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Chemistry. — “On the introduction of the conception of the solu- 

bility of metal ions with electromotive equilibrium.” By Dr. 

A. Smits. (Communicated by Prof. H. W. Baxuuis Roozesoom). 

(Communicated in the meeting of April 27, 1906.) 

If a bar of NaCl is placed in pure water or in a dilute solution, 

the NaCl-molecules will pass into the surrounding liquid, till an 

equilibrium has been established ; then the molecular thermodynamic 

potential of the NaCl in the bar has become equal to that of the 

NaCl in the solution. 

As known, this equilibrium of saturation, represented by the equation: 

UNaCl = H'Nacl 
is characterized by the fact that per second an equal number of 

molecules pass from the bar into the solution, as from the solution 

into the bar. 
We shall call this equilibrium a purely chemical equilibrium. It 

is true that in solution the NaCl-molecules split up partially into 

particles charged either with positive or negative electricity, which 

are in equilibrium with the unsplit molecules, but for the hetero- 

geneous equilibrium solid-liquid under consideration this is not of 

direct importance. 
If, however, we immerge a metal e. g. Zw into a solution of a 

salt of this metal, e.g. ZuSO,, we observe a phenomenon strongly 

deviating from the one just discussed, which according to our present 

ideas may be accounted for by the fact that a metal does not send 

out into the solution electrically neutral molecules as a salt, but 

exclusively zons with a positive charge. 
If the particles emitted by the bar of zine were electrically neutral, 

then the zinc would continue to be dissolved till the molecular 

thermodynamic potential of the zine in the bar of zinc had become 

equal to that of the zine in the solution, in which case the equation : 
' 

Uen = Ezn 

would hold. 

This, however, not being the case, and the emitted /n-particles 

being electro-positive, an equilibrium is reached /ong before the 

thermodynamic potential of the zine-particles with the positive electric 
charge in the solution has become equal to that of the zine in 

the bar of zine with the negative electric charge. That in spite of 

this an equilibrium is possible, is due to the fact that an electrical 

phenomenon acts in conjunction with the chemical phenomenon, 
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The zine emitting positive Zn-ions, the surrounding solution becomes 
electro-positive, and the zinc itself electro-negative. As known, this 
gives rise to the formation of a so-called electric double-layer in 
the bounding-layer between the metal and the electrolyte, consisting 
‘of positive Zn-ions on the side of the electrolyte and an equivalent 
amount of negative electricity or electrons in the metal. 

By the formation of this electric double-layer an electric potential 
difference between metal and electrolyte is brought about, which at 
first increases, but very soon becomes constant. This takes place 
when the potential difference has become great enough to prevent 
the further solution of the Zn-ions. 

In order to compute the potential difference between the metal 
and the solution, we shall apply the principle of the virtual dis- 

placement, as has been done before by Mr. van Laar.') 
If we have ‘to do with a purely chemical equilibrium then with 

virtual displacement of this equilibrium the sum of the changes ot 
molecular potential will be = 0, which is expressed by the equa- 
tion of equilibrium : 

= (u, dn,) = 0. 

If the equilibrium is a purely electrical equilibrium then with 
a virtual displacement of this equilibrium the sum of the changes 
of electric energy will be = 0. 

If however we have an equilibrium that is neither purely. che- 

mical, nor purely electrical, but a combination of the two, as is 

the case with electromotive equilibrium, then with virtual displace- 

ment of this equilibrium, the sum of the changes of the molecular- 

potential + the sum of the changes of the electric energy will 
have to be = 0. 

o 

If we represent the mol. potential of the Zn-ions by w., in case 

of electromotive equilibrium, we know that a is much smaller 

than wz, or the mol. potential of the zinc in the bar of zinc. 

If we now suppose that a Zn-ion emitted by the zine virtually 

carries a quantity of electricity de from the metal towards the solu- 

tion, then this quantity of electricity being carried by a ponderable 

de 
quantity — when » = valency of the metal and ¢ = the charge 

VE 
of a univalent ion, the increase of the thermodynamic potential 

during this process will be equal to 

1) Chem. Weekbl. N°. 41, 1905. 
1* 



which increase is negative, because fz, > len. 

In the virtual displacement of the quantity of electricity de 

from the metal towards the solution the change of the thermodyna- 

mic potential is not the only one that has taken place during this 

process. . 
If we call the electric potential of the solution V, and that of the 

zine V,, , we know that in the above case V, >V, and Ve -—VnmA 

indicates the potential difference of the electrolyte and the metal. 
With the virtual displacement of the quantity of electricity de from 

the metal to the electrolyte this quantity has undergone an electrical 

potential increase A, and so the electric energy has increased 

with Ade. 

From the principle of virtual displacement follows that with electro- 

motive equilibrium 

oe 

a ep A= 0) oe ee ee 
VE 

or 
a 

A eee ee 
VDE 

Now we know that the mol. thermodyn. potential of a substance 

may be split up as follows: 

ap |- RP 

where in diluted states of matter uw’ may be called a function of 

the temperature alone. 

In non-diluted states however, uw’ depends also somewhat on the 

concentration. ; 

If we now apply this splitting up also to equation (2), we get: 
“Pp 

(Wen =a [ten) +R TinwG 

VDE 
i= (3) 

where C' represents the concentration of the Zn-ions in the electrolyte. 
If we now put: 

Pen Ss hen 

BT 

we may say of this A that for diluted states of matter it will only 

=n... «5 
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depend on the temperature, and will therefore be a constant at 
constant temperature. 

From equation (3), (4) follows 

ee aw wth ea eB) 

Mr. van Laar already pointed out that this equation, already 
derived by him in the same way is identical with that derived by 

ee pe P 
Nernst A = —— Jn —, in which therefore — stands instead of 

VE Pp Pp 

rie P represents the ‘“elektrolytische Lésungstension” of the metal, 

and p the “osmotic pressure” of the metal-ions in the solution. 

Rejecting the osmotic phenomenon as basis for the derivation of 
the different physico-chemical laws, we must, as an inevitable conse- 
quence of this, also abandon the osmotic idea “elektrolytische Losungs- 

tension” introduced by Nernst. 
The principal purpose of this paper is to prove that there is 

not any reason to look upon this as a disadvantage, for, when we 

seek the physical meaning of the quantity A’ in equation (5), it can 

be so simply and sharply defined, that when we take the theory of 

the thermodynamic poiential as foundation, we do not lose anything, 

but gain in every respect. 

In order to arrive at the physical meaning of the quantity A, we 

put for a moment 

C= K- 

from which follows 
== 0, 

From this follows that there is a theoretical possibility to give 

such a concentration to the metal-ions in a solution that when we 

immerge the corresponding metal in it, neither the metalnor the solution 

gets electrically charged. 
How we must imagine this condition is shown by equation (2). 

Let us put there A =O, then follows from this for an arbitrary metal 

a 

En = Un 

or in words the molecular potential of the metal in the bar is equal 

to that of the metal-ions in the solution. 

So .it appears that we have here to do with an equilibrium 

which is perfectly comparable with that between the NaCl in the 

bar NaCl, and the salt in the solution. 
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The only difference is this that the molecules of a salt in solution 

are neutrally electric, whereas the metal particles in solution are 

charged with positive electricity, hence the physical meaning of 
— 

the equation un = um is simply this that in absence of a potential 

difference, per second an equal number of metal particles are dissolved 
as there are deposited. 

If we express this in the most current terms, we may say, that 

when C' = K the metal-ions have reached their concentration of 

saturation, and that K therefore represents the solubility of the 
metal-ions. 

To prevent confusion, it will be necessary to point out that .the 
fact that the dissolved metal-particles in equilibrium with the solid 

metal have an electric charge, is attended by peculiarities which 

are met with in no other department. 

Thus it will appear presently that in every solution of copper- 

sulphate which is not extremely diluted, the concentration of the 

copper-ions is supersaturated with respect to copper. Yet such a 

copper-sulphate-solution is in a_ perfectly stable condition, because 

the copper-ions constitute a part of the following homogeneous 

equilibrium, ; 

CuSO, 2 Cu” + 80," 

which is perfectly stable as long as the solution is unsaturate or is 

just saturate with CwSO,-molecules. 

If we now, however, insert a copper bar into the solution, the 

condition changes, because the Cu-ions which were at first only in 
equilibrium with the CwSQO,-mols and with the SO,'-ions, must now 
also get into equilibrium with the copper bar, and, the concentration 

of the Cuw-ions with respect to copper being strongly supersaturate, 

the Cu-ions will immediately deposit on the copper, till the further 

depositing is prevented in consequence of the appearance of a double 

layer. 

We shall further see that in the most concentrated solution of a 

zine-salt the concentration of the zine-ions always remains below the 

concentration of saturation, which appears immediately when we 

immerge a zinc-bar into such a solution; the zine emits zine parti- 

cles with a positive charge into the solution, till the appearance of 

the electric double layer puts a stop to the phenomenon of solution. 

In order to find the values of K for different metals we make 

use of the observed potential difference with a definite value of C, 
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We know the potential difference at 18° and with normal con- 
centration of the ions, i.e. when solutions of 1 gr. aeq. per liter of 
water are used. These potential differences are called electrode 
potentials, and will be denoted here by Ao. 

If we express the concentration in the most rational measure, viz. 

in the number of gr. molecules dissolved substance divided by the 

total number of gr. molecules, we may write for the concentration 

of 1 gr. eq. per liter 

1 

55,9 yp + 1 

in which » represents the valency of the metal. In this it has been 

further assumed, that the dissociation is total, and the association of 

the water molecules has not been taken into account. 

If we now write the equation for the electrode potential of an 

arbitrary metal, we get: 

RE Te 
A,=—ln 

VE s | 

05,0» + 1 

or 

BE 
A, = —In K (35,5 » + 1) 

ve 

If we use ordinary logarithms for the calculation, we get: 

A pee K (55,5 v + 1) SS eS 00,0 VD 

iach eee 

If we now express # in electrical measure, then 

0,000198 
= —_____ T log-K (55,5 » + 1) 

Y 0 

and for ¢=18 or 7’ — 291° 

0,0578 
A log K (55,5 » + 1) 

If we now calculate the quantity log K by means of this equation 
from the observed values of A,, we get the following. (See table p. 8). 

In the succession in which the metals are written down here, the 

value of A, decreases and with it the value of log KX. 
For the metals down to Ye (#¢ included) log K is greater than 

zero, so K greater than 1. 

Now we know that C for a solution is always smaller than 1; 
hence A will always be larger than C for the metals mentioned, 
and as K denotes the concentration of saturation of the metal-ions, 
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Values of log A at 18°. 

je Ao | log K nae Ao log K 

ape (+ 2,92) | (44877 +) Co | — 0,04 panies 1,805 2 

Na | (» 254) | ( 4019) Nie >» 0,049; — 4,872 2 

Ba (> 254) | ( 42.92 X 2) Sm | <» 008 | <— 2492 

Sr (> 2,49) | ( 42,06 > 2) PL » 0,13 — 3972 

Ca (> 2.98) | ( 3842 X 2) I » 0,28 = 66 

Mg » 2,26 38,07 *K 2 Cus » 0,61 — 41,58 & 2 

AL” » 1,00 16,56 X 3 Bie | <» 067 | <— 12333 

Mn | » 0,80 12.81 <2 Ly," » 1,03 —- 18.84 <2 

Zn" > 049 - 745 XX 2 Ay’ » 1,05 — 19,92 

Ca” >» O14 1,39 <2 Pa » 4,07 — 19,03 < 2 

Fe » 0,063 0,065>< 2 Pt » 114 — 20,62 4 

Th >» 0,01 | — 0245>< 2 Au ae 1,36 — 2697 & 3 

the metal-ions will not yet have reached their concentration of 

saturation even in the most concentrated solutions of the corresponding 

metal-salts. Hence, when the corresponding metal is immerged, metal 

ions will be dissolved, in consequence of which the solution will be 

charged with positive and the metal with negative electricity. 

Theoretically the case, in which A would always be smaller than 

C, can of course not occur. If /og K is smaller than zero, so K 

smaller than 1, then the theoretical possibility is given to make the 

potential difference between the metal and the corresponding salt 

solution reverse its sign, which reversal of sign of course takes 

place through zero. Whether it will be possible to realize this, 

depends on the solubility of the salt. 

If we now take the metal copper as an example, we see that for 

this metal K has the very small value of 10-23. On account of this 

very small value of A, C is greater than A in nearly all copper- 
salt-solutions, or in other words the concentration of the Cwu-ions is 

greater than the concentration of saturation. Hence copper-ions are 

deposited on a copper bar, when it is immerged, in consequence 

which the bar gets charged with positive, and the solution with 

negative electricity. 

But however small A may be, it will nearly always be possible to 

1) The values of a. between parentheses have been calculated from the quan- : Pp q 
lity of heat. 
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make C smaller than XK. In a copper-salt-solution e.g. this can very 
easily be done, as is known, by addition of ACV, which in consequence 
of the formation of the complex-ions [Cu,(CV), |", causes copper-ions 
to be extracted from the solution. The solution, which at first hada 
negative charge compared with the metal copper, loses this charge 
completely by the addition of ACN, and receives then a positive charge. 

In the above I think I have demonstrated the expediency of 
replacing the vague idea “elektrolytische Lisungs-tension’” by the 
sharply defined idea solubility of metal ions. 

Amsterdam, April 1906. Anorg. Chem. Lab. of the University. 

Physics. — “On the course of the P,T-curves for constant concentra- 

tion for the equilibrium solid-fluid.” By Dr. A. Sirs. (Commu- 

nicated by Prof. J. D. van per Waa1s.) 

(Communicated in the meeting of April 27, 1906), 

In connection with my recent investigations it seemed desirable 

to me to examine the hidden connection between the sublimation 

and melting-point curves for constant concentration, more particularly 

when the solid substance is a dissociable compound of two com- 

ponents. This investigation offered some difficulties, which I, 
however, succeeded in solving by means of data furnished by a 
recent course of lectures giving by Prof. van per Waats. Though 

his results will be published afterwards, Prof. vAN DER Wats allowed 

me, with a view to the investigations which are in progress, to use 

that part that was required for my purpose. 

In his papers published in 1903 in connection with the investi- 

gation on the system ether-anthraquinone') VAN DER WaAAtLs also 

discussed the P, 7-lines for constant z for the equilibrium between 

solid-fluid *), and more particularly those for concentrations in the 

immediate neighbourhood of the points p and g, where saturated 

solutions reach their critical condition. 

Then it appeared that the particularity of the case involved also 

particularities for the P, 7-line, so that the course of the P, 7-line 

as it would be in the usual case, was not discussed. 

1) These Proc. VI p. 171 and p, 484 Zeitschr. f. phys. Chem, 51, 193 and 52, 

387 (1905). ; 

*) These Proc. VI p. 280 and p. 357, 
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If we start from the differential equation in p,c and T derived 

by vAN pER Waats (Cont. II, 112). 

075 
Vsr dp = (#_ — “f) (; : ) day + 

x? ¢) PT 

we get from this for constant z that 

si ar (1) ear. =. Ql). 

Gp 

V pe ee eet eee he On yg (2) 

or 
d W, ey ee eee em ce AB) 
aT }ar Vs 

If we now multiply numerator and denominator by P as_ will 
vy 

prove necessary for simplifying the discussion, we get: 
0? 

d a . Wsf 

ap fe ie ee ot Be ee co 
dT ) rf Ow Vy 

dy 
In order to derive the course of the P, 7-lines from this equation, 

the loci must be indicated of the points for which the numerator, - 

resp. the denominator — zero, and at the same time the sign of 

these quantities within and outside these loci must be ascertained. 

In the v,.2-fig. 1 the lines ab and cd denote the two connodal 

lines at a definite temperature. The line PsQs whose «= 2, the 

concentration of the solid compound AZ cuts these connodal lines 
and separates the v,x-figure into two parts, which call for a separate 

discussion. 
If Ps denotes the concentration and the volume of the solid com- 

pound at a definite temperature, then the isobar MQRDD RUN 

of the pressure of Ps will cut the connodal lines in two points Q 

and (', which points indicate the fluid phases coexisting with the 

solid substance AS, and therefore will represent a pair of nodes. 
2 

The points for which Za 0 oF, - =0 are situated where 

the isobar has a vertical tangent, so in the points D and D’ as 
vAN DER Waats') showed already before. In JD the isobar passes 
through the minimum pressure of the mixture whose 7=2p, and 

so it has there an element in common with the isotherm of this 

concentration. In D' however, the isobar passes through the maxi- 

1) These Proc. 1V p, 455, 
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mum pressure of the mixture whose z= zp, and will therefore have 
an element in common with the isotherm of the concentration «rp. 

d*y 
As for the sign of aa we way remark that it is positive outside 

U 

the points D and D' and negative inside them. 

The ordinary case being supposed in the diagram, viz. V; << Vy, 

we may draw two tangents to the above mentioned isobar from the 
point P, with the points of contact A and f’. These points of con- 

tact now, indicate the points where the quantity V,,=0, as vAN 

DER Waals‘) showed. 

This quantity is represented by the equation : 

dv 
Vig = (V, — Vp) — («3 — zp) oe ae fae 

and denotes the decrease of volume per molecular quantity when 
an infinitely small quantity of the solid phase passes into the coex- 

isting fluid phase at constant pressure and temperature. 

For the case that the coexisting phase is a vapour phase, V’sp is 

negative, but this quantity can also be positive, and when the pres- 

sure is made to pass through all values, there is certainly once 

reversal of sign, for the case V, > V, even twice. 
To elucidate this Prof. van per Waaus called attention to the 

geometrical meaning of Vs;. 
Let us call the coordinates of the fluid phases Q' coexisting with 

P,, Vy and Xy and let us draw a tangent to the isobar in 

Then P, Pf will be equal to V.,- if P is the point where this 

tangent cuts the line drawn parallel to the axis of v through 7. 

If the point P’ lies above P,, V.y is negative, and if 1” lies under 

P,, then Vy is positive. For the case that the tangent to the isobar 

passes through P,, which is the case for the points Rand f', V.-=0- 

In this way it is very easy to see that for the points outside those 

for which V.r¢=0, the value of Vy is negative, and for the points 

within them, Vy is positive, but this latter holds only till the points 

D and D' have been reached, where V,r=. Between D and LD, 

V.y is again negative. The transition from positive to negative takes 

therefore place through o. 

As each of the lines of equal pressure furnishes points where 

os 

1) These Proc. VI, p. 234. 
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07%) 

Ov? 

we obtain loci of these points, indicated by lines. 

As, however, we simplify the discussion, as vAN DER WaAAats has 
0? 

=0 and V,-=0, when connecting the corresponding points 

shown, when we consider the quantity Vr instead of the 

quantity V.-, because this product can never become infinitely great 

and is yet zero when V.,,-=0, the locus of the points where 
07) | 

Ovf? 

We know then too that this quantity on the left of the line ot 

the compound is negative outside this locus, and positive within it. 
2 0 

Further the locus of — = 0 is indicated, and we see that these 
v 

V.s=0 is given in fig. 1. 

two lines intersect at the point where they pass through the line of 

the compound. 

In his lectures vAN DER Waats has lately proved in the following 
2 

way that this must necessarily be so: If we write for _ ra os 
of 

0°w - 
| gee a gs TS er : 6 
( f) v7? Si (zs vf) dv dup ( ) 

we see that when this quantity = 0, and when at the same time 

Gis Bf 3 

Oy 
| ee Ie — 0 

("s D Say? 

or 

Oy 

Ove? ee 

I, too, had already arrived at the conclusion that in the left half of 

our diagram the two loci mentioned had interchanged places, by 

assuming that there existed a three-phase equilibrium also on the 

right, and by drawing the corresponding isobar M,Q,D,R,R,'D,'Q,'N'. 
It appears then that here the points AR, and f,' lie within the points 

D, and D,', which points to a reversed situation (compared with 
07 07w : 

the left half) of the loci ai V.e—=O and Md = 0(. VAN pER WaALs 
Ove . Ov/ 

has also given this graphical proof. 
2 0 

As for the sign of the quantity — 
Vv 

on the right of the line 
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of the compound also there it is negative outside, positive inside 
the first mentioned locus. 

Before proceeding to my real subject, I shall, for the sake of 

completeness, first call attention to the fact that the spinodal curve, 
for which the equation: 

= 0? 0x0v 07g 
2 ——U ee es ee 7 

Oz? 0?) = 02?) ? 7 

Ov? 

: . ; w 
holds, lies entirely ontside the locus | O. Van per Waats’?) z 

proved this in the following way : 
; Oy 

On the spinodel curve and =— must both be positive, and so 
Ov? 

dw? 0? Op . A 
also fa Sot ee 5, 8 positive outside the line for which 

0? : ; 
5 ?— 0, the spinodal line will always have to lie outside the curve 
Y 

Oy 

dv? 

That the spinodal curve which coming from the left, runs between 
2 0? 0? 

ee 6 ot — 0. cits ‘the Ine for 
Ov? Ov? Ove 

Vss=O0 on the left of the line of the compound in two points gq, 

and q, which will be discussed afterwards, follows from this, that 

3 v=0 

0° ) 
on the line of the compound ee V7 = 90 coincides with 

uf Ove 

0 
and that the line = always lies within the spinodal line, whereas 2 

2 0 
on the right of the line of the compound ee Vy = 0 lies within : 

: Seller 9 
i 

the line re 

When we start from the maximum temperature of sublimation, 

we get now v,z-lines which have been indicated by 7,, 7,, 7, and 

T, in fig. 1 for the equilibria between solid-fluid according to the 

equation *) 
Oy Ow 

dey _ [SP yates tO ee eee ClCstltij$j#SOB 
day 07h ay (°) 

Ov 
1) loc cit. 
*) These Proc. VI, p. 489. 
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The v,z-curve denoted by 7), relating to the maximum temperature 
of sublimation, consists of two branches, which pass continuously 
into each other. The points of intersection with the connodal line 

ab indicate the vapour phases and those with the connodal line cd 
the liquid phases. In this way we get two pairs of fluid phases which 

can coexist with the solid compound at the same temperature. 

At the place where the two branches of the v,z-line cut the locus 

07) Ov 
du, af o ws =s 0D is 

Witb increase of temperature these branches draw nearer to each 

other, and when they would touch, intersection takes place; this is 

here supposed to take place for the v,a-line denoted by 7’. This 

point of intersection is the point q,, it lies therefore both on the 
2 

ah Vag =U. 

If we now proceed to higher temperatures, detachment takes 

place, and the v,a-figure consists of two separate branches, one 

of which, viz. the vapour branch is closed. This case is represented 
by the v,z-line 7;, for which it is also assumed, that this temperature is 

the minimum-melting point of the compound, which follows from the 
fact that the liquid branch of the v,z-line 7,, simultaneously cuts 

the connodal line cd and the line of the compound. 

With rise of temperature the closed v,x-line contracts, and the 

corresponding liquid branch descends. The points of intersection of 

the closed vapour branch and the liquid branch with the connodal 

curves draw nearer and nearer to each other, and at a certain 

temperature the two branches will show contact. The closed vapour 

branch touches the connodal curve-ad and the liquid branch the 

connodal curve cd. This is represented by the v,a-figure 7’,, which 

represents the condition at the maximum-threephase-temperature, at 
which the points of contact on the connodal curves and the point 
for the solid substance must lie in one line. 

At higher temperature no three phase equilibrium is possible any 

longer, and both the closed vapour branch and the liquid branch 

have got detached from the connodal curves. The liquid branch 

descends lower and lower, and the closed branch contracts more and 

more, and vanishes as a point in g,, where the upper branch of the 

spinodal curve and on the curve 

0? fy 

spinodal curve and the curve = Vir = 0 intersect. 
fie 

2 

If we now also indicate the locus of the points where ~ Wee 
f 
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the peculiarities of the course of the P7Z-lines may easily be derived 
by means of the foregoing. 

For the determination of the last mentioned locus, we start from 

the equation: 

OE, 
Ws =| Pp 4. + Vs/ -+- (Esp)v . P . ~ (9) 

Of / Tx 

The factor of Vr, being naturally positive and (¢,;), being always 

negative, W;, can only be equal to zero in a point w where Vs; is 
° 
2 

positive, so between the loci where V,,=0 and i 0. v 

Further it is now easy to understand that at the same time 
with Vy the quantity W,, will become infinitely great, there where 
07yp 
= 0. In order to avoid this complication vAN Der Waats has 
7 

0? 

multiplied the quantity Ws, by ~ as equation (4) shows; the 
i, 

obtained product never becomes infinitely great now. 
2 

If we multiply equation (9) by - , we get: ; 

7p 0&; 07 —.. Wy = Vee feat ag i 0 pe P+ aaa lae tate: 0 
Now we know that the locus for - . Wsr = 0 will have to lie 

If 

0? 0? pies 
between that for a Vs¢ = 9 and for eee = 0, as drawn in 

dvs? Ove 

. a ay 3 ert 
fig. 1, which compels us to make dep W.f = 9 and abe V74=" 

intersect on the line of the compound. 

That this must really be so, is easily seen, when we bear in mind, 
2 0°yp er 

that on the line of the compound the locus where ——| = 0 coincides 
if 

07) 

0v,? 

equation (10) it follows immediately that at the same point also 

0? 

. 
. 

z . Wy = 0. In this way we arrive at the conclusion, that the three loci 

with that where .V;¢= 9, from which in connection with 

Ov; 

07 ve O2w dp 
a ee Ve 0 

: Ov;? f Ov;? 
W.f = 0 will intersect on the line 

Ov, 
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| 92 

of the compound, and that therefore the loci — Vey = 0 and 
- 

Oy 

Ove? 

the line of the compound. 

By means of equation (10) we understand now easily that the 
2 

. Wey = 0 will interchange places on the left and the right of 

sign of the quantity Wsy must be negative outside the locus 
Duy? 

0° 

Io? 
As connecting link for the transition to the P,7-lines we might 

discuss the |’,7-lines; for this purpose we should then have to make 
use of the following equation (Cont. II, 106) 

. We = 0, and positive within it. 

0? 

[ig Hoe lt [Oty 
dT 

+- (#5 a dxf — (€sf)o TT 

By taking 2 constant we derive from this 

, dvp\ — (€sf)v 

ai bs 

aoe: oS it ax dw fdvy 

: (+) <= ck © 
2 ee F 

Ov? if 

I shall, however, not enter into a discussion of the V 7-lines because 

it is to be seen even without this connecting link, what the course 

of the P,7-lines must be. 

0°?y 

f- Our 

or 

2 Oy Oy ; 
oof Vig = X, and — u/ . Wye 

and if we indicate what the signs are of these quantities in the 

different regions on the left and the right of the line of the com- 

pound, and where these quantities become = 0, we get the following : 

If now for simplication we call 

left right 

A X . ¢ ee xX =s, 

astern =f x, x i= 

x, + 4,— x.=0 A At Xx 0 

Kt+B+ Kit % + 

2 aes %—X + 4 
X,—xX,— * X,—xXx,— * 



- 

of the compound, we obtain a curve as given by GF'FD in fig. 2. 

(17 ) 

dp oy 
ar ae xe . . . - . . . : (4a) 

If now led by equation 

we draw the P, 7-line for a concentration on the /e/# of the curve 
2 

As we have assumed in our diagram, that the vapour-tension 
of A is the greatest and of B the smallest, whereas that of A B is 
intermediate, we cut now that branch of the three phase line of the 
compound, which has a maximum. 

cy ea eT 
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Sh 

f= & 
| ee 

f ae D 
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4 eo 

4 s 
s va 

1 a 
i 

oomn 
ig. 2? Fig. 2. 

This intersection takes place in the points F” and F, about which 
it may be observed, that F”" lies at a higher temperature than F. This 
situation can, however, also be reversed, and as appears from the 
diagram, the transition takes place at a concentration somewhat to 
the left of that of the compound. We see further, that the inter- 
mediate piece, which continuously joins the line of sublimation GF” 
to the melting-point curve F D, has a maximum and a minimum 
(points where A,—0), about which the isotherm teaches us, that, 
when we are not in the immediate neighbourhood of the critical 

State, they are very far apart and that the minimum lies at a 
negative pressure. 

2 

_ Proceedings Royal Acad. Amsterdam. Vol. IX. 
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It is also noteworthy about this figure, that when following the 

P, T-line, starting with the point G resp. with the point D, we 

first meet with a point, where the tangent is vertical, and (place 

where X, = 0) after that with a point where it is horizontal. 

If we now consider a concentration on the right of the line of 

the compound, the P, 7-line corresponding with this will cut the 

other continually ascending branch of the three phase line of the com- 

pound, and by means of equation (4a) and the scheme for the 

reversal of sign of X, and X, preceding it, we obtain a curve as 

indicated by G, F,' F, D,. The situation of the loci X,=0O and 
X,=0 being different on the right from that on the left, this 

P, T-line differs from that just discussed. When now, starting from 

the point G, resp. D,, we follow the P,7-line, we meet jirst with 

a point, where it is vertical, so we have just the reverse of the 

preceding case. About the situation of the points F' and f, we 
may point out, that /’,' always lies at lower temperature than F;. 

The loci X,—0O and X,=—O intersecting on the line of the 

compound, the P,7-line for the concentration of the compound will 
have to give to a certain extent the transition-case between the two 

lines discussed. 

What happens when we approach the curve of the compound, we 

see immediately from fig. 1. The distance between the loci A; = 

and X, =O becoming smaller and smaller, the points of contact of 

the vertical and horizontal tangents will draw nearer and nearer, 

which prepares us for what happens when we have arrived at the 
line of the compound. We see from the scheme for the signs of 

X, and XX, that when the loci X,=0O and X,=0 have coincided, 

the signs of Y, and_X, reverse simultaneously, on account of which 

dT 

with what we know about the course of the P,7-lines somewhat 

to the right and the left of the curve of the compound we are led 

to the conclusion, that the ,7-line for the concentration of the 

compound will have two cusps, each formed by two branches with 
a common tangent. I have not been able to decide whether these 

points will be cusps of the first or the second kind. The former 

has been assumed in the diagram. 

It is further noteworthy for this P,7-line that, as Van DER WAALS *) 

already demonstrated before, both the line of sublimation and the 

melting-point line must touch the three-phase line, so that the P, 7-line 

dp - - 
#63 retains the same sign, viz. remains positive. Combining this : 

sh 

1) Verslag 21 April 1897, 482. 
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= ad 

- 

> 

; = = concentration of the compound assumes a shape, as given 

“It it were cattle to Sa the degree of association of the com- 
ee ound smaller and smaller, the points 7,’ and /, would move to 
fa “lower pressure and higher temperature. Moreover these two points 
and the neighbouring point of intersection of the melting-point and 
~ sublimation branches would draw nearer and nearer to each other, 
till with perfect absence of dissociation these three pet would 
_ have coincided. 
_ Another peculiarity will present itself for the case that we have 

“Sa a three-phase-line as described by me before, viz. with two maxima 
= ‘and one minimum *), for then there is a point where ag= 27) on 

| one and then it is Saini. to be seen that in consequence of 
at 

the coinciding of the points F’ and F, we get for this concentration 
a P, T-line, as represented in fig. 3, which curve has the form of 
a loop. 

Amsterdam, April 1906. Anorg. Chem. Lab. of the University. 

- a ‘These Proc. VIII, p. 200. 

3 In this point the¥direction of the three: 
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Chemistry. — “The formation of salicylic acid from sodium 

phenolate.” By Dr. J. Motu van Cuarants. (Communicated 

by Prof. A. P. N. FRancuronr). 

(Communicated in the meeting of April 27, 1906). 

The communication from Losry bE Bryn and Tr stra read at 

the meeting of 28 May 1904 and their subsequent article in the 

Recueil 23 385 induced me to make this research. Their theory, 

and particularly the proofs given in support do not satisfy me and 

as, in consequence of other work, I had formed an idea of the 

reaction I made some experiments in that direction. 

According to my idea, an additive product of sodium phenolate 

with sodium phenylearbonate, or what amounts to the same an 

additive product of two mols of sodium phenolate with one mol. of 

carbondioxide C,H,OC(ONa),OC,H, might be the substance which 

undergoes the intramolecular transformation to the salicylic acid 
OH derivative and then forms, dependent on the tem- 

A : perature, sodium salicylate and sodium phenolate 

CoH, ONa or else phenol and basic sodium salicylate. This 

CONa view is supported by previous observations of 

Ss various chemists and has been partially accepted 

OC,H, also by CtatsEn *). 

As Lopry DE Bruyn and Tismstra give no analytical figures in 

their paper it did not seem to me impossible that the phenolsodium- 

o-carboxylic acid obtained by them might be the substance formed 
by intramolecular transformation of my supposed additive product. 

I, therefore, took up their method of working, OH 

prepared sodium phenylearbonate in the usual 

manner, from sodium phenolate and carbon dioxide, C,H, ONa 
and heated this to 100° in a sealed tube for 100 Ae 

hours. On opening the tube considerable pressure was 

observed. This pressure was always fonnd when OO 

the experiments were repeated. The gas liberated proved to consist 

entirely of carbondioxide and amounted to */,—'/, of that present 

in the sodium phenylearbonate. If we argue that the sodium phenyl- 

carbonate under these circumstances is partiaily resolved into carbon 

dioxide and sodium phenolate the latter compound ought to be present 

or else the splitting up might give carbon dioxide and my supposed 

1) B. B. (1905) 38 p. 714. 
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intermediary product (C,H,O), C(ONa),. In the first case it is strange 
that during the cooling of the tube, which often was left for a few 
days, the carbon dioxide is not greatly reabsorbed. Those substances 
had now to be searched for in the product of the reaction. On 
treatment with ether a fair amount of phenol was extracted althoueh 
moisture was as much as possible excluded. It was then brought 
into contact with cold, dry acetone, by which it was partially dissolved, 
but with evolution of gas and elevation of temperature. From the 
clear solution, petroleum ether precipitated a substance which, after 
having been redissolved and reprecipitated a few times in the same 
manner, formed small white needles containing acetone which efflo- 

resced on exposure to the air. On analysis, this compound proved 

to be sodium salicylate with one mol. of acetone. As an ebullioscopic 
determination in acetone, according to Lanpsprrcer, did not give the 
expected molecular weight, sodium salicylate was dissolved in acetone 

and precipitated with petroleum ether and a quite identical product 

was obtained as proved both by analysis and determination of the 

molecular weight. Both products, after being dried at 100°, yielded 

no appreciable amount of salicylic ester when heated with methyl 
iodide. 

