical  being  UQ.  The  value  of 

this  integral  does  not  depend  on  the  sense  in  which  the  curve  is 
described,  but  only  on  the  initial  value  of  the  radical  at  the  point  ZQ. 
In  fact,  let  us  call  2  E\  the  value  of  the  integral  taken  along  the  same 
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curve  in  the  opposite  sense,  with  the  same  initial  value  UQ  of  the 
radical.  If  we  let  the  variable  z  describe  the  curve  twice  in  succes- 

sion and  in  the  opposite  senses,  it  is  clear  that  the  sum  of  the  inte- 
grals obtained  is  zero  ;  but  the  value  of  the  integral  for  the  first  turn 

is  2  E{,  and  we  return  to  the  point  ZQ  with  the  value  —  UQ  for  the  radi- 
cal. The  integral  along  the  curve  described  in  the  opposite  sense  is 

then  equal  to  —  2  E'iy  and  consequently  E\  =  Et.  The  closed  curve 
considered  may  be  reduced  to  a  loop  formed  by  the  straight  line  20a, 
the  circle  cf  of  infinitesimal  radius  about  eit  and  the  straight  line  azQ 

(Fig.  21)  ;  the  integral  along  ct-  is  infinitesimal,  since  the  product 

(z  —  e{)  P  (z)/'\R(z)  approaches  zero  with  the  absolute  value  of  z  —  e{. 
If  we  add  together  the  integrals 

along  zQa  and  along  azQ,  we  find 

P(z)dz 

>» 

where  the  integral  is  taken  along 
the  straight  line  and  the  initial 

value  of  the  radical  is  UQ. 

This  being  the  case,  the  inte- 
gral taken  along  a  path  which 

reduces  to  a  succession  of  two 

loops  described  about  the  points 

ea,  ep  is  equal  to  2  Ea  —  2  Ep, 
for  we  return  after  the  first  loop 

to  the  point  ZQ  with  the  value 

—  UQ  for  the  radical,  and  the  integral  along  the  second  loop  is  equal 
to  —  2  Ep.  After  having  described  this  new  loop  we  return  to  the 
point  ZQ  with  the  original  initial  value  UQ.  If  the  path  described  by 
the  variable  z  can  be  reduced  to  an  even  number  of  loops  described 

about  the  points  ea,  ep,  ey,  es,  -  •  -,  eK,  ex  successively,  followed  by  the 

direct  path  from  ZQ  to  z,  where  the  indices  a,  /3,  •  •  •,  K,'  A  are  taken 
from  among  the  numbers  1,2,  •  •  • ,  n,  the  value  of  the  integral  along 
the  path  is,  by  what  precedes, 

FIG.  21 

F(z)  =  /+  2(Ea  -  Eft)+2(Ey  - 

2(EK  - 
If,  on  the  contrary,  the  path  followed  by  the  variable  can  be  reduced 
to  an  odd  number  of  loops  described  successively  around  the  critical 

points  ea,  e,  •  •  •  ,  eK,  «A,  e^  the  value  of  the  integral  is a,    ft, 

F(z)=2(Ea 

2(EK  - 

-  L 
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Hence  the  integral  under  consideration  has  as  periods  all  the  expres- 

sions 2  (Et  —  Efr),  but  all  these  periods  reduce  to  (n  —  1)  of  them : 

Wl=2(El-En))  <»2  =  2(E2-En),  ..-,  <»»-!  =  2  (E^-EJ, 
for  it  is  clear  that  we  can  write 

2(Ef  -  Eh)=2(Ei  -  En)-2(Eh  -  En)=o>i  -  <OA. 

Since,  on  the  other  hand,  2  E^  —  o>M  -+-  2  En,  we  see  that  all  the  values 
of  the  definite  integral  F(z)  at  the  point  z  are  given  by  the  two 

expressions 
F(z)  =  I  +  m^  H   h  wn_1tow_1, 

F(z)  =2En-I+  m^  +  •  .  .  +  mH_^n_lf 

where  mv  w2,  •  •  •,  mn_l  are  arbitrary  integers. 
This  result  gives  rise  to  a  certain  number  of  important  observa- 

tions. It  is  almost  self-evident  that  the  periods  must  be  independent 
of  the  point  ZQ  chosen  for  the  starting  point,  and  it  is  easy  to  verify 

this.  Consider,  for  example,  the  period  2 E{  —  2  Eh;  this  period  is 
equal  to  the  value  of  the  integral  taken  along  a  closed  curve  T  pass- 

ing through  the  point  ZQ  and  containing  only  the  two  critical  points 
gt-,  eh.  If,  for  definiteness,  we  suppose  that  there  are  no  other  critical 

points  in  the  interior  of  the  triangle  whose  vertices  are  ZQ,  ef,  eh,  this 

closed  curve  can  be  replaced  by  the  boundary  bb'nc'cmb  (Fig.  21) ; 
whence,  making  the  radii  of  the  two  small  circles  approach  zero,  we 

see  that  the  period  is  equal  to  twice  the  integral 

taken  along  the  straight  line  joining  the  two  critical  points  eit  eh. 

It  may  happen  that  the  (n  —  1)  periods  <al9  o>2,  •  •  •,  <i>n_i  are  not 
independent.  This  occurs  whenever  the  polynomial  R  (z)  is  of  even 

degree,  provided  that  the  degree  of  P  (z)  is  less  than  n/2  —  1.  With 
the  point  £Q.as  center  let  us  draw  a  circle  C  with  a  radius  so  large 
that  the  circle  contains  all  the  critical  points ;  and  for  simplicity  let 
us  suppose  that  the  critical  points  have  been  numbered  from  1  to  n 
in  the  order  in  which  they  are  encountered  by  a  radius  vector  as  it 

turns  about  ZQ  in  the  positive  sense. 
•    The  integral 

rP(z)dz 
*j  \  / 

taken  along  the  closed  boundary  zQAMAz0,  formed  by  the  radius  st  A9 
by  the  circle  C,  and  by  the  radius  Az  described  in  the  negative  sense, 
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is  zero.  The  integrals  along  zQA  and  along  AzQ  cancel,  for  the  circle 
C  contains  an  even  number  of  critical  points,  and  after  having 
described  this  circle  we  return  to  the  point  A  with  the  same  value 
of  the  radical.  On  the  other  hand,  the  integral  along  C  approaches 

zero  as  the  radius  becomes  infinite,  since  the  product  zP  (z)  /  'V  R  (z) 
approaches  zero  by  the  hypothesis  made  on  the  degree  of  the  poly- 

nomial P(z).  Since  the  value  of  this  integral  does  not  depend  on  the 
radius  of  C,  it  follows  that  that  value  must  be  zero. 

Now  the  boundary  zQAMAzQ  considered  above  can  be  replaced  by 

a  succession  of  loops  described  around  the  critical  points  el9  e2,  •  -  •  ,en 
in  the  order  of  these  indices.  Hence  we  have  the  relation 

which  can  be  written  in  the  form 

wi  —  W2  +  ws  —  W4  H  -----  1"  <°»-i  =  °  J 

and  we  see  that  the  n  —  1  periods  of  the  integral  reduce  to  n  —  2 

periods  o^,  &>2,  •  •  .,  <ow_2. 

Consider  now  the  more  general  form  of  integral 

P(z)dz 
F(z)  = f Jzn 

where  P,  Q,  E  are  three  polynomials  of  which  the  last,  R(z),  has  only  simple 

roots.  Among  the  roots  of  Q  (z)  there  may  be  some  that  belong  to  R  (z)  ;  let  av 

or2,  •  •  •,  ccg  be  the  roots  of  Q  (z)  which  do  not  cause  R  (z)  to  vanish.  The  integral 

F(z)  has,  as  above,  the  periods  2  (E{  —  JE^),  where  2  E{  denotes  always  the  inte- 
gral taken  along  a  closed  curve  starting  from  z0  and  inclosing  none  of  the  roots 

of  either  of  the  polynomials  Q(z)  and  R(z)  except  et-.  But  F(z)  has  also  a  cer- 
tain number  of  polar  periods  arising  from  the  loops  described  about  the  poles 

<*!,  o-2,  •  •  •,  as.  The  total  number  of  these  periods  is  again  diminished  by  unity 
if  R  (z)  is  of  even  degree  w,  and  if 

where  p  and  q  are  the  degrees  of  the  polynomials  P  and  Q  respectively. 

Example.   Let  R  (z)  be  a  polynomial  of  the  fourth  degree  having  a  multiple 
root.   Let  us  find  the  number  of  periods  of  the  integral 

If  R(z)  has  a  double  root  el  and  two  simple  roots  e2,  c3,  the  integral 

*w=  '  * 
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has  the  period  2E2  —  2.Z?3,  and  also  a  polar  period  arising  from  a  loop  around 
the  pole  er  By  the  remark  made  just  above,  these  two  periods  are  equal.  If 
R  (z)  has  two  double  roots,  it  is  seen  immediately  that  the  integral  has  a  single 
polar  period. 

If  B  (z)  has  a  triple  root,  the  integral 

"I 

•A    (*  - 

-  ej  (z  - 

has  the  period  2  El  —  2  E2,  but,  by  the  general  remark  made  above,  that  period 

is  zero.  The  same  thing  is  true  if  R(z)  has  a  quadruple  root.  In  re'sume'  we 
have  :  //  R  (z)  has  one  or  two  double  roots,  the  integral  has  a  period  ;  if  R  (z)  has  a 
triple  or  quadruple  root,  the  integral  does  not  have  periods.  All  these  results  are 
easily  verified  by  direct  integration. 

56.  Periods  of  elliptic  integrals  of  the  first  kind.    The  elliptic  integral 
of  the  first  kind, *•(«)  =  f 

»/2ft 
dz 

where  R  (z)  is  a  polynomial  of  the  third  or  the  fourth  degree,  prime  to 
its  derivative,  has  two  periods  by  the  preceding  general  theory.  We 

shall  now  show  that  the  ratio  of  these  two  periods  is  not  real. 

We  can  suppose  without  loss  of  generality  that  R(z)  is  of  the 

third  degree.  Indeed,  if  Rl  (z)  is  a  polynomial  of  the  fourth  degree, 
and  if  a  is  a  root  of  this  polynomial,  we  may  write  (I,  §  105,  note. 

2d  ed. ;  §  110,  1st  ed.) 

where  z  =  a  +  \/y  and  where  R  (j/)  is  a  polynomial  of  the  third 
degree.  It  is  evident  that  the  two  integrals  have  the  same  periods. 

If  R  (z)  is  of  the  third  degree,  we  may  suppose  that  it  has  the  roots 

0  and  1,  for  we  need  only  make  a  linear  substitution  z  =  a  -f-  fty  to 
reduce  any  other  case  to  this  one.  Hence  the  proof  reduces  to 
showing  that  the  integral 

—  z)  (a  —  z) 

where  a  is  different  from  zero  and  from  unity,  has  two  periods  whose 
ratio  is  not  real. 

If  a  is  real,  the  property  is  evident.    Thus,  if  a  is  greater  than 
unity,  for  example,  the  integral  has  the  two  periods 

dz rl  dz  r 
/  >         2  / 

JQ    V«(l  -«)(»-*)  J 
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of  which  the  first  is  real,  while  the  second  is  a  pure  imaginary. 
Moreover,  none  of  these  periods  can  be  zero. 

Suppose  now  that  a  is  complex,  and,  for  example,  that  the  coeffi- 
cient of  i  in  a  is  positive.   We  can  again  take  for  one  of  the  periods 

dz 

fo    V«(l -«)(«_») 

We  shall  apply  Weierstrass's  formula  (§  27)  to  this  integral.  When 
z  varies  from  0  to  1,  the  factor  l/Vg(l  —  z)  remains  positive,  and 
the  point  representing  1/Va  —  z  describes  a  curve  L  whose  general 
nature  is  easily  determined.  Let  A 
be  the  point  representing  a ;  when 

z  varies  from  0  to  1,  the  point  a  —  z 
describes  the  segment  AB  parallel 
to  Ox  and  of  unit  length  (Fig.  22). 
Let  Op  and  Oq  be  the  bisectors  of 
the  angles  which  the  straight  lines 
OA  and  OB  make  with  Ox,  and  let 

Op'  and  Oq'  be  straight  lines  sym- 
metrical to  them  with  respect  to  Ox. 

If  we  select  that  determination  of 

\V 

FIG. 22 V&  —  z  whose  angle  lies  between 

O  and  7T/2,  the  point  Va  —  z  de- 
scribes an  arc  aft  from  a  point  a  on  Op  to  a  point  /?  on  Oq  ;  hence  the 

point  I/  V&  —  z  describes  an  arc  a' ft'  from  a  point  a'  on  Op'  to  a  point 
j8'  of  Oq'.  It  follows  that  Weierstrass's  formula  gives 

where  Z^  is  the  complex  number  corresponding  to  a  point  situated  in 

the  interior  of  every  convex  closed  curve  containing  the  arc  a'f3'.  It 
is  clear  that  this  point  Zl  is  situated  in  the  angle  p'Oq',  and  that  it 
cannot  be  the  origin ;  hence  the  angle  of  Z^  lies  between  —  7T/2  and  0. 

We  can  take  for  the  second  period 

—  z)(a  —  z) 

or,  setting  z  =  at, 

-*)(!-«#) 
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In  order  to  apply  Weierstrass's  formula  to  this  integral,  let  us  notice 
that  as  t  increases  from  0  to  1  the  point  at  describes  the  segment 

OA  and  the  point  1  —  at  describes  the  equal  and  parallel  segment 
from  z  =  1  to  the  point  C.  Choosing  suitably  the  value  of  the 
radical,  we  see,  as  before,  that  we  may  write 

dt —  %  TrZ 
, 

where  Z2  is  a  complex  number  different  from  zero  whose  angle  lies 
between  0  and  ir/2.  The  ratio  of  the  two  periods  O2/Oj  or  ZjZ^  is 
therefore  not  a  real  number. 

1.  Develop  the  function 
EXERCISES 

in  powers  of  x,  m  being  any  number. 
Find  the  radius  of  the  circle  of  convergence. 

2.  Find  the  different  developments  of  the  function  l/[(z2  +  1)  (z  —  2)]  in  posi- 
tive or  negative  powers  of  z,  according  to  the  position  of  the  point  z  in  the  plane. 

3.  Calculate  the  definite  integral  J"z2Log[(z  +  l)/(z  —  l)]cZz  taken  along  a circle  of  radius  2  about  the  origin  as  center,  the  initial  value  of  the  logarithm  at 
the  point  z  =  2  being  taken  as  real. 

Calculate  the  definite  integral dz • 
Vz2  +  z  +  1 

taken  over  the  same  boundary. 

4.  Let  /(z)  be  an  analytic  function  in  the  interior  of  a  closed  curve  C  con- 

taining the  origin.  Calculate  the  definite  integral  J(C)/'(z)Logzdz,  taken  along 
the  curve  C,  starting  with  an  initial  value  z0. 

6.  Derive  the  relation 

dt  1 .  3  .  5  • .  •  (2  n  -  1) 
2  .  4  .  6  .  •  •  2  n 

7T 

and  deduce  from  it  the  definite  integrals 

dt  C  + 
   > 

CX  — •  QO 
dt 

6.  Calculate  the  following  definite  integrals  by  means  of  the  theory  of  residues  : 

smmxdx C^  °  sinmxdi 
y     <>      *  «j 

Jo 

/
+
 
 

00 

co
s 
 

ax
 

_  (fa
fcy

 

w 
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X 

m  and  a  being  real, 

a  being  real, 
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+ 
 00 (
x
^
 

CO 

I  +  00 

dx 

cosxdx 

'_„    (x2  +  l)(x2  +  4) 
^4x2(l-x) 

Jo 

o  (1  +  «) 

+  00 

dx, 

cos  ax  —  cos  bx 

x2 

dx, 

a  and  /3  being  real, 

00  x  log  x  dx 

(1  +  X2)
3  ' 

a  and  6  being  real  and  positive. 

(To  evaluate  the  last  integral,  integrate  the  function  (e?iz  —  et>iz)/z2  along  the 
boundary  indicated  by  Fig.  17.) 

7.  The  definite  integral  f"d<f>/[A  +  C—  (A  —  <7)cos0]  is  equal,  when  it 
has  any  finite  value,  to  eir/ V  A  C,  where  e  is  equal  to  ±  1  and  is  chosen  in 
such  a  way  that  the  coefficient  of  i  in  d  VAC /A  is  positive. 

8.  Let  F(z)  and  G  (z)  be  two  analytic  functions,  and  z  =  a  a  double  root  of 
G(z)  =  0  that  is  not  a  root  of  F(z).    Show  that  the  corresponding  residue  of 
F(z)/G(z)  is  equal  to 

'(a)  G"(a)  -  2  F(a)  G'"(a) 

In  a  similar  manner  show  that  the  residue  of  .F(z)/[6r(z)]2  for  a  simple  root 
a  of  G  (z)  =  0  is  equal  to 

F'(a)  G'(a)  -  F(a)  G"(a) 

[G'(a)]s 9.  Derive  the  formula 

the  integral  being  taken  along  the  real  axis  with  the  positive  value  of  the 
radical,  and  a  being  a  complex  number  or  a  real  number  whose  absolute  value 

is  greater  than  unity.  Determine  the  value  that  should  be  taken  for  Vl  —  a2. 

10.  Consider  the  integrals  f(S)dz/Vl  +  z3,  J^dz/Vl  +  z3,  where  /S  and  St 
denote  two  boundaries  formed  as  follows  :  The  boundary  S  is  composed  of  a 

straight-line  segment  OA  on  Ox  (which  is  made  to  expand  indefinitely),  of  the 
circle  of  radius  OA  about  O  as  center,  and  finally  of  the  straight  line  A  0.  The 
boundary  Sl  is  the  succession  of  three  loops  which  inclose  the  points  a,  6,  c 

which  represent  the  roots  of  the  equation  z3  +  1  •=  0. 
Establish  the  relation  that  exists  between  the  two  integrals 

I. +00 dx 

which  arise  in  the  course  of  the  preceding  consideration. 

11.  By  integrating  the  function  e-*2  along  the  boundary  of  the  rectangle 
formed  by  the  straight  lines  y  =  0,  y  =  6,  x  =  +  E,  x  =  —  .R,  and  then  making 
R  become  infinite,  establish  the  relation 

/» 

«/  —  , er  &  cos  2  bx  dx  = 

-  b* 
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12.  •  Integrate  the  function  e-2^-1,  where  n  is  real  and  positive,  along  a 
boundary  formed  by  a  radius  OA  placed  along  Ox,  by  an  arc  of  a  circle  AB  of 
radius  OA  about  0  as  center,  and  by  a  radius  BO  such  that  the  angle  a  =  AOE 

lies  between  0  and  ir/2.    Making  OA  become  infinite,  deduce  from  the  preced- 
ing the  values  of  the  definite  integrals 

ft  +  00  /»  +00 

un  -  \Q-  au  cos  fa  flu^  yn  -  le-  au  gjn  fa  fiu^ 
Jo  Jo 

where  a  and  6  are  real  and  positive.  The  results  obtained  are  valid  for  a  =  ir/2, 

provided  that  we  have  n  <  1. 

13.  Let  m,  m',  n  be  positive  integers  (m  <  n,  m'  <  n).    Establish  the  formula 
r 

JQ 

TT  f       /2m  +  1    \  /2m'  +1    \1 eft  =  -      ctn  (  -        -  TT  )  —  ctn  (  -  TT  I 
2n[_       \     2n       /  \     2n        /J Q 

14.  Deduce  from  the  preceding  result  Euler's  formula 

/ 
«yo 

7T 

+  P»      .       .    /2m +  1    \ 
2  n  sm  (   TT  I 

\     2n        / 

15.  If  the  real  part  of  a  is  positive  and  less  than  unity,  we  have 

1  +  eF      sin  air 

(This  can  be  deduced  from  the  formula  (39)  (§  47)  or  by  integrating  the 

function  e"2/(l  +  e2)  along  the  boundary  of  the  rectangle  formed  by  the  straight 
lines  2/  =  0,  ?/  =  2  TT,  x  =  +  JR,  x  =  —  .R,  and  then  making  E  become  infinite.) 

16.  Derive  in  the  same  way  the  relation 

/ 
*/— 0 

dx  =  TT  (ctn  a-Tf  —  ctn  &TT), 

where  the  real  parts  of  a  and  b  are  positive  and  less  than  unity. 

(Take  for  the  path  of  integration  the  rectangle  formed  by  the  straight  lines 

y  =  0,  y  —  TT,  x  =  .R,  x  =  —  12,  and  make  use  of  the  preceding  exercise.) 
17.  From  the  formula 

where  n  and  k  are  positive  integers,  and  C  is  a  circle  having  the  origin  as 
center,  deduce  the  relations 

>T  /w.  -I.  1  W*i  J-  9A  .     .  l-n  J-  t-\ 

/'
 

«/0 

k\ 

//  
=  If— - — '   — !    Vl-x2  2.4.6-.. 

2n 

(Put  z  =  e2iu,  then  cos  u  =  x,  and  replace  n  by  n  +  fc,  and  fc  by  n.) 

18*.  The  definite  integral 

, . .     r*   ci0 
*  (x)  =   I       

J0    l-a(x+Vx2-! 

COS0) 
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when  it  has  a  finite  value,  is  equal  to  ±  IT/ Vl  —  2  ax  +  a2,  where  the  sign 
depends  upon  the  relative  positions  of  the  two  points  a  and  x.  Deduce  from 

this  the  expression,  due  to  Jacobi,  for  the  nth  Legendre's  polynomial, 

Xn  =  -  C   (x  +  Vx2  —  1  cos  0W0. 
7T  Jo 

19.  Study  in  the  same  way  the  definite  integral 

/ 
Jo ,0    x  —  a  +  Vx2  —  1  cos  <t> 

and  deduce  from  the  result  Laplace's  formula 

x2  — where  e  =  ±  1,  according  as  the  real  part  of  x  is  positive  or  negative. 

20  *.  Establish  the  last  result  by  integrating  the  function 
1 

V1-2XZ  +  Z2 
along  a  circle  about  the  origin  as  center,  whose  radius  is  made  to  become  infinite. 

21*.  Gauss's  sums.    Let  T8  =  e2nis2/n,  where  n  and  s  are  integers;  and  let 
Sn  denote  the  sum  T0  +  Tl  +  ----  (-  Tw_i  .   Derive  the  formula 

a 

(Apply  the  theorem  on  residues  to  the  function  <£(z)  =  e2j"z2/n/(e2lr"!  —  1),  taking 
for  the  boundary  of  integration  the  sides  of  the  rectangle  formed  by  the  straight 
lines  x  =  0,  x  =  n,  y  =  +  E,  y  =  —  R,  and  inserting  two  semicircumf  erences  of 
radius  e  about  the  points  x  =  0,  x  —  n  as  centers,  in  order  to  avoid  the  poles 
z  =  0  and  z  =  n  of  the  function  <f>(z)  ;  then  let  R  become  infinite.) 

22.  Let/(z)  be  an  analytic  function  in  the  interior  of  a  closed  curve  r  con- 
taining the  points  a,  6,  c,  •  •  •  ,  I.  If  a,  )8,  -  •  •  ,  X  are  positive  integers,  show  that 

the  sum  of  the  residues  of  the  function 

_  WL  (x-a\a  (x- -X-z\z-a)  (z- b  z-l 
with  respect  to  the  poles  a,  &,  c,  •  •  •  ,  Zis  a  polynomial  F(x)  of  degree 

<*  +  £+  •••  +  X-l satisfying  the  relations 

F(a)=f(a),        F*(a)=f(a),         ••-, 
F*(b)=f(b),         .-., 

(Make  use  of  the  relation  .F(x)  =/(x)  +  [j^r)  0(z)dz]/27ri.) 

23*.  Let/(2)  be  an  analytic  function  in  the  interior  of  a  circle  (7  with  center 
a.  On  the  other  hand,  let  c^,  «2,  •. •  •,  aw,  •  •  •  be  an  infinite  sequence  of  points 
within  the  circle  C,  the  point  an  having  the  center  a  for  limit  as  n  becomes  in- 

finite. For  every  point  z  within  C  there  exists  a  development  of  the  form 
f(ah) 
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where 

Fn(z)  =  (z-  at)  (z  -  a2)  •  •  •  (z  -  aw). 

[LAURENT,  Journal  de  mathematiques,  5th  series,  Vol.  VIII,  p.  325.] 

(Make  use  of  the  following  formula,  which  is  easily  verified, 

+.    x-.a-    .  +  . z  —  x      z  —  av      (z  —  ax)  (z  —  a2) 
(x  —  04)...  (x  —  aM-i)  1      (x  —  c^)...  (x—  an) 

(z  —  ax)  •  •  •  (z  —  a»_i)  (2  —  an)      2  —  x  (z  —  ax)  •  .  .  (z  —  an)  ' 

and  follow  the  method  used  in  establishing  Taylor's  formula.) 

24.  Let  Z0  =  a  +  bi  be  a  root  of  the  equation  /(z)  =  X  +  Yi  =  0  of  multi- 
plicity n,  where  the  function  /(z)  is  analytic  in  its  neighborhood.    The  point 

x=a,  y  =  b  is  a  multiple  point  of  order  n  for  each  of  the  two  curves  X  =  0, 
Y  =  0.    The  tangents  at  this  point  to  each  of  these  curves  form  a  set  of  lines 

equally  inclined  to  each  other,  and  each  ray  of  the  one  bisects  the  angle  between 
the  two  adjacent  rays  of  the  other. 

25.  Let/(z)  =  X+Yi  =  A0zm  +  A^zm~l  +  •  •  •  +  Am  be  a  polynomial  of  the 
rath  degree  whose  coefficients  are  numbers  of  any  kind.    All  the  asymptotes  of 

the  two   curves  X  =  0,   Y  =  0  pass  through   the  point  —  A^/mA^  and  are 
arranged  like  the  tangents  in  the  preceding  exercise. 

26*.  Burman's  series.  Given  two  functions  /(x),  F(x)  of  a  variable  x, 

Burman's  formula  gives  the  development  of  one  of  them  in  powers  of  the  other. 
To  make  the  problem  more  definite,  let  us  take  a  simple  root  a  of  the  equation 

F(x)  =  0,  and  let  us  suppose  that  the  two  functions  /(x)  and  F(x)  are  analytic 
in  the  neighborhood  of  the  point  a.  In  this  neighborhood  we  have 

the"  function  0(x)  being  regular  for  x  =  a  if  a  is  a  simple  root  of  ̂ (x)  =  0. 
Representing  F(x)  by  y,  the  preceding  relation  is  equivalent  to 

x  —  a  —  y(f>  (x)  =  0, 

and  we  are  led  to  develop  /(x)  in  powers  of  y  (Lagrange's  formula). 

27*.  Kepler's  equation.  The  equation  z  —  a  —  e  sin  z  =  0,  where  a  and  e  are 
two  positive  numbers,  a  <  TT,  e  <  1,  has  one  real  root  lying  between  0  and  TT, 

and  two  roots  whose  real  parts  lie  between  rmr  and  (m  +  l)?r,  where  ra  is  any 
positive  even  integer  or  any  negative  odd  integer.  If  m  is  positive  and  odd, 
or  negative  and  even,  there  are  no  roots  whose  real  parts  lie  between  rmr  and 

(ra  +  1)  TT. 
[BRIOT  ET  BOUQUET,  TMorie  des  /auctions  elliptiques,  2d  ed.,  p.  199.] 

(Study  the  curve  described  by  the  point  u  =  z  —  a  —  e  sin  z  when  the  vari- 
able z  describes  the  four  sides  of  the  rectangle  formed  by  the  straight  lines 

x  =  rmr,  x  =  (ra  +  1)  T,  y  =  +  R,  y  =  —  -K,  where  R  is  very  large.) 

28*.  For  very  large  values  of  ra  the  two  roots  of  the  preceding  exercise 
whose  real  parts  lie  between  2  rmr  and  (2  ra  +  1)  TT  are  approximately  equal  to 
2  rmr  +  ?r/2  ±  i  [log  (2/e)  +  log  (2  rmr  +  ir/2)]  . 

[GOURIER,  Annales  de  VEcole  Normale,  2d  series,  Vol.  VII,  p.  73.] 



CHAPTER  III 

SINGLE-VALUED  ANALYTIC  FUNCTIONS 

The  first  part  of  this  chapter  is  devoted  to  the  demonstration  of 

the  general  theorems  of  Weierstrass*  and  of  Mittag-Leffler  on  inte- 
gral functions  and  on  single-valued  analytic  functions  with  an 

infinite  number  of  singular  points.  We  shall  then  make  an  applica- 
tion of  them  to  elliptic  functions. 

Since  it  seemed  impossible  to  develop  the  theory  of  elliptic  func- 
tions with  any  degree  of  completeness  in  a  small  number  of  pages, 

the  treatment  is  limited  to  a  general  discussion  of  the  fundamental 

principles,  so  as  to  give  the  reader  some  idea  of  the  importance  of 
these  functions.  For  those  who  wish  to  make  a  thorough  study  of 

elliptic  functions  and  their  applications  a  simple  course  in  Mathe- 
matical Analysis  would  never  suffice  j  they  will  always  be  compelled 

to  turn  to  special  treatises. 

I.  WEIERSTRASS'S  PRIMARY  FUNCTIONS.    MITTAG-LEFFLER'S 
THEOREM 

57.  Expression  of  an  integral  function  as  a  product  of  primary 

functions.  Every  polynomial  of  the  mth  degree  is  equal  to  the  prod- 
uct of  a  constant  and  m  equal  or  unequal  factors  of  the  form  x  —  a, 

and  this  decomposition  displays  the  roots  of  the  polynomial.  Euler 
was  the  first  to  obtain  for  sin  z  an  analogous  development  in  an 

infinite  product,  but  the  factors  of  that  product,  as  we  shall  see  far- 
ther on,  are  of  the  second  degree  in  z.  Cauchy  had  noticed  that  we 

are  led  in  certain  cases  to  adjoin  a  suitable  exponential  factor  to 
each  of  the  binomial  factors  such  as  x  —  a.  But  Weierstrass  was 

the  first  to  treat  the  question  with  complete  generality  by  showing 

that  every  integral  function  having  an  infinite  number  of  roots  can 

be  expressed  as  the  product  of  an  infinite  number  of  factors,  each 
of  which  vanishes  for  only  a  single  value  of  the  variable. 

5 

*  The  theorems  of  Weierstrass  which  are  to  be  presented  here  were  first  published 
in  a  paper  entitled  Zur  Theorie  der  eindeutigen  analytischen  Functionen  (Berl. 
Abhandlungen,  1876,  p.  11  =  Werke,  Vol.  II,  p.  77).  Picard  gave  a  translation  of  this 

paper  in  the  Annales  de  I'JEcole  Normale  superieure  (1879) .  The  collected  researches 
of  Mittag-Leffler  are  to  be  found  in  a  memoir  in  the  Ada  mathematica,  Vol.  II. 

127 
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We  already  know  one  integral  function  which  does  not  vanish  for 

any  value  of  «,  that  is,  ez.  The  same  thing  is  true  of  eg(z),  where  g(z) 
is  a  polynomial  or  an  integral  transcendental  function.  Conversely, 
every  integral  function  which  does  not  vanish  for  any  value  of  z  is 
expressible  in  that  form.  In  fact,  if  the  integral  function  G  (z)  does 
not  vanish  for  any  value  of  z,  every  point  z  =  a  is  an  ordinary  point 

for  G'(z)/G(z),  which  is  therefore  another  integral  function  g^z)  : 

G'(z)          >. 

Integrating  both  sides  between  the  limits  ZQ,  z}  we  find 

G  (z\  i     r  * 

5fa>]  =J    ffl where  g  (z)  is  a  new  integral  function  of  2,  and  we  have 

G(z)  =  G(z)eff(z)~g  (2o>  =  eg  (2)  ~  °  (ro>  +  Log  t  °  (*o>3. 

The  right-hand  side  is  precisely  in  the  desired  form. 

If  an  integral  function  G(z)  has  only  n  roots  al9  a2J  •  •  •  ,  an,  distinct 
or  not,  the  function  G(z)  is  evidently  of  the  form 

Let  us  consider  now  the  case  where  the  equation  G  (z)  =  0  has  an 
infinite  number  of  roots.  Since  there  can  be  only  a  finite  number  of 

roots  whose  absolute  values  are  less  than  or  equal  to  any  given  num- 
ber R  (§  41),  if  we  arrange  these  roots  in  such  a  way  that  their 

absolute  values  never  diminish  as  we  proceed,  each  of  these  roots 
appears  in  a  definite  position  in  the  sequence 

and  where where an  |  becomes  infinite  with  the  index  n. 
We  shall  suppose  that  each  root  appears  in  this  series  as  often  as  is 
required  by  its  degree  of  multiplicity,  and  that  the  root  z  =  0  is 
omitted  from  it  if  G  (0)  =  0.  We  shall  first  show  how  to  construct 
an  integral  function  G^(z)  that  has  as  its  roots  the  numbers  in  the 
sequence  (1)  and  no  others. 

The  product  (1  —  z/a^e®*^,  where  Qv(z)  denotes  a  polynomial,  is 
an  integral  function  [which  does  not  vanish  except  for  z  =  an.  We 
shall  take  for  Qv(z)  a  polynomial  of  degree  v  determined  in  the  fol- 

lowing manner:  write  the  preceding  product  in  the  form 
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and  replace  Log  (1  —  z/an)  by  its  expansion  in  a  power  series  ;  then 
the  development  of  the  exponent  will  commence  with  a  term  of 

degree  v  -f-  1,  provided  we  take 
z 

^>v  V     7  'O21  v 

an      J  a*  vaw 

The  integer  v  is  still  undetermined.  We  shall  show  that  this  number  v 

can  be  chosen  as  a  function  of  n  in  such  a  way  that  the  infinite  product 

(2)  ii(i~ -•-  -»-  \  . 

will  be  absolutely  and  uniformly  convergent  in  every  circle  C  of 
radius  R  about  the  origin  as  center,  however  large  R  may  be.  The 
radius  R  having  been  chosen,  let  a  be  a  positive  number  less  than 

unity.  Let  us  consider  separately,  in  the  product  (2),  those  factors 
corresponding  to  the  roots  an  whose  absolute  values  do  not  exceed 

R/a.  If  there  are  q  roots  satisfying  this  condition,  the  product  of 
these  q  factors 

evidently  represents  an  integral  function  of  z.    Consider  now  the 

product  of  the  factors  beginning  with  the  (q  +  l)th  : 

If  z  remains  in  the  interior  of  the  circle  with  the  radius  R,  we 

have  #  ̂   R  ;  and  since  we  have  an  \  >  R/a  when  n  >  q,  it  follows 

that  we  also  have  z  <,a  an\.  A  factor  of  this  product  can  then  be 
written,  from  the  manner  in  which  we  have  taken  Qv(z), 

(
«
 

l
_
±
 

*n
 

if  we  denote  this  factor  by  1  -f  un,  we  have 

1        1         z       +  2 
n,     — 

**     — 

-\ 

Hence  the  proof  reduces  to  showing  that  by  a  suitable  choice  of  the 

number  v  the  series  whose  general  term  is  Un  =  un  is  uniformly 
convergent  in  the  circle  of  radius  R  (I,  §  176,  2d  ed.).  In  general, 
if  m  is  any  real  or  complex  number,  we  have 
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We  have  then,  a  fortiori, 

,v+l 

1  + 
v+l 

v  +  2 v  +  8 

*r- 

or,  noticing  that   z  <  a  an  \ ,  when   z   is  less  than 
1          2      V+l       1 

But  if  a;  is  a  real  positive  number,  e*  —  1  is  less  than  xe* ;  hence 
we  have 

+  1 

2    |V  +  1 1-a v+l   0\-a 

a 

In  order  that  the  series  whose  general  term  is  Un  shall  be  uni- 
formly convergent  in  the  circle  with  the  radius  R,  it  is  sufficient 

that  the  series  whose  general  term  is  \zfan  v+1  converge  uniformly 
in  the  same  circle.  If  there  exists  an  integer  p  such  that  the  series 

2|l/an|p  converges,  we  need  only  take  v  =  p  —  1.  If  there  exists  no 
integer  p  that  has  this  property,*  it  is  sufficient  to  take  v  =  n  —  1. 
For  the  series  whose  general  term  is  z/an  n  is  uniformly  convergent 
in  the  circle  of  radius  R,  since  its  terms  are  smaller  than  those  of 

the  series  2\R/an  n,  and  the  nth  root  of  the  general  term  of  this  last 
series,  or  \R/an\,  approaches  zero  as  n  increases  indefinitely.t 

Therefore  we  can  always  choose  the  integer  v  so  that  the  infinite 
product  F2(z)  will  be  absolutely  and  uniformly  convergent  in  the 
circle  of  radius  R.  Such  a  product  can  be  replaced  by  the  sum  of  a 
uniformly  convergent  series  (§  176,  2d  ed.)  whose  terms  are  all 
analytic.  Hence  the  product  F^z)  is  itself  an  analytic  function 
within  this  circle  (§  39).  Multiplying  F2(z)  by  the  product  F^(z), 
which  contains  only  a  finite  number  of  analytic  factors,  we  see  that 
the  infinite  product 

(3)  G^) 

is  itself  absolutely  and  uniformly  convergent  in  the  interior  of  the 
circle  C.with  the  radius  R,  and  represents  an  analytic  function  within 
this  circle.  Since  the  radius  R  can  be  chosen  arbitrarily,  and  since 

*For  example,  let  an  =  logw  (n  =  2).  The  series  whose  general  term  is  (logn)--P 
is  divergent,  whatever  may  be  the  positive  number  p,  for  the  sum  of  the  first  (n  - 1) 
terms  is  greater  than  (n  —  l)/(\ogri)P,  an  expression  which  becomes  infinite  with  n. 

t  Borel  has  pointed  out  that  it  is  sufficient  to  take  for  v  a  number  such  that  v  +  l 

shall  be  greater  than  logn.  In  fact,  the  series  S|7?/an!lo&n  is  convergent,  for  the 
general  term  can  be  written  giognlogi  tf/aj^  wiog  ]  7?/an  | .  After  a  sufficiently  large 
value  of  n,  \an\/R  will  be  greater  than  e2,  and  the  general  term  less  than  1/w2. 
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v  does  not  depend  on  R,  this  product  is  an  integral  function  G^z) 
which  has  as  its  roots  precisely  all  the  various  numbers  of  the 

sequence  (1)  and  no  others. 

If  the  integral  function  G  (z)  has  also  the  point  z  =  0  as  a  root  of 
the  pth  order,  the  quotient 

«"•<?,(*)  • 

is  an  analytic  function  which  has  neither  poles  nor  zeros  in  the 
whole  plane.  Hence  this  quotient  is  an  integral  function  of  the  form 

eg(-s\  where  g(z)  is  a  polynomial  or  an  integral  transcendental  func- 
tion, and  we  have  the  following  expression  for  the  function  G  (z)  : 

(4)  G  0)  = a 

The  integral  function  g(z)  can  in  its  turn  be  replaced  in  an  infinite 
variety  of  ways  by  the  sum  of  a  uniformly  convergent  series  of 

polynomials 

and  the  preceding  formula  can  be  written  again 

G  (z)  =  zp 

The  factors  of  this  product,  each  of  which  vanishes  only  for  one 
value  of  2,  are  called  primary  functions. 

Since  the  product  (4)  is  absolutely  convergent,  we  can  arrange  the 
primary  functions  in  an  arbitrary  order  or  group  them  together  in 

any  way  that  we  please.  In  this  product  the  polynomials  Qv(z). 
depend  only  on  the  roots  themselves  when  we  have  once  made  a 
choice  of  the  law  which  determines  the  number  v  as  a  function  of  n. 

But  the  exponential  factor  ea(&  cannot  be  determined  if  we  know 

only  the  roots  of  the  function  G(z~).  Take,  for  example,  the  function 
sin  TTZ,  which  has  all  the  positive  and  negative  integers  for  simple 

roots.  In  this  case  the  series  5'|l/an  2  is  convergent;  hence  we  can 
take  v  =  1,  and  the  function 

where  the  accent  placed  to  the  right  of  II  means  that  we  are  not  to 

give  the  value  zero*  to  the  index  n,  has  the  same  roots  as  sin  TTZ. 

*  When  this  exception  is  to  be  made  in  a  formula,  we  shall  call  attention  to  it 

by  placing  an  accent  (')  after  the  symbol  of  the  product  or  of  the  sum. 
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We  have  then  SIUTTZ  =  e^z)G(z),  but  the  reasoning  does  not  tell  us 

anything  about  the  factor  eg(z\  We  shall  show  later  that  this  factor 
reduces  to  the  number  IT. 

58.  The  class  of  an  integral  function.  Given  an  infinite  sequence 

«!,  #2>  "  '  >  am  '  '  ''  wnere  \an  becomes  infinite  with  n,  we  have  just 
seen  how  to  construct  an  infinite  number  of  integral  functions  that 
have  all  the  terms  of  that  sequence  for  zeros  and  no  others.  When 

there  exists  an  integer  p  such  that  the  series  2  an  ~p  is  convergent, 
we  can  take  all  the  polynomials  Qv  (z)  of  degree  p  —  1. 

Given  an  integral  function  of  the  form 

z  iVMV.-i    1  f'V"1 

where  P  (z)  is  a  polynomial  of  degree  not  higher  than  p  —  1,  the 
number  p  —  1  is  said  to  be  the  class  of  that  function.  Thus,  the 
function  + 

«= i 

is  of  class  zero ;  the  function  (sin  TTZ^/TT  mentioned  above  is  of  class 
one.  The  study  of  the  class  of  an  integral  function  has  given  rise  in 

recent  years  to  a  large  number  of  investigations.* 

59.  Single-valued  analytic  functions  with  a  finite  number  of  singular 
points.  When  a  single-valued  analytic  function  F(z)  has  only  a 
finite  number  of  singular  points  in  the  whole  plane,  these  singular 
points  are  necessarily  isolated ;  hence  they  are  poles  or  isolated 
essentially  singular  points.  The  point  z  =  oo  is  itself  an  ordinary 

point  or  an  isolated  singular  point  (§  52).  Conversely,  if  a  single- 
valued  analytic  function  has  only  isolated  singular  points  in  the  entire 
plane  (including  the  point  at  infinity},  there  can  be  only  a  finite 
number  of  them.  In  fact,  the  point  at  infinity  is  an  ordinary  point 
for  the  function  or  an  isolated  singular  point.  In  either  case  we  can 
describe  a  circle  C  with  a  radius  so  large  that  the  function  will  have 
no  other  singular  point  outside  this  circle  than  the  point  at  infinity 
itself.  Within  the  circle  C  the  function  can  have  only  a  finite  number 
of  singular  points,  for  if  it  had  an  infinite  number  of  them  there 
would  be  at  least  one  limit  point  (§  41),  and  this  limit  point  would 
not  be  an  isolated  singular  point.  Thus  a  single-valued  analytic 

*  See  BOBEL,  Lemons  sur  les  f auctions  entieres  (1900),  and  the  recent  work  of 
BLUMENTHAL,  Sur  les  f auctions  entieres  de  genre  infini  (1910). 
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function  which  has  only  poles  has  necessarily  only  a  finite  number 
of  them,  for  a  pole  is  an  isolated  singular  point. 

Every  single-valued  analytic  function  which  is  regular  for  every 
finite  value  of  z,  and  for  z  —  oo  ,  is  a  constant.  In  fact,  if  the  func- 

tion were  not  a  constant,  since  it  is  regular  for  every  finite  value  of 

2,  it  would  be  a  polynomial  or  an  integral  function,  and  the  point  at 
infinity  would  be  a  pole  or  an  essentially  singular  point. 

Now  let  F(z)  be  a  single-valued  analytic  function  with  n  distinct 
singular  points  a  ,  a2,  •  •  .,  an  in  the  finite  portion  of  the  plane,  and 

let  Gt[l/(z  —  &t-)]  be  the  principal  part  of  the  development  of  F(z) 
in  the  neighborhood  of  the  point  al ;  then  G{  is  a  polynomial  or  an 

integral  transcendental  function  in  !/(«  —  af).  In  either  case  this 
principal  part  is  regular  for  every  value  of  z  (including  z  =  oo) 

except  z  =  a{.  Similarly,  let  P  (z)  be  the  principal  part  of  the  devel- 
opment of  F(z)  in  the  neighborhood  of  the  point  at  infinity.  P(z) 

is  zero  if  the  point  at  infinity  is  an  ordinary  point  for  F(z).  The 
difference 

is  evidently  regular  for  every  value  of  z  including  z  =  oo  ;  it  is  there- 

fore a  constant  C,  and  we  have  the  equality* 

(5)  f(z)=P(zHg<?,{^)+C, 

which  shows  that  the  function  F(z)  is  completely  determined,  except 

for  an  additive  constant,  when  the  principal  part  in  the  neighbor- 
hood of  each  of  the  singular  points  is  known.  These  principal  parts, 

as  well  as  the  singular  points,  may  be  assigned  arbitrarily. 
When  all  the  singular  points  are  poles,  the  principal  parts  Gi  are 

polynomials ;  P  (z)  is  also  a  polynomial,  if  it  is  not  zero,  and  the 

right-hand  side  of  (5)  reduces  to  a  rational  fraction.  Since,  on  the 
other  hand,  a  single-valued  analytic  function  which  has  only  poles 
for  its  singular  points  can  have  only  a  finite  number  of  them,  we 

conclude  from  this  that  a  single-valued  analytic  function,  all  of  whose 
singular  points  are  poles,  is  a  rational  fraction. 

*  We  might  obtain  the  same  formula  by  equating  to  zero  the  sum  of  the  residues 
of  the  function 

x-z    *- 

where  z  and  z0  are  considered  as  constants  and  x  as  the  variable  (see  §  52). 
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60.  Single-valued  analytic  functions  with  an  infinite  number  of  singu- 

lar points.  If  a  single- valued  analytic  function  has  an  infinite  num- 
ber of  singular  points  in  a  finite  region,  it  must  have  at  least  one 

limit  point  within  or  on  the  boundary  of  the  region.  For  example, 

the  function  I/sin  (1/z)  has  as  poles  all  the  roots  of  the  equation 

sin  (1/z)  =  0,  that  is,  all  the  points  z  —  I/&TT,  where  k  is  any  integer 
whatever.  The  origin  is  a  limit  point  of  these  poles.  Similarly,  the 
function  -i 

sin, 

sn- 
has  for  singular  points  all  the  roots  of  the  equation  sin  (1/z)  = 
among  which  are  all  the  points 

1 

2  k'Tr  -f-  arc  sin in  (  -  —  ) 

\k7T/ 

where  k  and  k'  are  two  arbitrary  integers.  All  the  points  l/(2  A^'TT) 
are  limit  points,  for  if,  k'  remaining  fixed,  k  increases  indefinitely, 

the  preceding  expression  has  l/(2&'7r)  for  its  limit.  It  would  be 
easy  to  construct  more  and  more  complicated  examples  of  the  same 
kind  by  increasing  the  number  of  sin  symbols.  There  also  exist,  as 
we  shall  see  a  little  farther  on,  functions  for  which  every  point  of  a 
certain  curve  is  a  singular  point. 

It  may  happen  that  a  single-valued  analytic  function  has  only  a 
finite  number  of  singular  points  in  every  finite  portion  of  the  plane, 
although  it  has  an  infinite  number  of  them  in  the  entire  plane.  Then 

outside  of  any  circle  C,  however  great  its  radius  may  be,  there  are 
always  an  infinite  number  of  singular  points,  and  we  shall  say  that 
the  point  at  infinity  is  a  limit  point  of  these  singular  points.  In  the 

following  paragraphs  we  shall  examine  single-valued  analytic  func- 
tions with  an  infinite  number  of  isolated  singular  points  which  have 

the  point  at  infinity  as  their  only  limit  point. 

61.  Mittag-Leffler's  theorem.  If  there  are  only  a  finite  number  of 
singular  points  in  every  finite  portion  of  the  plane,  we  can,  as  we 
have  already  noticed  for  the  zeros  of  an  integral  function,  arrange 

these  singular  points  in  a  sequence 

(6)  av         av         •••,         an, 

in  such  a  way  that  we  have  an  ̂   an+1|  ancj  that  an\  becomes  infinite 
with  n.  We  may  suppose  also  that  all  the  terms  of  this  sequence 
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are  different.  To  each  term  a{  of  the  sequence  (6)  let  us  assign  a 

polynomial  or  an  integral  function  in  l/(z  —  a,-),  G{\\J(z  —  a,)], 

taken  in  an  entirely  arbitrary  manner.  Mittag-Leffler's  theorem  may 
be  stated  thus  : 

There  exists  a  single-valued  analytic  function  which  is  regular  for 
every  finite  value  of  z  that  does  not  occur  in  the  sequence  (6),  and  for 
which  the  principal  part  in  the  neighborhood  of  the  point  z  =  ai  is 

We  shall  prove  this  by  showing  that  it  is  possible  to  assign  to 

each  function  <7f[l/(£  —  at-)]  a  polynomial  ̂ (2)  such  that  the  series 

defines  an  analytic  function  that  has  these  properties. 

If  the  point  z  =  0  occurs  in  the  sequence  (6),  we  shall  take  the 
corresponding  polynomial  equal  to  zero.  Let  us  assign  a  positive 

number  %  to  each  of  the  other  points  a{  so  that  the  series  3et-  shall  be 
convergent,  and  let  us  denote  by  a:  a  positive  number  less  than  unity. 
Let  C{  be  the  circle  about  the  origin  as  center  passing  through  the 

point  ai}  and  C\  the  circle  concentric  to  the  preceding  with  a  radius 

equal  to  a  ai  .  Since  the  function  (7t.[l/(«  —  af)]  is  analytic  in  the 
circle  Ci}  we  have  for  every  point  within  Ci 

The  power  series  on  the  right  is  uniformly  convergent  in  the  circle 
Cjj  hence  we  can  find  an  integer  v  so  large  that  we  have,  in  the 
interior  of  the  circle  Cv, 

z  —  a, 
_  *y  _  fy  -j    |  j__r.-,       /V  i*/* 

Having  determined  the  number  v  in  this  manner,  we  shall  take  for 

PI(Z)  the  polynomial  —  aio  —  a{1z  —  •  •  •  —  aivzv. 
Now  let  C  be  a  circle  of  radius  R  about  the  point  z  =  0  as 

center.  Let  us  consider  separately  the  singular  points  ai  in  the 

sequence  (6)  whose  absolute  values  do  not  exceed  R/a.  If  there 
are  q  of  them,  we  shall  set 
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The  remaining  infinite  series, 

is  absolutely  and  uniformly  convergent  in  the  circle  (7,  since  for 
every  point  in  this  circle  \z\  <  R  <  a  at\  if  the  index  i  is  greater 
than  q.  From  the  inequality  (7),  and  from  the  manner  in  which  we 
have  taken  the  polynomials  Pt  (2),  the  absolute  value  of  the  general 
term  of  the  second  series  is  less  than  cf  when  z  is  within  the  circle  C. 

Hence  the  function  F2(z)  is  an  analytic  function  within  this  circle, 
and  it  is  clear  that  if  we  add  t\(z)  to  it,  the  sum 

(8)       •  n2) 

will  have  the  same  singular  points  in  the  circle  C,  with  the  same 

principal  parts,  as  F^(z}.  These  singular  points  are  precisely  the 
terms  of  the  sequence  (6)  whose  absolute  values  are  less  than  R,  and 

the  principal  part  in  the  neighborhood  of  the  point  af  is  (7t[l/(2  —  af)]. 
Since  the  radius  R  may  be  of  any  magnitude,  it  follows  that  the 
function  F(z)  satisfies  all  the  conditions  of  the  theorem  stated  above. 

It  is  clear  that  if  we  add  to  F(z)  a  polynomial  or  any  integral 

function  whatever  G(z),  the  sum  F(z)  -\-  G(z)  will  have  the  same 
singular  points,  with  the  same  principal  parts,  as  the  function  F(z). 
Conversely,  we  have  thus  the  general  expression  for  single-valued 
analytic  functions  having  given  singular  points  with  corresponding 
given  principal  parts  ;  for  the  difference  of  two  such  functions,  being 
regular  for  every  finite  value  of  z,  is  a  polynomial  or  a  transcendental 
integral  function.  Since  it  is  possible  to  represent  the  function  G  (z) 

in  turn  by  the  sum  of  a  series  of  polynomials,  the  function  F(z)  -J-  G  (z) 
can  itself  be  represented  by  the  sum  of  a  series  of  which  each  term 
is  obtained  by  adding  a  suitable  polynomial  to  the  principal  part 

If  all  the  principal  parts  G{  are  polynomials,  the  function  is 
analytic  except  for  poles  in  the  whole  finite  region  of  the  plane,  and 
conversely.  We  see,  then,  that  every  function  analytic  except  for 
poles  can  be  represented  by  the  sum  of  a  series  each  of  whose  terms 
is  a  rational  fraction  which  becomes  infinite  only  for  a  single  finite 

value  of  the  variable.  This  representation  is  analogous  to  the  decom- 
position of  a  rational  fraction  into  simple  elements. 

Every  function  ®(z)  that  is  analytic  except  for  poles  can  also  be 
represented  by  the  quotient  of  two  integral  functions.  For  suppose 
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that  the  poles  of  3>(X)  are  the  terms  of  the  sequence  (6),  each  being 
counted  according  to  its  degree  of  multiplicity.  Let  G(z)  be  an 

integral  function  having  these  zeros ;  then  the  product  <I>  (z)  G  (z) 
has  no  poles.  It  is  therefore  an  integral  function  G^z),  and  we  have 
the  equality 

62.  Certain  special  cases.  The  preceding  demonstration  of  the 

general  theorem  does  not  always  give  the  simplest  method  of  con- 
structing a  single-valued  analytic  function  satisfying  the  desired 

conditions.  Suppose,  for  example,  it  is  required  to  construct  a  func- 
tion $(z)  having  as  poles  of  the  first  order  all  the  points  of  the 

sequence  (6),  each  residue  being  equal  to  unity;  we  shall  suppose 
that  z  =  0  is  not  a  pole.  The  principal  part  relative  to  the  pole  at  is 

—  a{),  and  we  can  write 

1  1       z  Z"-1          1     /« 
&     /7  /7  nA  nv  *,     n    \  n 
&  \Aj£  Lf/£  lAsj  \Atl  &  W/£    \  LC/J 

If  we  take 

the  proof  reduces  to  determining  the  integer  v  as  a  function  of  the 
index  i  in  such  a  way  that  the  series 

a 

shall  be  absolutely  and  uniformly  convergent  in  every  circle  de- 
scribed about  the  origin  as  center,  neglecting  a  sufficient  number  of 

terms  at  the  beginning.  For  this  it  is  sufficient  that  the  series 

^,(z/a{)v+l  be  itself  absolutely  and  uniformly  convergent  in  the  same 
region.  If  there  exists  a  number^?  such  that  the  series  2|1/%|P  is 
convergent,  we  need  only  take  v  =  p  —  1.  If  there  exists  no  such 

integer,  we  will  take  as  above  (§  57)  v  =  i  —  1,  or  v  +  1  >  log  i.  The 
number  v  having  been  thus  chosen,  the  function 

v~l~\ 
<  J 

which  is  analytic  except  for  poles,  has  all  the  points  of  the  sequence 
(6)  as  poles  of  the  first  order  with  each  residue  equal  to  unity. 
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It  is  easy  to  deduce  from  this  a  new  proof  of  Weierstrass's  theorem 
on  the  decomposition  of  an  integral  function  into  primary  functions. 

In  fact,  we  can  integrate  the  series  (9)  term  by  term  along  any  path 
whatever  not  passing  through  any  of  the  poles  ;  for  if  the  path  lies 
in  a  circle  C  having  its  center  at  the  origin,  the  series  (9)  can  be 

replaced  by  a  series  which  is  uniformly  convergent  in  this  circle, 
together  with  the  sum  of  a  finite  number  of  functions  analytic  except 

for  poles.  This  results  from  the  demonstration  of  formula  (9).  If 

we  integrate,  taking  the  point  z  =  0  for  the  lower  limit,  we  find 

s\Z  |~  I  2\  2.  2?  2?  ~\ 

/    *  (z)  dz  =  V    Log  (  1  --}  +  --  +  5-5  +  ...+— J0  <3L      \     v    ai  ,2ai  "<J 
and  consequently -i 

It  is  easy  to  verify  the  fact  that  the  left-hand  side  of  the  equation 
(10)  is  an  integral  function  of  z.  In  the  neighborhood  of  a  value  a 

of  z  that  does  not  occur  in  the  sequence  (6)  the  integral  fQz<&(z)dz 
is  analytic  ;  hence  the  function 

is  also  analytic  and  different  from  zero  for  z  =  a.   In  the  neighbor- 
hood of  the  point  at  we  have 

1 

1 
e 

x     '  iy        /y *  ai 

(z)  dz  =  Log  (z  —  a{] 

where  the  functions  P  and  Q  are  analytic.  It  is  seen  that  this  inte- 
gral function  has  the  terms  of  the  sequence  (6)  for  its  roots,  and  the 

formula  (10)  is  identical  with  the  formula  (3)  established  above. 

The  same  demonstration  would  apply  also  to  integral  functions  hav- 
ing multiple  roots.  If  at  is  a  multiple  root  of  order  r,  it  would  suffice 

to  suppose  that  3>  (z)  has  the  pole  z  =  a{  with  a  residue  equal  to  r. 
Let  us  try  again  to  form  a  function  analytic  except  for  poles  of 

the  second  order  at  all  the  points  of  the  sequence  (6),  the  princi- 

pal part  in  the  neighborhood  of  the  point  a{  being  ~L/(z  —  %)2.  We 
shall  suppose  that  z  =  0  is  an  ordinary  point,  and  that  the  series 

2 1 !/&,- 1 8 is  convergent;  it  is  clear  that  the  series  2[l/at-|4  will  also 
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be  convergent.   Limiting  the  development  of  l/(z  —  a2)2  in  powers 
of  z  to  its  first  term,  we  can  write 

1  \        2  az  —  a2        2az  —  z* 

and  the  series 

a-.- 

satisfies  all  the  conditions,  provided  it  is  uniformly  convergent  in 
every  circle  C  described  about  the  origin  as  center,  neglecting  a 

sufficient  number  of  terms  at  the  beginning.  Now  if  we  take  only 
those  terms  of  the  series  coming  from  the  poles  at  for  which  we  have 

at  >  R/a,  R  being  the  radius  of  the  circle  C  and  a  a  positive  num- 

ber less  than  unity,  the  absolute  value  of  (1  —  z/at)~2  will  remain 
less  than  an  upper  bound,  and  the  series  whose  general  term  is 

2  z/a\  —  z*/a\  is  absolutely  and  uniformly  convergent  in  the  circle  C, 
by  the  hypotheses  made  concerning  the  poles  at. 

63.  Cauchy's  method.  If  F(z)  is  a  function  analytic  except  for  poles, 
Mittag-Leffler's  theorem  enables  us  to  form  a  series  of  rational  terms 
whose  sum  Fl(z)  has  the  same  poles  and  the  same  principal  parts 
as  F(z).  But  it  still  remains  to  find  the  integral  function  which  is 

equal  to  the  difference  F(z)  —  F^(z).  Long  before  Weierstrass's  work, 
Cauchy  had  deduced  from  the  theory  of  residues  a  method  by  which 

a  function  analytic  except  for  poles  may,  under  very  general  condi- 
tions on  the  function,  be  decomposed  into  a  sum  of  an  infinite  number 

of  rational  terms.  It  is,  moreover,  easy  to  generalize  his  method. 

Let  F(z)  be  a  function  analytic  except  for  poles  and  regular  in  the 

neighborhood  of  the  origin  ;  and  let  C^  C2,  •  •  •,  Cw,  •  •  •  be  an  infinite 
succession  of  closed  curves  surrounding  the  point  z  —  0,  not  pass- 

ing through  any  of  the  poles,  and  such  that,  beginning  with  a  value 

of  n  sufficiently  large,  the  distance  from  the  origin  to  any  point  what- 
ever of  Cn  remains  greater  than  any  given  number.  It  is  clear  that 

any  pole  whatever  of  F(z)  will  finally  be  interior  to  all  the  curves 

Cny  C'n+n  •  •  ')  provided  the  index  n  is  taken  large  enough.  The 
definite  integral 

where  x  is  any  point  within  Cn  different  from  the  poles,  is  equal 

to  F(x)  increased  by  the  sum  of  the  residues  of  F(z)/(z  —  x)  with 
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respect  to  the  different  poles  of  F(z)  within  Cn.  Let  ak  be  one  of 

these  poles.  Then  the  corresponding  principal  part  Gk[I/(z  —  a^)]  is 
a  rational  function,  and  we  have  in  the  neighborhood  of  the  point  ak 

In  the  neighborhood  of  this  point  we  can  also  write 

1   1    1  z  —  ak  (z  —  ak)z /  \  /  \  *?  /  \.  51  * 
A»  _    sy*  sv*              /y  f  w          ..     /f      *  /yi         /~f  I  rv*         /-w      \*»  /  /yi         sv      \** 
<v  t^  *A/  iA/r.  I  *v  Ct/z.  I  *O    ̂ ~~    Ct/j,  I  *>t/   — ~"   Ct-T.  I  I  c^/   ~~~   Ct/7.  I 

•V  \  Kf/  Kr  \  A//  \  tC/ 

Writing  out  the  product  we  see  that  the  residue  of  F(z)/(z  —  x) 
with  respect  to  the  pole  ak  is  equal  to 

x  — 
(x  -  ak i/n  —  1 

(x  -  a 

—  —  Gt 

X  ~~ 

)dz 

x 

We  have,  then,  the  relation 

(1  \
  "I  

/*         T?f>y\ 
*-  \  I  -*-  I  ̂   V^y 

x-a  I      27ri   1        z- ak/      J7Tij(Cn)  z- 

where  the  symbol  S  indicates  a  summation  extended  to  all  the  poles  ak 

within  the  curve  Cn.  On  the  other  hand,  we  can  replace  l/(z  —  x)  by 

and  write  the  preceding  formula  in  the  form 

7T1 
!  r  ̂(g)  JX ~  (  ~ 

TTi  J(Cn)  Z  —  X\Z 

is  equal  to  F(0)  increased  by  the  sum  of  the  residues  of  F(z)/z  with 
respect  to  the  poles  of  F(z)  within  Cn.  More  generally,  the  definite 
integral 

i     r  F(z)dz 

27riJ(cn,      *" 
is  equal  to 

plus  the  sum  of  the  residues  of  z~TF(z)  with  respect  to  the  poles  of 
F(z)  within  Cn.     If  we  represent  by  4r~1}  tne  residue  of  z~rF(z) 
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relative  to  the  pole  aky  we  can  write  the  equation  (13)  in  the  form 

(14)     J 

F(x)  = 

xp 

F'  (0)  +.-•  +  -  F<»>  (0) 

4 

°' 

jL  r  £&t/* 
]™J(cn)z-x\* 

In  order  to  obtain  an  upper  bound  for  the  last  term,  let  us  write 
it  in  the  form 

F(z)       dz 
_ = 

+ 

Let  us  suppose  that  along  Cn  the  absolute  value  of  z~pF(z)  remains 
less  than  M,  and  that  the  absolute  value  of  z  is  greater  than  8.  Since 

the  number  n  is  to  become  infinite,  we  may  suppose  that  we  have 
already  taken  it  so  large  that  8  may  be  taken  greater  than  x  ;  hence 
along  Cn  we  shall  have 

z  —  x 

8- 

If  Sn  is  the  length  of  the  curve  CB,  we  have  then 

\x\p  +  l 
We  shall  have  proved  that  this  term  Rn  approaches  zero  as  n  becomes 

infinite  if  we  can  find  a  sequence  of  closed  curves  C1?  C2,  •  •  •,  CnJ  •  •  • 
and  a  positive  integer  p  satisfying  the  following  conditions : 

1)  The  absolute  value  of  z~pF(z)  remains  less  than  a  fixed  num- 
ber M  along  each  of  these  curves. 

2)  The  ratio  Sn/8  of  the  length  of  the  curve  Cn  to  the  minimum 
distance  8  of  the  origin  to  a  point  of  Cn  remains  less  than  an  upper 
bound  L  as  n  becomes  infinite. 

If  these  conditions  are  satisfied,  Rn  is  less  than  a  fixed  number 

divided  by  a  number  8  —  x  |  which  becomes  infinite  with  n.  The  term 
Rn  therefore  approaches  zero,  and  we  have  in  the  limit 

(15) 
F(x)= 

40)
 

Thus  we  have  found  a  development  of  the  function  F(x)  as  a  sum 
of  an  infinite  series  of  rational  terms.   The  order  in  which  they  occur 
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n the  series  is  determined  by  the  arrangement  of  the  curves 

Cj,  C2,  •  •  •,  Cn,  •  •  •  in  their  sequence.  If  the  series  obtained  is  abso- 
lutely convergent,  we  can  write  the  terms  in  an  arbitrary  order. 

Note.  If  the  point  z  =  0  were  a  pole  for  F(z)  with  the  principal 

part  (7(1/2),  it  would  suffice  to  apply  the  preceding  method  to  the 

function  F(z)-  G(l/z). 

64.  Expansion  of  ctn*  and  of  sin*.  Let  us  apply  this  method  to 

the  function  F(z)  =  ctn  z  — 1/2,  which  has  only  poles  of  the  first  order 
at  the  points  z  =  &TT,  where  k  is  any  integer  different  from  zero,  the 
residue  at  each  pole  being  equal  to  unity.  We  shall  take  for  the 

curve  Cn  a  square,  such  as  BCB'C',  having  the  origin  for  center  and 
having  sides  of  length  2  mr  -f-  TT  parallel  to  the  axes ;  none  of  the 
poles  are  on  this  boundary,  and  the  ratio  of  the  length  Sn  to  the 
minimum  distance  8  from  the  origin  to  a  point  of  the  boundary 

is  constant  and  equal  to  8.  The  square  of  the  absolute  value  of 

ctri  (x  -f  2/0  is  equal  to 
C/  ~*I*        ̂   "     I    "         — '        V/VJO       — •       *C 

^        '  I     £  ~~™  —  OOo  —  *C 

On  the  sides  EC  and  B'C'  we  have 
cos  2  x  =  —  1,  and  the  absolute  value 

is1  less  than  1.  On  the  sides  BB'  and 

CC'  the  square  of  this  absolute  value 
is  less  than 

o 
nir 

E 

x 

C 

FIG.  23  g2y  _|_  g-2y  _  2  ~ 

We  must  replace  2  y  in  this  formula  by  ±  (2  n  -f  1)  TT,  and  the  ex- 
pression thus  obtained  approaches  unity  when  n  becomes  infinite. 

Since  the  absolute  value  of  1/2  along  Cn  approaches  zero  when  n 
becomes  infinite,  it  follows  that  the  absolute  value  of  the  function 

ctn  2  —  1/2  on  the  boundary  Cn  remains  less  than  a  fixed  number  M9 

whatever  n  may  be.  Hence  we  can  apply  to  this  function  the  for- 
mula (15),  taking^  =  0.  We  have  here F(0) 

..     (x  cosx  —  sm =  hm  (  -  : 
x=0\  XSIUX 

mx\ 

)  =  0. I 

and  s£,  which  represents  the  residue  of  (ctn  2  — 
,  is  equal  to  I/&TT.    We  have,  then, 

for  the  pole 

(16) ctnx 
-  -  =  limV  '(  —  i—  +  — 

X        n=oo-T^    \x  —  ̂7r         ̂ 7r 
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where  the  value  k  =  0  is  excluded  from  the  summation.  The  infinite 

series  obtained  by  letting  n  become  infinite  is  absolutely  convergent, 
for  the  general  term  can  be  written  in  the  form 

11  x  1  x 

T  1        — 
I  X  \ 

\     ~M 

X  —  /C7T         klT         kTT  (kTT  —  X) 

and  the  absolute  value  of  the  factor  #/(!  —  x/kif)  remains  less  than 
a  certain  upper  bound,  provided  x  is  not  a  multiple  of  TT.  We  have, 
then,  precisely 

(17)  ctnx  =  - X 

Integrating  the  two  members  of  this  relation  along  a  path  start- 
ing from  the  origin  and  not  passing  through  any  of  the  poles,  we  find 

f 

J0 

'0 

from  which  we  derive 

(18)  sin  x  = 

x 

—  00 

The  factor  ePW  is  here  equal  to  unity.   If  in  the  series  (17)  we  combine  the 
two  terms  which  come  from  opposite  values  of  fc,  we  obtain  the  formula 

(170 

Combining  the  two  factors  of  the  product  (18)  which  correspond  to  opposite 

values  of  fc,  we  have  the  new  formula* 

(is-)    ._;- 
or,  substituting  irx  for  x, 

7T -•tK-a- 
Note  1.  The  last  formulae  show  plainly  the  periodicity  of  sinx,  which  does 

not  appear  from  the  power  series  development.  We  see,  in  fact,  that  (sin  TTX)/TT 
is  the  limit  as  n  becomes  infinite  of  the  polynomial 

*  This  decomposition  of  sin  x  into  an  infinite  product  is  due  to  Euler,  who  obtained 
it  in  an  elementary  manner  (Introductio  in  Analysin  infinitorum) . 
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Keplacing  x  by  x  +  1,  this  formula  may  be  written  in  the  form 

0n(x  +  1)  =  -  0M(x)  n+    +x  ; n  —  x 

whence,  letting  n  become  infinite,  we  find  sin  (TTX  +  TT)  =  —  sin  TTX,  or 

sin  (z  +  TT)  =  —  sin  z, 

and  therefore  sin  (z  +  2  TT)  =  sin  z. 
JVote  2.  In  this  particular  example  it  is  easy  to  justify  the  necessity  of  associ- 

ating with  each  binomial  factor  of  the  form  1  —  x/cik  a  suitable  exponential  factor 
if  we  wish  to  obtain  an  absolutely  convergent  product.  For  definiteness  let  us 
suppose  x  real  and  positive.  The  series  Sx/n  being  divergent,  the  product 

becomes  infinite  with  m,  while  the  product 

approaches  zero  as  n  becomes  infinite  (I,  §  177,  2d  ed.).  If  we  take  ra  =  n,  the 
product  PmQm  has  (sin7rx)/7r  for  its  limit;  but  if  we  make  m  and  n  become 
infinite  independently  of  each  other,  the  limit  of  this  product  is  completely  in- 

determinate. This  is  easily  verified  by  means  of  Weierstrass's  primary  functions, 
whatever  may  be  the  value  of  x.  Let  us  note  first  that  the  two  infinite  products 

1=1 

/ 

=  n  i  - 
n=.l 

are  both  absolutely  convergent,  and  their  product  Fl(x)F2(x)  is  equal  to  (sinirx)/7r. 
With  these  facts  in  mind,  let  us  write  the  product  PmQn  *n  the  form 

/,   ,  1  , 
, "" 

When  the  two  numbers  m  and  n  become  infinite,  the  product  of  all  the  fac- 
tors on  the  right-hand  side,  omitting  the  last,  has  -F\(z)  F2(x)  =  (sin  irx)/ir  for  its 

limit.  As  for  the  last  factor,  we  have  seen  that  the  expression 

m n 

has  for  its  limit  log  w,  where  w  denotes  the  limit  of  the  quotient  m/n  (I,  §  161). 
The  product  PmQn  has,  therefore, 

sin 
If 

for  its  limit.   Hence  we  see  the  manner  in  which  that  limit  depends  upon  the 
law  according  to  which  the  two  numbers  m  and  n  become  infinite. 

Note  3.  We  can  make  exactly  analogous  observations  on  the  expansion  of  etnas, 
We  shall  show  only  how  the  periodicity  of  this  function  can  be  deduced  from  the 
series  (17).  Let  us  notice  first  of  all  that  the  series  whose  general  term  is 

11  1 
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where  the  index  k  takes  on  all  the  integral  values  from  —  <x>  to  +  co,  excepting 
k  =  0,  k  =  1,  is  absolutely  convergent  ;  and  its  sum  is  —  2/Tr,  as  is  seen  on  mak- 

ing k  vary  first  from  2  to  +  oo,  then  from  —  1  to  —  oo.  We  can  therefore  write 
the  development  of  ctn  x  in  the  form 

1          1   ,  tW      1  1       "I ----  |-  >        --  h  -       - 
—  7T         7T        *-<      \_X  —  kTT         (k  —  1)  TT_\ 

ctn  x  =  - X 

where  the  values  k  =  0,  k  =  1  are  excluded  from  the  summation.  This  results 
from  subtracting  from  each  term  of  the  series  (17)  the  corresponding  term  of 
the  convergent  series  formed  by  the  preceding  series  together  with  the  additional 
term  2/Tr.  Substituting  x  +  TT  for  x,  we  find 

X 

or,  again, 

7T         7T 

+00 

..  -, 

-l)TrJ 
l       xrvT  1 

ctn  (x  +  TT)  =  -  +  >          i 
x     *£  Lx-(k-l)ir      (k-1) 

where  k  —  1  takes  on  all  integral  values  except  0.    The  right-hand  side  is 
identical  with  ctnx. 

II.   DOUBLY  PERIODIC  FUNCTIONS.     ELLIPTIC  FUNCTIONS 

65.  Periodic  functions.  Expansion  in  series.  A  single-valued  analytic 
function  f(z)  is  said  to  be  periodic  if  there  exists  a  real  or  complex 

number  co  such  that  we  have,  whatever  may  be  z}  f(z  +  co)  =  f(z) ; 
this  number  <o  is  called 

a  period.  Let  us  mark 
in  the  plane  the  point 

representing  co,  and  let 

us  lay  off  on  the  unlim- 
ited straight  line  pass- 
ing through  the  origin 

and  the  point  co  a  length  \    \/  \    \l/ \/z-^  /\ 
equal  to  co  any  number 
of  times  in  both  direc- 

tions. We  obtain  thus 

the  points  co,  2  co,  3  co, 

•  •  -,  Tico,  •  •  •  and  the 

points  —  co,  —  2  co,  •  •  •  9 
—  wco,  •  •  •.  Through 
these  different  points 

and  through  the  origin  let  us  draw  parallels  to  any  direction  differ- 
ent from  Oco ;  the  plane  is  thus  divided  into  an  infinite  number  of 

cross  strips  of  equal  breadth  (Fig.  24). 

x 

FIG.  24 
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If  through  any  point  z  we  draw  a  parallel  to  the  direction  0<o,  we 
shall  obtain  all  the  points  of  that  straight  line  by  allowing  the  real 

parameter  X  in  the  expression  z  +  Xo>  to  vary  from  —  GO  to  +  oo.  In 

particular,  if  the  point  z  describes  the  first  strip  AA'BB',  the  corre- 

sponding point  z  +  o>  will  describe  the  contiguous  strip  BB'CC',  the 
point  z  -f-  2  w  will  describe  the  third  strip,  and  so  on  in  this  manner. 
All  the  values  of  the  function  f(z)  in  the  first  strip  will  be  duplicated 
at  the  corresponding  points  in  each  of  the  other  strips. 

Let  LL'  and  MM'  be  two  unlimited  straight  lines  parallel  to  the 

direction  Ow.  Let  us  put  u  =  ezirrz/™,  and  let  us  examine  the  region 
of  the  -w-plane  described  by  the  variable  u  when  the  point  z  remains 

in  the  unlimited  cross  strip  contained  between  the  two  parallels  LL1 
and  MM'.  If  a  +  fti  is  a  point  of  LL\  we  shall  obtain  all  the  other 
points  of  that  straight  line  by  putting  z  =  a  +  fti  -f-  Xo>  and  making 
X  vary  from  —  GC  to  +  °°-  Thus,  we  have 

u  =  e  = 

hence,  as  X  varies  from  —  -  oo  to  +  oo  ,  w  describes  a  circle  Cl  having  the 
origin  for  center.  Similarly,  we  see  that  as  z  describes  the  straight  line 

MM',  u  remains  on  a  circle  C2  concentric  with  the  first  ;  as  the  point 
z  describes  the  unlimited  strip  contained  between  the  two  straight 

lines  LL',  MM',  the  point  u  describes  the  ring-shaped  region  contained 
between  the  two  circles  Clt  C2.  But  while  to  any  value  of  z  there 
corresponds  only  one  value  of  u,  to  a  value  of  u  there  correspond  an 
infinite  number  of  values  of  z  which  form  an  arithmetic  progression, 

with  the  common  difference  <o,  extending  forever  in  both  directions. 

A  periodic  function  f(z)  ,  with  the  period  w,  that  is  analytic  in  the 

infinite  cross  strip  between  the  two  straight  lines  LL',  MM',  is  equal 
to  a  function  <j>(u)  of  the  new  variable  u  which  is  analytic  in  the 

ring-shaped  region  between  the  two  circles  Cl  and  C2.  For  although 
to  a  value  of  u  there  correspond  an  infinite  number  of  values  of  z, 

all  these  values  of  z  give  the  same  value  to  f(z)  on  account  of  its 

periodicity.  Moreover,  if  UQ  is  a  particular  value  of  u,  and  ZQ  any 
corresponding  value  of  z,  that  determination  of  z  which  approaches 

ZQ  as  u  approaches  UQ  is  an  analytic  function  of  u  in  the  neighbor- 
hood of  UQ  ;  hence  the  same  thing  is  true  of  <j>(u).  We  can  therefore 

apply  Laurent's  theorem  to  this  function  <£  (u).  In  the  ring-shaped 
region  contained  between  the  two  circles  Ct,  C2  this  function  is 
equal  to  the  sum  of  a  series  of  the  following  form  : 
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Returning  to  the  variable  2,  we  conclude  from  this  that  in  the  in- 

terior of  the  cross  strip  considered  above  the  periodic  function  f(z) 
is  equal  to  the  sum  of  the  series 

+  00  2  miirg 

If  the  function  f(z)  is  analytic  in  the  whole  plane,  we  can  suppose 

that  the  two  straight  lines  LL',  MM1,  which  bound  the  strip,  recede 
indefinitely  in  opposite  directions.  Every  periodic  integral  function 
is  therefore  developable  in  a  series  of  positive  and  negative  powers  of 

e2niz/<*  convergent  for  every  finite  value  of  z. 

66.  Impossibility  of  a  single-valued  analytic  function  with  three  periods.  By  a 
famous  theorem  due  to  Jacobi,  a  single-valued  analytic  function  cannot  have 
more  than  two  Independent  periods.  To  prove  this  we  shall  show  that  a  single- 

valued  analytic  function  cannot  have  three  independent  periods.*  Let  us  first 
prove  the  following  lemma  : 

Let  a,  &,  c  be  any  three  real  or  complex  quantities,  and  m,  n,  p  three  arbi- 
trary integers,  positive  or  negative,  of  which  one  at  least  is  different  from  zero. 

If  we  give  to  the  integers  m,  n,  p  all  systems  of  possible  values,  except 

m  —  n  =  p  =  0, 

the  lower  limit  of  \  ma  -f  nb  +  pc  \  is  equal  to  zero. 
Consider  the  set  (E)  of  points  of  the  plane  which  represent  quantities  of  the 

form  ma  +  nb  +  pc.  If  two  points  corresponding  to  two  different  systems  of 
integers  coincide,  we  have,  for  example, 

ma  +  nb  +  pc  =  m^  +  n-^b  +  ptc, 
and  therefore 

(m  —  wij)  a  +  (n  —  w1)  b  +  (  p  —  p^  c  =  0, 

where  at  least  one  of  the  numbers  m  —  m1?  n  —  nx,  p  —  p^  is  not  zero.  In  this 
case  the  truth  of  the  lemma  is  evident.  If  all  the  points  of  the  set  (E)  are  dis- 

tinct, let  2  3  be  the  lower  limit  of  |  ma  +  nb  +  pc  \  ;  this  number  2  5  is  also  the 
lower  limit  of  the  distance  between  any  two  points  whatever  of  the  set  (E).  In 

fact,  the  distance  between  the  two  points  ma  +  nb  -f  pc  and  mta  +  nt&  +  pxc  is 

equal  to  |  (m  —  m^  a  +  (n  —  wt)  b  +  (p  —  pj  c  |.  We  are  going  to  show  that  we 
are  led  to  an  absurd  conclusion  by  supposing  S  >  0. 

Let  N  be  a  positive  integer  ;  let  us  give  to  each  of  the  integers  m,  n,  p  one 

of  the  values  of  the  sequence  —  -ZV,  —  (N—  1),  •  •  •,  0,  •  •  •,  N—  1,  N,  and  let 
us  combine  these  values  of  m,  n,  p,  in  all  possible  manners.  We  obtain  thus 

(2N  +  I)8  points  of  the  set  (_£"),  and  these  points  are  all  distinct  by  hypothesis. 
Let  us  suppose  |a|^|6|^|c|;  then  the  distance  from  the  origin  to  any  one 

of  the  points  of  (E}  just  selected  is  at  most  equal  to  3  N\  a  \.  These  points  there- 
fore lie  in  the  interior  of  a  circle  C  of  radius  3  N  \  a  \  about  the  origin  as  center 

or  on  the  circle  itself.  If  from  each  of  these  points  as  center  we  describe  a 

*  Three  periods  a,  &,  c  are  said  to  be  dependent  if  there  exist  three  integers  m,  n,p 
(not  all  zero)  for  which  ma  +  nb  +pc  =  Q.  —  TRANS. 
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circle  of  radius  5,  all  these  circles  will  be  interior  to  a  circle  Cx  of  radius  equal 
to  3  N  |  a  |  +  5  about  the  origin  as  center,  and  no  two  of  them  will  overlap,  since 
the  distance  between  the  centers  of  two  of  them  cannot  be  smaller  than  2  5.  The 
sum  of  the  areas  of  all  these  small  circles  is  therefore  less  than  the  area  of  the 

circle  (L,  and  we  have 

or 
3N\a\ 

d< 

The  right-hand  side  approaches  zero  as  N  becomes  infinite  ;  hence  this  in- 

equality cannot  'be  satisfied  for  all  values  of  N  by  any  positive  number  5. 
Consequently  the  lower  limit  of  |  ma  +  nb  +  pc  \  cannot  be  a  positive  number  ; 
hence  that  lower  limit  is  zero,  and  the  truth  of  the  lemma  is  established. 

We  see,  then,  that  when  no  systems  of  integers  m,  n,  p  (except  m  =  n  =  p  —  0) 
exist  such  that  ma  +  nb  +  pc  =  0,  we  can  always  find  integral  values  for  these 

numbers  such  that  |  ma  +  nb  +  pc  \  will  be  less  than  an  arbitrary  positive  num- 
ber e.  In  this  case  a  single-valued  analytic  f  unction  /(z)  cannot  have  the  three 

independent  periods  a,  &,  c.  For,  let  z0  be  an  ordinary  point  for/(z),  and  let 
us  describe  a  circle  of  radius  e  about  the  point  z0  as  center,  where  e  is  so 
small  that  the  equation  /(z)  =/(z0)  has  no  other  root  than  z  =  Z0  inside  of  this 
circle  (§  40).  If  a,  6,  c  are  the  periods  of  /(z),  it  is  clear  that  ma  +  nb  +  pc  is 
also  a  period  for  all  values  of  the  integers  m,  n,  p  ;  hence  we  have 

/(z0  +  ma  +  n&  +  pc)  =/(z0). 

If  we  choose  m,  n,  p  in  such  a  manner  that  |  ma  +  rib  +  pc  \  is  less  than  e,  the 

equation  /(z)  =/(z0)  would  have  a  root  zl  different  from  z0,  where  \zl  —  Z0|<«, 
which  is  impossible. 

When  there  exists  between  a,  6,  c  a  relation  of  the  form 

(20)  ma  +  nb  +  pc  =  0, 

without  all  the  numbers  m,  n,  p  being  zero,  a  single-valued  analytic  function 
/(z)  may  have  the  periods  a,  6,  c,  but  these  periods  reduce  to  two  periods  or  to 
a  single  period.  We  may  suppose  that  the  three  integers  have  no  common  divisor 
other  than  unity.  Let  D  be  the  greatest  common  divisor  of  the  two  numbers 

m,  n;  m  =  Dm',  n  =  Dri  .  Since  the  two  numbers  m',  n'  are  prime  to  each  other, 
we  can  find  two  other  integers  m",  n"  such  that  m'n"  —  m"n'  =  1.  Let  us  put 

m'a  +  n'b  =  a',  m"a  +  n"b  =  &'; 

then  we  shall  have,  conversely,  a  =  ri'a'  —  n'b',  b  =  m'b'  —  m"af.  If  a  and  b  are 
periods  of  /(z),  a'  and  b'  are  also,  and  conversely.  Hence  we  can  replace  the 
system  of  two  periods  a  and  6  by  the  system  of  two  periods  a'  and  b'.  The  re- 

lation (20)  becomes  Da'  +  pc  =  0  ;  D  and  p  being  prime  to  each  other,  let  us 
take  two  other  integers  D'  and  p'  such  that  Dp'  —  D'p  =  1,  and  let  us  put 
D'a'  +  p'c  =  c'.  We  obtain  from  the  preceding  relations  of  ——  pc',  c  =  DC', 
whence  it  is  obvious  that  the  three  periods  a,  b,  c  are  linear  combinations  of  the 

two  periods  b'  and  c'. 

Note.  As  a  corollary  of  the  preceding  lemma  we  see  that  if  a  and  /3  are  two 
real  quantities  and  m,  n  two  arbitrary  integers  (of  which  at  least  one  is  not  zero), 
the  lower  limit  of  |  ma  +  n/3  1  is  equal  to  zero.  For  if  we  put  a  =  a,  b  =  /S,  c  =  i, 
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the  absolute  value  of  ma  +  n/3  +  pi  can  be  less  than  a  number  e  <  1  only  if  we 

have  p  =  0,  |  ma  +  n/3 1  <  e.  From  this  it  follows  that  a  single-valued  analytic 
function  f(z)  cannot  have  two  real  independent  periods  a  and  /3.  If  the  quotient 
/3/a  is  irrational,  it  is  possible  to  find  two  numbers  m  and  n  such  that  |  ma  +  n/3 1 
is  less  than  e,  and  it  will  be  possible  to  carry  through  the  reasoning  just  as 
before.  If  the  quotient  /3/a  is  rational  and  equal  to  the  irreducible  fraction  m/n, 

let  us  choose  two  integers  m'  and  n'  such  that  mn'  —  m'n  =  1,  and  let  us  put 
m'a  —  n'p  =  y.  The  number  7  is  also  a  period,  and  from  the  two  relations 
ma  —  n/3  =  0,  m'a  —  n'/3  =  7  we  derive  a  =  —  717,  /3  =  —  my,  so  that  a  and  /3 
are  multiples  of  the  single  period  7.  More  generally,  a  single-valued  analytic 
function  f(z)  cannot  have  two  independent  periods  a  and  b  whose  ratio  is  real, 

for  the  function  /(az)  would  have  the  two  real  periods  1  and  b/a.* 

67.  Doubly  periodic  functions.  A  doubly  periodic  function  is  a 

single-valued  analytic  function  having  two  periods  whose  ratio  is 

not  real.  To  conform  to  Weierstrass's  notation,  we  shall  indicate  the 

independent  variable  by  u,  the  two  periods  by  2  w  and  2  o>',  and  we 
shall  suppose  that  the  coefficient  of  i  in  o//a>  is  positive.  Let  us 

mark  in  the  plane  the  points  2  w,  4  o>,  6  o>,  •  •  •  and  the  points  2  o>', 
4  (Df,  6  a) ',....  Through  the  points  2  mo>  let  us  draw  parallels  to  the 

o 

a; 

FIG.  25 

direction  Ow',  and  through  the  points  2wV  parallels  to  the  direc- 
tion Oo>.  The  plane  is  divided  in  this  manner  into  a  net  of 

congruent  parallelograms  (Fig.  25).  Let  f(u)  be  a  single-valued 

analytic  function  with  the  two  periods  2  w,  2  <o' ;  from  the  two 

relations  f(u  +  2<o)  =  /(^),  f(u  +  2o>')  =f(u)  we  deduce  at  once 

*  It  is  now  easy  to  prove  that  there  exists  for  any  periodic  single-valued  function 
at  least  one  pair  of  periods  in  terms  of  which  any  other  period  can  be  expressed  as  an 

integral  linear  combination ;  such  a  pair  is  called  a,  primitive  pair  of  periods.  — TRANS. 
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f(u  -f-  2  mo>  +  2  m'w ')  =  /(?/),  so  that  2  mw  -f-  2  mV  is  also  a  period 
for  all  values  of  the  integers  m  and  m'.  We  shall  represent  this 
general  period  by  2w. 

The  points  that  represent  the  various  periods  are  precisely  the 
vertices  of  the  preceding  net  of  parallelograms.  When  the  point  u 

describes  the  parallelogram  OABC  whose  vertices  are  0,  2  o>,  2  <o  +  2  w', 
2  o>',  the  point  u  -+-  2  w  describes  the  parallelogram  whose  vertices 

are  the  points  2  wy  2  w  +  2  <o,  2  w  -}-  2  o>  +  2  o>',  2  w  +  2  o>',  and  the 
function  f(u)  takes  on  the  same  value  at  any  pair  of  corresponding 

points  of  the  two  parallelograms.  Every  parallelogram  whose  ver- 

tices are  four  points  of  the  type  UQ,  UQ  4-  2  w,  UQ  +  2  <o',  UQ  -\-  2  w  -+-  2  o>' 
is  called  a  parallelogram  of  periods ;  in  general  we  consider  the 

parallelogram  OABC,  but  we  could  substitute  any  point  in  the  plane 

for  the  origin.  The  period  2  <o  -f  2  <o'  will  be  designated  for  brevity 
by  2  o>";  the  center  of  the  parallelogram  OABC  is  the  point  w",  while 
the  points  <o  and  w'  are  the  middle  points  of  the  sides  OA  and  OC. 

Every  integral  doubly  periodic  function  is  a  constant.  In  fact,  let 

f(u)  be  a  doubly  periodic  function ;  if  it  is  integral,  it  is  analytic  in 

the  parallelogram  OABC,  and  the  absolute  value  of  f(u)  remains 
always  less  than  a  fixed  number  M  in  this  parallelogram.  But  on 

account  of  the  double  periodicity  the  value  oif(u)  at  any  point  of  the 
plane  is  equal  to  the  value  of  f(u)  at  some  point  of  the  parallelogram 

OABC.  Hence  the  absolute  value  of  f(u)  remains  less  than  a  fixed 

number  M.  It  follows  by  Liouville's  theorem  that  f(u)  is  a  constant. 

68.  Elliptic  functions.  General  properties.  It  follows  from  the  pre- 
ceding theorem  that  a  doubly  periodic  function  has  singular  points 

in  the  finite  portion  of  the  plane,  unless  it  reduces  to  a  constant. 

The  term  elliptic  function  is  applied  to  functions  which  are  doubly 
periodic  and  analytic  except  for  poles.  In  any  parallelogram  of 

periods  an  elliptic  function  has  a  certain  number  of  poles ;  the  num- 
ber of  these  poles  is  called  the  order  of  the  function,  each  being 

counted  according  to  its  degree  of  multiplicity  *.  It  should  be  noticed 
that  if  an  elliptic  function  f(ii)  has  a  pole  UQ  on  the  side  OC,  the 

point  UQ  -f-  2  <o,  situated  on  the  opposite  side  AB,  is  also  a  pole ;  but 
we  should  count  only  one  of  these  poles  in  evaluating  the  number 

of  poles  contained  in  OABC.  Similarly,  if  the  origin  is  a  pole,  all  the 

*It  is  to  be  understood  that  the  parallelogram  is  so  chosen  that  the  order  is  as 
small  as  possible.  Otherwise,  the  number  of  poles  in  a  parallelogram  could  be  taken  to 

be  any  multiple  of  this  least  number,  since  a  multiple  of  a  period  is  a  period.  — TRANS. 
(See  also  the  footnote,  p.  149.) 
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vertices  of  the  net  are  also  poles  of  f(u),  but  we  should  count  only 

one  of  them  in  each  parallelogram.  If,  for  example,  we  move  that 

vertex  of  the  net  which  lies  at  the  origin  to  a  suitable  point  as  near 

as  we  please  to  the  origin,  the  given  function  f(u)  no  longer  has 

any  poles  on  the  boundary  of  the  parallelogram.  When  we  have  occa- 
sion to  integrate  an  elliptic  function  f(u)  along  the  boundary  of  the 

parallelogram  of  periods,  we  shall  always  suppose,  if  it  is  necessary, 

that  the  parallelogram  has  been  displaced  in  such  a  way  that  f(u) 

has  no  longer  any  poles  on  its  boundary.  The  application  of  the 

general  theorems  of  the  theory  of  analytic  functions  leads  quite 

easily  to  the  fundamental  propositions  : 

1)  The  sum  of  the  residues  of  an  elliptic  function  with  respect 

to  the  poles  situated  in  a  parallelogram  of  periods  is  zero. 

Let  us  suppose  for  defmiteness  that  f(u)  has  no  poles  on  the 

boundary  OABCO.  The  sum  of  the  residues  with  respect  to  the  poles 

situated  within  the  boundary  is  equal  to 

the  integral  being  taken  along  OABCO.  But  this  integral  is  zero,  for 

the  sum  of  the  integrals  taken  along  two  opposite  sides  of  the  paral- 
lelogram is  zero.  Thus  we  have 

f    f(u)du=  f    f(u)du,  f    f(u)du=f         f(u)du, 
J(OA)  JQ  J  (BC)  i/2o)  +  2(0' 

and  if  we  substitute  u  +  2  o>'  for  u  in  the  last  integral,  we  have 

f(u)du  =  I    f(u  +  2  u>')du  =  i  f(ii)du  =-  \      f(u)du. )  Jzu  Jzu  J(OA) 

Similarly,  the  sum  of  the  integrals  along  AB  and 

along  CO  is  zero.  In  fact,  this  property  is  almost 

self-evident  from  the  figure  (Fig.  26).  For  let  us 

consider  two  corresponding  elements  of  the  two  inte- 
grals along  OA  and  along  BC.  At  the  points  m  and 

m'  the  values  of  f(u)  are  the  same,  while  the  values 
of  du  have  opposite  signs. 

The  preceding  theorem  proves  that  an  elliptic  func- 

tion f(u)  cannot  have  only  a  single  pole  of  the  first 

order  in  a  parallelogram  of  periods.    An  elliptic  function  is  at  least 

of  the  second  order. 

FIG.  26 
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2)  The  number  of  zeros  of  an  elliptic  function  in  a  parallelogram 
of  periods  is  equal  to  the  order  of  that  function  (each  of  the  zeros 
being  counted  according  to  its  degree  of  multiplicity). 

Let/(i*)  be  an  elliptic  function ;  the  quotient  f'(u)/f(u)  =  <f>(u)  is 
also  an  elliptic  function,  and  the  sum  of  the  residues  of  <£  (u)  in  a  par- 

allelogram is  equal  to  the  number  of  zeros  of  f(u)  diminished  by  the 
number  of  the  poles  (§  48).  Applying  the  preceding  theorem  to  the 

function  <f>(u),  we  see  the  truth  of  the  proposition  just  stated.  In  gen- 
eral, the  number  of  roots  of  the  equation  f(u)  =  C  in  a  parallelogram 

of  periods  is  equal  to  the  order  of  the  function,  for  the  function 

f(n)  —  C  has  the  same  poles  as  f(u),  whatever  may  be  the  constant  C. 

3)  The  difference  between  the  sum  of  the  zeros  and  the  sum  of  the 
poles  of  an  elliptic  function  in  a  parallelogram  of  periods  is  equal  to 

a  period. 

Consider  the  integral 

du 

along  the  boundary  of  the  parallelogram  OABC.  This  integral  is 
equal,  as  we  have  already  seen  (§  48),  to  the  sum  of  the  zeros  of  f(u) 
within  the  boundary,  diminished  by  the  sum  of  the  poles  of  f(u) 
within  the  same  boundary.  Let  us  evaluate  the  sum  of  the  integrals 
resulting  from  the  two  opposite  sides  OA  and  EC  : 

C 
\ 

Jo 

.  "        f(u)  \ u  "      du  +         u  "      du- 

If  we  substitute  u  +  2  o>f  for  u  in  the  last  integral,  this  sum  is  equal  to 

T 
/ 

Jo 

or,  on  account  of  the  periodicity  of  /(w),  to 

The  integral 

2a) 

f 
Jo 

is  equal  to  the  variation  of  Log[/(^)]  when  u  describes  the  side  OA; 
but  since  f(u)  returns  to  its  initial  value,  the  variation  of  Log[/(?^)] 

is  equal  to  —  2  ra27ri,  where  w2  is  an  integer.  The  sum  of  the  inte- 
grals along  the  opposite  sides  OA  and  EC  is  therefore  equal  to 
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(4  m2?riV)/2  TTI  =  2  m2<of.  Similarly,  the  sum  of  the  integrals  along 
AB  and  along  CO  is  of  the  form  2m^.  The  difference  considered 

above  is  therefore  equal  to  2  m^>  +  2  m2a>'  ;  that  is,  to  a  period. 
By  a  similar  argument  it  can  be  shown  that  the  proposition  is 

also  applicable  to  the  roots  of  the  equation  f(u)  =  C,  contained  in  a 
parallelogram  of  periods,  for  any  value  of  the  constant  C. 

4)  Between  any  two  elliptic  functions  with  the  same  periods  there 
exists  an  algebraic  relation. 

Let  f(u),  f^(u}  be  two  elliptic  functions  with  the  same  periods 

2  w,  2  o>'.  In  a  parallelogram  of  periods  let  us  take  the  points  av 
a2>  '  '  ')  am  which  are  poles  for  either  of  the  two  functions  f(u)9 
ft(u)  or  for  both  of  them  ;  let  /^  be  the  higher  order  of  multi- 

plicity of  the  point  at  with  respect  to  the  two  functions,  and  let 

P\  +  A^  +  *  '  '  +  /*»»  =  N.  Now  let  F(x,  y)  be  a  polynomial  of  degree  n 
with  constant  coefficients.  If  we  replace  x  and  y  by  f(u)  and  /x(^), 
respectively,  in  this  polynomial,  there  will  result  a  new  elliptic  func- 

tion <£  (M)  which  can  have  no  other  poles  than  the  points  av  a2,  •  •  •  ,  am 
and  those  which  are  deducible  from  them  by  the  addition  of  a  period. 

In  order  that  this  function  &(u)  may  reduce  to  a  constant,  it  is 
necessary  and  sufficient  that  the  principal  parts  disappear  in  the 

neighborhood  of  each  of  the  points  av  «2,  •  •  •,  am.  Now  the  point  at 
is  a  pole  for  3>  (u)  of  an  order  at  most  equal  to  n^.  Writing  the  con- 

ditions that  all  the  principal  parts  shall  be  zero,  we  shall  have  then, 
in  all,  at  most 

n(t*i  +  A*2  H  -----  H  /*»,)  =  Nn 

linear  homogeneous  equations  between  the  coefficients  of  the  poly- 
nomial F(x,  y)  in  which  the  constant  term  does  not  appear.  There 

are  n  (n  +  3)/2  of  these  coefficients  ;  if  we  choose  n  so  large  that 

n  (n  4-  3)  >  2  Nn,  or  n  +  3  >  2  N,  we  obtain  a  system  of  linear 
homogeneous  equations  in  which  the  number  of  unknowns  is  greater 
than  that  of  the  equations.  Such  equations  have  always  a  system  of 

solutions  not  all  zero.  If  F(xt  y)  is  a  polynomial  determined  by 

these  equations,  the  elliptic  functions  f(u)j  f^u)  satisfy  the  algebraic 
relation 

where  C  denotes  a  constant. 

Notes.  Before  leaving  these  general  theorems,  let  us  make  some 
further  observations  which  we  shall  need  later. 

A  single-valued  analytic  function  f(u)  is  said  to  be  even  if  we 

have  /(—  u)  =  f(u)  ;  it  is  said  to  be  odd  if  we  have  /(—  it)  =—f(u). 
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The  derivative  of  an  even  function  is  an  odd  function,  and  the 
derivative  of  an  odd  function  is  an  even  function.  In  general,  the 
derivatives  of  even  order  of  an  even  function  are  themselves  even 

functions,  and  the  derivatives  of  odd  order  are  odd  functions.  On 
the  contrary,  the  derivatives  of  even  order  of  an  odd  function  are 
odd  functions,  and  the  derivatives  of  odd  order  are  even  functions. 