The amount of sodium salicylate obtained by heating sodium 

phenylearbenate in the manner indicated was, however, very trifling. 
I suspected that the evolution of gas noticed in the treatment with 

acetone, and which was identified as pure carbondioxide without 

any admixture, was caused by the presence of unchanged sodium 

phenylearbonate, so that, therefore, the reaction was not completed, 

and that the tube after being heated must still contain a mixture of 

unchanged sodium phenylearbonate, sodium phenolate, sodium sali- 
cylate and free phenol, besides the said additive product (C,H,O), 

OH 

C(ONa), and the salicylic acid derivative possibly C,H,  ONa 

formed from this. I now thought it of great 

importance to first study the behaviour of acetone CONa 

with these substances as far as they are known. aoe 
: OC, H, 

Sodium phenolate dissolves in boiling acetone, from which it 
crystallises on cooling in soft, almost white needles, several ¢.m. long, 

which contain one mol. of acetone. They lose this acetone, in vacuo, 

over sulphuric acid. At the ordinary temperature acetone dissolves 

only 0,1 °/,. 

Sodium phenylcarbonate placed in carefully dried acetone gives off 
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earbon dioxide with a slight elevation of temperature. The quantity 

amounts to about '/, of the carbon dioxide actually present, at least 

if account is taken of the comparatively large solubility of that gas 

in acetone. The acetone, or if the mixture is extracted with ether, 

also the ether, contains a quantity of phenol corresponding with the 

total amount obtainable from the sodium phenylearbonate. The undis- 

solved mass consists of a mixture of neutral and acid sodium 

carbonate, nearly, or exactly in equivalent proportions. The decom- 

position of 3 C,H,OCOONa to 3 C,H,OH + CO, + NaHCO, + Na,CO, 

“requires 2 mols. of water. As the experiments however, have been 

made in a specially constructed apparatus into which no moisture 

or moist air could enter, with extremely carefully dried acetone, we 

are bound to admit that this water has been generated by the acetone, 

and we may, therefore, expect a condensation product of the acetone 

which, however, could not be isolated, owing to the small quantities 

of materials used in the experiments. It seems strange that in 

this reaction the evolution of carbon dioxide is so extraordinarily 

violent. 

Sodium salicylate dissolves in acetone from which it crystallises, 

with or without addition of petroleum ether, in small needles, which 

may contain one mol. of acetone of crystallisation. In different deter- 

minations the acetone content was found to vary from one-half to 

a full molecule. At 16° it dissolves in about 21 parts of acetone. 

Disodium salicylate was prepared by adding an (95°/,) alcoholic 
solution of salicylic acid to a concentrated solution of sodium 

ethoxide in alcohol of the saine strength. After a few moments it 

crystallises in delicate, white needles. By boiling with acetone in 

which it is entirely insoluble it may be freed from admixed mono- 

sodium salicylate. 

The behaviour of acetone with these substances now being known, 

the experiment of heating the sodium phenylearbonate for 100 hours 

was once more repeated, without giving, however any further results. 

A portion was treated with acetone in the same apparatus which 

had been used for the sodium phenylearbonate. A quantity of carbon 

dioxide was collected corresponding with an amount of unchanged 
sodium phenylearbonate representing 50—60°/, of the reaction- 

product. Another portion was extracted with ether and yielded about 

20 °/, of phenol whilst, finally, a small amount of sodium salicylate 

was also found. The residue which had been extracted with ether 

and acetone contained sodium carbonate but no disodium-salieylate. 

It, however, contained phenol, probably from sodium phenolate. 

It seems strange there is such a large quantity of free phenol 
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in the heated sodium phenylearbonaie, and as no disodium-salicylate 
has been found it cannot have been caused by the formation of 

that compound. 

I have not been able to find the looked for additive product ; 

perhaps it has been decomposed by acetone in the same manner as 

sodium phenylcarbonate. The results obtained show in my opinion 

that the formation of salicylic acid from sodium phenylearbonate is 

not so simple as is generally imagined. 

A more detailed account of research will appear in the “Recueil”. 

Chemistry. — “On the crystal-forms of the 2,4-Dinitroaniline-deri- 

vatives, substituted in the NH,-group”’. By Dr. F. M. Jancer. 

(Communicated by Prof. P. van Romeuren). 

Communicated in the meeting of April 27, 1906). to) if b / 

More than a year ago I made an investigation as to the form- 

relation of a series of position-isomeric Dinitroaniline-derivatives *). 

On that oceasion it was shown how these substances exhibit, from 

a crystallonomic point of view, a remarkable analogy which reveals 

clearly the morphotropous influence of the hydrocarbon -residues, 

substituted in the NH,-group. 
Among the compounds then investigated, there were already a few 

1-2-4- Dinitroaniline-derivatives kindly presented to me by Messrs. 

van RompurcH and Francuimont. Through the agency of Prof. 

van RompureH and Dr. A. Mutper, | have now received a series of 

other derivatives of 2,4-Dinitroaniline which in the happiest manner 

complete my former publications. I wish to thank these gentlemen 

once more for their kindness. I will describe and illustrate all these 

derivatives in a more detailed article in the Zeits. f. Kryst. 
For the present I will merely give a survey of the results obtained, 

which have been collected in the annexed table. 

I have chosen such a form-symbolic, that the morphotropous rela- 

tion of the great majority of these substances is clearly shown. They 

all possess the same family-character which is shown in the values 

of the axial relations and the topic parameters. Only a few of these 

substances show no simple relationship with the other ones. 

1) Jarcer, Ueber morphotropische Beziehungen bei den in der Amino-Gruppe 

substituierten Nitro-Anilinen; Zeits. f. Kryst. (1905). 40. 113—146. 



Name of the compound 

EE SS 

*) On the isomorphism and the complete miscibility of this compound with p-Nitrosodiethylanil 

4-2-Nitro-Aniline. 

4-4-Nitro-Aniline. 

4-9-4-Dinitro—-Aniline. 

4-2-4-6-Trinitro-Aniline. 

4-4-Nitro-Diethyl-A. 

4-2-4-Dinitro-Methyl-A. 

4-9-4-Dinitro-Ethyl-A. 

{-2-4-Dinitro-Dimethyl-A. 

4-2-4-6-Trinitro-Dimethyl-A. 

4-2-4-Dinitro-Methyl-Ethyl-A. 

4-2-4-Dinitro-Diethyl-A. 

4-2-4-, + 1-3-4-Dinitro-Diethyl-A. 
(Double compound.) 

4-2-4-6-Trinitro-Diethyl-A. 

{-2-4-Dinitro-Ethyl-n-Propyl-A. 

4-2-4-6-Trinitro-Ethyl-Isopropyl-A. 

4-2-4-Dinitro-Isopropyl-A. 

4-2-4-Dinitro Dipropyl-A. 

4-2-4-6-Trinitro-Dipropyl-A. 

{-2-4-Dinitro-Isobutyl-A,. 

4-2-4-6-Trinitro-Isobutyl-A 

4-2-4-Dinitro-Diisobutyl-A. 

4-2-4-Dinitro-Allyl-A. 

4-2. 4-Dinitro-Methyl-Phenyl-A. 

4-2-4-Dinitro Ethyl-Phenyl-A. 

4 -2-4- D.nitro-Benzyl-A. 

4-2 4-Dinitro-Methyl-Benzyl-A. 

4-2-4-Dinitro-Ethyl- Benzyl-A. 

4-2-4-Dinitro-Phenyl-Benzyl-A. 

4-2-4 (6-Trivitro-Ethyl-Nitraniline. 

1-2-4-6-Trinitr »-Tsopropyl-Nitraniline. 

4-2-3-4-6-Tetranitro-Methyl-Nitraniline. 

Survey 0 

sep ee la ie 
ght.) © state.) . 

790 | 438 95.70 

146° | 138 96.03 

1g90 | 183 | 143.30 

acoe | 998 | 199.39 

78° | 19% | 4162.07 

1790 | 197 | 195.94 

40 | ot | 145.44 

g7o | a1 | 4142 95 

o4e | 956 | 4165.05 

sgo | 995 | 457.45 

go> | 939 | 173.94 

59° | 478 | 4(364.02) 

164° | 98% | 199.44 

55° | 953 | 4189.43 

409° | 998 | 211.80 

950 | 995 |. 453.79 

4g? | 967 | 202.50 

igse | 312 | 997.93 

go> | 939 | 472.70 

gso | 98% | 196.53 

119° | 995 | 250.24 

76° | 993 | 157.93 

1660 | 973 | 104.46 

950 | 987 | 240.48 

11¢° | 973 | 487.50 

1440 | 997 | 204.44 

73° | 301 | 219 87 

1680 | 349 | 250.00 

96° | 301 | 183.09 

1ose | 315 | 201.53 

14g0 | 332 | 489.74 

A 
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Axial-Elements: 

1: b : © = 1.3667 :1: 1.1585. 

:b:¢ = 2.0350 :4: 1.4220; = 88°10! 

bse = 1.9896 :4:4 4088; @—85° 1)’ | 

b:¢ = 1.6560 :4: 1.5208; ¢—80°47}' 

:e = 1.0342 :1: 0.9894; 2 = 80°34’ 

© = 1.2286 :1: 0.9707; 2 = 83°98 

2 = 1 51 21; 0.9745 
a = 330954! g — 83099’ y= 75°74. 
eo — 17.9154 74: 1.0803. 

:¢ = 1.2936 21: 1.3831. 

te = 1.4497 21: 4.6639. 
a= 75°46! =p =99933' += 68°57’ 

¢ = 1.204 :1: 1.1513 

bse = 1.3435 :1:1.3013; = 86°39! 

© = 1.1750 24: 0 9462; 2 = 86°98" 

2 ¢ = 1.0535 :4: 0.9297. 

:e¢ = 2.0162 24. 
2=75°0' g—99°7! 7—141%6Y 

“fon 
Proce 

> 

Base 
—— 

- ¢ 

OAD =A: A 5790: 
418°43' 2 —104°33' 
—— 4. 0191 >4-. 0.9246. 

Se ooo lL: fu: 9055 
419946) p—1411°0! += 102°35' 
== 0 7104':4 0.3591; P=—S85°34}! 

= 0.7325 -4: 0 3470. 

40717 :4; 0.9124; . A= 63°53! 

= 1.0251 :1: 0.9632 
TA163' B=11190' 7—116°40' 

ads 24> A_6968 ~ P= 864! 

0.4933 :1: 0.6586; = 78°6}! 

7= S12"! 

: 1.3087; = 84°! 

241.3645; = 64021}! 

p= 86°23) 

: 0.9368; 7 = 78°33! 

1 

7 1 

— 1.4487 : 4. 

| 1 

4: 4.4712; == 76°37’ 

zedings (1905) p. 658, 
eee 

Topic Parameters: 

ot 

ao a 

I 

-J 

.3635 : 3 

.5406 : 3 

.8206 : 3. 

Joi 5S 

-6240 : 5. 

.8090 : 4.7 

B33 ee 

.8035.: 4. 

.0686 : 6.5 

.9480 : 5.802 

5382 

5890 

8650 

TAO 

.9891 

.3129 

.0310 

6856 



( 26 ) 

Crystallography. — “On a new case of form-analogy and misci- 

bility of position-isomeric benzene-derivatives, and on the crystal- 

forms of the six Nitrodibromobenzenes.” By Dr. F. M. Jancrr. 

(Communicated by Prof. A. F. HoL Eman.) 

(Communicated in the meeting of April 27, 1906). 

§ 1. The following contains the investigation of the crystal-forms 

exhibited by the six position-isomeric Nitrodibromobenzenes, which 

may be expected from the usual structure-representations of benzene. 

It has been shown that, in this fully investigated series, there 

again exists a miscibility and a form-analogy between two of the 

six terms. 
The above compounds were kindly presented to me by Prof. 

Hotieman, to whom I again express my thanks. 

This investigation is connected with that on the isomeric Dichloro- 
nitrobenzenes, which has also appeared in these proceedings (1905, 

p. 668). 

A. Nitro-2-3-Dibromobenzene. 

Structure: C,H,.(NO,) .Br .Br ; meltingpoint: 53° C. 
(1) (2) (3) 

The compound, which is very soluble in most organic solvents, 

Fig. 1. 

erystallises best from ligroin + ether in small, flat, pale sherry- 

coloured needles which generally possess very rudimentary terminating 

planes. 

Triclino-pinacoidal. 

a:b26 = GATS. 2 Tote: 

A = 90°80: e045"), 

B=110°37' = @ = 110°36?/, 
C= SDT)? 89°59*/,' ll | 



—— = =_ - s. =) 

( 27 ) 

The crystals, therefore, show a decided approach to the mono- 

clinic system; on account, however, of their optical orientation, they 

can only, be credited with a triclinic symmetry. . 

The forms observed are: a = {100}, strongly predominant and very 

lustrous; 6 = {010}, smaller but yielding good reflexes ; ¢ = {O01}, 

narrower than a, but very lustrous ; 0 = 141!, well developed and 

.very lustrous; » = 441}, smaller but very distinct ; s = 111}, very 

narrow but readily measurable. 

The habit is elongated towards the b-axis with flattening towards {100}. 

Measured: Calculated : 

a:b = (100) : (010) =* 90°167/,' =ak 
Ger (100):: (001) = ==* 69 23 — 

a0 = (£00): (411) —* ae pi 

c:0 = (001) : 411) =* 75 47'/, = 

b:o = (010): (111) =* 36 6 as 

a:o— (100):(441) = 5052 © 50°49! 

c:@ — (001): (111) = 56 52 56 43 
b:w— O10): (411)=— 46 28 46 35 
0: = (111):(111) = 4713 47 29/, 
a:s = (100):(411)= 4959 50 49°/, 
b:s —(010):(411) = 4548 © 45 527/. 
e:s =(0/):d1j)D=—= — 56 4 
o:s —(111):(111)— 63 39 63 592/, 

Readily cleavable, parallel {100}. 

The extinction on {100} amounts to about 26'/, in regard to the 

b-axis; in convergent light a hyperbole is visible occupying an eccen- 

tric position. 
The sp. gr. of the crystals is 2,305 at 8°; the equivalent volume 121.47. 

B. Nitro-2-5-Dibromo-Benzene. 

Structure: C,H, . (NO,)ji . Bri). Bris); m.p.: 84°,5. 

This compound has been previously studied crystallographically by 

G- Beis, (Zeits. f.. Kryst. 82, 377). This paper, however, contains 

several errors, which render a renewed investigation desirable ; more- 

over, another choice of axial (coordinate) planes is required, which 

makes the crystals show more analogy with the other triclinic terms 

of this series. 
The crystals deposited from acetone + ligroin have the form of 

small plates flattened towards {001} (figs. 2 and 3). They are pale 

yellow and very lustrous. 
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Triclino-pinacoidal. 

4:06 = 1,4909 ei 2,0214. 

A= OTe o/s a 90°57*/," 

B= A113°2*/2 B= 113°21'/,' 

C= 90°27' ¥== SOT 2: 

Forms observed: c= {001}, strongly predominant and reflecting 

ideally ; a = {100}, and rv = {101}, usually developed equally broad 
and also yielding sharp reflexes; 6 = {010}, smaller, readily measur- 

able ; m = {110}, large and lustrous ; p= {113}, mostly narrow but 

very lustrous; sometimes as broad as m. 

Broad flattened towards {001}. The approach to monoclinic sym- 

metry is also plain in this case. 

Measured : Calculated: 

a:b = (100) : (010) —=*89°33' —- 
b<c = (010); (001) =*88 ser — 

c:a == (001): (100) =*66 2e7- a 

6b: m = (010) = (110) sane = 

a:r — (100) : 101) =*43 45 a 

c:m — (001) : (410) = 75 46 75°387/,' 
a:m = (100) : (110) = 53 33 5350", 
c:r = (001) : (101) = 69 37 69 36'/, 
7 :m= (101) : (110) = 65 20 65 11 

p:m= (113) : (110) = 60 59 60 447/, 

r:b = (101): (010) = 89 55 89 22 
r: p = (101) : 413) = 50 53 at. 
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Readily cleavable, parallel m. 

The optical orientation is that of Frus, in which his forms {010}, 

{O01} and {117} assume, respectively, in my project the symbols 

{001}, {110} and {010}. It may be remarked that Frxs has incor- 
rectly stated the structure and also the melting point. Moreover, his 

angles (111): (100) and (4111) : (010) appear to be > 90°. Perhaps it 

is owing to this, that the agreement between the calculated and found 

values is with him so much more unfavourable than with me. I have 

never observed forms {552} and {15.15 . 4! 

The sp. gr. at 8° is 2,368; the equiv. volume: 118,66. 

Topical axes: y%: pw: w = 5,2190 : 3,5005 : 7,0758. 

On comparing the said position-isomeric derivatives, one notices at once 

not the great similarity between the two compounds, which, although 

constituting a case of direct-isomorphism, still very closely resembles it. 

Nitro-2-3-Dibromobenzene. 

Triclino-pinacoidal. 

26 st Aros. bs L.Ghts 

Nitro-2-5-Dibromobenzene. 

Triclino-pinacoidal. 

G2 bs.6— 1,4909 +1 = 2.0814. 

A=90°30' B=110°37' C—90°167/,' 

a=90°457/,'B=110°36?/,'y=89°59?/,' 

XW: w= 55,2565 :3,5571 : 6,9409. 

Ate (2 (1S! C962 e 

ka—O0°S7*/,’ B=113°21"/' y=90°2' 

X:W: @ = 95,2190 :3,5005: 7,0758. 

However: 

{100}, {010}, {001}, {101}, 
{110}, {113}. 

However: 

{100}, {010}, {001}, 1171}, 
{111} and {117} 

Cleavable parallel {100}. Cleavable parallel {110}. 

Habit tabular towards {100}. | Habit tabular towards {001}. 

We, therefore, still notice such a difference in habit and cleava- 

bility that a direct isomorphism, in the ordinary meaning of the 

word, cannot be supposed to be present. There occurs here a case 

of isomorphotropism bordering on isomorphism. 

Notwithstanding that difference, both substances can form an 

interrupted series of mixed crystals, as has been proved by the 
determination of the binary melting point curve and also crystallo- 
graphically *). 

The melting point of the 1-2-3-derivative (53°) is depressed by 

addition of the 1-2-5-derivative. The melting point line has also 

Forms: Forms: 
1 

1) The binary melting-curve possesses, — as proved by means of more a exact 
determination, — a eutectic point of 52° C. at 2°/, of the higher melting com- 

ponent; therefore here the already published melting-diagram is eliminated. There 

is a hiatus in the series of mixed-crystals, from + 3% to circa 489 of the 1-2-3-deri- 

vative. I shall, however point out, that the possibility of such a hiatus thermody- 
namically can be proved, — even in the case of directly-isomorphous substances. 

(Added in the English translation). 
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not, as in the previously detected case of the two tribromotoluenes 
(Dissertation, Leyden 1903) a continuous form; the difference is 
caused by the lesser degree of form-analogy which these substances 

possess in proportion to that of the two said tribromotoluenes. 

The third example of miscibility, although partially —, and of 

form-analogy of position-isomeric benzene-derivatives*) is particularly 

interesting. 

Mixed crystals were obtained by me from solutions of both com- 

ponents in acetone + ether. ? 

They possess the form of fig. 1 and often exhibit the structure of 

a sand time-glass or they are formed of layers. With a larger quantity 

of the lower-melting derivative, long delicate needles were obtained 

which are not readily measurable. The melting points lie between 

+ 75° and 844°; 1 will determine again more exactly the mixing limits. 

C. Nitro-2-4-Dibromobenzene. 

Structure: C,H, . (NO,)a). Brey . Broa); m. p. 61°.6. 

Reerystallised from alcohol, the compound forms large crystals 

flattened towards a and elongated towards the c-axis. They are of 
a sulphur colour. 

Triclino-pinacoidal. 

C2026 = 159807 22s 11698: 

BS VIN == 07 3b 

B= tissse fe eng WIS Sh 

C= oie ye y= 8733" 

Forms observed: a = {100} predominant and 

very lustrous; 4 = {010} and c = {001}, equally 

broad, both strongly lustrous; p= {110}, narrow 
but readily measurable; o = {111}, large and 

yielding good reflexes. 

The compound has been measured previously, 

by Grotn and Bopewie (Berl. Berichte, 7, 1563). 

My results agree in the main with theirs; in 

the symbols adopted here, their a- and 6-axes 

have changed places and the agreement with 

the other derivatives of the series is more 

Fig. 4. conspicuous. 

1) The examples now known are 1-2-3-5-, and 1-2-4-6-Tribromobenzene ; 

1-2-3-5-Tribromo-4-6-Dinitro- and 1-2-4-6-Tribromo-3-5-Dinitrotoluene; and 1-2-5-, 
and 1-2-3-Nitrodibromobenzene, partially miscible. 
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Measured: Calculated: 

a: b= (100) : (010) =* 89°21"/,' = 

> ¢ = (100) : (001) =* 66 29"/,' en 

(010) : (001) =* 82 467/,' de 

p:a = (110) : (100) =* 46 36 ee 

c: 0 = (001) : (111) —* 48 42 2s 

0: ): 

C 

R 

aS 

p = (111): (410) = 51 43 (cirea) 52° 1 

ape (O0LY: (110) == Oh 29. (circa) 100.43! 

Cleavable towards {010}; Groru and Boprwia did not find a 

distinct plane of cleavage. 

Spec. Gr. of the crystals = 2,356, at 8° C., the equiv. vol. = 119,27. 

Topic Axes: x: W:w = 5,2365 : 46304 : 5,4166. 

Although the analogy of this isomer with the two other triclino- 

isomers is plainly visible, the value of a: is here quite different. 

“In accordance with this, the derivative melting at 84'/,° Jowers the 

melting point of this substance. A mixture of 87°/, 1-2-4- and 13°/, 

1-2-5-Nitrodibromobenzene melted at 56°. There seems, however, to 

be no question of an isomorphotropous mixing. 

D. Nitro-2-6-Dibromobenzene. 

Structure: C,H, (NO,)ay . Bre) . Bre); 

m.p 82°. 
Reerystallised from alcohol the compound 

generally forms elongated, brittle needles 

which are often flattened towards two 

parallel planes. 

Monochno-prismatic. 

6 O5GTo: 1 20,6257 

p = 83°24’. 

Forms observed: 6 = {010}, strongly pre- 

dominant; g = {011} and o = {111} about 

equally strongly developed. The crystals 

are mostly flattened towards 6 with incli- 

Fig. 5. nation towards the a-axis, 
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Measured: . Calculated : 

i (O14) : O11) —* 63°437/,' — 

0:0 = (4111): (111) =* 47 52 = 

o:g = (111): 014) =* 74 207/, ne 

o:g = (411):(011)— 45 427/, 45°42’ 

q:6 =(011):(010)= 58 84, 58 8'/, 

b:o0 = (010):(111)= 66 6 66 4 

_ No distinct plane of cleavage is present. An optical investigation 

was quite impossible owing to the opaqueness of the crystals. 

Sp. Gr. = 2,211 at 8° C.; the equiv. vol.: 127,09. 

Topic parameters: y%: W: © = 4,0397 : 7,1147 : 44516. 

E. Nitro-3-5-Dibromobenzene. 

Structure: C,H, (NO,)q) . Bris) . Brys); m.p.: 104°,5. The compound 

has already been measured by Boprwie (Zeitschr. f. Kryst. 1. 590); 

my measurements quite agree with his. 

Monoclino-prismatic. | 

Bopewie finds a:6:¢c=0,5795:1:0,2839, with 8—=56°12'. Forms: 

§1103%, {LOO}, {001} and {011}. 

I take 8 = 85°26’ and after exchanging the a-, and c-axis 

a:6:.c = 05678 :1 : 04531, 

with the forms {011}, {001}, {201} and {211}. Completely cleavable 

towards {201}. Strong, negative double refraction. 

Sp. Gr. = 2,363 at 8° C.; equiv. vol. = 118,91. 

Topic axes: 4: HY: o = 43018 : 7,5761 : 3,6601. 

The great analogy in the relation a: of this and of the previous 

substance is remarkable; also that of the value of angle ?. 

F. Nitro-3-4-Dibromo-Benzene. 

Structure C,H, (NO,)1 . Brs). Bry; m.p. 58° C. Has been measured 

by Grotn and Bopewie (Berl. Ber. 7.1563). Monoclino-prismatic. 
a:4 =0,5773:1 with @ = 78°31’. Forms {001}, {110} and {100}, 

tabular crystals. Completely cleavable towards {100}, distinctly so 

towards {010}. The optical axial plane is {010}; on a both optical 

axes (80°) are visible. I found the sp. gr. at 8°C. to be 2,354. The 

equivalent volume is therefore 119,34. 
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I have tried to find a meltingpoint-line of the already described type 
in the monoclinic derivatives in which some degree of form-analogy 

is noticeable. However, in none of the three binary mixtures this 

was the case; the lower melting point was /owered on addition of 

the component melting at the higher temperature, without formation 
of mixed crystals. For instance : 

A mixture of 82,3°/, 1-2-3- and 17,7°/, 1-3-5-Nitrodibromo-benzene 

melted at 48'/,° C. 
A mixture of 76,5°/, 1-2-6- and 23,5°/, 1-3-5-Nitrodibromo-benzene 

ak 69'/.> C. 
A mixture of 90,5°/, 1-3-4- and 9,5°/, 1-2-6-Nitrodibromo-benzene 

at 54° C. 
Moreover, no mixed crystals could be obtained from mixed solutions. 

The slight form-analogy with the Nitro-dichloro-benzenes *) investi- 
gated by me some time ago is rather remarkable. 

Nitro-2-3-Dichloro-Benzene (62° C. rhombic) and Nitro-2-6-Dichloro- 

Benzene (71° C. monoclinic) exhibit practically no form-analogy with 
the two Dibromo-compounds. There is alsv nothing in the Dichloro- 
derivatives corresponding with the isomorphotropous mixture of the 

2-3- and 2-5-Dibromo-product. The sole derivatives of both series 

which might lead to the idea of a direct isomorphous substitution 

of two Cl by two Br-atoms are the Nitro-3-5-Dihalogen-Benzenes 
(65° C. and 104°,5 C.); the melting point of the Dichloro-derivative 
is indeed elevated by an addition of the Dibromo-derivative. 

As a rule, the differences in the crystal-forms of the compounds 

of the brominated series are much less than those between the forms 

of the chlorinated derivatives — a fact closely connected with the 

much greater value which the molecular weight possesses in the 

Nitro-Dibromo-Benzenes than in the corresponding Ch/oro-derivatives. 

Zaandam, April 1906. 

Physiology. — “On the nature of precipitin-reaction.” By Prof. 

H. J. Hampurcer and Prof. Svante Arruentus (Stockholm). 

(Communicated in the meeting of April 27, 1906). 

One of the most remarkable facts discovered during the last years 

in the biological department, is most certainly the phenomenon that 

when alien substance is brought into the bloodvessels the individual 

reacts upon it with the forming of an antibody. By injecting a 

1) These Proc. VII, p. 668. 

Proceedings Royal Acad. Amsterdam. Vol. 1X. 
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toxin into the bloodvessels, the result is, that this is bound and free 

antitoxin proceeds. Exriicn explains this as follows. When a toxin 

is injected, there are most probably cells which contain a group of 

atoms able to bind that alien substance. Now Weicert has stated the 

biological law, that when anywhere in the body tissue is destroyed, 

the gap usually is filled up with overecompensation. So, it may be 

assumed, that when the cell looses free groups of atoms, so many 

of these new ones are formed, that they can have no more place 

on this cell and now come in free state in circulation. This group 

of atoms is the antitoxin corresponding to the toxin. 

As a special ease of this general pbenomenon the forming of 

precipitin is to be considered. 

When a calf is repeatedly injected with horseserum, which ean be 

regarded as a toxic liquid for the calf, then after some time it 

appears that in the bloodserum of that calf an antitoxin is present. 

In taking some bloodserum from this calf and. by adding this to the 
horseserum a sediment proceeds. This sediment is nothing else than 

the compound of the toxin of the horseserum with the anti-toxin that 
had its origin in the body of the calf. We are accustomed to call 

this antitoxin precipitin, and the toxin here present in the horseserum, 

and which gave cause to the proceeding of precipitin, precipitinogen 
substance. The compound of both is called precipitum. 

It is very remarkable that such a precipitate proceeds only, when 

the precipitin is brought in contact with its own precipitinogen sub- 

stance. Indeed by adding the designed calfserum containing preci- 

pitin, not to the horseserum but to the serum of another animal, no 

precipitate proceeds. In this we have also an expedient to state if in 
a liquid (e.g. an extract of blood stain) horseserum is present or not 

(UnennutH, WaAssERMANN inter alia). Meanwhile such a calfserum 

gives notwithstanding also a precipitum with serum of the ass related 

to the horse. 
To the same phenomenon the fact is to be brought, that when 

a rabbit has been injected with oxenserum, the serum taken from 

the rabbit does not only give a precipitate with oxenserum but also 

with that of the sheep and the goat, which are both related to the ox. 
Some time ago an expedient was given to distinguish also *) serum 

proteid from related species of animals by a quantitative way, and 

in connection with this a method *) was proposed to determine accu- 

1) H. J. Hampurcer, Eine Methode zur Differenzirung von Eiweiss biologisch 

verwandter Thierspecies. Deutsche Med. Wochenschr. 1905, 5. 212. 

2) H. J. Hampurecer, Zur Untersuchung der quantitativen Verhiltnisse bei der 

Pricipitinreaction. Folia haematologica. Il Jahrg, N°, 8, 
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rately the quantity of precipitate which is formed by the precipitin 

reaction. This method also permitted to investigate quite generally 
the conditions which rule the formation of precipitate from the two 

components. 

Immediately two facts had pushed themselves forward by a preli- 

minary study which were also stated in another way by EISENBERG ') 

and AscoLi’).’ 

1. That when to a fixed quantity of calfserum *) (precipitin = 

‘antitoxin) increasing quantities of diluted horseserum (precipitinogen 

substance = toxin) were added, the quantity of precipitate increased, in 

order to decrease by further admixture of diluted horse serum. 

2. that whatever may have been the proportion in which the two 

components were added to each other, the clear liquid delivered 
from precipitate always give a new precipitate with each of the 

components separately. This leads to the conclusion that here is 

question of an equilibrium reaction in the sense as it has been 

stated and explained for the first time by Arruenius and Mapsen ‘). 
This conclusion has become also the starting point of the now 

following researches of which the purpose was to investigate by 
quantitative way the principal conditions by which precipitin reaction 
is ruled. 

Methods of investigation. 

To a fixed quantity of calfserum °) (precipitin = antitoxin) increas- 

ing quantities of diluted horse-serum (precipitinogen substance = 

1) Eisenperc. Beitrige zur Kenntniss der specifischen Pracipitationsvorginge 

Bulletin de |’Acad. d. Sciences de Cracovie. Class. d. Sciences Mathem. et nat. 

p. 289. 
2) Ascou. Zur Kenntnis der Pracipitinewirkung. Miinchener Med. Wochenschr. 

XLIX Jahrg. 8. 398. 

3) They used sera of other animals. 
4) ARruentus und Mapsen. Physical chemistry to toxins and antitoxins. Fest- 

skrift ved indvielsen of Statens Serum Institut. Kjobenhavn 1902; Zeitschr. f. 

physik. Chemie 44, 1903, S. 7. 

In many treatises the authors have continued these investigations; compare e.g. 

sill : 
Arruenws. Die Anwendung der physikalischen Chemie auf die Serumtherapie. 

Vortrag gehalten im Kaiser]. Gesundheitsamt zu Berlin am 22 Sept. 1903. Arbeiten 

aus dem Kaiserl. Gesundheitsamt 20, 1903. 

Arruenius. Die Anwend. der physik. Chemie auf die Serumtherapeutischen Fragen. 

Festschrift f. Botrzmann 1904. Leipzig, J. A. Barru. 

5) To make it easy for the reader, we speak here only of calfserum and horse- 

serum, Compare the third note on this page. 
3% 



( 36 ) 

toxin) are added. There upon the mixtures are heated for one 

hour at 37° and then centrifugated in funnelshaped tubes of which 

the capillary neck was fused at the bottom. The in 100 equal volumes 

calibrated capillary portion contains 0.02 or 0.04 ¢.c. The centri- 

fugating is continued till the volume of the precipitate has become 
constant °).. 

Experiment with calf-horse serum. 

As it was of importance, at all events for the first series of proofs, 

to dispose of a great quantity of serum containing precipitin, a large 

animal was taken to be injected. Dr. M. H. J. P. THomassen at Utrecht 

was so kind to inject at the Governement Veterinaryschool there, 

a large calf several times with fresh horse serum and to prepare 

the serum out of the blood drawn under asceptic precautions. 

The serum used for the following series of experiments was 

collected Nov. 28, 1905, sent to Groningen and there preserved in 

ice. On the day of the following experiment January 25, 1906, 

the liquid was still completely clear and free from lower organisms ; 

there was only on the bottom a thin layer of sediment, which 

naturally was carefully left behind at the removing of the liquid. ”) 

The horseserum used for the proof in question was fresh and 

50 times diluted with a sterile NaCl-solution of 1°/). 

Each time two parallel proofs were taken as a control. The 

capillary portion of the funnel shaped tubes used for this experiment 

had a ealibrated content of 0.04 ec. Each division of the tubes thus 

corresponded to 0.0004 ce. 

To this series of experiments another was connected in which the 

quantity of diluted horseserum was constant, but increasing quan- 

tities of calfserum were used. 

From the first table it appears, that when to 1 cc. calfserum 

increasing quantities of diluted horseserum are added, the quantity 

of precipitate rises. When more horseserum is added as is the case 

in the second table, the quantity of precipitate descends. This appears 

from the following. 

1) Compare Folia haematologica |.c, for further particulars of the method. 