Let  f(u)  be  an  odd  elliptic  function ;  if  w  is  a  half-period,  we 
must  have  at  the  same  time  f(w)=  —  /(—  w)  and  f(w)  =  /(—  w), 
since  w  =  —  w  +  2  w.  It  is  necessary,  then,  that  f(w)  shall  be  zero 
or  infinite,  that  is,  that  w  must  be  a  zero  or  a  pole  for  f(u).  The  order 
of  multiplicity  of  the  zero  or  of  the  pole  is  necessarily  odd;  if  w 

were  a  zero  of  even  order  2n  for  f(u)t  the  derivative/'2'0^),  which 
is  odd,  would  be  analytic  and  different  from  zero  for  u  =  w.  If  w 
were  a  pole  of  even  order  for/(w),  it  would  be  a  zero  of  even  order 

for  \jf(u).  Hence  we  may  say  that  every  half-period  is  a  zero  or  a 
pole  of  an  odd  order  for  any  odd  elliptic  function. 

If  an  even  elliptic  function  f(u)  has  a  half-period  w  for  a  pole  or 
for  a  zero,  the  order  of  multiplicity  of  the  pole  or  of  the  zero  is  an 
even  number.  If,  for  example,  w  were  a  zero  of  odd  order  2  n  +  1,  it 

would  be  a  zero  of  even  order  for  the  derivative/'^),  which  is  an 
odd  function.  The  proof  is  exactly  similar  for  poles.  Since  twice  a 

period  is  also  a  period,  all  that  we  have  just  said  about  half-periods 
applies  also  to  the  periods  themselves. 

69.  The  function  p(«).  We  have  already  seen  that  every  elliptic 
function  has  at  least  two  simple  poles,  or  one  pole  of  the  second  order, 

in  a  parallelogram  of  periods.  In  Jacobi's  notation  we  take  func- 
tions having  two  simple  poles  for  our  elements ;  in  Weierstrass's 

notation,  on  the  contrary,  we  take  for  our  element  an  elliptic  func- 
tion having  a  single  pole  of  the  second  order  in  a  parallelogram. 

Since  the  residue  must  be  zero,  the  principal  part  in  the  neighbor- 

hood of  the  pole  a  must  be  of  the  form  A/(u  —  of.  In  order  t'o 
make  the  problem  completely  definite,  it  suffices  to  take  -4=1  and 
to  suppose  that  the  poles  of  the  function  are  the  origin  u  =  0  and 
all  the  vertices  of  the  network  2w  =  2  ma>  +  2  raV.  We  are  thus 
led  first  to  solve  the  following  problem : 

To  form  an  elliptic  function  having  as  poles  of  the  second  order  all 

the  points  2w  =  2  mat  -\-  2  m'w',  where  m  and  m'  are  any  two  integers 
whatever,  and  having  no  other  poles,  so  that  the  principal  part  in  the 

neighborhood  of  the  point  2  w  shall  be  l/(u  —  2  w^f. 
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Before  applying  to  this  problem  the  general  method  of  §  62,  we  shall 
first  prove  that  the  double  series 

where  m  and  ra'  take  on  all  the  integral  values  from  —  oo  to  -f-  oo 

(the  combination  ra  =  m'  =  0  being  excepted),  is  convergent,  provided 
that  the  exponent  p  is  a  positive  number  greater  than  2.  Consider  the 

triangle  having  the  three  points  u  —  0,  u  =  raw,  u  =  raw  +  ra'w'  for 
its  vertices  ;  the  lengths  of  the  three  sides  of  the  triangle  are  respec- 

tively mw|,  |  m'w' ,  raw  +  m'w'|.  We  have,  then,  the  relation 

|  raw  +  w'w' 2  =  ra2  w  |2  4  '^'2  w' 2  4  2  rara'  ww'  cos  0, 

where  6  is  the  angle  between  the  two  directions  Ow,  Ow'(0  <  0  <  TT). 
For  brevity  let  |w  =  a,  |o>'|=  b,  and  let  us  suppose  a^b.  The  pre- 

ceding relation  can  then  be  written  in  the  form 

|  raw  4  ra'w' 2  =  ra2&2  4  m'2b2  ±  2  mm'ab  cos  ®, 

where  the  angle  ®  is  equal  to  0  if  0  ̂  Tr/2,  and  to  TT  —  B  if  0  >  ir/2. 

The  angle  ®  cannot  be  zero,  since  the  three  points  0,  w,  w'  are  not  in 
a  straight  line,  and  we  have  0  ̂   cos  ®  <  1.  We  have,  then,  also 

| raw  4  ra'w' 2  =  (1  —  cos  ®)  (ra2a2  4  ra'2^2)  4  cos  ®  (ma  ±  ?tt7>)2, 
and  consequently 

|  raw  4  ra'w' 2  ̂  (1  —  cos  ®)  (m2a2  4  ra'2&2)  ̂   (1  —  cos  ®)  a2(ra2  4  ra'2). 
From  this  it  follows  that  the  terms  of  the  series  (21)  are  respectively 

less  than  or  equal  to  those  of  the  series  2'l/(m2  4  ra'2)'*'2  multiplied 
by  a  constant  factor,  and  we  know  that  the  last  series  is  convergent 

if  the  exponent  p/2  is  greater  than  unity  (I,  §  172).  Hence  the 

series  (21)  is  convergent  if  we  put  //,  =  3  or  p  =  4.  According  to  a 
result  derived  in  §  62,  the  series 

<£  (u)  —  ~1  +2)  \7~  ~2 — \2  ~  4 — 2    >       (w  —  mta  +  m'o>')> L  V  /  J 

represents  a  function  that  is  analytic  except  for  poles,  and  that  has 
the  same  poles,  with  the  same  principal  parts,  as  the  elliptic  function 
sought.  We  shall  show  that  this  function  <£  (u)  has  precisely  the  two 

periods  2  w  and  2  w'.  Consider  first  the  series 
1  1 

where  2  w  =  2  raw  -f-  2  ra'w',  the  summation  being  extended  to  all  the 

integral  values  of  m  and  ra',  except  the  combinations  m  =  m'  =  0 
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and  w  =  —  1,  m'  =  0.  This  series  is  absolutely  convergent,  for  it 
results  from  the  series  <f>  (u)  when  we  substitute  —  2  <•>  for  u  and 
omit  two  terms.  It  is  easily  seen  that  the  sum  of  this  series  is  zero 
by  considering  it  as  a  double  series  and  evaluating  separately  each 
of  the  rows  of  the  rectangular  double  array.  Subtracting  this  series 

from  <£  (V),  we  can  then  write 

-4-vT  _  *  ___ 
a>2~rA  \_(u-2w)*      (2w  + 

the  combinations  (m  =  m'  =  0),  (m  =  —  1,  m'  =  0)  being  always 
excluded  from  the  summation.  Let  us  now  change  u  to  u  —  2  o>  ; 
then  we  have 

* 

the  combination  m  =  —  1,  m'  =  0  being  the  only  one  excluded  from 
the  summation.  But  the  right-hand  side  of  this  equality  is  identical 
with  <f>(u).  This  function  has  therefore  the  period  2  o>,  and  in  like 

manner  we  can  prove  that  it  has  the  period  2  <u'.  This  is  the  func- 
tion which  Weierstrass  represents  by  the  notation  p(u)9  and  which 

is  thus  defined  by  the  equation 

(22)  p(w)  =  -7+yV  7   sHi— T"3P        (w  =  wo>  +  wV). u2     *-4  \(u  —  2 wf      4 w2] 

If  we  put  u  —  0  in  the  difference  p  (u)  —  1/V2,  all  the  terms  of  the 
double  sum  are  zero,  and  that  difference  is  itself  zero.  The  function 

p  (u)  possesses,  then,  the  following  properties  : 
1)  It  is  doubly  periodic  and  has  for  poles  all  the  points  2  w  and 

only  those. 

2)  The  principal  part  in  the  neighborhood  of  the  origin  is  1/w2. 

3)  The  difference  p  (u)  —  ~L/u?  is  zero  for  u  =  0. 
These  properties  characterize  the  function  p  (u).  In  fact,  any  analy- 
tic function/^)  possessing  the  first  two  properties  differs  from  p(u) 

only  by  a  constant,  since  the  difference  is  a  doubly  periodic  func- 

tion without  any  poles.  If  we  have  also  f(u)  —  1/u2  =  0  for  u  =  0, 
f(u)  —  p(u)  is  also  zero  for  u  =  0;  we  have,  therefore, /(w)  =  p(u). 

The  function  p(—  u)  evidently  possesses  these  three  properties; 
we  have,  then,  p(—  u)=  p(u),  and  the  function  p(u)  is  even,  which 
is  also  easily  seen  from  the  formula  (22). 

Let  us  consider  the  period  of  p  (u)  whose  absolute  value  is  smallest, 
and  let  8  be  its  absolute  value.  Within  the  circle  Cs  with  the  radius 

8,  described  about  the  origin  as  center,  the  difference  p  (u)  —  1/u2  is 
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analytic  and  can  be  developed  in  positive  powers  of  u.    The  general 
term  of  the  series  (22),  developed  in  powers  of  u,  gives 

1  1  2u          3u? 

and  it  is  easy  to  prove  that  the  function 

5  u 

I , 

I6\w 

i-— 

w\ 

dominates  this  series  in  a  circle  of  radius  8/2,  and,  a  fortiori,  the 

expression  obtained  from  it  by  replacing  1  —  u/\  w  by  1  —  2  u/8 
dominates  the  series.  Since  the  series  S'l/jtu  3  is  convergent,  we 
have  the  right  to  add  the  resulting  series  term  by  term  (§9).  The 
coefficients  of  the  odd  powers  of  u  are  zero,  for  the  terms  resulting 
from  periods  symmetrical  with  respect  to  the  origin  cancel,  and  we 
can  write  the  development  of  p(u)  in  the  form 

(23) 
where 

(24) 

p  («)=-* 
h 

«2= 
"3= =  (2A-1)2'; 

Whereas  the  formula  (22)  is  applicable  to  the  whole  plane,  the  new 
development  (23)  is  valid  only  in  the  interior  of  the  circle  C6  hav- 

ing its  center  at  the  origin  and  passing  through  the  nearest  vertex 
of  the  periodic  network. 

The  derivative  p'(^)  is  itself  an  elliptic  function  having  all  the 
points  2  w  for  poles  of  the  third  order.  It  is  represented  in  the 
whole  plane  by  the  series 

(25)  p'(u)  =-~3-  2V'-  -  ̂r-^- u*        ̂ 4  (u  —  2  w)3 

In  general,  the  nth  derivative  p(M)(^)  is  an  elliptic  function  having 
all  the  points  2  w  for  poles  of  order  n  +  2,  and  it  is  represented  by 
the  series 

(26)  p-W  =  (-  l)"1 

We  leave  to  the  reader  the  verification  of  the  correctness  of  these 

developments,  which  does  not  present  any  difficulty  in  view  of  the 
properties  established  above  (§§  39  and  61). 
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70.  The  algebraic  relation  between  p(z/)  and  p'(u).  By  the  general 
theorem  of  §  68  there  exists  an  algebraic  relation  between  p(u)  and 

p'(u).  It  is  easily  obtained  as  follows  :  In  the  neighborhood  of  the 
origin  we  have,  from  the  formula  (23), 

[p  («)]•  =    +    r2+  H  +  "-. 
where  the  terms  of  the  series  not  written  are  zero  for  u  =  0.  The 

difference  p'2(u)  —  4  p3(^)  has  therefore  the  origin  as  a  pole  of  the 
second  order,  and  in  the  neighborhood  of  this  point  we  have 

p"(«)  -  4  ps(«)  =-  ̂ T  ~  28  oa  +  •  •  •  , Ev 

where  the  terms  not  written  are  zero  for  u  =  0. 

Hence  the  elliptic  function  —  20  c^p  (u)  —  28  cg  has  the  same  poles, 

with  the  same  principal  parts,  as  the  elliptic  function  p12  —  4  p8,  and 
their  difference  is  zero  when  u  =  0.  These  two  elliptic  functions  are 
therefore  identical,  and  we  have  the  desired  relation,  which  we  shall 
write  in  the  form 

(27)  "     [p'(«)J  =  4  p»0)  -  gp  («)  -  gv 
where 

The  relation  (27)  is  fundamental  in  the  theory  of  elliptic  func- 
tions ;  the  quantities  g^  and  gz  are  called  the  invariants. 

All  the  coefficients  CA  of  the  development  (23)  are  polynomials  in 

terms  of  the  invariants  g^  and  gs.  In  fact,  taking  the  derivative  of 

the  relation  (27)  and  dividing  the  result  by  2p'(u),  we  derive  the 
formula 

(28)  '          p"(M) 

On  the  other  hand,  we  have  in  the  neighborhood  of  the  origin 

P"«=  £  +  2^2  4-  12  cX  +  •  -  -  +(2  A  -  2)  (2  A  -  3)^**-'  +  • 
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Replacing  p(^)  and  p"(^)  by  their  developments  in  the  relation 
(28),  and  remembering  that  (28)  is  satisfied  identically,  we  obtain 
the  recurrent  relation 

which  enables  us  to  calculate  step  by  step  all  the  coefficients  CA  in 

terms  of  c2  and  c3,  and  consequently  in  terms  of  </2  and  ga  ;  we  find 
thus 

' 
4      2*.3.52  6      24.  5.  7.11 

This  computation  brings  out  the  remarkable  algebraic  fact  that  all 

the  sums  2'l/(2w)2n  are  expressible  as  polynomials  in  terms  of  the 
first  two. 

We  know  a  priori  the  roots  of  p'(^)-  This  function,  being  of  the 
third  order,  has  three  roots  in  each  parallelogram  of  periods.  Since 

it  is  odd,  it  has  the  roots  u  =  w,  u  =  o>',  u  —  o>"  =  w  -f-  to'  (§  68,  notes). 

By  (27)  the  roots  of  the  equation  4  p3  —  gjp  —  9Z  —  0  are  precisely 

the  values  of  p  (11)  for  u  =  <o,  o>',  o>".  These  three  roots  are  ordinarily 
represented  by  elt  ea,  e3  : 

«i  =  P(w)>         *2  =  PO')>         ««  =  P  (<"")• 
These  three  roots  are  all  different  ;  for  if  we  had,  for  example,  el  =  e2, 

the  equation  p(u)=  e^  would  have  two  double  roots  o>  and  <u'  in  the 
interior  of  a  parallelogram  of  periods,  which  is  impossible,  since  p  (u) 
is  of  the  second  order.  Moreover,  we  have 

4  P3  (u)  -  ff2p  (u)  -gz  =  4  [p  (u)  -  ej  [p  (u)  -  ej  [p(it)  -  ej  , 
and  between  the  invariants  g^  gz  and  the  roots  elt  e^  e&  we  have  the 
relations 

The  discriminant  (g\  —  27  gl)/16  is  necessarily  different  from  zero. 

71.  The  function  £(*/).  If  we  integrate  the  function  p(u)  —  l/u2 
along  any  path  whatever  starting  from  the  origin  and  not  passing 

through  any  pole,  we  have  the  relation 

fT  /  >     !1^       vF  _i  _  _L  l        u  ~\ \P(U)  --  2\du=—2.       -  ^  --  ̂ o  --  H   /O       \2     * 
J0  w^J  -^v  |_w  —  2  w      2  -^       (2  w)J  J 

The  series  011  the  right  represents  a  function  which  is  analytic 

except  for  poles,  having  all  the  points  u  •=•  2  w^  except  u  =  0,  for 
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poles  of  the  first  order.    Changing  the  sign  and  adding  the  frac- 
tion 1/w,  we  shall  put 

(29) 

The  preceding  relation  can  be  written 

(30) 

and,  taking  the  derivatives  of  the  two  sides,  we  find 

(31)  •    •        £'(«)  =  -*>(«)• 
It  is  easily  seen  from  either  one  of  these  formulae  that  the  function 

£(u)  is  odd.  In  the  neighborhood  of  the  origin  we  have  by  (23) 
and  (30), 

The  function  £(z<)  cannot  have  the  periods  2  <o  and  2  a/,  for  it  would 
have  only  one  pole  of  the  first  order  in  a  parallelogram  of  periods. 

But  since  the  two  functions  £  (u  +  2  w)  and  £  (u)  have  the  same  deriva- 

tive —  p(u),  these  two  functions  differ  only  by  a  constant  ;  hence  the 
function  £(u)  increases  by  a  constant  quantity  when  the  argument  u 

increases  by  a  period.  It  is  easy  to  obtain  an  expression  for  this  con- 
stant. Let  us  write,  for  greater  clearness,  the  formula  (30)  in  the  form 

Changing  u  to  u  4-  2  o>  and  subtracting  the  two  formulae,  we  find 

£  (u  -f-  2  cu)  —  £  (zj)  =  —  I  p  (#)  c?«;. 
t/ w 

We  shall  put 

/M+2<
o  x»?t  +  2««>/ 

p  (v)  dVj          2  rj '  =  —  I  p  (v)  dv. *J  u 

Then  rj  and  i/  are  constants  independent  of  the  lower  limit  u  and  of 
the  path  of  integration.  This  last  point  is  evident  a  priori,  since  all 

the  residues  of  p(v)  are  zero.  The  function  £(u)  satisfies,  then,  the 
two  relations 

l(u  +  2  CD)  =  {(M)  +  2  ,j,         {(M  -f  2  <o')  =  £ (M)  +  2^'. 

If  we  put  in  these  formulae  u  =  —  w  and  ̂   =  —  <of  respectively,  we 
findw^^W,  »'==^r«^. 
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There  exists  a  very  simple  relation  between  the  four  quantities  <•>, 

o>',  rj,  r)'.  To  establish  it  we  have  only  to  evaluate  in  two  ways  the 
integral  /£  (u)  du,  taken  along  the  parallelogram  whose  vertices  are 

UQ,  UQ  +  2  w,  UQ  -f  2  a)  +  2  o>',  UQ  -f-  2  «/.  We  shall  suppose  that  £(u) 
has  no  poles  on  the  boundary,  and  that  the  coefficient  of  i  in  <u'/o>  is 
positive,  so  that  the  vertices  will  be  encountered  in  the  order  in 
which  they  are  written  when  the  boundary  of  the  parallelogram  is 

described  in  the  positive  sense.  There  is  a  single  pole  of  £(u)  in  the 
interior  of  this  boundary,  with  a  residue  equal  to  +  1 ;  hence  the 
integral  under  consideration  is  equal  to  2  iri.  On  the  other  hand,  by 
§  68  the  sum  of  the  integrals  taken  along  the  side  joining  the  vertices 

uo>  uo  +  ̂  <*>  and  along  the  opposite  side  is  equal  to  the  expression 

Similarly,  the  sum  of  the  integrals  coming  from  the  other  two  sides 

is  equal  to  4  o>'rj.    We  have,  then, 
7P 

(32)  o>'»7  —  wrj'  =  —  i, 

which  is  the  relation  mentioned  above. 

Let  us  again  calculate  the  definite  integral 
s*u  +  2(0 

F(u)=  I  £(v)dv, 
*J  U 

taken  along  any  path  whatever  not  passing  through  any  of  the  poles. 

so  that  F(u)  is  of  the  form  F(u)  =  2  t]U  -\-  K,  the  constant  K  being 
determined  except  for  a  multiple  of  2  TTI,  for  we  can  always  modify 
the  path  of  integration  without  changing  the  extremities  in  such  a 
way  as  to  increase  the  integral  by  any  multiple  whatever  of  2  TTI, 
To  find  this  constant  K  let  us  calculate  the  definite  integral 

...        /**[«•>- 9* 
*J  —  w 

along  a  path  very  close  to  the  segment  of  a  straight  line  which  joins 

the  two  points  w  and  —  o>.  This  integral  is  zero,  for  we  can  replace  the 
path  of  integration  by  the  rectilinear  path,  and  the  elements  of 

the  new  integral  cancel  in  pairs.  But,  on  replacing  u  by  —  o>  in  the 
expression  which  gives  F(u),  we  have 

»+  0) 
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and  since  we  have  also 

C  +  <adv 
—  =  ±  in, 

we  can  take  K  =  2  rn»  ±  Tri.   Hence,  without  making  any  supposition 
as  to  the  path  of  integration,  we  have,  in  general, 

/^M 

(33)  / t/M 

where  m  is  an  integer,  and  we  have  an  analogous  formula  for  the 

integral  fuu  +  2"'£(v)dv. 

72.  The  function  <r(u).  Integrating  the  function  £(u)  —  \/u  along 
any  path  starting  from  the  origin  and  not  passing  through  any  pole, 
we  have 

J0 

-. 

0 
 " 

and  consequently 

(34)         , 

The  integral  function  on  the  right  is  the  simplest  of  the  integral 
functions  which  have  all  the  periods  2  w  for  simple  roots  ;  it  is  the 
function  cr(^): 

../          i/  \    M  u 

(35)  -W=«n(1-2" 

The  equality  (34)  can  be  written 

(34')  <T(u)  =  ue->o 

whence,  taking  the  logarithmic  derivative  of  both  sides,  we  obtain 

(36)  ^  =  -  +  £«--  =  £<>)• or(u)        u  u 

The  function  o-(w),  being  an  integral  function,  cannot  be  doubly 
periodic.    When  its  argument  increases  by  a  period,  it  is  multiplied 

by  an  exponential  factor,  which  can  be  determined  as  follows  : 

From  the  formula  (34')  we  have 
<r /  rk\  r>  ru  +  2<ar-  1-1  /*M 
(u  -f  2  eo)      u  +  2  to    £         fto-£  H« x  .     '    •  —  -     J«*  L  M-l      nr      ** 

This  factor  was  calculated  in  §  71,  whence  we  find 

(37)  <?(U  +  2u>)= 
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It  is  easy  to  establish  in  a  similar  manner  the  relation 

(38)  <r(u  +  2  «')  =  -  e2"/(M  +  ft>/>o-(». 

From  either  of  the  formulae  (35)  or  (34')  it  follows  that  <r(u)  is 
an  odd  function. 

If  we  expand  this  function  <r(u)  in  powers  of  u,  the  expansion 

obtained  will  be  valid  for  the  whole  plane.  It  is  easy  to  show  that 

all  the  coefficients  are  polynomials  in  g^  and  g^.  For  we  have 

J0 3.4 5.6 2A(2A-1) 

<r  (u)  =  ue 

Cn        ,           C, 

  —  M4   2-  ,,6  —  . 

3.4  6.6M 

We  see  that  there  is  no  term  in  u8  and  that  any  coefficient  is  a 

polynomial  in  the  cx's  and  therefore  in  the  invariants  g2  and  g^\ 
the  first  five  terms  are  as  follows : 

/  \_  9*u*  foul ^(iij  —  u—  K~oTl 

ffl u*
 

,n 

24.3.5     23.3.5.7     29.32.5.7     27.32.52.7.11 

The  three  functions  p(u),  £(w)>  <r(u)  are  the  essential  elements  of 

the  theory  of  elliptic  functions.  The  first  two  can  be  derived  from 

<r(u)  by  means  of  the  two  relations  £(u)  =  <r'(w)/<r(tt),  p(ii)  =  —  £'^i). 

73.  General  expressions  for  elliptic  functions.  Every  elliptic  function 

f(u)  can  be  expressed  in  terms  of  the  single  function  o-(w),  or  again 
in  terms  of  the  function  £(u)  and  of  its  derivatives,  or  finally  in 

terms  of  the  two  functions  p(w)  and  p'(w).  We  shall  present  con- 
cisely the  three  methods. 

Method  1.  Expression  off(u)  in  terms  of  the  function  <r(u).  Let 

ftj,  a2j  •  -  •  ,  an  be  the  zeros  of  the  function  f(u)  in  a  parallelogram  of 

periods,  and  blt  bz,  -  •  •,  bn  the  poles  of  f(u)  in  the  same  parallelogram, 
each  of  the  zeros  and  each  of  the  poles  being  counted  as  often  as  is 

required  by  its  degree  of  multiplicity.  Between  these  zeros  and  poles 
we  have  the  relation 

(40)          a^  +  a2  +  •   h  an  =  b^  +  b2  -f-   1-  &»  +  2 1), 

where  2  O  is  a  period. 
Let  us  now  consider  the  function 

_         <r(u  —  0,1)  •  •  •  <r(u  —  an) 

This  function  has  the  same  poles  and  the  same  zeros  as  the  function 

f(u)y  for  the  only  zeros  of  the  factor  o-(u  —  a^)  are  u  =  a{  and  the 
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values  of  u  which  differ  from  at  only  by  a  period.  On  the  other  hand, 

this  function  <f>  (u)  is  doubly  periodic,  for  if  we  change  u  to  u  +  2  to, 

for  example,  the  relation  (37)  shows  that  the  numerator  and  the 
denominator  of  </>  (u)  are  multiplied  respectively  by  the  two  factors 

/  _  -JXngZrKnw  +  nw-aj-a,  -----  an\  /  _  -JNn^rKnu  +  »w  -^  -&,  -----  bn-2Q\ 

and  these  two  factors  are  equal,  by  (40).  Similarly,  we  find  that 

<f>(u  +  2  to')  =  <£(t«).  The  quotient  f(ii)/$  (u)  is  therefore  a  doubly 
periodic  function  of  u  having  no  infinite  values  ;  that  is,  it  is  a 
constant,  and  we  can  write 

m  v         fM  =  r        <*(*>  ~  Qq-Q  -  O  •  •  -  <r(u  -  Q 

'  <r(u  -  bj<r(u  -  bj  •  •  •  <r(u  -  bn  -  2  Q) 
To  determine  the  constant  C  it  is  sufficient  to  give  to  the  variable  u 

any  value  which  is  neither  a  pole  nor  a  zero. 

More  generally,  to  express  an  elliptic  function  f(u)  in  terms  of 

the  function  <r(w),  when  we  know  its  poles  and  its  zeros,  it  will  suf- 

fice to  choose  n  zeros  (a[,  a^,  •  •  •,  «»)  and  w  poles  (b[,  b%,  •  •  -,  b'n)  in 
such  a  way  that  Sa^  =  Sft/  and  that  each  root  of  f(u)  can  be  obtained 
by  adding  a  period  to  one  of  the  quantities  a/,  and  each  pole  by 
adding  a  period  to  one  of  the  quantities  ft/.  These  poles  and  zeros 

may  be  situated  in  any  way  in  the  plane,  provided  the  preceding 
conditions  are  satisfied. 

Method  2.  Expression  off(u)  in  terms  of  the  function  £  and  of  its 

derivatives.  Let  us  consider  k  poles  a^  a2,  •  •  •,  ak  of  the  f  unction  f(u) 
such  that  every  other  pole  is  obtained  by  adding  a  period  to  one 

of  them.  We  could  take,  for  example,  the  poles  lying  in  the  same 

parallelogram,  but  that  is  not  necessary.  Let 

Ad)  Ad) 
I  ̂ 2  I      ...      I 

u  —  a{       (u  —  «f)a  (u  —  «f)n< 

be  the  principal  part  of  f(u)  in  the  neighborhood  of  the  point  a{. 
The  difference 

f(u)  -  V  \A« »=i  L 

is  an  analytic  function  in  the  whole  plane.  Moreover,  it  is  a  doubly 

periodic  function,  for  when  we  change  u  to  u  -f-  2  w,  this  function  is 

increased  by  —  2  -qSA  ̂ ,  which  is  zero,  since  2^4  i0  represents  the  sum 
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of  the  residues  in  a  parallelogram.    That  difference  is  therefore  a 
constant,  and  we  have 

(42) 

=  C 

i  =  1 

The  preceding  formula  is  due  to  Hermite.  In  order  to  apply  it  we 

must  know  the  poles  of  the  elliptic  function  f(u)  and  the  corre- 

sponding principal  parts.  Just  as  formula  (41)  is  the  analogon  of  the 

formula  which  expresses  a  rational  function  as  a  quotient  of  two 

polynomials  decomposed  into  their  linear  factors,  the  formula  (42) 

is  the  analogon  of  the  formula  for  the  decomposition  of  a  rational 

fraction  into  simple  elements.  Here  the  function  ̂ (u  —  a)  plays  the 
part  of  the  simple  element. 

Method  3.  Expression  off(u)  in  terms  ofp(u)  and  of  p'(u).  Let 
us  consider  first  an  even  elliptic  f unction  f(u).  The  zeros  of  this 

function  which  are  not  periods,  are  symmetric  in  pairs.  We  can 

therefore  find  n  zeros  (av  a2,  •  •  • ,  an)  such  that  all  the  zeros  except 
the  periods  are  included  in  the  expressions 

±  al  -f-  2  w,     ±  «2  -f-  2  w,     •  •  • ,     ±  an  -f-  2  w. 

We  shall  take,  for  example,  the  parallelogram  whose  vertices  are 

<o  -f-  o>',  «'  —  <o,  —  to  —  to',  to  —  CD'  and  the  zeros  in  this  parallelogram 
lying  on  the  same  side  of  a  straight  line  passing  through  the  origin, 

carefully  excluding  half  the  boundary  in  a  suitable  manner.  If  a 

zero  ai  is  not  a  half-period,  it  will  be  made  to  appear  in  the  sequence 

av  a2,  -  •  -,  an  as  often  as  there  are  units  in  its  degree  of  multiplicity. 

If  the  zero  al}  for  example,  is  a  half-period,  it  will  be  a  zero  of  even 
order  2r  (§  68,  notes).  We  shall  make  this  zero  appear  only  r  times 

in  the  sequence  a  ,  a2,  •  •  •,  an.  With  this  understanding,  the  product 

[p  O)  -  p  K)]  [p  W  -  P  K)]  •  •  •  [p  O)  -  P  K)] 
has  the  same  zeros,  with  the  same  orders,  as  f(u),  excepting  the  case 
of  /(O)  =  0.  Similarly,  we  shall  form  another  product, 

[P  <»  -  p  (*,)]  [p  («)  -  P  (J,)]  •  •  •  [P  («)  -  P  (i  j  j 
having  the  poles  of  /(^)  for  its  zeros  and  with  the  same  orders, 
again  not  considering  the  end  points  of  any  period.  Let  us  put 

,  f.A  =  CP  O)  ~  P  Oi)1  [P  O)  ~  P  (Q]  '  '  '  [P  OP  -  P  K)] . 

-  [p  (.0  -  p  (^]  [p  («)  -  p  (^ ]  •  •  •  [p (u)  -  p  (4.)]  ' 

/ 
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the  quotient  /(?*)/<£  (u~)  is  an  elliptic  function  which  has  a  finite 
value  different  from  zero  for  every  value  of  u  which  is  not  a  period. 
This  elliptic  function  reduces  to  a  constant,  for  it  could  only  have 

periods  for  poles  ;  and  if  it  did,  its  reciprocal  would  not  have  any 

poles.  We  have,  then, 

~  P  <>i)]  [P  O)  ~  P  («*)]  '  •  •  [P  00  ~  P  On)] fM=  c 

*  CP  «  -  P  ft)]  [P  O)  -  P  (*,)]  •  •  •  [P  O)  -  P  (* 
If  yj(w)  is  an  odd  elliptic  function,  f^i^/p'^u)  is  an  even  function, 

and  therefore  this  quotient  is  a  rational  function  of  p(u).  Finally, 
any  elliptic  function  F(u)  is  the  sum  of  an  even  function  and  an 
odd  function  : 

F(u}  =  F(u)+F(-u)  +  F(u)  -  f  (
-  u) 

Applying  the  preceding  results,  we  see  that  every  elliptic  function 
can  be  expressed  in  the  form 

(43)  ^«= 

where  R  and  Rl  are  rational  functions. 

74.  Addition  formulae.  The  addition  formula  for  the  function  sin  x 

enables  us  to  express  sin  (a  -j-  b)  in  terms  of  the  values  of  that  func- 
tion and  of  its  derivative  for  x  =  a  and  x  =  b.  There  exists  an 

analogous  formula  for  the  function  p(u),  except  that  the  expression 

for  p  (u  +  v)  in  terms  of  p  (u),  p  (v),  p'(w),  p'(v)  ig  somewhat  more 
complicated  on  account  of  the  presence  of  a  denominator. 

Let  us  first  apply  the  general  formula  (41),  in  which  the  function 

<r(u)  appears,  to  the  elliptic  function  p(u)—  p(v).  We  see  at  once 

that  tr  (u  -f-  v)  a-  (u  —  v)/<r2(^)  is  an  elliptic  function  with  the  same 
zeros  and  the  same  poles  as  p  (u)  —  p  (v).  We  have,  then, 

in  order  to  determine  the  constant  C  it  suffices  to  multiply  the  two 

sides  by  a-z(u)  and  to  let  u  approach  zero.  We  thus  find  the  relation 

1  =  —  CV2(v),  whence  we  derive 
<r(u  +  v)cr(u  —  v) 

(44)  p(u)-p(»)  =  -         ̂ (u)^)  '      • 
If  we  take  the  logarithmic  derivative  on  both  sides,  regarding  v  as 

a  constant  and  u  as  the  independent  variable,  we  find 
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or,  interchanging  u  and  v  in  this  result, 

167 

Finally,  adding  these  two  results,  we  obtain  the  relation 

(45) 

which  constitutes  the  addition  formula  for  the  function  £(w). 
Differentiating  the  two  sides  with  respect  to  u,  we  should  obtain 

the  expression  for  p  (u  +  v) ;  the  right-hand  side  would  contain 

the  second  derivative  p"(u),  which  would  have  to  be  replaced  by 

6  paOO  —  gj%'  This  calculation  is  somewhat  long,  and  we  can  obtain 
the  result  in  a  more  elegant  way  by  proving  first  the  relation 

(46)     p  (M  +  tO  +  p  (u)  +  p  (v)  =  [£  (u  +  v)  -  £  (u)  -  [  (V)]2. 

Let  us  always  regard  u  as  the  independent  variable  ;  the  two  sides 

are  elliptic  functions  having  for  poles  of  the  second  order  u  =  0, 

u  =  —  v,  and  all  the  points  deducible  from  them  by  the  addition  of 
a  period.  In  the  neighborhood  of  the  origin  we  have 

CO*  +  v)  -COO-  COO  =  COO  +  «C'00  +   COO  -  COO 

and  consequently 

[C0*  +  *0- 

=  —  -  4-  u£'(v)  4-  au*  4- 

-  C00]a=  -.  -  2  C'OO  -  2 

The  principal  part  is  1/w2,  as  also  for  the  left-hand  side.  Let  us 
compare  similarly  the  principal  parts  in  the  neighborhood  of  the  pole 

u  =  —  v.  Putting  u  =  —  v  4-  h,  we  have 

{(-  »  +  *)  -  £0)  =  \ 

[{(A)-  «A  -  «)-  «(«)]2= 

-  - 

The  principal  part  of  the  right-hand  side  of  (46)  in  the  neighbor- 

hood of  the  point  u  =  —  v  is,  then,  l/(w  4-  v)2,  just  as  for  the  left- 
hand  side.  Hence  the  difference  between  the  two  sides  of  (46)  is 
a  constant.  To  find  this  constant,  let  us  compare,  for  instance,  the 
developments  in  the  neighborhood  of  the  origin.  We  have  in  this 
neighborhood 

p(u  4-  v)  4-  pOO  +  POO  =  "^  +  2  POO  +  UP'(V)  H  ----  • 
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Comparing  this  development  with  that  of  \_£(u  -f  v)  —  £,(11)  —  £(v)]2> 
we  see  that  the  difference  is  zero  for  u  =  0.  The  relation  (46)  is  there- 

fore established.  Combining  the  two  equalities  (45)  and  (46)  ,  we 
obtain  the  addition  formula  for  the  function  p  (u)  : 

(47).  '      p(.  +  ,)+pW  +  pW= 

75.  Integration  of  elliptic  functions.  Hermite's  decomposition  for- 
mula (42)  lends  itself  immediately  to  the  integration  of  an  elliptic 

function.  Applying  it,  we  find  , 

(48) 

We  see  that  the  integral  of  an  elliptic  function  is  expressible  in 

terms  of  the  same  transcendentals  o-,  £,  p  as  the  functions  themselves, 
but  the  function  a-(u)  may  appear  in  the  result  as  the  argument  of 
a  logarithm.  In  order  that  the  integral  of  an  elliptic  function  may 
be  itself  an  elliptic  function,  it  is  necessary  first  that  the  integral 
shall  not  present  any  logarithmic  critical  points  ;  that  is,  all  the 
residues  A^  must  be  zero.  If  this  is  so,  the  integral  is  a  function 
analytic  except  for  poles.  In  order  that  it  be  elliptic,  it  will  suffice 
that  it  is  not  changed  by  the  addition  of  a  period  to  u,  that  is,  that 

2Co>  -  2  >;<1  <,'•>  =  0,         2CV  -  2  rj'A^=  0; 

whence  we  derive  C  =  0,  $A$>  =  0.  If  these  conditions  are  satisfied, 

the  integral  will  appear  in  the  form  indicated  by  Hermite's  theorem. 

When  the  elliptic  function  which  is  to  be  integrated  is  expressed  in  terms 

of  p(u)  and  p'(w),  it  is  often  advantageous  to  start  from  that  form  instead  of 
employing  the  general  method.  Suppose  that  we  wish  to  integrate  the  elliptic 

function  R  [p  (w)]  +  p'  (u)  Rl  [p  (u)],  R  and  Z?t  being  rational  functions.  We  have 
only  to  notice  in  regard  to  the  integral  fRl  [p(w)]p'(u)  du  that  the  change  of 
variable  p  (u)  =  t  reduces  it  to  the  integral  of  a  rational  function.  As  for  the 
integral  fR  [p(w)J  du,  we  could  reduce  it  to  a  certain  number  of  type  forms  by 
means  of  rational  operations  combined  with  suitably  chosen  integrations  by 
parts  ;  but  it  turns  out  that  this  would  amount  to  making  in  another  form  the 
same  reductions  that  were  made  in  Volume  I  (§  105,  2d  ed.  ;  §  110,  1st  ed.).  For, 
if  we  make  the  change  of  variable  p  (u)  =  t,  which  gives 

dt  dt 

p  (u)  du  —  dt,        or        du  = 

p'(u) 
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the  integral fR  [p(w)J  du  takes  the  form 

R(t)dt 

/ti
  (i)

  at 

•v/4  /»  —  n~t- 

We  have  seen  how  this  integral  decomposes  into  a  rational  function  of  t  and 

of  the  radical  \/4 18  —  g^t  —  g3,  a  sum  of  a  certain  number  of  integrals  of  the 

form  ftndt/  V4  ts  —  g2t  —  03,  and  finally  a  certain  number  of  integrals  of  the  form 

>Q(t)  dt f 
where  P(t)  is  a  polynomial  prime  to  its  derivative  and  also  to  4£3  —  gzt  —  gg, 
and  where  Q(t)  is  a  polynomial  prime  to  P(t)  and  of  lower  degree  than  P(t). 

Returning  to  the  variable  w,  we  see  that  the  integral  fR[p(u)]du  is  equal 

to  a  rational  function  of  p(u)  and  p'(u)>  plus  a  certain  number  of  integrals 
such  asJ[p(M)]Mdu  and  a  certain  number  of  other  integrals  of  the  form 

fPMu  . J     Ppu 

and  this  reduction  can  be  accomplished  by  rational  operations  (multiplications 
and  divisions  of  polynomials)  combined  with  certain  integrations  by  parts. 

We  can  easily  obtain  a  recurrent  formula  for  the  calculation  of  the  integrals 

In  =f[p(u)]ndu.   If,  in  the  relation 

we   replace   p/2(w)    and    p"(u)    by    4  p3  (u)  —  gz  p  (M)  —  gs    and    6p2(w)  —  gr2/2 
respectively,  there  results,  after  arranging  with  respect  to  p(w), 

du 

and  from  this  we  derive,  by  integrating  the  two  sides, 

(50) 

By  putting  successively  n  =  1,  2,  3,  •  •  •  in  this  formula,  all  the  integrals  /„ 

can  be  calculated  successively  from  the  first  two,  J0  =  w,  II  —  —  f  (u). 
To  reduce  further  the  integrals  of  the  form  (49),  it  will  be  necessary  to  know 

the  roots  of  the  polynomial  P(t).  If  we  know  these  roots,  we  can  reduce  the 
calculation  to  that  of  a  certain  number  of  integrals  of  the  form du 

p(u)-p(v) 

where  p(v)  is  different  from  et,  e2,  e3,  since  the  polynomial  P(t)  is 'prime  to 
4 13  —  gzt  —  g3 ,  The  value  of  v  is  therefore  not  a  half-period,  and  p'(u)  is  not 
zero.  The  formula 

p(u)-p(») 
established  in  §  74,  then  gives 

du  —I 
(51) 

/a
u 

p(u
)- 

[Log  <r  (M  +  v)  —  Log  er  (M  —  v)  —  2  u^(v)~\  +  C 
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76.  The  function  0.  The  series  by  means  of  which  we  have  defined  the  func- 
tions p(w),  f(it),  <r(u)  do  not  easily  lend  themselves  to  numerical  computation, 

including  even  the  power  series  development  of  <r(u),  which  is  valid  for  the 

whole  plane.  The  founders  of  the  theory  of  elliptic  functions,  Abel  and  Jacobi, 
had  introduced  another  remarkable  transcendental,  which  had  previously  been 
encountered  by  Fourier  in  his  work  on  the  theory  of  heat,  and  which  can  be 

developed  in  a  very  rapidly  convergent  series  ;  it  is  called  the  0  function.  We 
shall  establish  briefly  the  principal  properties  of  this  function,  and  show  how 

the  Weierstrass  <r  (u)  function  can  be  easily  deduced  from  it. 
Let  T  =  r  +  si  be  a  complex  quantity  in  which  the  coefficient  s  of  i  is  positive. 

If  v  denotes  a  complex  variable,  the  function  6  (v)  is  defined  by  the  series 

1  J"°?  /     *V 

(52)  B  (v)  =  -  V  (  _  1)»  q\n  +  2  )  e  (2  n  +  1>  *iv^        q  —  emr^ 

v  ̂ ^* 

—  00  m 

which  may  be  regarded  as  a  Laurent  series  in  which  e*iv  has  been  substituted 
for  z.  This  series  is  absolutely  convergent,  for  the  absolute  value  Un  of  the 

general  term  is  given  by 

if  75  =  a-}-  (ii;  hence  Un  approaches  zero  when  n  becomes  infinite  through 
positive  values,  and  the  same  is  true  of  V?7_n.  It  follows  that  the  function 

0  (v)  is  an  integral  transcendental  function  of  the  variable  v.  It  is  also  an  odd 
function,  for  if  we  unite  the  terms  of  the  series  which  correspond  to  the  values 

n  and  —  n  —  1  of  the  index  (where  n  varies  from  0  to  +  co),  the  development 
(52)  can  be  replaced  by  the  following  formula  : 

+  00  /          1\2 

(53)  B  (v)  =  2  V  (-  l)«gv*  +  V  sin  (2  n  +  1)  TIT), o 

which  shows  that  we  have 

"When  v  is  increased  by  unity,  the  general  term  of  the  series  (52)  is  multi- 
plied by  e<2n  +  D™  —  —  1.  We  have,  then,  6  (v  +  1)  =  —  B  (v).  If  we  change  v  to 

v  +  T,  no  simple  relation  between  the  two  series  is  immediately  seen  ;  but  if 
we  write 

0(V  +  T)  =  1  V  (-  l) 

i>  ̂ ^™r 

—  00 

and  then  change  n  to  n  —  1  in  this  series,  the  general  term  of  the  new  series 

(1
\2
 

») 
 
*   

    
  
"   

 
e(2

n+l
)ir

tve
-27

Ttv
 

is  equal  to  the  general  term  of  the  series  (52)  multiplied  by  —  g-  1e-27rt'w.    Hence 
the  function  B  (v)  satisfies  the  two  relations 

(54)  0(v  +  l)=-0(v),        0(v  +  T)=-q-ie-2*™0(v). 

Since  the  origin  is  a  root  of  0  (v),  these  relations  show  that  0  (v)  has  for  zeros  all 

the  points  m1  +  m2T,  where  m^  and  ra2  are  arbitrary  positive  or  negative  integers. 
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These  are  the  only  roots  of  the  equation  B  (v)  =  0.  For,  let  us  consider  a 

parallelogram  whose  vertices  are  the  four  points  v0,  v0  -f  1,  v0  +  1  +  T,  VQ  -f  T, 
the  first  vertex  v0  being  taken  in  such  a  way  that  no  root  of  0  (v)  lies  on  the 
boundary.  We  shall  show  that  the  equation  9  (v)  =  0  has  a  single  root  in  this 
parallelogram.  For  this  purpose  it  is  sufficient  to  calculate  the  integral 

J   0(v) 

along  its  boundary  in  the  positive  sense.    By  the  hypothesis  made  upon  r,  we 
encounter  the  vertices  in  the  order  in  which  they  are  written. 

From  the  relations  (54)  we  derive 
'  ' 

£i  TT1. 

0(V 

0(V) 

0(0) 

FIG. 27 

The  first  of  these  relations  shows  that  at  the  corresponding  points  n  and  n' 
(Fig.  27)  of  the  sides  AD,  BC,  the  function  0'(v)/0(v)  takes  on  the  same  value. 
Since  these  two  sides  are  described  in 

contrary   senses,  the  sum  of   the  cor- 
responding  integrals  is  zero.     On   the 

contrary,  if  we  take  two  corresponding 

points  m.  m'  on  the  sides  AB,  DC,  the 
value  of  0'(v)/0(v)  at  the  point  m'  is 
equal  to  the  value  of  the  same  function 
at  the  point  m,  diminished  by  2  TTI.  The 
sum  of  the  two  integrals  coming  from 
these  two  sides  is  therefore   equal   to 

f(CI)}  —  2  Tridv,  that  is,  to  "2-tri.   As  there  is  evidently  one  and  only  one  point 
in  the  parallelogram  ABCD  which  is  represented  by  a  quantity  of  the  form 
m1  +  m2r,  it  follows  that  the  function  6  (v)  has  no  other  roots  than  those  found 
above. 

Summing  up,  the  function  6  (v)  is  an  odd  integral  function  ;  it  has  all  the 
points  mx  +  m2r  for  simple  zeros  ;  it  has  no  other  zeros  ;  and  it  satisfies  the 
relations  (54).  Let  now  2  w,  2  &/  be  two  periods  such  that  the  coefficient  of  i  in 

w'/w  is  positive.  In  6  (v)  let  us  replace  the  variable  v  by  w/2  w  and  T  by  w'/w, 
and  let  0  (u)  be  the  function 

(55)          ;.  #»"= 

Then  0  (u)  is  an  odd  integral  function  having  all  the  periods  2  w  =  2  raw  +  2  mV 
for  zeros  of  the  first  order,  and  the  relations  (54)  are  replaced  by  the  following  : 

(56) 

2w)=— 

=-  e 

These  properties  are  very  nearly  those  of  the  function  <r(u).   In  order  to  re- 
duce it  to  <r  (u),  it  suffices  to  multiply  0  (u)  by  an  exponential  factor.  Let  us  put 

2w     -^-«2 

(57) 

where  17  is  the  function  of  w  and  a/  defined  as  in  §  71.  This  new  function  \f/  (u) 
is  an  odd  integral  function  having  the  same  zeros  as  0  (u) .    The  first  of  the 
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relations  (56)  becomes 
2 

(58)  ^(w  +  2a>)=-4 

0'( 

We  have  next 
0  (0) 

or,  since  TJW'  —  i\'<a  —  wi/2, 

(59)  ^  (u  +  2  w')  =  —  e2  r?'<«  +  »')  f  (u)  . 
The  relations  (58)  and  (59)  are  identical  with  the  relations  established  above 

for  the  function  <r  (u)  .  Hence  the  quotient  ̂   (u}/<r  (u)  has  the  two  periods  2  w 
and  2  a/,  for  the  two  terms  of  this  ratio  are  multiplied  by  the  same  factor  when 
u  increases  by  a  period.  Since  the  two  functions  have  the  same  zeros,  this 

quotient  is  constant  ;  moreover,  the  coefficient  of  u  in  each  of  the  two  develop- 

ments is  equal  to  unity.  We  have,  then,  <r(u)  =  •*{/  (u),  or 

(60)  ff(u)  = 

and  the  function  <r  (u)  is  expressed  in  terms  of  the  function  0,  as  we  proposed. 

If  we  give  the  argument  v  real  values,  the  absolute  value  of  q  being  less  than 
unity,  the  series  (53)  is  rapidly  convergent.  We  shall  not  further  elaborate 
these  indications,  which  suffice  to  suggest  the  fundamental  part  taken  by  the 
6  function  in  the  applications  of  elliptic  functions. 

III.   INVERSE  FUNCTIONS.     CURVES  OF  DEFICIENCY  ONE 

77.  Relations  between  the  periods  and  the  invariants.  To  every 

system  of  two  complex  numbers  to,  to',  whose  ratio  to '/to  is  not  real, 
corresponds  a  completely  determined  elliptic  function  p(u),  which 

has  the  two'  periods  2  to,  2  to',  and  which  is  regular  for  all  the  values 
of  u  that  are  not  of  the  form  2  ma>  +  2  raV,  all  of  which  are  poles  of 

the  second  order.  The  functions  £(u)  and  <r(u),  which  are  deducible 
from  p(u)  by  one  or  by  two  integrations,  respectively,  are  likewise 

determined  by  the  system  of  periods  (2  to,  2  to').  When  there  is  any 
reason  for  indicating  the  periods,  we  shall  make  use  of  the  notation 

p(u\a>,  to'),  ̂ (u  to,  o>'),  o-(u\u>,  to')  to  denote  the  three  fundamental 
functions. 