2) Fuller details of other proofs taken on other days with calf-horseserum, also 

of experiments with serum obtained by injecting rabbits with pig-, oxen-, sheep- 

and goat-serum will be communicated elsewhere, 
‘ 
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TABLE L 

1 ce of the mixture of 1 ce. Volume of the precipitate, after centri- 
The quantity 

calfserum (precipitin or | fugating for: of precipitate 
: found in 1ce. 

serum containing anti- of the mixtures 
calculated for 

toxin) +... ec. horse- the ¢ofal quan- 
tity of the 

serum 1/,, (precipitino- mixed compo- 
‘ ee nents according 

gen or toxin containing to the last 
| observation. 

serum. th.-$h. - 3h. -$h. - $h.- 20m. - 15m.) 

cal SS a ae 
| 

ow ee. horseserum '/,, | 4 — 1/, — not to be measured accurately 

0.04 
3 » » | 4—¥— vd Dd » » » 

| 

=) » >| $— 3— 3— 3— yo 3 O08 

— » » See ee 3.08 

0.4 : 
3? » » Ae) —— a) 10.5 

ae » me — 44 40 — 10 — 40° 10: —-10 | 10.5 

= » » 26 — 23 — 20 — 18 — 17 — 17 — 17 | 18.4 

= > oo Sa ae aia | me by Gee 1 ae C2 MT 

0.2 
wad » ibe oe ha Ht DAE. 

ae A B96 9k = 90 — ot = oy — 9 23.4 

0.13 » » » 43 — 43 — 39 — 34 — 32 — 32 — 32 36.2 
0.13 » » » | 48 — 43 — 39 — 34 — 32 — 32 — 32 | 36.2 

0.15 » » » Be 6 — 4 a a | 39. 
0.45 » » » ee A —— | 39.4 

0.18 » » » 6d — 1 — 54 —" 48 — 2 — 43 — £8 |! 50.7 
0.18 » » » 65 61 — 54 — 48 — 49 — B— 488 50.7 

022°» » » 65 6a A Ay Ay 4 54 
O22» » » 6506 45 45 — 45 54 

O95.» » » hes 5D 33) HS 66.3 

0.25 » » » i9— 1a — 69) — 5S Spe 1559 es S- 66.3 
| 

Ox3'*-y » » Sree 62 See 74.1 
G3 2 » » Se 30) —— 10 — 62 ——58 = 57 — 52 74.41 
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So e. g. the quantity of precipilate when 0.3° cc. horse serum is added to 
1 ce. calfserum, is 74.1 (table I). But when, as may be read in the second table 

0.5 cc. horse serum is added to 0.9 cc. calfserum the precipitate has a volume 

TABLE I. 

| 
1 cc of the Volume of the precipitate, after centrifu- | The quantity of 

mixture of 0.5 cc gating for iy rr fous 

h = ‘mixtures calculated 
5 ic sane for the total 

quantity of the 
Yeo --. cc ‘mixed components, 
se taerk so according to the 

bh. = hoe gh ahs ph. 20m, -15m,| Sete 
oe aS 

0.4 cc calfserum, | 1.— $ — _ not to be measured accurately 

0.1 » » 4—4 — » » » » » | 

0.3 » » 2— 2— 2— 2— 2— 2— 2] 1.6 

0.3 » » Q— 2— 2— F— 2— 2-- BZ} 1.6 

0.5 » » 6G 5 = BS ba oe 5 

0.5 » » y aes eee sy ee kad ale 

O27 > D 48 — 36 — 32 — 28 — 2% — 2 — 25) 30 

0.7 » D | 00 88 ee eee 30 

9.9 » D) 84 — 6 — 57 — 50 — 43 — 43 — 48) 51.6 

0.9 » » 81 — 63 — 55 — 49 — 43 — 43 — 43 | 51.6 

| 
1.4 » » | 95 — 81 — 67 — 58 — 52 — 50 — 50) 80 

1A > >) | 0k — 8) 68k Bee ee 80 
| ) 

1.3 » D 62 — 79 — 66 — 59 — 59 — 55 — 355) 99 

1.3 » » | 97 — 80 — 69 — 60 — 59 — 55 — 55) 99 

1.5 » » 96 — 84 — 74 — 6 — 62 — 59 — 59} 118 

3 ow » 95 — 84 — 73 — 64 — 62 — 59 — 59 118 

1.9» » | 90 — 75 —, 65 — 55 — 53 — 541 — S51] 122.4 

| 
1.9 » » 89 — 75 — 6 — 55 — 538 — St — S51 | 122.4 
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of 51.6. If instead of 0.9 calfserum 1 cc. was used the quantity of horseserum 

: es | : ; 
would necessarily have amounted to 0,5 X 9 9 = 0,59 cc. So it appears that by the 

addition of 0.3 cc. horseserum to 1 cc. calfserum the precipitate amounts to 74.1 and 
by the addition of 0.55 cc. horseserum but to 37.3 }), 

This decrease must be attributed partly to the solubility of the 

precipitum in NaCl-solution, a solubility which is felt the more strongly 
as a greater quantity of diluted horseserum is added. (Compare also 

Fol. Haematol |. c.). 

So we see that the clear liquid above the precipitate contains, 

besides free precipitin and free precipitinogen substance, as has already 

been stated, also dissolved precipitate. 

These three substances must form a variable equilibrium, which 

according to the rule of GuLDBEere and Waace is to be expressed 
by the following relation. 

Concentration of the free precipitinogen subst. >< Concentr. 

of the precipitin =k, <Concentr. of the dissolved precipitate . . . . (I) 

in this &, is the constant of reaction. 

Meanwhile it appears from the experiment, that a greater quantity 

of precipitate must be dissolved than corresponds with this equation, 

or to express it more clearly, than corresponds with the conception 

that the solubility of the precipitate in NaCl solution is the only fact 

by which the quantity of sediment decreases. 

To take away the difficulty, the hypothesis was made that still 
another portion of the precipitate forms a dissolvable compound with 
free precipitinogen substance (of horseserum) and that we have 
here a case analogical to the reaction of CaH,O, with CO,. As is 
known CaH,O, is precipitated by CO,, but by addition of more CO, 

the sediment of CaCO, decreases again, while CO, with CaCO, forms 

a dissolvable substance. 
As will soon be seen, a very satisfactory conformity between 

calculated and observed quantity of precipitate is obtained through 
this hypothesis, which could afterwards be experimentally affirmed. 

Let us now try, reckoning both with the solubility of the precipi- 

tate in NaCl-solution and with the forming of a dissolvable mixture 
of precipitate with precipitinogen substance, to precise more closely 

equation I. 

1) The hyperbolic form of the precipitate curve with ncreasing quantity of horse- 

serum may still appear from the following series of experiments taken on another 

day (Table III). This series has not been used for the following calculation. 
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TABLE IIL. 

1ce of the mixture | Volume of the precipitate after centrifu- 
| | , 

The quantity of « 
| precipitate found 

gating for: in 1 cc. of the 
of 1cc calfserum 

ich mixtures calculated 
+ +++ cc horse- for the {otal 

quantity of the 
ET mixed components 

according to the 

Phe ea bh 0m. — iesden| eee 

Bp 
0.4 ce horseser. 1/,,| 38 — 38 — 28 — 244 — 923 — 23 — 23 | 2.3 

Oe» » » | 40 — 22 — 29 — % — 23 — 23 — 2] 2.3 

0.2 » D » | 66 — 54 — 48 — 44 — 49 — 42 — 42 | 50.4 

0.2 » » » | 59 — 50 — 45 — 48 — 4H — HW — 41 50.4 

0.3 » » » | 88 — 69 — 65 — 56 — 55 — 55 — 55] 71.5 

0.3 » » » | 87 — 68 — 65 — 56 — 55 — 55 — 55] 71.5 

0.6 » » ye | kee a7 ee ee 70.4 

0.6 » > »| 71 — 57 — 53 — 47 — 4B — 48 — 48 68.8 

1 » » 90 25 — 10 — 4 aa eee 26 

4.2% » Qe De 4 

4.2» » duces Sy eee eee ee, S| 

1.4» » » not to be measured 

» » — >= u zy zy zy y 
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Firstly we shall try to find an expression for the three substances 
occurring in the clear liquid which stands above the precipitate: for 
the free precipitinogen substance, for the free precipitin which it 

contains and for the quantity of dissolved precipitate. 

Nirstly the quantity of free preipitinogen substance. Let A be the 

total quantity of that substance used for an experiment. To determine 

how much of this is still present in the liquid in free state, it is to 

be determined how much is bound. Bound is: 

1. a certain quantum to form the precipitate which is present in 

solid condition. If we set down as a rule that 1 mol. precipitum 
proceeds from 1 mol. precipitinogen substance and 1 mol. precipitin, 

then the wanted precipitinogen substance will be expressed by P, if 

the molecular quantity precipitate also amounts to P. 

2. a quantity pV when p represents the percentage of the quantity 

of dissolved precipitate and V the total volume of the liquid. 

3. a quantity necessary to form the compound of precipitate- and 

precipitinogen substance. Admitting that 1 mol. of this compound 

proceeds from 1 mol. precipitate and 1 mol. precipitinogen substance 

and then that y of this compound is present, then together 27 must 

be charged, while in each of the two components y mol. precipitinogen 

substance is present, so that the quantity of precipitinogen substance, 

which is left in free state, amounts to 

A—P—pV—2y. 

So when the volume of the liquid is V, the concentration of the 
free precipitinogen substance = 

A—P—pV—2y 
ER ee es 

It is possible to calculate in the same way the concentration of 

the free precipitin. 
If B is the total quantity of precipitin, which is used for the 

experiment, then there is to be subtracted from this: 

1st. a quantity P for the same reason as is given at the calcula- 

tion of the free precipitinogen substance (see above). 

2d. a quantity pV, likewise as explained there. 

3d, a quantity necessary to form the compound precipitate-preci- 

pitinogen substance. While in this compound but 1 mol. precipitin 

is present, only 1y is to be charged. So that the quantity of pre- 

cipitin which remains in free state, amounts to b—P—p )—y. 
While the volume of the liquid amounts to V7, the concentration 

of the free precipitin is = 
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B—P—pV—y 
- otis. 5 Se 

As for the concentration of dissolved precipitate in the third place, 
this must be expressed by 

pV F ieee ce ee 

So the equation (1) becomes: 

A—P—pV—2y ge ee py 

V Sar Sey 
or 

(A—P—pV—2y) (B—P—pV--y) =k, pv’. .. (5) 

Now one more equation, expressing the reaction according to 

which precipitate combines with precipitinogen substance. This is 

to be written down as follows. 

Concentration free precipitinogen substance X concentr. dissolved precipitate 

= ky concentr. compound precipitinogen subst. — precipitate. 

A—P—pV—2y ja y 

V SNe 
or 

(A—P—pV—2y)p=ky. ..... (6) 

By putting shortly P-+-pV = P’ and by substituting the value of 
y of equation (6) into equation (5) we obtain 

A—P' A— Pp. 
A—P'—2p B—P'—p a= kp": aca 

k,- 2p k,+2p 
In this equation are known: 

ist. A, the total quantity of precipitinogen substance (diluted 
horseserum added) ; 

2nd, $B, the total quantity of precipitin (calfserum) used ; 

3-4. |, the volume of the liquid resulting from the mixing of 

the two components ; 

4h P, the quantity of solid precipitate directly observed. 

Unknown are: 

1st. p, the quantity in percentages of precipitate which is dissolved 

(so p represents the solubility of the precipitate) ; 

2nd, f,, the constant for reaction of the formation of precipitate; 

3°, &,, the constant for reaction of the formation of the com- 

pound precipitate-precipitinogen substance ; 
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4th. Pp’, this is however P+pV and therefore known as soon 
as p has become known. 

As equation (7) contains 3 unknown quantities three observations 

will be necessary to determine them. 

When we introduce then the so found values in the other experi- 

ments and calculating the quantity of precipitate, it appears that the 

calculated quantities correspond in very satisfactory way with those 

which are observed. 

Let us observe that to avoid superfluous zeros 1 ce calfserum 

(5) is taken = 100. 
While as appears from the experiments in the case in question 

1 ce calfserum is equivalent to nearly */, ce horseserum 1:50, 1 ce 

horseserum 1:50, that is A, obtains a value of 300. 

0,04 
So, where in the first experiment Sa CC: horse serum was used 

0,04 
A obtains a value of re < 300'= 4. 

In the experiment, where on 1 ce. calfserum 0,8 cc. horseserum 

was used, with a value B=100, A becomes 0,3 « 300 = 90. 

Let us now combine the two tables to one by calculating for the 

second table how much */,, horseserum is used on 1 cal//serwm.. 

We see that the comformity between the determined and caleu- 

lated precipitate (col. IIT and 1V) is very satisfactory. The average 
of the discrepancy amounts to 1.3. 

This result deserves our attention not only in view of the know- 

ledge of the precipitin reaction as such, but also from a more 

general point of view, this reaction belonging to the great group 

of the toxin-antitoxin reactions. 
Till now, in studying the last, we were obliged to deduce the 

equilibrium conditions from the toxins, that is to say by determining 

the toxic action which was left by the gradual saturation of the 

toxin by increasing quantities of antitoxin, but with the precipitin- 

reaction the equilibrium conditions may be deduced from the quantity 

of the formed toxin-antitoxin compound. 
And not only that, but owing to the fact that the compound forms 

a precipitum, the quantity of this may be fixed in an accurate and 

direct way by simple measurement, thus without the aid of red blood 

corpuscles or of injecting-experiments in animals. 
So there is good reason to expect that a further study of the 

precipitin-reaction will facilitate too the insight in other toxin-anti- 

toxin reactions. 
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TABLE IV. 

I Seog I III IV Vv 
Acc. calfserum, B = 100. 

Used quantity| Used quantity | Determined Calculated Difference 
of of volumes of the | volumes of the between 

horseserum korseserum precipitate precipitate III and IV. 
1/5, (on Acc. expressed in 1 cc. of the | in 1 cc. of the 
calf serum). in the just mixtures. mixtures. 

accepted units 

ese ee —===—=—== 

0.013 cc. 4 not to be measu- 0.2 

0.027 » 8 eo 3.9 40.9 

0.05 » 45 10 he: siatode 408 

0.08 » oy 17 17.8 E088 

0.4 » 30 21 23.6 + 2.6 

0.13» 39 32 29.7 ie ois 

0.15 » 45 34 34 0 

0.18 » 54 43 40.1 — 2.9 

0.2 » 60 45 43.9 a 

0.25 » fo tee 52 52.1 S04 

0.266 » 79 51 53.6 +. 2.6 

0.294 » 88.3 55 57.1 42.4 

03." 90 57 57.5 +0.5 

0.33 » 100 59 58.9 = 04 

0.385 » | 445.4 ae 57.4 49.4 

0.457 » 137 50 51.3 Cage 

0557 » 167 43 41.3 = AT 

0.13 » O14 25 26.8 + 1.8 

4 » 300 5 5.5 +. 0.5 

4.67 » 500 2 0 =.9 

RESUME. 

We may resume our results as follows. 

By mixing precipitin and precipitinogen substance (to compare 

resp. with antitoxin and toxin) an equilibrium reaction proceeds 
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obeying to the law of GuLDBeRe and Waacee. By this equilibrium 
reaction part of the precipitin molecules combines with the corre- 

sponding quantity of molecules precipitinogen substance, while by the 

side of this compound a certain quantity of each of the two components 

remains in free state. The compound is partly precipitated and partly 

remains dissolved. How much remains dissolved depends for the 

greater part on the salt solution which is present, for the sediment 
is soluble in Na Cl-solution. 

Besides this equilibrium reaction there is still another which 

consists in this, that part of the precipitate combines with free 

precipitinogen substance to a soluble compound. This reaction 
too obeys the law of GuLpBerGc and Waace. The case is to be 
compared with the precipitation of Ca(OH), by CO,. By excess of 

CO, a part of the resulting CaCO, is transformed in a soluble 
bicarbonate. So CaH,O, takes the function of the precipitin and 
CO, that of the precipitinogen substance. 

Astronomy. — “Observations of the total solar eclipse of August 30, 

1905 at Tortosa (Spain).” By J. Stein S.J. (Communicated 

by Prof. H. G. vAN DE SANDE BakHUyzEN.) 

At the invitation of Mr. R. Cirera S. J., director of the new 

“Observatorio del Ebro” I went to Tertosa towards the end of 
June 1905 in order to take part in the observation of the total solar 

eclipse. I was charged with making the measurements of the common 

chords of the sun and moon at the beginning and at the end of the 

eclipse and had also to determine the moments of the four contacts. 

The results might perhaps contribute to the correction of the relative 

places of the sun and moon. 

The determination of the co-ordinates was much facilitated by the 

circumstance that the signals of the three ‘points Espina, Gordo and 
Montsia of the Spanish triangulation were visible at this place. The 
measurements of the angles with a theodolite yielded the following 

results : 

g = 40°49' 13.43 ; A=1™ 58518 east of Greenwich. 

In these results the spheroidal shape of the earth is accurately 
taken into account. Later measurements made by Mr. J. Usacu 

gave the same results. Electric time-signals, directly telegraphed from 

the Madrid observatory, gave for the longitude: 1™ 58*.8 east of 

Greenwich. As the most probable value we have adopted 1™ 58*.5, 
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the mean value of the two determinations. As a test 30 other deter- 

minations of latitude have been made with an instrument temporarily 

adjusted for Talcott observations, from which I derived as mean 

value: g = 40°49' 14".8. The height above the sea-level is 55 meters. 

The instrument at my disposal’ for the eclipse observation was a 

new equatorial of Maimuart (Paris), 2™.40 focal length and 16 em. 

aperture, provided with an eye-piece with a double micrometer. 

I have determined the screw value of one of the two screws from 

18 transits of cireumpolar stars near the meridian. | found for it: 

R, = 60.3534 + 0".0117; 

the value of the other screw was determined by measuring the 

intervals by means of the first: 

A, 2. OO010 2 sta. = 

The observatory possesses a good sidereal clock, the rate of which 

had been carefully determined during four months by means of star 

transits. In the night of 29—80 August, Mr. B. Brrnory, a clever 

observer had observed 20 clock-stars, so that the accuracy of the 

determination of the clock-error left nothing to be desired. 

During the phase observations the object-glass was reduced to 

25 mm. by means of a screen of pasteboard. The eye-piece with 

a power of 30 was provided with a blue glass. The observations 

of the chords were continued as long as was allowed by the field of 

view of the eye-piece, which was more than 20' in diameter. At my 

signal “top” the moments of the observations were noted by Mr. Bexpa, 
who was seated in front of a mean time standard clock, which 

before, during. and after, the observations was compared with the 
sidereal elock; another assistant recorded the micrometer readings. 

During the beginning and the end of the eclipse the sky in the 

neighbourhood of the sun was perfectly clear, so that I could per- 

form the measurements of the chords undisturbed, although now 

and then I met with difficulties owing to irregularities in the rate 

of the driving clock. From some minutes before, until after, totality 

the sun was covered with light clouds, yet the moments of contact 

could be recorded with sufficient accuracy. 
In the derivation of the results I have taken the solar parallax 

= 8".80; for the rest I have borrowed the constants from the public- 

ation “Observatorio Astronomico de Madrid. Memoria sobre el eclipse 

total de Sol del dia 30 de Agosto de 1905”. They are: 

Mean radius of the sun &, = 15'59'.63 (Auwers) 
Fe m » > moon 7, = 15'32".83 (KuEsTNER and BATTERMANN) 

Parallax of the moon y= 57’ 2:68 
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OBSERVATIONS. 
he 2m 6 

Pirst comtac t: 41 55 39 .4 (mean time of Greenwich.) 

Length of the chords (corrected for refraction) 

41 56 28 .2 294.93 

Sy Be be | 390.24 

57 35 .2 437 22 

58 20 .0 507.74 

59 8 .2 566.98 

59 38 .9 608 . 94 

1276.9. .2 642.58 

4:25 .0 721.69 

249 .9 798.82 

418 .3 876.43 

457 .0 906.12 

544 3 935.04 

6 15 <9 959.75 

6 53 .2 983 .94 

7 18-49 1004.93 

Sint 2 1030 37 

8 43 .3 1052.50 

923 .3 1078.17 

9.49 .1 1096.89 

10 16 .4 1106.16 

10 42 .2 4124.37 

fi 9273 4138.90 

44 20%7:4 1144.49 

4456-53 4160.37 

12 24 .3 41178 82 

hi) m8 

Second contact: PAGS 2 

Third contact: AAG) 7.2 

Length of the chords 
he Wise Ss " 

215 53 .0 1297.92 
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Length of the chords 

i 

bo ae ~~] ey] s1 aU) 4256 94 

18 4.5 1232.27 

18 25 .3 4219.81 

48 42 .5 4209.54 

149 13 .3 4193.25 

49 38 .2 1181.49 

20 45 .0 4157.42 

2.5 33 4129.77 

2 28 .3 4117.78 

22 1 .0 1095.75 

22 35 .3 1073.82 

23 4 1054.40 

23 21 .3 1041 52 

23 54 .3 1620.90 

24:36 .0 993 .28 

ya ae Ae 973.04 

25 35 .3 950.47 

26 2.3 £20.28 

26 29 .3 903.24 

26 52 .3 880 81 

27 13 .3 863.90 

27 36 .2 845.44 

8 11:6 819 14 

28 43 .3 779.01 

29 5 .d 762.98 

29 38 .6 726.38 

30 2 .3 697.40 

30 22 .3 677.17 

30 52 .3 637.13 

31 414 .8 610.37 

31 40 .6 573.84 

32 4.5 538 .62 

32 42 .6 480 78 

33 3.3 437 .21 

33 13 .3 406 .92 

1 ‘ 

Fourth contact; 2 34 44 .7. 
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Right ascension of the sun, Aug. 30,12 M.T. Gr. ag = 158°10'44".94 
Declination eRe ty Riess + do= 9° 9'33'19 

Right ascension of the moon ,, __,, # a@¢ = 157°42'47".95 

(HANsEN-NEWCOMB),. 
Declination ee oe oe ae) - do = 9°53’ 3'.48 

(HANsEN-Newcoms). 
Each observation gives an equation of condition for the determin- 

ation of the corrections A of the elements of the sun and moon. 
Let these corrections be successively 

AR, Ar, Aag, Aa, Ade, Ady Ax, 

then we obtain by comparing the observed distances and chords 
with those computed the following equations: (the coefficients have 

been rounded off to two decimals). 

EQUATIONS OF THE CHORDS. 
I. Observations after the first contact. Obs.—Comp. 

" " 

+7.98 AR +7.97 Ar 47.1408 —3.20A3 1.67 a =+50.71 —10.36 

4550 ,, 45.49 ,,- 44.88 enact ° 44.49 a. Seles as 
4.88 , +4.87 , 44.30 ,, 1.93 , 44.01, +37.59 4+ 0-70 

4410 , +4409, $3.56 , 1.60 , 1081, 432.40 414.7 

eee aa, tt 10 4.39, 10.69 ,  -E 99. 

ee et ete ee DC  EO.GA. 

eee tt As oe 1. C4, 0:59 $22: 

eee eee oe ee = LOT | +b 

19.50 , +248 , 42.06 , 0.92 , 40.43 , +46.66 — 1.12 

412.99 , 19.9%, +4. , —0.82 ,, 40.38 ,, +20.03 + 4.06 

49.9 , 429.18, +1.76 , —0.79 ,, 40.36 ,, +19.60 + 4.28 

42.43 , $2.10, +1.68 4, —0.75 ,,° 40.34 ,, +413.42 

49.08 , 42.05, $1.63 , 0.73 , +0.33 , +4+15.60 +1.4 

ope 4. ST, «6070 | 40.81 4, © 444.57 

+H14.99 , 44.95 ,, 44.53 , —0.69 , $0.30, +17.85 + 4.4 

44.94 , 41.90, +148 , —0.66 , 40.299 ,, +45.73 + 2.82 

H4.89 , 41.85, 31.43 , 0.64 , 40.27 ,, +441.49 — 0.97 

44.85 , -H.8i, 34.38 ,, —0.62 , 40.26, +442.97 + 0.87 

44.82, +4.78,, 1.35 ,, —0.60 , +40. , 416.44 + 4.68 

44.80 , 4.76 , $1.32 , —0.59 , 40.2 , -+440.08 — 1.56 

ewes io. +100 5 —058 , 10.2% , -H3.51 41.19 

eee ne te 057. 4 COR 2.97 4 1.77 

1 , 11.69, 34.9% , —0.56 , 40.93,, +4 9.37 — 1.70 

44.0, 31.67, +4.3 , 0.55 , 0.22, 40.37 — 0.50 

44.69 , 34.65, $4.21 ,, —O.54 ,, $0.22, +42.71 + 2.06 

Proceedings Royal Acad, Amsterdam, Vol. IX. 
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44.52 AR +4.46 ar—0.99 Aw +0.49 AS 40.16 ar —=— 5.39 4 0.51 

44.57 

44.61 
1.62 

4. 
44 

~ 

51 

Il. 
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Observations before the last contact. Obs.—Comp. 

" U 

oO (—9 
—1 05 ~.,.,. 0.52 .. OS 5 = 5. Ope cer 

S409 %° 24058. Je Peo 419-255 eee ee 

LAO fo CG AL > O Gaigigoe te) 7 Sn epee 

ae (ares ess ee 3 (Og ee > 

24 dao eer, eee, Se 4g ee 
B56) 3051.45 1 eee 
ss SRE RD OO AIS eae ss bf 
oy 5 OR Jalgten + groan ee 
1 0482" 5 0 se Sa 
4905) SROs re 4 aen) Ae 77s ae eee 
Oe ee ei ate eee ese 

oo 40's SS 8 ee 
4 yy) e5 eae 2 ore =e 

Mog 1050. ey. hee ee 
1.50" “S, -4b0:98 5 epee, Whe ae 

wo 095 -a.90- ga ee 
4.60. 4 4058 ,- 40-30 9) -— £88 ee 
1.64 ~ , 40.80 4) olga 413.98 2 ee 
69 3! 30.829 3) 332 = aa 
A .h <= 2055, S084 =. ee ae 
41.79. 087 40.33 = a ee 
AS ls 0.9 ba 0 eee 

i GS = Ses SB a 
8.0 3. 40008. S20 abs ee 
8.08; 5; A Pe ene 3 4 Glag eee 

» 4406-5 0ae 4, | 4708 “Snes 
2.095, Sd oo eajae  a 
9.37 |, habe os, 18 3. ee 
—2,.52 ae je Ab ae 

9.65 5 4 | 405s) 15.97 sae 
—9:81 °°, [ASR S6 o> Poe | Sg 'a6: nea 

—3.00 6 ab 0.63 a 
—3.39 , 44:64 4° 40.71 ,, —18.h1, ae 

eM ole S076. 96 ee 

—3.92  ~ 44.85.45 -40.81-.,' —38)e7 =e 
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Equations of the contacts 
I AR+ Ar + 0.903 Aa—o — 0.405 Ad&—o = + 3".78 

TI AR— Ar — 0.9668 Aac_a — 0.2007 Adhi—o + 
4+ 0.0004 A?a_o — 0.0036 AaAd + 0.0091 A*h_o = — 6".52°) 

HII AR— Ar + 0.3085 Ago — 0.9489 Adi_o + 
— + 0.0104 A?a—o + 0.0068 AaAd + 0.0012 A*h—o = 4+ 4".02 

IV AR+ Ar— 0.889 Aq—o + 0.435 Adio = — 11.18. 
A mere glance at the equations derived from the distances of the 

chords shows the impossibility to derive from them all the unknown 
quantities. On account of the proportionality of the coefficients 

Wwe may use one single equation instead of the first 25 equations 

after the 18* contact; the same for the 35 others. In order to diminish 

the weight of the observations immediately after the first and before 

the last contact —- when the chord is less sharply defined and varies 
rapidly — I have formed the two normal equations not according 

to the method of least squares but simply by addition. 
We obtain the following equations: 

68.1(/AR+ Ar)+56.2Aa—25.2Ad—-+ 489".46 — 0.35(A R-Ar) —- 12.9Az 
—81.6(AR+ Ar)+65.1Aa-31.6Ad=+397".87-+0.24(AR-Ar)+12.8Ax 
whence : 

AR + Ar=-4 1".05 — 0.015 Ad — 0.003 (AR — Ar) — 0.16 Ax. 
Aa= + 7.428 + 0.465 Ad — 0.001 (AR — Ar) — 0.02 Az. 

Neglecting the last terms, we find for the result from the equations 

derived from the length of the chords: 

AR+Ar=+4+1".05 — 0.015 Adio 
Aaeo = 4+ 7.428 + 0.465 Ad_o. 

From the equations of the 2°¢ and 38'¢ contact we derive: 
Aa_© = + 7".793 + 0.464 Ado. 
Aaeo = + 7.13 + 0.667 (AR — Ar) 

Ady_©@ = — 1".43 + 1.437 (AR — Ar). 
And lastly the equations of the 1s* and 4 contact yield: 

Aa—o = + 8".35 + 0".468 Adi—oO 

[AR + Ar = — 38".78] 

The latter result for AR -+ Ar, which differs entirely from that 

found above is little reliable. We can entirely account for it by 
assuming that the first contact has been observed too late and the 

last contact too early. It can hardly be doubted that the 1s* contact 

1) It is not allowed (as it is generally done) to neglect the quadratic terms 

in the equations of the 224 and 3°4 contact, because the corrections Az and jd, as 

compared with the distance between the centre of the sun and that of the moon, 

(in this case 46") are too large. 
4* 
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is recorded too late because the eclipse began earlier than was expected 
and in consequence took me by surprise. As an evidence that the 

time of last contact was given too late there is an instantaneous 

photograph of the sun (diameter = 10cm.) taken at the very moment 

when I gave the signal ‘top’. This plate shows a small impression 

on the limb of the sun. 

To enable me to compare the obtained results, Messrs. Ta. Wor 

and J. D. Lucas kindly put at my disposal the results of their highly 

interesting observations of the 2°¢ and the 3 contact, made at Tortosa 
by means of sensitive selenium elements. (See for this Astron. Nachr. 

N°. 4071). They found: 

beginning of totality 1" 16™ 15s,6 

end me be ses ee es B 

which yield the following equations : 

AR — Ar— 0.9650 Aa—o — 0.2117 Ado + 0.0004 Ata_o — 

— 0.0039 Aa Ad + 0.0092 A?h_¢ = — 5".73 

AR — Ar + 0.3063 Aa_o — 0.9493 Adio + 0.0105 Ata_o + 

+ 0.0069 Aa Ad + 0.0012 A?*h&_O© = + 4".10 

whence 

(A) 

Aa_o = + 6".42 + 0.653 (AR — Ar) 
Adio = — 1".76 + 1.404 (AR — Ar). 

When we subtract the two equations A from each other we get : 

Aa_O = + 7.238 + 0.465 Ad_o, 

which agrees exceedingly well with the result of the chord equations 

Aa = + 7'.428 + 0.465 Ad; but it also appears that it is impossible 

to determine Aa, Ad and AR—Arv separately from the combination 

of the contact and chord equations. 

In the derivation of the final result we have accorded the same 

weight = 1 to the results of the chord measurements and to those 

of the contact determinations made by Wu1ir—Luwucas, and the weight 

4 to my observations of the 2.4 and 3"4 contact. Thus we find, leaving ~ 

out of account the first and the fourth contact : 

AR + Ar= + 1".07 — 0.02 (AR—Ar) 
Au_o = + 6".66 + 0.66 (AR—Ar) 
Ad_O = — 1".65 + 1.42 (AR—Ar). 

The last column of the chord equations contains the deviations in 

the sense of observation — computation, which remain when we sub- 

stitute these numerical values. The mean error of the first 25 obser- 

vations (excluding the first) amounts to + 2."53; that of the last 35 

(excluding the last) is + 2."21. 
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Chemistry. —. “On the osmotic pressure of solutions of non-electro- 

lytes, in connection with the deviations from the laws of ideal 

gases.” By J. J. van Laar. (Communicated by Prof. H. W. 
Bakuuis RoozeBoom.) 

Communicated in the meeting of April 27, 1906). 

1. By H. N. Morse and J. C. W. Frazer') very accurate 
experiments were recently made on the determination of the osmotic 
pressure of dilute sugar solutions in water. The solutions had a 
concentration up to 1-normal, and as ¢ is then about */,, [the 
association factor of the water is viz. at 18° C. about 1,65, so that 
in 1 L. of water about 55,6: 1,65 = 34 Gr.mol. of water (simple 
and cemplex molecules) are present], the difference between the 
exact expression — /og(1—.) and the approximate value « | formula 
(2)| is not yet appreciable. It is however not so with the difference 
between the molecular volume of the solution v = (1 — x) v, + 2, 
(v supposed to be a linear function of 2, about which more presently) 
and the molecular volume of the solvent v,, when v, (the molecular 

volume of the dissolved sugar) cannot be put equal to v,. We shall see 

that this difference for 1-normal solutions amounts to 19°/,, so that by 

means of the experiments we can very well ascertain, if we have to 

make use of v or of v,. And these have really taught us, that the osmotic 

pressures measured agree (and even with very great accuracy) with 
‘the calculated values, on/y when v, is put in the numerator, and 
not v. This harmonizes therefore perfectly with what I have repeatedly 

asserted since 1894). (What I have called above v, for the sake of 

symmetry, was formerly always indicated by v,). Not the molecular 

volume therefore of the whole solution, but the molecular volume 

of the solvent m the solution. And this deprives those of their last 

support, who*in spite of all evidence (for not the dissolved substance, 
but the so/vent brings about that pressure) persist in trying to explain 

the osmotic pressure by a pressure of the molecules of the dissolved 

substance comparable with the gas pressure. If such a thing could 

be thought of, v should be taken into consideration and not v,, for 

the molecules of the dissolved substance move in the who/e volume v 
and not in the volume v,, which is perfectly fictitious with regard 

1) Amer. Chem. Journ. 34, 1905, p. 1—99. See also the extensive abstract 
N? 274 in the Phys. Chem. Centralblatt IIIf (1906). 

2) See inter alia my previous paper on this subject in These Proceedings, May 

27, 1905, p. 49. (Some remarks on Dr. Pu. Kounstamm’s last papers). 
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to the solution, which would be equal to v only when v, happened 

to be equal to 7. 

2. In order to compare the results, found by Morse and Frazer, 

more closely with those for the osmotic pressure already given by 

me in 1894, we shall return to its derivation for a moment, chiefly 

in order to ascertain on what limiting suppositions this formula holds. 

With equilibrium between the pure solvent (concentration 0, 

pressure p,) and the solvent in the solution (concentration c, pres- 

sure p) [ the dissolved substance is nowhere in equilibrium, for it 

is supposed that there is a membrane impenetrable to it] the molecular 

thermodynamic potentials must have the same value. Hence ’) : 

Ut, (2, p) = Hy, (9; Po) 
Now in general : 

OZ 
Bb, = = C,— 96,4 RT loge, , On, 

ln kT (log PA AY De = Cs == and 
1 

00 
6, = =; © being given by 

On, 

O = | pdv — pu — RT Zn, . log = n,. 

For binary mixtures of normal substances we may now introduce 

the variable z and we obtain ({n, is now =—1, so that the term 

with /og =n, vanishes), as may be supposed as known: 

0 0 
po Cf nee + p ape e al + RT log(l1— x), . (1) 

; Oa Ox 

when @ is written for f pdv by way of abbreviation. 

This expression is perfectly accurate for the above mentioned 

mixtures. For the further caleulation we now introduce the idea 

“ideal” mixtures. They are such as for which the influence of the 
2 

pas, and two components inter se may be neglected. Then 

2 0?v 
becomes a /inear function of a. But also — 0, so that v becomes 

av 

1) The following derivation is only different in form from the cited one in these 

Proceedings. 
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also a linear function of x. We shall further demonstrate this in 
§ 6, and show that in the case of such mixtures: 

/ a. o is a linear function of x 

| b. v 3? > »> > > > 

Cc. 
a 

| b 29> 9) >? >> >> 99 

d. the heat of mixing is = 0, 

so that we may say: ideal mixtures are such for which the heat 

of mixing is practically = 0, or with which no appreciable contraction 
of volume takes place, when 1—wz Gr.mol. of one component is 
mixed with x Gr.mol. of the second. 