But  it  is  to  be  noticed  that  we  can  replace  the  system  (to,  to')  by 

an  infinite  number  of  other  systems  (fl,  O')  without  changing  the 
function  p(ii).  For  let  ra,  m',  n,  n'  be  any  four  positive  or  negative 
integers  such  that  we  have  mn'—  m'n  =  ±  1.  If  we  put 

we  shall  have,  conversely, 

to  =  db  (n'Q,  —  wO'),          to'  =  ±  (mO' —  m'O), 
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and  it  is  clear  that  all  the  periods  of  the  elliptic  function  p(u)  are 

combinations  of  the  two  periods  2O,  21)',  as  well  as  of  the  two 

periods  2  co,  2  wf.  The  two  systems  of  periods  (2  o>,  2  w')  and  (2  O,  2  Of) 
are  said  to  be  equivalent.  The  function  p(u  1),  {)')  has  the  same 
periods  and  the  same  poles,  with  the  same  principal  parts,  as  the 

function  p(u  <o,  w'),  and  their  difference  is  zero  for  u  =  0.  They  are 
therefore  identical.  This  fact  results  also  from  the  development 

(22),  for  the  set  of  quantities  2  mat  +  2  raV  is  identical  with  the 

set  of  quantities  2  rafi  -f  2  ra'O'.  For  the  same  reason,  we  have 

£(u  fi,  ft')  =  £(w|<o,  <o')  and  <r(^  O,  O')  =  <r(w|w,  a/). 
Similarly,  the  three  functions  p(V),  £(V),  <r(w)  are  completely  deter- 

mined by  the  invariants  g^  g^.  For  we  have  seen  that  the  function 

a-  (u)  is  represented  by  a  power-series  development  all  of  whose  coeffi- 

cients are  polynomials  in  g^  g^  We  have,  then,  £(u)=  cr'(u)/<r(u), 
and  finally  p(^)  =  —  £'(u).  In  order  to  indicate  the  functions  which 
correspond  to  the  invariants  g2  and  #3,  we  shall  use  the  notation 

P  (u  ;  9»  ffs)>         £(n  5  9»  #3)>         *(u  >  #2'  ̂ 3)- 

Just  here  an  essential  question  presents  itself.  While  it  is  evi- 
dent, from  the  very  definition  of  the  function  p(u),  that  to  a  system 

(<o,  w')  corresponds  an  elliptic  function  p(w),  provided  the  ratio 
to'/to  is  not  real,  there  is  nothing  to  prove  a  priori  that  to  every 
system  of  values  for  the  invariants  g^  gz  corresponds  an  elliptic 

function.  We  know,  indeed,  that  the  expression  g\  —  27  g\  must  be 
different  from  zero,  but  it  is  not  certain  that  this  condition  is  suffi- 

cient. The  problem  which  must  be  treated  here  amounts  in  the  end 
to  solving  the  transcendental  equations  established  above, 

(61)       g^ 

for  the  unknowns  w,  to',  or  at  least  to  determining  whether  or  not 

these  equations  have  a  system  of  solutions  such  that  to'/o>  is  not  real 
whenever  g\  —  27  g\  is  not  zero.  If  there  exists  a  single  system  of  solu- 

tions, there  exist  an  infinite  number  of  systems,  but  there  appears 
to  be  no  way  of  approach  for  a  direct  study  of  the  preceding  equations. 
We  can  arrive  at  the  solution  of  this  problem  in  an  indirect  way  by 
studying  the  inversion  of  the  elliptic  integral  of  the  first  kind. 

Note.   Let  w,  u'  be  two  complex  numbers  such  that  o//a>  is  not  real  .   The  corre- 
sponding function  p  (u  w,  w')  satisfies  the  differential  equation 

rdp(M)-!2 

-EL2    -4,^-fcp- 
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where  g2  and  gs  are  defined  by  the  equations  (61).  For  u  =  w,  p(w)  is  equal  to 

one  of  the  roots  e±  of  the  equation  4  p8  —  g2  p  —  gs  =  0.  When  u  varies  from  0 
to  w,  p(u)  describes  a  curve  L  going  from  infinity  to  the  point  er  From  the 

relation  du  =  dp/v4p8  —  gr2p  —  gs  we  conclude  that  the  half -period  w  is  equal 
to  the  definite  integral 

dp 

taken  along  the  curve  L.  An  analogous  expression  for  w'  can  be  obtained  by 
replacing  el  by  e2  in  the  preceding  integral. 

We  have  thus  the  two  half -periods  expressed  in  terms  of  the  invariants  gr2,  gr3. 
In  order  to  be  able  to  deduce  from  this  result  the  solution  of  the  problem  before 
us,  it  would  be  necessary  to  show  that  the  new  system  is  equivalent  to  the  system 

(61),  that  is,  that  it  defines  gz  and  gs  as  single-valued  functions  of  w,  w'. 

78.  The  inverse  function  to  the  elliptic  integral  of  the  first  kind.  Let 

R  (z)  be  a  polynomial  of  the  third  or  of  the  fourth  degree  which  is 
prime  to  its  derivative.  We  shall  write  this  polynomial  in  the  form 

R(z)  =  A(z  -  a^(z  -  aj(z  -  as)(z  -  aj, 

where  al9  &2,  a3,  a4  denote  four  different  roots  if  R(z)  is  of  the 
fourth  degree.    On  the  other  hand,  if  R  (z)  is  of  the  third  degree,  we 

shall  denote  its  three  roots  by  alt  «2,  ag,  and  we  shall  also  set  «4  =  oo , 
agreeing  to  replace  z  —  oo  by  unity  in  the  expression  R  (z). 

The  elliptic  integral  of  the  first  kind  is  of  the  form 

(62)  M 

where  the  lower  limit  ZQ  is  supposed,  for  definiteness,  to  be  different 
from  any  of  the  roots  of  R  (z)  and  to  be  finite,  and  where  the  radical 
has  an  assigned  initial  value.  If  R(z)  is  of  the  fourth  degree,  the 

radical  V ' R(z)  has  four  critical  points  a ,  a2,  ag,  «4,  and  each  of  the 
determinations  of  ̂ /R(z)  has  the  point  z  =  oo  for  a  pole  of  the  second 
order.  If  R(z)  is  of  the  third  degree,  the  radical  V.K  (z)  has  only 
three  critical  points  in  the  finite  plane  av  «2  as ;  but  if  the  variable 
z  describes  a  circle  containing  the  three  points  a ,  &2,  a8,  the  two 
values  of  the  radical  are  permuted.  The  point  z  =  oo  is  therefore  a 
branch  point  for  the  function  VJR  (z). 

Let  us  recall  the  properties  of  the  elliptic  integral  u  proved  in 
§  55.  If  u(z)  denotes  one  of  the  values  of  that  integral  when  we 
go  from  the  point  z0  to  the  point  z  by  a  determined  path,  the  same 
integral  can  take  on  at  the  same  point  z  an  infinite  number  of  deter- 

minations which  are  included  in  the  expressions 

(63)    tt  =  «(*)+2m<»  +  2mV,     w  =  /-  u(z)+  2m<0  +  2m'c 
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if  the  path  is  varied.  In  these  formulae  m  and  w'are  two  entirely 
arbitrary  integers,  2  u>  and  2o>'  two  periods  whose  ratio  is  not  real, 
and  /  a  constant  which  we  may  take  equal,  for  example,  to  the 

integral  over  the  loop  described  about  the  point  crr 

Let  p(u  CD,  CD')  be  the  elliptic  function  constructed  with  the  periods 
2  to,  2  co'  of  the  elliptic  integral  (62).  Let  us  substitute  in  that  func- 

tion for  the  variable  u  the  integral  (62)  itself  diminished  by  //2, 

and  let  <l>  (z)  be  the  function  thus  obtained : 

/ 

u  —  - 

(64) 

This  function  4>  (2)  -is  a  single-valued  function  of  z.  In  fact,  if  we 
replace  u  by  any  one  of  the  determinations  (63),  we  find  always, 

whatever  m  and  m1  may  be, 

or 

which  shows  that  3>(z)  is  single-  valued. 
Let  us  see  what  points  can  be  singular  points  for  this  function 

4>(2).  First  let  zl  be  any  finite  value  of  z  different  from  a  branch 
point.  Let  us  suppose  that  we  go  from  the  point  ZQ  to  the  point  zl 
by  a  definite  path.  We  arrive  at  zl  with  a  certain  value  for  the 
radical  and  a  value  uv  for  the  integral.  In  the  neighborhood  of  the 

point  «j,  1/V>R(*)  is  an  analytic  function  of  2,  and  we  have  a 
development  of  the  form 

J_ 

V*(i)  ~  "°      "' 
 * Whence  we  derive 

(65)  u  =  u1  +  a9(z- 

ft. 

If  u^  — 1/2  is  not  equal  to  a  period,  the  function  p  (u  —  7/2)  is 
analytic  in  the  neighborhood  of  the  point  uv  and  consequently  $  (z) 

is  analytic  in  the  neighborhood  of  the  point  zr  If  u^  —  1/2  is  a 
period,  the  point  ul  is  a  pole  of  the  second  order  for  p(u  —  1/2),  and 
therefore  z^  is  a  pole  of  the  second  order  for  $(«),  for  in  the  neigh- 

borhood of  the  point  u^ 

where  P  is  an  analytic  function. 
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Suppose  next  that  z  approaches  a  critical  point  a{.    In  the  neigh- 
borhood of  the  point  a{  we  have 

]-    =  (z  -  ai 

where  Pt  is  analytic  for  «  =  ait  or 

K  +  ai(*  ~ ,—— 
V.R  (s) 

whence,  integrating  term  by  term,  we  find 

0; 

(66) 
u  =  Ui  + 

-  aj -  a,-)  H 

If  u{  —  1/2  is  not  a  period,  p  (M  —  7/2)  is  an  analytic  function  of  u 
in  the  neighborhood  of  the  point  u^  Substituting  in  the  develop- 

ment of  this  function  in  powers  of  u  —  n{  the  value  of  the  difference 

u  —  Ui  obtained  from  the  formula  (66),  the  fractional  powers  of 
(z  —  at)  must  disappear,  since  we  know  that  the  left-hand  side  is  a 
single-valued  function  of  z ;  hence  the  function  <£  (z)  is  analytic  in 
the  neighborhood  of  the  point  of.  Let  us  notice  in  passing  that  this 

shows  that  u{  —  1/2  must  be  a  half-period.  Similarly,  if  ut  —  7/2  is 
equal  to  a  period,  the  point  at  is  a  pole  of  the  first  order  for  <£  («). 

Finally,  let  us  study  the  function  <S>(z)  for  infinite  values  of  z. 
We  have  to  distinguish  two  cases  according  as  7?  (z)  is  of  the  fourth 
degree  or  of  the  third  degree.  If  the  polynomial  R  (z)  is  of  the  fourth 
degree,  exterior  to  a  circle  C  described  about  the  origin  as  center  and 

containing  the  four  roots,  each  of  the  determinations  of  1/Vs  (z)  is 
an  analytic  function  of  l/«.  For  example,  we  have  for  one  of  them 

and  it  would  suffice  to  change  all  the  signs  to  obtain  the  develop- 
ment of  the  second  determination.  If  the  absolute  value  of  z  becomes 

infinite,  the  radical  1/V72  (z)  having  the  value  which  we  have  just 
written,  the  integral  approaches  a  finite  value  u^,  and  we  have  in 
the  neighborhood  of  the  point  at  infinity 

(67) 

ft., 

If  un  —  7/2  is  not  a  period,  the  function  p  (u  —  7/2)  is  regular  for 
the  point  u^  and  consequently  the  point  z  =  oo  is  an  ordinary  point 

for  $(«).  If  u^  —  7/2  is  a  period,  the  point  u^  is  a  pole  of  the  second 
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order  for  p(u  —  1/2),  and  since  we  can  write,  in  the  neighborhood  of 
the  point  z  =  oo  . 

the  point  z  =  oo  is  also  a  pole  of  the  second  order  for  the  function  $(2). 
If  R  (z)  is  of  the  third  degree,  we  have  a  development  of  the  form 

1  1  /          a,       a* 

which  holds  exterior  to  a  circle  having  the  origin  for  center  and 

containing  the  three  critical  points  alt  a^  a&.    It  follows  that 

(68)  tt  =  ̂  

Reasoning  as  above,  we  see  that  the  point  at  infinity  is  an  ordi- 
nary point  or  a  pole  of  the  first  order  for  <P(z).  The  function  <£(z) 

has  certainly  only  poles  for  singular  points  ;  it  is  therefore  a  rational 

function  of  z,  and  the  elliptic  integral  of  the  first  kind  (62)  satisfies 
a  relation  of  the  form 

(69) 

where  &(z)  is  a  rational  function.  We  do  not  know  as  yet  the  degree 
of  this  function,  but  we  shall  show  that  it  is  equal  to  unity.  For 

that  purpose  we  shall  study  the  inverse  function.  In  other  words, 
we  shall  now  consider  u  as  the  independent  variable,  and  we  shall 

examine  the  properties  of  the  upper  limit  z  of  the  integral  (62),  con- 
sidered as  a  function  of  that  integral  u.  We  shall  divide  the  study, 

which  requires  considerable  care,  into  several  parts : 

1)  To  every  finite  value  of  u  correspond  m  values  of  z  if  m  is  the 

degree  of  the  rational  function  ®(z)- 

For  let  u^  be  a  finite  value  of  u.  The  equation  <£  (z)  =  p  (ut  —  7/2) 
determines  m  values  for  z,  which  are  in  general  distinct  and  finite, 

though  it  is  possible  for  some  of  the  roots  to  coincide  or  become 

infinite  for  particular  values  of  u^  Let  zl  be  one  of  these  values 
of  z.  The  values  of  the  elliptic  integral  u  which  correspond  to  this 
value  of  z  satisfy  the  equation 

A  /          r 

we  have,  then,  one  of  the  two  relations 

u  =  u  +  2  m      •-  2  mo>'          u  =  I  — 
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In  either  case  we  can  make  the  variable  z  describe  a  path  from  ZQ  to 
2j  such  that  the  value  of  the  integral  taken  over  this  path  shall  be 

precisely  u^.  If  the  function  $»(£)  is  of  degree  m,  there  are  then  m 
values  of  z  for  which  the  integral  (62)  takes  a  given  value  u. 

2)  Let  Mt  be  a  finite  value  of  u  to  which  corresponds  a  finite  value 

£j  of  z  ;  that  determination  ofz  which  approaches  z^  when  u  approaches 

u^  is  an  analytic  function  of  u  in  the  neighborhood  of  the  point  ur 

For  if  zl  is  not  a  critical  point,  the  values  of  u  and  z  which  ap- 
proach respectively  u^  and  z^  are  connected  by  the  relation  (65),  where 

the  coefficient  aQ  is  not  zero.  By  the  general  theorem  on  implicit 
functions  (I,  §  193,  2d  ed.  ;  §  187,  1st  ed.)  we  deduce  from  it  a 

development  for  z  —  z^  in  positive  integral  powers  of  u  —  ur 
If,  for  the  particular  value  u{,  z  were  equal  to  the  critical  value  a{, 

we  could  in  the  same  way  consider  the  right-hand  side  of  (66)  as  a 
development  in  powers  of  Vz  —  «f.  Since  aQ  is  not  zero,  we  can 

solve  (66)  for  ~vz  —  at,  and  therefore  for  z  —  ai}  expressing  each  of 
them  as  a  power  series  in  u  —  ut. 

3)  Let  u^  be  one  of  the  values  which  the  integral  u  takes  on  when 

\z  becomes  infinite  ;  the  point  u^  is  a  pole  for  that  determination  of  z 
whose  absolute  value  becomes  infinite. 

In  fact,  the  value  of  the  integral  u  which  approaches  u^  is  repre- 
sented in  the  neighborhood  of  the  point  at  infinity  by  one  of  the 

developments  (67)  and  (68).  In  the  first  case  we  obtain  for  ~L/z  a 
development  in  a  series  of  positive  powers  of  u  —  u^. 

\  =  AO  ~  «.)  +  &(*  -  "oc)2  +  •  •  •,          &  *  0  ; 

KI 
in  the  second  case  we  have  a  similar  development  for  1/V«,  and 
therefore •  -T- 

x 

The  point  u^  is  therefore  a  pole  of  the  first  or  second  order  for  z9 
according  as  the  polynomial  R(z)  is  of  the  fourth  or  of  the  third 
degree. 

4)  We  are  going  to  show  finally  that  to  a  value  of  u  there  can  cor- 
respond only  one  value  of  z.  For  let  us  suppose  that  as  the  variable  z 

describes  two  paths  going  from  ZQ  to  two  different  points  zv  z2,  the 
two  values  of  the  integral  taken  over  these  two  paths  are  equal.  It 

would  then  be  possible  to  find  a  path  L  joining  these  two  points  zl9  z2 
such  that  the  integral 
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would  be  zero.  If  we  represent  the  integral  u  =  X  -f-  Yi  by  the  point 
with  the  coordinates  (.Y,  Y)  in  the  system  of  rectangular  axes  OXy 
OY,  we  see  that  the  point  u  would  describe  a  closed  curve  F  when 
the  point  z  describes  the  open  curve  L.  We  shall  show  that  this  is 
not  consistent  with  the  properties  which  we  have  just  demonstrated. 

To  each  value  of  u  there  correspond,  by  means  of  the  relation 

p(u  —  1/2)=  <P(z),  a,  finite  number  of  values  of  2,  each  of  which 
varies  in  a  continuous  manner  with  u,  provided  the  path  described 

by  u  does  not  pass  through  any  of  the  points  corresponding  to  the 

value  z  =  oo.*  According  to  our  supposition,  when  the  variable  u 
describes  in  its  plane  the  closed  curve  r  starting  from  the  point 

A  (u^)  and  returning  to  that  point,  z  describes  an  open  arc  of  a  con- 
tinuous curve  passing  from  the  point  z^  to  the  point  z^.  Let  us  take 

two  points  M  and  P  (Fig.  28)  on  the  curve  F. 
Let  the  initial  value  of  z  at  A  be  «  ,  and  let 

2',  2"  be  the  values  obtained  when  we  reach 
the  points  M  and  P  respectively,  after  u  has 
described  the  paths  AM  and  A  MNP.  Again, 

let  «J'  be  the  value  with  which  we  arrive  at 
the  point  P  after  u  has  described  the  arc 

AQP.  It  results  from  the  hypothesis  that 

«"  and  «{'  are  different.  Let  us  join  the  two 
points  M  and  P  by  a  transversal  MP  interior  to  the  curve  F,  and  let 
us  suppose  that  the  variable  u  describes  the  arc  AmM  and  then  the 
transversal  MP\  let  »%  be  the  value  with  which  we  arrive  at  the 

point  P.  This  value  2"  will  be  different  from  z"  or  else  from  #{'.  If 
it  is  different  from  z",  the  two  paths  AmMP  and  AQP  do  not  lead 

to  the  same  value  of  z  at  the  point  P.  If  «"  and  z"  are  different,  the 
two  paths  AmMP  and  AmMNP  do  not  lead  to  the  same  value  at  P ; 

therefore,  if  we  start  from  the  point  M  with  the  value  z1  for  «,  we 
obtain  different  values  for  z  according  as  we  proceed  from  M  to  P 

along  the  path  MP  or  along  the  path  MNP.  In  either  case  we  see 

that  we  can  replace  the  closed  boundary  F  by  a  smaller  closed  bound- 
ary F1?  partly  interior  to  F,  such  that,  when  u  describes  this  closed 

boundary,  z  describes  an  open  arc.  Repeating  this  same  operation  on 

the  boundary  Tv  and  continuing  thus  indefinitely,  we  should  obtain 

an  unlimited  sequence  of  closed  boundaries  F,  Tl9  F2,  ...  having  the 
same  property  as  the  closed  boundary  F.  Since  we  evidently  can 

*  We  assume  the  properties  of  implicit  functions  which  will  be  established  later 
(Chapter  V). 
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make  the  dimensions  of  these  successive  boundaries  approach  zero, 
we  may  conclude  that  the  boundary  Tn  approaches  a  limit  point  A.. 
From  the  way  in  which  this  point  has  been  defined,  there  will  always 
exist  in  the  interior  of  a  circle  of  radius  c  described  about  X  as  a 

center  a  closed  path  not  leading  the  variable  z  back  to  its  original 
value,  however  small  c  may  be.  Now  that  is  impossible,  for  the  point 

A.  is  an  ordinary  point  or  a  pole  for  each  of  the  different  determina- 
tions of  z ;  in  both  cases  z  is  a  single-valued  function  of  u  in  the 

neighborhood  of  X.  We  are  thus  led  to  a  contradiction  in  supposing 

that  the  integral  fdz/'VlR(z),  taken  over  an  open  path  Z,  can  be  zero, 
or,  what  amounts  to  the  same  thing,  by  supposing  that  to  a  value  of 
u  correspond  two  values  of  z. 

We  have  noticed  above  that,  if  for  two  different  values  of  z  we  have 

$  (z^  =  $  (£2),  we  can  find  a  path  L  from  z1  to  z2  such  that  the  integral 

'*(*) 

will  be  zero.  Hence  the  rational  function  &  (z)  cannot  take  on  the  same 

value  for  two  different  values  of  z  ;  that  is,  the  function  <I>  (2)  must  be 
of  the  first  degree  :  ®(z)  =  (az  -+-  b)/(cz  +  d).  It  follows,  from  the 
relation  (69),  that 

(70) 

*  = 

and  we  may  state  the  following  important  proposition :  The  upper 
limit  z  of  an  elliptic  integral  of  the  first  kind,  considered  as  a  function 

of  that  integral,  is  an  elliptic  function  of  the  second  order. 
Elliptic  integrals  had  been  studied  in  a  thorough  manner  by 

Legendre,  but  it  was  by  reversing  the  problem  that  Abel  and 
Jacobi  were  led  to  the  discovery  of  elliptic  functions. 

The  actual  determination  of  the  elliptic  function  z  =  f(u)  con- 
stitutes the  problem  of  inversion.  By  the  relation  (62)  we  have 

^£ 
du 

and  therefore  ̂ /R(z)  =  f'(u).  It  is  clear  that  the  radical  V/t  (2)  is 
itself  an  elliptic  function  of  u.  We  can  restate  all  the  preceding 
results  in  geometric  language  as  follows : 

Let  R  (z)  be  a  polynomial  of  the  third  or  fourth  degree,  prime  to  its 
derivative  ;  the  coordinates  of  any  point  of  the  curve  C, 
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(71)  tf  =  R(x), 

can  be  expressed  in  terms  of  elliptic  functions  of  the  integral  of  the 

dx 

in  such  a  way  that  to  a  point  (x,  ?/)  of  that  curve  corresponds  only 
one  value  of  u,  any  period  being  disregarded. 

To  prove  the  last  part  of  the  proposition,  we  need  only  remark 
that  all  the  values  of  u  which  correspond  to  a  given  value  of  x  are 
included  in  the  two  expressions 

UQ  -f-  2  m^w  +  2  m.2<o',         /  —  UQ  -+•  2  ml  w  +  2  w2o>'. 

All  the  values  of  u  included  in  the  first  expression  come  from  an 

even  number  of  loops  described  about  critical  points,  followed  by 

the  direct  path  from  XQ  to  x,  with  the  same  initial  value  of  the 
radical  V/t  (x).  The  values  of  u  included  in  the  second  expression 
come  from  an  odd  number  of  loops  described  about  the  critical  points, 

followed  by  the  direct  path  from  XQ  to  x,  where  the  corresponding 
initial  value  of  the  radical  V.R  (x)  is  the  negative  of  the  former.  If 
we  are  given  both  x  and  y  at  the  same  time,  the  corresponding 
values  are  then  included  in  a  single  one  of  the  two  formulae. 

From  the  investigation  above,  it  follows  that  the  elliptic  function 

x  =  f(ii)  has  a  pole  of  the  second  order  in  a  parallelogram  if  R  (x) 
is  of  the  third  degree,  and  two  simple  poles  if  R  (x)  is  of  the  fourth 

degree ;  hence  y  =  f(u)  is  of  the  third  or  of  the  fourth  order,  accord- 

ing to  the  degree  of  the  polynomial  'R  (x). 

Note.  Suppose  that,  by  any  means  whatever,  the  coordinates  (x,  ?/) 

of  a  point  of  the  curve  y2  =  R  (x)  have  been  expressed  as  elliptic 
functions  of  a  parameter  v,  say  x  =  <£(V),  y  —  ̂ (v).  The  integral  of 
the  first  kind  u  becomes,  then, 

/7
  

/*»      I   
 I  /       \   

    7 

ao?  /  (ft(v)av 
11  ]      <f>,  (v) 
«/  i/              rl\     / 

The  elliptic  function  <£'(?;) /^(v)  cannot  have  a  pole,  since  u  must 
always  have  a  finite  value  for  every  finite  value  of  v ;  it  reduces, 

then,  to  a  constant  k,  and  we  have  u  =  kv  + 1.  The  constant  I 
evidently  depends  on  the  value  chosen  for  the  lower  limit  of  the 
integral  u.  The  coefficient  k  can  be  determined  by  giving  to  v  a 
particular  value. 
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79.  A  new  definition  of  p(u)  by  means  of  the  invariants.    It  is  now 
quite  easy  to  answer  the  question  proposed  in  §  77.  Given  two  num- 

bers <72,  gs  such  that  g\  —  27  g\  is  not  zero,  there  always  exists  an 
elliptic  function  p  (u)  for  which  g^  and  gz  are  the  invariants. 

For  the  polynomial 
#(«)=»  4*-^*-^ 

is  prime  to  its  derivative,  and  the  elliptic  integral  fdz/^R  (z)  has 

two  periods,  2  «,  2  <*>',  whose  ratio  is  imaginary.  Let  p(u  w,  a>')  be  the 
corresponding  elliptic  function.  We  shall  substitute  for  the  argu- 

ment u  in  this  function  the  integral 

(72) 

-H. 

where  H  is  a  constant  chosen  in  such  a  way  that  one  of  the  values 
of  u  shall  be  equal  to  zero  for  2  =  oo .  We  shall  take  //,  for  example, 

equal  to  the  value  of  the  integral  f^dz/^R  (z)  taken  over  a  ray  L 
starting  at  ZQ.  We  shall  show  first  that 
the  function  thus  obtained  is  a  single- 
valued  analytic  function  of  z.  Let  z  be 

any  point  of  the  plane,  and  let  us  denote 

by  v  and  v'  the  values  of  the  integrals 
N 

dz 

Omz) H. t/(2nn«) 

dz 

starting  with  the  same  initial  value  for 
^/R(z)  and  taken  over  the  two  paths 

zQmz,  zQnz,  which  together  form  a  closed 
curve  containing  the  three  critical  points 

Consider  the  closed  curve  zQmznzQZMNZzQ 

formed  by  the  curve  zQmznzQ,  the  segment  z^Z,  the  circle  C  of  very 
large  radius,  and  the  segment  ZzQ.  The  function  l/V/2  (z)  is  analytic 
in  the  interior  of  this  boundary,  and  we  have  the  relation 

FIG.  29 

e2,  e&  of  the  radical. 

which  becomes,  as  the  radius  of  the  circle  C  becomes  infinite, 

v  +  v'  -  2  H  =  0. 
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The  values  of  u  resulting  from  the  two  paths  zQmz,  zQnz  therefore 

satisfy  the  relation  u  -+-  u'  —  0.  From  this  we  conclude  that  the 
function /  r  d*     w    \ 

—  PI  — .  —  H   to,  o>    I 

U.  V*<«)  / 

is  a  single-valued  function  of  z.  We  have  seen  that  it  is  a  linear 

function  of  the  form  (az  +  b)/(cz  -f  d).  To  determine  a,  b,  c,  d  it 
will  suffice  to  study  the  development  of  this  function  in  the  neigh- 

borhood of  the  point  at  infinity.  We  have  in  this  neighborhood 

hence  the  value  of  -w,  which  is  zero  for  z  infinite,  is  represented  by 
the  series 

u  =   - 
whence 

40  z2 
It  follows  that  the  difference  p  (u)  —  z  is  zero  for  z  =  oo .  But  the 

difference  (az  -f  b)/(cz  •+-  d)  —  z  can  be  zero  for  z  =  oo  only  if  we 

have  c  =  0,  b  =  0,  a  =  d-,  and  the  function  p  (u  o>,  a>')  reduces  to  z 
when  we  substitute  for  u  the  integral  (72).  Taking  the  point  at 
infinity  itself  for  the  lower  limit,  this  integral  can  also  be  written  in 
the  form 

dz 

and  this  relation  makes  p  (u)  =  z,  where  the  function  p  (u)  is  con- 

structed with  the  periods  2  o>,  2  o>'  of  the  integral  fdz/^/R(z). 
Comparing  the  values  of  du/dz  deduced  from  these  relations,  we 

have  p'(u)  =  ~\/R  (z),  or,  after  squaring  both  sides, 

(73)  p«(M)  =  JR(«)=4p»(M)-^p(M)-flr8. 

The  numbers  g^  g^  therefore,  are  the  invariants  of  the  elliptic  func- 

tion p  (u),  constructed  with  the  periods  2  w,  2  o>'.  This  result  answers 
the  question  proposed  above  in  §  77.  If  g\  —  27  g\  is  not  zero,  the 
equations  (61)  are  satisfied  by  an  infinite  number  of  systems  of  values 

for  o>,  <uf.  If  ev  e^  e&  are  the  three  roots  of  the  equation 
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one  system  of  solutions  is  given,  for  example,  by  the  formulae 

f*  °°        flv  f*  °°        rlv 

(74) 

from  which  all  other  systems  will  be  deducible,  as  has  been  explained. 

In  the  applications  of  analysis  in  which  elliptic  functions  occur,  the  function 
p  (u)  is  usually  defined  by  its  invariants.  In  order  to  carry  through  the  numerical 
computations,  it  is  necessary  to  calculate  a  pair  of  periods,  knowing  g2  and  <?3, 
and  also  to  be  able  to  find  a  root  of  the  equation  p(u)  =  A,  where  A  is  a  given 
constant.  For  the  details  of  the  methods  to  be  followed,  and  for  information 
regarding  the  use  of  tables,  we  can  only  refer  the  reader  to  special  treatises.* 

80.  Application  to  cubics  in  a  plane.  When  g\  —  27  g\  is  not  zero, 
the  equation 

represents  a  cubic  without  double  points.  This  equation  is  satisfied 

by  putting  x  =  p(u),  y  =  p'(ii),  where  the  invariants  of  the  function 
p  (u)  are  precisely  g^  and  gB.  To  each  point  of  the  cubic  corresponds  a 
single  value  of  u  in  a  suitable  parallelogram  of  periods.  For  the  equa- 

tion p(«)  =  x  has  two  roots  u^  and  u2  in  a  parallelogram  of  periods, 

the  sum  ul  -f-  w2  is  a  period,  and  the  two  values  p'^)  and  pf(™2)  are 
the  negatives  of  each  other.  They  are  therefore  equal  respectively 
to  the  two  values  of  y  which  correspond  to  the  same  value  of  x. 

In  general,  the  coordinates  of  a  point  of  a  plane  cubic  without 
double  points  can  be  expressed  by  elliptic  functions  of  a  parameter. 
We  know,  in  fact,  that  the  equation  of  a  cubic  can  be  reduced  to 
the  form  (75)  by  means  of  a  projective  transformation,  but  this 
transformation  cannot  be  effected  unless  we  know  a  point  of  inflec- 

tion of  the  cubic,  and  the  determination  of  the  points  of  inflections 

depend  upon  the  solution  of  a  ninth-degree  equation  of  a  special 
form.  We  shall  now  show  that  the  parametric  representation  of  a 
cubic  by  means  of  elliptic  functions  of  a  parameter  can  be  obtained 
without  having  to  solve  any  equation,  provided  that  we  know  the 
coordinates  of  a  point  of  the  cubic. 

Suppose  first  that  the  equation  of  the  cubic  is  of  the  form 

(76)  if  =  bQxs  +  3  \&  +  3  b^x  +  b9, 

*  The  formulae  (39)  which  give  the  development  of  <r  (u)  in  a  power  series,  and 
those  which  result  from  it  by  differentiation,  enable  us,  at  least  theoretically,  to 

calculate  <r  (u),  cr'(w),  <r"(w),  and  consequently  $(u)  and  p  (u),  for  all  systems  of  values 
of  u,  g2,  gs. 
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in  which  case  the  point  at  infinity  is  a  point  of  inflection.    This 

equation  can  be  reduced  to  the  preceding  form  by  putting  y  = 

x  =  —  ̂ /^  +  4  x'/bQ,  which  gives 

where  the  invariants  g2,  </8  are  given  by  the  formulae 

12  (ft}  -Ma) 

ff* 

2  16  *  16 

Hence  we  obtain  for  the  coordinates  of  a  point  of  the  cubic  (76) 
the  following  formulae  : 

b,       4      .  .  4    ..  . 
*=-r  +  rPO)>       y  =  rP(*0' 

^0  Wo  W0 

Let  us  now  consider  a  cubic  C8,  and  let  (or,  /?)  be  the  coordinates 
of  a  point  of  that  cubic.  The  tangent  to  the  cubic  at  this  point  (a,  ft) 

meets  the  cubic  at  a  second  point  (a1,  ft')  whose  coordinates  can  be 
obtained  rationally.  If  the  point  (a1,  ft')  is  taken  as  origin  of  coor- 

dinates, the  equation  of  the  cubic  is  of  the  form 

where  <£,-(#,  y)  denotes  a  homogeneous  polynomial  of  the  i  th  degree 
(I  =  1,  2,  3).  Let  us  cut  the  cubic  by  the  secant  y  =  tx  ;  then  x  is 
determined  by  an  equation  of  the  second  degree, 

i(l»  0= 
whence  we  obtain 

where  R(t)  denotes  the  polynomial  <£f(l,  t)  —  4  <^>g(l,  ̂ ^(1,  ̂ ),  which 
is  in  general  of  the  fourth  degree.  The  roots  of  this  polynomial  are 
precisely  the  slopes  of  the  tangents  to  the  cubic  which  pass  through 

the  origin.*  We  know  a  priori  one  root  of  this  polynomial,  the  slope  tQ 
of  the  straight  line  which  joins  the  origin  to  the  point  (a,  ft).  Putting 

t  =  £0  4-  l/t',  we  find 

where  the  polynomial  ̂ 1(z^')  is  now  only  of  the  third  degree.  The 
coordinates  (x,  y)  of  a  point  of  the  cubic  Cg  are  therefore  expressible 

rationally  in  terms  of  a  parameter  t'  and  of  the  square  root  of  a 

*Two  roots  cannot  be  equal  (see  Vol.  I,  §  103,  2d  ed. ;  §  108,  1st  ed.).  — TRANS. 
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polynomial  Rfo')  of  the  third  degree.  We  have  just  seen  how  to 
express  t'  and  VjE7#)  as  elliptic  functions  of  a  parameter  u  ;  hence 
we  can  express  x  and  y  also  as  elliptic  functions  of  u. 

It  follows  from  the  nature  of  the  methods  used  above  that  to  a 

point  (x,  y)  of  the  cubic  correspond  a  single  value  of  t  and  a  definite 

value  of  V7i!(£),  and  hence  completely  determined  values  of  t'  and 
V-R^').  Now  to  each  system  of  values  of  t'  and  ~\/Rt(t')  corre- 

sponds only  one  value  of  u  in  a  suitable  parallelogram  of  periods,  as 

we  have  already  pointed  out.  The  expressions  x  =  f(u),  y  =  fl(u), 
obtained  for  the  coordinates  of  a  point  of  (78,  are  therefore  such 
that  all  the  determinations  of  u  which  give  the  same  point  of  the 
cubic  can  be  obtained  from  any  one  of  them  by  adding  to  it  various 

periods. 

This  parametric  representation  of  plane  cubics  by  means  of  elliptic  functions 

is  very  important.*  As  an  example  we  shall  show  how  it  enables  us  to  deter- 
mine the  points  of  inflection.  Let  the  expressions  for  the  coordinates  be 

x  =/(u),  y  =fl(u);  the  arguments  of  the  points  of  intersections  of  the  cubic 
with  the  straight  line  Ax  +  By  +  C  =  0  are  the  roots  of  the  equation 

Af(u)  +  flfi(M)  +  C  =  0. 

Since  to  a  point  (x,  y)  corresponds  only  one  value  of  u  in  a  parallelogram  of 
periods,  it  follows  that  the  elliptic  function  Af(u)  +  B/i(u)  +  C  must  be,  in 
general,  of  the  third  order.  The  poles  of  that  function  are  evidently  independent 

of  -4,  B,  C  ;  hence  if  uv  M2,  us  are  the  three  arguments  corresponding  respec- 
tively to  the  three  points  of  intersections  of  the  cubic  and  the  straight  line,  we 

must  have,  by  §  68, 

ui  +  uz  +  Ms  =  K  +  2  mjW  +  2  ra2  w', 

where  K  is  the  sum  of  the  poles  in  a  parallelogram.  Replacing  u  by  IT/3  +  u 

in/(u)  and/1(w),  the  relation  can  be  written  in  the  simpler  form 

ui  +  U2  +  W3  —  period. 

Conversely,  this  condition  is  sufficient  to  insure  that  the  three  points  Ml  (u=ut), 

M2  (u  =  w2),  Ms  (u  —  M3)  on  the  cubic  shall  lie  on  a  straight  line.  For  let  M's  be 
the  third  point  of  intersection  of  the  straight  line  M1  M2  with  the  cubic,  and  u'8 
the  corresponding  argument.  Since  the  sum  MX  +  M2  +  u'%  is  equal  to  a  period, 
M3  and  itg  differ  only  by  a  period,  and  consequently  M'z  coincides  with  Mz. 

If  u  is  the  value  of  the  parameter  at  a  point  of  inflection,  the  tangent  at  that 
point  meets  the  curve  in  three  coincident  points,  and  3u  must  be  equal  to  a 

period.  We  must  have,  then,  u  =  (2m1w  +  2m2o/)/3.  All  the  points  of  inflec- 
tion can  be  obtained  by  giving  to  the  integers  m1  and  m2  the  values  0,  1,  2. 

Hence  there  are  nine  points  of  inflections.  The  straight  line  which  passes  through 

*  CLEBSCH,  Ueber  diejenigen  Curven,  deren  Coordinates,  sick  als  elliptische  Func- 

tionen  eincs  Parameters  darstellen  lassen  (Crelle's  Journal,  Vol.  LXIV). 
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the  two  points  of  inflection  (2  m^  u  +  2  m2  w')/3  and  (2  m[  ta  + 
the  cubic  in  a  third  point  whose  argument, 

2  (m1  +  mj)  w  +  2  (m2  +  m2)  w' 

187 

meets 

is  again  one  third  of  a  period,  that  is,  in  a  new  point  of  inflection.  The  number 
of  straight  lines  which  meet  the  cubic  in  three  points  of  inflection  is  therefore 

equal  to  (9  •  8)/(3  •  2),  that  is,  to  twelve. 

Note.  The  points  of  intersection  of  the  standard  cubic  (75)  with  the  straight 

line  y  =  mx  +  n  are  given  by  the  equation  p'(w)  —  mp  (u)  —  n  =  0,  the  left-hand 
side  of  which  has  a  pole  of  the  third  order  at  the  point  u  =  0.  The  sum  of  the 

arguments  of  the  points  of  intersection  is  then  equal  to  a  period.  If  ut  and  u2 

are  the  arguments  of  two  of  these  points,  we  can  take  —  ul  —  u2  for  the  argu- 
ment of  the  third  point  of  intersection,  and  the  abscissas  of  these  three  points 

are  respectively  p  (MJ),  p  (w2),  p  (wx  +  u2).  We  can  deduce  from  this  a  new  proof 
of  the  addition  formula  for  p(u).  In  fact,  the  abscissas  of  the  points  of  inter- 

section are  roots  of  the  equation 

hence 4x8  -  g2x  —  gs  =  (mx  +  n)2 ; 

PK)  +  P(w1  +  w2)  =  -4- 

On  the  other  hand,  from  the  straight  line  passing  through  the  two  points  ̂ (MJ), 

2  (^2)5  we  nave  tne  two  relations  p'^)  =  mp  (MJ)  +  n,  p'(u^)  =  mp  (w2)  +  n,  whence 

and  this  leads  to  the  relation  already  found  in  §  74, 

81.  General  formulae  for  parameter  representation.  Let  R(x)  be  a 
polynomial  of  the  fourth  degree  prime  to  its  derivative.  Consider 

the  curve  C4  represented  by  the  equation 

(77) 
6 

We  shall  show  how  the  coordinates  x  and  y  of  a  point  of  this  curve 

can  be  expressed  as  elliptic  functions  of  a  parameter.  If  we  know  a 

root  a  of  the  equation  R  (x)  =  0,  we  have  already  seen  in  the  treat- 

ment of  cubics  how  to  proceed.  Putting  x  =  a  -f  1/V,  the  relation 

(77)  becomes 

X'
 

where  Rfa')  is  a  polynomial  of  the  third  degree.   Hence  the  curve  C4, 
by  means  of  the  relations  x  =  a  +  l/^f,  y  =  2/'A'2>  corresponds  point  for 
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point  to  the  curve  C'3  of  the  third  degree  whose  equation  is  y^  —  R^x'). 
Now  x'  and  y'  can  be  expressed  by  means  of  a  parameter  u,  in  the  form 

x'  =  ap(u)-\-  ft,  ?/  =  ap'(u~),  by  a  suitable  choice  of  a,  ft  and  of  the 
invariants  of  p(w).  We  deduce  from  these  relations  the  following 
expressions  for  x  and  y  : 

ATQN  
' 

(78)  ce  =  a  H- 

whence  we  find  du  =  —  dx/y,  so  that  the  parameter  i£  is  identi- 
cal, except  for  sign,  with  the  integral  of  the  first  kind,  fdx/^/R(x), 

and  the  formulae  (78)  constitute  a  generalization  of  the  results  for 
the  simple  case  of  parametric  representation  in  §  80. 

Let  us  consider  now  the  general  case  in  which  we  do  not  know  any 
root  of  the  equation  R  (x)  =  0.  We  are  going  to  show  that  x  and  y 
can  be  expressed  rationally  in  terms  of  an  elliptic  function  p(u)  with 

known  invariants,  and  of  its  derivative  p'(u\  without  introducing  any 
other  irrationality  than  a  square  root.  Let  us  replace  for  the  moment 
x  and  y  by  t  and  v  respectively,  so  that  the  relation  (77)  becomes 

(77')        v2  =  E(t)=  a/  +  4  a/  +  6  a/  +  4  a^t  +  a4. 
The  polynomial  R  (t)  can  be  expressed  in  the  form 

in  an  infinite  number  of  ways,  where  <J>19  <£2,  <£3  are  polynomials  of 
the  degrees  indicated  by  their  subscripts.  For  let  (a,  ft)  be  the  coor- 

dinates of  any  point  on  the  curve  C4.  Let  us  take  a  polynomial  <f>2  (t) 
such  that  <£2  (a)  =  ft,  which  can  be  done  in  an  infinite  number  of  ways  ; 

then  the  equation  jj(0_Wi(0]»  =  0 

will  have  the  root  t  =  a,  and  we  can  put  ̂ (£)  =  t  —  a.  The  poly- 
nomial R  (f)  having  been  put  in  the  preceding  form,  let  us  consider 

the  auxiliary  cubic  CB  represented  by  the  equation 

(79)  s' 

If  we  cut  this  cubic  by  the  secant  y  =  tx,  the  abscissas  of  the  two 
variable  points  of  intersection  are  roots  of  the  equation 

and  can  be  expressed  in  the  form 
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where  v  is  determined  by  the  equation  (77').  Conversely,  we  see  that 
t  and  v  can  be  expressed  rationally  in  terms  of  the  coordinates  x,  y 

of  a  point  of  <7g  by  the  equations 

(80) 

Now  x  and  y  can  be  expressed  as  elliptic  functions  of  a  parameter  u, 

since  we  know  a  point  on  the  cubic  C3  that  is  the  origin.  Then  t 
and  v  can  also  be  expressed  as  elliptic  functions  of  u.  The  method  is 

evidently  susceptible  of  a  great  many  variations,  and  we  have  intro- 
duced only  the  irrational  /?  =  V/t  (a),  where  a  is  arbitrary. 

We  are  going  to  carry  through  the  actual  calculation,  supposing, 

as  is  always  admissible,  that  we  have  first  made  the  coefficient  al  of  t* 
disappear  in  R  (t).  We  can  then  write 

T->  /  ,\     /       /2\2     I     A  /7    /v    /2     I     A.  n    n    4-     I     /7    /-» 

and  put 

The  auxiliary  cubic  C3  has  the  form 

(81)  6  a^xif  +  4  a0  V2y  +  Sa4x3  +  2  a07/2  -  x  =  0. 

Following  the  general  method,  let  us  cut  this  cubic  with  the 

secant  y  =  tx ;  the  equation  obtained  can  be  written  in  the  form 
/1\2  2 1 
\t///  *& 

whence  we  obtain 

Conversely,  we  can  express  t  and  \aQR(f)  in  terms  of  #  and  ?/: 

On  the  other  hand,  solving  the  equation  (81)  for  ?/,  we  have 
-  2 

v  4 0ct4»;2  —  1)  (6  a0a.2x 
6 

The  polynomial  under  the  radical  has  the  root  x  ==  0.  Applying  the 
method  explained  above,  we  can  then  express  x  and  y  as  elliptic 
functions  of  a  parameter.  Doing  so,  we  obtain  the  results 

(83)    x  = 2  C«oP(«)+*JP  *.?(«)-*• 



190 SINGLE-VALUED  ANALYTIC  FUNCTIONS        [HI,  §  81 

where  the  invariants  g^  gz  of  the  elliptic  function  p(u)  have  the 
following  values : 

(84)  -       ̂ .'-wtM
 

a0  a2  0,4  —  a  —  a0  a 
a 

Substituting  the  preceding  values  for  x  and  y  in  the  expressions 

(82),  we  find 

(85) 

co- 

t  =  \ 

2p(u)--*--
 

We  can  write  these  results  in  a  somewhat  simpler  form  by  noting 
that  the  relations 

a0  a0 

are  compatible  according  to  the  values  (84)  of  the  invariants  gz  and  g&. 
On  the  other  hand,  we  can  substitute  for       » 

its  equivalent  p  (it,  +  t>)  +  p(w)  +  p(v).  Combining  these  results  and 
replacing  t  and  V#(£)  by  cc  and  y  respectively,  we  may  formulate 
the  result  in  the  following  proposition  : 

The  coordinates  (x,  y)  of  any  point  on  the  curve  C4,  represented  by 

the  equation  (77)  (ivhere  a^  =  0),  can  be  expressed  in  terms  of  a  vari- 
able parameter  u  by  the  formulce 

where  the  invariants  gz  and  gs  have  the  values  given  by  the  relations  (84), 

and  where  p(v),  p'(t>)  «^e  determined  by  the  compatible  equations  (86). 

From  the  formula  (45),  established  above  (§  74),  we  derive,  by 
differentiating  the  two  sides  of  that  equality, 

1  d 
2  ̂  
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that  is,  dx/du  =  y/^fa^  or  du  =  [  vo^/i/] dx.  The  parameter  u,  there- 

fore, represents  the  elliptic  integral  of  the  first  kind,  ~\/aQfdx/^/R  (x), 
and  the  formulae  (87)  furnish  the  solution  of  the  generalized  prob- 

lem of  parameter  representation. 

82.  Curves  of  deficiency  one.  An  algebraic  plane  curve  Cn  of  degree 

n  cannot  have  more  than  (n  —  1)  (n  —  2)/2  double  points  without 
degenerating  into  several  distinct  curves.  If  the  curve  Cn  is  not 
degenerate  and  has  d  double  points,  the  difference 

1> 

Q-l)Q-2) d 

is  called  the  deficiency  of  that  curve.  Curves  of  deficiency  zero  are 
called  unicursal  curves  ;  the  coordinates  of  a  point  of  such  a  curve 
can  be  expressed  as  rational  functions  of  a  parameter.  The  next 

simplest  curves  are  those  of  deficiency  one  ;  a  curve  of  deficiency 

one  has  (n  —  l)(n  —  2)/2  —  1  =  n  (n  —  3)/2  double  points. 

The  coordinates  of  a  point  of  a  curve  of  deficiency  one  can  be 
expressed  as  elliptic  functions  of  a  parameter. 

In  order  to  prove  this  theorem,  let  us  consider  the  adjoint  curves 

of  the  (n  —  2)th  order,  that  is,  the  curves  Cn_2  which  pass  through 
the  n  (n  —  3)/2  double  points  of  Cn.  Since  (n  —  2)  (n  -f-  1)/2  points 
are  necessary  to  determine  a  curve  of  the  (n  —  2)th  degree,  the 
adjoint  curves  Cn_2  depend  still  upon =(?t 

arbitrary  parameters.  If  we  also  require  that  these  curves  pass 

through  n  —  3  other  simple  points  taken  at  pleasure  on  Cn,  we  obtain 
a  system  of  adjoint  curves  which  have,  in  common  with  Cn,  the 

n  (n  —  3)/2  double  points  of  Cn  and  n  —  3  of  its  simple  points.  Let 
F(x,  y)  =  0  be  the  equation  of  Cn,  and  let 

be  the  equation  of  the  system  of  curves  CM_2,  where  X  and  fju  are  arbi- 
trary parameters.  Any  curve  of  this  system  meets  Cn  in  only  three 

variable  points,  for  each  double  point  counts  as  two  simple  points, 
and  we  have 

n(n  -  3)+  n  -  3  =  n(n  -  2)  -  3. 
Let  us  now  put 

/cc\  f     ./aC*^?  y)        „  i     ./•(«BI  ?/) 
(88)  *  =  ldr^t>       y  = 



192  SINGLE-VALUED  ANALYTIC  FUNCTIONS        [III,  §  82 

when  the  point  (x,  y]  describes  the  curve  Cn,  the  point  (V,  y')  de- 
scribes an  algebraic  curve  C"  whose  equation  would  be  obtained  by 

the  elimination  of  x  and  y  between  the  equations  (88)  and  F(x,  ?/)  =  0. 

The  two  curves  C'  and  CH  correspond  to  each  other  point  for  point 
by  means  of  a  birational  transformation.  This  means  that,  con- 

versely, the  coordinates  (x,  y)  of  a  point  of  Cn  can  be  expressed 

rationally  in  terms  of  the  coordinates  (x',  y')  of  the  corresponding 
point  of  C'.  To  prove  this  we  need  only  show  that  to  a  point  (x',  ?/') 
of  C"  there  corresponds  only  one  point  of  CB,  or  that  the  equations 

(88),  together  with  F(x,  y)  =  0,  have  only  a  single  system  of  solu- 

tions for  x  and  ?/,  which  vary  with  x'  and  y'. 
Suppose  that  to  a  point  of  C'  there  correspond  actually  two  points 

(a,  b),  (a1,  b')  of  Cn  which  are  not  among  the  points  taken  as  the 
basis  of  the  system  of  curves  Cn_2.  Then  we  should  have 

/,(«,  6)        /2(«,  6)        /.(«,  6) 

and  all  the  curves  of  the  system  which  pass  through  the  point  (&,  b) 

would  also  pass  through  the  point  (a1,  b').  The  curves  of  the  system 
which  pass  through  these  two  points  would  still  depend  linearly 
upon  a  variable  parameter  and  would  meet  the  curve  Cn  in  a  single 

variable  point.  The  coordinates  of  this  last  point  of  intersection 
with  Cn  would  then  be  rational  functions  of  a  variable  parameter, 

and  the  curve  Cn  would  be  unicursal.  But  this  is  impossible,  since 

it  has  only  n(n  —  3)/2  double  points.  Hence  to  a  point  (#',  y')  of  C' 
corresponds  only  one  point  of  Cn,  and  the  coordinates  of  this  point 

are,  by  the  theory  of  elimination,  rational  functions  of  x'  and  y1  : 

(89)  x  =  ̂ (x',  T,'),         y  =  4>Jx',  y1). 

In  order  to  obtain  the  degree  of  the  curve  C',  let  us  try  to  find 
the  number  of  points  common  to  this  curve  and  any  straight  line 

ax'  +  by'  +  c  —  0.  This  amounts  to  finding  the  number  of  points 
common  to  the  curve  C  and  the  curve 

y)  +  CA(X>  y)  =  °> 
since  to  a  point  of  C'  corresponds  a  single  point  of  Cn,  and  conversely. 
Now  there  are  only  three  points  of  intersection  which  vary  with  a,  b,  c. 

The  curve  C'  is  therefore  of  the  third  degree.  To  sum  up,  the  coor- 
dinates of  a  point  of  the  curve  Cn  can  be  expressed  rationally  in 

terms  of  the  coordinates  of  a  point  of  a  plane  cubic  ;  and  since  the 

coordinates  of  a  point  of  a  cubic  are  elliptic  functions  of  a  parameter, 

the  same  thing  must  be  true  of  the  coordinates  of  a  point  of  Cn. 
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It  results  also  from  the  demonstration,  and  from  what  has  been 
seen  above  for  cubics,  that  the  representation  can  be  made  in  such  a 

way  that  to  a  point  (x,  y)  of  Cn  corresponds  only  one  value  of  u  in 
a  parallelogram  of  periods. 

Let  x  =  $(u),  y  —  if/fa)  be  the  expressions  for  x  and  y  derived 
above  ;  then  every  Abelian  integral  w  —  fR  (x}  y)  dx  associated  with 
the  curve  Cn  (I,  §  103,  2d  ed.  ;  §  108,  1st  ed.)  is  reduced  by  this 
change  of  variables  to  the  integral  of  an  elliptic  function  ;  hence  this 

integral  w  can  be  expressed  in  terms  of  the  transcendentals  p,  £,  a- 
of  the  theory  of  elliptic  functions.  The  introduction  of  these  tran- 

scendentals in  analysis  has  doubled  the  scope  of  the  integral  calculus. 

Example.  Bicircular  quartics.  A  curve  of  the  fourth  degree  with  two  double 

points  is  of  deficiency  one.  If  the  double  points  are  the  circular  points  at  in- 
finity, the  curve  C4  is  called  a  bicircular  quartic.  If  we  take  for  the  origin  a 

point  of  the  curve,  we  can  take  for  the  adjoint  curves  Cn_2  circles  passing 
through  the  origin  o  ,     a  ,   , 

x  2  +  y  2  +  Xx  +  ny  =  0. 

In  order  to  have  a  cubic  corresponding  point  for  point  to  the  quartic  (74,  we 

need  only  follow  the  general  method  and  put  x'  =  x/(x2  +  ?/2),  y'  =  y/(x2  +  y2). 
We  have,  conversely,  x  ~  x'/(x'2  +  y'2),  y  =  y'/(x'2  +  ?/'2).  These  formulae  define 
an  inversion  with  respect  to  a  circle  of  unit  radius  described  with  the  origin 

as  center.  To  obtain  the  equation  of  the  cubic  Cg,  it  will  suffice  to  replace  x 

and  y  in  the  equation  of  C4  by  the  preceding  values.  Suppose,  for  example, 

that  the  equation  of  the  quartic  C4  is  (x2  +  y2)2  —  ay  =  0  ;  the  cubic  C'z  will 
have  for  its  equation  ay'(y'2  +  x'2)  —1  =  0. 

Note.  When  a  plane  curve  Cn  has  singular  points  of  a  higher  order,  it  is  of 

deficiency  one,  provided  that  all  its  singular  points  are  equivalent  to  n(n  —  3)/2 
ordinary  double  points.  For  example,  a  curve  of  the  fourth  degree  having  a 

single  double  point  at  which  two  branches  of  the  curve  are  tangent  to  each 
other  without  having  any  other  singularity  is  of  deficiency  one  ;  to  verify  this 
it  suffices  to  cut  the  quartic  by  a  system  of  conies  tangent  to  the  two  branches 
of  the  quartic  at  the  double  point  and  passing  through  another  point  of  the 

quartic.  The  curve  y2  =  R  (x),  where  R  (x)  is  a  polynomial  of  the  fourth  degree 
prime  to  its  derivative,  has  a  singularity  of  this  kind  at  the  point  at  infinity. 
It  is  reduced  to  a  cubic  by  the  following  birational  transformation  : 

x  =  x,       y  = 

from  which  it  is  easy  to  obtain  the  formulae  (87). 

EXERCISES 

1.  Prove  that  an  integral  doubly  periodic  function  is  a  constant  by  means 
of  the  development  +  „        2||firg 

(The  condition  f(z  +  w')  =/(z)  requires  that  we  have  An  =  0  if  n  ̂   0.) 
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2.  If  a  is  not  a  multiple  of  TT,  we  have  the  formula 

sn  a  a   ----  a  —  WTT 

-  00 

(Change  z  to  2  +  a  in  the  expansion  for  ctn  z,  then  integrate  between  the 
limits  0  and  z.) 

3.  Deduce  from  the  preceding  result  the  new  infinite  products 

a)     / 
a          \ 

cos(z 

cos  a          \        2a  +  7r/--  2  a  -  (2.n  -  1)  ?r 

—  oo 

sin  a  -  sin  z  =  /  _  ,\  /       _z_\  lZ,L  --  «_\  A  --  *  -  \   ̂  
sin  a:  \       a/\       a  +  */«-  \       a  +  2«7r/\       (Sri—  !)»—«/ ~ 

—  CO 

1  —  cos  a        V       a2/  -"--1-  V       2  IMT  +  a/  \       2  nir  -  a 

Transform  these  new  products  into  products  of  primary  functions  or  into 
products  that  no  longer  contain  exponential  factors,  such  as 

cos  z /        4*W        4*\        I" 

\         7r2/\        9ir2/ 

4.  Derive  the  relations 

11                                     1 

71-2      ~2      97J"2      ~2                 (2n+l)27r2      ̂  

!         i 

44                                     4 

2zF                                 -+•    --M     IV-  1         l 

Establish  analogous  relations  for 

sin  z  —  sin  a          cosz  —  cos  a 

5.  Establish  the  relation 

simrz z2  ,  z2(z2-!)      z2(z2-l)(z2-4)  , —  l  —  —  j-   —   j.  • « • 
i        r2!i2  rsn2 TTZ  1  [2  !]2  [3  !] 

^-l)...(22-n2) 

[(n+1)!]2 6.  Decompose  the  functions 
1  1 

r  \~~ /  r     \—i 

into  simple  elements. 

7.  If  02  =  °»  we  have 

p  (aw ;  0,  sr3)  =  ap  (u ;  0,  gr3),        p'(au ;  0,  gr3)  =  p'(u ;  0,  sr3), 
where  a  is  one  of  the  cube  roots  of  unity.   From  this  deduce  the  decomposition 

of  l/[p'(w)  —  p'(v)]  into  simple  elements  when  g2  =  0. 
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8.  Given  the  integrals 

ax  +  b b  rax*  +  b 
cfo,          I     ,         Adx, 

X8_!  J  Vl  +  x4 
ax2  +  6 

dx, 

it  is  required  to  express  the  variable  x  and  each  one  of  these  integrals  in  terms 
of  the  transcendentals  p,  f,  <r» 

9.  Establish  Hermite's  decomposition  formula  (§  73)  by  equating  to  zero 
the  sum  of  the  residues  of  the  function  F(z)[f  (x  —  z)  —  f  (x0  —  z)]  in  a  paral- 

lelogram of  periods,  where  F(x)  is  an  elliptic  function  and  where  x,  x0  are 
considered  as  constants. 

10.  Deduce  from  the  formula  (60)  the  relation  ij  =—  0"'(0)/12o;0'(0). 
(It  should  be  noticed  that  the  series  for  <r(u)  does  not  contain  any  terms 

in  w8.) 

11*.  Express  the  coordinates  x  and  y  of  one  of  the  following  curves  as 
elliptic  functions  of  a  parameter  : 

y*=A  [(x  -a)  (x-  b)  (x  -  c)]«,        y*=A  [(x  -a)  (x  -  6)]2, 

y*  =  A  (x  -  a)2  (x  -  6)3  (x  -  c)8,          y*=A  (x  -  a)2  (x  -  6)8, 

=^t   (x-a)8(x-6)4(x-c)5,          2/6=^   (x  -  a)8  (x  -  6)*, 

=  A  (x  -  a)8  (x  -  6)6,  ?/6  =  ̂ 1   (x  -  a)4  (x  -  &)6, 

i/8  +  (te2  +  wx  +  n)  y2  +  A  [(x  -  a)  (x  -  6)  (x  -  c)]2  =  0, 

(Q
3 
 J>\2

 

#c  +  -  —  \  =  0, 
33    44\2 

Axy*  +  x2    Bx*  +  ̂   —  \  =  0, 

33  A*\2 
__  )=0, 

(44
   

 ,45\2 

5x-
-— 

 

j  =0, 

The  variable  parameter  is  equal,  except  for  a  constant,  to  the  integral  f(l/y)dx. 

[BRIOT  ET  BOUQUET,  TMorie  desfonclions  doublement 

ptriodiques,  2d  ed.,  pp.  388-412.] 



CHAPTER  IV 

ANALYTIC  EXTENSION 

I.   DEFINITION  OF  AN  ANALYTIC  FUNCTION  BY  MEANS 
OF  ONE  OF  ITS  ELEMENTS 

83.  Introduction  to  analytic  extension.  Let  f(z)  be  an  analytic  func- 
tion in  a  connected  portion  A  of  the  plane,  bounded  by  one  or  more 

curves,  closed  or  not,  where  the  word  curve  is  to  be  understood  in 
the  usual  elementary  sense  as  heretofore. 

If  we  know  the  value  of  the  function  f(z)  and  the  values  of  all 
its  successive  derivatives  at  a  definite  point  a  of  the  region  A,  we 
can  deduce  from  them  the  value  of  the  function  at  any  other  point  b 
of  the  same  region.  To  prove  this,  join  the  points  a  and  b  by  a  path  L 
lying  entirely  in  the  region  A  ;  for  example,  by  a  broken  line  or  by 
any  form  of  curve  whatever.  Let  8  be  the  lower  limit  of  the  dis- 

tance from  any  point  of  the  path  L  to  any  point  of  the  boundary  of 
the  region  A  ,  so  that  a  circle  with  the  radius  8  and  with  its  center  at 

any  point  of  L  will  lie  entirely  in  that  region.  By  hypothesis  we 
know  the  value  of  the  function  f(a)  and  the  values  of  its  successive 

derivatives  /'(«),  /"(&),  •  •  •,  for  z  =  a.  We  can  therefore  write  the 
power  series  which  represents  the  function  f(z)  in  the  neighborhood 
of  the  point  a  : 

The  radius  of  convergence  of  this  series  is  at  least  equal  to  8,  but 
it  may  be  greater  than  8.  If  the  point  b  is  situated  in  the  circle  of 
convergence  C0  of  the  preceding  series,  it  will  suffice  to  replace  z  by 
b  in  order  to  have/(£).  Suppose  that  the  point  b  lies  outside  the  circle 

C0,  and  let  a  be  the  point  where  the  path  L  leaves  C*  (Fig.  30). 
Let  us  take  on  this  path  a  point  zl  within  CQ  and  near  a^  so  that  the 

*  Since  the  value  of  /(z)  at  the  point  b  does  not  depend  on  the  path  so  long  as  it 
does  not  leave  the  region  A,  we  may  suppose  that  the  path  cuts  the  circle  C0  in  only 

one  point,  as  in  the  figure,  and  the  successive  circles  C\,  C2,  •  •  •  in  at  most  two  points. 
This  amounts  to  taking  for  a\  the  last  point  of  intersection  of  L  and  C0,  and  similarly 
for  the  others. 

196 
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distance  between  the  two  points  z^  and  ̂   shall  be  less  than  8/2.  The 
series  (1)  and  those  obtained  from  it  by  successive  differentiations 
enable  us  to  calculate  the  values  of  the  function  f(z)  and  of  all  its 

derivatives,/^),/*^),  •  •  •  ,  /(n)(^),  •  •  •,  for  s  =  «r  The  coefficients 
of  the  series  which  represents  the  function  /(#)  in  the  neighborhood 

of  the  point  zl  are  therefore  determined  if  we  know  the  coefficients  of 
the  first  series  (1),  and  we  have  in  the  neighborhood  of  the  point  zl 

(2) n 

•oo+ 

The  radius  of  the  circle  of  convergence  Ct  of  this  series  is  at  least 
equal  to  8;  this  circle  contains,  then,  the  point  al  within  it,  and 
there  is  also  a  part  of  it  out- 

side of  the  circle  C  .    If  the 

point  b  is  in  this  new  circle 

Cj,  it  will  suffice  to  put  z  =  b 
in  the  series  (2)  in  order  to 

have  the  value  of  f(b).   Sup- 
pose that  the  point  b  is  again 

outside  of  Cv  and  let  a2  be 
the  point  where  the  path  z^b 
leaves  the  circle.  Let  us  take 

on  the  path  L  a   point   z2 

within  Cl  and  such  that  the 
distance  between  the  two  points  z2  and  a.2  shall  be  less  than  8/2. 

The  series  (2)  and  those  which  we  obtain  from  it  by  successive  dif- 
ferentiations will  enable  us  to  calculate  the  values  of  f(z)  and  its 

derivatives  /(£2),  f(z^)>  /"(z2)>  '  '  *  a^  *he  P0^  *V     ̂ e  sna^  then 
form  a  new  series, 

FIG.  30 

(3)     /(«)=• /OO  + +  •  •  •  + + 

which  represents  the  function  f(z)  in  a  new  circle  C2  with  a  radius 

greater  than  or  equal  to  8.  If  the  point  b  is  in  this  circle  C2,  we  shall 
replace  z  by  b  in  the  preceding  equality  (3) ;  if  not,  we  shall  continue 
to  apply  the  same  process.  At  the  end  of  a  finite  number  of  such 
operations  we  shall  finally  have  a  circle  containing  the  point  b  within 

it  (in  the  case  of  the  figure,  b  is  in  the  interior  of  C8) ;  for  we  can 

always  choose  the  points  zv  «2,  28,  •  •  •  in  such  a  way  that  the  dis- 
tance between  any  two  consecutive  points  shall  be  greater  than  8/2. 

On  the  other  hand,  let  5  be  the  length  of  the  path  L.  The  length  of 
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the  broken  line  a^^2  •  •  •  zp  _  \zp  is  always  less  than  S ;  hence  we  have 
p8/2  +  zp  —  b  <  S.  Let  p  be  an  integer  such  that  (p/2  +  1)  8  >  S. 
The  preceding  inequality  shows  that  after  p  operations,  at  most, 
we  shall  come  upon  a  point  zp  of  the  path  L  whose  distance  from 
the  point  b  will  be  less  than  8 ;  the  point  b  will  be  in  the  interior 

of  the  circle  of  convergence  Cp  of  -the  power  series  which  represents 
the  function  f(z)  in  the  neighborhood  of  the  point  zp,  and  it  will 
suffice  to  replace  z  by  b  in  this  series  in  order  to  have/(&).  In  the 

same  way  all  the  derivatives  /'(&),  /"(&),  •  •  •  can  be  calculated. 
The  above  reasoning  proves  that  it  is  possible,  at  least  theoretically, 

to  calculate  the  value  of  a  function  analytic  in  a  region  A,  and  of 
all  its  derivatives  at  any  point  of  that  region,  provided  we  know 
the  sequence  of  values, 

(4)  /(a),     /(a),     /"(a),     .  .  .,     /«(«),     . . ., 

of  the  function  and  of  its  successive  derivatives  at  a  given  point  a  of 
that  region.  It  follows  that  any  function  analytic  in  a  region  A  is 
completely  determined  in  the  whole  of  that  region  if  it  is  known  in 
a  region,  however  small,  surrounding  any  point  a  taken  in  A,  or 
even  if  it  is  known  at  all  points  of  an  arc  of  a  curve,  however  short, 
ending  at  the  point  a.  For  if  the  function  /(z)  is  determined  at 
every  point  on  the  whole  length  of  an  arc  of  a  curve,  the  same  must 

be  true  of  its  derivative  /'(«),  since  the  value  f(z^)  at  any  point  of 
that  arc  is  equal  to  the  limit  of  the  quotient  [/(^2)  —  /C^)]/^  —  ̂ ) 
when  the  point  #2  approaches  zl  along  the  arc  considered  ;  the  deriv- 

ative/'^) being  known,  we  deduce  from  it  in  the  same  way/" (2), 
and  from  that  we  deduce  /"'(«),  •  •  •.  All  the  successive  derivatives 
of  the  function  f(z)  will  then  be  determined  for  z  =  a.  We  shall  say 
for  brevity  that  the  knowledge  of  the  numerical  values  of  all  the 
terms  of  the  sequence  (4)  determines  an  element  of  the  function 
/(«).  The  result  reached  can  now  -be  stated  in  the  following  man- 

ner :  A  function  analytic  in  a  region  A  is  completely  determined  if 
we  know  any  one  of  its  elements.  We  can  say  further  that  two  func- 

tions analytic  in  the  same  region  cannot  have  a  common  element 
without  being  identical. 

We  have  supposed  for  defmiteness  that  the  function  considered, 
/(z),  was  analytic  in  the  whole  region ;  but  the  reasoning  can  be 
extended  to  any  function  analytic  in  the  region  except  at  certain 
singular  points,  provided  the  path  L,  followed  by  the  variable  in 
going  from  a  to  b}  does  not  pass  through  any  singular  point  of  the 
function.  It  suffices  for  this  to  break  up  the  path  into  several  arcs, 
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as  we  have  already  done  (§  31),  so  that  each  one  can  be  inclosed 
in  a  closed  boundary  inside  of  which  the  branch  of  the  function  f(z) 
considered  shall  be  analytic.  The  knowledge  of  the  initial  element 

and  of  the  path  described  by  the  variable  suffices,  at  least  theoreti- 
cally, to  find  the  final  element,  that  is,  the  numerical  values  of  all  the 

terms  of  the  analogous  sequence 

(5)  f(b),    f(V),    ..-,    /*•>(»),     .... 

84.  New  definition  of  analytic  functions.  Up  to  the  present  we  have 

studied  analytic  functions  which  were  defined  by  expressions  which 
give  their  values  for  all  values  of  the  variable  in  the  field  in  which 

they  were  studied.  We  now  know,  from  what  precedes,  that  it  is 
possible  to  define  an  analytic  function  for  any  value  of  the  variable 
as  soon  as  we  know  a  single  element  of  the  function ;  but  in  order  to 

present  the  theory  satisfactorily  from  this  new  point  of  view,  we  must 
add  to  the  definition  of  analytic  functions  according  to  Cauchy  a  new 
convention,  which  seems  to  be  worth  stating  in  considerable  detail. 

Let  f^z),  f%(z)  be  two  functions  analytic  respectively  in  the  two 
regions  A^  A2  having  one  and  only  one  part 

A'  in  common  (Fig.  31).  If  in  the  com- 

mon part  A'  we  have  f^(z)^=f^(z\  which 
will  be  'the  case  if  these  two  functions  have 
a  single  common  element  in  this  region,  we 

shall  regard  ̂ (*)  and  'f^(z)  as  forming  a 
single  function  F(z),  analytic  in  the  region 

A^A^  by^means  of  the  following  equalities :  FIG  31 
F(z)=fl(z)  in  A19  and  F(z)=f2(z)  in  A2. 
We  shall  also  say  that  fz(z)  is  the  analytic  extension  into  the  region 

A  ̂  —  A '  of  the  analytic  function  f^z),  which  is  supposed  to  be  defined 
only  in  the  region  Ar  It  is  clear  that  the  analytic  extension  of  f^z) 

into  the  region  of  A2  exterior  to  AI  is  possible  in  only  one  way.* 

*In  order  to  show  that  the  preceding  convention  is  distinct  from  the  definition  of 
functions  analytic  in  general,  it  suffices  to  notice  that  it  leads  at  once  to  the  following 
consequence:  If  a  function  f(z)  is  analytic  in  a  region  A,  every  other  analytic  func- 

tion fi(z),  under  these  conventions,  which  coincides  withf(z)  in  a  part  of  the  region  A 
is  identical  ivithf(z)  in  A.  Now  let  us  consider  a  function  F(z)  defined  for  all  values 
of  the  complex  variable  z  in  the  following  manner : 

7T 

F(z)  =  sinz,  \izj£-; 

However  odd  this  sort  of  convention  may  appear,  it  has  nothing  in  it  contra- 
dictory to  the  previous  definition  of  functions  in  general  analytic.  The  function 

thus  defined  would  be  analytic  for  all  values  of  z  except  for  z  =  T/2,  which  would 
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Let  us  now  consider  an  infinite  sequence  of  numbers,  real  or 
imaginary, 

(6)  a,0  a^  «2,  •••,«„,••  •, 

subject  to  the  single  condition  that  the  series 

(7)  a0  +  ax»  +  ̂   +  •  •  •  +  anz»  +  •  •  • 

converges  for  some  value  of  z  different  from  zero.  (We  take  z  =  0 
for  the  initial  value  of  the  variable,  which  does  not  in  any  way 

restrict  the  generality.)  The  series  (7)  has,  then,  by  hypothesis,  a 
circle  of  convergence  <70  whose  radius  R  is  not  zero.  If  R  is  infinite, 
the  series  is  convergent  for  every  value  of  z  and  represents  an  inte- 

gral function  of  the  variable.  If  the  radius  R  has  a  finite  value  dif- 
ferent from  zero,  the  sum  of  the  series  (7)  is  an.  analytic^  function 

f(z)  in  the  interior  of  the  circle  C0.  But  since  we  know  only  the 

sequence  of  coefficients  (6),  we  cannot  say  anything  a  priori  regard- 

ing the  nature  of  the  function  outside  of  the  circle  "C0.  We  do  not 
know  whether  or  not  it  is  possible  to  add  to  the  circle  C0  an  adjoin- 

ing region  forming  with  the  circle  a  connected  region  A  such  that 

there  exists  a  function  analytic  in  A  and  coinciding  with  /"(*)  in  the 
interior  of  CQ.  The  method  of  the  preceding  paragraph  enables  us  to 
determine  whether  this  is  the  case  or  not.  Let  us  tak6  in  the  circle  CQ 

a  point  a  different  from  the  origin.-  By  means  of  the  series  (7), 
and  the  series  obtained  from  it  by  term-by-term  differentiation  we 
can  calculate  the  element  of  the  function  f(zj  which  corresponds  to 
the  point  a,  and  consequently  we  can  form  the  power  series 

(8)      /(«)  +  ̂/'(«)  +  •  •  •  +  ̂̂ r1"/^)  +.-••,          I 
which  represents  the  f unction /(#)  in  the  neighborhood  of  the  point  a. 
This  series  is  certainly  convergent  in  a  circle  about  a  as  center  with 

a  radius  R  —  a  (§8),  but  it  may  be  convergent  in  a  larger  circle 
whose  radius  cannot  exceed  R  -\-  a  .  For  if  it  were  convergent  in 

be  a  singular  point  of  a  particular  nature.  But  the  properties  of  this  function  F(z) 

would  be  in  contradiction  to  the  convention  which  we  have  just  adopted",  since  the 
two  functions  F(z)  and  sin  z  would  be  identical  for  all  the  values  of  z  except  for 
z  =  T/2,  which  would  be  a  singular  point  for  only  one  of  the  two  functions. 

Weierstrass,  in  Germany,  and  Meray,  in  France,  developed  the  theory  of  analytic 
functions  by  starting  only  with  the  properties  of  power  series ;  their  investigations 

are  also  entirely  independent.  Meray's  theory  is  presented  in  his  large  treatise, 
Lemons  nouvelles  sur  V Analyse  inftnitesimale.  It  is  shown  in  the  text  how  we  can 
define  an  analytic  function  step  by  step,  knowing  one  of  its  elements  but  always 
supposing  known  the  theorems  of  Cauchy  on  analytic  functions. 
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a  circle  of  radius  R  +  a  \  +  8,  the  series  (7)  would  be  convergent  in 

a  circle  of  radius  R  -+-  8  about,  the  origin  as  center,  contrary  to  the 
hypothesis.  Let  us  suppose  first  that  the  radius  of  the  circle  of  con- 

vergence of  the  series  (8)  is  always  equal  to  ti  —  \  a  ,  wherever  the 
point  a  may  be  taken  in  the  circle  C0.  Then  there  exists  no  means 

of  extending  the  function~/(£.)  analytically  outside  of  the  circle,  at 
least  if  we  make  use  of  power  series  only.  We  can  say  that  there 

does  not  exist  any  function  F(z)  analytic  in  a  region  A  of  the  plane 

greater  than  and  containing  the  circle  CQ  and  coinciding  with  /(#) 

in  the  circle  JC0,  for  the  method  of  analytic  extension  would  enable 
us  to  determine  the  value  of  that  function  at  a  point  exterior  to  the 

circle  C0,  as  we  have  just  seen.  The  circle  C0  is  then  said  to  be  a 
natural  boundary  for  the  function  /(.?).  Further  on  we  shall  see 
some  examples  of  this. 

Suppose,  in  the  second  place,  that  with  a  suitably  chosen  point 

a  in  the  circle  Cff  the  circle  of  convergence  C\  of  the  series  (8)  has  a 

radius  greater  than  R  —  a  . 
This  circle  Cl  has  a  part 

exterior  to*C0  (Fig.  32),  and 
the  sum  of  the  series  (8)  is 

an  analytic  function  f^z)  in 
the  circle  Cv  In  the  interior 
of  the  circle  y  with  the  center 
a,  which  is  tangent  to  the 

circle  CQ  internally,  we  have 

/!(*)  =  /(*)(§  8);  hence  this 

equality  must  subsist  'in  the 
whole  of  the  region  common 

to  the  two  circles  CQ,  Cr  The 
series  (8)  gives  us  the  analytic  extension  of  the  function  f(z)  into 

the  portion  of  the  circle  Cl  exterior  to  the  circle  C0.  Let  a'  be  a  new 
point  taken  in  this  region ;  by  proceeding  in  the  same  way  we  shall 

form  a  new  power  series  in  powers  of  2  —  a',  which  will  be  con- 
vergent in  a  circle  C  .  If  the  circle  C  is  not  entirely  within  C  ,  the 

FIG.  32 

new  series  will  give  the  extension  of  /(^)  in  a  more  extended  region, 
and  so  on  in  the  same  way.  We  see,  then,  how  it  is  possible  to 

extend,  step  by  step,  the  region  of  existence  of  the  function  /(z), 
which  at  first  was  defined  only  in  the  interior  of  the  circle  CQ. 

It  is  clear  that  the  preceding  process  can  be  carried  out  in  an  in- 
finite number  of  ways.  In  order  to  keep  in  mind  how  the  extension 

was  obtained,  we  must  define  precisely  the  path  followed  by  the 
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variable.  Let  us  suppose  that  we  can  obtain  the  analytic  extension 
of  the  function  denned  by  the  series  (7)  along  a  path  L,  as  we  have 
just  explained.  Each  point  x  of  the  path  L  is  the  center  of  a  circle  of 
convergence  of  radius  r  in  the  interior  of  which  the  function  is  rep- 

resented by  a  convergent  series  arranged  in  powers  of  z  —  x.  The 

radius  r  of  this  circle  varies  continuously  with  x.  For  let  x  and  x1  be 
two  neighboring  points  of  the  path  L,  and  r  and  r'  the  corresponding 
radii.  If  x'  is  near  enough  to  x  to  satisfy  the  inequality  x'  —  x  <  r, 
the  radius  r'  will  lie  between  r  —  x'  —  x  |  and  r  -}-  x'  —  x  ,  as  we  have 
seen  above.  Hence  the  difference  r'  —  r  approaches  zero  with  x'  —  x  . 
Now  let  CQ  be  a  circle  with  the  radius  R/2  described  with  the  origin 

as  center  ;  if  a  is  any  point  on  the  circle  C^,  the  radius  of  conver- 
gence of  the  series  (8)  is  at  least  equal  to  R/2,  but  it  may  be  greater. 

Since  this  radius  varies  in  a  continuous  manner  with  the  position  of 

the  point  a,  it  passes  through  a  minimum  value  R/2  -\-  r  at  a  point 

of  the  circle  C'Q.  We  cannot  have  r  >  0,  for  if  r  were  actually  posi- 
tive, there  would  exist  a  function  F(z)  analytic  in  the  circle  of  radius 

R  +  r  about  the  origin  as  center  and  coinciding  with  f(z)  in  the 
interior  of  CQ.  For  a  value  of  z  whose  absolute  value  lies  between  R 
and  R  +  r,  F(z)  would  be  equal  to  the  sum  of  any  one  of  the  series 

(8),  where  a  is  a  point  on  C'Q  such  that  |  z  —  a  <  R/2  -f-  r.  According 
to  Cauchy's  theorem,  F(z)  would  be  equal  to  the  sum  of  a  power 
series  convergent  in  the  circle  of  radius  R  -f-  r,  and  this  series  would 
be  identical  with  the  series  (7),  which  is  impossible. 

There  is,  therefore,  on  the  circumference  of  C'Q  at  least  one  point  a 
such  that  the  circle  of  convergence  of  the  series  (8)  has  R/2  for  its 
radius,  and  this  circle  is  tangent  internally  to  the  circle  C0  at  a  point 
a  where  the  radius  Oa  meets  that  circle.  The  point  a  is  a  singular 
point  of  /(»)  on  the  circle  C0.  In  a  circle  c  with  the  point  a  for 
center,  however  small  the  radius  may  be  taken,  there  cannot  exist 
an  analytic  function  which  is  identical  with  f(z)  in  the  part  common 

to  the  two  circles  CQ  and  c.  It  is  also  clear  that  the  circle  of  conver- 
gence of  the  series  (8)  having  any  point  of  the  radius  Oa  for  center 

is  tangent  internally  to  the  circle  CQ  at  the  point  #.* 

*  If  all  the  coefficients  an  of  the  series  (7)  are  real  and  positive,  the  point  z  =  R  is 
necessarily  a  singular  point  on  C0.  In  fact,  if  it  were  not,  the  power  series 

which  represents/  (z)  in  the  neighborhood  of  the  point  z=  R/2,  would  have  a  radius 
of  convergence  greater  than  R/2.  The  same  would  be  true  a  fortiori  of  the  series 
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Let  us  consider  now  a  path  L  starting  at  the  origin  and  ending  at 

any  point  Z  outside  of  the  circle  C0,  and  let  us  imagine  a  moving 
point  to  describe  this  path,  moving  always  in  the  same  sense  from  O 

to  Z.  Let  a^  be  the  point  where  the  moving  point  leaves  the  circle  ; 

if  this  point  a^  were  a  singular  point,  it  would  be  impossible  to  con- 
tinue on  the  path  L  beyond  this  point.  We  shall  suppose  that  it  is 

not  a  singular  point  ;  we  can  then  form  a  power  series  arranged  in 

powers  of  z  —  al  and  convergent  in  a  circle  C1  with  the  center  av 
whose  sum  coincides  with  f(z)  in  the  part  common  to  the  two  cir- 

cles C0  and  C\.  To  calculate  /(o^),  f(0^)>  •  •  •  we  could  employ,  for 
example,  an  intermediate  point  on  the  radius  Oa^  The  sum  of  the 
second  series  would  furnish  us  with  the  analytic  extension  of  f(z) 
along  the  path  L  from  a  ,  so  long  as  the  moving  point  does  not  leave 

the  circle  Cr  In  particular,  if  all  the  path  starting  from  a^  lies  in 
the  interior  of  C19  that  series  will  give  the  value  of  the  function  at  the 
point  Z.  If  the  path  leaves  the  circle  Cl  at  the  point  a^  we  shall 
form,  similarly,  a  new  power  series  convergent  in  a  circle  C2  with 

the  center  «2,  and  so  on.  We  shall  suppose  first  that  after  a  finite 

number  of  operations  we  arrive  at  a  circle  Cp  with  the  center  ap,  con- 
taining all  the  portion  of  the  path  L  which  follows  ap,  and  in  partic- 

ular the  point  Z.  It  will  suffice  to  replace  z  by  Z  in  the  last  series 

used  and  in  those  which  we  have  obtained  from  it  by  term-by-term 

differentiation  in  order  to  find  the  values  of  /(Z),/'(Z),  f"(Z),  -  •  •, 
with  which  we  arrive  at  the  point  Z,  that  is,  the  final  element  of  the 
function. 

It  is  clear  that  we  arrive  at  any  point  of  the  path  L  with  com- 
pletely determined  values  for  the  function  and  all  its  derivatives. 

Let  us  note  also  that  we  could  replace  the  circles  C0,  Cv  C2,  •  -  •,  Cp 
by  a  sequence  of  circles,  similarly  defined,  having  any  points  «  ,  «2, 

•••,*,  of  the  path  L  as  centers,  provided  that  the  circle  with  the 
center  zt-  contains  the  portion  of  the  path  L  included  between  «f  and 

*»•  +  !•  We  can  also  modify  the  path  L,  keeping  the  same  extremities, 
without  changing  the  final  values  of  f(z), 

whatever  the  angle  w  may  be,  for  we  have  evidently 

since  all  the  coefficients  an  are  positive.   The  minimum  of  the  radius  of  convergence 

of  the  series  (8),  when  a  describes  the  circle  C'Q,  would  then  be  greater  than  J?/2. 
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FIG.  33 

circles  C0,  C1?  •  •  • ,  Cp  cover  a  portion  of  the  plane  forming  a  kind  of 
strip  in  which  the  path  L  lies,  and  we  can  replace  the  path  L  by  any 

other  path  L'  going  from  2  =  0  to  the  point  Z  and  situated  in  that 
strip.  Let  us  suppose,  for 
definiteness,  that  we  have  to 
make  use  of  three  consecutive 

circles  C0,  Clt  C2  (Fig.  33). 
Let  L'  be  a  new  path  lying 
in  the  strip  formed  by  these 
three  circles,  and  let  us  join 
the  two  points  m  and  n.  If  we 
go  from  0  to  m  first  by  the 

path  O^m,  then  by  the  path 
Onm,  it  is  clear  that  we  arrive 

at  m  with  the  same  element,  since  we  have  an  analytic  function  in 
the  region  formed  by  C0  and  Cr  Similarly,  if  we  go  from  m  to  Z 
by  the  path  ma^Z  or  by  the  path  mnZ,  we  arrive  in  each  case  at 
the  point  Z  with  the  same  element.  The  path  L  is  therefore  equiv- 

alent to  the  path  OnmnZ,  that  is,  to  the  path  L'.  The  method  of 
proof  is  the  same,  whatever  may  be  the  number  of  the  successive 
circles.  In  particular,  we  can  always  replace  a  path  of  any  form 

whatever  by  a  broken  line.* 

85.  Singular  points.  If  we  proceed  as  we  have  just  explained,  it 
may  happen  that  we  cannot  find  a  circle  containing  all  that  part  of 
the  path  L  which  remains  to  be  described,  however  far  we  continue 
the  process.  This  will  be  the  case  when  the  point  ap  is  a  singular  point 
on  the  circle  Cp_1,  for  the  process  will  be  checked  just  at  that  point. 
If  the  process  can  be  continued  forever,  without  arriving  at  a  circle 
inclosing  all  that  part  of  the  path  L  which  remains  to  be  described, 

the  points  ap_l,  ap,  ap+1,  •  •  •  approach  a  limit  point  X  of  the  path  L, 
which  may  be  either  the  point  Z  itself  or  a  point  lying  between  O 
and  Z.  The  point  X  is  again  a  singular  point,  and  it  is  impossible 
to  push  the  analytic  extension  of  the  function  f(z)  along  the  path  L 
beyond  the  point  A.  But  if  A  is  different  from  Z,  it  does  not  follow 
that  the  point  Z  is  itself  a  singular  point,  and  that  we  cannot  go 
from  0  to  Z  by  some  other  path.  Let  us  consider,  for  example,  either 

of  the  two  functions  Vl  -\-  z  and  Log  (1  -f-  «) ;  we  could  not  go  from 

*  The  reasoning  requires  a  little  more  attention  when  the  path  L  has  double  points, 
since  then  the  strip  formed  by  the  successive  circles  (70,  (7j,  (72,  •••  may  return  and 
cover  part  of  itself.  But  there  is  no  essential  difficulty. 
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the  origin  to  the  point  z  =  —  2  along  the  axis  of  reals,  since  we  could 

not  pass  through  the  singular  point  z  =  —  1.  But  if  we  cause  the  vari- 
able z  to  describe  a  path  not  going  through  this  point,  it  is  clear  that 

we  shall  arrive  at  the  point  *  =  —  2  after  a  finite  number  of  steps, 
for  all  the  successive  circles  will  pass  through  the  point  z  =  —  1. 
It  should  be  noticed  that  the  preceding  definition  of  singular  points 

depends  upon  the  path  followed  by  the  variable  ;  a  point  X  may  be 
a  singular  point  for  a  certain  path,  and  may  not  for  some  other,  if 
the  function  has  several  distinct  branches. 

When  two  paths  Lu  L(,  going  from  the  origin  to  Z,  lead  to  dif- 

ferent elements  at  Z",  there  exists  at  least  one  singular  point  in  the 
interior  of  the  region  which  would  be  swept  out  by  one  of  the  paths, 

Lv  for  example,  if  we  were  to  deform  it  in  a  continuous  manner  so 
as  to  bring  it  into  coincidence  with  L{,  retaining  always  the  same 

extremities  during  the  change.  Let  us  sup- 
pose, as  is  always  permissible,  that  the  two 

paths  Ll}  L{  are  broken  lines  composed  of  the 

same  number  of  segments  Oa^Cj  •  •  •  l-^Z  and 
OaJ&X-  .  .  .  l[Z  (Fig.  34).  Let  ag,  62,  ca,  -  -  •,  12 
be  the  middle  points  of  the  segments  04  «J, 

a^  L<2  f°rme(i  by  the 

12Z  cannot  be  equiva- 
lent at  the  same  time  to  the  two  paths  L19  L{ 

if  it  does  not  contain  a  singular  point.  If  the 

path  L2  does  contain  a  singular  point,  the 
theorem  is  established.  If  the  two  paths  Ll 

and  Z2  are  not  equivalent,  we  can  deduce  from 
them  a  new  path  Ls  lying  between  Ll  and  L2 
by  the  same  process.  Continuing  in  this  way,  we  shall  either  reach 

a  path  Lp  containing  a  singular  point  or  we  shall  have  an  infinite 

sequence  of  paths  LV  L2,  L8,  -  -  •.  These  paths  will  approach  a  limit- 
ing path  A,  for  the  points  a^  aa,  «8,  •  •  •  approach  a  limit  point  lying 

between  ax  and  a[,  •  •  •',  and  similarly  for  the  others.  This  limiting 
path  A  must  necessarily  contain  a  singular  point,  since  we  can 
draw  two  paths  as  near  as  we  please  to  A,  one  on  each  side  of 
it,  and  leading  to  different  elements  for  the  function  at  Z.  This 
could  not  be  true  if  A  did  not  contain  any  singular  points,  since 

the  paths  sufficiently  close  to  A  must  lead  to  the  same  elements 
at  Z  as  does  A. 

The   preceding  definition  of  singular  points  is  purely  negative 
and  does  not  tell  us  anything  about  the  nature  of  the  function  in 

broken  line  0&2#2c2 
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the  neighborhood.  No  hypothesis  on  these  singular  points  or  on 
their  distribution  in  the  plane  can  be  discarded  a  priori  without 
danger  of  leading  to  some  contradiction.  A  study  of  the  analytic 

extension  is  required  to  determine  all  the  possible  cases.* 

86.  General  problem.  From  what  precedes,  it  follows  that  an  analytic 
function  is  virtually  determined  when  we  know  one  of  its  elements, 

that  is,  when  we  know  a  sequence  of  coefficients  «0,  a  ,  aa,  •••,«„,••• 
such  that  the  series 

aQ  +  a^(x  —  #)+•••  +  an(x  —  a)n  +  •  . . 

has  a  radius  of  convergence  different  from  zero.  These  coefficients 
being  known,  we  are  led  to  consider  the  following  general  problem : 
To  find  the  value  of  the  function  at  any  point  ft  of  the  plane  when  the 
variable  is  made  to  describe  a  definitely  chosen  path  from,  the  point  a 
to  the  point  ft.  We  can  also  consider  the  problem  of  determining 
a  priori  the  singular  points  of  the  analytic  function ;  it  is  also 
clear  that  the  two  problems  are  closely  related  to  each  other.  The 
method  of  analytic  extension  itself  furnishes  a  solution  of  these  two 
problems,  at  least  theoretically,  but  it  is  practicable  only  in  very 
particular  cases.  For  example,  as  nothing  indicates  a  priori  the 
number  of  intermediate  series  which  must  be  employed  to  go  from 
the  point  a  to  the  point  ft,  and  since  we  can  calculate  the  sum  of 
each  of  these  series  with  only  a  certain  degree  of  approximation,  it 
appears  impossible  to  obtain  any  idea  of  the  final  approximation 
which  we  shall  reach.  So  the  investigation  of  simpler  solutions  was 

necessary,  at  least  in  particular  cases.  Only  in  recent  years,  how- 
ever, has  this  problem  been  the  object  of  thorough  investigations, 

which  have  already  led  to  some  important  results. t 

*Let/(z)  be  a  function  analytic  along  the  whole  length  of  the  segment  ab  of  the 
real  axis.  In  the  neighborhood  of  any  point  a.  of  this  segment  the  function  can  be 
represented  by  a  power  series  whose  radius  of  convergence  R(a)  is  not  zero.  This 
radius  R,  being  a  continuous  function  of  a,  has  a  positive  minimum  r.  Let  p  be  a 
positive  number  less  than  r,  and  E  the  region  of  the  plane  swept  out  by  a  circle  with 
the  radius  p  when  its  center  describes  the  segment  ab.  The  function  /(x)  is  analytic 
in  the  region  E  and  on  its  boundary  ;  let  M  be  an  upper  bound  for  its  absolute  value  ; 
from  the  general  formulae  (14)  (§  33)  it  follows  that  at  any  point  x  of  ab  we  have  the 
inequality  „  , 

(Cf.  I,  §  197,  2d  ed.  ;  §  191,  1st  ed.) 

t  For  everything  regarding  this  matter  we  refer  the  reader  to  Hadamard's  excel- 
lent work,  La  serie  de  Taylor  et  son  prolongement  analytique  (Naud,  1901).  It  con- 

tains a  very  complete  bibliography. 
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The  fact  that  these  researches  are  so  recent  must  not  be  attributed 

entirely  to  the  difficulty  of  the  question,  however  great  it  may  be. 
The  functions  which  have  actually  been  studied  successively  by 
mathematicians  have  not  been  chosen  by  them  arbitrarily ;  rather, 
the  study  of  these  functions  was  forced  upon  them  by  the  very  nature 
of  the  problems  which  they  encountered.  Now,  aside  from  a  small 

number  of  .transcendentals,  all  these  functions,  after  the  explicit 
elementary  functions,  are  defined  either  as  the  roots  of  equations 
which  do  not  admit  a  formal  solution  or  as  integrals  of  algebraic 
differential  equations.  It  is  clear,  then,  that  the  study  of  implicit 
functions  and  of  functions  defined  by  differential  equations  must 

logically  have  preceded  the  study  of  the  general  problem  of  which 
these  two  problems  are  essentially  only  very  particular  cases. 

It  is  easy  to  show  how  the  study  of  algebraic  differential  equa- 
tions leads  to  the  theory  of  analytic  extension.  Let  us  consider,  for 

concreteness,  two  power  series  ?/(#),  z(x),  arranged  according  to  pos- 
itive powers  of  x  and  convergent  in  a  circle  C  of  radius  R  described 

about  the  point  x  =  0  as  center.  On  the  other  hand,  let  F(x,  y,  y',  y") 

•  •  •,  ?/(p),  z,  z1,  •  •  •,  2(/7))  be  a  polynomial  in  x,  y,  y',  •  •  -,y(p),  z,  z',  •  •  •,  z(q). 
Let  us  suppose  that  we  replace  y  and  z  in  this  polynomial  by  the 

preceding  series,  y',  y",  •  •  •,  y(p)  by  the  successive  derivatives  of  the 
series  y(x),  and  z'}  z"}  •  •  •,  z(q)  by  the  derivatives  of  the  series  z(x); 
the  result  is  again  a  power  series  convergent  in  the  circle  C.  If  all 

the  coefficients  of  that  series  are  zero,  the  analytic  functions  y(x) 

and  z  (x)  satisfy,  in  the  circle  C,  the  relation 

(9)  F(ar,^y,...,^>,*,«r,...,^>)=0. 

We  are  now  going  to  prove  that  the  functions  obtained  by  the  analytic 

extension  of  the  series  y(x)  and  z(x~)  satisfy  the  same  relation  in  the 
whole  of  their  domain  of  existence.  More  precisely,  if  we  cause  the 
variable  x  to  describe  a  path  L  starting  at  the  origin  and  proceeding 

from  the  circle  C  to  reach  any  point  a  of  the  plane,  and  if  it  is  pos- 
sible to  continue  the  analytic  extension  of  the  two  series  y(x)  and 

z(x)  along  the  whole  length  of  this  path  without  meeting  any  singular 

point,  the  power  series  Y(x  —  a)  and  Z(x  —  a)  with  which  we  arrive 
at  the  point  a  represent,  in  the  neighborhood  of  that  point,  two  ana- 

lytic functions  which  satisfy  the  relation  (9).  For  let  xl  be  a  point 
of  the  path  L  within  the  circle  C  and  near  the  point  where  the  path  L 

leaves  the  circle  C.  With  the  point  xl  as  center  we  can  describe  a 
circle  Clt  partly  exterior  to  the  circle  C,  and  there  exist  two  power 

series  y(x  —  jCj),  z(x  —  xj  that  are  convergent  in  the  circle  Cj  and 
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whose  values  are  identical  with  the  values  of  the  two  series  y  (x)  and 
z  (x)  in  the  part  common  to  the  two  circles  C,  Cr  Substituting  for  y 
and  z  in  F  the  two  corresponding  series,  the  result  obtained  is  a  power 

series  P(x  —  x^  convergent  in  the  circle  Cr  Now  in  the  part  common 
to  the  two  circles  C,  Cl  we  have  P  (x  —  x^)  =  0 ;  the  series  P  (x  —  x^ 
has  therefore  all  its  coefficients  zero,  and  the  two  new  series  y(x  —  x^ 
and  z  (x  —  x^  satisfy  the  relation  (9)  in  the  circle  Cr  Continuing 
in  this  way,  we  see  that  the  relation  never  ceases  to  be  satisfied 
by  the  analytic  extension  of  the  two  series  y(x)  and  «(#),  whatever 
the  path  followed  by  the  variable  may  be;  the  proposition  is  thus 
demonstrated. 

The  study  of  a  function  defined  by  a  differential  equation  is,  then, 
essentially  only  a  particular  case  of  the  general  problem  of  analytic 
extension.  But,  on  the  other  hand,  it  is  easy  to  see  how  the  knowledge 
of  a  particular  relation  between  the  analytic  function  and  some  of 
its  derivatives  may  in  certain  cases  facilitate  the  solution  of  the 
problem.  We  shall  have  to  return  to  this  point  in  the  study  of 
differential  equations. 

II.   NATURAL  BOUNDARIES.   CUTS 

The  study  of  modular  elliptic  functions  furnished  Hermite  the 
first  example  of  an  analytic  function  defined  only  in  a  portion  of 
the  plane.  We  shall  point  out  a  very  simple  method  of  obtaining 
analytic  functions  having  any  curve  whatever  of  the  plane  for  a 
natural  boundary  (see  §  84),  under  certain  hypotheses  of  a  very 
general  character  concerning  the  curve. 

87.  Singular  lines.  Natural  boundaries.  We  shall  first  demonstrate 

a  preliminary  proposition.* 
Let  av  &2,  •  •  •,  «„,•••  and  cv  c2,  •  •  •,  cn,  •  •  •  be  two  sequences  of 

any  kind  of  terms,  the  second  of  which  is  such  that  2,cv  is  absolutely 
convergent  and  has  all  its  terms  different  from  zero.  Let  C  be  a 
circle  with  the  center  «0,  containing  none  of  the  points  af  in  its  interior 
and  passing  through  a  single  one  of  these  points ;  then  the  series 

(10) 

—  z 

*PoiNCARri,  Acta  Societatis  FennicsB,  Vol.  XIII,  1881;  GOURSAT,  Bulletin  des 
sciences  mathematiques,  2d  series,  Vol.  XI,  p.  109,  and  Vol.  XVII,  p.  247. 
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represents  an  analytic  function  in  the  circle  C  which  can  be  devel- 

oped in  a  series  of  powers  of  z  —  ZQ.  The  circle  of  convergence  of  this 
series  is  precisely  the  circle  C. 