The conditions a, 6, ¢ and d are simultaneously fulfilled, when 

the critical pressures of the two components are by approximation 
of the same value. 

wo - 
3. For w— xz — we may now write w,, as »=(1— z)o, + 

0a: 

Ou 

Ow w dv 
—' 5 —? 3 Te é é I— T— —2,, /ai 3) /,# =) | In the same way v —a v, 

& 

0? 0 
+ 2w,, when a =U: | Otherwise evidently wo —2« = =o, — 

& 

and we get: 

u, (@,p) = C, — w, + pe, + RT log (1 — 2) 
u, (0, Pp.) = C, meet + Pos 

always when v, and w, are supposed to be independent of the 
pressure. For else w, and v, would have another value at the 

pressure p than at the pressure p,. We must therefore also suppose 
that our liquids are mmcompressible. But there is not the slightest 
objection to this supposition for ordinary liquids far from the critical 
temperature (and there is only question of such liquids in discussions 

on the osmotic pressure). Only when « draws near to 1, and so the 

Osmotic pressure would approach to o, v, (and so also w,) must no 

longer be supposed to be independent of p. 
By equating these two last equations, we get: 

pr, + RT log (1 — z) = p,r,, 

hence 
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ee lg 
Re Peni Pol a Aa eae 5 patie adie aD 

the expression already derived by me in 1894. *) 

1) Cf. Z. f. Ph. Ch. 15, 1894; Arch. Teyler 1898; Lehrbuch der math. Chemie, 

1901; Arch. Teyler 1903; Chem. Weekbl. 1905, N°. 9; These Proceedings, June 

21, 1905. 
In the original Dutch paper another note followed, which Mr. van Laar has 

replaced by the following in the English translation. 
A conversation with Dr. Kounstamm suggested the following observations to me. 

db 
Dr. Kounstamm finds (These Proceedings, May 27, 1905) the quantity Uo ae 

in the denominator of the expression for x. This is quite correct, and harmonizes 

perfectly with the general expression, which according to equation (1) on p. 54, 

would also have been found by me for non-linear variability of v. 

Then we should viz. have: 

Ov Jee Se ae ( — 0 p(e—#5- = Pe dn = — BL log (12) + (o# 57) — On 
: (63) : 

where, when calculating @ — x — by means of van per Waats’ equation of state, 
Oa 

0 (v—b : 
& =O) appears, in consequence of which p (v —2x 
Oa 

db 

dx 
also a term — px ) occurs 

in the first member. 

; 2 ae Ov db 
Now it is of no importance whether v is diminished by ges or by. z as 

a da’ 
0 (v—b) 
ae approaches to O both for small and for very large values of p. I therefore 

obtained a correction term in the denominator, in connection with the size of the 

molecules of exactly the same value as Dr. Konnstamm. That this did not always clearly 
appear in my previous papers, is due to the fact that I then always introduced the 

v 

approximation v — x <— Pp ag =v, which was perfectly justifiable for my purpose. 

(0°v 
F dv 1/ 9 or as V— © =%,— 1,2? 

Ox : a Oe 
) — etc., this is sufficiently accurate for prac- 

1 

tical purposes. (for ideal mixtures, where v is a linear function of <, it is of 

course quite accurate). 

Yet in a so early paper as the one cited by K. of 1894 (Z. f. Ph. Ch. 15, 
p. 464) it is clearly to be seen that the result obtained by me agrees perfectly 

with his. For it says (line 4 from the top) that va’ (the index a’ is there always 

Ov 
used for the liquid phase) =~ _ But this is in the z-notation nothing but 

Na! 

v—ax-=—, the physical meaning of which is: the molecular volume of the water 
Ox 

in the solution with the concentration 2. 
The phrase occurring on page 466: “und niemals etwa va’ — b im Sinne etc.” 

refers there to the well-known attempts of Ewan and others. The same is the 
case with the phrase in the paper on non-diluted solutions in the Ch. Weekblad 
of June 7th 1905: “Ook heeft men getracht, etc.” (p. 5). 

0 v 
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We repeat once more: this expression holds from «—0 to «— 
near 1, when the following conditions are satisfied : 

a. the solution is an ideal binary mixture of normal components: 
6. the solution is practically imcompressible. 

Then (2) represents the additional pressure on the solution, in order 
to repel the penetrating water (the so-called ‘osmotic’ pressure). 

As however in all the experiments made up to now water was 

the solvent, hence an anomalous substance, (2) must not be applied to 

solutions in water without reservation. It is, however, easy to show 
that the influence of the association does not play a part before 

the term with 2’ (justas the influence of the two components inter 

se), so that in the above experiments, where xz? may undoubtedly 

be neglected (cf. §1), formula (2) may certainly be used. 

Let us, however, first reduce it to a form more practical for use. 

4. Let us write (2) for this purpose : 

i i RT 
ee kk =) — 2 (1 + 4 2), Fo eehey eee) 

1 1 

which is more than sufficient for solutions up to 1-normal. Let us further 
assume that ¢ Gr. mol. are dissolved in 1000 Gr. H,O (called by 

Morsg and Frazer “weight-normal solutions’), then : 

nom Mk: c 

— 84fe 1+’ 
when we put */,,c = c (84 = 55,6:1,65 is the number of Gr. mol. 

H,O in 1000 Gr. at 18° C; ef. § 1). 

We find then: 

Reh: ¢. L4y é 
O == = ae 

vy, lie ae ye ns 

or when we restrict ourselves to terms of the second degree with 
respect to c’: 

& 

RT ed eat 
nx =-——e (I — '/,c) = — — (Il — */,, ¢). 

v, v, 34 

In this A= 82,13 (cc.M., Atm.), and v, —1001,4:34 cM’ at 
7 : RT 

18°. For = we therefore,find at 18° C.: 
VY 

RT 82,13 « 291,04 ee A 1 on 87: 
o4v, 1001,4 

hence 
m1g° = 23,87 c(1—0,015c) Atm. . . . . (26) 

We see from the calculation, as we already observed above, that 
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the influence of the association of the solvent is only appreciable in 

the term with c’. If water were a normal liquid, we should have 

had 7/,,, ¢ instead of '/,, c = 0,015 c. (4 c’ would then be = */,X1/,,,c)- 
Let us now consider what the last expression would have become 

for 2,,0, when not v, had occurred in the denominator, but the 

molecular volume of the solution v. 

When ¢c Gr. mol. are dissolved in 1000 Gr. H,O, then the 

total volume will be (at 18°) 1001,4+190c¢ ccM. [For 1 Gr. 
mol. = 342,2 Gr. of melted sugar occupies a volume of 190 ccM. 

at 18° (density = 1,8)]. 
Altogether there are now 34-+c Gr. mol., hence the molecular 

volume of the solution will be: 

_ 1001,44+190¢ 10014 140,19¢ 
Pe lestele) oF Be esses 

For v7, we found however above: 

_ 1001,4 
ee 

so that the value of 7,,° with v in the denominator instead of »v, 
would have become: 

v 

Vv 

1+ 0,03 ¢ 
W.0 = 93.87 p (luis 
Fist et aaa 02 Sn aa 

ise; 

1+ 0,015 
x, ,° = 23,87 ¢ pT ay 

14 0,19¢ 
For (weight)normal solutions (¢ =1) we should therefore have 

found instead of 2,,° = 23,87 (1 — 0,015) = 23,51 Atm., 2,,° 

1,015 

1,19 

Now Morse and Frazer found 24,52 Atm., which is considerably 

nearer the theoretical value 23,51 Atm. (with v, in the denominator) 

than near the inaccurate expression with v in the denominator ’). 

So it is out of the question that the molecules of the dissolved 

substance should exert a certain pressure comparable with the gas- 

pressure, for then the volume of the solution as such, viz. v, would 

have to be taken into account, and not the in that solution perfectly 

fictitious molecular volume of the solvent 2. 

== 23,01 X = 20,36 Atm. 

5. But there is more. We shall viz. derive the expression for 

the pressure which would be exerted by the dissolved molecules, 

1) With 0,5-normal the two values would have been 11,85 and 10,98 Atm., 

whereas 12,08 Atm. has been found experimentally. 
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when they, according to the inaccurate interpretation of the osmotic 
pressure, could move free and undisturbed throughout the space of 
the solution. 

VAN DER WAALS’ equation of state, viz. 

RT a 

gives for the rarefied gas-state: 

Br » aad «i RT b a: kT 
Pp —_ — — —— | — —[{ l 4. a= ——s =), 

v | v—b v v v v 

: 1 
when we again content ourselves with terms of the degree —. z= 

Let us now write: 

a 
ae eee 
RT uf 

then 

RT *) 
) i a Seay 2 

Vv Vv 

where v now represents the volume, in which 1 Gr. mol. of the 

dissolved substance moves. This volume is however evidently (ef. 
also § 4): 

__ 1001,4 + 190 

c 
’ 

or ‘ 

1001,4 
(1 + 0,19 e), a 

so that we get: 

& BL ¢ 1 yc 

* = 10081 (1 ..0,19 6) 1001,4 (1 + 0,19 c) 
Y ar 

or as ——_— = 23,87 is (c.f. §4), and with y’ = i001: 
1001,4 

— 23,87 Bee ee 
, Coe ne (°) 

and this is an altogether different expression from (2°). Not only is 

v, replaced by v (which gives rise to the factor 1 + 0,19 c), but- 

we also find 1 — y'c instead of 1—0,0J5c. In this y' is different 
for every dissolved substance, dependent on the values of a and , 

whereas the coefficient 0,015 has the same value for all substances 

dissolved in water, independent of the nature of the dissolved substance 
(c.f. § 4). Also the coefficient 0,19 depends on the dissolved substance 

on its molecular volume). Moreover y' depends also on 7’on account 
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of a: RT. Except with H,, where y is negative at the ordinary tempe- 
rature, y is everywhere positive. But at higher temperatures its value 
is reversed, and becomes negative. 

So, when comparing (2°) and (3), we see clearly, that it is out 

of the question that the so-called osmotie pressure should follow the 

gas Jaws. Only with c =O this would be the case, but for all other 

values of ¢ the deviation for the osmotic pressure is altogether different 
from that for the gas pressure. This is still more clearly pronounced, 

when we compare the original formulae. For the osmotic pressure 

viz. the equation 

yi fae i 
x = — (— log (A—2z)) = — «(1 + 4, a? 

Vv, + Y%; 

holds; for the gas pressure on the other hand: 

RT 
(>) vU 

so that the deviations from the gas laws (at the ordinary tempe- 

ratures) are even in opposite sense from the deviations of the osmotic 
pressure for non-diluted soiutions. 

In view of these facts it is in my opinion no longer possible to 

uphold the old conception of the osmotic pressure as arising in 

consequence of a pressure of the molecules of the dissolved substance 
comparable with the gas pressure. The molecules of the dissolved 
substance have nothing to do with the osmotic pressure except in 

so far as they reduce the water in the solutions to another state of 

concentration (less concentrated), which causes the pure water (concen- 

tration 1) to move towards the water in the solution (concentration 

1—a) in consequence of the zmpulse of diffusion. On account of 
; : ted 

this a current, of which the equivalent of pressure = —(-log (1-2)), : = 

arises in the transition layer near the semi-permeable membrane, 

which current can only be checked by a counterpressure on the 
solution of equal value: the so-called osmotic pressure. 

This is in my opinion the on/y correct interpretation of the osmotic 

pressure. 
As I already observed on former occasions, we might just as well 

speak of an “osmotic” temperature, when the impulse of diffusion 

is not checked by pressure on the solution, but by cooling it. For 

at different temperatures the temperature functions C, (ef § 2) are 

no longer the same in the two members of 

(4, (2, T) == i, (0, Ty), 
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whereas the terms pv are now the same. In this case 7’ would have 

to be < 7;,, because the temperature exerts an opposite influence 
on the change of uw from the pressure. 

In consequence of the term RT’ log (1 — x), , (x) will be < uw, (0). u 
1 

Ou 
must therefore be increased. Now. =v,, hence positive, whereas 

P 

Wy) ; 
== (=) = — (e, + pr,), so negative. So the value of m, («), which is 

too small in consequence of x, can again be made equal to that 

of yu, (0), either by mcrease of pressure (“osmotic pressure), or by 
lowering of the temperature (‘“osmotic” temperature). 

It would, however, be advisable to banish the idea “osmotic 

pressure” altogether from theoretical chemistry, and only speak of 

it, when such differences of pressure are actually met with in case 

of semi-permeable walls (cell-walls, and such like). 

6. Appendix. Proof of some properties, mentioned in § 2. 

a. In a previous paper in these Proceedings (April 1905) I 
Ov 

Oa 
derived for the perfectly accurate expression | equation (4), p. 651): 

db 1 (v—b)*da 

Oz 1 22/,(v>—b)? — 

RT v’ 

db d 
With — =f and — Va, in which 8 = 6, — 6, and a= Va,—ya,, 

wv dx d. 

this becomes : 
2af/a (v—b)? 

dee REP? 
ae 1 2%/e @— 5)" 

es a 

: , db 
And now we see at once, that this passes into 2 or —. when 

¢ & 

BYa=avr, 

aya. x 

For then in the numerator becomes equal to ¢/, in the de- 

2 9 : Ov db ' 
nominator. But when ———,, then also —- —O, as 

Oz dx 0a? 

is a linear function of z. 

2b 
ae = (0, and v 
dz? 
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[We above derived the condition BY/a=eav from the general 

Ov ae 

’ Ox 

would immediately follow from this by differentiation, and then “ 

0 
expression for — If we knew this condition beforehand 

Hi 

0 
would not be necessary to start from the general expression for = 

b. On p. 651 [equation (5)] of the paper cited the perfectly 
general expression : 

7@ 2 (av—BYa)? 

da? yp? 1 2th @= 5)" 
at 

; °O 
was derived for eu, which becomes therefore =O, when again 

& 

0°O 07v 
BYa=av. Now O= | pdv — pp=w—pvr. And as oe and 5,7 are 

& « 

2 
3 

F) ~- will be = O, in other words wo 
1h; 

both —O when av= Bya, also 

is a linear function of z. 

ce. The heat of dilution. It is given by the formula 

L,= Be Sp vale: 3) —* (0) 

oT 

This is viz. the so-called differential heat of dilution per Gr. mol. 

of the solvent when dn Gr. mol. solvent ie a are added to 
m+n 

a solution consisting of m Gr. mol. dissolved substance and » Gr. 

mol. solvent. 

This becomes [see equation (1)]: 

O-r Ov | 
Ip=— 055] 5 —(o- 9) + p(o— #3) +0, —pn| | 

0 0 
If = 0, then w— 2 a @,; and vy — x ~ will be = v,, when 

On? Ow Ow 

0? 
53 0. But then ZL, = 0. q.e.d. 

And hence also the total heat of mixing will be = 0, when z Gr. 
mol. of the 2"¢ component are mixed with 1—wz Gr. mol. of the 
1st component. 

d. The peculiarities mentioned in §2 under a, 6 and d, which 
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characterize the so-called zdeal mixtures, are therefore all satisfied 

when 

BYa=eav. 

This yields: 

B[V a, + xa] = a[b, + 28], 

when it is permissible — for liquids far from the critical temperature 
— to replace v by 6. Hence we get: 

BYa,=ab,, 
or 

(6, hei b,) Ya, = (Ya, se Va,) b,, 

or also 

ba, = 6, a., 

hence 

Ya, Va, ; 

b, ee b, : 

from which we see, that the case of ideal mixtures occurs, when 

the critical pressures of the components have the same value. 
e. Finally 

%fa\ 2b, Va, —b, Ya,)? 
da? 5) 6° 

a . . . 

so we see that also z will be a linear function of z, when 

b, Va, = b, Ya, or p, = p,. In this way also c of § 2 has been proved. 

(June 21, 1906). 
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Mathematics. — “Polydimensional Vectordistributions’’.*) By L. E. J. 
Brouwer. (Communicated by Prof. D. J. Korrrwec.) 

Let us call the plane space in which to operate S,; we suppose 

in it a rectangular system of coordinates in which a C, represents 

a coordinatespace of p dimensions. Let a ?X-distribution be given 
in S,; ie. let in each point of S, a p-dimensional system of vectors 

be given: By XA, 2°. a, we understand the vector component parallel 

to C, indicated by the indices, whilst as positive sense is assumed 

the one corresponding to the indicatrix indicated by the sequence 

of the indices. By interchanging two of the indices the sense of the 

indicatrix changes, hence the sign of the vectorcomponent. 

Theorem I. The integral of »X in SS, over an arbitrary curved 
bilateral closed S, is equal to the integral of »+! Y over an arbitrary 

curved S,41, enclosed by S, as a boundary, in which ?+!Y is 
determined by 

OX, Brae 
i “Qo “Gs Ip+1 

Ya, Pentre Te — a 
ae ho er i p=, Ox, 

Nn SS Ea 
n p+l 

where for each of the terms of the second member the indicatrix 

(<4, q+ + @y, Mg) has the same sense as (@, @,...@ ,41). We call 

the vector Y the jirst derivative of 1X. 

Proof. We suppose the limited space S,41 to be provided with 

curvilinear coordinates w,...u,41 determined as intersection of curved 

C,’s, i.e. curved coordinatespaces of p-dimensions. We suppose the 
system of curvilinear coordinates to be inside the boundary without 

singularities and the boundary with respect to those coordinates to 

be everywhere convex. 

The integral element of »+'Y becomes when expressed in differen- 

tial quotients of »X: 

Ofc, 
nea aa ped ey ae 

qa" °g, P 

> a —— : : du,. . « dup4i. 

— q . 
pl %qy 7p Vaz, Otay 

Ou es Oup+1 

1) The Dutch original contains a few errors (see Erratum at the end of Ver- 

slagen 31 Juni 1906), which have been rectified in this translation. 
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We now unite all terms containing one of the components of 

pX, e.g. Xio3...p- We then find: 

Opt Ox, 0xp 

Ou, ae all Ow, 
Oe a oe : ; : 

See eE | re dy 41 -|- 

Oa p41 . . . 

Oa pti Ox, 0a, 

Oup+1 ie a Ouy 41 

0x, +2 Oz, dz~ | 

a: Se | 
ox : a = 

ie aria du, < .. dtp + 
Oxp49 . . . 

Otp4o O02, 0p 

Ou, +1 Oup+i be ee Oty +1 | 

+ ...(n—>p terms). 

If we add to these the following terms with the value 0: 

02, Ox, 0x, 

Ou, Ou, Ou, 
ox : ‘ ; 

Beene : 3 E a ditp4i + 

Ox, ‘ f 

On, Oz, dx, 
gee Ga ae 

Ox, Ox, dz, 

Ou, cg Oe Ou, 

0X93... ; ‘ 

eae fa tng + 
Oz, Ox, du, 

Dee Cues Oup i 

+... (p terms), 

the n-terms can be summed up as: 

0Xj03 Pp Ow 
0x, Pg LE Ree ie enter) —— du 

Ou, st Ou, ae 

0X93... p Ow Oty eae d 1 d pa || en Le ale ee Ce wee: lu J 

Oup+ ee Ou41 i Ouy +1 | 
5* 
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Let us suppose this determinant to be developed according to the 

first column, let us then integrate partially each of the terms of the 

development according to the differential quotient of Xj93,..: p> appearing 

in it; there will remain under the (p-—+ 1)-fold integration sign 

p(p-+1) terms neutralizing each other two by two. Thus for instance: 

Oa, 0p 

Ou, Oup41 OU, Oey +1 
| 

Ou Ou 
d d : : u, » du 41 : : 

eee Ox, : 02p 
| | dup . . . . . . . . dup 

ee | 

| X23... p | 

| X23... p —————————————— 
| | Ox, dx, 

Ou, Ou, 

and du jt RE ci : ; pe < p+! m ? 
Oz, dx, 

Duy Ou, 

: Oz. Way 

Ou, Oty 41 Ow, Ou, 41 

as they transform themselves into one another by interchangement 

of two rows of the matrix-determinant. 

So the p-fold integral remains only, giving under the integration sign 

ee Ory | 
— dl, «1.4... . —— du 
Ou, ; Ou, 

Xi23...p | ‘ 

+ ] sy 1 eg ——- du, ; . Ay} 
Ou, 41 ert Ott, hi 

to be integrated over the boundary, whilst in a definite point of that 
boundary the /'® term of the first column gets the sign ++ when 

for the coordinate wp the point lies on the positive side of the boundary. 

Let us now find the integral of Xj23,..) over the boundary and 

let us for the moment suppose ourselves on the part of it lying for all 
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ws on the positive side. The indicatrix is in the sense uv, wu, ... uv, 4, and 

if we integrate Xjo3...p successively over the components of the 

elements of boundary according to the curved C)’s we find: 

dx, 
Ox 

duty, ee tae duy, 
| Ou, Ux, 

. Aagsss we ; ; 
4 = Z 

[* nate Ox 
1 J | 

du, : Y du, 

| Ux P Ux p 
P | 

where (@,414,--- 4) = (1423...p(p+1)); so that we can write 

as well 
| | Ox Ox 

a See a dis 
| Ou, Ou, 

as FB Ox 
dug—1 diig—1 

Ug—l Ug—l 

: f X23 ++p 3 3 | 

wv & ) 

q=1,2...(P+1) | Augti - dugti | 
Ug+l Ug+l 

| | dx, Ly 
| du, 44 dees || 

| Duy 41 : Ou) 41 - + 

Ow Ow 
| | ee ae = ie | 

du. :, Ou, | 

orf Xias..y : 3 | . 
: . 

> Ox 0a | 
eee: a oe dupt1 - | 0 UpHl P+ On byl p+ 

If we now move to other parts of the boundary we shall conti- 

nually see, where we pass a limit of projection with réspect to one 

of the coordinates w, the projection of the indicatrix on the relative 

curved Cy change in sense. 

So in an arbitrary point of the boundary the integral is found in the 

same way as on the entirely positive side; we shall find only, that 

for each coordinate w, for which we are on the negative side, the 

corresponding term under the sign = will have to be taken nega- 

tively, by which we shall have shown the equality of the p-fold 
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integral of »X over the boundary and the (p-+ 1) fold integral of 

Rar over the bounded Sp +1. 

We can also imagine the scalar values of »X set off along the 

normal-S,,_,,’s. As such the integral over an arbitrary curved bilateral 

closed S,—, can be reduced to an (x —-p- 1)-dimensional vector 

over a curved S,—,+41, bounded by S,_,. If again we set off the 

scalar values of that vector along its normal-S,—1, the veetor P—1Z 

appears, which we shall call the second derivative of »X. For the 
component vectors of ?—'Z we find: 

Se! q x ial ln. ee, ree 
i= 0x Sq ge pei” <n *q 

The particularity may appear that one of the derivatives becomes 0. 

> . : aw mM xr 

If the first derivative of an "X is zero we shall speak ofan ,,_1X, 

‘fe ‘ Mm > 

if the second is zero of an 4X. 

. . / . +1 yg 

Theorem 2. The first derivative of a ?X is a” pA, the second a 

—I x, - ; 2 > 
‘ »X; in other words the process of the first derivation as well as 

that of the second applied twice in succession gives zero. 

The demonstration is simple analytically, but also geometrically the 

theorem is proved as follows: 
Find the integral of the first derivative of ”X over a closed S, 41, 

then we can substitute for the addition given by an S,4: element 

the integral of »X along the bounding S, of that element. Along 
the entire S,:1 each element of those S, boundaries is counted twice 

with opposite indicatrix, so that the integral must vanish. 

The analogous property for the second derivative is apparent, when 

we evaluate the integral of the normalvector over a closed S,—,41. 

By total derivative we shall understand the sum of the first and 
second derivatives and we shall represent the operation of total 

derivation by vy. 

h=n ) 
a 

Theorem 3. 7? = — s ; 
z 0x)? 

h= 

Proof. In the first place it is clear from theorem 2 that the 
vector vy’ is again a ’X. Let us find its component Xj. ». 

The first derivative supplies the following terms 
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qn 

Pe =x oe oP 

iocts oh ee ’ 

q=p +1 

where 
u=p 

0X 12...(u—1)(u +1)...p 
—-\ +> 

Poin == So 

(+ sign for (ug 12... (u—1)(« +1)... pJ= 1 ~)) 

OXie...p 

Oxy 

So 
u=p q=" 

0? Xo19..(u—1)lu-+1)...p 

i > = ts Oa, Vag oa 
u=1 g=p+1 

(- sien for (ug 12...(u—1)(u+1)...p) = (71 ~?)) 

g=n 

0? Xj9., P 

ae 02," 
q—ptl 

The eu derivative supplies the terms 

: OZ 10. (u—1)(u+1)...p 
= St 

’, > 02, 

(+ sien for (w12...(w—1)(w+1) .. p) = Giz =. p) 

or for (qu1...(u—1) (w+1) ... p) = (g 12 .-P)) ; 

aC OXo12.. (u—1)(u+1)...p 

where Z12...(u—1)(u+1)...p = == i a ae 

ey 
g=pt1 

= (- sign for (w 12 ...(w—1) (uv+-1)... p) = (12 ~P). 
Ly 

u—p qn 

07 Xo12 ..(u—1)(u-+l)..p a 02,0ag 

u—!- -g—p-1 

= sien for (qul ..(w—1)(u+1)..p) = (q12. ”)) 

up 
_ 

0° X12 

Ee ae as 
ef | 
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The terms under the sign SZ of 7, are annulled by those of 

T.,, so that only 

0? Xj. plies ES ’ 

ar Se Ox ;? 
te 

is left. 

Corollary. If a vectordistribution PV is given, then the vector- 
wa Var : ‘ ; 

distribution = Dyn” integrated over the entire space, has for 
C4 72 — Tr 

second derivative V. (if 4,7"*—! expresses the surface of the 
x—I_sphere in 5S,). 

The theorem also holds for a distribution of sums of vectors of 

various: numbers of dimensions, e.g. quaternions. 

We shall say that a vectordistribution has the potential property 
when its scalar values satisfy the demands of vanishing at infinity, 

which must be put to a scalar potential function in S,.1) And in 
the following we shall suppose that the vectordistribution from 

which we start possesses the potential property. Then holds good: 

Theorem 4. A vectordistribution V is determined by its total 
derivative of the second order. 

For, each of the scalar values of V is uniformly determined by 
the scalar values of (7? /’, from which it is derived by the operation 

Y dv 

[ pee 2)r2—2 , 

Theorem 5. A vectordistribution is determined uniformly by its 
total derivative of the first order. 

For, from the first total derivative follows the second, from whieh 

according to the preceding theorem the vector itself. 

We shall say that a vectordistribution has the jield property, if 
the scalar values of the total derivative of the first order satisfy the 

demands which must be put to an agens distribution of a scalar 
potential function in ,. And in the following we shall suppose 

that the vectordistribution under consideration possesses the field 
property. Then we have: 

Theorem 6. Each vectordistribution is to be regarded as a total 

') Generally the condition is put: the function must become infinitesimal of 

order n—-2 with respect to the reciprocal value of the distance from the origin. 
We can, however, prove, that the being infinitesimal only is sufficient. 
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derivative, in other words each vectordistribution has a potential 

and that potential is uniformly determined by it. 

Proof. Wet V be the given distribution, then 

ar V V.dv 

ae hin(n —2)r"—2 

miepoeniar ror viv V, or /(VP)—V lV, or VPS. 
Farther follows out of the field property of V7, that Pi is uniformly 

determined as V—? of VV, so as 7 of V. So P has clearly the 
potential property; it need, however, not have the field pruperty. 

N.B. A distribution not to be regarded here, because it has not 

the field property, though it has the potential property, is e. g. the 

fictitious force field of a single agens point in S,. For, here we 

have not a potential vanishing at infinity and as such deter- 

mined uniformly. The magnetic field in S, has field property and 

also all the fields of a single agens point in S, and higher spaces. 

Let us call \'/ V the first derivative of PV and \2/ V the second; 

we can then break up ?V into 

Bd 
Vf ms \ v a Ee AP Bay 

(n—2)r"—2 \/ 1 pti 

and 

\7/V.dv ep a Py 

M ke (2 —2)r—* ia etal \/ P, Pe r 

From the preceding follows immediately : 

Theorem 7. Each A has as potential a » V. Hach se V has 

as potential ea, ; 

We can indicate of the ae V the elementary distribution, i.e. that 

particular ee V of which the arbitrary S, integral must be taken to 
P 

obtain the most general p+. V. 
po. 543 

For, the general »+1V is \2/ of the general V, so it is the 

general |S, integral of the \2/ of an isolated (p + 1)-dimensional 

vector, which, as is easily seen geometrically, consists of equal vectors 

in the surface of a ?sphere with infinitesimal radius described round 

the point of the given isolated vector in the Rp4i of the vector. 
P eee Z 

In like manner the general,—1V is the \1/ of the general ?~' V, 
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so it is the general’ S, integral of the \1/ of an isolated ?—' vector, 

consisting of equal ?vectors normal to the surface of an "~? sphere with 

infinitesimal radius described round the point of the’ given isolated 

vector in the #,~p+:, normal to that vector. 

From this follows: 

Theorem 8. The general ?V is an arbitrary integral of elemen- 

tary fields #, and £,, where: 
p—! 

es Spa Zdv Poot : ; : 

| DF , where » Z consists of the »—! vectors in the 
ky, (n—2)r"— ken (n—2)9"—2 

surface of an infinitesinal P-'sphere Sp., . . . . . . (A) 

p+l 
p+l Ydv 

ae J f= where , Y consists of the ?+! vectors normal (n— n—2 

to the surface of an infinitesinal "~P—'sphere Spy. . . . (2) 

For the rest the fields #, and /, must be of a perfectly identical 

structure at finite distance from their origin; for two fields /, and £, 

with the same origin must be able to be summed up to an isolated 

Pvector in that point. 

We can call the spheres Sp, and Sp. with their indicatrices the 

elementary vorter systems Vo, and Vo-. A field is then uniformly 

determined by its elementary vortex systems and can be regarded 

as caused by those vortex systems. 

We shall now apply the theory to some examples. 

The force field in S,. 

The field E,. The elementary sphere Sp, becomes here two points 
lying quite close to each other, the vortex system Voz passes into 

two equal and opposite scalar values placed in those two points. It 
. , OS E é 

furnishes a scalar potential ¥ in which y denotes the angle of the 

radiusvector with the S, of Vo., i.e. the line connecting the two 

points. The elementary field is the (first) derivative of the potential 

(the gradient); it is the field of an agens double point in two di- 
mensions. 

The field E,. The elementary sphere Sp, again consists of two 

points lying in close vicinity, the elementary vortex system Vo, has 

in those two points two equal and opposite planivectors. The plani- 

vector potential (determined by a sealar value) here again becomes 

COs fp 

~ 3 80 the field itself is obtained by allowing all the vectors of 
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a field £, to rotate 90°. As on the other hand it has to be of an 

identical structure to /, outside the origin we may call the field 
E, resp. H, ‘dual to itself”. 

In our space the field £, can be realized as that of a plane, 
infinitely long and narrow magnetic band with poles along the edges ; 

the field “#, as that of two infinitely long parallel straight electric 

currents, close together and directed oppositely. 

The planivector (vortex) field in S,. 

The field E,. The elementary sphere Sp. isa circlet, the elementary 
vortex system Vo, a current along it. It furnishes a linevector 

sin 
potential == directed along the circles which project themselves 

on the plane of Vo. as circles concentric to Vo,, and where @ is 
the angle of the radiusvector with the normal plane of Vo-. The 
field is the first derivative (rotation) of this potential. 

The field E,. Tie elementary sphere Sp, is again a circlet, the 
elementary vortex system Vo, assumes in the points of that circlet 

equal ‘vectors normal to it. The *V-potential consists of the *V’s 
normal to the potential vectors of a field £,; the field ZL, is thus 

obtained by taking the normal planes of all planivectors ofa field £,. 

As on the other hand /, and £, are of the same identical structure 
outside the origin, we can say here again, that the field LZ, resp. EZ, 
is dual to itself. 

So we can regard the vortex field in S, as caused by elementary 
circular currents of two kinds; two equal currents of a different kind 

cause vortex fields of equal structure, but one field is perfectly 
normal to the other. 

So if of a field the two generating systems of currents are 
identical, it consists of isosceles double-vortices. 

The force field mn S,. 

The field E,. Voz gives a double point, causing a scalar 
cos ; “ . 

potential aes. where g is the angle of the radiusvector with the - 

axis of the double point; the derivative (gradient) gives the wellknown 
field of an elementary magnet. 

The field E,. Vo, consists of equal planivectors normal to a 
small circular current. If we represent the planivector potential by the 

. . . sin ‘ . 

linevector normal to it, we shall find for that linevector ——~ directed 
Tr 
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along the circles, which project themselves on the plane of Vo- 

as circles concentric to Vo-, and where ¢ is the angle of the radius- 

vector with the normal on the circular current. The field /, is the 

second derivative of the planivector potential, i.e. the rotation of 

the normal linevector. 

According to what was derived before the field /, of a small 
circular current is outside the origin equal to the field #, of an 

elementary magnet normal to the current. 

In this way we have deduced the principle that an arbitrary 
force field can be regarded as generated by elementary magnets and 

elementary circuits. A finite continuous agglomeration of elementary 

magnets furnishes a system of finite magnets; a finite continuous 

agglomeration of elementary circuits furnishes a system of finite 

closed currents, i.e. of finite dimensions; the linear length of the 

separate currents may be infinite. 

Of course according to theorem 6 we can also construct the 
1 

scalar potential out of that of single agens points ee the second 
oy 

derivative of the field), and the vector potential out of that of rectilinear 

1 
elements of current (perpendicular tor x the first derivative of the 

x 

field), but the fictitious ‘field of a rectilinear element of current” has 

everywhere rotation, so it is the real field of a rather complicated 

distribution of current. A field having as its only current a rectilinear 

element of current, is not only physically but also mathematic- 

ally impossible. A field of a single agens point though physically 

perhaps equally impossible, is mathematically just possible in the 

Euclidean space in consequence of its infinite dimensions, as the 

field of a magnet of which one pole is removed at infinite distance. 

In hyperbolic space also the field of a single agens point is 

possible for the same reason, but in elliptic and in spherical space 

being finite it has become as impossible as the field of a rectilinear 

element of current. The way in which Scuerine (G6ttinger Nachr. 