We  can  clearly  suppose  that  ZQ  =  0,  for  if  we  change  z  to  ZQ  —  z', 
av  is  replaced  by  av  —  ZQ,  and  cv  does  not  change.  We  shall  also  sup- 

pose that  we  have  »x  =  R,  where  R  denotes  the  radius  of  the  circle  C, 

and  at\  >  R  for  i  >  1.  In  the  circle  C  the  general  term  cv/(av  —  z)  can 

be  developed  in  a  power  series,  and  that  series  has  (\cv\  //?)/(!  —  z/R) 
for  a  dominant  function,  as  is  easily  verified.  By  a  general  theorem 

demonstrated  above  (§  9),  the  series  2  cv\  being  convergent,  the  func- 
tion F(z)  can  be  developed  in  a  power  series  in  the  circle  C,  and  that 

series  can  be  obtained  by  adding  term  by  term  the  power  series  which 
represent  the  different  terms.  We  have,  then,  in  the  circle  C 

(10')       F(z)  =  AQ  +  Alz  +  A2z*+...+Anz»+...,      ^ 

Let  us  choose  an  integer  p  such  that  ̂ v  cv    shall  be  smaller  than v=p  +  l 

|eJ/2,  which  is  always  possible,  since  c1  is  not  zero  and  since  the 
series  2\cv\  is  convergent.  Having  chosen  the  integer  p  in  this 

way,  we  can  write  F(z)  =  F^z)  -f-  F^z),  where  we  have  set 

av  —  z  a,  —  z  a    —  z v=2 

F^z)  is  a  rational  function  which  has  only  poles  exterior  to  the 

circle  C  ;  it  is  therefore  developable  in  a  power  series  in  a  circle  C' 

with  a  radius  R'  >  R.  As  for  F2(«),  we  have 

(11)  F2(z)=BQ  +  BS  +  •  •  .  +  Bnz»  +  •  .  ., 
where 

7?    =     Cl     _L        CP+I      .    i         cP  +  2          i ° 

We  can  write  this  coefficient  again  in  the  form 

=P+i 

but  we  have,  by  hypothesis,  |  aja^  \  <  1,  and  the  absolute  value  of 
the  sum  of  the  series 

+  °°  / n  \n  +  l 

V  c  /^M 
3»'\Z) 
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is  less  than  |eJ/2,  by  the  method  of  choosing  the  integer  p.  The 

absolute  value  of  the  coefficient  Bn  is  therefore  between  c^  \  /2  Rn+l  and 
3|cJ/2  Rn+l  in  magnitude,  and  the  absolute  value  of  the  general  term 
of  the  series  (11)  lies  between  ( |cJ/2 R)\»/R \n  and  (3|cJ/2  R)\z/R  |n; 
that  series  is  therefore  divergent  if  z  >  R.  By  adding  to  the  series 

F2(z),  convergent  in  the  circle  with  the  radius  R,  a  series  F^z),  con- 

vergent in  a  circle  of  radius  R'  >  R}  it  is  clear  that  the  sum  F(z)  has 
the  circle  C  with  the  radius  R  for  its  circle  of  convergence ;  this 
proves  the  proposition  which  was  stated. 

Let  now  L  be  a  curve,  closed  or  not,  having  at  each  point  a  definite 
radius  of  curvature.  The  series  S<V  being  absolutely  convergent,  let 

us  suppose  that  the  points  of  the  sequence  av  a2,  •  •  >,  ai}  •  •  •  are  all 
on  the  curve  L  and  are  distributed  on  it  in  such  a  way  that  on  a 
finite  arc  of  this  curve  there  are  always  an  infinite  number  of  points 
of  that  sequence.  The  series 

(12)  F(*) 

is  convergent  for  every  point  ZQ  not  belonging  to  the  curve  Z,  and 
represents  an  analytic  function  in  the  neighborhood  of  that  point. 
To  prove  this  it  would  suffice  to  repeat  the  first  part  of  the  preced- 

ing proof,  taking  for  the  circle  C  any  circle  with  the  center  ZQ  and 
not  containing  any  of  the  points  at.  If  the  curve  L  is  not  closed, 
and  does  not  have  any  double  points,  the  series  (12)  represents  an 
analytic  function  in  the  whole  extent  of  the  plane  except  for  the 
points  of  the  curve  L.  We  cannot  conclude  from  this  that  the 
curve  L  is  a  singular  line ;  we  have  yet  to  assure  ourselves  that 
the  analytic  extension  of  F(z)  is  not  possible  across  any  portion 
of  L,  however  small  it  may  be.  To  prove  this  it  suffices  to  show  that 
the  circle  of  convergence  of  the  power  series  which  represents  F(z) 
in  the  neighborhood  of  any  point  ZQ  not  on  L  can  never  inclose  an 
arc  of  that  curve,  however  small  it  may  be.  Suppose  that  the  circle  C, 
with  the  center  z  ,  actually  incloses  an  arc  a  ft  of  the  curve  Z.  Let  us 
take  a  point  a{  on  this  arc  aj3,  and  on  the  normal  to  this  arc  at  ai  let 

us  take  a  point  2'  so  close  to  the  point  af  that  the  circle  Cf,  described 
about  the  point  z'  as  center  with  the  radius  z'  —  at\,  shall  lie  entirely 
in  the  interior  of  C  and  not  have  any  point  in  common  with  the 
arc  aft  other  than  the  point  a{  itself.  By  the  theorem  which  has  just 
been  demonstrated,  the  circle  Ci  is  the  circle  of  convergence  for  the 
power  series  which  represents  F(z)  in  the  neighborhood  of  the  point 

zf.  But  this  is  in  contradiction  to  the  general  properties  of  power 



IV,  §88]  NATURAL  BOUNDARIES.   CUTS  211 

series,  for  that  circle  of  convergence  cannot  be  smaller  than  the 
circle  with  the  center  z?  which  is  tangent  internally  to  the  circle  C. 

If  the  curve  L  is  closed,  the  series  (12)  represents  two  distinct 
analytic  functions.  One  of  these  exists  only  in  the  interior  of  the 
curve  L,  and  for  it  that  curve  is  a  natural  boundary ;  the  other 
function,  on  the  contrary,  exists  only  in  the  region  exterior  to  the 
curve  L  and  has  the  same  curve  as  a  natural  boundary.  Thus  the 
curve  L  is  a  natural  boundary  for  each  of  these  functions. 

Given  several  curves,  Llt  L^  -  •  •,  Lp,  closed  or  not,  it  will  be  pos- 
sible to  form  in  this  way  series  of  the  form  (12)  having  these  curves 

for  natural  boundaries ;  the  sum  of  these  series  will  have  all  these 
curves  for  natural  boundaries. 

88.  Examples.  Let  AB  be  a  segment  of  a  straight  line,  and  or,  /3  the  complex 
quantities  representing  the  extremities  A,B.  All  the  points  y  =  (ma  +  n/3)/(m  +  ri) , 
where  ra  and  n  are  two  positive  integers  varying  from  1  to  +  oo,  are  on  the  seg- 

ment AB,  and  on  a  finite  portion  of  this  segment  there  are  always  an  infinite 
number  of  points  of  that  kind,  since  the  point  y  divides  the  segment  AB  in  the 
ratio  m/n.  On  the  other  hand,  let  CTO,  „  be  the  general  term  of  an  absolutely 
convergent  double  series.  The  double  series *•<*)= 2) 

ma  +  n(3 

m  +  n 

represents  an  analytic  function  having  the  segment  AB  for  a  natural  boundary. 
We  can,  in  fact,  transform  this  series  into  a  simple  series  with  a  single  index 
in  an  infinite  number  of  ways.  It  is  clear  that  by  adding  several  series  of  this 
kind  it  will  be  possible  to  form  an  analytic  function  having  the  perimeter  of 
any  given  polygon  as  a  natural  boundary. 

Another  example,  in  which  the  curve  L  is  a  circle,  may  be  defined  as  follows : 
Let  a  be  a  positive  irrational  number,  and  let  v  be  a  positive  integer.  Let  us  put 

a  =  e2  iira,        av  =  av  =  e2  inva. 

Then  all  the  points  a"  are  distinct  and  are  situated  on  the  circle  C  of  unit  radius 
having  its  center  at  the  origin.  Moreover,  we  know  that  we  can  find  two  inte- 

gers m  and  n  such  that  the  difference  2ir(na  —  m)  will  be  less  in  absolute  value 
than  a  number  e,  however  small  e  be  taken. 

There  exist,  then,  powers  of  a  whose  angle  is  as  near  zero  as  we  wish,  and 
consequently  on  a  finite  arc  of  the  circumference  there  will  always  be  an  infinite 

number  of  points  a".  Let  us  next  put  cv  =  av/2v ;  the  series 

represents,   by  the  general   theorem,  an   analytic  function  in   the   circle  C 
which  has  the  whole  circumference   of  this  circle  for  a  natural  boundary. 
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Developing  each  term  in  powers  of  z,  we  obtain  for  the  development  of  F(z)  the 

power  series 
Z  22  yn 

(13)  F(z)  =  1  +  —  *  —  +  —  -  -  +  •  •  •  +  —  *  -  +  •  •  •  . 2a-12a2-l  2an-l 

It  is  easy  to  prove  directly  that  the  function  represented  by  this  power  series 
cannot  be  extended  analytically  beyond  the  circle  C  ;  for  if  we  add  to  it  the 

series  for  1/(1  —  z),  there  results 

or 

2  2  1-z 

Changing  in  this  relation  z  to  az,  then  to  a2z,  •  •  • ,  we  find  the  general  relation 

(14)     F(a»z)  = 2»  2»(l-z) 

which  shows  that  the  difference  2nF(anz)  —  F(z)  is  a  rational  function  0  (z)  hav- 

ing the  n  poles  of  the  first  order  1,  I/a,  •  •  • ,  I/a"-1. 
The  result  (14)  has  been  established  on  the  supposition  that  we  have  |z|<l 

and  |  a  |  =  1.  If  the  angle  of  a  is  commensurable  with  TT,  the  equality  (14)  shows 
that  F(z)  is  a  rational  function ;  to  show  this  it  would  suffice  to  take  for  n  an 

integer  such  that  an  =  1.  If  the  angle  of  a  is  incommensurable  with  ir,  it  is  im- 
possible for  the  function  F(z)  to  be  analytic  on  a  finite  arc  AB  of  the  circum- 

ference, however  small  it  may  be.  For  let  a~P  and  an~P  be  two  points  on  the 
arc  AB(n>p).  The  numbers  n  and  p  having  been  chosen  in  this  way,  let  us 

suppose  thatz  is  made  to  approach  a~P;  anz  will  approach  a*-**,  and  the  two 
functions  F(z)  and  F(anz)  would  approach  finite  limits  if  F(z)  were  analytic 
on  the  arc  AB.  Now  the  relation  (14)  shows  that  this  is  impossible,  since  the 

function  0  (z)  has  the  pole  a~P. 
An  analogous  method  is  applicable,  as  Hadamard  has  shown,  to  the  series 

considered  by  Weierstrass, 

(15)  F(z) 

where  a  is  a  positive  integer  >  1  and  &  is  a  constant  whose  absolute  value  is  less 

than  one.  This  series  is  convergent  if  |z|  is  not  greater  than  unity,  and  diver- 
gent if  |  z  |  is  greater  than  unity.  The  circle  C  with  a  unit  radius  is  therefore  the 

circle  of  convergence.  The  circumference  is  a  natural  boundary  for  the  func- 
tion F(z).  For  suppose  that  there  are  no  singular  points  of  the  function  on  a 

finite  arc  aft  of  the  circumference.  If  we  replace  the  variable  z  in  F(z)  by 

ze2M7rA?ft,  where  k  and  h  are  two  positive  integers  and  c  a  divisor  of  a,  all  the 
terms  of  the  series  (15)  after  the  term  of  the  rank  h  are  unchanged,  and  the 

difference  F(z)  —  F(zezkni'<*)  is  a  polynomial.  Neither  would  the  function  F(z) 
have  any  singular  points  on  the  arc  akfik,  which  is  derived  from  the  arc  aft  by  a 

rotation  through  an  angle  2  k7r/ch  around  the  origin.  Let  us  take  h  large  enough 

to  make  2  ir/ch  smaller  than  the  arc  a/3  ;  taking  successively  k  =  1,  2,  •  -  • ,  c*,  it 
is  clear  that  the  arcs  a^j,  a2/32,  •  •  •  cover  the  circumference  completely.  The 
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function  F(z)  would  therefore  not  have  any  singular  points  on  the  circumfer- 
ence, which  is  absurd  (§  84). 

This  example  presents  an  interesting  peculiarity  ;  the  series  (15)  is  absolutely 
and  uniformly  convergent  along  the  circumference  of  C.  It  represents,  then,  a 

continuous  function  of  the  angle  9  along  this  circle.* 

89.  Singularities  of  analytical  expressions.  Every  analytical  expres- 
sion (such  as  a  series  whose  different  terms  are  functions  of  a  vari- 
able 2,  or  a  definite  integral  in  which  that  variable  appears  as  a 

parameter)  represents,  under  certain  conditions,  an  analytic  function 
in  the  neighborhood  of  each  of  the  values  of  z  for  which  it  has  a 

meaning.  If  the  set  of  these  values  of  z  covers  completely  a  connected 
region  A  of  the  plane,  the  expression  considered  represents  an 
analytic  function  of  z  in  that  region  A  ;  but  if  the  set  of  these  values 

of  z  forms  two  or  more  distinct  and  separated  regions,  it  may  happen 
that  the  analytical  expression  considered  represents  entirely  distinct 

functions  in  these  different  regions.  We  have  already  met  an  exam- 
ple of  this  in  §  38.  There  we  saw  how  we  could  form  a  series  of 

rational  terms,  convergent  in  two  curvilinear  triangles  PQR,  P'Q'R' 
(Fig.  16),  whose  value  is  equal  to  a  given  analytic  function  /(z)  in 

the  triangle  PQR  and  to  zero  in  the  triangle  P'Q'R'.  By  adding  two 
such  series  we  shall  obtain  a  series  of  rational  terms  whose  value  is 

equal  to  f(z)  in  the  triangle  PQR  and  to  another  analytic  function 

<f>  (z)  in  the  triangle  P'Q'R'.  These  two  functions  /(«)  and  <f>  (z)  being 

*  Fredholm  has  shown,  similarly,  that  the  function  represented  by  the  series 

where  a  is  a  positive  quantity  less  than  one,  cannot  be  extended  beyond  the  circle  of 
convergence  (Comptes  rendus,  March  24,  1890).  This  example  leads  to  a  result  which 
is  worthy  of  mention.  On  the  circle  of  unit  radius  the  series  is  convergent  and  the 
value 

F(0)  =  S  a»[cos  (n?0)  +  i  sin  (n*0)] 

is  a  continuous  function  of  the  angle  0  which  has  an  infinite  number  of  derivatives. 

This  function  F(9)  cannot,  however,  be  developed  in  a  Taylor's  series  in  any  interval, 
however  small  it  may  be.  Suppose  that  in  the  interval  (#o  -a,  OQ  +  a)  we  actually 
have 

The  series  on  the  right  represents  an  analytic  function  of  the  complex  variable  6  in 
the  circle  c  with  the  radius  a  described  with  the  point  #0  for  center.  To  this  circle  c 
corresponds,  by  means  of  the  relation  z  —  e0{,  a  closed  region  A  of  the  plane  of  the  vari- 

able z  containing  the  arc  7  of  the  unit  circle  extending  from  the  point  with  the  angle 

OQ  -  (X  to  the  point  with  the  angle  #0  +  a.  There  would  exist,  then,  in  this  region  A 
an  analytic  function  of  z  coinciding  with  the  value  of  the  series  Sanzw2  along  7  and  also 
in  the  part  of  A  within  the  unit  circle;  this  is  impossible,  since  we  cannot  extend  the 
sum  of  the  series  beyond  the  circle. 
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arbitrary,  it  is  clear  that  the  value  of  the  series  in  the  triangle  P'Q'R' 
will  in  general  bear  no  relation  to  the  analytic  extension  of  the  value 
of  that  series  in  the  triangle  PQR. 

The  following  is  another  very  simple  example,  analogous  to  an 
example  pointed  out  by  Schroder  and  by  Tannery.  The  expression 

(1  —  2n)/(l  +  zn),  where  n  is  a  positive  integer  which  increases  in- 
definitely, approaches  the  limit  +  1  if  z  <  1,  and  the  limit  —  1 

if  z  >  1.  If  «=1,  this  expression  has  no  limit  except  for  «  =  1. 
Now  the  sum  of  the  first  n  terms  of  the  series 

1-Z s 

is  equal  to  the  preceding  expression.  This  series  is  therefore  conver- 
gent if  z  |  is  different  from  unity.  Hence  it  represents  -f-  1  in  the 

interior  of  the  circle  C  with  the  radius  unity  about  the  origin  as 

center,  and  —  1  at  all  points  outside  of  this  circle.  Now  let  f(z), 
<f>(z)  be  any  two  analytic  functions  whatever;  for  example,  two 
integral  functions.  Then  the  expression 

*(*)=  \  [/<*>+  *(*)]+  1  «(*)[/(«)-  *(*)] 
is  equal  to  /(«)  in  the  interior  of  C,  and  to  <f>  (z)  in  the  region  ex- 

terior to  C.  The  circumference  itself  is  a  cut  for  that  expression,  but 
of  a  quite  different  nature  from  the  natural  boundaries  which  we 

have  just  mentioned.  The  function  which  is  equal  to  \ff(z)  in  the 
interior  of  C  can  be  extended  analytically  beyond  C  ;  and,  similarly, 
the  function  which  is  equal  to  if/  (z)  outside  of  C  can  be  extended 
analytically  into  the  interior. 

Analogous  singularities  present  themselves  in  the  case  of  functions 
represented  by  definite  integrals.  The  simplest  example  is  furnished 

by  Cauchy's  integral  ;  if  /(«)  is  a  function  analytic  within  a  closed 
curve  F  and  also  on  that  curve  itself,  the  integral 

x 

represents  f(x)  if  the  point  x  is  in  the  interior  of  F.  The  same  inte- 
gral is  zero  if  the  point  x  is  outside  of  the  curve  F,  for  the  function 

/(«)/(«  —  x)  is  then  analytic  inside  of  the  curve.  Here  again  the 
curve  F  is  not  a  natural  boundary  for  the  definite  integral.  Similarly, 

the  definite  integral  J^ctn  [(«  —  x)/2~]dz  has  the  real  axis  as  a  cut ; 
it  is  equal  to  +  2  iri  or  —  2  Tri,  according  as  x  is  above  or  below  that 
cut  (§  45). 



IV,  §90]  NATURAL  BOUNDARIES.   CUTS  215 

90.  Hermite's  formula.  An  interesting  result  due  to  Hermite  can  be  brought 
into  relation  with  the  preceding  discussion.*  Let  F(t,  z),  G  (t,  z)  be  two  analytic 
functions  of  each  of  the  variables  t  and  z  ;  for  example,  two  polynomials  or  two 

power  series  convergent  for  all  the  values  of  these  two  variables.  Then  the 
definite  integral 

(16) 

taken  over  the  segment  of  a  straight  line  which  joins  the  two  points  a  and  /3, 
represents,  as  we  shall  see  later  (§  95),  an  analytic  function  of  z  except  for  the 

values  of  z  which  are  roots  of  the  equation  G  (t,  z)  —  0,  where  t  is  the  complex 
quantity  corresponding  to  a  point  on  the  segment  a/3.  This  equation  therefore 

determines  a  finite  or  an  infinite  number  of  curves  for  which  the  integral  4>  (z) 
ceases  to  have  a  meaning.  Let  AB  be  one  of  these  curves  not  having  any  double 

points.  In  order  to  consider  a  very  precise  case,  we' shall  suppose  that  when  t 
describes  the  segment  a/3,  one  of  the  roots  of  the  equation  G  (t,  z)  =  0  describes 
the  arc  AB,  and  that  all  the  other  roots  of  the  same  equation,  if  there  are  any, 
remain  outside  of  a  suitably  chosen  closed  curve  surrounding  the  arc  AB,  so 

that  the  segment  a/3  and  the  arc  AB  correspond  to  each  other  point  to  point. 
The  integral  (16)  has  no  meaning  when  z  falls  upon  the  arc  AB ;  we  wish  to 

calculate  the  difference  between  the  values  of  the  function  f>  (z)  at  two  points 

N,  N',  lying  on  opposite  sides  of  the  arc  AB,  whose  distances  from  a  fixed  point 
M  of  the  arc  AB  are  infinitesimal.  Let  f,  £  +  e,  f  +  e  be  the  three  values  of  z 

corresponding  to  the  three  points  M, 

N,  N'  respectively.  To  these  three 
points  correspond  in  the  plane  of  the 
variable  t,  by  means  of  the  equation 

G  (t,  z)  =  0,  the  point  m  on  a/3,  and 

the  two  points  n,  n'  on  opposite  sides 
of  a/3  at  infinitesimal  distances  from 

m.  Let  6,  6  +  77,  6  +  i\  be  the  cor- 
responding values  of  t.  In  the  neighborhood  of  the  segment  a/3  let  us  take 

a  point  7  so  near  a/3  that  the  equation  G  (t,  f  +  e)  =  0  has  no  other  root 
than  t  =  0  +  TJ  in  the  interior  of  the  triangle  a/37  (Fig.  35).  The  function 

py^  f+  e)/£  (^  f  -|-  e)  of  the  variable  t  has  but  a  single  pole  0  +  77  in  the  interior 
of  the  triangle  a/37,  and,  according  to  the  hypotheses  made  above,  this  pole 

is  a  simple  pole.  Applying  Cauchy's  theorem,  we  have,  then,  the  relation 

1     /  fli 

a    G(t,  f+e)~"    
'  J»    G(t,  f+e) 

(17) r t/v 

f+e) 

The  two  integrals  ff,  fya  are  of  the  same  form  as  4>  (z) ;  they  represent  re- 
spectively two  functions,  4>1(z),  *2(z),  which  are  analytic  so  long  as  the  variable 

is  not  situated  upon  certain  curves.  Let  AC  and  BC  be  the  curves  which  cor- 
respond to  the  two  segments  a7  and  fty  of  the  t  plane,  and  which  are  at 

infinitesimal  distances  from  the  cut  AB  associated  with  4>(z).  Let  us  now  give 

*  HERMITE,  Sur  quelques  points  de  la  theorie  des  fonctions  (Crelle's  Journal, 
Vol.  XCI). 
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the  value  f  +  e'  to  z  ;  the  corresponding  value  of  t  is  0  +  i?',  represented  by  the 
point  n',  and  the  function  F(t,  f  +  e')/G(t,  $  +  e')  of  £  is  analytic  in  the  interior 
of  the  triangle  afty.  We  have,  then,  the  relation 

(18) 

subtracting  the  two  f  ormulse  (17)  and  (18)  term  by  term,  we  can  write  the  result 
as  follows : 

ri_$(f4.  6^4-  r*.(f4-e^  — *,(f+eTI 
-  *?,  r+o 

But  since  neither  of  the  functions  *1(z),  $2(z)  has  the  line  AB  as  a  cut, 

are  analytic  in  the  neighborhood  of  the  point  z  =  f ,  and  by  making  e  and  e'  ap- 
proach zero  we  obtain  at  the  limit  the  difference  of  the  values  of  <£  (z)  in  two 

points  infinitely  near  each  other  on  opposite  sides  of  AB.  We  shall  write  the 
result  in  the  abridged  form 

(19) 

dO 

this  is  Hermite's  formula.  It  is  seen  that  it  is  very  simply  related  to  Cauchy's 
theorem.*  The  demonstration  indicates  clearly  how  we  must  take  the  points  N 

and  N' ;  the  point  N(?+  e)  must  be  such  that  an  observer  describing  the  segment 
aft  has  the  corresponding  point  6  +  rj  on  his  left. 

It  is  to  be  noticed  that  the  arc  AB  is  not  a  natural  boundary  for  the 

function  $(z).  In  the  neighborhood  of  the  point  N'  we  can  replace  <£(z)  by 
~~  [*i(z)  +  *a(z)]  according  to  the  relation  (18).  Now  the  sum  ̂ (z)  +  4>2  (z)  is 
an  analytic  function  in  the  curvilinear  triangle  ACB  and  on  the  arc  AB  itself, 

as  well  as  in  the  neighborhood  of  N'.  Therefore  we  can  make  the  variable  z 
cross  the  arc  AB  at  any  one  of  its  points  except  the  extremities  A  and  B 
without  meeting  any  obstacle  to  the  analytic  extension.  The  same  thing  would 
be  true  if  we  were  to  make  the  variable  z  cross  the  arc  AB  in  the  opposite  sense. 

Example.  Let  us  consider  the  integral 

(20)  $(z) 

where  the  integral  is  to  be  taken  over  a  segment  AB  of  the  real  axis,  and  where 
f(t)  denotes  an  analytic  function  along  that  segment  AB.  Let  us  represent  z 

on  the  same  plane  as  t.  The  function  <£  (z)  is  an  analytic  function  of  z  in  the 
neighborhood  of  every  point  not  located  on  the  segment  AB  itself,  which  is  a 

cut  for  the  integral.  The  difference  $(N)  —  &(N')  is  here  equal  to  ±  27ri/(f), 
where  f  is  a  point  of  the  segment  AB.  When  the  variable  z  crosses  the  line  AB, 

the  analytic  extension  of  <£(z)  is  represented  by  4>(z)  ±  2irif(z). 
This  example  gives  rise  to  an  important  observation.  The  function  <£(z)  is 

still  an  analytic  function  of  z,  even  when  f(t)  is  not  an  analytic  function  of  i, 
provided  that  f(t)  is  continuous  between  a  and  ft  (§  33).  But  in  this  case  the 
preceding  reasoning  no  longer  applies,  and  the  segment  AB  is  in  general  a 
natural  boundary  for  the  function  4>(z). 

*  GOURSAT,  Sur  un  theoreme  de  M.  Hermite  (Acta  mathematica,  Vol.  I). 
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EXERCISES 

1.  Find  the  lines  of  discontinuity  for  the  definite  integrals 

zdt  rb    dt 

+lZ 
taken  along  the  straight  line  which  joins  the  points  (0,  1)  and  (a,  6)  respec- 

tively ;  determine  the  value  of  these  integrals  for  a  point  z  not  located  on  these 
boundaries. 

2.  Consider  four  circles  with  radii  l/~v/2,  having  for  centers  the  points  +  1, 
-M,  —  1,  —  i.   The  region  exterior  to  these  four  circles  is  composed  of  a  finite 
region  Al  containing  the  origin,  and  of  an  infinite  region  A2.  Construct,  by  the 
method  of  §  38,  a  series  of  rational  functions  which  converge  in  these  regions, 

and  whose  value  in  Al  is  equal  to  1  and  in  A2  to  0.   Verify  the  result  by  finding 
the  sum  of  the  series  obtained. 

3.  Treat  the  same  questions,  considering  the  two  regions  interior  to  the  circle 
of  radius  2  with  the  center  for  origin,  and  exterior  to  the  two  circles  of  radius  1 

with  centers  at  the  points  +  1  and  —  1  respectively. 

[APPELL,  Acta  mathematica^  Vol.  I.] 
4.  The  definite  integral 

tasinz 

taken  along  the  real  axis,  has  for  cuts  the  straight  lines  x  =  (2  k  +  1)  TT,  where  k 

is  an  integer.  Let  f  =  (2  k  +  1)  TT  +  i£  be  a  point  on  one  of  these  cuts.  The  dif- 
ference in  the  values  of  the  integral  in  two  points  infinitely  close  to  that  point 

on  each  side  of  the  cut  is  equal  to  ̂ (e^  +  e-^). 

[HERMITE,  Crelle's  Journal,  Vol.  XCI.] 
5.  The  two  definite  integrals 

/»  +  oo  pi(t  —  Z)  /»  +  oo  Q—  i(t  —  Z) 

J  =  - — -dt,       J0  =  — — —  dt, 
V  —  OO  ̂    ~~~    %  **  —  00  ̂     *"~ "     ̂  

taken  along  the  real  axis,  have  the  axis  of  reals  for  a  cut  in  the  plane  of  the 

variable  z.  Above  the  axis  we  have  J  =  2iri,  J0  =  0,  and  below  we  have  J  =  0, 

JQ  =  —  2  Tri.  From  these  results  deduce  the  values  of  the  definite  integrals 
r 
I 
J 

elt  r  +  ca  cos  (t  —  z)  , 
dt,  —!-dt, _«,    £  —  z  J-o,        t  —  z 

oo   p —  it 

/+  OO     g —  it 
 f>  H 

,     t— Z       '  J_ 

dt. t-z 

[HERMITE,  Crelle's  Journal,  Vol.  XCI.] 

6.  Establish  by  means  of  cuts  the  formula  (Chap.  II,  Ex.  15) 
eat  TT 

dt  = 

Oonsider  the  integral 
+  oo     pa  (t  +  z) 

-oo   1  +  e*          sin  air 

[HERMITE,  Crelle's  Journal,  Vol.  XCI.] 

/» 

=  \ 

J- 
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which  has  all  the  straight  lines  y  =  (2  k  +  1)  ir  for  cuts,  and  which  remains  con- 
stant in  the  strip  included  between  two  consecutive  cuts.   Then  establish  the 

relations 

3>  (z  +  2  TTI)  =  $  (z)  +  2  Trie™,        3>  (z  +  2  m)  =  e2  "«»'*  (z), 
where  z  and  z  +  2  TTI  are  two  points  separated  by  the  cut  y  =  TT.) 

7*.  Let/(z)  be  an  analytic  function  in  the  neighborhood  of  the  origin,  so  that 
/(z)  =  Sanzn.  Denote  by  F(z)  =  l£anzn/n  \  the  associated  integral  function.  It  is 
easily  proved  that  we  have 

(1)  F(az}  =  —   C    ̂-e«du, 2TTiJ(C)     fJ. 

where  the  integral  is  taken  along  a  closed  curve  C,  including  the  origin  within 
it,  inside  of  which  /(z)  is  analytic.   From  this  it  follows  that 

/» i  1      /* f(u}       /*  ̂  d(~   i) 
(2)  |    e~aF(az)da  =     /  -^- -du  \    e  V«     j^a, Jo  2m  Jc  u        Jo 

where  I  denotes  a  real  and  positive  number. 

If  the  real  part  of  z/u  remains  less  than  1  —  e  (where  e  >  0)  when  u  describes 
the  curve  C,  the  integral /„ - 

e  V*      Ida 
o 

approaches  u/(u  —  z)  uniformly  as  I  becomes  infinite,  and  the  formula  (2)  be- 
comes at  the  limit 

(3)  r  +  V«F(aZ)d«  =  JL  f    /W*= Jo  2iriJC    u-z o  2iri(C)  u-z 

This  result  is  applicable  to  all  the  points  within  the  negative  pedal  curve  of  C. 

[BOREL,  Lemons  sur  les  series  divergentes.] 

8*.  Let/(z)  =  2anzn,  0  (z)  =  ~Sbnzn  be  two  power  series  whose  radii  of  conver- 
gence are  r  and  p  respectively.   The  series 

has  a  radius  of  convergence  at  least  equal  to  rp,  and  the  function  \f/  (z)  has  no 
other  singular  points  than  those  which  are  obtained  by  multiplying  the  quanti- 

ties corresponding  to  the  different  singular  points  of  /(z)  by  those  corresponding 
to  the  singular  points  of  0  (z) . 

[HADAMARD,  Acta  mathematica,  Vol.  XXIII,  p.  55.] 



CHAPTER  V 

ANALYTIC  FUNCTIONS  OF  SEVERAL  VARIABLES 

I.  GENERAL  PROPERTIES 

In  this  chapter  we  shall  discuss  analytic  functions  of  several 

independent  complex  variables.  For  simplicity,  we  shall  suppose 
that  there  are  two  variables  only,  but  it  is  easy  to  extend  the  results 

to  functions  of  any  number  of  variables  whatever. 

91.  Definitions.  Let  z  =  u  -+•  vi,  z'  =  w  -\-  ti  be  two  independent 
complex  variables  ;  every  other  complex  quantity  Z  whose  value 

depends  upon  the  values  of  z  and  2'  can  be  said  to  be  a  function  of 
the  two  variables  z  and  2'.  Let  us  represent  the  values  of  these  two 

variables  z  and  z'  by  the  two  points  with  the  coordinates  (u,  v~)  and 
(w,  £)  in  two  systems  of  rectangular  axes  situated  in  two  planes  P,  P', 
and  let  A,  A'  be  any  two  portions  of  these  two  planes.  We  shall  say 

that  a  function  Z  =  f(z,  z')  is  analytic  in  the  two  regions  A,  A'  if 
to  every  system  of  two  points  z,  z',  taken  respectively  in  the  regions 

A,  A',  corresponds  a  definite  value  of  f(z,  z'),  varying  continuously 
with  z  and  z',  and  if  each  of  the  quotients 

/(*  +  &,*•)-/(*,*')          /(«,*'  +  *)-/(*,*') 
h  k 

approaches  a  definite  limit  when,  z  and  z'  remaining  fixed,  the 
absolute  values  of  h  and  k  approach  zero.  These  limits  are  the 

partial  derivatives  of  the  function  f(z,  z'),  and  they  are  represented 
by  the  same  notation  as  in  the  case  of  real  variables. 

Let  us  separate  in  f(zy  £f)  the  real  part  and  the  coefficient  of  i, 
f(z,  z')  =  X  -f  Yi  ;  X  and  Y  are  real  functions  of  the  four  independ- 

ent real  variables  u,  v,  w,  t,  satisfying  the  four  relations 

__  _       _  ._  __    __ 
du       dv  dv  du          dw       dt  dt  dw 

the  significance  of  which  is  evident.*    We  can  eliminate  Y  in  six 

*  If  z  and  z'  are  analytic  functions  of  another  variable  x,  these  relations  enable  us 
to  demonstrate  easily  that  the  derivative  of  /(z,  z')  with  respect  to  x  is  obtained  by  the 
usual  rule  which  gives  the  derivative  of  a  function  of  other  functions.  The  formulae 
of  the  differential  calculus,  in  particular  those  for  the  change  of  variables,  apply, 
therefore,  to  analytic  functions  of  complex  variables. 

219 
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different  ways  by  passing  to  derivatives  of  the  second  order,  but 
the  six  relations  thus  obtained  reduce  to  only  four : 

(1) 
=  0  i  —  Q dudt      dvdw  dudw      dvdt 

i      :m    _  ft  I_±l     4.   :_JZ.    _  ft 
r.     t,  oo      —  v)  00^0,9      —  V. 
<7%J          8tr  ^wj          <7r 

Up  to  the  present  time  little  use  has  been  made  of  these  relations 
for  the  study  of  analytic  functions  of  two  variables.  One  reason  for 
this  is  that  they  are  too  numerous  to  be  convenient. 

92.  Associated  circles  of  convergence.  The  properties  of  power  series 

in  two  real  variables  (I,  §§  190-192,  2d  ed.  ;  §§  185-186,  1st  ed.)  are 
easily  extended  to  the  case  where  the  coefficients  and  the  variables 
have  complex  values.  Let 

(2)  F(z,z')=Samnzmz'» 

be  a  double  series  with  coefficients  of  any  kind,  and  let 

We  have  seen  (I,  §  190,  2d  ed.)  that  there  exist,  in  general,  an 

infinite  number  of  systems  of  two  positive  numbers  R,  R'  such  that 
the  series  of  absolute  values 

(3) 

is  convergent  if  we  have  at  the  same  time  Z  <R  and  Z'<R',  and 
divergent  if  we  have  Z>R  and  Z'>R'.  Let  C  be  the  circle  de- 

scribed in  the  plane  of  the  variable  z  about  the  origin  as  center  with 

the  radius  R  ;  similarly,  let  C'  be  the  circle  described  in  the  plane  of 
the  variable  z'  about  the  point  z'  ==  0  as  center  with  the  radius  R' 
(Fig.  36).  The  double  series  (2)  is  absolutely  convergent  when  the 

variables  z  and  z'  are  respectively  in  the  interior  of  the  two  circles  C 

and  C',  and  divergent  when  these  variables  are  respectively  exterior  to 

these  two  circles  (I,  §  191,  2d  ed.  ;  §  185,  1st  ed.).  The  circles  C,  C' 
are  said  to  form  a  system  of  associated  circles  of  convergence.  This 

set  of  two  circles  plays  the  same  part  as  the  circle  of  convergence 
for  a  power  series  in  one  variable,  but  in  place  of  a  single  circle 

there  is  an  infinite  number  of  systems  of  associated  circles  for  a 
power  series  in  two  variables.  For  example,  the  series 

mini 
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is  absolutely  convergent  if  |«|  +  |«'|<1,  and  in  that  case  only. 
Every  pair  of  circles  C,  C"  whose  radii  R,  R1  satisfy  the  relation 
R  4-  R'  =  1  is  a  system  of  associated  circles.  It  may  happen  that  we 
can  limit  ourselves  to  the  consideration  of  a  single  system  of  asso- 

ciated circles ;  thus,  the  series  ̂ zmz'n  is  convergent  only  if  we  have 
at  the  same  time  z  <  1  and  \z'  <  1. 

Let  Cl  be  a  circle  of  radius  R^<R  concentric  with  C ;  similarly, 

let  C{  be  a  circle  of  radius  R{<R'  concentric  with  C';  when  the 
variables  z  and  z1  remain  within  the  circles  Cl  and  C{  respectively, 

FIG.  36 

the  series  (2)  is  uniformly  convergent  (see  I,  §  191,  2d  ed. ;  §  185, 
1st  ed.)  and  the  sum  of  the  series  is  therefore  a  continuous  function 

F(z,  z')  of  the  two  variables  z}  z'  in  the  interior  of  the  two  circles 
C  and  C'. 

Differentiating  the  series  (2)  term  by  term  with  respect  to  the 

variable  z,  for  example,  the  new  series  obtained,  ̂ tmamnzm~1z'n)  is  again 
absolutely  convergent  when  z  and  «'  remain  in  the  two  circles  C  and 

C'  respectively,  and  its  sum  is  the  derivative  dF/dz  of  F(z,  z')  with 
respect  to  z.  The  proof  is  similar  in  all  respects  to  the  one  which  has 

been  given  for  real  variables  (I,  §  191,  2d  ed. ;  §  185,  1st  ed.).  Simi- 

larly, F(z,  z')  has  a  partial  derivative  dF/dz'  with  respect  to  z',  which 
is  represented  by  the  double  series  obtained  by  differentiating  the 

series  (2)  term  by  term  with  respect  to  z'.  The  function  F(z,  z')  is 
therefore  an  analytic  function  of  the  two  variables  «,  z'  in  the  pre- 

ceding region.  The  same  thing  is  evidently  true  of  the  two  deriva- 

tives dF/dz,  dF/dz',  and  therefore  F(z,  z')  can  be  differentiated  term 
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[V,  §  92 by  term  any  number  of  times ;  all  its  partial  derivatives  are  also 

analytic  functions. 
Let  us  take  any  point  z  of  absolute  value  r  in  the  interior  of  C,  and 

from  this  point  as  center  let  us  describe  a  circle  c  with  radius  R  —  r 

tangent  internally  to  the  circle  C.  In  the  same  way  let  z'  be  any  point 
of  absolute  value  r'  <  R',  and  c'  the  circle  with  the  point  z'  as  center 
and  R'  —  r'  as  radius.  Finally,  let  z  -\-  h  and  z'  +  k  be  any  two  points 
taken  in  the  circles  c  and  c'  respectively,  so  that  we  have 

\z\  +  \h\<R,         \z'\  +  \k\<R'. 

If  we  replace  z  and  z'  in  the  series  (2)  by  z  -f-  h  and  z'  +  k,  we  can 
develop  each  term  in  a  series  proceeding  according  to  powers  of  h 
and  k,  and  the  multiple  series  thus  obtained  is  absolutely  convergent. 

Arranging  the  series  according  to  powers  of  h  and  k,  we  obtain  the 

Taylor  expansion 

F(Z  +  A,  *' 
m    n 

93.  Double  integrals.  When  we  undertake  to  extend  to  functions 

of  several  complex  variables  the  general  theorems  which  Cauchy 
deduced  from  the  consideration  of  definite  integrals  taken  between 

imaginary  limits,  we  encounter  difficulties  which  have  been  com- 

pletely elucidated  by  Poincare.*  We  shall  study  here  only  a  very 

0 u O 

FIG.  37 

simple  particular  case,  which  will,  however,  suffice  for  our  subse- 

quent developments.  Let  f(z,  z')  be  an  analytic  function  when  the 

variables  z,  z'  remain  within  the  two  regions  A,  A'  respectively. 

Let  us  consider  a  curve  ab  lying  in  A  (Fig.  37)  and  a  curve  a'b' 
in  A',  and  let  us  divide  each  of  these  curves  into  smaller  arcs  by 
any  number  of  points  of  division.  Let  ZQ,  zl}  z2,  •  •  •,  « fc_i, 

Z 

*  POINCARE,  Sur  ks  residus  des  integrates  doubles  (Acta  mathematica,  Vol.  IX). 
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be  the  points  of  division  of  ab,  where  «0  and  Z  coincide  with  a  and  b, 

and  let  «J,  «J,  z%,  •  .  .,  ̂ -D  *A>  •  •  •>  *m-i>  ̂ '  ̂ e  the  points  of  division 

of  a'b',  where  z'Q  and  Z1  coincide  with  a1  and  b1 '.  The  sum 

=1   A=l 

taken  with  respect  to  the  two  indices,  approaches  a  limit,  when  the 

two  numbers  m  and  n  become  infinite,  in  such  a  way  that  the  abso- 

lute values  3*  —  2|,._i|  and  \z'h  —  zh-\  approach  zero.  Let  f(z,  z') 
=  X  -f-  Yi,  where  A'  and  Y  are  real  functions  of  the  four  variables 

ic,  v,  w,  t  ;  and  let  us  put  zk  =  uk  -f-  vki,  z'h  =  wh  -+-  £A£.  The  general 
term  of  the  sum  S  can  be  written  in  the  form 

X  [i(k  -  uk_i  +  i(vk  -  vk_1)~]  [wh  -  wh_i  +  i(th  -  *A_!)], 

and  if  we  cany  out  the  indicated  multiplication,  we  have  eight 
partial  products.  Let  us  show,  for  example,  that  the  sum  of  the 
partial  products, 

approaches  a  limit.  We  shall  suppose,  as  is  the  case  in  the  figure, 
that  the  curve  ab  is  met  in  only  one  point  by  a  parallel  to  the  axis  Ov, 

and,  similarly,  that  a  parallel  to  the  axis  Ot  meets  the  curve  a'b'  in  at 
most  one  point.  Let  v  =  <j>(u\  t  =  \j/(w)  be  the  equations  of  these 
two  curves,  UQ  and  U  the  limits  between  which  u  varies,  and  WQ  and 
W  the  limits  between  which  w  varies.  If  we  replace  the  variables  v 

and  t  in  X  by  <f>(u~)  and  ̂ (w)  respectively,  it  becomes  a  continuous 
function  P  (u,  w)  of  the  variables  u  and  w,  and  the  sum  (6)  can  again 
be  written  in  the  form 

k=l  h=l 

As  m  and  n  become  infinite,  this  sum  has  for  its  limit  the  double 

integral  Jj7'(w,  w)dudw  extended  over  the  rectangle  bounded  by  the 
straight  lines  u  =  UQ,  u  =  U,  w  =  wQ9  w  =  W. 

This  double  integral  can  also  be  expressed  in  the  form 

f*  U  s*W 
I     du  I     P(u, 
Jun  Jwn 
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or  again,  by  introducing  line  integrals,  in  the  form 

(7)  I     du  I      X(u,  v;  w,  f)dw. 
J(ab)        J(a'b') 

In  this  last  expression  we  suppose  that  u  and  v  are  the  coordinates 

of  any  point  of  the  arc  ab,  and  w,  t  the  coordinates  of  any  point  of 

the  arc  a'b'.  The  point  (u,  v)  being  supposed  fixed,  the  point  (w,  t) 

is  made  to  describe  the  arc  a'b',  and  the  line  integral  fXdw  is  taken 
along  a'b'.  The  result  is  a  function  of  u,  v,  say  R  (u,  v) ;  we  then 
calculate  the  line  integral /.R  (w,  i>)  du  along  the  arc  ab. 

The  last  expression  (7)  obtained  for  the  limit  of  the  sum  (6)  is 

applicable  whatever  may  be  the  paths  ab  and  a'b'.  It  suffices  to  break 

up  the  arcs  ab  and  a'b'  (as  we  have  done  repeatedly  before)  into 
arcs  small  enough  to  satisfy  the  previous  requirements,  to  associate 

in  all  possible  ways  a  portion  of  ab  with  a  portion  of  a'b',  and  then 
to  add  the  results.  Proceeding  in  this  way  with  all  the  sums  of  par- 

tial products  similar  to  the  sum  (6),  we  see  that  S  has  for  its  limit 

the  sum  of  eight  double  integrals  analogous  to  the  integral  (7). 

Representing  that  limit  by  ffF(z,  z')dzdz',  we  have  the  equality 

\\  F(*,  z')dzdz'  =         I     du  \      Xdw  -       \     dv  \      Xdt 
J  J  J(ab)       J(a'b'y  «/(ofe)       J(a'b') 

i  du  i     Ydt   -     I     dv  I      Ydw 
/o\    J  J(ab)       J(a'b')  J(ab)      J  (a'b') 

+  i  I     du  I      Ydw  —  i  I     dv  I       Ydt 
J(ab)       J(a'b')  J(ab)       J(a'b') 

+  i  I     du  I      Xdt   +  i  I     dv  I      Xdw, 
J(ab)       J(a'b')  J(ab)       J  (a'b') 

which  can  be  written  in  an  abridged  form, 

flF(z,  z')dzdz'  =  I     (du  +  idv)  \      (X  +  iY)(dw  +  idt), 
JJ  J(ab)  J(a'b') 

or,  again, 

(9)  f[F(*>  z')dzdz'  =  f  dz  C  F(z,  z')dz'. J  J  J(ab)       J(a'b') 

The  formula  (9)  is  precisely  similar  to  the  formula  for  calculating 
an  ordinary  double  integral  taken  over  the  area  of  a  rectangle  by 

means  of  two  successive  quadratures  (I,  §  120,  2d  ed. ;  §  123, 1st  ed.). 

We  calculate  first  the  integral  fF(z,  z')  dz'  along  the  arc  a'b',  supposing 
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2  constant;  the  result  is  a  function  ®(z)  of  2,  which  we  integrate 

next  along  the  arc  ab.  As  the  two  paths  ab  and  a'b'  enter  in 
exactly  the  same  way,  it  is  clear  that  we  can  interchange  the  order 
of  integrations. 

Let  M  be  a  positive  number  greater  than  the  absolute  value  of 

F(z,  z')  when  z  and  z'  describe  the  arcs  ab  and  a'b'.  If  L  and  L' 
denote  the  lengths  of  the  respective  arcs,  the  absolute  value  of  the 

double  integral  is  less  than  MLL'  (§  25).  When  one  of  the  paths,  a'b' 

for  example,  forms  a  closed  curve,  the  integral  f^yyFfa  z')dz'  will 
be  zero  if  the  function  F(z,  z')  is  analytic  for  all  the  values  of  z'  in 
the  interior  of  that  curve  and  for  the  values  of  z  on  ab.  The  same 

thing  will  then  be  true  of  the  double  integral. 

94.  Extension  of  Cauchy's  theorems.  Let  C,  C"  be  two  closed  curves 
without  double  points,  lying  respectively  in  the  planes  of  the  variables 

z  and  z',  and  let  F(z,  z')  be  a  function  that  is  analytic  when  2  and  z1 
remain  in  the  regions  limited  by  these  two  curves  or  on  the  curves 
themselves.  Let  us  consider  the  double  integral 

r  .   r     F(Z,  z'}dz' 
1=1    dz  I   ^— z,   /  &  _—  /y*  i  /  &       --  o**  i 

J(C)    J(c>)\z      Ji)\r       x) 

where  x  is  a  point  inside  of  the  boundary  C  and  where  x'  is  a  point 
inside  of  the  boundary  C' ;  and  let  us  suppose  that  these  two  bound- 

aries are  described  in  the  positive  sense.  The  integral 

F(z,  z')dz' 

where   z   denotes   a   fixed   point  of  the  boundary  C,  is  equal  to 

2  vri  F(z,  x')/(z  —  x).    We  have,  then, 

/v    ~"~"   Ju 

or,  applying  Cauchy's  theorem  once  more, 

J  =  —  4  7T2F(x,  sc'). 

This  leads  us  to  the  formula 

(10)  F(x,x')  =  -^C  dz 

which  is  completely  analogous  to  Cauchy's  fundamental  formula,  and 
from  which  we  can  derive  similar  conclusions.    From  it  we  deduce 
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the  existence  of  the  partial  derivatives  of  all  orders  of  the  function 

F(z,  z')  in  the  regions  considered,  the  derivative  dm  +  nF/dxmdx'n  hav- 
ing a  value  given  by  the  expression 

P  ml  n\  C         r  F(z,  z')dz' 

In  order  to  obtain  Taylor's  formula,  let  us  suppose  that  the 
boundaries  C  and  C'  are  the  circumferences  of  circles.  Let  a  be  the 

center  of  C,  and  R  its  radius ;  b  the  center  of  C',  and  R'  its  radius. 
The  points  x  and  x'  being  taken  respectively  in  the  interior  of  these 
circles,  we  have  \x  —  a  =  r  <  R  and  x'  —  b  —  r'  <  R'.  Hence  the 
rational  fraction 

(z  —  x)(z'  —  x')       [z  —  a  —  (x  —  a)]  [z'  —  b  —  (x'  — 

can  be  developed  in  powers  of  x  —  a  and  x'  —  b, 

(x  —  a)m(x'  —  b)n 

where  the  series  on  the  right  is  uniformly  convergent  when  z  and  zr 
describe  the  circles  C  and  C'  respectively,  since  the  absolute  value  of 

the  general  term  is  (r/R)m(r'/R'~)n/RR'.  We  can  therefore  replace 
l/(z  —  x)(z'  —  x')  by  the  preceding  series  in  the  relation  (10)  and 
integrate  term  by  term,  which  gives 

F(x,  x')  = i  ts  ts ,  r  •  c      F(*>  *')<*%' 
y   V  (x  —  a)m(x'  —  bY  I    dz  I  —- A  m-2    ̂      J—J  \  (~     n\m  +  1  /^,f     /An  +  1 

*  ~  m  =  0  «=0  J(C)       J(C>)\~          a)  \Z  °) 

Making  use  of  the  results  obtained  by  replacing  x  and  x'  by  a  and  b 
in  the  relations  (10)  and  (11),  we  obtain  Taylor's  expansion  in  the 
form 

jn  =  0  n  =  0  *" 

where  the  combination  m  =  n  =  0  is  excluded  from  the  summation. 

Note.    The  coefficient  amn  of  (x  —  a)m  (x1  —  b)n  in  the  preceding 
series  is  equal  to  the  double  integral 

dz 
r 

J<e>(«--
 



V,  §95]  GENERAL  PROPERTIES  227 

If  M  is  an  upper  bound  for  \F(z,  z')\  along  the  circles  C  and  C',  we 
have,,  by  a  previous  general  remark, 

RmR'n 

The  function 
M 

is  therefore  a  dominant  function  for  F(x,  x')  (I,  §  192,  2d  ed.; 
§  186,  1st  ed.). 

95.  Functions  represented  by  definite  integrals.  In  order  to  study 
certain  functions,  we  often  seek  to  express  them  as  definite  integrals 
in  which  the  independent  variable  appears  as  a  parameter  under  the 
integral  sign.  We  have  already  given  sufficient  conditions  under 
which  the  usual  rules  of  differentiation  may  be  applied  when  the 

variables  are  real  (I,  §§  98,  100,  2d  ed.;  §  97,  1st  ed.).  We  shall 
now  reconsider  the  question  for  complex  variables. 

Let  F(z,  «')  be  an  analytic  function  of  the  two  variables  z  and  z* 
when  these  variables  remain  within  the  two  regions  A  and  A '  respec- 

tively. Let  us  take  a  definite  path  L  of  finite  length  in  the  region  A, 
and  let  us  consider  the  definite  integral 

(13)  fc(aj)=  C  F(z,x)dz, 
J(L) 

where  x  is  any  point  of  the  region  A'.  To  prove  that  this  function 
<£(x)  is  an  analytic  function  of  x,  let  us  describe  about  the  point  x  as 

center  a  circle  C  with  radius  R,  lying  entirely  in  the  region  A '.  Since 

the  function  F(z,  «')  is  analytic,  Cauchy's  fundamental  formula  gives 

whence  the  integral  (13)  can  be  written  in  the  form 

F(z,  z')dz' 
Z1  —  7* .  /V  \AJ 

j_  r 

\    /        o  «_  * 
/,  HI  i,    I 

t/(X) 

Let  x  +  A#  be  a  point  near  x  in  the  circle  C ;  we  have,  similarly. 
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and  consequently,  by  repeating  the  calculation  already  made  (§  33), 

dz 

+  7.—   \    dz 

Let  Af  be  a  positive  number  greater  than  the  absolute  value  of 

^(2,  «')  when  the  variables  z  and  2'  describe  the  curves  L  and  C* 
respectively  ;  let  5  be  the  length  of  the  curve  L  ;  and  let  p  denote  the 
absolute  value  of  Ase.  The  absolute  value  of  the  second  integral  is 
less  than 

JL         M 
R(R-p) 

hence  it  approaches  zero  when  the  point  x  +  Ax  approaches  x  in- 
definitely. It  follows  that  the  function  <I>  (x)  has  a  unique  derivative 

which  is  given  by  the  expression 

Y     -   —   C  d    C  F(*
'  *'^dz' 

But  we  have  also  (§  33) 

F(z,  z')dzr 

and  the  preceding  relation  can  be  again  written 

r  <)F 
(14)  *'(*)=/    g-<fe. 

J(L)V
" 

Thus  we  obtain  again  the  usual  formula  for  differentiation  under  the 
integral  sign. 

The  reasoning  is  no  longer  valid  if  the  path  of  integration  L 
extends  to  infinity.  Let  us  suppose,  for  definiteness,  that  i  is  a 
ray  proceeding  from  a  point  aQ  and  making  an  angle  $  with  the 
real  axis.  We  shall  say  that  the  integral /"»  CO 

=  /     F(z, */«„ 

is  uniformly  convergent  if  to  every  positive  number  c  there  can 
be  made  to  correspond  a  positive  number  N  such  that  we  have 

f *s  a~ 

F(z, 



V,  §96]  GENERAL   PROPERTIES  229 

provided  that  p  is  greater  than  N,  wherever  x  may  be  in  A'.  By 
dividing  the  path  of  integration  into  an  infinite  number  of  recti- 

linear segments  we  prove  that  every  uniformly  convergent  integral 
is  equal  to  the  value  of  a  uniformly  convergent  series  whose  terms 
are  the  integrals  along  certain  segments  of  the  infinite  ray  L.  All 
these  integrals  are  analytic  functions  of  x ;  therefore  the  same  is 

true  of  the  integral  fa*F(z}  x)dz  (§  39). 
It  is  seen,  in  the  same  way,  that  the  ordinary  formula  for  differen- 

tiation can  be  applied,  provided  the  integral  obtained,  £*($F/dx)dzt 
is  itself  uniformly  convergent. 

If  the  function  F(z,  z')  becomes  infinite  for  a  limit  aQ  of  the  path 
of  integration,  we  shall  also  say  that  the  integral  is  uniformly  con- 

vergent in  a  certain  region  if  to  every  positive  number  c  a  point 

aQ~^"n  on  the  line  L  can  be  made  to  correspond  in  such  a  way  that 

/' 

c/  a» 
F(z,  x)dz 

where  b  is  any  point  of  the  path  L  lying  between  aQ  and  aQ  -f-  rj,  the 
inequality  holding  for  all  values  of  x  in  the  region  considered. 
The  conclusions  are  the  same  as  in  the  case  where  one  of  the  limits 

of  the  integral  is  moved  off  to  infinity,  and  they  are  established  in 
the  same  way. 

96.  Application  to  the  F  function.  The  definite  integral  taken  along  the  real  axis 

n  *V\  T  (?\    —     I  1z  —  lp—trjf (io)  L  (Z)  —  i        i       e     at, 
Jo 

which  we  have  studied  only  for  real  and  positive  values  of  z  (I,  §  94,  2d  ed. ; 

§  92,  1st  ed.),  has  a  finite  value,  provided  the  real  part  of  z,  which  we  will  denote 

by  *R(z),  is  positive.  In  fact,  let  z  =  x  +  yi ;  this  gives  \tz-le~t\  =  tx-le-t. 
Since  the  integral  +  oo 

Jo 

has  a  finite  value  if  x  is  positive,  it  is  clear  that  the  same  is  true  of  the  integral 

(15)  (I,  §§  91,  92,  2d  ed.;  §§  90,  91,  1st  ed.).  This  integral  is  uniformly  con- 
vergent in  the  whole  region  defined  by  the  conditions  N><R(z)>i),  where  N 

and  i\  are  two  arbitrary  positive  numbers.  In  fact,  we  can  write 

=  C  t*-le-tdt+  C 
Jo  t/i 

and  it  suffices  to  prove  that  each  of  these  integrals  on  the  right  is  uniformly 
convergent.  Let  us  prove  this  for  the  second  integral,  for  example.  Let  Z  be  a 
positive  number  greater  than  one.  If  3fc(z)<-AT,  we  have 

/»  +  00  /»  +  CO 

Jl     iz    e  *  l  <Jl  ' 
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and  a  positive  number  A  can  be  found  large  enough  to  make  the  last  integral 
less  than  any  positive  number  e  whenever  I  ==  A.  The  function  r  (z),  denned  by 
the  integral  (15),  is  therefore  an  analytic  function  in  the  whole  region  of  the 
plane  lying  to  the  right  of  the  y-axis.  This  function  T  (z)  satisfies  again  the 
relation 

(16)  r(z  +  l)  =  zF(z), 

obtained  by  integration  by  parts,  and  consequently  the  more  general  relation 

(17)  r  (z  +  n)  =  z  (z  +  1)  •  •  •  (z  +  n  -  1)  T  (z), 

which  is  an  immediate  consequence  of  the  other. 
This  property  enables  us  to  extend  the  definition  of  the  T  function  to  values 

of  z  whose  real  part  is  negative.   For  consider  the  function 

(18)  *( 

z(z+l)...(z  +  n-l)' 
where  n  is  a  positive  integer.  The  numerator  F  (z  +  n)  is  an  analytic  function 

of  z  defined  for  values  of  z  for  which  'R  (z)  >  —  n  ;  hence  the  function  ̂   (z)  is  a 
function  analytic  except  for  poles,  defined  for  all  the  values  of  the  variable 

whose  real  part  is  greater  than  —  n.  Now  this  function  \f/  (z)  coincides  with  the 
analytic  function  F(z)  to  the  right  of  the  y-axis,  by  the  relation  (17);  hence  it 
is  identical  with  the  analytic  extension  of  the  analytic  function  F  (z)  in  the 

strip  included  between  the  two  straight  lines  *R  (z)  =  0,  'R  (z)  =  —  n.  Since  the 
number  n  is  arbitrary,  we  may  conclude  that  there  exists  a  function  which  is 

analytic  except  for  the  poles  of  the  first  order  at  the  points  z  =  0,  z  =  —  1, 

z  =  —  2,  •  •  • ,  z  =  —  n,  •  •  • ,  and  which  is  equal  to  the  integral  (15)  at  all  points  to 
the  right  of  the  y-axis.  This  function,  which  is  analytic  except  for  poles  in  the 
finite  plane,  is  again  represented  by  F(z);  but  the  formula  (15)  enables  us  to 

compute  its  numerical  value  only  if  we  have  *R(z)>0.  If  *R(z)<0,  we  must  also 
make  use  of  the  relation  (17)  in  order  to  obtain  the  numerical  value  of  that 
function. 

We  shall  now  give  an  expression  for  the  F  function  which  is  valid  for  all 
values  of  z.   Let  S(z)  be  the  integral  function 

which  has  the  poles  of  r  (z)  for  zeros.  The  product  S(z)  T  (z)  must  then  be 
an  integral  function.  It  can  be  shown  that  this  integral  function  is  equal  to 

e~Cz,  where  C  is  Euler's  constant*  (I,  §  18,  Ex.,  2d  ed.  ;  §  49,  Note,  1st  ed.), and  we  derive  from  it  the  result 

1  1  "f"  CD          .  \  2 

(19)  —  —  =  -  *  -  =  ecz  TT  (1+  -)  e~». zT(z)      F(z  +  l)  jA\        n} 

which  shows  that  1/F  (z  +  1)  is  a  transcendental  integral  function. 

*  HERMITE,  Cours  d'  Analyse,  4th  ed.,  p.  142. 
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97.  Analytic  extension  of  a  function  of  two  variables.  Let  u  =  F(z,  z'}  be  an 
analytic  function  of  the  two  variables  z  and  z'  when  these  two  variables  remain 

respectively  in  two  connected  regions  A  and  A'  of  the  two  planes  in  which  we 
represent  them.  It  is  shown,  as  in  the  case  of  a  single  variable  (§  83),  that  the 

value  of  this  function  for  any  pair  of  points  z,  z'  taken  in  the  regions  A,  A'  is 
determined  if  we  know  the  values  of  F  and  of  all  its  partial  derivatives  for  a 

pair  of  points  z  —  a,  z'  —  b  taken  in  the  same  regions.  It  now  appears  easy  to 
extend  the  notion  of  analytic  extension  to  functions  of  two  complex  variables. 
Let  us  consider  a  double  series  2amM  such  that  there  exist  two  positive  numbers 

r,  r'  having  the  following  property  :  the  series 

(20)  F(z,  z')  =  2amnzmz'» 

is  convergent  if  we  have  at  the  same  time  |  z  \  <  r,  |  z'  \  <  r',  and  divergent  if  we 

have  at  the  same  time  | z |  >  r,  \z'\>rf.  The  preceding  series  defines,  then,  a 
function  F(z,  z')  which  is  analytic  when  the  variables  z,  z'  remain  respectively 
in  the  circles  C,  C'  of  radii  r  and  r' ;  but  it  does  not  tell  us  anything  about  the 

nature  of  this  function  when  we  have  |  z  |  >  r  or  |  z'  |  >  r7.  Let  us  suppose  for 
definiteness  that  we  cause  the  variable  z  to  move  over  a  path  L  from  the  origin 

to  a  point  Z  exterior  to  the  circle  C,  and  the  variable  z'  to  travel  over  another 
path  L'  from  the  point  z'  =  0  to  a  point  Z'  exterior  to  the  circle  C'.  Let  a  and 
/3  be  two  points  taken  respectively  on  the  two  paths  L  and  J7,  a  being  in  the 

interior  of  C  and  /3  in  the  interior  of  C'.  The  series  (20)  and  those  which  are 
obtained  from  it  by  successive  differentiations  enable  us  to  form  a  new  power 
series, 

(21)  S6mn(z-a)">(z'-/3)«, 

which  is  absolutely  convergent  if  we  have  |  z  —  a  \  <  rl  and  |  z'  —  /3 1  <  r^  where 
rl  and  r[  are  two  suitably  chosen  positive  numbers.  Let  us  call  Cl  the  circle  of 
radius  rt  described  about  the  point  a  as  center  in  the  plane  of  z,  and  C{  the 

circle  of  radius  r{  described  in  the  plane  of  z'  about  the  point  /3  as  center.  If  z 
is  in  the  part  common  to  the  two  circles  C  and  Cl ,  and  the  point  z'  in  the  part 
common  to  the  two  circles  C'  and  Cj,  the  value  of  the  series  (21)  is  the  same  as 
the  value  of  the  series  (20).  If  it  is  possible  to  choose  the  two  numbers  rt  and  r{ 

in  such  a  way  that  the  circle  C,  will  be  partly  exterior  to  the  circle  C,  or  the 

circle  C{  partly  exterior  to  the  circle  <7',  we  shall  have  extended  the  definition 
of  the  function  F(z,  z')  to  a  region  extending  beyond  the  first.  Continuing  in 

this  manner,  it  is  easy  to  see  how  the  function  J^(z,  z')  may  be  extended  step  by 
step.  But  there  appears  here  an  important  new  consideration :  It  is  necessary 
to  take  into  account  the  way  in  which  the  variables  move  with  respect  to  each  other 

on  their  respective  paths.  The  following  is  a  very  simple  example  of  this,  due  to 

Sauvage.*  Let  u  =  Vz  —  z'  +  1 ;  for  the  initial  values  let  us  take  z  =  z'  —  0,  u  =  1, 
and  let  the  paths  described  by  the  variables  z,  z'  be  defined  as  follows  :  1)  The 
path  described  by  the  variable  z'  is  composed  of  the  rectilinear  segment  from 
the  origin  to  the  point  z'  —  1.  2)  The  path  described  by  z  is  composed  of  three 
semicircumferences  :  the  first,  ON  A  (Fig.  38),  has  its  center  on  the  real  aids  to 

*  Premiers  principes  de  la  the'orie  generate  des  fonctions  de  plusieurs  variables 
(Annales  de  la  Faculte  des  Sciences  de  Marseille,  Vol.  XIV).  This  memoir  is  an 
excellent  introduction  to  the  study  of  analytic  functions  of  several  variables. 
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[V,  §  97 the  left  of  the  origin  and  a  radius  less  than  1/2  ;  the  second,  ANB,  also  has  its 
center  on  the  real  axis  and  is  so  placed  that  the  point  —  1  is  on  its  diameter  AB  ; 
finally,  the  third,  BPC,  has  for  its  center  the  middle  point  of  the  segment  joining 

the  point  B  to  the  point  C(z  =  1).  The  first  and  the  third  of  these  semicircum- 
ferences  are  above  the  real  axis,  and  the  second  is  below,  so  that  the  bound- 

ary OMANBPCO  incloses  the  point  z  —  —  1.  Let  us  now  select  the  following 
movements : 

1)  z'  remains  zero,  and  z  describes  the  entire  path  OABC  ; 
2)  z  remains  equal  to  1,  and  z'  describes  its  whole  path. 
If  we  consider  the  auxiliary  variable  t  —  z  —  z',  it  is  easily  seen  that  the  path 

described  by  the  variable  £,  when  that  variable  is  represented  by  a  point  on  the 

FIG.  38 

z  plane,  is  precisely  the  closed  boundary  OABCO  which  surrounds  the  critical 
point  t  =—  1  of  the  radical  Vi  +  1.   The  final  value  of  u  is  therefore  it  =—  1. 

On  the  other  hand,  let  us  select  the  following  procedure  : 

1)  z  remains  zero  and  z'  varies  from  0  to  1  —  e  (e  being  a  very  small  positive number) ; 

2)  z'  remains  equal  to  1  —  e,  and  z  describes  the  path  OABC  • 
3)  z  remains  equal  to  1,  and  z'  varies  from  1  —  e  to  1. 

When  z'  varies  from  0  to  1  —  e,  the  auxiliary  variable  t  describes  a  path  00' 
ending  in  a  point  0'  very  near  the  point  —  1  on  the  real  axis.  When  z  describes 
next  the  path  OABC,  t  moves  over  a  path  O'A'B'C'  congruent  to  the  preceding 
and  ending  in  the  point  C' (OC'  =  e)  on  the  real  axis.  Finally,  when  z'  varies 
from  1  —  e  to  1,  t  passes  from  Cf  to  the  origin.  Thus  the  auxiliary  variable  t 
describes  the  closed  boundary  OO'A'B'C'O  which  leaves  the  point  —  1  on  its 
exterior,  provided  e  is  taken  small  enough.  The  final  value  of  u  will  therefore 
be  equal  to  +  1. 

Very  much  less  is  known  about  the  nature  of  the  singularities  of  analytic 
functions  of  several  variables  than  about  those  of  functions  of  a  single  variable. 
One  of  the  greatest  difficulties  of  the  problem  lies  in  the  fact  that  the  pairs  of 
singular  values  are  not  isolated.* 

*For  everything  regarding  this  matter  see  a  memoir  by  Poincare  in  the  Ada 
mathematica  (Vol.  XXVI),  and  P.  Cousin's  thesis  (Ibid.  Vol.  XIX). 
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II.   IMPLICIT  FUNCTIONS.     ALGEBRAIC  FUNCTIONS 

98.  Weierstrass's  theorem.  We  have  already  established  (I,  §  193, 
2d  ed. ;  §  187,  1st  ed.)  the  existence  of  implicit  functions  defined  by 

equations  in  which  the  left-hand  side  can  be  developed  in  a  power 
series  proceeding  in  positive  and  increasing  powers  of  the  two 
variables.  The  arguments  which  were  made  supposing  the  variables 

and  coefficients  real  apply  without  modification  when  the  variables 
and  the  coefficients  have  any  values,  real  or  imaginary,  provided  we 
retain  the  other  hypotheses.  We  shall  establish  now  a  more  general 
theorem,  and  we  shall  preserve  the  notations  previously  used  in  that 
study.  The  complex  variables  will  be  denoted  by  x  and  y. 

Let  F(x,  y)  be  an  analytic  function  in  the  neighborhood  of  a 

pair  of  values  x  =  a,  y  =  ft,  and  such  that  we  have  F(a,  /?)  =  0. 
We  shall  suppose  that  a  =  /?  =  0,  which  is  always  permissible.  The 

equation  F(0,  y)  =  0  has  the  root  y  =  0  to  a  certain  degree  of  mul- 
tiplicity. The  case  which  we  have  studied  is  that  in  which  y  =  0  is 

a  simple  root ;  we  shall  now  study  the  general  case  where  y  =  0  is  a 

multiple  root  of  order  n  of  the  equation  .F(0,  ?/)  =  0.  If  we  arrange 
the  development  of  F(x,  y)  in  the  neighborhood  of  the  point  x  =  y  =  Q 
according  to  powers  of  y,  that  development  will  be 

\ 

where  the  coefficients  A{  are  power  series  in  x,  of  which  the  first  n 

are  zero  for  x  =  0,  while  An  does  not  vanish  for  x  =  0.  Let  C  and  C' 

be  two  circles  of  radii  R  and  R'  described  in  the  planes  of  x  and  y 
respectively  about  the  origin  as  center.  We  shall  suppose  that  the 

function  F(x,  y)  is  analytic  in  the  region  defined  by  these  two  circles 
and  also  on  the  circles  themselves ;  since  An  is  not  zero  for  cc  =  0,  we 

may  suppose  that  the  radius  R  of  the  circle  C  is  sufficiently  small 
so  that  An  does  not  vanish  in  the  interior  of  the  circle  C  nor  on  the 

circle.  Let  M  be  an  upper  bound  for  F(x,  y)  \  in  the  preceding  region 

and  .B  a  lower  bound  for  An  .  By  Cauchy's  fundamental  theorem 
we  have 

where  x  and  y  are  any  two  points  taken  in  the  circles  C  and  C"; 
from  this  we  conclude  that  the  absolute  value  of  the  coefficient  Am 

of  ym  in  the  formula  (22)  is  less  than  M/R'm,  whatever  may  be  the 
value  of  x  in  the  circle  C. 
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We  can  now  write 

(23)  •         F(x,y)  = 
where 

w 
Anyn  An    y 

Let  p  be  the  absolute  value  of  y  ;  we  have 

P  <^L(p.  +  £ »»*\R'~    R< 

and  this  absolute  value  will  be  less  than  1/2  if  we  have 

BR'n 

(2
4)
  

P  <  R'   F^   >         J  7?  "P  'ft      |      O    7T/" 

On  the  other  hand,  let  JJL  (r~)  be  the  maximum  value  of  the  absolute 
values  of  the  functions  AQ,  Av  •  •  • ,  An_l  for  all  the  values  of  x  for 
which  the  absolute  value  does  not  exceed  a  number  r  <  R.  Since 

these  n  functions  are  zero  for  x  =  0,  ̂(r)  approaches  zero  with  r, 
and  we  can  always  take  r  so  small  that 

where  /»  is  a  definite  positive  number.  The  numbers  r  and  p  having 

been  determined  so  as  to  satisfy  the  preceding  conditions,  let  us  re- 
place the  circle  C  by  the  circle  Cr  described  in  the  oxplane  with  the 

radius  r  about  the  point  x  =  0  as  center,  and  similarly  in  the  y-plane 

the  circle  C'  by  the  concentric  circle  C'p  with  the  radius  p.  If  we  give 
to  x  a  value  such  that  x  ̂   r,  and  then  cause  the  variable  y  to 

describe  the  circle  C'p,  along  the  entire  circumference  of  this  circle  we 
have,  from  the  manner  in  which  the  numbers  r  and  p  have  been  chosen, 

P  <  1/2,  \Q\<  1/2,  and  therefore  P  +  Q  <  1.  If  the  variable  y 

describes  the  circle  C'?  in  the  positive  sense,  the  angle  of  1  +  P  +  Q 
returns  to  its  initial  value,  whereas  the  angle  of  the  factor  Anyn  in- 

creases by  2  /ITT.  The  equation  F(x,  y)  =  0,  in  which  x  =i  r,  therefore 
has  n  roots  whose  absolute  values  are  less  than  p,  and  only  n. 

All  the  other  roots  of  the  equation  F(x,  y)  =  0,  if  there  are  any, 
have  their  absolute  values  greater  than  p.  Since  we  can  replace  the 

number  p  by  a  number  as  small  as  we  wish,  less  than  p,  if  we  replace 
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at  the  same  time  r  by  a  smaller  number  satisfying  always  the  con- 

dition (25),  we  see  that  the  equation  F(x,  y)  =  0  has  n  roots  and  only 
n  which  approach  zero  with  x. 

If  the  variable  x  remains  in  the  interior  of  the  circle  Cr  or  on  its 

circumference,  the  n  roots  yv  yz,  •  •  •  ,yn>  whose  absolute  values  are  less 

than  p,  remain  within  the  circle  C'p.  These  roots  are  not  in  general 
analytic  functions  of  x  in  the  circle  Cr,  but  every  symmetric  integral 

rational  function  of  these  n  roots  is  an  analytic  function  of  x  in  this  cir- 
cle. It  evidently  suffices  to  prove  this  for  the  sum  ij{  +  ?/£  +  •  •  •  +  2/»> 

where  &  is  a  positive  integer.  Let  us  consider  for  this  purpose  the 
double  integral 

/ =  I    <V  I  i 
t/Cr?^  fc^CLl .f*     <¥       <fe' 

where  we  suppose  x  <  r.  If  \y'  =  p,  the  function  F(x'9y')  cannot 
vanish  for  any  value  of  the  variable  x'  within  or  on  Cr,  and  the  only 
pole  of  the  function  under  the  integral  sign  in  the  interior  of  the 

circle  Cr  is  the  point  x'  =  x.  We  have,  then, 

die1 

,(&)  
      F(x'

,  y1)  
 
x7^

^  =  2  ̂^
  •>(«

,  y-) 

and  consequently 

a^fo  yf) 

*  ̂   y^  t  rfy». 
(C"p) 

By  a  general  theorem  (§  48)  this  integral  is  equal  to 

where  ylt  y^  •  •  •,  yn  are  the  n  roots  of  the  equation  F(x,  y)  =  0  with 
absolute  values  less  than  p.  On  the  other  hand,  the  integral  /  is  an 

analytic  function  of  x  in  the  circle  Cr,  for  we  can  develop  1/(V  —  x) 
in  a  uniformly  convergent  series  of  powers  of  x,  and  then  calculate 

the  integral  term  by  term.  The  different  sums  2?/f  being  analytic 
functions  in  the  circle  Cr,  the  same  thing  must  be  true  of  the  sum 

of  the  roots,  of  the  sum  of  the  products  taking  two  at  a  time,  and  so 

on,  and  therefore  the  n  roots  yv  ?/2,  •  •  • ,  yn  are  also  roots  of  an  equa- 
tion of  the  nth  degree 

(26)     f(x,  y)=yn  +  a^-1  +  azyn~2  +  .  .  .  +  an_iy  +  an  =  0, 
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whose  coefficients  av  a2,  •  >  • ,  an  are  analytic  functions  of  x  in  the 
circle  Cr  vanishing  for  x  =  0. 

The  two  functions  F(x,  y)  and  f(x,  y)  vanish  for  the  same  pairs 

of  values  of  the  variables  x,  y  in  the  interior  of  the  circles  Cr  and  C'p. 
We  shall  now  show  that  the  quotient  F(x,  y)/f(x,  y)  is  an  analytic 
function  in  this  region.  Let  us  take  definite  values  for  these  vari- 

ables such  that  x  <r,  \  y  \  <  p,  and  let  us  consider  the  double 
integral 

F(x',  y')  dx' 

f(x',  y')  (x'  —  x~)  (y'  —  y) 

For  a  value  of  y1  of  absolute  value  p  the  function  f(x',  y')  of  the 
variable  x'  cannot  vanish  for  any  value  of  x'  within  or  on  the  circle 
Cr.  The  function  under  the  integral  sign  has  therefore  the  single 

pole  x'  =  x  within  Cr)  and  the  corresponding  residue  is 

Hence  we  have  also 

but  the  two  analytic  functions  F(x,  y'),  f(x,  y')  of  the  variable  ?/ 
have  the  same  zeros  with  the  same  degrees  of  multiplicity  in  the 

interior  of  C'p.  Their  quotient  is  therefore  an  analytic  function  of 
y'  in  Cp,  and  the  only  pole  of  the  function  to  be  integrated  in  this 
circle  is  y'  =  y ;  hence  we  have 

/(*>  y) 

On  the  other  hand,  we  can  replace  1/(V  —  x)  (y1  —  y)  in  the  inte- 
gral by  a  uniformly  convergent  series  arranged  in  positive  powers 

of  x  and  y.  Integrating  term  by  term,  we  see  that  the  integral  is 
equal  to  the  value  of  a  power  series  proceeding  according  to  powers  of 

x  and  y  and  convergent  in  the  circles  Cr,  C'p.  Hence  we  may  write 

F(x>  y)=f(x>  y)H(x>  y) or 

(27)  F(x,  y)  = 

where  the  function  H(x,  y)  is  analytic  in  the  circles  Cr)  C'p. 
The  coefficient  An  of  yn  in  F(x9  y)  contains  a  constant  term  dif- 

ferent from  zero  ;  since  av  «2,  •••,«„  are  zero  for  x  =  0,  the  develop- 
ment of  H(x,  T/)  necessarily  contains  a  constant  term  different  from 

zero,  and  the  decomposition  given  by  the  expression  (27)  throws 
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into  relief  the  fact  that  the  roots  of  F(x,  y)  —  0  which  approach  zero 
with  x  are  obtained  by  putting  the  first  factor  equal  to  zero.  The 

preceding  important  theorem  is  due  to  Weierstrass.*  It  generalizes, 
at  least  as  far  as  that  is  possible  for  a  function  of  several  variables, 

the  decomposition  into  factors  of  functions  of  a  single  variable. 

99.  Critical  points.  In  order  to  study  the  n  roots  of  the  equation 

F(xt  y)  =  0  which  become  infinitely  small  with  x,  we  are  thus  led  to 
study  the  roots  of  an  equation  of  the  form 

(28)    f(x,  y)  =  if  +  a^  +  a2y^  +  •  •  .  +  an_,y  +  an  =  0 

for  values  of  x  near  zero,  where  alt  az,  •  •  •,  an  are  analytic  functions 
that  vanish  for  x  =  0.  When  n  is  greater  than  unity  (the  only  case 

which  concerns  us),  the  point  x  =  0  is  in  general  a  critical  point.  Let 
us  eliminate  y  between  the  two  equations  /  =  0  and  df/dy  =  0 ;  the 

resultant  A(x)  is  a  polynomial  in  the  coefficients  alf  «2,  •  •  •,  an)  and 
therefore  an  analytic  function  in  the  neighborhood  of  the  origin. 

This  resultant  t  is  zero  for  x  =  0,  and,  since  the  zeros  of  an  analytic 
function  form  a  system  of  isolated  points,  we  may  suppose  that  we 
have  taken  the  radius  r  of  the  circle  Cr  so  small  that  in  the  interior 

of  Cr  the  equation  A  (x)  =  0  has  no  other  root  than  x  =  0.  For  every 
point  XQ  taken  in  that  circle  other  than  the  origin,  the  equation 

f(xv  y}  —  0  wiU  have  n  distinct  roots.  According  to  the  case  already 
studied  (I,  §  194,  2d  ed. ;  §  188,  1st  ed.),  the  n  roots  of  the  equation 
(28)  will  be  analytic  functions  of  x  in  the  neighborhood  of  the  point 

OJ0.  Hence  there  cannot  be  any  other  critical  point  than  the  origin 
in  the  interior  of  the  circle  Cr. 

Let  y ,  y&  -  -  -•>  yn  be  the  n  roots  of  the  equation  f(xQ,  y)  =  0.  Let 
us  cause  the  variable  x  to  describe  a  loop  around  the  point  x  =  0, 

starting  from  the  point  o?0 ;  along  the  whole  loop  the  n  roots  of  the 
equation  /(#,  y)  =  0  are  distinct  and  vary  in  a  continuous  manner. 

If  we  start  from  the  point  XQ  with  the  root  ylf  for  example,  and  fol- 
low the  continuous  variation  of  that  root  along  the  whole  loop,  we 

return  to  the  point  of  departure  with  a  final  value  equal  to  one  of  the 

roots  of  the  equation  f(x,  y)  =  0.  If  that  final  value  is  ylt  the  root 

*  Abhandlungen  aus  der  Functionenlehre  von  K.  Weierstrass  (Berlin,  1860).  The 
proposition  can  also  be  demonstrated  by  making  use  only  of  the  properties  of  power 
series  and  the  existence  theorem  for  implicit  functions  (Bulletin  de  la  Societe 

mathematique,  Vol.  XXXVI,  1908,  pp.  209-215). 
t  We  disregard  the  case  where  the  resultant  is  identically  zero.  In  this  case/(x,  y) 

would  be  divisible  by  a  factor  [fi(x,  y)]k,  where  k>l,  fi(x,  y)  being  of  the  same 
form  as/(x,  y). 
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considered  is  single-valued  in  the  neighborhood  of  the  origin.  If 
that  final  value  is  different  from  yv  let  us  suppose  that  it  is  equal 
to  y2.  A  new  loop  described  in  the  same  sense  will  lead  from  the 

root  y.2  to  one  of  the  roots  yv  y2,  •  •  .,  yn.  The  final  value  cannot  be 
?/2,  since  the  reverse  path  must  lead  from  y2  to  yr  That  final  value 

must,  then,  be  one  of  the  roots  yv  y&J  •  -  -,yn.  If  it  is  yv  we  see  that 
the  two  roots  y1  and  y2  are  permuted  when  the  variable  describes 
a  loop  around  the  origin.  If  that  final  value  is  not  y ,  it  is  one 

of  the  remaining  (n  —  2)  roots ;  let  yB  be  that  root.  A  new  loop 
described  in  the  same  sense  will  lead  from  the  root  yg  to  one  of  the 

roots  yl9  ?/2,  ?/3,  y4,  •  •  .,  yn.  It  cannot  be  y3,  for  the  same  reason  as 
before ;  neither  is  it  y2,  since  the  reverse  path  leads  from  y2  to  yv 
Hence  that  final  value  is  either  y1  or  one  of  the  remaining  (n  —  3) 

roots  y4,  y&,  .  .  .,  yn.  If  it  is  yv  the  three  roots  ylf  ya,  y8  permute 
themselves  cyclically  when  the  variable  x  describes  a  loop  around 

the  origin,  If  the  final  value  is  different  from  yv  we  shall  continue 
to  cause  the  variable  to  turn  around  the  origin,  and  at  the  end  of 

a  finite  number  of  operations  we  shall  necessarily  come  back  to  a 

root  already  obtained,  which  will  be  the  root  yr  Suppose,  for  exam- 
ple, that  this  happens  after  p  operations ;  the  p  roots  obtained, 

y\>  y^  '  '  *>  Vpy  permute  themselves  cyclically  when  the  variable  x 
describes  a  loop  around  the  origin.  We  say  that  they  form  a  cyclic 

system  of  p  roots.  If  p  =  n,  the  n  roots  form  a  single  cyclic  system. 
If  p  is  less  than  n,  we  shall  repeat  the  reasoning,  starting  with  one 

of  the  remaining  n  —p  roots  and  so  on.  It  is  clear  that  if  we  con- 
tinue in  this  way  we  shall  end  by  exhausting  all  the  roots,  and  we 

can  state  the  following  proposition :  The  n  roots  of  the  equation 

F(x,  y)  =  0,  which  are  zero  for  x  =  0,  form  one  or  several  cyclic 
systems  in  the  neighborhood  of  the  origin. 

To  render  the  statement  perfectly  general,  it  is  sufficient  to  agree 
that  a  cyclic  system  can  be  composed  of  a  single  root ;  that  root  is 

then  a  single- valued  function  in  the  neighborhood  of  the  origin. 
The  roots  of  the  same  cyclic  system  can  be  represented  by  a  unique 

development.  Let  ylt  y^  •  •  •,  yp  be  the  p  roots  oi  a  cyclic  system ;  let 

us  put  x  =  x'p.  Each  of  these  roots  becomes  an  analytic  function 
of  x'  for  all  values  of  x'  other  than  x'  =  0;  on  the  other  hand,  when 

x'  describes  a  loop  around  x1  =  0,  the  point  x  describes  p  succes- 
sive loops  in  the  same  sense  around  the  origin.  Each  of  the  roots 

Vt?  y&  '  '  •>  Up  returns  then  to  its  initial  value ;  they  are  single-valued 
functions  in  the  neighborhood  of  the  origin.  Since  these  roots  ap- 

proach zero  when  x'  approaches  zero,  the  origin  x'  =  0  cannot  be 
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other  than  an  ordinary  point,  and  one  of  these  roots  is  represented 
by  a  development  of  the  form 

(29)  y  =  «X  +  ap*  +  .  •  •  +  amx'm  +  .  -  ., 

or,  replacing  x'  by  xl/p, 

(30)  y  =  ajf  +  *aV*7  4-  •  •  •  +  «.(»*)  +  •  •  -• 
We  may  now  say  that  the  development  (30)  represents  all  the  roots 

of  the  same  cyclic  system,  provided  that  we  give  to  xl/p  all  of  its 
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one  of  its  determinations,  we  have  the  development  of  the  root  yr 

If  the  variable  x  describes  a  loop  around  the  origin  in  the  positive 

sense,  yl  changes  into  y2,  and  xl/p  is  multiplied  by  e2ni/p.  It  will  be 

seen,  similarly,  that  we  shall  obtain  yq  by  replacing  xl/p  by  xl/pe2qni/p 
in  the  equality  (30).  This  unique  development  for  the  system  shows 

up  clearly  the  cyclic  permutation  of  the/>  roots.  It  would  now  remain 

to  show  how  we  could  separate  the  n  roots  of  the  equation  F(x,  y)  =  0 

into  cyclic  systems  and  calculate  the  coefficients  at  of  the  develop- 
ments (30).  We  have  already  considered  the  case  where  the  point 

x  —  y  =  0  is  a  double  point  (I,  §  199,  2d  ed.).  We  shall  now  treat 
another  particular  case. 

If  for  x  =  y  =  0  the  derivative  dF/dx  is  not  zero,  the  develop- 
ment of  F(x,  y)  contains  a  term  of  the  first  degree  in  x,  and  we  have 

(31)  F(x,  y)  =  Ax+Byn+..-,  (AB^  0) 

where  the  terms  not  written  are  divisible  by  one  of  the  factors  ar2,  xy, 
yn+l.  Let  us  consider  y  for  a  moment  as  the  independent  variable; 

the  equation  F(x,  y)  =  0  has-  a  single  root  approaching  zero  with  y} 
and  that  root  is  analytic  in  the  neighborhood  of  the  origin.  The 

development  which  we  have  already  seen  how  to  calculate  (I,  §§  35, 

193,  2d  ed. ;  §§  20,  187,  1st  ed.)  runs  as  follows : 

(32)  x  =  y\aQ  +  ajj  +  .  .  .).  K  *  0) 

Extracting  the  nth  root  of  the  two  -sides,  we  find 

(33)  aj=  =  y a^a^y-\-  .  . .. 

For  y  =  0  the  auxiliary  equation  un  =  aQ  -\-  ajj  -\-  •  -  •  has  n  dis- 
tinct roots,  each  of  which  is  developable  in  a  power  series  according 

to  powers  of  y.  Since  these  n  roots  are  deducible  from  one  of  them 

by  multiplying  it  by  the  successive  powers  of  e2jrt'/n,  we  can  take  for 
V«0  +  ̂ y  -h  •  •  •  in  the  equality  (33)  any  one  of  these  roots,  subject 

to  the  condition  of  assigning  successively  to  xl/n  its  n  determinations. 
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We  can  therefore  write  the  equation  (33)  in  the  form 

and  from  this  we  derive,  conversely,  a  development  of  y  in  powers 

of  xl/n: 

-         I  -\* (34)  y  =  GIX*  +  c2(xn)  H  ----  . 

This  development,  if  we  give  successively  to  xl/n  its  n  values, 
represents  the  n  roots  which  approach  zero  with  x.  These  n  roots 
form,  then,  a  single  cyclic  system. 

For  a  study  of  the  general  case  we  refer  the  reader  to  treatises 

devoted  to  the  theory  of  algebraic  functions.* 

100.  Algebraic  functions.  Up  to  the  present  time  the  implicit  func- 
tions most  carefully  studied  are  the  algebraic  functions,  denned  by 

an  equation  F(x,  y)  =  0,  in  which  the  left-hand  side  is  an  irreducible 
polynomial  in  x  and  y.  A  polynomial  is  said  to  be  irreducible  when 

it  is  not  possible  to  find  two  other  polynomials  of  lower  degree,  F^x,  y) 

and  F2(x,  y),  such  that  we  have  identically 

F(x9y)=F1(x9y)xFs(x9y). 
If  the  polynomial  F(x,  y}  were  equal  to  a  product  of  that  kind,  it  is 

clear  that  the  equation  F(x,  y)  =  0  could  be  replaced  by  two  distinct 

equations  F^x,  y)  —  0,  FZ(X,  y)  =  0. 
Let,  then, 

(35)  F(x9  y)  =  4>,(x)y«  +  ̂ (x)^-1  +  -  .  -  +  4>n-l(x)y  +  <f>n(x)  =  0 

be  the  proposed  equation  of  degree  n  in  y,  where  <£0,  <j>v  -  -  •  ,  <f>n  are 
polynomials  in  x.  Eliminating  y  between  the  two  relations  F  =  0, 

dF/dy  =  0,  we  obtain  a  polynomial  A  (x)  for  the  resultant,  which  can- 
not be  identically  zero,  since  F(x,  ?/)  is  supposed  to  be  irreducible. 

Let  us  mark  in  the  plane  the  points  av  a2,  •  •  •  ,  ak)  which  represent 
the  roots  of  the  equation  A(#)  =  0,  and  the  points  ft  ,  /?  ,  •  •  •  ,  /3A, 

which  represent  the  roots  of  <f>Q(x)=  0.  Some  of  the  points  a{  may 
also  be  among  the  roots  of  <£0(;c)  =  0.  For  a  point  a  different  from 

the  points  #,-,  ftj  the  equation  F(a,y')=  0  has  n  distinct  and  finite 
roots,  bv  #2,  •  •  -,  bn.  In  the  neighborhood  of  the  point  a  the  equation 
(35)  has  therefore  n  analytic  roots  which  approach  bv  b^  •  •  •,  bn 
respectively  when  x  approaches  a.  Let  at  be  a  root  of  the  equation 

*  See  also  the  noted  memoir  of  Puiseux  on  algebraic  functions  (Journal  de  Mathe- 
matiques,  Vol.  XV,  1850). 
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A(a;)=  0.  The  equation  F(ai}  y)=-  0  has  a  certain  number  of  equal 
roots  ;  let  us  suppose,  for  example,  that  it  has  p  roots  equal  to  b. 

The  p  roots  which  approach  b  when  x  approaches  a{  group  themselves 

into  a  certain  number  of  cyclic  systems,  and  the  roots  of  the  same 

cyclic  system  are  represented  by  a  development  in  series  arranged 

according  to  fractional  powers  of  x  —  o:t.  If  the  value  #t-  does  not 

cause  <f>Q(x)  to  vanish,  all  the  roots  of  the  equation  (35)  in  the  neigh- 
borhood of  the  point  a.i  group  themselves  into  a  certain  number  of 

cyclic  systems,  some  of  which  may  contain  only  one  root.  For  a  point 

J3j  which  makes  <£0(#)  zero,  some  of  the  roots  of  the  equation  (35) 

become  infinite  ;  in  order  to  study  these  roots,  we  put  y  =  !/?/',  and 
we  are  led  to  study  the  roots  of  the  equation 

which  become  zero  for  x  =  /?,•.  These  roots  group  themselves  again 
into  a  certain  number  of  cyclic  systems,  the  roots  of  the  same  system 

being  represented  by  a  development  in  series  of  the  form 

(36)  y'  =  am(x  -  &)*+  am  +  l(x  -  ft)        +  •  •  -,          (am  *  0) 

The  corresponding  roots  of  the  equation  in  y  will  be  given  by  the 

development 

(37)  y  =  (x-pj)- 

which  can  be  arranged  in  increasing  powers  of  (x  —  /8/)1//>,  but  there 
will  be  at  first  a  finite  number  of  terms  with  negative  exponents. 

To  study  the  values  of  y  for  the  infinite  values  of  x,  we  put  x  =  !/#', 
and  we  are  led  to  study  the  roots  of  an  equation  of  the  same  form  in 

the  neighborhood  of  the  origin.  To  sum  up,  in  the  neighborhood  of 

any  point  x  =  a  the  n  roots  of  the  equation  (35)  are  represented  by 
a  certain  number  of  series  arranged  according  to  increasing  powers 

of  x  —  a  or  of  (x  —  a)l/p,  containing  perhaps  a  finite  number  of  terms 
with  negative  exponents,  and  this  statement  applies  also  to  infinite 

values  of  x  by  replacing  x  —  oc  by  I/a;. 
It  is  to  be  observed  that  the  fractional  powers  or  the  negative  ex- 

ponents present  themselves  only  for  the  exceptional  points.  The 

only  singular  points  of  the  roots  of  the  equation  are  therefore  the 

critical  points  around  which  some  of  these  roots  permute  themselves 

cyclically,  and  the  poles  where  some  of  these  roots  become  infinite  ; 

moreover,  a  point  may  be  at  the  same  time  a  pole  and  a  critical 

point.  These  two  kinds  of  singular  points  are  often  called  algebraic 

singular  points. 
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We  have  so  far  studied  the  roots  of  the  proposed  equation  only  in 
the  neighborhood  of  a  fixed  point.  Suppose  now  that  we  join  two 
points  x  =  a,  x  =  b,  for  which  the  equation  (35)  has  n  distinct  and 
finite  roots,  by  a  path  AB  not  passing  through  any  singular  point  of 
the  equation.  Let  yl  be  a  root  of  the  equation  F(a,y)  =  0;  the  root 
y  =  f(x),  which  reduces  to  yl  for  x  =  a,  is  represented  in  the  neigh- 

borhood of  the  point  a-  by  a  power-series  development  P(x  —  a). 
We  can  propose  to  ourselves  the  problem  of  finding  its  analytic  ex- 

tension by  causing  the  variable  to  describe  the  path  AB.  This  is  a 
particular  case  of  the  general  problem,  and  we  know  in  advance  that 
we  shall  arrive  at  the  point  B  with  a  final  value  which  will  be  a 

root  of  the  equation  F(b,  ?/)=  0  (§  86).  We  shall  surely  arrive  at 
the  point  b  at  the  end  of  a  finite  number  of  operations ;  in  fact,  the 
radii  of  the  circles  of  convergence  of  the  series  representing  the 
different  roots  of  the  equation  F(x,  y)  =  0,  having  their  centers  at 
different  points  of  the  path  A  B,  have  a  lower  limit*  8  >  0,  since  this 
path  does  not  contain  any  critical  points ;  and  it  is  clear  that  we 
could  always  take  the  radii  of  the  different  circles  which  we  use  for 
the  analytic  extension  at  least  equal  to  8. 

Among  all  the  paths  joining  the  points  A  and  B  we  can  always 
find  one  leading  from  the  root  yl  to  any  given  one  of  the  roots  of 
the  equation  F  (b,  y)  =  0  as  the  final  value.  The  proof  of  this  can  be 
made  to  depend  on  the  following  proposition:  If  an  analytic  func- 

tion z  of  the  variable  x  has  only  p  distinct  values  for  each  value  of  x, 

and  if  it  has  in  the  whole  plane  (including  the  point  at  infinity")  only 
algebraic  singular  points,  the  p  determinations  of  z  are  roots  of  an 
equation  of  degree  p  whose  coefficients  are  rational  functions  of  x. 

Let  «1?  «2,  •  •  • ,  «p  be  the  p  determinations  of  z ;  when  the  variable  x 
describes  a  closed  curve,  these  p  values  zv  «2,  •  •  • ,  zp  can  only  change 
into  each  other.  The  symmetric  function  uk  =  z\  +  z\  +  •••-{-«£, 
where  k  is  a  positive  integer,  is  therefore  single-valued.  Moreover, 
that  function  can  have  only  polar  singularities,  for  in  the  neigh- 

borhood of  any  point  in  the  finite  plane  x  =  a  the  developments 

of  «1?  «2,  •  •  •,  «p  have  only  a  finite  number  of  terms  with  negative 
exponents.  The  same  thing  is  therefore  true  of  the  development  of  uk. 
Also,  the  function  uk  being  single-valued,  its  development  cannot  con- 

tain fractional  powers.  The  point  a  is  therefore  a  pole  or  an  ordinary 
point  for  uk,  and  similarly  for  the  point  at  infinity.  The  function  uk 

*  To  prove  this  rigorously  it  suffices  to  make  use  of  a  form  of  reasoning  analogous 
to  that  of  §  84. 
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is  therefore  a  rational  function  of  x,  whatever  may  be  the  integer 

k ;  consequently  the  same  thing  is  true  of  the  simple  symmetric 

functions,  such  as  2^t-,  2^,-%,  •  •  •,  which  proves  the  theorem  stated. 
Having  shown  this,  let  us  now  suppose  that  in  going  from  the 

point  a  to  any  other  point  x  of  the  plane  by  all  possible  paths  we 
can  obtain  as  final  values  only  p  of  the  roots  of  the  equation 

F(x,y)=0,  (P<n) 

These  p  roots  can  evidently  only  be  permuted  among  themselves 
when  the  variable  x  describes  a  closed  boundary,  and  they  possess 

all  the  properties  of  the  p  branches  «1?  «2,  •  •  •,  zp  of  the  analytic 
function  z  which  we  have  just  studied.  We  conclude  from  this  that 

2/i>  2/2>  '  '  ' '  VP  would  be  roots  of  an  equation  of  degree  p,  F^x,  y)  =  0, 
with  rational  coefficients.  The  equation  F(x,  y)=Q  would  have, 

then,  all  the  roots  of  the  equation  F^x,  y)  =  0,  whatever  x  may  be, 
and  the  polynomial  F(x,  y)  would  not  be  irreducible,  contrary  to 
hypothesis.  If  we  place  no  restriction  upon  the  path  followed  by 
the  variable  x}  the  n  roots  of  the  equation  (35)  must  then  be  regarded 
as  the  distinct  branches  of  a  single  analytic  function,  as  we  have 

already  remarked  in  the  case  of  some  simple  examples  (§  6). 
Let  us  suppose  that  from  each  of  the  critical  points  we  make  an 

infinite  cut  in  the  plane  in  such  a  way  that  these  cuts  do  not  cross 
each  other.  If  the  path  followed  by  x  is  required  not  to  cross  any 

of  these  cuts,  the  n  roots  are  single-valued  functions  in  the  whole 

plane,  for  two  paths  having  the  same  extremities  will  be  transform- 
able one  into  the  other  by  a  continuous  deformation  without  passing 

over  any  critical  point  (§  85).  In  order  to  follow  the  variation  of  a 
root  along  any  path,  we  need  only  know  the  law  of  the  permutation 
of  these  roots  when  the  variable  describes  a  loop  around  each  of  the 
critical  points. 