1870, 1873; compare also Fresporr Diss. Gottingen 1873; Oprrz 

Diss. Gottingen 1881) and Kuiniine (Crelle’s Journ. 1885) construet 

the potential of elliptic space, starting from the supposition that 

as unity of field must be possible the field of a single agens point, 

leads to absurd consequences, to which Kiem (Vorlesungen iiber 
Nicht-Euklidische Geometrie) has referred, without, however, proposing 

an improvement. To construct the potential of the elliptic and 
spherical spaces nothing but the field of a double point must be 

assumed as unity of field, which would lead us too far in this 



paper but will be treated more in details in a following com- 
munication. 

With the force field in S, the vortex field in S, dual to it has 

been treated at the same time. It is an integral of vortex fields as 

they run round the force lines of an elementary magnet and as 

they run round the induction lines of an elementary circuit. 

The force field in S, . 

The field E,. Voz again gives a double point, which furnishes a 

Ch eee. ; 3 
scalar potential =a where @ is the angle between radiusvector and 

pr ; 

axis of the double point; its gradient gives what we might call the 

field of an elementary magnet in 5,. 

The field E,. Vo, consists of equal planivectors normal to a 
small *—*sphere Sp,. To find the planivector potential in a point 

P, we call the perpendicular to the S,—; in which Sp, is lying 
OL, and the plane LOP the “meridian plane” of P; we call 

gy the angle LOP and OQ the perpendicular to OZ drawn in 
the meridian plane. We then see that all planivectors of Vo, have 

in common with that meridian plane the direction OZ, so they can be 

decomposed each into two components, one lying in the meridian 

plane and the other cutting that meridian plane at right angles. The 

latter components, when divided by the 2— 2»¢ power of their 

distance to P, and placed in P, neutralize each other two by two; 
and the former consist of pairs of equal and opposite planivectors 

directed parallel to the meridian plane and at infinitely small distance 

from each other according to the direction OQ. These cause in P 

: : : : bet sin &p 
a planivector potential lying in the meridian plane =c——. The 

: pn— 

field H, is of this potential the VY = \2/, and outside the origin is 

identical to the field of an elementary magnet along OL. 
The force field in S, can be regarded as if caused 1st. by magnets, 

2°d. by vortex systems consisting of the plane vortices erected normal 

to a small *—®sphere. We can also take as the cause the spheres 

themselves with their indicatrices and say that the field is formed 

by magnets and vortex spheres of »—2 dimensions (as in S, the 

cause is found in the closed electric current instead of in the vortices 

round about: it). 

Here also fields of a single plane vortex element are impossible. 

Yet we can speak of the fictitious ‘field of a single vortex” although 
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that really has a vortex i.e. a rotation vector everywhere in space. 

We can say namely: ; 

If of a force field in each point the divergence (a scalar) and the 
rotation (a planivector) are given, then it is the V of a potential : 

ik sali eal a2 ate ies ai this formula takes the field as an 
k,(n — 2)r7—2 k,(n — 2) r*—* 

integral of fictitious fields of agens points and of single vortices. 

Crystallography. — “On the fatty esters of Cholesterol and 

Phytosterol, and on the anisotropous liquid phases of the 

Cholesterol-derwatives.”’ By Dr. F. M. Jagger. (Communicated 
by Prof. A. P. N. FRANcHIMONT.) 

(Communicated in the meeting of May 26, 1906). 

§ 1. Several years ago I observed that phytosterol obtained from 

rape-seed-oil suffers an elevation of the melting point by a small 
addition of cholesterol. The small quantity of the first named sub- 

stance at my disposal and other circumstances prevented me from 
going further into the matter. 

My attention was again called to this subject by some very 

meritorious publications of BomerR*) on the meltingpoint-elevations 

of phytoterol by cholesterol and also of cholesterol-acetate by phyto- 
sterol-acetate. Apart from the fact that the crystallographic data 

from ©. Micce led me to the conclusion, that there existed here an 

uninterrupted miscibility between heterosymmetric components, a 

further investigation of the binary meltingpoint-line of the two 

acetates appeared to me very desirable, as the ideas of BOmER on 

this point are not always clear; this is all the more important, as 

we know that BoOmer based on these melting point elevations a 

method for detecting the adulteration of animal with vegetable fats. 

My further object was to ascertain in how far the introduction of 

fatty acid-residues into the molecule of cholesterol would modify the 
behaviour of the esters in regard to the phenomenon of the optically- 
ansotropous liquid phases, first noticed with the acetate, propionate 
and benzoate, with an increasing carbon-content of the acids. Finally 

1 wished to ascertain whether there was question of a_ similar 

meltingpoint-elevation as with the acetates in the other terms of the 
series too. 

1!) Bomer, Zeit. Nahr. u. Genussm. (1898). 21, 81; (1901). 865, 1070; the last 

paper \with Winter) contains a complete literature reference to which | refer. 
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§ 2. In the first place the esters of cholesterol and phytosterol 

had to be prepared. 

The cholesterol used, after being repeatedly recrystallised from 

absolute alcohol + ether, melted sharply at 149°.2. The phyto- 

sterol was prepared by Merck, by Hessk’s') method from Calabar 

fat, and also recrystallised. It melted at 137°. A microscopic test did 

not reveal in either specimen any inhomogeneous parts. 

First of all, I undertook the crystallographic investigation of the two 

substances. The result agrees completely with the data given by Muces, 

to which I refer. I have not, up to the present, obtained any measu- 

rable crystals; on account of the optical properties, cholesterol can 

possess only triclinic, and phytosterol only monoclinic symmetry. 

Although an expert crystallographer will have no difficulty in 

microscopically distinguishing between the two substances, the crystals 

deposited from solvents are, however, so much alike that a less expe- 

rienced analyst may easily make a mistake. I, therefore, thought it 
of practical importance to find a better way for their identification 

with the microscope. 

This was found to be a very simple matter, if the crystals are 

allowed to form on the object-glass by fusion and solidification, 

instead of being deposited from solvents. Figs. 1 and 2 show the 
way in which the solidification of the two substances takes place. 

S vf) SS ¥ 

Fig. 1. Fig. 2. 

Cholesterol, Phytosierol, 

fused and then solidified. fused and solidified by cooling. 

Phytosterol crystallises in conglomerate spherolites. Between crossed 

nicols they exhibit a vivid display of colours and each of them is 

‘) Hesse, Annal. der Chemie, 192. 175. 
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traversed by a dark cross, so that the whole conveys the impression 

of adjacent interference images of monaxial crystals, viewed perpen- 

dicularly to the axis and without circular polarisation. The charac- 
ter of the apparently simple crystals is optically negative. 

Cholesterol, however, presents a quite different image. When melted 

on an object-glass, the substance 

contracts and forms small droplets, 

which are scattered sporadically and, 

on solidification, look like little nug- 
gets with scaly edges, which mostly 

exhibit the white of the higher order. 

That the microscopical distinction 

in this manner is much safer than 

by Miicer’s method, may be seen from 
fig. 3 where phytosterol and choleste- 
rol are represented as seen under the 

Fig. 3. microscope, after being crystallised 
Phytosterol and Cholesterol from from alcohol. A is cholesterol, B phy- 

§ 3. Of the fatty esters, I have prepared the acetates, propionates, 

butyrates and isobutyrates by heating the two alcohols with the pure 

acid-anhydride in a reflux apparatus. A two or three hours heating 

with a small flame, and in the case of the cholesterol, preferably in 

a dark room, gives a very good yield. When cold, the mass was 

freed from excess of acid by means of sodium hydrocarbonate, and 

then recrystallised from alcohol + ether, afterwards from ethy] 

acetate + ligroin, or a mixture of acetone and ligroin, until the melt- 

ingpoint was constant. Generally, I used equal parts by weight of 

the alcohol and the acidanhydride. 

The jformiates, valerates, isovalerates, capronates, caprylates and 

caprinates were prepared by means of the pure anhydrous acids. 

These (valeric, caprylic and capric acids) were prepared synthetically 

by Kantpaum; the isovaleric acid and also the anhydrous formic 

acid were sold commercially as pure acids “KanLBAum”. Generally, 

a six hours heating of the aleohol with a little more than its own 

weight of the acid sufficed to obtain a fairly good yield. Owing, 

however, to the many recrystallisations required the loss in substance 

is much greater than with the above described method of preparing. 

Both series of esters erystallise well. The phytosterol-esters in soft, 
flexible, glittering scales; the formiate and the valerates present some 

difficulties in the crystallisation, as they obstinately retain a trace of 
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an adhesive by-product which it is difficult to remove. The choles- 

terol-esters give much nicer crystals; the formiate, acetate and ben- 

zoate have been measured macroscopically ; the other derivatives 

erystallise in delicate needles or very thin scaly crystals which are 

not measurable; I hope yet to be able to obtain the butyrate in-a 

measurable form '). In the case of the caprylate, the purification was 
much assisted by the great tendency of the product to crystallise. 

The purification of the capric ester was, however, much more diffi- 

cult; at last, this has also been obtained in a pure state even in 

beautiful, colourless, plate-shaped crystals, from boiling ligroin *). 

The phytosterol-esters retain their white colour on exposure to the 

light; the cholesterol-esters gradually turn yellowish but may be 

bleached again by recrystallisation. 
The determination of the melting points, and in the case of the 

cholesterol-esters, also that of the transition-temperatures: solid — 

anisotropous-liqiid, was always executed in such manner, that the 

thermometer was placed in the substance, which entirely surrounded 

the mercury-reservoir. Not having at my disposal a thermostat, | 

have not used the graphic construction of the cooling-curve, in 

the determinations, but simply determined the temperature at which 
the new phases first occur when the outer bath gets gradually warmer. 

As regards the analysis of the esters, nothing or little can be 

learned from an elementary analysis in this case, where the formulae 
of cholesterol and phytosterol are still doubtful, and where the 
molecules contain from 28 to 37 carbon-atoms. I have therefore 

rested content with saponifying a small quantity of the esters with 

alcoholic potassium hydroxide, which each time liberated the cholesterol 

or phytosterol with the known melting points. On acidifying the 

alkaline solution with hydrochloric acid, the fatty acids could be 

identified by their characteristic odour. 
The esters were called pure, when the melting points, and in the 

ease of cholesterol-esters, both temperatures, remained constant on 

further recrystallisation. 

1) I have even succeeded lately in obtaining the formiate in large transparent 

crystals from a mixture of ligroin, ethyl acetate and a little aleohol. 

2) The crystals of the caprinate are long, flat needles. They form monoclinic 

individuals, which are elongated parallel to the b-axis, and flattened towards {O01} 

The angle 8 is 88° & 89°; there are also the forms: {100} and 101}; measured: 

(100) : (101) =+20.°. The optic axial plane is (010}; inclined dispersion: p> » 

round the first bissectria. Negative double refraction. On {004} there is one optical 

axis visible about the limits of the field. The crystals are curved-plane. 

) 

Proceedings Royal Acad. Amsterdam. Vol. 1X. 
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§ 4. I give in the following tables the temperatures observed 

etc.) Next to my data are placed those of Bémer as far as he has 
published them. The temperatures in | | will be discussed more in 
detail later on. 

[.. FATTY ESTERS OF CHOLESTEROL. | 

| Le | i, | ts | BomeEr’s data: 
| 

| Chol. Formiate | — | [+ 909] | 9695 — | 286°: 
sieAveiate © |. =e 290°} 112°.8 — | 419°5 | 

Poy" Propionate | 8820.9) aegeo ate 96° | 114° | 

| » -sButyrate | 96°4 | 107°.3 — 96° | 408° | 

|» Isobutyrate = a 1269.5 ae 

| » -n-Valerate | 91°.8 99°.2 _ — — 

_ »  Iso- valerate — [+ 109°] | 110°.6 _ -- 

| »  Capronate 910.2 100°.1 — _— _ 

| »  Caprylate _ [+ 101°] | 106°.4 = - 

| »  Caprinte 82°.2 90°.6 — _ — 

|» Benzoate | 44595 | 478°.5 5 146° | 1780.5 
| »  Phtalate *) = — — — | 182°.5 

| 
»  Stearinate *) — ~ — 65° 

Benzoates and phthalates although not being fatty esters, have nevertheless 
been included. 

1) According to Scuénpeck, Diss. Marburg. (1900). 

2) According to BémeEr loco cit. 
3) According to Bertuetor. It is as yet undecided, whether liquid crystals are 

| present here ; ; perhaps this case is analogous with that of the caprylate. 
| 

The temperatures in [] cannot be determined accurately; see text. 

§ 5. Most striking with these remarkable substances are the splen- 

1) It should be observed that in these substances three temperatures should be: 

considered, namely 1. transition: solid — anisotropous-liquid ; 2. transition: aniso- 
tropous-liquid — isotropous-liquid ; 3. transition: solid — isotropous-liquid. 

This distinction has been retained, particularly on account of the cases of labile, 
liquid crystals discovered here. 
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did colour-phenomena observed during the cooling of the clear, 

isotropous, fused mass to its temperature of solidification, and also 

during the heating in the reverse way. These colour phenomena are 

caused by interference of the incident light, every time the turbid 

anisotropous liquid-phase occurs, or passes into the isotropous liquid. 

During this last transition we notice while stirring with the ther- 

mometer, the ‘‘oily slides” formerly described by Remnirzmr, until the 

temperature ¢, has been exceeded. These colours also occur when 

the solid phase deposits from the anisotropous liquid, therefore below 

t,. The most brilliant, unrivalled violet and blue colour display is 

shown by the butyrate and normal valerate, also very well by the 
capronate and caprinate. 

The temperatures in { | ¢, answer to anisotropous liquid phases 

which are dabile in regard to the isotropous liquid, and which double- 
refracting liquids are, therefore, only realisable in undercooled fused 
material, Of this case, which is comparable with the monotropism, as 
distinguished by Lexmann from the case of enantiotropous transfor- 

mations, the acetate is the only known example up to the present. Now 

the number of cases is increased by three, namely the formate, the 

caprylate and without any doubt also the csovalerate, to which I will 
refer presently. Cholesterol-formiate and caprylate melt therefore, 

perfectly sharply to a clear liquid at, respectively 967/,° and 106.°2. 
If, however, the clear liquid is suddenly cooled in cold water, 

one notices the appearance of the turbid, anisotropous, more-labile 

phase, accompanied by the said colour phenomena. The acetate in 

particular exhibits them with great splendour. It is quite possible 

that many organic compounds which are described as ‘melting 

sharply”, belong to this category and on being cooled suddenly 

possess a double-refracting liquid phase, even although this may last 

only a moment. The phenomenon of liquid crystals would then be 

more general than is usually believed. 
Prof. LeHmann, to whom I have forwarded a little of the cholesterol- 

esters, has been able to fully verify my observations. This investigator 

has, in addition, also found that cholesterol-caprinate may probably 
exhibit two anisotropous hquid phases. Although, personally, | never 
noticed more than one single phase, and Prof. LenMann’s determinations 

are only given provisionally, this case would certainly have to be 

regarded as one of the most remarkable phenomena which may be 

expected in a homogeneous body, particularly because the percep- 

tibility of those fo phases implies that they would not be miscible 

in all proportions with each other. 
6* 
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§ 6. The behaviour of cholesterol-isobutyrate is a very remarkable 

one. Microscopic and macroscopic investigation shows absolutely nothing 

of an anisotropous liquid phase, not even on sudden cooling and this 

in spite of the fact that the normal butyrate gives the phenomenon 

with great splendour. This differently-behaving ester has been prepared 

from the same bulk of cholesterol as was used for preparing the 

other esters. The cause of the difference can, therefore, be found only 

in the structure of the fatty acid-residue, which contrary to that of 

the other esters, is branched. 

All this induced me, to prepare ‘the analogous ester of isovaleric 

acid ; perhaps it might be shown also here that the branching of the 

carbon-chain of the acid destroys the phenomenon of the anisotro- 

pous liquid phase. At first T thought this was indeed the case, but 
a more accurate observation showed that in the rapid cooling there 

occurs, if only for an indivisible moment, a labile anisotropous 

liquid; the duration, however, is so short that, for a long time, I 

was in doubt whether this phase ought to be called stable or labile 

as in the case of the formiate and caprylate! Even though the carbon- 

branching does not cause a total abrogation of the phenomenon of 

liquid crystals, the realisable traject appears to become so much smaller 

by that branching, that it almost approaches to zero, and the expected 

phase is, moreover, even still labile. From all this I think we may 
conclude, as has been stated more than once by otbers, that the oceur- 

rence of the liquid phases is indeed a inherent property of the 
matter, which cannot be explained by the presence of foreign admix- 

tures etc. (TAMMANN ¢. S.). 

§ 7. We now give the melting points of the analogous phytosterol- 

esters which, with one exception, do not exhibit the phenomenon of 

the double-refracting liquids. As the phytosterols from different vege- 

table fats seem to differ from each other, and as BomeEr does not 

mention any phytosterol esters from Calabar-fat in particular, | have 
indicated in the second column only the /mzts within which the melting 

points of the various esters prepared by him from diverse oils, vary. 

(See table following page.) 

From a comparison of the two tables it will be seen that the lowering 

of the melting point of phytosterol by the introduction of fatty aeid- 

residues of increasing carbon-content, takes place much more rapidly 
than with cholesterol. On the other hand, the succession of the melting 

points of the acetate, propionate, butyrate and n-valerate is more 

regular than with the cholesterol-derivates. 

All phytosterol-esters share with phytosterol itself the great ten- 
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I]. FATTY ESTERS OF PHYTOSTEROL. 

ae Seana i 
BoMER: 

— 

Phytosterol-Formiate 110° 103°—113° | 

Phytosterol-Acetate 129° 1 123°—135° | 

Phytosterol-Propionate 405235 | 1049°—116° | 

Phytosterol-Butyrate 91°.2 85°— 90° 

| Phytosterul-Isobutyrate 5 Whee — | 

| Phytosterol-norm.-Valerate Pe Ge eh, i= 30° = 

| Phytosterol-Isovalerate 1009.4 = 

A 
dency to crystallise from the melted mass in sphaerolites; with an 
increasing carbon-content of the fatty acid-residue, these seem gene- 

rally to become smaller in circumference. 

_ The formiate crystallises particularly beautifully; this substance 

possesses, moreover, two solid modifications, as has been also stated 

by Prof. Leamany, who is of opinion that these two correspond with 

the two solid phases of the cholesterol-derivative. In the phytosterol- 

ester the sphaerolite-form is the more-labile one. 

On the other hand, when recrystallised from monobromonaphthalene 

or almond-oil, they form under the microscope well-formed needle- 

shaped crystals which, however, are always minute. Probably, we 
are dealing in all these cases with polymorphism. I have also often 

observed whimsical groroths and dendritics. 
A difficulty occurred in the determination of the melting point of 

the normal valerate. It melts, over a range of temperature at about 

67°.1, but if the mass is allowed to cool until solidified, the ester 

fuses to a clear liquid when heated to 30°. This behaviour is quite 

analogous to that observed with a few glycerides of the higher fatty 

acids, for instance with Tri/aurin and Trimyristin by ScuHey. *) 
After half an hour the melting point had risen again to 53*/,° and 

after 24 hours to 67°. After 24 hours, small white sphaerolites had 
deposited in the previously coherent, scaly and slightly double-retrac- 

ting layer on the object glass, which exhibited the dark cross of the 

phytosterol. In order to explain this phenomenon, I think I must 
assume a dimorphism of the solid substance. Moreover, liquid crystals 

are formed here, as has also been observed by Prof. LEHMANN. 

1) Scuey. Dissertatie, Leiden (1899) p. 51, 54. 
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According to Prof. LeHmany, normal phytosterol-valerate forms 
very beautiful liquid erystals, which are analogous to those of chole- 
sterol-oleate ; like these they are not formed until the fused mass is 

undercooled. Consequently, the anisotropous liquid phase is here also 
labile in regard to the isotropous one. 

I do not think it at all improbable that the changes in the melting 

points observed by Scuey with his higher tryglicerides also owe 
their origin to the occurrence of labile, double-refracting liquid phases. 

A further investigation is certainly desirable. 

§ 8. We now arrive at the discussion of the mutual behaviour 

of both series of fatty esters in regard to each other. 

It has been sufficiently proved by Bémer that the meltingpoint- 

line of cholesterol and of phytosterol is a rising line. In connection 
with Miecr’s and my own erystal determinations we should have 
here indeed a gradual mixing between heterosymmetric components ! 

In mixtures which contain about 3 parts of cholesterol to 1 part, 

of phytosterol, the microscopical research appears to point to a new 

solid phase, which seems to crystallise in trigonal prisms. This com- 

pound (?) also occurs with a larger proportion of cholesterol *). Whether 
we must conclude that there is a miscibility of this new kind of 

crystal with both components, or whether an eventual transformation 

in the solid mixing phases proceeds so slowly that a transition 

point in the meltingpoint-line escapes observation, cannot be decided 

at present. 

The matter is of more interest with the esters of both substances. 

According to BomeER?) the formiates give a meltingpoint-line with a 

eutectic point; the acetates, however, a continuously rising melting 
point-line. 

The method of experimenting and the theoretical interpretation is, 

however, rather ambiguous, as Boer prepares mixed solutions of 
the components, allows these to crystallise and determines the melt- 

ingpoint of the solid phase first deposited. By his statement of the 

proportion of the components in the solution used, he also gives an 

incomplete and confusing idea of the connection between the melting- 

point and the concentration. 

Although a rising of the binary meltingpoint-line may, of course, 
be ascertained in this manner quite as well as by other means 

— and Bomer’s merit certainly lies in the discovery of the fact 

1) Compare Boner, Z. f. Nahr. u. Gen. M. (1901) 546. 

*) Boer, Z. f. Nahr. u. Gen. Mitt. (1901) 1070. In connection with the dimor- 
phism of the formiates, a mixing series with a blank is however very probable in 
this case. 
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itself — the determination of the binary meltingpoint-line must be 
reckoned faulty as soon as it is to render quantitative services, which 
is of importance for the analysis of butter; for if the meltingpoint- 
curve is accurately known, the quantity of phytosterol added may 

be calculated from the elevation of the melting point of the cholesterol 
acetate. I have, therefore, now determined the binary melting point 

line in the proper manner. (Fig. 4). 

Fig. 4. 
Cholesterol-, and Phytosterol-Acetate. 

Although the curve takes an upward course it still deviates con- 

siderably from the straight line which connects the two melting- 

points. As the course of the curve from 40°/, cholesterol-acetate to 
0°/, is nearly horizontal, it follows that the composition of mixtures 

can be verified by the melting-point, when the admixture of phytosterol 

in the animal fat does not exceed 60°/,. The results are the most 

accurate when the quantity of phytosterol-ester*) amounts to 2°/,—40°/,. 
In practice, this method is therefore applicable in most cases. The 

cholesterol-acetate used in these experiments melted at 112.°8; the 

phytosterol-acetate at 129.°2. 
A mixture of 90 °, Cnol. Acet. 4-10 °/, Phyt. Acet. melts at 117° 
» » Moo. eo DS » +20 » » » es 1805 

» » 73.3» » » + 26.7» » » » ‘» 4122.°5 
60 » » » +40 » » » ee ae | 

» » 44 » » + 576» » » » pvp 128° 

» » 20-2 » » +80 » » » oa, 220. 
D) » Dy AG sD Px OO. oS » ‘3 42903 

2 

s 7 

1) It should be observed that although Boémer, in several parts of his paper, 
recommends the said method for qualitative purposes only, it is plain enough in 
other parts that he considers the process suitable for quantitative determinations 
in the case of small concentrations. In his interpretation of the melting point line 
this is, however. not the case, for his experiments give no explanation as to the 
mixing proportion of the components in mixtures of definite observed melting point. 
Quantitative determinations are only rendered possible by a complete knowledge of 
the binary melting point line. When the concentration of cholesterol-acetate is 
0,5 — 19/,, the meltingpoint-is practically not altered; when it is 2°/, however, 
the amount is easy to determine. 
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Probably, a ease of isomorphotropous relation occurs here with 

the acetates; both esters are, probably, monoclinic, although this is 

not quite certain for the cholesterol-ester. This is pseudotetragonal and 

according to Von ZepHarovicH: monoclinic, with 8 = 73°38’; 

according to Oprrmayer: triclinic, with ?—106°17', a—90°20', y—90°6', 

while the axial relations are 1,85: 1: 1,75. 

The phytosterol-ester has been approximately measured microsco- 
pically by BrykircH and seems to possess a monoclinic or at least a 

triclinic symmetry with monoclinic limit-value. In my opinion both 

compounds are certainly nof isomorphous. In any case it might be 

possible that even though a direct isomorphism does not exist in 

the two ester-series, there are other terms which exhibit isomor- 

photropous miscibility in an analogous manner, as found forthe ace- 

tates by Boner. I have extended the research so as to include: the 
isovalerates ; the result however. is negative and the case of the 

acetic esters seems to be the only one in this series. 

The following instance may be quoted : 

31.8°/, cholesterol-butyrate ++ 68,2°/, phytosterol-butyrate indicate 

for ¢, 81° and for ¢, 83° ete. ete. 

For the formiates, the lowering had been already observed by BOmer ; 

other esters, also those of the iso-acids behave in an analogous 

marner: at both sides of the melting-diagram occurs a lowering of 

the initial melting points. It is, however, highly probable that in 

some, perhaps in all cases, there exists an isod7morphotiropous mixing 

with a blank in the series of the mixed crystals. 

The anisotropous liquid phase of cholesterol-esters gives rise in this 

case to anisotropous liquid mixed erystals. I just wish to observe that 

for some of the lower-melting esters, such as the butyrate, capronate, _ 

caprinate, normal valerate, ete., the temperature ¢, for these mixed 

crystals may be brought to about 50° or 60° or lower and this creates 

an opportunity for studying liquid mixed crystals at such tempera- 

tures, which greatly facilitates microscopical experiments. 

In all probability, I shall shortly undertake such a study of these 

substances. Of theoretical importance is also the possibility, to which 

Prof. Baknurs Roozesoom called my attention, that in those substances 
where ¢, answers to the more-labile condition, the at first more labile 

liquid mixed erystals, on being mixed with a foreign substance, 
become, finally, stable in regard to the isotropous fused mass. Expe- 

riments with these preparations, in this sense, will be undertaken 
elsewhere. Perhaps, a study of the low-melting derivatives or else a 

similar study of the low-melting liquid, mixed crystals by means of 

the ultra-microscope might yield something of importance. 

Zaindam, May 1906. 
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Physics. — “Researches on the thermic and electric conductivity 

power of crystallised conductors.” 1. By Dr. F. M. Javcer. 
(Communicated by Prof. H. A. Lorenrz). 

(Communicated in the meeting of May 26, 1906). 

1. Of late years, it has been attempted from various sides to 
find, by theoretical means, a connection between the phenomena of 
the thermie and electric conductivity of metallic conductors, and this 

with the aid of the more and more advancing electron theory. 
In 1900 papers were published successively by P. Drupg’), J. J. 

THomson *) and EK. Rigcke*) and last year by H. A. Lorentz *). 

One of the remarkable results of these researches is this, that 

the said theory has brought to light that the quotient of the electric 
and thermic conductivity poweg of all metals, independent of their 
particular chemical nature, is a constant, directly proportional to the 
absolute temperature. 
When we assume that the electrons in such a metal can move 

freely with a velocity depending on the temperature, such as happens 

with the molecules in ideal gases and also that these electrons 

only strike against the much heavier metallic atoms, so that in other 

words, their mutual collision is neglected, whilst both kinds of 

particles are considered as perfectly elastic globes, the quotient 

of the thermic conductivity power 4 and the electric conductivity 

power o may be indeed represented by a constant, proportional to 

the absolute temperature 7’. 

The theories of Drupe and Lorentz only differ as to the ab- 
+ Fi 2 

solute value of the quotient; according to Drups — = a5) fH 
G 

OF 

T have the above cited meaning, whilst @ is a constant and e 

represents the electric charge of the electron. 

By means of a method originated by Koutravuscu, JAzcer and 

; 2 8 fa? 
according to Lorentz ——= — e T. In these expressions 4, 6 and 

my) 

Ae 3s 
DiessELHoRST have determined experimentally the values for — with 

o 

1) P. Drupe, Ann. Phys. (1900). 1. 566; 3. 369. 

2, J. J. Tuomson, Rapport du Congrés de physique Paris (1900). 3. 138. 

3) E. Rrecke, Ann. Phys. Chem. (1898). 66. 353, 545, 1199; Ann. Pliys. (1900). 

2. 835. 

*) H. A. Lorentz, Proc. 1905, Vol. VII, p. 438, 585, 684. 
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various metals'). The agreement between theory and observation is 

in most cases quite satisfactory, only here and there, as in the case 

of bismuth ?), the difference is more considerable. From their meas- 

urements for silver at 15°, the value 47 & 10° may be deduced in 
7 

. a . 

C.G.S. units, for the expression ——-. (Compare Lorentz, loco cit. 
é 

p. 505); according to Drupr’s formula: 38 X 10°. 

§ 2. I hope, shortly, to furnish an experimental contribution 

towards these theories by means of a series of determinations of an 

analogous character, but more in particular with crystallised con- 

ductors, and in the different directions of those crystal-phases. 
If we take the most common case in which may be traced three 

mutual perpendicular, thermic and electric main directions in such 
erystals, the propounded theories render it fairly probable for all 

such conducting erystals that: 

Az — Ay — Ae and therefore also: Az: Ay : Az == Oy : Gy : Gy. as ae 3 E 

In conducting crystals, the directions of a greater electric con- 
ductivity should, therefore, not only be those of a greater thermic 

conductivity, but, theoretically, the quotient of the electric main- 

conductivities should be numerically equal to that of the thermic 

main-conductivities. 

Up to the present but little is known of such data. The best 

investigated case is that of a slightly titaniferous Haemitate of 
— 

1) W. Jagger und Dressetuorst, Berl. Sitz. Ber. (1899). 719 etc. Comp. Reincanum, 

Ann. Phys. (1900) 2, 398. 

A 
2) With Al, Gu, Ag, Ni, Zn, the value of ze at 18° varies between 636 x 108 

and 699 108; with Cd, Pb, Sn, Pt, Pd between 706 108 and 754 >< 108; with 

a 
Fe between 802 and 832 > 105, therefore already more. With bismuth = at 

18° — 962 & 105. Whilst in the case of the other metals mentioned the values of 

A : 
— at 100° and at 18° are in the average proportion of 1,3:1, with bismuth the 
O 

proportion is only 1.12. In their experiments, Jaeger and DirssetHorst employed 

little rods, and bearing in mind the great tendency of bismuth to crystallise, their 

results with this metal cannot be taken as quite decisive, as the values of the 

electric and thermic conductivity power in the chief directions of crystallised bis- 

muth differ very considerably. 
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Swedish origin which has been investigated by H. BAckstrém and 

K. AnestréM') as to its thermic and electric conductivity power. 

In this ditrigonal mineral, they found for the quotient of the thermic 

conductivity power in the direction of the chief axis (c) and in that 
perpendicular to it (a) at 50°: 

Aa 
eh 
7) c 

For the quotient of the electric resistances w at the same tempe- 
rature they found: 

dagen 1.78, and, therefore: pee 1.78: 
Wa O- 

From this it follows that in the case of the said conductor, the 

theory agrees with the observations as to the relation between the 

conductivity powers only qualitatively, but not quantitatively, and 
— contrary to the usually occurring deviations — the proportion of 

the quantities A is smaller than that of the quantities o. 

JANNETTAZ’S empirical rule, according to which the conductivity for 

heat in crystals is greatest parallel to the directions of the more 

complete planes of cleavage, applies here only in so far as haematite 

which does not possess a distinct plane of cleavage, may still be 

separated best along the base {111} (Mintimer), that is to say parallel 

to the plane of the directions indicated above with a. 

§ 3. In order to enrich somewhat our knowledge in this respect 

the plan was conceived to investigate in a series of determinations 

the thermic and electric conductivity-power of some higher and also 

of some lower-symmetrical crystalline conductors, and, if possible, 

of metals also. For the moment, I intend to determine the quotient 

of the conductivities in the different main directions, and afterwards 

perhaps to measure those conductivities themselves in an absolute 

degree. 

I. On the thermic and electric conductivities in crystallised Bismuth 
and in Haematite. 

Measurements of the thermic and electric conductivity of bismuth 

are already known. 
Marrrvccr*) determined the thermie conductivity, by the well- 

1)-H. Backstrom and K. Anasrrim, Ofvers. K. Vetensk. Akad. Férh. (1888) 

No. 8, 533; BAcksrrém, ibid. (1894), No. 10, 545. 

2) Marreuccr, Ann. Chim. et Phys. (3). 43. 467. (1855). 
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well-known method of INGENHovsz, by measurement of the length 
of the melted off waxy layer which was put on the surface of 
cylindrical rods of bismuth, cut // and 1 to the main axis, whilst 

the one end was plunged into mercury heated at 150°. For the 

average value of the quotient of the main conductivities — perpen- 

dicular and normal to the main axis — he found the value 1,08. 

JaNNeTTAZ’s rule applies in this case, because the complete cleavability 

of ditrigonal bismuth takes place along {111} (Miter), therefore, 

perpendicularly to the main axis. JAnneTTaz') has applied the 

SéNaRMoNT method to bismuth. He states that in bismuth the ellipses 

have a great eccentricity but he did not take, however, exact 

measurements. 

A short time ago, Lownps?*) has again applied the SfnarmMontT method 

to bismuth. He finds for the quotient of the demi-ellipsoidal axes 

1.19 and, therefore for the quotient of the conductivities 1.42. 

The last research is from Prrrot*). By the S£NaRMoNT method 

he finds as the axial quotient of the ellipses about 1.17 and conse- 

quently for the quotient of the conductivities J and // axis 1.368, 

which agrees fairly well with the figure found by Lownps. Secondly, 

Perrot determined the said quotient by a method proposed by 
C. Soret, which had been previously recommended by THoULET‘), 

namely, by measuring the time which elapses between the moments 

when two substances with known melting points #, and &, placed 

at a given distance at different sides of a block of the substance 

under examination begin to melt. As indices were used; a-Naphtyla- 
mine (#=50° C.), o-Nitroaniline (9 = 66° C.), and Naphthalene 
ie — io ©.). 

As the mean of all the observations, Perrot finds as the quotient 

of the main conductivities 1,3683, which agrees perfectly with his 

result obtained by SENarMont’s method. 
He, however, rightly observes that this concordance between the 

two results is quite an accidental one, and that the method of THouLET 

and Soret must not be considered to hold in all cases. The proof 
thereof has been given by CatL.er in a theoretical paper ;°*) the 
agreement is caused here by the accidental sma// value of a quotient 
hl 
% in which 7 represents the thickness of the little plate of bismuth 

1) Jannertaz, Ann. de chim. phys. 29. 39. (1873). 

2) L. Lownps, Phil. Magaz. V. 152. (1903). 