Note.  The  study  of  algebraic  functions  is  made  relatively  easy  by  the  fact 
that  we  can  determine  a  priori  by  algebraic  computation  the  singular  points  of 
these  functions.  This  is  no  longer  true  in  general  of  implicit  functions  that  are 
not  algebraic,  which  may  have  transcendental  singular  points.  As  an  example, 

the  implicit  function  y  (x),  defined  by  the  equation  &  —  x  —  1  =  0,  has  no  algebraic 
critical  point,  but  it  has  the  transcendental  singular  point  x  =—  1. 

101.  Abelian  integrals.  Every  integral  I=fR(x,  y)dx,  where  R (x,  y) 
is  a  rational  function  of  x  and  y,  and  where  y  is  an  algebraic  func- 

tion defined  by  the  equation  F(x,  y]  =  0,  is  called  an  Abelian  integral 
attached  to  that  curve.  To  complete  the  determination  of  that  inte- 

gral, it  is  necessary  to  assign  a  lower  limit  XQ  and  the  corresponding 
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value  y0  chosen  among  the  roots  of  the  equation  F  (XQ,  ?/)  —  0.  We 
shall  now  state  some  of  the  most  important  general  properties  of  such 

integrals.  When  we  go  from  the  point  XQ  to  any  point  x  by  all  the 
possible  paths,  all  the  values  of  the  integral  /  are  included  in  one 
of  the  formulae 

(38)  /  =  Ik  +  m^j  +  ra2o>2  H   h  wr<or,      (k  =  1,  2,  •  .  .,  n) 

where  /,  /,•••,/„  are  the  values  of  the  integral  which  correspond 

to  certain  definite  paths,  miy  m2,  •  •  •  ,  mr  are  arbitrary  integers,  and 
WP  to,,  •  •  .,  (or  are  periods.  These  periods  are  of  two  kinds ;  one  kind 
results  from  loops  described  about  the  poles  of  the  function  R  (x,  y) ; 
these  are  the  polar  periods.  The  others  come  from  closed  paths 
surrounding  several  critical  points,  called  cycles,  these  are  called 

cyclic  periods.  The  number  of  the  distinct  cyclic  periods  depends 

only  on  the  algebraic  relation  considered,  F(x,  y)  =  0 ;  it  is  equal 
to  2p,  where  p  denotes  the  deficiency  of  the  curve  (§  82).  On  the 
other  hand,  there  may  be  any  number  of  polar  periods.  From  the 
point  of  view  of  the  singularities  three  classes  of  Abelian  integrals 
are  distinguished.  Those  which  remain  finite  in  the  neighborhood 

of  every  value  of  x  are  called  the  first  kind;  if  their  absolute  value 
becomes  infinite,  it  can  only  happen  through  the  addition  of  an 
infinite  number  of  periods.  The  integrals  of  the  second  kind  are 

those  which  have  a  single  pole,  and  the  integrals  of  the  third  kind 
have  two  logarithmic  singular  points.  Every  Abelian  integral  is  a 

sum  of  integrals  of  the  three  kinds,  and  the  number  of  distinct 
integrals  of  the  first  kind  is  equal  to  the  deficiency. 

The  study  of  these  integrals  is  made  very  easy  by  the  aid  of  plane 
surfaces  composed  of  several  sheets,  called  Riemann  surfaces.  We 

shall  not  have  occasion  to  consider  them  here.  We  shall  only  give, 

on  account  of  its  thoroughly  elementary  character,  the  demonstra- 
tion of  a  fundamental  theorem,  discovered  by  Abel. 

102.  Abel's  theorem.  In  order  to  state  the  results  more  easily,  let  us 
consider  the  plane  curve  C  represented  by  the  equation  F(x9  y)=  0, 

and  let  3>(x,  y)  be  the  equation  of  another  plane  algebraic  curve  C'. 
These  two  curves  have  N  points  in  common,  (xv  y^),  (a;2,  ?/2),  •  •  •, 
(xir>  y#)>  tne  number  N  being  equal  to  the  product  of  the  degrees 

of  the  two  curves.  Let  R(x,  y)  be  a  rational  function,  and  let  us 
consider  the  following  sum : 

N 

(39) 
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where 
r  <*<»  va 

R  (x,  y)  dx 
f*  C^i'  Vi) 

J(*v  yn) 

denotes  the  Abelian  integral  taken  from  the  fixed  point  XQ  to  a  point  x. 
along  a  path  which  leads  y  from  the  initial  value  yQ  to  the  final  value  y^ 

the  initial  value  yQ  of  y  being  the  same  for  all  these  integrals.  It  is 
clear  that  the  sum  /  is  determined  except  for  a  period,  since  this  is 
the  case  with  each  of  the  integrals.  Suppose,  now,  that  some  of  the 

coefficients,  av  a2,  •  •  •,  %.,  of  the  polynomial  <£(#,  y)  are  variable. 
When  these  coefficients  vary  continuously,  the  points  xf  themselves 

vary  continuously,  and  if  none  of  these  points  pass  through  a  point 

of  discontinuity  of  the  integral  fR  (x,  y]  dx,  the  sum  /  itself  varies 
continuously,  provided  that  we  follow  the  continuous  variation  of 
each  of  the  integrals  contained  in  it  along  the  entire  path  described 

by  the  corresponding  upper  limit.  The  sum  /  is  therefore  a  function 

of  the  parameters  alt  a2,  •  •  •,  ak,  whose  analytic  form  we  shall  now 
investigate. 

Let  us  denote  in  general  by  8V  the  total  differential  of  any  func- 

tion V.  with  respect  to  the  variables  av  a2,  •  •  •,  ak: 

_  dV  dV 
3a^     1  dak 

By  the  expression  (39)  we  have 

2IT 
» =  i 

From  the  two  relations  F(x{,  y^)  =  0,  &(x{,  ?/*)=  0  we  derive 

dF  dF  d&  d® 
_&<  +  _s,i  =  o,      _to|  +  _^  +  8»,  =  o, 

and  consequently  &»<  =  ¥(0^,^)8$^  where  ̂ f(xi:y^)  is  a  rational 

function  of  xit  yit  av  az,  •  •  • ,  ak)  and  where  ®f  is  put  for  <£(#;,  y^). 
We  have,  then,  i=N 

f=i 

The  coefficient  of  8^  on  the  right  is  a  rational  symmetric  function 
of  the  coordinates  of  the  N  points  (xi}  yf)  common  to  the  two  curves 

C,  C".  The  theory  of  elimination  proves  that  this  function  is  a 
rational  function  of  the  coefficients  of  the  two  polynomials  F(x,  y) 

and  <b(xty),  and  consequently  a  rational  function  of  al9  aa,  •  •  •,  ak. 
Evidently  the  same  thing  is  true  of  the  coefficients  of  8aa,  •  •  • ,  Sak, 
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and  /  will  be  obtained  by  the  integration  of  a  total  differential 

/  =  I  7T18a1  +  7T28a2  H   h  w&8a*, 

where  TTV  7T2,  •  •  • ,  7rk  are  rational  functions  of  alt  »2,  •  •  • ,  at.  Now 
the  integration  cannot  introduce  any  other  transcendentals  than 
logarithms.  The  sum  I  is  therefore  equal  to  a  rational  function  of 

the  coefficients  al}  a0)  •  •  • ,  ak)  plus  a  sum  of  logarithms  of  rational 
functions  of  the  same  coefficients,  each  of  these  logarithms  being 

multiplied  by  a  constant  factor.  This  is  the  statement  of  Abel's 
theorem  in  its  most  general  form.  In  geometric  language  we  can 

also  say  that  the  sum  of  the  values  of  any  Abelian  integral,  taken 

from  a  common  origin  to  the  N  points  of  intersection  of  the  given 

curve  with  a  variable  curve  of  degree  m,  3?  (x,  ?/)  =  0,  is  equal  to  a 

rational  function  of  the  coefficients  of  <$(#,  y),  plus  a  sum  of  a  finite 
number  of  logarithms  of  rational  functions  of  the  same  coefficients, 
each  logarithm  being  multiplied  by  a  constant  factor. 

The  second  statement  appears  at  first  sight  the  more  striking, 

but  in  applications  we  must  always  keep  in  mind  the  analytic  state- 
ment in  the  evaluation  of  the  continuous  variation  of  the  sum  I 

which  corresponds  to  a  continuous  variation  of  the  parameters 

alt  a2J  •  -  • ,  ak.  The  theorem  has  a  precise  meaning  only  if  we  take 
into  account  the  paths  described  by  the  N  points  x  ,  #2,  •  •  • ,  XN  on 
the  plane  of  the  variable  x. 

The  statement  becomes  of  a  remarkable  simplicity  when  the 

integral  is  of  the  first  kind.  In  fact,  if  •JTI,  7T2,  •  •  • ,  irk  were  not 
identically  zero,  it  would  be  possible  to  find  a  system,  of  values 

ttj  =  a\,  -  -  • ,  ak  =  a'k  for  which  /  would  become  infinite.  Let  (srj,  yj), 
•  •  * »  (X'N>  V'N)  be  the  points  of  intersection  of  the  curve  C  with  the 
curve  C'  which  correspond  to  the  values  a\ ,  •  •  • ,  a't  of  the  parameters. 
The  integral 

f*  (x,  V) I         R(XJ  y)dx «A*0, 2/0) 

would  become  infinite  when  the  upper  limit  approaches  one  of  the 

points  (ojj,  y'i),  which  is  impossible  if  the  integral  is  of  the  first  kind. 
Therefore  we  have  87  =  0,  and,  when  alt  &2,  •  •  • ,  ak  vary  continuously, 

/  remains  constant ;  Abel's  theorem  can  then  be  stated  as  follows  : 

Given  a  fixed  curve  C  and  a  variable  curve  C'  of  degree  m,  the  sum 
of  the  increments  of  an  Abelian  integral  of  the  first  kind  attached  to 
the  curve  C  along  the  continuous  curves  described  by  the  points  of 

intersection  of  C  with  C1  is  equal  to  zero. 
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Note.  We  suppose  that  the  degree  of  the  curve  C"  remains  con- 
stant and  equal  to  ra.  If  for  certain  particular  values  of  the  coeffi- 

cients a  ,  aa,  •  •  .  ,  ak  that  degree  were  lowered,  some  of  the  points  of 

intersections  of  C  with  C'  should  be  regarded  as  thrown  off  to 
infinity,  and  it  would  be  necessary  to  take  account  of  this  in  the 
application  of  the  theorem.  We  mention  also  the  almost  evident  fact 

that  if  some  of  the  points  of  intersection  of  C  with  C'  are  fixed,  it 
is  unnecessary  to  include  the  corresponding  integrals  in  the  sum  7. 

103.  Application  to  hyperelliptic  integrals.  The  applications  of 

Abel's  theorem  to  Analysis  and  to  Geometry  are  extremely  numer- 
ous and  important.  We  shall  calculate  ol  explicitly  in  the  case  of 

hyperelliptic  integrals. 
Let  us  consider  the  algebraic  relations 

(40)  ̂ f  =  R(x)  =  A 

where  the  polynomial  R  (x)  is  prime  to  its  derivative.  We  shall 

suppose  that  AQ  may  be  zero,  but  that  AQ  and  Al  may  not  be  zero  at 

the  same  time,  so  that  R  (x)  is  of  degree  2p  -f-  1  or  of  degree  2p  +  2. 
Let  Q(x)  be  any  polynomial  of  degree  q.  We  shall  take  for  the 
initial  value  XQ  a  value  of  x  which  does  not  make  R  (x)  vanish,  and 

for  yQ  a  root  of  the  equation  ?/2  =  R  (o;0).  We  shall  put 

v  (x.  y]  = 

where  the  integral  is  taken  along  a  path  going  from  XQ  to  x,  and 
where  y  denotes  the  final  value  of  the  radical  VjfZ(»)  when  we  start 

from  XQ  with  the  value  yQ.  In  order  to  study  the  system  of  points 
of  intersection  of  the  curve  C  represented  by  the  equation  (40)  with 

another  algebraic  curve  C",  we  may  evidently  replace  in  the  equation 

of  the  latter  curve  an  even  power  of  y,  such  as  ̂ 2r,  by  [-S(ic)]r,  and 

an  odd  power  y*r+1  by  y\_R(x)~]r.  These  substitutions  having  been 
made,  the  equation  obtained  will  now  contain  y  only  to  the  first 

degree,  and  we  may  suppose  the  equation  of  the  curve  C'  of  the  form 

(41)  -  y*(a)-/(aO=0, 

where  f(x)  and  <£(#)  are  two  polynomials  prime  to  each  other,  of 
degrees  A.  and  //,  respectively,  some  of  the  coefficients  of  which  we 

shall  suppose  to  be  variable.  The  abscissas  of  the  points  of  intersec- 

tion of  the  two  curves  C  and  C'  are  roots  of  the  equation 

(42)  f(x)  =  R  (x)  tf(x)-f\x)  =  0, 
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of  degree  N.  For  special  systems  of  values  of  the  variable  coefficients 

in  the  two  polynomials  f(x)  and  <£  (x)  the  degree  of  the  equation  may 
turn  out  to  be  less  than  N ;  some  of  the  points  of  intersection  are 
then  thrown  off  to  infinity,  but  the  corresponding  integrals  must 
be  included  in  the  sum  which  we  are  about  to  study.  To  each  root 
xi  of  the  equation  (42)  corresponds  a  completely  determined  value 

of  y  given  by  i/i=f(xi)/^(xi).  Let  us  now  consider  the  sum 

1  = 
We  have 

for  the  final  value  of  the  radical  at  the  point  xl  must  be  equal  to 
yiy  that  is,  to  /(#;)/<£  (x{).  On  the  other  hand,  from  the  equation 
i/  x  =  0  we  derive 

$  (x,)  &u,  +  2  tf  (aj,)  <£  (a;,)  8&  -  2/(sf)  8/«  =  0, 
and  therefore 

or,  making  use  of  the  equation  (42), 

Let  us  calculate,  for  example,  the  coefficient  of  8%  in  8/,  where  ak  is 

the  coefficient,  supposed  variable,  of  xk  in  the  polynomial/^).  The 
term  8ak  does  not  appear  in  8<£,-,  and  it  is  multiplied  by  x\  in  8/J-.  The 
desired  coefficient  of  8^  is  therefore  equal  to 

where  TT(X)  =  Q(x)  <f>(x)xk.  The  preceding  sum  must  be  extended  to 
all  the  roots  of  the  equation  \l/(x)  =  0  ;  it  is  a  rational  and  symmetric 
function  of  these  roots,  and  therefore  a  rational  function  of  the  coeffi- 

cients of  the  two  polynomials  f(x)  and  <f>(x).  The  calculation  of 

this  sum  can  be  facilitated  by  noticing  that  ̂ 7r(^-)/^'(cct-)  is  equal  to 
the  sum  of  the  residues  of  the  rational  function  TT  (#)/</'  (x)  relative 

to  the  N  poles  in  the  finite  plane  xlt  x2,  •  •  •  ,  XN.  By  a  general  theo- 
rem that  sum  is  also  equal  to  the  residue  at  the  point  at  infinity 

with  its  sign  changed  (§  52).  It  will  be  possible,  then,  to  obtain  the 
coefficient  of  8^  by  a  simple  division. 
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It  is  easy  to  prove  that  this  coefficient  is  zero  if  the  integral 

v(x,  y)  is  of  the  first  kind.  We  have  by  supposition  q  ̂ p  —  1  ;  the 

degree  of  TT(X)  is  q  -\-  JJL  -+-  k,  and  we  have 

Let  us  find  the  degree  of  ̂ (#).    If  there  is  no  cancellation  between 

the  terms  of  highest  degree  in  R(x)  <£2(#)  and  in/2(x),  we  have 

2\^N,         2p  +  l  +  2fjL^N, 
whence A  +  y 

and,  a  fortiori, 

k  + 

If  there  were  a  cancellation  between  these  two  terms,  we  should  have 

but  since  the  term  akx*  +  k  has  no  term  with  which  to  cancel  out,  we 
should  have  A.  +  k  ̂   N,  from  which  the  same  inequality  as  before 
results.  It  follows  that  we  always  have 

q  +  IJL  +  k  ̂   N—  2. 

The  residue  of  the  rational  function  TT  (x)  /if/  (x)  with  respect  to  the 
point  at  infinity  is  therefore  zero,  for  the  development  will  begin 

with  a  term  in  1/x2  or  of  higher  degree.  It  will  be  seen  similarly 
that  the  coefficient  of  &bh  in  87,  bh  being  one  of  the  variable  coefficients 

of  the  polynomial  <£  (x\  is  zero  if  the  polynomial  Q  (x)  is  of  degree 

p  —  1  or  of  lower  degree.  This  result  is  completely  in  accord  with 
the  general  theorem. 

Let  us  take,  for  example,  <£  (x)  =  1,  and  let  us  put 

f(x)  =  +  1  +  apx»  +  a^x*-1  +  •  •  •  +  ̂ x  +  «0, 

where  aQ)  a  ,  •  •  •  ,  ap  are  _/?+'!  variable  coefficients.    The  two  curves 

cut  each  other  in  2p  +  1  variable  points,  and  the  sum  of  the  values 

of  the  integral  v  (x,  y),  taken  from  an  initial  point  to  these  2  p  -\-  1 
points  of  intersection,  is  an  algebraic-logarithmic  function  of  the 

coefficients  «0,  alt  •  -  •,  ap.  Now  we  can  dispose  of  these  p  +  1  coeffi- 
cients in  such  a  way  that  p  -f  1  of  the  points  of  intersection  are  any 

previously  assigned  points  of  the  curve  y2  =  R  (x),  and  the  coordi- 
nates of  the  p  remaining  points  will  be  algebraic  functions  of  the 

coordinates  of  the  p  +  1  given  points. 
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The  sum  of  the  p  +  1  integrals 

taken  from  a  common  initial  point  to  p  -\-  1  arbitrary  points,  is 
therefore  equal  to  the  sum  of  p  integrals  whose  limits  are  algebraic 
functions  of  the  coordinates 

plus  certain  algebraic-logarithmic  expressions.  It  is  clear  that  by 
successive  reductions  the  proposition  can  be  extended  to  the  sum 
of  m  integrals,  where  m  is  any  integer  greater  than  p.  In  particular, 
the  sum  of  any  number  of  integrals  of  the  first  kind  can  be  reduced 
to  the  sum  of  only  p  integrals.  This  property,  which  applies  to  the 
most  general  Abelian  integrals  of  the  first  kind,  constitutes  the 
addition  theorem  for  these  integrals. 

In  the  case  of  elliptic  integrals  of  the  first  kind,  Abel's  theorem  leads  pre- 
cisely to  the  addition  formula  for  the  function  p(w).  Let  us  consider  a  cubic  in 

the  normal  form 

and  let  M^x^  yj,  M2(x^  ?/2),  -Mg(z3,  ys)  be  the  points  of  intersection  of  that 
cubic  with  a  straight  line  D.   By  the  general  theorem  the  sum 

r    8  ̂  •*:  r    8  ̂  •*•  r    , dx 
is  equal  to  a  period,  for  the  three  points  3ft,  Jf2,  Ms  are  carried  off  to  infinity 
when  the  straight  line  D  goes  off  itself  to  infinity.  Now  if  we  employ  the 

parametric  representation  x  =p(u),  y  =  p'(u)  for  the  cubic,  the  parameter  u  is 
precisely  equal  to  the  integral / I/  00 

dx 

and  the  preceding  formula  says  that  the  sum  of  the  arguments  w15  M2,  M3,  which 
correspond  to  the  three  points  M±,  Jf2,  3f3,  is  equal  to  a  period.  We  have  seen 
above  how  that  relation  is  equivalent  to  the  addition  formula  for  the  function 

p(u)(§80). 

104.  Extension  of  Lagrange's  formula.  The  general  theorem  on  the  implicit 
functions  defined  by  a  simultaneous  system  of  equations  (I,  §  194,  2d  ed. ; 
§  188,  1st  ed.)  extends  also  to  complex  variables,  provided  that  we  retain 
the  other  hypotheses  of  the  theorem.  Let  us  consider,  for  example,  the  two 
simultaneous  equations 

(44)     P(x,y)  =  x-a-ctf(x1y)  =  01     Q(z,  y)  =  y  -  b-  00  (x,  y)  =  0, 

where  x  and  y  are  complex  variables,  and  where  /(z,  y)  and  0  (z,  y)  are  ana- 
lytic functions  of  these  two  variables  in  the  neighborhood  of  the  system  of 
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values  x  =  a,  y  =  6.  For  a  =  0,  /3  =  0  these  equations  (44)  have  the  system  of 
solutions  x  =  a,  y  =  b,  and  the  determinant  -D(P,  Q)/D(x,  y)  reduces  to  unity. 
Therefore,  by  the  general  theorem,  the  system  of  equations  (44)  has  one  and 
only  one  system  of  roots  approaching  a  and  6  respectively  when  a  and  /3  approach 
zero,  and  these  roots  are  analytic  functions  of  a  and  /3.  Laplace  was  the  first 

to  extend  Lagrange's  formula  (§  51)  to  this  system  of  equations. 
Let  us  suppose  for  definiteness  that  with  the  points  a  and  6  as  centers  we 

describe  two  circles  C  and  C'  in  the  planes  of  the  variables  x  and  y  respectively, 
with  radii  r  and  r"  so  small  that  the  two  f  unctions /(x,  y)  and  0(x,  y)  shall  be 
analytic  when  the  variables  x  and  y  remain  within  or  on  the  boundaries  of 

these  two  circles  C,  C'.  Let  M  and  M'  be  the  maximum  values  of  |/(x,  y)  \  and 
of  |0(x,  ?/)|,  respectively,  in  this  region.  We  shall  suppose  further  that  the 

constants  «  and  /3  satisfy  the  conditions  M\a\<r1  M'\fi\<rf. 
Let  us  now  give  to  x  any  value  within  or  on  the  boundary  of  the  circle  C ; 

the  equation  Q  (x,  y)  =  0  is  satisfied  by  a  single  value  of  y  in  the  interior  of  the 

circle  C",  for  the  angle  of  y  —  b  —  fi<j>  (x,  y)  increases  by  2  TT  when  y  describes 
the  circle  C"  in  the  positive  sense  (§  49).  That  root  is  an  analytic  function 
yl  =  \J/  (x)  of  x  in  the  circle  C.  If  we  replace  y  in  P  (x,  y)  by  that  root  y^  the 
resulting  equation  x  —  a  —  a/(x,  yj  =  0  has  one  and  only  one  root  in  the  inte- 

rior of  (7,  for  the  reason  given  a  moment  ago. 
Let  x  =  £  be  that  root,  and  let  t\  be  the  corresponding  value  of  y,  t\  =  \f/  (£). 

The  object  of  the  generalized  Lagrange  formula  is  to  develop  in  powers  of  a 
and  /3  every  function  F(£,  77)  which  is  analytic  in  the  region  just  defined. 

For  this  purpose  let  us  consider  the  double  integral 

F(x,  y)dy 
(45)  I  =  C  dx  C 

J(C)      «/(C" 
>P(X,  v)Q(a,y) 

Since  x  is  a  point  on  the  circumference  of  C,  P(x,  y)  cannot  vanish  for  any 

value  of  y  within  C',  for  the  angle  of  x  —  a  —  a/(x,  y)  returns  necessarily  to 
its  initial  value  when  y  describes  C',  x  being  a  fixed  point  of  C.  The  only  pole 
of  the  function  under  the  integral  sign,  considered  as  a  function  of  the  single 
variable  T/,  is,  then,  the  point  y  =  yv  given  by  the  root  of  the  equation  Q  (x,  y)  =  0, 
which  corresponds  to  the  value  of  x  on  the  boundary  C,  and  we  have,  after  a 
first  integration, 

r         F(x,y)dy      _ 
J(C>)P(x,y)  Q(x,y) 

The  right-hand  side,  if  we  suppose  y1  replaced  b;f  the  analytic  function  ̂   (x) 
defined  above,  has  in  turn  a  single  pole  of  the  first  order  in  the  interior  of  C,  — 
the  point  x  =  £,  to  which  corresponds  the  value  yl  =  17,  —  and  the  corresponding 
residue  is  easily  shown  to  be 

,   7,) 

)1 

J?- 

(*,  y)- The  double  integral  I  has  therefore  for  its  value 

(z,  y)    y= 
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On  the  other  hand,  we  can  develop  1/PQ  in  a  uniformly  convergent  series 

(x  -  a  -  af]  (y  -  b  -  /30)  ~        (x  -  a)m  +  l(y  -  6)»+i 

which  gives  us  I  =  '2Jmn  am^  where 

F(x,  y}  [/(x,  y)]"*[>(x,  y)]*dy m  =  I 

J( 

dx 

i.        (x—  a)m+l(y—  b)n+l 
This  integral  has  already  been  calculated  (§  94),  and  we  have  found  that  it  is 

6qUal  t0  4?r2    &*  +  »[F(a,  &)/"»(o,  6)0»(a,  6)] 
mini  dam  dbn 

Equating  the  two  values  of  7,  we  obtain  the  desired  result,  which  presents  an 
evident  analogy  with  the  formula  (50)  of  §  51 : 

(46) I'D  (P. 
—  \  —  i_ 

We  could  also  obtain  a  second  result  analogous  to  (51),  of  §  51,  by  putting 

but  the  coefficients  in  this  case  are  not  so  simple  as  in  the  case  of  one  variable. 

EXERCISES 

1.  Every  algebraic  curve  Cn  of  degree  n  and  of  deficiency  p  can  be  carried 
over  by  a  birational  transformation  into  a  curve  of  degree  p  +  2. 

(Proceed  as  in  §  82,  cutting  the  given  curve  by  a  net  of  curves  Cn_2,  passing 

through  n(n  — 1)/2  —  3  points  of  Cn,  among  which  are  the  (n  —  1)  (n  —  2)/2  —  p 
double  points,  and  put 

X  _  02  Y  —  ̂5 
01  0i 

the  equation  of  the  net  being  0x(x,  y)  +  X02  (x,  y)  +  /*03  (x,  y)  =  0.) 
2.  Deduce  from  the  preceding  exercise  that  the  coordinates  of  a  point  of  a 

curve  of  deficiency  2  can  be  expressed  as  rational  functions  of  a  parameter  t 
and  of  the  square  root  of  a  polynomial  R  (t)  of  the  fifth  or  of  the  sixth  degree, 
prime  to  its  derivative. 

(The  reader  may  begin  by  showing  that  the  curve  corresponds  point  by  point 
to  a  curve  of  the  fourth  degree  having  a  double  point.) 

3*.  Let  y  —  a^x  +  or2x2  +  •  •  •  be  the  development  in  power  series  of  an  alge- 
braic function,  a  root  of  an  equation  F(x,  y)  =  0,  where  F(x,  y)  is  a  polynomial 

with  integral  coefficients  and  where  the  point  with  coordinates  x  =  0,  y  =  0  is  a 

simple  point  of  the  curve  represented  by  F(x,  y)  =  0.  All  the  coefficients  a^  a2  •  •  • 
are  fractions,  and  it  suffices  to  change  x  to  Jix,  K  being  a  suitably  chosen  integer, 
in  order  that  all  these  coefficients  become  integers.  [EISENSTEIN.] 

(It  will  be  noticed  that  a  transformation  of  the  form  x  =  k*x',y  =  ky'  suffices 
to  make  the  coefficient  of  y'  on  the  left-hand  side  of  the  new  relation  equal  to 
one,  all  the  other  coefficients  being  integers.) 
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Doubly  periodic  functions :  145,  65 ; 

149,  67  ;  see  also  Elliptic  functions 

Eisenstein :  252,  ex.  3 

Elements  of  analytic  functions :  198, 
83 

Elliptic  functions :  145,  65  ;  150,  68 ; 

addition  formulae :  166,  74 ;  alge- 

braic relation  between  elliptic  func- 
tions with  the  same  periods :  153. 

68 ;  application  to  cubics :  180,  78  ; 

184,  80;  application  to  curves  of 
deficiency  one :  187,  81  ;  191,  82 ; 

application  to  quartics :  187,  81 ; 
even  and  odd  :  154,  68 ;  expansions 

for :  154,  69;  general  expression  for: 

168,  73;  Hermite's  formula:  165, 
73  ;  168,  75  ;  195,  ex.  9 ;  integration 
of  :  168,  75 ;  invariants  of  :  158,  70  ; 

172,11;  182,  79 ;  order  of  :  150,  68 ; 

p(u) :  154,  69;  p(u)  defined  by  in- 
variants :  182,  79 ;  periods  of  :  152, 

68  ;  172,  77  ;  184,  79 ;  poles  of  :  150, 
68  ;  154,  68;  relation  between  p(u) 

and  p'  (u) :  158,  70 ;  residues  of : 
151,  68;  ff(u) :  162,  72;  0(u) :  170, 

76 ;  f  (u) :  159,  71 ;  zeros  of :  152, 
68  ;  154,  68  ;  159,  70 
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Elliptic  integrals,  of  the  first  kind : 

120,  56  ;  174,  78  ;  250,  103  ;  the  in- 
verse function :  174,  78 ;  periods  of : 

120,  56  . 
Elliptic  transformation :  57,  ex.  15 
Equations:  233,  98;  algebraic:  240, 

100 ;  cyclic  system  of  roots  of :  238, 

99;  241,  100;  D'Alembert's  theo- 
rem :  104,  Note ;  Kepler's :  109, 

ex.  ;  126,  ex.  27 ;  Laplace's :  10,  3  ; 
54,  24 ;  55,  Note ;  theory  of  equa- 

tions :  103,  49 ;  see  also  Implicit 

functions,  Lagrange's  formula,  and 
Weierstrass's  theorem 

Essentially  singular  point :  91,  42 ;  at 
infinity:  110,  62;  isolated:  91,  42; 

see  also  Laurent's  series 
Euler :  27,  12  ;  58,  exs.  20  and  22  ; 

96,  45 ;  124,  ex.  14 ;  143,  ftn.;  230, 
96 

Euler's  constant:  230,  96;  formula: 
58,  ex.  22;  96,  45;  124,  ex.  14; 
formulae :  27,  12 

Evaluation  of  definite  integrals :  see 
Definite  integrals 

Even  functions :  153,  Notes 
Expansions  in  infinite  products: 

194,  exs.  2  and  3;  of  cosz:  194, 
ex.  3;  of  T(z):  230,  96;  of  <r(u): 
162,  72 ;  of  sin  x :  143,  64  ;  see  also 
Functions,  primary,  and  Infinite 

products 
Expansions  in  series :  of  ctn  x :  143, 

64 ;  of  elliptic  functions :  154,  69 ; 
of  periodic  functions:  145,  65;  of 
roots  of  an  equation  :  238,  99 ;  see 
also  Series 

Exponential  function :  23,  11 

Fourier :  170,  76 

Fredholm :  213,  ftn. 
Fuchs :  57,  ex.  15 
Fuchsian  transformation :  57,  ex.  15 
Functions,  algebraic:  233,  98;  240, 

100;  analytic:  see  Analytic  func- 
tions and  Analytic  functions  of  sev- 

eral variables;  analytic  except  for 
poles :  90,  41  ;  101,  48  ;  136,  61 ; 
branches  of:  15,  6;  29,  13;  class 

of  integral :  132,  58 ;  of  a  complex 
variable :  6,  2 ;  continuous :  6,  2 ; 
defined  by  differential  equations: 
208,  86 ;  dominant :  56,  ex.  7 ;  81, 
35  ;  227,  94 ;  doubly  periodic :  145, 
65 ;  149,  67 ;  elementary  transcen- 

dental :  18,  8 ;  elliptic :  see  Elliptic 
functions ;  even  and  odd :  153, 
Notes;  exponential:  23, 11;  Gamma: 
100,  47  ;  229,  96;  holomorphic  :  11, 
ftn.;  implicit:  233,  98;  integral: 
see  Integral  functions  and  Integral 
transcendental  functions ;  inverse, 
of  the  elliptic  integral :  172,  77 ;  in- 

verse sine :  114,  54 ;  inverse  trigo- 
nometric :  30,  14 ;  irrational :  13, 

6;  logarithms:  28,  13;  meromor- 
phic :  90,  ftn. ;  monodromic :  17, 
ftn.;  monogenic :  9,  ftn.;  multiform : 
17,  ftn.;  multiple-valued :  17,  7 ; 
p  (u)  :  1 54,  69 ;  periods  of  :  145,  65  ; 
152,  68  ;  172,  77  ;  184,  79 ;  primary 

(Weierstrass's) :  127,  57 ;  primitive : 
33,  15;  rational:  12,  5;  33,  15; 
rational,  of  sin  z  and  cos  z :  35,  16 ; 
regular  in  a  neighborhood :  89,  40 ; 
regular  at  a  point :  88,  40 ;  regular 
at  the  point  at  infinity :  109,  52 ; 
represented  by  definite  integrals: 
227,  95 ;  series  of  analytic :  86,  39 ; 

ff  (u) :  152,  72 ;  single-valued :  see 
Single-valued  functions  and  Single- 
valued  analytic  functions ;  0  (u) : 
170,  76;  trigonometric:  26,  12; 

£  (u) :  159,  71 ;  see  also  Expansions 
Fundamental  formula  of  the  integral 

calculus :  63,  26  ;  72,  31 
Fundamental  theorem  of  algebra: 

104,  Note 

Gamma  function  :  100,  47  ;  229,  96 
Gauss :  125,  ex.  21 

Gauss's  sums :  125,  ex.  21 
General    linear   transformation:    44, 

ex.  2 

Geographic  maps :  see  Maps 
Gourier :  126,  ex.  28 
Goursat :  208,  ftn.;  216,  ftn. 

Goursat's  theorem :  69,  29  and  ftn. 
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Hadamard:  206,  ftn.;  212,  88;  218, 
ex.  8 

Hermite:  106,  51  ;  109,  ex.;  165,  73; 

168,  75;  195,  ex.  9;  £15,  90  and 
ftn.;  216,  ftn.;  #17,  exs.  4,  5,  6 ; 

230,  ftn. 

Hermite' s  formula :  215,  90 ;  for  ellip- 
tic integrals:  165,  73  ;  168,  75  ;  155, 

ex.  9 

Holomorphic  functions :  11,  ftn. 

Hyperbolic  transformations:  57,  ex. 
15 

Hyperelliptic  integrals :  116,  55 ;  247, 

103 ;  periods  of  :  116,  55 

Imaginaries,  conjugate :  4,  1 

Imaginary  quantity :  3,  1 

Implicit  functions,  Weierstrass's  theo- 
rem :  233,  98  ;  see  also  Functions, 

inverse,  and  Lagrange's  formula 

Independent  periods,  Jacobi's  theo- 
rem :  147,  66 

Index  of  a  quotient :  103,  49 

Infinite  number,  of  singular  points: 

134,  60;  see  also  Mittag-Leffler's 
theorem;  of  zeros:  26,  11 ;  93,  42; 

128,  57  ;  see  also  Weierstrass's  theo- 
rem 

Infinite  products :  22,  10 ;  129,  57 ; 

194,  exs.  2  and  3 ;  uniform  conver- 
gence of,  22,  10 ;  129,  37 ;  see  also 

Expansions 
Infinite  series :  see  Series 

Infinity  :  see  Point  at  infinity 

Inflection,  point  of  :  186,  80 

Integral  functions :  21,  8  ;  127,  57 ; 
associated  :  218,  ex.  7 ;  class  of : 
132,  58 ;  with  an  infinite  number  of 

zeros:  127,  57;  periodic:  147,  65; 
transcendental:  21,  ftn.;  92,  42; 

'    136,  61  ;  230,  96 
Integral  transcendental  functions :  21, 

ftn.;  92,  42  ;  136,  61  ;  230,  96 

Integrals,  Abelian  :  193,  82 ;  243, 101 ; 
Abelian,  of  the  first,  secondr  and 

third  kind :  244,  101 ;  Abel's  theo- 

rem:  244,  102;  Cauchy's:  75,  33; 
change  of  variables  in :  62, 26 ;  along 
a  closed  curve:  66,  28;  definite: 

see  Definite  integrals;  differentia- 
tion of :  77,  33  ;  227,  95 ;  double : 

see  Double  integrals;  elliptic:  120, 

56  ;  174,  78 ;  250,  103 ;  of  elliptic 
functions:  168,  75;  fundamental 

formula  of  the  integral  calculus: 

63,  26  ;  72,  31 ;  Hermite's  formula : 
215,  90;  Hermite's  formula  for  el- 

liptic :  165,  73 ;  168,  75 ;  195,  ex.  9 ; 

hyperelliptic :  116,  55;  247,  103; 

law  of  the  mean  (Weierstrass,  Dar- 
boux):  £4,27;  line:  51,25;  &2,  26; 

74,  32;  224,  93;  of  rational  func- 
tions: 33,  15;  113,  53;  of  series: 

86,  39 ;  uniform  convergence  of : 

229,  96 ;  see  also  Cauchy's  theorems 
Invariants  (integrals) :  57,  ex.  15 ;  of 

elliptic  functions :  158,  70 ;  172,  77 ; 

182,  79 

Inverse  functions:  see  Functions,  in- 
verse, implicit 

Inversion  :  45,  19  ;  57,  exs.  13  and  14 
Irrational  functions :  13,  6 ;  see  also 

Functions 

Irreducible  polynomial :  240,  100 
Isolated  singular  points:  89,  40  ;  132, 

59 ;  essentially  singular :  91,  42 
Isothermal  curves :  54,  24 

Jacobi :  125,  ex.  18  ;  147, 66  ;  154, 69 ; 

170,  76  ;  180,  78 

Jacobi's  theorem :  147,  66 
Jensen :  104,  50 

Jensen's  formula :  104,  50 

Kepler:  109,  ex.;  126,  ex.  26 

Kepler's  equation:  109,  ex.;  126,  ex.27 
Klein :  59,  ex.  23 

Lagrange :  106,  51 ;  126,  ex.  26 ;  251, 

104 
Lagrange's  formula :    106,   51 ;    126, 

ex.  26 ;  extension  of :  250,  104 

Laplace:   10,   3;   54,   24;   55,   Note; 

106,  51  ;  125,  ex.  19 ;  251,  104 

Laplace's  equation :  10,  3 ;  54,  24 ;  55, 
Note 

Laurent :  75,  33  ;  81,  37  ;  51,  42  j  94, 

43 ;  126,  ex.  23 ;  146,  65 
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Laurent's  series:  75,33;  81,  37;  146, 
65 

Law  of  the  mean  for  integrals :  64,  27 
Legendre:  106,  ex.;  125,  ex.  18;  180, 

78 

Legendre's    polynomials :    108,    ex. ; 
Jacobi's  form:  125,  ex.  18;  Laplace's 
form :  125,  ex.  19 

Limit  point :  90,  41 
Line  integrals:  61,  25;   62,  26;  74, 

32 ;  224,  93 
Linear  transformation:  59,   ex.   23; 

general :  44,  ex.  2 

Lines,   singular:  see  Natural   bound- 
aries, and  Cuts 

Lioumlle :  81,  36 ;  150,  67 

Liouville's  theorem :  81,  36 ;  .?50,  67 
Logarithmic  critical  points :  32,  14 ; 

113,  53 

Logarithms :  28, 13  ;  113,  53 ;  natural 
or  Napierian:    28,    13;    series  for 

Log  (1  +  z) :  38,  17 
Loops :  112,  53  ;  115,  54  ;  244,  101 
Loxodromic  curves :  53,  ex.  1 

Maclaurin:  S3,  ex. 

Maps,  conformal :  42, 19  ;  45,  20  ;  48, 
20  ;  5#,  23 ;  geographic :  52,  23  ;  see 
also  Projection 

Meray :  81,  f tn. ;  200,  ftn. 

M creator's  projection  :  52,  ex.  1 
Meromorphic  functions :  90,  ftn. 

Mittag-Leffler:  127,  57  and  ftn.;  134, 
61 ;  139,  63 

Mittag-Leffler' s    theorem :    127,    57  ; 
.734,  61 ;  139,  63 ;  Cauchy's  method : 
139,  63 

Monodromic  functions :  17,  ftn. 
Monogenic  functions :  9,  ftn. 
Jforera :  78,  34 

Morera's  theorem :  78,  34 
Multiform  functions:  17,  ftn. 

Multiple-valued  functions :  17,  7 

Napier :  28,IZ 
Napierian  logarithms :  28,  13 
Natural  boundary :  201,  84  ;  208,  87  ; 

&T.Z,  88 
Natural  logarithms :  28,  13 

Neighborhood:  88,  40;  of  the  point 
at  infinity :  109,  52 

Odd  functions :  154,  68 
Order,  of  elliptic  functions :  150,  68 ; 

of  poles :  89,  40 ;  of  zeros :  88,  40 
Ordinary  point :  88,  40 

P  function,  p(w):  154,  68;  182,  79; 
defined  by  invariants:  182,  79;  re- 

lation between  p  (w)  and  p'  (M)  :  158, 70 

Painleve' :  85,  38 
Parabolic  transformation :  57,  ex.  15 
Parallelogram  of  periods :  150,  67 
Parametric  representation :  see  Curves 
Periodic  functions :  145,  65 ;  doubly : 

145,  65;  149,  67;  see  also  Elliptic 
functions 

Periodic  integral  functions :  147,,  65 
Periods :  of  ctn  x :  144,  Note  3;  cyclic : 

244, 101 ;  of  definite  integrals:  112, 
53 ;  114,  Note ;  of  elliptic  functions: 
152,  68 ;  172,  77 ;  184,  79;  of  elliptic 
integrals:    120,   56;   of  functions: 
145,  65;  of  hyperelliptic  integrals: 
116,    55;    independent:    147,    66; 
parallelogram  of:   150,  67;  polar: 

112,  53 ;  119,  55 ;  £44,  101 ;  primi- 
tive pair  of:  149,  ftn.;  relation  be- 

tween periods  and  invariants:  172, 
77 ;  of  sin  x :  143,  Note  1 

Picard:  21,  ftn.;  93,  42;  127,  ftn. 

Poincare':   208,  ftn.;    #££,  ftn.;  £S£, ftn. 

Point,  critical  or  branch :  see  Critical 
points;  double:  184,  80;  191,  82; 
at  infinity:  109,  52;  of  inflection: 
186,  80 ;  limit :  90,  41 ;  ordinary : 
88,  40;  symmetric:  58,  ex.  17;  see 
also  Neighborhood,  Singular  points, 
and  Zeros 

Polar  periods :  see  Periods,  polar 
Poles :  88,  40 ;   90,  41  ;  133,   59 ;  of 

elliptic   functions :    150,    68 ;    154, 
68 ;  infinite   number  of :   135,  61 ; 
137,  62 ;  at  infinity :  110,  52  ;  order 
of :  89,  40 

Polynomials,  irreducible  :  240,  100 
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Power  series  :  18,  8  ;  196,  83  ;  con- 

tinuity of  :  7,  2  ;  56,  ex.  7  ;  deriva- 
tive of  :  19,  8  ;  dominating  :  21,  9  ; 

representing  an  analytic  function  : 
20,  8  ;  see  also  Analytic  extension, 
Circle  of  convergence,  and  Series 

Primary  functions,  Weierstrass's:  127, 
57 

Primitive  functions  :  33,  15 

Primitive  pair  of  periods  :  149,  ftn. 

Principal  part:  89,  40;  91,  42;  110, 

52  ;  133,  59  ;  135,  61 
Principal  value,  of  arc  sin  z  :  31, 

ftn. 

Products,  infinite  :  see  Infinite  products 

Projection,  Mercator's  :  52,  ex.  1  ; 
stereographio  :  53,  ex.  2 

Puiseux  :  240,  ftn. 

Quantity,  imaginary  or  complex  :  3,  1 
Quartics:  187,  SI;  bicircular:  193,  ex. 

Rational  fraction  :  7^5,  59 

Rational  functions:   12,  5;  integrals 
of  :  33,  15  ;  of  sin  z  and  cos  z  :  35,  16 

Region,  connected  :  11,  4 

Regular    functions  :    see    Functions, 

regular 
Representation,  conformal  :  see  Con- 

formal  representation  ;  parametric  : 
see  Curves 

Residues:  75,  33;    94,  43;  101,  48; 

110,  52  ;  112,  53  ;  of  elliptic  func- 
tions: 151,  68;  sum  of:  111,  52; 

total  :  111,  52 

Rhumb  lines  :  53,  ex.  1 

Biemann:  10,  ftn.;  50,   22;  74,  32; 
£44,  101 

Riemann  surfaces  :  244,  101 

Riemann's  theorem  :  50,  22 
Roots  of  equations:  see  Equations, 

D'Alembert's  theorem,  and  Zeros 

Sauvage  :  231,  97 
Schroder  :  214,  89 

Series,  of  analytic  functions  :  86,  39  ; 

AppelPs:  84,  38;  Burman's:  126, 
ex.  26;  the  Cauchy-Laurent  :  81, 
35;  the  Cauchy-Taylor  :  79,35;  for 

ctn  x :  143,  64 ;  differentiation  of : 
88,  39 ;  dominant :  21,  9  ;  157,  69 ; 

double  :  see  Double  series  ;  integra- 

tion of  :  86,  39 ;  Laurent's :  75,  33  ; 
81,  37  ;  146,  65 ;  for  Log  (1  +  z) : 

38,  17;  of  polynomials  (Painleve") : 86,  38;  for  tan  z,  etc.:  194,  ex.  4; 

Taylor's :  20,  8  ;  75,  33  ;  75,  '  35  ; 
206,  ftn.;  #00,  94;  uniformly  con- 

vergent: 7,  2;  86,  39;  55,  39;  see 

also  Lagrange's  formula,  Mittag- 
Leffler's  theorem,  and  Power  series 

Several  variables,  functions  of :  218, 

91 ;  see  also  Analytic  functions  of 
several  variables 

Sigma  function,  <r  (u) :  162,  72 

Single-valued  analytic  functions :  127, 
57;  with  an  infinite  number  of 

singular  points,  Mittag-Leffler's  the- 
orem :  134,  60;  (Cauchy's  method) : 

139,  63;  with  an  infinite  number 

of  zeros,  Weierstrass's  theorem : 
128,  57;  primary  functions:  127, 
57 

Single-valued  functions:  17,  7;  127, 
57 

Singular  lines:  see  Cuts  and  Natural 
boundaries 

Singular  points:  13,  5;  75,  33;  88, 

40;  204,  85;  232,  97;  algebraic: 
241,  100 ;  on  circle  of  convergence : 
202,  84  and  ftn.;  essentially:  91, 
42;  essentially,  at  infinity :  110,  52; 
infinite  number  of:  134,  60;  139, 

63;  isolated:  89,  40;  132,  59;  log- 
arithmic: 244,  101;  order  of:  89, 

40 ;  transcendental :  243,  Note  ;  see 

also  Critical  points,  Mittag-Leffler's 
theorem,  and  Poles 

Singularities  of  analytical  expressions : 

213,  89  ;  see  also  Cuts 
Stereographic  projection :  53,  ex.  2 

Stieltjes :  109  ex. 
Symmetric  points:  58,  ex.  17 
Systems,  conjugate  isothermal :  54,  24 

Tannery :  214,  89 

Taylor :  20,  8  ;  75,  33  ;  75,  35 ;  206, 
ftn.;  £20,  94 
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Taylor's  formula,  series :  20,  8 ;  75, 
33;  78,  35;  206,  ftn.;  for  double 
series :  226,  94 

Theta  function,  0  (u) :  170,  76 
Total  residue:  111,  52 
Transcendental  functions:  see  Func- 

tions 

Transcendental  integral  functions :  see 
Integral  transcendental  functions 

Transformations,  birational:  192,  82; 
252,  ex.  1;  circular:  45,19;  57,  ex. 
13;  conformal:  42,  19;  45,  20;  48, 
20;  5^,  23;  elliptic:  57,  ex.  15; 
Fuchsian:  57,  ex.  15;  general  lin- 

ear :  44,  ex.  2 ;  hyperbolic :  -57,  ex. 
15;  inversion:  45, 19;  57,  exs.  13  and 
14;  linear:  59, ex.  23;  parabolic :  57, 
ex.  15  ;  see  also  Projection 

Trigonometric  functions:  26,  12;  in- 
verse :  30,  14 ;  inverse  sine :  114, 

54;  period  of  ctn  x:  144,  Note  3; 
period  of  sin  x :  143,  Note  1 ;  prin- 

cipal value  of :  31,  ftn. ;  rational 
functions  of  sin  z  and  cos  z :  35, 16  ; 
see  also  Expansion 

Unicursal  curves :  191,  82 

Uniform  convergence :  see  Conver- 

gence, uniform Uniform  functions:  17,  ftn. 

Uniformly  convergent  series  and  prod- 
ucts :  see  Convergence,  uniform 

Variables,  complex :  6,  2 ;  infinite 
values  of :  109,  62 ;  several :  see 

Analytic  functions  of  several  vari- ables 

Weierstrass:  64,  27;  88,  ftn.;  92,  42; 

121,  56  ;  127,  67  and  ftn.;  139,  63  ; 
149, 67  ;  154,  69  ;  156,  69  ;  200,  ftn. ; 

212,  88  ;  233,  98  ;  237,  ftn. 
Weierstrass's  formula :  64,  27  ;  121, 

66 ;    primary  functions :    127,   57 ; 
theorem  :  92,  42  ;  127,  57  ;  138,  62  ; 
139,  63  ;  233,  98 

Zeros,  of  analytic  functions :  88,  40 ; 

234,  98 ;  241,  100 ;  of  elliptic  func- 
tions: 152,  68;  154,  68;  infinite 

number  of :  26,  11  ;  93,  42  ;  128, 
57 ;  order  of :  88,  40 ;  see  also 
D'Alembert's  theorem 

Zeta  function,  f  (w)  :  .Z5S,  71 
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