8) L. Perrot, Archiv. d. Science phys. et nat. Généve (1904. (4). 18, 445. 
*) Tourer, Ann. de Chim. Phys. (5). 26. 261. (1882) 

6) C. Catter, Archiv. de Scienc. phys. et nat. Genéve (1904). (4). 18. 457. 
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and h and & the coefficients of external and internal conductivity. 

§ 4. 1 have endeavoured to determine the quotient of the chief 

conductivities by the method proposed by W. Vorer. 

As is wellknown, this method is based on the measurement of 

the angle, formed by the two isotherms at the line of demarcation 
between two little plates which have been joined to an artificial 

twin, when the heat current proceeds along the line of demarcation. 

If a, and a, are the two chief conductivities of a plate of bismuth 

cut parallel to the crystallographic main axis, and if the angle which 

the two main directions form with the line of demarcation equals 

45°, then according to a former formula’): 

A, on & 
—————1 U0) Go SS 
"eb 2 

§ 5. The bismuth used was kindly furnished to me by Dr. F. L. 

Perrot, to whom [| again wish to express my hearty thanks. 

The prism investigated by me is the one which Dr. Prrror in 

his publications’) indicates with J/, and for which, according to 
v 

Sénarmont’s method, he found for — the value 1,390. The prism 
rE. 

given to Dr. vaN Everpincen yielded in the same manner for 

2 
~ the value 1,408. 

Cc 

Two plates were cut parallel to the crystallographic axis, in two 

directions forming an angle of 90° and these were joined to twin 

plates with g = 45°. 
It soon appeared that in this case the Voie method *) was attended 

by special difficulties which, as Prof. Voicr informed me, is generally 

the case with metals. First of all, it is difficult to find a coherent 

coating of elaidic acid + wax; generally the fused mixture on the 

polished surface forms droplets instead of congealing to an even 

layer. Secondly, the isotherms are generally curved and their form 

presents all kinds of irregularities, which are most likely caused 

by the great specific conductivity of the metals, in connection with 

the peculiarity just mentioned. On the advice of Prof. Vorier I 

first covered the metallic surface with a very thin coating of 

varnish; this dissolves in the fused acid, and causes in many Cases 

a better cohesion, but even this plan did not yield very good results. 

1) These Proceedings. (1906). March p. 797. 

2) p. 4, note 10. 

3) Voiet, Gdltinger Nachr. (1896). Heft 3, p. 1—16; ibid. (1897). Heft 2. l—o 
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However, at last, I succeeded in getting a satisfactory coating of 

the surface by substituting for white wax the ‘ordinary, yellow 

bees-wax. This contains an adhesive substance probably derived 

from the honey, and, when mixed in the proper proportion with 

elaidie acid it yields the desired surface coating. 

I have also coated‘) the bottoms of the plate and the sides, except 

those which stand _| on the line of demarcation with a thick layer 
of varnish mixed with mercury iodide and copper iodide. During the 

operation the heating was continued to incipient darkening (about 70’). 
The plates should have a rectangular or square form, as otherwise 

the isotherms generally become curved. 

It is further essential to heat rapidly and to raise the copper bolt 
to a fairly high temperature; the isotherms then possess a more 

straight form and give more constant values for e. 

I executed the measurements on the double object table of a 

LEHMANN’s crystallisation microscope on an object glass wrapped in 

thick washleather, to prevent the too rapid cooling and solidification 

of the coating. 

After numerous failures, I succeeded at last in obtaining a long 

series of constant values. As the mean of 30 observations, I found 

€ = 22°12’ and therefore: 

a 
“* — 1,489; 
i “Cc 

§ 6. The value now found is somewhat greater than that found 

by Perrror. I thought it would be interesting to find out in how 

far a similar deviation was present in other cases, and whether when 
compared with the results obtained by the methods of S#narmonrt, 
JaneTtaz and RogntGEN, it has always the same direction. 

In fact, the investigation of many minerals has shown me that 

all values obtained previously, are smaller than those obtained by 

the process described here. 

I was inclined at first to believe that these differences were still 

greater than those which are communicated here. Alihough a more 

extended research, including some plates kindly lent to me by Prof. 
Voict, showed that these differences are not so serious as I suspected, 

at first the deviation exists always in the same direction. 
For instance, I measured the angle ¢ of a plate of an Apatite- 

crystal from Stillup in Tyrol and found this to be 17°. From the 

) Ricuarz’s method of experimenting (Naturw. Rundschau, 17, 478 (1902)) did 

not give sufliciently sharply defined isotherms and was therefore not applied. 
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position of the isotherms it also follows that 2. > 4 so that — —1.35. 

In a quartz-plate obtained from Prof. Voier I found pete 304°, 
A e - : 

therefore — = 1,75. In a plate of Antimonite from Skikoku in Japan 
a 

cut parallel to the plane {010}, - was found to be even much larger 
“a 

than 1,74, which value is deduced from the experiments of SENArMoN?T 

and JANNETTAZ as they find for the quotient of the demi ellipsoidal 
axes 1.32. 

For Apatite they find similarly 1,08, for quartz 1,73, whilst 

TucHscuMipt determined the heat-conductivity of the latter mineral 

according to Werser’s method in absolute degree. His experiments 

he 
give the value 1,646 for the quotient a 

a 

The deviations are always such that if 2, >, the values of the 
: A 

quotient = turn out to be larger when Voier’s method is employed 
2 

instead that of DE SENARMONT. The method employed here is, however, 

so sound in principle, and is so much less liable to experimental 

errors, that it certainly deserves the preference over the other processes. 
Finally, a sample of Haematite from Elba was examined as to 

its conducting power. A plate cut parallel to the c-axis was found 

not to be homogeneous and to contain gas-bubbles. I repeatedly 
measured the angles « of a beautifully polished preparation of Prof. 

Voict, and found fairly constantly 104°, whilst the position of the 

isotherms showed that 4a was again larger than 4,. 

: f Ps 
For the Haematite we thus obtain the value: = = 1,202. ‘The 

Le 
value found by BAckstrémM and Anestrém for their mineral with the 
aid of CuHRISTIANSEN’s method was 1,12. In this case the deviation 

also occurs in the above sense. 

From the experiments communicated we find for the quotient 

A A 
%a:%- in both crystal phases, if by this is meant (<) (5) the 

a c 

values : 

With Bismuth : A 4-438: 
Xe 

f ‘ Ke 
With Haematite: — — 1,480. 

Xe 

da ; 
In this my measurements of — are combined with the best value 

c 
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; : 6. 
found by van EverDINGEN‘) with Prrrot’s prism, namely — = 1,68, 

. Oc 

and with the value found by the Swedish investigators for haematite: 

1,78 at 50° C. 

7. If there were a _ perfect concordance between theory and 

observation, we should have in both cases = = 1. The said values 
*c 

1,128 and 1,480 are, therefore, in a certain sense a measure for 

the extent of the divergence between the observation and the con- 

clusion which is rendered probable by the electron theory. 
In the first place it will be observed that the agreement is much’ 

better with dismuth than with haematite. However, this may be 

expected if we consider that the theory has been proposed, in the 

first instance, for metallic conductors. The influence of the peculiar 
nature of the ovide when compared with the true metal is shown 

very plainly in this case. 

The question may be raised whether, perhaps, there may be 

shown to exist some connection between the crystal structure and 

: . : . 4a 
the chemical nature on one side, and the given values of — on the 

%e 

other side. 
Such a connection would have some significance because it may 

be, probably, a guide for the detection of special factors situated in 

the crystalline structure, which stand in the way of a complete 
agrement of electron theory and observations. 

§ 8. First of all, it must be observed that we are easily led to 

compare the structures of the two phases. Both substances inves- 

tigated erystallise ditrigonally and have an analogous axial quotient; 
for bismuth: a:c¢ — 1:1,3035 (G. Rosr); for haematite a:e = 

1:1,3654 (Mexczrr). In both substances, the habit is that of the 

rhomboid, which in each of them approaches very closely to the 

regular hexahedron. The characteristic angle @ is 87°34’ for bismuth 
for haematite 85°42’. Particularly in bismuth the pseudo-cubic 

construction is very distinct; the pianes of complete cleavage which 

answer the forms {111} and {144} approach by their combination the 
regular octahedron in a high degree. Although haematite does not 

1) van Everpincen, Archives Néerland. (1901) 371; Versl. Akad. v. Wet. (1895— 

1900); Comm. Phys. Lab. Leiden, 19, 26, 37, 40 and 61. See Archiv. Néerl. 

p. 452; rods No. 1 and No. 5. 
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possess a periect plane of cleavage, it may be cleaved in any case 
along {111} with testaceous plane of separation. It admits of no doubt 
that the elementary parallelepipeds of the two crystal structures are 
in both phases pseudo-cubic rhombohedral configurations and the 
question then rises in what proportion are the molecular dimensions 
of those cells in both crystals ? 

If, in all crystal-phases, we imagine the whole space divided 
into volume-units in such a manner that each of those, everywhere 
joined, mutually congruent, for instance cubic elements, just contains 
a single chemical molecule, it then follows that in different crystals 

¢ M 
the size of those volume elements is proportionate to Fe in which 

€ 

M represents the molecular weight of the substances and d the 

sp.gr. of the crystals. If, now, in each crystal phase the content 

of the elementary cells of the structure is supposed to be equal to 
M 

this equivalent-volume or the dimensions of those cells will be reduced 

for all crystals to a same length unit, namely all to the length 

of a cubic-side belonging to the volume-element of a crystal phase, 
whose density is expressed by the same number as its molecular 

a if 
weight ; then in that particular case = = 1. If we now calculate - 

the dimensions of such an elementary parallelopiped of a Bravais 
M 

structure whose content equals the quotient = and whose sides are 

in proportion to the crystal parameters a:4:c, the dimensions 

% wand w» thus found will be the so-called topic parameters of the 

phase which, after having been introduced by Brckr and MuTHMaNn 

independently of each other, have already rendered great services 

in the mutual comparison of chemically-different crystal-phases. In 

the particular case, that the elementary cells of the crystal-structure 

possess a rhombohedral form, as is the case with ditrigonal crystals, 

the parameters y, w and w become equal to each other (=e). The 

relations applying in this case are 

Soult 
ab sin — 

V 3 ' ee 2 
e=—| —.  , ] > “with sn Saale eae 

sin? a.sin A 2 Sin @ 

If now these calculations are executed with the values holding 

here: Bi= 207,5; Fe,O, = 159,64; dgj = 9,851 (PrerRoT); dre, 0, = 4,98, 

then 

Proceedings Royal Acad. Amsterdam. Vol. 1X. 
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Vpi = 21,064 and Va, 0, = 32,06, 

and with the aid of the given relations and the values for @ and A 

we find for each phase: *) 

Qn;  2,7641 
Or, 0, 3,1853 

If now we just compare these values for the sides of the rhom- 

bohedral elementary cells of the crystal structure with those of the 

% : 
quotients — in the two phases, they curiously enough show the 

Xe 

following relation : 

Ors x 
(=) : (=) =. Sea wee. 
%c / Fes Os tc) Bi \ Fest, eee 

Allowing for experimental errors, the agreement is all that can 

be desired: in the first term of the equation the value is exactly: 
1.312, in the last term: 1,328. 

x 

In our case the quotient may therefore be written for both 
Xe 

phases in the form: C.9’, in which C is a constant independent of 

the particular chemical nature of the phase. 

Instead of the relation 

0,7: 0,", perhaps 0,’ sin a, : 9,” sin a, = 1.305 

is still more satisfactory. These expressions, however, represent 

nothing else but the surface of the elementary mazes of the three 
chief planes of the trigonal molecule structure, for these are in our 

case squares whose flat axis =a. The quotient in the two 

phases should then be directly proportional to the reticular density 

of the main net-planes of Bravais’s structures. 

A choice between this and the above conception cannot yet be 

made, because «, and a, differ too little from 90°. Moreover, a further 

investigation of other crystals will show whether we bave to do 
here with something more than a mere accidental agreement. Similar 

investigations also with lower-symmetric conductors are at this 
moment in process and will, I hope, be shortly the subject of further 

communications. 

Zaandam, May 1906. 

1) For bismuth z= 87°:34' and A=87°40': for haematite 2 = 85°42’ and 
A=86°0'. The angle A is the supplement of the right angle on the polar axes 

of the rhombohedral cells and z is the flat angle enclosed between the polar axes. 
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Chemistry. — “Three-phaselines in chloralalcoholate and «aniline- 

hydrochloride’. By Prof. H. W. Baxuuis Roozesoom. 

It is now 20 years since the study of the dissociation pheno- 

mena of various solid compounds of water and gases enabled me 

to find experimentally the peculiar form of that three-phaseline which 

shows the connection between temperature and pressure for binary 

mixtures in which occurs a solid compound in presence of solution 

and vapour, The general significance of that line was deduced, 

thermodynamically, by van per Waats and the frequency of its 

occurrence was proved afterwards by the study of many other 
systems. 

That this three-phaseline is so frequently noticed in practice in 

the study of dissociable compounds is due to the circumstance that, 

in the majority of the most commonly occurring cases, the volatility 

of the two components or of one of them, is so small, that at the 

least dissociation of the compound both liquid and vapour occur in 
its presence. 

In the later investigations, which have led to a more complete 
survey of the many equilibria which are possible between solid 
liquid and gaseous phases, pressure measurements have been 

somewhat discarded. When, however, the survey as to the connec- 

tion of all these equilibria in binary mixtures got more and more 

completed and could be shown in a representation in space on 
three axes of concentration, temperature and pressure, the want was 

felt to determine for some equilibria, theoretically and also experi- 

mentally, the connection between temperature and pressure, in order 

to fill up the existing voids. 

Of late, the course and the connection of several p,f-lines, have 

been again studied by vAN DER Waats, Suits and myself either 
qualitatively or qualitative-quantitatively. 

To the lines, which formerly had hardly been studied, belonged 

the equilibria lines which are followed, when, with a constant 

volume, the compound is exposed to change of temperature in presence 

of vapour only. They can be readily determined experimentally only 
when the volatility of the least volatile component is not too small. 

STORTENBEKER at one time made an attempt at this in his investigation 

of the compounds of iodine with chlorine, but did not succeed in 

obtaining satisfactory data. 
In the second place it was desirable to find some experimental 

confirmation for the peculiar form of the three-phaseline of a 

compound, recently deduced by Smits for the case in which-a 
T* 
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minimum occurs in the pressure of the liquid mixtures of its 
components. 

Mr. Lropoip has now succeeded in giving experimental contributions 

in regard to both questions, by means of a series of very accurately 

conducted researches where chloralalcoholate and anilinehydrochloride 
occur as solid compounds. 

Solid compounds which yield two perceptibly volatile components 

(such as PCl,, NH,.H,S, PH,.HCl, CO,.2 NH, etc.) have been investi- 

gated previously, but either merely as to their condition of dissociation 

in the gaseous form, or as to the equilibrium of solid in presence 

of gaseous mixtures of different concentration at constant temperature; 

but liquids occur only at higher pressures, so that the course of 

the three-phase lines had never been studied. 

These two compounds were selected because in their melting points 

neither temperature nor pressure were too high. Moreover, the diffe- 

rence in volatility of the two components in the first example (chloral 

-+ alconol) was much smaller than in the second (aniline + hydrogen 
chloride). It was also safe to conclude from the data of both com- 

pounds that the liquid mixtures of their components would show a 
minimum pressure. 
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This last point was ascertained first of all by a determination of 
the boiling point lines, in which a maximum must occur. In both 
cases this was found to exist and to be situated at the side of the 
least volatile component, respectively chloral or aniline. 

The investigation of the three-phase lines showed first of all that 
these possess the expected form in which two maxima and one 
minimum of pressure occur. 

In the first system (Fig 1) CFD is the three-phase line, T and T, 
are the respective maxima for the vapour pressure of solutions with 
excess of either alcohol or chloral and saturated with chloralaleo- 
holate; the minimum is situated very close to the melting point F. 

In the second system (anilinehydrochloride Fig. 2) the first maxi- 
mum, im presence of excess of HCl is situated at such an elevated 

Yam 
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pressure that this has not been determined, the second T, at a 
moderate pressure is situated at the side of the aniline. The minimum 

T, is situated at the same side and is removed further from the 

melting point than in Fig. 1. 

7, minimum F melting point 

p16 -eM- 22.5 cM. 

t 1975 199°2 

The determination of these lines and also that of the equilibria- 

lines for compound + vapour or liquid -++ vapour which also occur 

in both figures can only take place on either side of point F’, for 

in measuring the pressures, we can only have in the apparatus 

a larger, or smaller, excess of either component. Moreover, it is 

possible to fill the apparatus with the compound in a dry and pure 

condition. In the case of the compounds employed, this was attained 

by preparing very pure crystals by repeated sublimation in vacuo. 

In the second example, the sublimation line ZG of aniline hydro- 

chloride was thus determined. On this line then follows the piece 

GF of the three-phase line, because beyond G, no vapour can exist 

which has the same composition as the compound, except in the 

presence of some excess of HCl, so that a little liquid is formed 

with a slight excess of aniline. If, however, the apparatus is properly 

filled with the compound so that there remains but little space for 

the vapour then the three-phase line G may be traced to very near 

the melting point /, where one passes on to the line /’A, for the 
equilibrium of the fused compound with its vapour. 
We have here, therefore, the first experimental confirmation of 

the normal succession of the p,é-lines when those are determined 
with a pure compound which dissociates more or less. 

Theoretically, the minimum 7’ in the three-phaseline must be 

situated at the left of the terminal point G of the sublimationline. 

The difference here, although small, is yet perfectly distinct: 

fA G 

p. dbteM. 16.5 cM. 

pels Wipe 198° 

In the case of chloralalcoholate the points 7’, and G both coincide 

so nearly with /’ that this point is practically undistinguishable from 

the triple point of a non-dissociating compound, both ZL and FA, 

or their metastable prolongation /’A' appear to intersect in /’, Moreover, 

the investigation of the melting point line proved that chloralalco- 

holate in a melted. condition is but little dissociated. 
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In both compounds the p,é-lines have also been determined with 

excess of chloral or aniline. A very small quantity of these suffices 

to cause the occurrence of liquid in presence of the compound at 

temperatures far below the melting point and we then move on the 

lowest branch of the three-phaseline. 

In the case of a slight excess of chloral (Fig. 1) this was followed 

from D over 7, to /’, just a little below the melting point, and from 

there one passed on to the liquid-vapour line F,A,, which was 

situated a little above FA. 
In the case of a slight excess of aniline the piece D7T,7,GF, 

could be similarly followed (Fig. 2). In this occurred the minimum 7\, 

whilst the piece G/’, coincided entirely with the corresponding part 
of GF, which had already been determined in the experiment with 
the pure compound. Just below /’ the compound had disappeared 

entirely and one passed on to the liquid-vapour line F,A,, which, 

unlike that in Fig. 1, was situated below FA. 

If the excess of the component is very trifling, liquid is formed 

only at higher temperatures of the three-phaseline, and below this 

temperature a sublimationline is determined, with excess of the 

component in the vapour, which line must, therefore, be situated 

higher than the pure sublimationline. 

With chloralaleoholate a similar line LE (Fig 1) was determined, 

situated decidedly above LF. At £, liquid occurred and a portion of 
the three-phaseline LF’ was followed up to a point situated so 

closely to / that the liquid-vapourline, which was then followed, was 

situated scarcely above FA. 

The excess of chloral was, therefore, exceedingly small, but in 

spite of this, B# was situated distinctly above LF. The position of 

LE depends, in a large measure, on the gas-volume above the solid 

compound, as this determines the extra pressure of the excess of 

the component, which is totally contained in the same; so long as 

no liquid occurs. It appeared, in fact, to be an extremely difficult 

matter to prepare chloralalecoholate in such a state of purity that 

it exhibited the lowest imaginable sublimationline LF, which meets 

the three-phaseline in F. 
Similar sublimation lines may also occur with mixtures containing 

excess of alcohol. But also in this case, even with a very small 

excess of alcohol we _ shall retain liquid even at low temperatures 
and, therefore, obtain branch C7F of the three-phaseline. Such hap- 
pens, for instance, always when we use crystals of the compound 
_which have been crystallised from excess of alcohol. They then 

contain sufficient mother-liquor. 
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We then notice the peculiar phenomenon that the compound is 

apparently quite solid till close to the melting point and we find 

for the vapour pressure the curve C7'F, whilst the superfused liquid 

gives the vapour pressureline /’A, which is situated much lower. 
Ramsay has found this previously without being able to give an 

explanation, as the situation of the three-phaseline was unknown 

at that period. ; 
In the case of anilinehydrochloride, it was not difficult, on 

account of the great volatility of HCl, to determine sublimationlines 

when an excess of this component was present. In Fig. 2 two such 

lines are determined BF and b,L,. From £, the three-phaseline was 

followed over the piece /,H, afterwards the liquid-vapourline #7, /,. 

From Z£ also successively HH and HJ. With a still smaller excess 

of hydrogen chloride we should have stopped even nearer to /' on 

the three-phaseline. 
In the case of chloralaleoholate we noticed also the phenomenon 

that-a solid substance which dissociates after fusion may, when 

heated not too slowly, be heated above its meltingpoint, a case lately 

observed by Day and ALLEN on melting complex silicates, but which 

had also been noticed with the simply constituted chloralhydrate. 

An instance of the third type of a three-phaseline where the 

maximum and minimum have disappeared in the lower branch of 

the three-phase line has not been noticed as yet. 
The two types now found will, however, be noticed frequently 

with other dissociable compounds such as those mentioned above, 

and therefore enable us to better understand the general behaviour 

of such substances. 

Physics. — “On the polarisation of Rontgen rays.” By Prof. H. Haga. 

In vol. 204 of the Phil. Trans. Royal Soc. of London p. 467, 
1905 BarkLA communicates experiments which he considers as a 

decisive proof that the rays emitted by a Réyrcen bulb are partially 

polarised, in agreement with a prediction of BLonpLor founded upon 

the way in which these rays are generated. 

In these experiments BarkLA examined the secondary rays emitted 

by air or by some solids: paper, aluminium, copper, tin, by means 

of the rate of discharge of electroscopes. In two directions perpen- 

dicular to one another and both of them perpendicular to the direction 

of the primary rays, he found a maximum and a minimum for the 

action of the secondary rays emitted by air, paper and aluminium, 
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The difference between the maximum and minimum amounted to 
about 20°/,. 

I had tried to examine the same question by a somewhat different 
method. A pencil of RénTcGEN rays passed through a tube in the 
direction ef its axis, without touching the wall of the tube. A photo- 

graphic film, bent cylindrically, covered the inner wall of the tube 

in order to investigate whether the secondary rays emitied by the 

air particles showed a greater action in one direction than in another. 

I obtained a negative result and communicated this fact to Barkua, 

who advised me to take carbon as a very strong radiator for secon- 
dary rays. I then made the following arrangement. . 

* 

a 

— , | 

Let S, (fig. 1) be the front side of a thick-walled leaden box, 

in which the R6énremn bulb is placed; SS, and S, brass plates 
10 x 10¢.m. large and 4 m.m. thick. Their distance is 15 ¢.m. and 

they are immovably fastened to the upper side of an iron beam. In 
the middle of these plates apertures of 12 m.m. diameter were made. 

A metal cylinder A is fastened to the back side of S,; a brass tube 
B provided with two rings Rk, and R, slides into it °*). 

An ebonite disk # in which a carbon bar is fastened fits in 
tube 6. This bar is 6 ¢.m. long and has a diameter of 14 m.m. At 

one end it has been turned off conically over a length of 2 c.m. 

1) Fig. 1 and 2 are drawn at about half their real size, 
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The aperture in S, was closed by a disk of black paper; the back 

side of A was closed by a metal cover, which might be screwed off. 

The dimensions were chosen in such a way, that the boundary 

of the beam of ROénTGEN rays, which passed through the apertures 

in S,, S,and/S,, lay between the outer side of the carbon bar and 

the inner side of the tube B. The photographic film covering the 
inside of B was therefore protected against the direct RONTGEN rays. 

If we accept Barka’s supposition on the way in which the 

secondary beams are generated in bodies of small atomic weight, 

and if the axis of the primary beam perfectly coincided with that 

of the carbon bar, then a total or partial polarisation of the RONTGEN 

rays would give rise to two maxima of photographic action on 

diametrically opposite parts of the film and between them two 
minima would be found. From the direction of the axis of the cathode 

rays the place of these maxima and minima might be deduced. 

A very easy method proved to exist for testing whether the primary 

beam passed symmetrically through the tube 6 or not. If namely 

the inner surface of cover D was coated by a photographie plate or 

film, which therefore is perpendicular to the axis of the carbon bar 

then we see after developing a sharply defined bright ring between 
the dark images of the carbon bar and of the ebonite disk. This ring 

could also be observed on the fluorescent screen — but in this case 

of course as a dark one, — and the RoéntcEn bulb could easily 
be placed in such a way, that this ring was concentric with the 

images of the carbon bar and of the ebonite disk. 
This ring proved to be due to the rays that diverged from the 

anticathode but did not pass through the carbon bar perfectly parallel 

to the axis and left it again on the sides; these rays proved to 

be incapable of penetrating the ebonite, but were totally absorbed by 

this substance; when the ebonite disk was replaced by a carbon one, 

then the ring disappeared; it is therefore a very interesting instance 

of the selective absorption of ROnTGEN rays’). 
When in this way the symmetrical passage of the RONTGEN rays 

had been obtained, then the two maxima and minima never appeared, 

neither with short nor with long duration of the experiment, though 

a strong photographic action was often perceptible on the film. Such 
an action could for instance already be observed after one hour’s 

exposure, if an induction-coil of 30 cm. striking distance was used 

with a turbine interruptor. A storage battery of 65 volts was used; 

1) Take for this experiment the: above described arrangement, but a carbon bar 

of 1 cm. diameter and 4 cm. long. 
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the current strength amounted to 7 ampéres; the ROn7rGEN bulb was 

soft’. 

Sometimes I obtained one maximum only or an irregular action 

on the film, but this was only the case with an asymmetric position 
of the apparatus. 

From these experiments we may deduce: 1* that the primary 

RONTGEN rays are polarised at the utmost only to a very slight 

amount, and 2™4 that possibly an asymmetry in the arrangement 
caused the maxima and minima observed in the experiments of 
BarKLA, who did not observe at the same time in two diametrical 

opposite directions. 

With nearly the same arrangement I repeated Bark1a’s experiments 

on the polarisation of secondary rays, which he has shown also by 

means of electroscopes and described Proc. Roy. Soc. Series A vol. 
77, p. 247, 1906. 

/\ 
P 

Lig. 2 

Let the arrow (fig. 2) indicate the direction of incidence of the 
RONTGEN rays on the carbon plate KX large 88 em. and thick 
12 mm. The secondary rays emitted by this plate could pass through 

the brass tube G, which was fastened to S,. This tube was 6 cm. 
long and on the frontside it was provided with a brass plate with 

an aperture of 5 mm. It was placed within the leaden case at 8 cm. 
distance from the middle of the carbon plate; leaden screens protected 

the tube against the direct action of the primary rays. In these 
experiments the above mentioned induction-coil was used with a 
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Wenunett interruptor; the voltage of the battery amounted to 65 Volts 

and the current to 7 Amperes. A very good photo was obtained in 

30 hours and it shows very clearly two maxima and two minima, 

the distance between the centra of the maxima is exactly half the 

inner circumference of the tube, and it may be deduced from their 

position that they are caused by the tertiary rays emitted by the 

conic surface of the carbon bar. 

In this experiment the centre of the anticathode, the axis of the 

carbon bar and the centre of the carbon plate lay in one horizontal 

plane, and the axis of the cathode rays was in one vertical plane 

with the centre of the carbon plate; the axes of the primary and 

the secondary beams were perpendicular to one another. According 

to BarKLA’s supposition we must expect that with this arrangement 

the maximum of the action of the tertiary rays will be found in 

the horizontal plane above mentioned. In my experiment this sup- 

position really proved to be confirmed. In order to know what part 

of the photographic film lay in this plane, a small side-tube F was 

adjusted to the outside of cylinder A, and this tube / was placed 

in an horizontal position during the experiment. A metal tube with 

a narrow axial hole fitted in tube /, so that in the dark room, 

after taking away a small caoutchouc stopper which closed £, I 

could prick a small hole in the film with a long needle through 

this metal tube and through small apertures in the walls of A and 

B. This hole was found exactly in the middle of one of the maxima. 

So this experiment confirms by a photographic method exactly 

what Barkia had found by means of his electroscopes and it proves 

that the secondary rays emitted by the carbon are polarised. 

In some of his experiments BarkLa pointed out the close agreement 

in character of primary and secondary ROnTeEN rays; in my experi- 

ments also this agreement was proved by the radiogram obtained on 

the film placed in cover D. Not only did the secondary rays act 

on the film after having passed through the carbon bar of 6 em., 

but also the bright ring was clearly to be seen, which proves that 

ebonite absorbs all secondary rays which have passed through carbon *). 

The ring was not so sharply defined as in the experiments with 

primary rays; this fact finds a natural explanation in the different 

size of the sources of the radiation: in the case of the primary rays 

the source is a very small part of the anticathode, in the case of 

the secondary rays it is the rather large part of the carbon plate 

which emits ‘rays through the apertures in G and S,. 

1) The ri * was perfectly concentric: the arrangement proved therefore to be 

exactly symmetrical. 
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This agreement makes it already very probable that the Ronrens 
rays also consist in éransversal vibrations; these experiments however 
yield a firmer proof for this thesis. If namely we accept the suppo- 

sition of Barkia as to the way of generation of secondary rays in 

bodies with a small atomic weight, then it may easily be shown, 

that the supposition of a longitudinal vibration of the primary Ronraun 
rays would, in the experiment discussed here, lead to a maximum 
action of the tertiary rays in a vertica/ plane and not in an /ori- 
zontal plane, as was the case. 

Groningen, Physical Laboratory of the University. 

Chemistry. — “Triformin (Glyceryl triformate)’. By Prof. P. van 
RoMBURGH. 

Many years ago I was engayed in studying the action of oxalic 

acid on glycerol ') and then showed that in the preparation of formic 

acid by Lorin’s method diformin is produced as an intermediate product. 
Even then I made efforts to prepare triformin, which seemed to 

me of some importance as it is the most simple representative of the 

fats, by heating the diformin with anhydrous oxalic acid, but I was 

not successful at the time. Afterwards Lorin *) repeated these last 

experiments with very large quantities of anhydrous oxalic acid and 

stated that the formic acid content finally rises to 75°/,, but he does 

not mention any successful efforts to isolate the triformin. 

Since my first investigations, I have not ceased efforts to gain my 

object. I confirmed Lort’s statements that on using very large 

quantities of anhydrous oxalic acid, the formic acid content of the 
residue may be increased and I thought that the desired product 

might be obtained after all by a prolonged action. 
Repeated efforts have not, however, had the desired result, although 

a formin with a high formic acid content was produced from which 

could be obtained, by fractional distillation in vacuo, a triformin still 

containing a few percent of the di-compound. 
I will only mention a few series of experiments which I 

made at Buitenzorg, first with Dr. Nanninea and afterwards with 

Dr. Lone. In the first, a product was obtained which had a sp.gr. 1.809 

at 25°, and gave on titration 76.6°/, of formic acid, whilst pure 

triformin requires 78.4°/,. The deficiency points to the presence of 

fully 10°/, of diformin in the product obtained. 

1) Compt. Rend. 93 (1881) 847. 

2) Compt. Rend. 100 (1885) 282. 
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In the other, the diformin, was treated daily, during a month, 

with a large quantity of anhydrous oxalic acid, but even then the 

result was not more favourable. 

The difficulty in preparing large quantities of perfectly anhydrous 

oxalic acid coupled with the fact that carbon monoxide is formed 
in the reaction, which necessitates a formation of water from the 

formic acid, satisfactorily explains the fact that the reaction does not 

proceed in the manner desired. A complete separation of di- and triformin 

cannot be effected in vacuo as the boiling points of the two compounds 

differ but little. . 

I, therefore, had recourse to the action of anhydrous formic acid 

on. diformin. I prepared the anhydrous acid by distilling the strong 

acid with sulphuric acid in vacuo and subsequent treatment with 

anhydrous copper sulphate. Even now I did not succeed in preparing 

the triformin in a perfectly pure condition, for on titration it always 

gave values indicating the presence of some 10°/, of diformin. 

Afterwards, when 100°/, formic acid had become a cheap com- 
mercial product, I repeated these experiments on the larger scale, 

but, although the percentage of diformin decreased, a pure triformin 

was not obtained. 

I had also tried repeatedly to obtain a crystallised product by 

refrigeration but in vain until at last, by cooling a formin with 

high formic acid .content in liquetied ammonia for a long time, I 

was fortunate enough to notice a small crystal being formed in 

the very viscous mass. By allowing the temperature to rise gradually 

and stirring all the while with a glass rod, I succeeded in almost 

completely solidifying the contents of the tube. If now the crystals 
are drained at O° and pressed at low temperature between filter 

paper and if the said process is then repeated a few times, we 

obtain, finally, a perfectly colourless product melting at 18°, which on 
being titrated gave the amount of formic acid required by triformin. 

The sp. gr. of the fused product ‘at 18° is 1.320. 

ji tl 
MR. 35.22; calculated 35.32. 

The pure product when once fused, solidifies on cooling with great 

difficulty unless it is inoculated with a trace of the crystallised 

substance. On rapid crystallisation needles are obtained, on slow 

crystallisation large compact crystals are formed. 

In vacuo if may be distilled unaltered; the boiling point is 163° at 

38™™, On distillation at the ordinary pressure it is but very slightly 

decomposed. The boiling point is then 266°. A product contaminated 
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with diformin, however, cannot be distilled under those circum- 

stances, but is decomposed with evolution of carbon monoxide and 

dioxide and formation of allyl formate. 

If triformin is heated slowly a decided evolution of gas is noticed 

at 210° but in order to prolong this, the temperature must rise 
gradually. The gas evolved consists of about equal volumes of carbon 

monoxide and dioxide. The distillate contains as chief product ally! 
formate, some formic acid, and further, small quantities of ally] 
alcohol. In the flask a little glycerol is left’). 

Triformin is but slowly saponified in the cold by water in which 

it is insoluble, but on warming saponification takes place rapidly. 
Ammonia acts with formation of glycerol and formamide. With 

amines, substituted formamides are formed, which fact I communi- 

cated previously ’*). 

The properties described show that triformin, the simplest fat, 
differs considerably in its properties from the triglycerol esters of 

the higher fatty acids. 

Chemistry. — “On some derivatives of 1-3-5-hexatriene’. By 

Prof. P. van Romspuren and Mr. W. van Dorssen. 

In the meeting of Dec. 30 1905 it was communicated that, by 

heating the diformate of s-divinylglycol we had succeeded, in pre- 
paring a hydrocarbon of the composition C,H, to which we gave 

the formula: 

CH, = CH — CH = CH — CH = CH,. 

Since then, this hydrocarbon has been prepared in a somewhat 

larger quantity, and after repeated distillation over metallic sodium, 

50 grams could be fractionated in a Laprensvre flask in an atmosphere 

of carbon dioxide. 
The main portion now boiled between 77°—78°.5 (corr.; pressure 

764.4 mm.). 

Sp. GY.13.5 0.749 

ND1i3.5 1.4884 

Again, a small quantity of a product with a higher sp. gr. anda 

larger index of refraction could be isolated. 

_ 1) This decomposition of triformin “has induced me to study the behaviour Of 
the formates of different glycols and polyhydric alcohols on heating. Investigations 
have been in progress for some time in my laboratory. 

2) Meeting 30 Sept. 1905. 
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In the first place the action of bromine on the hydrocarbon was 
studied. 

If to the hydrocarbon previously diluted with chloroform we add 
drop by drop, while agitating vigorously with a Wirt stirrer, a 

solution of bromine in the same solvent, the temperature being — 10°, 

the bromine is absorbed instantly and as soon as one molecule has 

been taken up the liquid turns yellow when more is added. If at 

that point the addition of bromine is stopped and the chloroform 

distilled off in vacuo, a crystalline product is left saturated with an 

oily substance. By subjecting it to pressure and by recrystallisation 

from petroleum ether of low boiling point, fine colourless crystals 
are obtained which melt sharply at 85°.5—86° ’). 

A bromine determination according to Limpic gave 66.84°/,, C,H,Br, 

requiring 66.65°/,. 

A second bromine additive product, namely, a tetrabromide was 

obtained by the action of bromine in chloroform solution at O° in - 
sunlight; towards the end, the bromine is but slowly absorbed. The 

chloroform is removed by distillation in vacuo and the product 
formed is recrystallised from methyl alcohol. The melting point les 

at 114°—115° and does not alter by recrystallisation. Analysis showed 
that four atoms of bromine had been absorbed. 

Found: Br: 80.20. Calculated for C,H,Br, 79.99. 

A third bromine additive product was found for the first time in 

the bromine which had been used in the preparation of the hydro- 

carbon to retain any hexatriene carried over by the escaping gases. 

Afterwards it was prepared by adding 3 mols of bromine to the 
hydrocarbon diluted with 4 vol. of chloroform at 0° and then heating 
the mixture at 60° for 8 hours. The reaction is then not quite com- 
pleted and a mixture is obtained of tetra- and hexabromide from 

which the latter can be obtained, by means of ethyl acetate, as a 

substance melting at 163°.5—164°. 
Found: Br. 85.76. Calculated for C,H,Br, 85.71. 
On closer investigation, the dibromide appeared to be identical 

with a bromide obtained by Griner') from s. divinyl glycol with 

phosphorus tribromide; of which he gives the melting point as 
84°.5—85°. A product prepared according to GrRineR melted at 

85°.5—86° and caused no lowering of the meltingpoint when added 
to the dibromide of the hydrocarbon. 

Griner obtained, by addition of bromine to the dibromide prepared 

from his glycol, a tetrabromide melting at 112° together with a 

1) Not at 89° as stated erroneously in the previous communication, 
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product melting at 108°—109°, which he considers to be a geome- 

trical isomer. On preparing *) the tetrabromide according to Griner the 

sole product obtained was that melting at 112°, which proved identical 

with the tetrabromine additive product prepared from the hydro- 

carbon, as described above. For a mixture of these two bromides 

exhibited the same meltingpoint as the two substances separately. 

Prolonged action of bromine on the tetrabromide according to 

Griner, yielded, finally, the hexabromide melting at 163°—164°, which 

is identical with the one prepared from the hydrocarbon. 

The bromine derivatives described coupled with the results. of 

GRINER prove that our hydrocarbon has indeed the formula given above. 
According to THIELE’s views on conjugated double bonds we might 

have expected from the addition of two atoms of bromine to our 

hexatriene the formation of a substance with the formula 

CH,Br — CH = CH —CH =>CH—CH,Br. . . (1) 

or 

CH,Br — CH = CH — CHBr —CH=CH,. . . (2) 

from the first of which, on subsequent addition of two bromine 

atoms the following tetrabromide would be formed. 

CH,Br — CHBr — HC = CH — CHBr—CH,Br. . . (3) 

As, however, the dibromide obtained is identical with that prepared 

from s. divinyl glycol, to which, on account of its mode of formation, 

we must attribute the formula 

CH, = CH —CHBr— CHBr—CH=CH,. . . (4) 

(unless, what seems not improbable considering certain facts observed, a 

bromide of the formula (1) or (2) should have really formed by 

an intramolecular displacement of atoms) the rule of TureELE would 

not apply in this case of two conjugated systems. 

Experiments to regenerate the glycol from the dibromide have 

not as yet led to satisfactory results, so that the last word in this 

matter has not yet been said. The investigation, however, is being 

continued. 

Meanwhile, it seems remarkable that only the first molecule of 

bromine is readily absorbed by a substance like this hexatriene, which 

contains the double bond three times. 
By means of the method of Sapatier and SENDERENS, hexatriene 

may be readily made to combine with 6 atoms of hydrogen. If its 

1) Ann. chim. phys. [6] 26. (1892) 381. 
2) Investigations on a larger scale will have to decide whether an isomer, melt- 

ing at 108°, really occurs there as a byproduct which then exerts but a very 

slight influence on the melting point of the other product. 

8 

Proceedings Royal Acad. Amsterdam. Vol. 1X. 
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vapour mixed with hydrogen is passed at 125°—130° over nickel 

reduced to a low temperature, the hydrogen is eagerly absorbed and 

a product with a lower boiling point is obtained, which, however, 

contains small quantities of unsaturated compounds (perhaps also 

cyclic ones). In order to remove these, the product was treated 

with bromine and after removal of the excess and further purification 

it was fractionated. As a main fraction, there was obtained a liquid 

boiling at 68°.5—69°.5 at 759.7 mm. 
Sp. gr-,,0 = 0,6907 np == 1.3919. 

Although the boiling point agrees with that of the expected hexane 

the sp. gr. and the refraction differ still too much from the values 

found for hexane by Britunt and by Eykman’). 
Therefore, the product obtained from hexatriene was shaken for 

some time with fresh portions of fuming sulphuric acid until this 

was no longer coloured. After this treatment were obtained 

one fraction of 
B. p. 69°—70°, Sp. gr.,, 0.6718 np,, 1.88250. 

- and another of 

B. p. 69°.7—70°5, Sp. gr.,, 0.6720, np,, 1.38239. 

An n-hexane prepared in the laboratory, according to Briiuu *) by 

Mr. ScHERINGA gave the following values 

B. p. 69°, Sp. gr.,, 0.664 np,, 1.3792 

whilst an n-hexane prepared, from diallyl according to SABATIER and 

SENDERENS, by Mr. SINNIGE gave 

B. p. 68.5°—70,° Sp. gr.,, 0.6716, np,, 1.38211. 

It is, therefore, evident that the hexane obtained by SaBatimr’s, and 

SENDERENS process still contains very small traces of impurities. 

There cannot, however, exist any doubt that 1-3-5-hexatriene 

absorbs 6 atoms of hydrogen with formation of normal hexane. 

Of greater importance, however, for the knowledge of the new 

hydrocarbon is the reduction by means of sodium and absolute 
alcohol. 

If, as a rule, unsaturated hydrocarbons are not likely to take up 

hydrogen under these circumstances, it becomes a different matter 

when a conjugated system is present. Now, in 1-3-5-hexatriene, two 

conjugated systems are found and we might therefore expect the 

occurrence of a 2-4-hexadiene : 

CH,—CH—CH—CH=CH—CH, 

1) Briint (B.B. 27, (1894) 1066) finds Sp. gr.o9 = 0.6603, nDoyp = 1.38734, 

Eyxman (R. 14, (1881) 187) Sp.gr.44 = 0.6652 npd\, = 1.87725. 

2) Ann, 200. 183. 
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or, of a 2-5-hexadiene : 

CH,—CH=CH—-CH,—CH=CH 

The first, still having a conjugated system can again absorb two 
atoms of hydrogen and then yield hexene 3. 

CH,—CH,—CH=CH—CH,—CH 

ist the other one cannot be hydrogenated any farther a 
The results obtained seem to point out that both reactions have 

indeed taken place simultaneously, and that the final product of the 
hydrogenation is a mixture of hexadiene with hexene. 

10 grams of 1-3-5-hexatriene were treated with 100 grams of 
boiling absolute alcohol and 15 grams of metallic sodium. After 
the sodium had dissolved, a current of steam was passed, which 
caused the ready separation of the hydrocarbon formed, which, 

however, still contained some alcohol. After redistillation, the 

hydrocarbon was washed with water, dried over calcium chloride 
and distilled over metallic sodium. 

At 75°.5 it commenced to boil and the temperature then slowly 
rose to 81°. The liquid was collected in two fractions. 

fraction I. B.p. 75°.5—78°, Sp.gr.,, 0.73826 ny,, = 1.4532 
Ra | Weis és Riernny 6 Beri a — , = 1.4665 

These fractions were again united and once more treated with 

sodium and alcohol. But after purification and drying no liquid of 
constant boiling point was obtained, for it now commenced to boil 
at 72°.5, the temperature rising to 80°. The main fraction now 

possessed the following constants: 

B.p. 72°.5—74°, Sp.gr.,, 0.7146 np,, 1.4205 

The fraction 75°—80 gave np,, 1.4351. 
An elementary analysis of the fraction boiling at 72°.5—74° gave 

the following result: 

Found Calculated for C,H,, ~° Calculated for C,H,, 
C 87.06 or.7 85.6 

BH 13.32 12:3 14.4 

The fraction investigated consists, therefore, probably of a mixture 

of C,H,, and C,H,,. The quantity collected was insufficient to effect 
another separation. We hope to be able to repeat these experiments 

on a larger scale as soon as we shall have again at our disposal a 
liberal supply of the very costly primary material. — 

Utrecht, Org. Chem. Lab. University. 

1) If CH,=CH—CH,—CH,—CH=CH, should be formed, this will not readily 

absorb more hydrogen either. 
8* 
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Mathematics. — “The force field of the non-Huchdean spaces 

with negative curvature’. By Mr. L. E. J. Brouwer. (Commu- 

nicated by Prof. D. J. KorTEwEe). 

A. The hyperbolic Spy. 

I. Let us suppose a rectangular system of coordinates to be placed 

thus that ds = VA? du? + B? dv? + C? dw?, and let us assume a line- 

vector distribution X with components X,, X,, X», then the integral 
of X along a closed curve is equal to that of the planivector Y over 
an arbitrary surface bounded by it; here the components of Y are 
determined by: 

1 (d(X%B) a 28 ©) Cy 
BC | Ww 

For, if we assume on the bounded surface curvilinear coordinates 

€ and 4, with respect to which the boundary is convex, the surface 

integral is 

ae dv 0 (X, B) _ 9 (Xw C) 

SG: x ae) Ow Ov ) a5 a 

Joining in this ae? = terms containing X, C and adding and 

0(X,C) dw dw 
eee 3 : ay we obtain: 

0 (X» C w Ow fosan| (Xv C) dw O(Xw C) du 

Y,== 

subtracting 

Oy UE ae aye 
Integrating this partially, the first term with respect to 7, the second 

to §, we shall get HE X, Cdw along the boundary, giving with the 

integrals be X, Bdv and he X, Adu analogous to them the line integral 

of X along the boundary. 

In accordance with the terminology given before (see Procee- 

dings of this Meeting p. 66—78)') we call the planivector Y the 
first derivative of _X. 

1) The method given there derived from the indicatrix of a convex boundary 
that for the bounded space by frent-position of a point of the interior ; and the method 

understood by the vector Xpgr... a vector with indicatrix opqr.... We can however 

determine the indicatrix of the bounded space also by post-position of a point of the 
interior with respect to the indicatrix of the boundary; and moreover assign to 

the vector Xpgr... the indicatrix pgr...o. We then find: 
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Analogously we find quite simply as second derivative the scalar: 

a a 
2= 35 

According to the usual way of .. the first derivative is 
the rotation vector and the second the divergency. 

. 1 Yr . e . . 

II. If X is to be a 2X, i.e. a second derivative of a planivector 

=, we must have: 

1 (0% B) 3 wee 2 ony 
a 

a Be te dn 

and it is easy to see that for this is necessary and sufficient 

A= 0. 

Ill. If X is to be a oX, i.e. a first derivative (gradient) of a 
scalar distribution g, we must have: 

dg mh OD aoe 
poe CCB SC 

and it is easy to see, that to this end it will be necessary and 

sufficient that 
¥ = 6: 

IV. It is easy to indicate (comp. Scurrinc, Géttinger Nachrichten, 

1870) the 0X, of which the divergency is an isolated scalar value in 

the origin. 
It is directed according to the radius vector and is equal to: 

1 
. 9 

sinh?r 

when we put the space constant = 1 *). 

OX, ae 
n Ip 

Veycty...0t x a ey 
p p+l me 02x 

poe q. rr ae pHi 
Ty+1 p+ 

1b: Se 17 

oS Buta, 
“gh ars 

These last definitions include the well known divergency of a vector, and the 

gradient of a potential also as regards the sign; hence in the following we shall 

start from it and we have taken from this the extension to non-Euclidean spaces. 

2) For another space constant we have but to substitute in the following formulae 

r 
— for r. 
R 
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It is the first derivative of a scalar distribution : 

ST Seats 

and has in the origin an isolated divergency of 4. 

V. In future we shall suppose that X has the field property and 

shall understand by it, that it vanishes at infinity in such a manner 

that in the direction of the radius vector it becomes of lower order 

1 : ; : : : 
than — and in the direction perpendicular to the radius vector of 

i 

lower order than e~”. 

For a 0X this means that it is derived from a scalar distribution, 

having the potential property, i.e. the property of vanishing at infinity. 

Now the theorem of Gruen holds for two scalar distributions (comp. 

Fresporr, diss. Gottingen, 1873): 

dw 2 = op Nae fox w-fov y.dr= fpf ao— fy g.dtr 

(=f {grad. ~, grad. w} i.) : 

If now g and w» both vanish at infinity whilst at the same time 

lim. p we? = 0, then the surface integrals disappear, when we apply 

the theorem of Green to a sphere with infinite radius and 

fo Viy.de= fw. 7? ody, 

integrated over the whole space, is left. | 

Let us now take an arbitrary potential function for g and 

—1l1-+4cothr for yw, where r represents the distance to a point P 

taken arbitrarily, then these functions will satisfy the conditions of 

vanishing at infinity and lim. gy we? = 0, so that we find: 

An pp = [ (— 1+ coh) yg de 

So, if we put —1- cothr=F(r), we have: 

oe 
Be. 27 oX xey{ Ye Fad... Sa 

VI. We now see that there is no vector distribution with the field 

property, which has in finite nowhere rotation and nowhere diver- 

eency. For, such a vector distribution would have to have a potential, 

having nowhere rotation, but that potential would have to be every- 

where 0 according to the formula, so also its derived vector, 
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From this ensues: a vector field is determined uniformly by its 
rotation and its divergency. 

VII. So, if we can indicate elementary distributions of divergency 
and of rotation, the corresponding vector fields are elementary fields, 
i. e. the arbitrary vector field is an arbitrary space-integral of such 
fields. 

_ For such elementary fields we find thus analogously as in a Euclidean 
space (l.c. p. 74 seq.): 

1. a field £,, of which the second derivative consists of two 

equal and opposite scalar values, close to each other. 
2. a field #,, of which the first derivative consists of equal 

planivectors in the points of a small circular current and perpendicular 
to that same current. 

At finite distance from their origin the fields H, and EH, are here 

again of the same identical structure. 

VIII. To indicate the field 4, we take a system of spherical 
coordinates and the double point in the origin along the axis of the 

system. Then the field #, is the derivative of a potential: 

cos —~ 

It can be regarded as the sum of two fictitious “fields of a 
single agenspoint’, formed as a derivative of a potential — 1 + cothr, 

which have however in reality still complementary agens at infinity. 

IX. The field H, of a small circular current lying in the equator 

plane in the origin is outside the origin identical to the above 
field #,. Every line of force however, is now a closed vector 

circuit with a line integral of 4 along itself. We shall find of this 

field #, a planivector potential, lying in the meridian plane and 

independent of the azimuth. 

In order to find this in a point P with a radius vector 7 and 

spherical polar distance g we have but to divide the total current 

between the meridian plane of P and a following meridian plane 

with difference of azimuth d%, passing between P and the positive 

axis of revolution, by the element of the parallel circle through P 

over dd. For, if ds is an arbitrary line element through /P in the 
meridian plane making with the direction of force an angle fF, if dh 
is the element of the parallel circle, = the above mentioned current 

and H the vector potential under consideration, we find: 

d= — dh. Xds sin F, 
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whilst the condition for A is: 

d(Hdh) = dh ds X sin Fr. 
ey 

So we have but to take = for H. 
(2 

To find = we integrate the current of force within the meridian zone 

through the spherical surface through P. The force component perpen- 
shr Z 2 P co 

dicular to that spherical surface is 2 st oe aan therefore 
sinh 7 

sinh®r 

* coshr 
==: ak decor . sinhr dp . sinhr sin p dd = dd coth r . sin? gp. 

So: 

a a ars Bee ee Q: 
dh — sinhrsin gd} — sinh?r 

X. From this ensues, that if two arbitrary vectors of strength unity are 

given in different points along whose connecting line we apply a third 
coshr : 

vector = — 5» the volume product of these three vectors, i.e. the 

volume of the parallelepipedon having these vectors as edges taken 

with proper sign, represents the linevector potential according to the 

first (second) vector, caused by an elementary magnet with moment 

unity according to the second (first) vector. 

To find that volume product, we have first to transfer the two 
given vectors to a selfsame point of their connecting line, each 

one parallel to itself, i.e. in the plane which it determines with that 
connecting line, along which the transference is done, and maintaining 

the same angle with that connecting line. 

The volume product w(S,,5,) is a symmetric function of the two 

vectors unity of which we know that with integration of S, along 

a closed curve s, it represents the current of force of a magnet unity 

according to S, through s,, in other words the negative reciprocal energy 

of a magnet unity in the direction of S, and a magnetic scale with 

intensity unity within s,, in other words the force in the direction 
of S, by a magnetic scale with intensity unity within s,, in other 

words the force in the direction of S, by a current with intensity 
unity along s,. So we can regard yw (S,, S,) as a force in the direction 

of S, by an element of current unity in the direction of §,. 

With this we have found for the foree of an element of current 

with intensity unity in the origin in the direction of the axis of the 

system of coordinates ; 
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coshr_ 
——— sing, 
sinh?r 

directed perpendicular to the meridian plane. 

XI. For the fictitious field of an element of current (having mean- 
while everywhere current, i. e. rotation) introduced in this way we 
shall find a linevector potential V, everywhere “parallel” (see above 
under § X) to the element of current and the scalar value of which 
is a function of 7 only. 

Let us call that scalar value U, and let us regard a small elemen- 

tary rectangle in the meridian plane bounded by radii vectores from 

the origin and by circles round the origin, then the line integral of 
V round that rectangle is: 

0 0 
— a tu ain gy sinh r dg} dr — ap {U cos p dr} dy. 

This must be equal to the current of force through the small 
rectangle: 

coshr . } 
——— snp. sinh r dg. dr, 
sinh?r 

from which we derive the following differential equation of U 
with respect to 7: 

) 

U —— {U sinh r} = coth r, 
Or 

the solution of which is: 

U = cosech r — 4 rsech? kr +c. sech? 4 r. 

Let us take c=0, we shall then find as vector potential V of 
an element of current unity /: 

cosech r — 4 rsech* 4 r= F, (r), 

directed parallel to #. 

Let us now apply in an arbitrary point of space a vector G, then 

the vector V has the property that, when integrated in G along an 

elementary circuit whose plane is perpendicular to G, it indicates 

the force in the direction of G, caused by the element of current 
H, or likewise the vector potential in the direction of / caused by 

an elementary magnet with intensity unity in the direction of G. 

So, if we call of two vectors unity Hand F’ the potential x (Z, F), 

the symmetric function F,(r, cos ¢, where 7 represents the distance 

of the points of application of the two vectors and g their angle 

after parallel transference to a selfsame point of their connecting line, 

we know that this function x gives, by integration of e.g. # over 
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a closed curve e not only the negative energy of a magnetic scale 
with intensity unity bounded by e in the field of an element of 
current unity F, but also the component along F of the vector 

potential caused by a current unity along e. 

From this ensues for the vector V of an element of current, 

that when the element of current is integrated to a closed current 

it becomes the vector potential of that current determined uniformly 

on account of its flux property. 

So really the vector potential of a cae i.e. of a field of currents 

is obtained as an integral of the vectors V of the elements of current. 

XII. We can now write that in an arbitrary point: 

Sa! 

ae FG) ie, 2 2 ee 
Tt 

where we first transfer in a parallel manner the vector elements 

of the integral to the point under consideration and then sum up. 
Let us now consider an arbitrary force field as if caused by its two 

derivatives (the magnets and currents), we can then represent to our- 

selves, that both derivatives, propagating themselves according to a 

function of the distance vanishing at infinity, generate the potential 

of the field. 

The field X is namely the total derivative of the potential : 

i Fart f A Wey cee 
4x An 

The extinguishment of the scalar potential is greater than that of the 

vector potential ; for, the former becomes at great distances of order e—?", 

the latter of order re—”. Farther the latter proves not to decrease 

continuously from o to O, but at the outset it passes quickly 

through O to negative, it then reaches a negative maximum and 

then according to an extinguishment re—” it tends as a negative (i.e. 

directed oppositely to the generating element of current) vector to zero. 

XI]. The particularity found in Euclidean _ spaces, _ that 
1 

F, (vr) = F, (r) = —, is founded upon this, that in Euclidean spaces pa 

the operation of twice total derivation is found to be alike for scalar 
distributions and vector distributions of any dimensions (l.c. p. 70). 

Not so in non-Euclidean spaces; e.g. in the hyperbolic Sp, we 

find for the Y’* of a scalar distribution w in an arbitrary point 
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when choosing that point as centre of a system of RieMANN normal 
coordinates 

(i e. a system such that ds = 
Vda? + dy? + dz? 

2? + y? a 2? 

+ 

07% O7u O7u 
Ne ide ~(S+5et5a) 

but as ‘7? of a vector distribution with components X, Y and Z, 
we find for the z-component X,2: 

i= 

xX.— ox aN, «OFX 

ee | =. Ox? cg Oy? =) 

The hyperbolic Sp,. 

I. As first derivative Y of a vector distribution NX we find a 

_ planivector Sata by a scalar value: 

0(X, A) 0 (X B) 
AB ale | 

As second derivative Z we Piha the scalar : 

1 (0(X%,B) , 0(X, A) | 
AB Ou F Ov ; 

Il. If X is to be a 2X, i.e. a second derivative ofa planivector 

with scalar value w we must have: 

Ow Ow 
x, = —- = ; xy = —,; 

r Bov 7, Ae 

to which end is necessary and sufficient: Z= 0. 
a ws 1 = - 2 . 

If X is to be a oX, i.e. a first derivative of a scalar g we must 

have: 

Og Og 
Ds = — ; Xy — — ’ 

Adu Bov 

to which end is necessary and sufficient: Y = 0. 

Ill. The }N, of which the divergency is an isolated scalar value 

in the origin, becomes a vector distribution in the direction of the 

radius vector : 
1 

sinh r 

It is the first derivative of a scalar distribution : 

Leoth 3 r. 
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The divergency in the origin of this field is 2z. 
The scalar distribution /coth4r has thus the potential property. 

(This was not the case for the field of a single agens point in the 

Euclidean Sp,). 

IV. In the following we presuppose again for the given vector 

distribution the field property (which remains equally defined for 2 

and for » dimensions as for 3 dimensions); no vector field is possible 

that has nowhere rotation and nowhere divergency; so each vector 

field is determined by its rotation and its divergency and we have 

first of all for a gradient distribution: 

yX = = l coth 4r dt, 

0X = + ee 

V. For the field #, of an agens double point we find the gradient 

of the potential : 

cos — 

‘sinh 

It can be broken up into “fields of a single agens point” formed 

as a derivative of a potential /coth }r. 

VI. Identical outside the origin to the above field £, is the field 

E, of a double point of rotation, whose axis is perpendicular to the 

axis of the agens double point of the field /,. For that field #, we 

find as scalar value of the planivector potential in a point P the total 

current of foree between P and the axis of the agens double point, 

that is: 
sin & coth r. 

So if are given a vector unity V and a scalar unity S and if 
we apply along their connecting line a vector cothr, the volume 

product w of V, S and the vector along the connecting line is the 

scalar value of the planivector potential in S by a magnet unity 

in the direction of JV. 

Of w we know that when summing up S out of a positive scalar 

unity S, and a negative S, it represents the current of force of a 

magnet unity in the direction of V passing between S, and S,, in 
other words the negative reciprocal energy of a magnet unity in the 

direction of V and a magnetie strip S,.S, with intensity unity, in 
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other words the force in the direction of V by a couple of rotation 
S,—>8S,. So we can regard w as the force in the direction of V by 

an isolated rotation in S. So that we must take as fictitious “force 
field of an element of rotation unity” 

coth r, 

directed perpendicularly to the radius vector. In reality, however, this 
force field has rotation everywhere in Sp,. 

VII. Let us now find the sealar value U, function of 7, which we 

must assign to a planivector potential, that the ‘field of an element 

of rotation unity” be its second derivative. We must have: 

dU 
— = — conf: 

dr 

U = lcosech r. 

And we find for an arbitrary oe : 

5 ay. ot 
5, \a/ ef ~ l cosech r dz, 

1 WW aX 
Kay {LE a, ae Rae cl Ge” “Cerny 

And an arbitrary vector field X is the total derivative of the potential 

Wx Wx J Groatf Sao 

VIII. We may now wonder that here in Sp, we do not find 
Ff, and F, to be identical, as the two derivatives and the two 
potentials of a vectordistribution are perfectly dually related to each 
other in the hyperbolic Sp, as well as in the Euclidean Sp,. The 
difference, however, is in the principle of the field property, which 

postulates a vanishing at infinity for the scalar potential, not for the 
planivector potential; and from the preceding the latter appears 

not to vanish, so with the postulation of the field property the duality 
is broken. 

But on the other hand that postulation in Sp, lacks the reasonable 

basis which it possesses in spaces of more dimensions. For, when 

putting it we remember the condition that the total energy of a 

field may not become infinite. As soon as we have in the infinity 

of Spx forces of order e—, this furnishes in a spherical layer with 
thickness dr and infinite radius described round the origin as centre an 
energy of order e—2" & é&"—Dr dr = e—3y dr; which for n = 3 would 
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give when integrated with respect to 7 an infinite energy at infinity of 

Spr. So for n> 3 are excluded hy the field property only vector distri- 

butions which cannot have physical meaning. 

For »=2 however the postulation lacks its right of existence ; 

more sense has the condition (equivalent for 2 > 2 to the field pro- 

perty) that for given rotation and divergency the vector distribution 

must have a minimum energy. Under these conditions we shall once 

more consider the field and we shall find back there too the duality 
with regard to both derivatives and both potentials. 

IX. Let us consider first of all distributions with divergency only 
and let us find the potential function giving a minimum energy for 
given \7’. 

We consider the hyperbolical Sp, as a conform representation of 

a part of a Euclidean Sp, bounded by a circle; if we then apply 
in corresponding points of the representation the same potential, we 

retain equal energies and equal divergencies in corresponding plane 

elements. So the problem runs: 

Which potential gives within a given curve (in this case a circle) 

in the Euclidean Sp, under given divergency distribution a minimum 

energy ? 
According to the theorem of Green we have for this: 

Ou Ou Odu 0.du 4 
Lf oz (5 )ar= fx. eet t= [us — = .d0— [ug du. dt, 

so that, as \(/?du is 0 everywhere within the boundary curve, the 

necessary and sufficient condition for the vanishing of the variation 
of the energy is: 

u =O, along the boundary curve. 

For the general vector distribution with divergency only in the 

hyperbolical Sp, we thus find under the condition of minimum 

energy also, that the potential at infinity must be 0. So we find it, just 

as under the postulation of the field property, composed of fields £,, 
cos p 

inh » ~ 

The lines of force of this field #, have the equation, 

derived from a potential - : 

sin ~ coth r = ¢. 

Only a part of the lines of force (in the Euclidean plane all of 

them) form a loop; the other pass into infinity. None of the equi- 

potential lines, however, pass into infinity; they are closed and are 
all enclosed by the circle at infinity as the line of O-potential. 
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The same holds for the arbitrary oX; of the lines of force one 

part goes to infinity; the potential lines however are closed. 

X. If we now have to find the field with rotation only, giving 
for given rotation distribution a minimum energy, it follows from a 

consideration of the rotation as divergency of the normal vector, that the 

scalar value of the planivector potential at infinity must be 0, and the 

u : : . 
general 2X is composed of fields £,, derived from a planivector 

sin ~ 
potential (whilst we found under the postulation of the field 

r 
property sin ¢ cothr). 

In contrast to higher hyperbolical spaces and to any Euclidean 

and elliptic spaces the fields #, and #, cannot be summed up here 
to a single isolated vector. 

For this field Z, and likewise for the arbitrary 3X the lines of 

force (at the same time planivector potential lines) are clused curves. 

XL We have now found 

Wx 1 —_ 2/ 0 
a 7 f SE booth 3 ve 

ipo 
x= Wf Yi lL coth 4 r dr. 

: 27 

And from this ensues that also the general vector distribution X 
having under given rotation and divergency a minimum energy is 

equal to: 

\a7 x == 
Xdiv. -- Oe wf aa l coth 37 dt + vf 

For, if V is an arbitrary distribution without divergency and without 

rotation in finite, it is derived from a scalar potential function, so it 

has (according to § VIII) no reciprocal energy with Xqiv.; neither 

(as according to §IX all lines of force of X;.. are closed curves 

and a flux of exclusively closed vector tubes has no reciprocal 

energy with a gradient distribution) with X,o:.; so that the energy 

of Xaiv. + Xro.-+ V is larger than that of Xaiv. 4+ Xrot.- 

So finally we have for the general vector distribution of minimum 

energy XX: 

Xx 
Ka Vf SS looth br de 

2 
Lcoth 4 r dt. 
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C. The hyperbolic Spy. 

I. Let us suppose a system of rectangular coordinates, so that 

ds. = V A,u,? Se = Agila 

and let us suppose a linevector distribution XY with components 

X,...X,, then the integral of X along a closed curve is equal to 

that of a planivector Y over an arbitrary surface bounded by it, 

in which the components of Y are determined by: 

a 1 [Oe 2) 
= ae ————}. 

Y is the first derivative or rotation of X. 

Further the starting vector current of X over a closed curved 

Spr is equal to the integral of the scalar Z over the bounded 

volume of that Spn—1; here 

1 0X, Agee 
n 

setebayeeey Ot, 

Z is the second derivative or dwergency of X. 

Oatz, Viz, 

ae ee tg 
Ul. If X is to be a 2X, i.e. a second derivative of a planivector 

=, we must have: 

I (isa Sp ergs 
: 1 5: (eat a Jae 
a sb a So, a a a en eel 

te Aa ena 0. 
n 1 

The necessary and sufficient condition for this is: 

Pi: 

. a . it Y . . . 

If YX is to be a 9X,:i.e. a first derivative of a scalar g, we must 

have: 

0g p ener a 
A, Oz 

The necessary and sufficient condition for this is: 

i sy UY 

Hi, The ae which has as divergency an isolated scalar value in 

the origin (comp. Opitz., Diss. Géttingen, 1881), is directed along 
the radius vector, and if we put the space constant equal to 1 is 

equal to 
1 

sink? 
It is the first derivative of a sealar distribution 
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an 

ar: = 

sino — 
~ i 

and it has in the origin an isolated divergency of kh, (if &,7"—! ex- 

presses the spherical surface of the Euclidean space Sp,). 

IV. For two scalar distributions g and w the theorem of Grenn 
holds (comp. Opitz., l.c.): 

Fy 0 
fox ~ dO,z—1 — gV'* wb . dt, ={vF - dO, —fvvrg - Up 

(= S(V g, Vv). i) 

If at infinity g and w both become O whilst at the same time 

lim pw e"—lir — 0, 

then for an ”—'sphere with infinite radius the surface integrals dis- 
appear and we have left 

fv 2 UNF apt. Inn = [wp s Wg. dtp, 

integrated over the whole space. 

If here we take an arbitrary potential function for g and w, (7) 
for y, where r represents the distance to an arbitrarily chosen 

point P — these functions satisfying together the conditions of the 
formula — we have: 

ks Pp = Jun (RiseNA @ 5 deat 

If thus we postulate for the vector distributions under consideration 

the field property (which remains defined just as for Sp,) we have, 

if we put w, (r)—F, (r), for an arbitrary me 

1 

oX = w [wer Sie a eT 

from which we deduce (compare A § VI) that there is no vector 

field which has in finite nowhere rotation nor divergency; so that 

a vector field is uniformly determined by its rotation and its divergency. 

V. So a vectorfield is an arbitrary integral of : 

1. Fields £,, of which the second derivative consists of two 

equal and opposite scalar values close to each other. 
2. Fields £,, of which the first derivative consists of planivectors 

distributed regularly in the points of a small "—*sphere and perpen- 

dicular to that “—*sphere. 
9 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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At finite distance from their origin the fields #, and £, are of 

identical structure. 

VI. In order to indicate the field #, we assume a spherical 

system of coordinates') and the double point in the origin along 

the first axis of the system. Then the field , is the derivative of 

a potential : 
cos &~ 

sinhn—) 

The lines of force of this field run in the meridian plane. It can 

be regarded as the sum of two fictitious “fields of a single agens- 

point” constructed as derivative ofa potential w,(r) to which, however, 

must be assigned still complementary agens at infinity. 

Vil. The field /£, of a small vortex--—sphere according to the 

space perpendicular to the axis of the double point just considered is 
identical outside the origin to the field /#,. Each line of force is now 

however a closed vector tube with a line integral £, along itself. 

We shall find for this field #, a planivector potential H, lying in 

the meridian plane and dependent only on rand g. It appears then 

simply that this H is a LX. 
Let ¢ be an (m—2)-dimensional element in the ~—2 coordinates 

existing besides r and g, then it defines for each r and g an element 

on the surface of an "—?-sphere of a size dh = ce sinh”"—2r sin"—g, 

and for the entire Sp, what may be called a “meridian zone”. 
We then obtain for the current of force =, passing inside a 

meridian zone between the axis of the system and a point P with 
coordinates 7 and g, if ds represents an arbitrary line element 
through P in the meridian plane under an angle fF with the direction 

of force : 
d= = dh. X ds sin F, 

whilst we can easily find as necessary and sufficient condition for H: 

d (Hdh) = dh. ds. X sin F ; 

j s 
so we have but to take = for H. 

L 

1) By this we understand in Spx a system which with the aid of a rectangular 
system of numbered axes determines a point by 1. 7, its distance to the origin, 
2. g, the angle of the radius vector with 2X), 3. the angle of the projection of 

the radius vector on the coordinate space Xq...Xn with X5, 4. the angle of 

the projection of the last projection on the coordinate space X3...Xn with X3; 

etc. The plane through the X-direction and the radius vector we call the meri- 

dian plane. 
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To find = we integrate the current of force inside the meridian 

zone passing through the "—'spherical surface through P between the 

axis of the system and P. As we have (n—1) cos ced for the 
Sule Tr 

force component perpendicular to that spherical surface we find: 
: b 

= f(—tjoory 

0 

T cosh ' ; : : 
ar sinh r dg .cé sinh "—*r sin"—2g = ce sin ™—y cothr. 

sinh ™r 

>>) coshr 
H=— = —— sing. 

h sinh"—|p 

VIII. If thus are given in different points a line vector L 

unity and an "—2vector W unity and if we put along their con- 

necting line a line vector , then the volume product w of LZ, WV 
sinh™—|p 

and the vector along the connecting line is the *—*vector potential 

in the direction of W caused by an elementary magnet with moment 
unity in the direction of Z. 

We know of w(Z,W) that with integration of W along a closed 
curved Sp,—2 Q it represents the current of force of a magnet unity 
in the direction of Z through Q, in other words the negative reci- 

procal energy of a magnet unity in the direction of Z and a 

magnetic *—'scale with intensity unity, bounded by Q, in other words 

the force in the direction of Z by a magnetic *—'scale bounded 

by Q, in other words the force in the direction of Z by a vortex 

system, regularly distributed over Q and perpendicular to Q. So we 

can regard w(Z,W) as the force in the direction of L by a vortex 

unity, perpendicular to JV. With this we have found for the force 
of a plane vortex with intensity unity in the origin: 

coshr 

sinh "—'r pie 

directed parallel to the operating vortex element and perpendicular 

to the ‘meridian plane’, if now we understand by that plane the 

projecting plane on the vortex element; whilst @ is here the angle of 

the radiusvector with the Sp,—s perpendicular to the vortex element. 

IX. For the fictitious field of a vortex element in the origin intro- 

duced in this way (which meanwhile has vorticity every where in space) 

we shall find a planivector potential, directed everywhere “parallel” 

to the vortex element and of which the scalar value U is a function 

of r only. 
Let us suppose a point to be determined by its azimuth parallel 

Q* 
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to the vortex element and then farther in the Sp*—! of constant azi- 
muth by a system of spherical coordinates, of which we take the 
first axis in the “meridian plane” (see above under § VIII), and in 

the plane of the vortex element, the second in the meridian plane 

perpendicular to the first, and the rest arbitrarily; let us understand 

meanwhile by @ here the angle of the radius vector with the Spa 

perpendicular to the vortex element; let further ¢ be an (x—3)-dimen- 
sional element in the n—3 last coordinates, then this defines for 
each r and ~ an element on the surface of an "—%sphere, of a size 

dk = ce sinh "—%r cos "—8@. 

We then consider a small elementary rectangle in the meridian 

plane bounded by radii vectores out of the origin and circles about 
the origin and a Sp,—1 element consisting of the elements dk erected 
in each point of this small elementary rectangle. Applying to this 

Spn—i-element the reduction of an (—2)-fold integral along the boundary 

to a (n—1)-fold integral over the volume according to the definition 

of second derivative, we find: 

0 
a ip {U cos p . dr. cé sinh *—%r cos "—8g} dp — 

0 
ria {U sing . sinh r dg . ce sinh "—8r cos "—3g} dr = 

r - 

, coshr 
= cé sinh ®—3r cos"—3p . sinh r dg . dr. ———— sin g. 

sinh ®—|p 

dU cosh r 
(a—2) U — sini 20 cosh ee 

dr sinh %—2p 

dU ? ek cosh r 
Bp td ee ee 

The solution of this equation is: 

1 1 
LB oo As Yeas —2(n—2)1 oth P31 ee NR SRO SAS i— ae cosh —2(n—2) kp foot n—3lp dtr + (nD sink a 

So we find as planivector potential V of a-plane vortex: 

1 1 2 
— —_______—._ | coth"—}r .dir=F, (r), 

(n—2) sinh"—27  2"—8 cosh %n—2)hp 

directed parallel to that plane vortex. 

Let us now call / the *—2vector, perpendicular to the plane vortex, 

the field of which we have examined, and let us also set off the 

vector potential V as an"~*vector; let us then bring in an arbitrary 

point of space a line vector G; then the vector V has the property 
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that when integrated in G along a small curved closed Spn—2 in a 
Spn—1 perpendicular to G, it indicates the force in the direction of 
G caused by the current element JZ, or also the vector potential 
in the direction of , caused by an elementary magnet with 
intensity unity in the direction of G. 
Let us now call the potential y(Z,/) of two "—*vectors unity 

HE, F the symmetric function F,(r)cosy, where r represents the 
distance of the points of application of both vectors and g their angle 
after parallel transference to one and the same point of their con- 

necting line, then we know that this function x gives, when e.g. Lis 

integrated over a closed curved Sp,—2 which we shall cal] e, not 
only the negative energy of a magnetic "—'scale with intensity unity 

bounded by e in the field of a vortex unity perpendicular to F' but 

also the component along / of the vector potential caused by a 
system of vortices about e with intensity unity. 

From this ensues again for the vector potential V of a vortex 
element, that when the vortex element is integrated to a system of 
vortices about a closed curved Sp,—2 it becomes the vector potential 
determined according to § VI of that vortex Sp,—9; so that the 

° A 1 ° E ; 
vector potential of an arbitrary »X is obtained as integral of the 

vectors V of its vortex elements, in other words: 

7 2X 
=o i eda tcn. ib: is rae EE} 

where for each point the vector elements of the integral are first 

brought over to that point parallel to themselves and there are 
summed up. 

X. So let us consider an arbitrary force field as if caused by its 
two derivatives (the magnets and the vortex systems), we can then 

imagine that both derivatives are propagated through the space 

according to a function of the distance vanishing at infinity, causing 

thereby the potential of the field. 

For, the field X is the total derivative of the potential: 

ul sf FP. (r) de 4 + — F, (v) de. 

The extinguishment of the scalar potential is the stronger, as it is 

at great distances of order e—®—)", the vector potential only of 

ureer fe 0-2) | 
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Astronomy. — “The luminosity of stars of different types of 

spectrum.” By Dr. A. PanneKkorx. (Communicated by Prof. 

H. G. vAN DE SANDE BAKHUYZEN). 

The investigation of the spectra of stars which showed that, with 

a few exceptions, they can be arranged in a regular series, has led 

to the general opinion that they represent different stages of develop- 
ment gone through by each star successively. VogeE.’s classification 

in three types is considered as a natural system because these types 

represent the hottest and earliest, the further advanced, and the 

coolest stage. This, however, does not hold for the subdivisions : 

the difference in aspect of the lines, the standard in this case, does 

not correspond to the different stages of development mentioned above. 
Much more artificial is the classification with letters, which Pickrrine 

has adopted in his Draper Catalogue; it arose from the practical 
want to classify the thousands of stellar spectra photographed with 

the objective prism. After we have allowed for the indistinctness 

of the spectra which, arising from insufficient dispersion and brightness, 

influenced this classification, the natural affinity between the spectra 

will appear and then this classification has the advantage over that of 

Vocer that the 2"¢ type is subdivided. The natural groups that can 
be distinguished are: class A: the great majority of the white stars 

(Sirius type), Vocr1’s Ia; class B: the smaller number of those stars 
distinguished by the lines of helium, called Orion stars, VocrL’s Id. 

In the continuous series the latter ought to go before the first type 

and therefore they are sometimes called type 0. Class F forms the 

transition to the second type (Procyon); class G is the type of the 

sun and Capella (the E stars are the indistinct representatives of this 

class); class K contains the redder stars of the 2¢ type, which ap- 

proach to the 3¢ type, such as Arcturus (PickeriInG reckons among 

them the H and I as indistinct representatives). The 34 type is 

called in the Draper Catalogue class M. 
The continuity of the stellar spectra is still more evident in the 

classification given by Miss A. Maury. (Annals Harv. Coll. Obs. Bd. 28). 

Miss Maury arranges the larger number of the stellar spectra in 20 

consecutive classes, and accepts groups intermediate to these. The 

classes I—IV are the Orion stars, VI—VIII constitute the first type, 
IX—XI the transition to the 24 type, XIJI—XIV the 24 type 

itself such as the sun, XV corresponds to the redder Arcturus stars, 

XVII—XX constitute the third type. If we consider that from class 

I to Il a group of lines is gradually falling out, namely the hydrogen 

lines of the other series, which are characteristic of the Wolf-Rayet 
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stars or the so-called fifth type stars (Voern IId), it is obvious that 
we must place these stars at the head of the series, as it has also 
been done by Miss Cannon in her investigation of the southern 
spectra (H. C.O. Ann. Bd. 28) '). 

Some of these stars show a relative intensity of the metallic 
lines different from that of the ordinary stellar spectra; Voarr and 
ScHEINER have found this before in a Cygni and a Persei (Public. 
Potsdam Bd. 7, part 2). Maury found representatives of this group 

in almost all the classes from III to XIII, and classed them in a 

parallel series designated by Ilc—xXIlIc, in contradistinction to 
which the great majority are called a stars. 

According to the most widely spread opinion a star goes succes- 

sively through all these progressive stages of development. It com- 

mences as an extremely tenuous mass of gas which grows hotter by 

contraction, and after having reached a maximum temperature de- 
creases in temperature while the contraction goes on. Before the 

maximum temperature is reached, there is a maximum emission of 

light; past the maximum temperature the brightness rapidly decreases 

owing to the joint causes: fall of temperature and decrease in volume. 
That the first type stars are hotter than the stars of the second type 

may be taken for certain on the strength of their white colour ; 
whether the maximum temperature occurs here or in the Orion 

stars is however uncertain. 

This development of a tenuous mass of gas into a dense and cold 

body, of which the temperature first increases and then decreases is 
in harmony with the laws of physics. In how far, however, the 
different spectral types correspond to the phases of this evolution is 

a mere hypothesis, a more or less probable conjecture; for an actual 

transition of a star from one type into the other has not yet been 

1) According to Camppetu’s results (Astronomy and Astrophysics XIII, p. 443), 

the characteristic lines of the Wolf-Rayet stars must be distinguished in two groups 

and according to the relative intensity of the two groups these stars must 
be arranged in a progressive series. One group consists of the first secondary 

series and the first line of the principal series of hydrogen: H@' 5414, Hy’ 4542, 

H5' 4261, principal line 4686); it is that group which in Maury’s classes I—III 
occurs as dark lines and vanishes and which in the classes towards the other 

side (class Oe—Ob Cannon) is together with the ordinary H lines more and more 

reversed into emission lines. The other group, which as compared with the 

hydrogen lines becomes gradually stronger from this point, consists of broad 

bands of unknown origin of which the middle portions according to Cannon’s 

measurements of yVelorum have the wavelengths 5807, 5692, 5594, 5470, 4654, 

4443. The brightest band is 4654; its relative intensity as compared with the 

Hline 4689 gradually increases in the series: 4, 47, 5, 48, 42 (Camppett’s 

star numbers). 
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observed. The hypothesis may be indirectly tested by investigating 
the brightness of the stars. To answer to a development as sketched 

here the brightness of a star must first increase then decrease; the 

mean apparent brightness of stars, reduced to the same distances 

from our solar system must vary with the spectral class in such a 

way that a maximum is reached where the greatest brightness is 

found while the apparent brightness decreases in the following stages 

of development. 

§ 2. For these investigations we cannot make use of directly mea- 
sured parallaxes as a general measure for the distance because of the 

small number that have been determined. Another measure will 

be found in the proper motions of the stars when we assume that 

the real linear velocity is the same for different spectral classes. In 

1892 W. H. S. Monck applied this method to the Bradley-stars in 

the Draper Catalogue’). He found that the proper motions of the 

B stars were the smallest, then followed those of the A stars; much 

larger are the mean proper motions of the F stars?) which also con- 

siderably surpasses that of the G, H and K stars and that of the 
M stars. He thence concluded that these F stars (the 2¢ type stars 
which approach to the 1s* type) are nearest to us and therefore have 

a smaller radiating power than the more yellow and redder stars 

of the 2¢ type. ‘Researches on binary stars seem to establish that 

this is not due to smaller average mass and it would therefore appear, 

that these stars are of the dullest or least light-giving class — more 

so not only than the Arcturian stars but than those of the type of 

Antares or Betelgeux” (p. 878). This result does not agree with the 

current opinion that the G, K and M stars have successively developed 

from the F stars by contraction and cooling. . 

It is, however, confirmed by a newly appeared investigation of 

Kynar Hrrtzsprunc: Zur Strahlung der Sterne*), where Maury’s 

classification of the spectra has been followed. He finds for the 

mean magnitude, reduced to the proper motion 0",01, the values 
given in the following table where I have added the corresponding 

proper motions belonging to the magnitude 4.0. 

Here also appears that for the magnitude 4,0 the proper motion 

is largest and hence the brightness smallest for the classes XII and 

1) Astronomy and Astrophysics XI p. 874. 

2) He constantly calls them incorrectly “Capellan stars’? because in the Dr. Cat. 

Capella is called F, though this star properly belongs to the sun and the G stars. 

5) Zeitschrift fiir wissenschaftliche Photographie Bd. III. S. 429. 
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Spectrum Magn. for | P. M. for 

Maury ioc c.| P. M. 0” 01 | Magn. 4.0 
22 a ees tg Oe 

| | i 

ad P| ea 0.012 

V—VI BoA phe a 0.045 

VII—VII A 8.05 0.065 

= x1 F 9.06 0.103 

XI—XIII Fc | 4.93 | 0.979 

XMI—XIr) | G 7 93 0.064 

XV K 9.38 0.119 

XV—XVI ae Ae Ti 0.057 

XVIT—X VIII Near.” 18:98 0.072 

XIII that form the transition from F to G; for the later stages of 
development the brightness again increases. 

§ 3. A better measure than the proper motion for the mean 

distance of a group of stars is the parallactic motion. This investiga- 

tion was rendered easy by means of N° 9 of the “Publications of 

the astronomical Laboratory at Groningen”, where the components 
t and v of the proper motion are computed with the further anxiliary 

quantities for all the Bradley-stars. Let t and v be the components of 
the proper motion at right angles with and in the direction of the 

antapex, 2 the spherical distance of the star-apex, then 

. __ fvsind 

1 SS sind 

is the parallactic motion for a group of stars, i.e. the velocity of the 
solar system divided by the mean distance of the group. The mean 

of the other component Sr is, at a random distribution of the 

directions, equal to half the mean linear velocity divided by the 

distance. 
The mean magnitudes of the different groups are also different. 

Because we here especially wish to derive conclusions about the 

brightness, and as both the magnitude and the proper motion depend 

on the distance the computation was made after the reduction to 

1) The Roman figures in italics in Maury’s classification designate the transition 

to one class higher. 



( 138 ) 

magnitude 4.0; that is to say, we have imagined that every star 
was replaced by one which in velocity and in brightness was perfectly 

identical with the real one, but placed at such a distance that its 

apparent magnitude was 4.0. If the ratio in which we then increase 
the proper motion is 

os 100.2 (m—4) 

we have 

= pv sina a pr 
a A | = , 

at = sin? 2 = n 

In this computation we have used Mauvry’s classes as a basis. We 
have excluded 61 Cygni on account of its extraordinary great parallax, 

while instead of the whole group of Ursa Major (8 y d¢ $) we have taken 

only one star (¢). In the following table are combined the results 
of the two computations. 

Spectrum | Typical al | mean} mean | ee 

MAURY | Dr. Cat. star | m a Ee: oe 4 740 

or " 

I—IlI B ¢ Orionis 33° | 3.57 | 0.007 0. ‘018 0. 007 0. O13" 

IV—V B—A 7 Orionis 48 | 4.31 | 0.011} 0.035 | 0.014 | 0.036 

VI—VIII A Sirius 93 | 3.92] 0.040] 0.054] 0.038 | 0.064 

IX—XII F Procyon 94 | 4.44; 0.089 , 0.153; 0.095 | 0.136 

XIII—XIV G Capella 69 | 4.08 | 0.444 | 0.157] 0.460} 0.199 

XV K Arcturus |} 101 | 3.90] 0.423 0.419] 0 1290}. 0.096 

XVI—XX M Betelgeuze | 61 | 3.85 | 0.049 | 0.068 | 0.050] 0.061 

In both the series of results the phenomenon found by Monck and 

HrrtzsPpruUNG manifests itself clearly. I have not, however, used 

these numbers t49 and g4o, but have modified them first, because it 

was not until the computation was completed that I became ac- 
quainted with Hrrtzsprune’s remark that the above mentioned ¢ stars 

show a very special behaviour; their proper motions and parallaxes 

are so much smaller than those of the a stars of the same classes 

that they must be considered as quite a separate group of much 

greater brilliancy and lying at a much larger distance’). We have 

‘; In his list of parallaxes Herrzsprune puts the question whether perhaps the 

bright southern star « Carinae (Canopus) belongs to the ¢ stars; but he finds no 

indication for this except in its immeasurably small parallax and small proper 

motion. In her study of the southern spectra Miss Cannon has paid no regard 



Class | * | 74.0 | 14.0 a/4 

I | 5 | 0.009 | 0.022 0.8 

II | 13 | 005 009 | 4.4 

ll | 14 | 006 | 0.8 

IV | 18 | O14 8 | 1-2 

IV | 16 | O16 oa 0.7 

V | 41 | 009 a 0.4 

VI | 16 030 ocs | 0.9 

VII | 30 040 ~ 09 

Vill | 4A | al 55 | 1.6 

i | 25 | 050 | 0 | 1.6 

xX | 16 | 070 474 | Oc 

XI | 92 | 103 a aoa 

XII | 23 | 170 ea a} 

XIII | 18 | 997 0 | 1.7 

XIV | 21 | 192 a des 

XIV 20 | m7 | aA 6.2 

XVA | 26 | oh | us 3.2 

XV B | 35 | oa 070 | 3.0 

XVC | 40 | 9 | 087; 14 

XVI 19 049 071 | 1.4 

XVII 19 049 032. |, 2.4 

XVIII 16 a 075 | 1.3 

Sie eee 7 | ea 078 | 1.5 

to the difference between the @ and the c stars. Yet all the same this question 

may be answered in the affirmative; on both spectrograms of this star occur- 

ring in her work, we see very distinctly the line 4053.8, which in Capella and 

Sirius is absent and which is a typical line for the ¢ stars. Hence follows that 

a Carinae is indeed a ¢ star, 
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therefore repeated the computation after exclusion of the c and the 
ac stars. 

The table (see p. 139) contains the results for all the classes of Matry 

separately ; class XV_ is divided into three subdivisions: XV A are 
those whose spectra agree with that of a Boétis, XV C are those which 

agree with the redder a Cassiopeiae, while XV 6 embraces all those 
that cannot with certainty be classed among one of the other two 

groups. 
The values for ty9 and go differ very little from those of the 

preceding table. If we take the value of the velocity of the solar 
system = 4.2 earth’s distances from the sun, the g’s divided by 4.2 
yield the mean parallax of stars of different spectral classes for the 
magnitude 4.0 (20,4). Reversely, we derive from the q’s the relative 

brightness of these stellar types, for which we have here taken the 

number which expresses how many times the brightness exceeds 

that of magnitude 4.0 when placed ata distance for which g = 0".10, 

hence with the parallax 0".024. Finally the last column 2t/q contains 
the relation between the mean linear velocities of the group of stars 
and our solar system. 

In the following table we have combined these values in the same 

way as before. 

Spectrum | Typical | | | L for 

Maury | Dr. eat star . | — of ot 040 Gx 

oe a, - 

I—IlI B = Orionis 32 | 0.005°; 0 014 | 0.0033 | 51 08 

IV—V B—A 7 Orionis 45 0.013 | 0.036 | 0.0086 yw 0.7 

VI—VIII A Sirius 87 0.040 | 0.063 | 0.015 2.5 1.3 

IX—xXII | F Procyon 86 0.101 | 0.144 | 0.034 | 0.50 | 44 

XIN—XIV G Capella 59 0 182 | 0.294 | 0.0353 0.20::) hae 

XV K Arcturus | 101 0.120 | 0 096 | 0.023 UB 2.5 

X VI—XX M Betelgeuze | 61 0.050 | 0.061 | 0.015 2.7 1.6 

§ 4. Conclusions from this table. The numbers of the last column 

are not constant but show a systematic variation. Hence the mean 

linear velocity is not constant for all kinds of stars but increases 
as further stages of development in the spectral series are reached. 

(Whether the decrease for the 3'¢ type, class M, is real must for 

the present be left out of consideration). That the linear speed of the 

Orion stars is small is known and appears moreover from the 
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radial velocities. While Campsern found 19.9 kilometres for the 
velocity of the solar motion, and 34 kilometres for the mean velocity 
of all the stars, Frost and Apams derived from the radial velocities 
of 20 Orion stars measured by them, after having applied the correction 
for the solar motion: 7.0 kilometres as mean value’), hence for the 
actual mean speed in space 14 kilometres, whence follows the ratio 
0.7 for 2t/q. Hence the Orion stars are the particularly slow ones and 
the Arcturian stars (class XV) are those which move with the greatest 
speed. 

§ 5. When we look at the values of gio or those of 249 or 

Lo.1o, derived from them, we find, as we proceed in the series of 
development from the earliest Orion stars to the Capella or solar 

type G, that the brightness constantly decreases. That g was larger for 

the 24 type as a whole than for the first (the Orion stars included) 

has long been known; some time ago Kaprnyn derived from 

the entire Bradley-Draper material that on an average the 24 type 

stars (F GK) are 2,7 times as near and hence 7 times as faint as 

the 1st type stars (A and B). This result perfectly agrees with the 

ordinary theory of evolution according to which the 2¢ type arises 
from the 1st type through contraction and cooling. 

A look at the subdivisions shows us first of all that the Orion 

stars greatly surpass the A stars in brightness, and also that among 

the Orion stars those which represent the earliest stage greatly 
surpass again in brightness those of the later stages. As compared 
with the solar type G the Sirius stars are 12 times, the stars which 

form the transition to the Orion stars 38 times and lastly the ¢ Orionis 
type 250 times as bright. This result is in good harmony with the 

hypothesis that one star goes successively through the different con- 

ditions from class I to class XIV; we then must accept that the 

density becomes less as we come to the lower classes. Whether the 

temperature of the Orion stars is higher than that of the Sirius stars 

or lower cannot be derived from this result; even in the latter case 

it may be that the larger surface more than counterbalances the 

effect of smaller radiation. This must be decided by photometric 
measurements of the spectra. As the Wolf-Rayet stars follow next 

to class I, an investigation of their proper motion, promised by 

Kaprryn, will be of special interest. 
Past the G stars, the solar type of the series, the brightness again 

increases. The values obtained here for g confirm in this respect the 

results of Monck and Herrzsprunc. 

1) Publications Yerkes Observatory. Vol. II. p. 105. 
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Against the evidence of the g’s only one objection can be made, 

namely that these classes K and M might have a proper motion 

in common with the sun, so that gq would not be a good measure 

for the distance. A priori this objection is improbable but it may be 

tested by material, which, though otherwise of small value, may for 

this kind of investigations yield very valuable conclusions on this 

point, namely the directly measured parallaxes. HERTzsPRUNG gives 
mean values of the measured parallaxes reduced to magnitude 0,0; 

by the side of these we have given the values for somewhat different 

groups derived from our 24.9: 

Observed 2.0 Derived from g 20.0 

ny 0".0255 (6) SEE 0".021 

iy Vi 0.106; =45) ie 0 .054 

Vi— yall 0 .153 (40) VI—Vill 70094 

PEI 0 .226") (6) LX Xe ad 

FON x 0 .442 (2) 

x1Y 0 DoTiatG) XHIl—X1V-0 2335 

XV 0.514, 48) XV 0 14 

XVI Ox, 43) XVI—XX .0 .096 

XVII—XVIII 0 .115 (3) 

In general Hertzsprune’s numbers are somewhat larger, this can 
be easily explained by the circumstance that many parallaxes measured 

in consequence of their large proper motions will probably be above 

the mean. It appears sufficiently clear from this, at any rate, that 

alsu the directly measured parallaxes markedly point at an increase 
of brightness past class XIV, and that there is not the least ground 

to assume for the other groups a motion in common with the sun. 

It is therefore beyond doubt that the K and M stars have a 

greater intrinsic brilliancy than the F and G stars. Moncxk derives 
from this fact that they have a greater radiating power, because 

about the same value for the masses is derived from the double stars. 
That the latter cannot be derived from the double stars will 

appear hereafter. Moreover Monck’s conclusion of the greater radiating 

power of the K and M stars is unacceptable. In incandescent bodies 
this radiating power depends on the temperature of the radiating 

layers and of the atmospheric absorptions. With unimpaired radiance 

a greater amount of radiation is accompanied with bluer light (because 

the maximum of radiation is displaced towards the smaller wave- 

lengths) as both are caused by the higher temperature. The general 

absorption by an atmosphere is also largest for the smaller wave- 

lengths, so that when after absorption the percentage of the remain- 
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ing light is less, the colour of the radiated light will be redder. 

Therefore it is beyond doubt that a redder colour corresponds at 
any rate with a less degree of radiance per unit of surface. 

Then only one explanation remains: the K and M stars (the redder 

2nd type stars like Arcturus and the 34 type) possess on an average 
a much larger surface and volume than the other 2»¢ type stars of 

the classes F and G. This result is at variance with the usual 
representation of stellar evolution according to which the redder K 
and later the M stars are developed from the yellow-white F and G 
stars by further contraction and cooling. 

§ 6. A further examination of the constitution of these stars shows 

us that it is improbable that they should possess a very small 

density; the low temperature, the strongly absorbing vapours point 
to a stage of high condensation. These circumstances lead to expect 
greater (with regard to the F and G stars) rather than less density. 
From the larger volumes it then follows that the K and WM. stars 
have much larger masses than the F’s and G's. This result is the 
more remarkable in connection with the conclusion derived above 
about their greater mean velocity. If the stars of our stellar system 
form a group in the sense that their velocities within the group 

depend on their mutual attraction, we may expect that on an 

average the velocities will be the greater as the masses are smaller. 

No difficulty from this arises for the Orion stars with small speed, 
because the same circumstances which allow us to ascribe to them 

a mass equal to that of the A, F and G stars, enable us likewise 

to ascribe to them a larger mass. The K stars which have both 

a greater mass and a greater velocity are characterized by this 

thesis as belonging to a separate group, which through whatever 

reason must originally have been endowed with a greater velocity. 
Arcturus with its immeasurably small parallax and large proper 

motion is therefore through its enormously great linear velocity and 

extraordinary luminosity an exaggerated type of this entire class, of 
which it is the brightest representative. Therefore it would be worth 

while to investigate separately the systematic motions of the K stars 

which hitherto have been classed without distinction with the F and 

G stars as 2>4 type. 
If this result with regard to the greater masses of the K and M 

stars should not be confirmed, the only remaining possibility is the 

supposition that the density of these star ts extremely small. In this 
case their masses might be equal to that of other stars and they 

may represent stages of evolution of the same bodies. Where 
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they ought to be placed in the series of evolution remains a riddle. 
There is a regular continuity in the series F—G—K—M;; and accord- 

ing as we suppose the development to take place in one direction 

or in the other we find in the transition G—K either cooling accom- 

panied with expansion, or heating accompanied with contraction. The 

puzzling side of this hypothesis can also be expressed in the follow- 

ing way: while in the natural development of the celestial bodies, 

as we conceive it, the temperature has a maximum but the density 

continuously increases, the values obtained here would according 

to this interpretation point at a maximum density in the spectral 

classes F and G. 

In Vol. XI of Astronomy and Astrophysics Maunprer has drawn 

attention to several circumstances, which indicate that the spectral 

type rather marks a difference in constitution than difference in the 

staze of development. ‘‘There seems to me but one way of recon- 

ciling all these different circumstances, viz.: to suppose that spectrum 

type does not primarily or usually denote epoch of stellar life, but 

rather a fundamental difference of chemical constitution” *). One of 

the most important of these facts is that the various stars of the 
Pleiades, which widely differ in brightness and, as they are lying at 

the same distance from the sun, also in actual volume show yet 

the same spectrum. The result found here confirms his supposition. 
One might feel inclined to look for a certain relation between 

these K and M stars and the ¢ stars, which, according to Hertzsprune, 

have also a much greater luminosity, hence either less density or 

greater mass than the similar a stars; and the more so as these ¢ stars 

reach no further than class XIII. Yet to us this seems improbable; 
the K stars are numerous, they constitute 20°/, of all the stars, 

while the cstars are rare. Moreover the spectra of all the K stars 

are with regard to the relative intensity of the metallic lines perfectly 
identical with the astars of preceding classes such as the sun and 

Capella. Therefore it as yet remains undecided to which other 

spectra we have to look for other phases in the K star lives and 
to which spectra for those in the c star lives. The c stars, except a 

few, are all situated in or near the Milky Way : this characteristic feature 

they have in common with the Wolf-Rayet stars and also with the 
4th type of Succut (Vogel’s IJId), although these spectra have no lines 
in common which would suggest any relation between them. 

§ 7. The constitution found here for the Arcturian stars among 

the third type stars may perhaps be tested by means of other 

1) Stars of the first and second types of spectrum. p. 150. 
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data, namely by those derived from the double stars. The optically 

double stars cannot however teach us anything about the masses of 

the stars themselves as will appear from the following consideration 

{also occurring in “The Stars’ by Nrwcoms). Let us suppose that a 
binary system is nm times as near to us, while all its dimensions 
become n times as small, but that the density and the radiation 
remain the same. Then the mass will diminish in the propor- 
tion of n* to 1, the major axis of the orbit @ in the proportion 
of n to 1 and hence the time of revolution remains the same; 

the luminosity becomes m’* times as small, therefore the apparent 
brightness remains the same as well as the apparent dimensions of 
the orbit, in other words: it will appear to us exactly as it was 

before. Hence the mass cannot be found independently of the 

distance. Let @ be the angular semi-major axis, J/ the mass, P 

the time of revolution, d the density, 2 the radiating power, 2 the 

parallax and @ the radius of the spherical volume of the star, then 
3 

a 

we shall have: 2°M = =" the mass J/ is a constant value x 0°, 

the apparent brightness H/ is a constant x 2°04. Eliminating from 
this the parallax and the radius, we find 

| pe 38 
i — € ra 

a J 

Thus from the known quantities: elements of orbit and brightness, 

we derive a relation between the physical quantities: density 
and radiating power, independently of the mathematical dimen- 

sions. This relation has been derived repeatedly. In the paper 
3/ 3 

cited before Maunprer gives values for the density 6= (7) °F, 

in the supposition of equal values of 2; he found for the Sirius stars 

(ist type) 0,0211, for the solar stars (all of the 2°4 type) 0,3026, 
hence 14 times as large on an average; we can also say that 
when we assume the same density the radiating power of the 
Sirius stars would be 6 times as large; the exact expression would 

be that the quotient 4°/d? is 200 times as Jarge for the Sirius stars 

as for the solar stars. 
In a different form the same calculation has been made by 

Hertzsprune by means of ArrKeEn’s list of binary system elements °). 

By means of — 2,5 log H=m he introduces into his formula the 

stellar magnitudes ; if we put in the logarithmical form 

1) Lick Observatory Bulletin Nr. 84. 
10 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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3 log H + 4 log P — 6 log a = const. +- 3 log 4 — 2 logd 

m—?°/, log P+ 5loga= My 

then we have m, = const. — 2,5 log 4 + °/, log 4. 

If we arrange the values of mm, after the spectra according to the 
Draper Catalogue (for the Southern stars taking CANNon; according 

to the brightest component @ Centauri was reckoned to belong to 
class G), we find as mean values: 

Class A —2.92 (9 stars — 4.60 to — 1.09) 
F —1.32(19 ,, —3.61 ,, +014) 

, GandE—049(/1 ,, —1.60 ,, + 1.28) 

The 3 stars of the type K (with H) give — 4.88 (y-Leonis), 

—1.05 and + 0,87, hence. differ so widely that no valuable result is 

to be derived from them. To the extraordinarily high value for 
z°/d? given by y Leonis attention has repeatedly been drawn. 

While for a great number of stars of the other classes the extreme. 

values of m, differ by 3.5 magnitudes we find that y Leonis differs 

by 5. magnitudes from the mean of the two other values, that is to 
say: its radiating power is a hundred times as large, or its density 

is a thousand times as small as for these other stars. For the classes 

A and F we find that 2*/d? is 640 and 8 times respectively as large 

as for class G; conclusions about class K as a whole, such as are especially 

wanted here, cannot be derived from it. It may be that an investi- 

gation of binary systems with partially known orbit motion (for which 
we should require auxiliary hypotheses) would yield more results. 

About the mass itself, however, something may be derived from 

the spectroscopic binary systems. The elements derived from obser- 

vation asini and P directly yield M sin *z; as it is improbable that 

there should be any relation between the type of spectrum and the 

angle between the orbit and the line of sight we may accept the 

mean of sin*i to be equal for all groups. For systems of which only 

one component is visible, the element derived from observation 
contains another unknown quantity, viz. the relation 8 of the mass 

of the invisible to. that of the visible star. If a is the semi major 

axis of the orbit of the visible star round the common centre of 

gravity, we have 

9 

a® sin *i : Ree 
= ni 

‘A p 

Se ht 

(1+)? 
It is not perfectly certain, of course, that on an average p is the 

same for all classes of spectrum; if this is not the case the M’s. 

> sin *4 
may behave somewhat different from the values of — computed 

here. 
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Unfortunately, of the great number of spectroscopic double stars 
discovered as yet (in Lick Observatory Bulletin N°. 79 a number 
of 147 is given) the orbit elements of only very few are known. 
They give, arranged according to their spectra: 

Group II—IV (Bb) Group VI—VIII (A) 

Orion type Sirius type 
o Persei 0.61. 6B Aurigae 0.56 

y Orionis 2.01 o Ursae (3.41) *) 

d Orionis 0.60 Algol 0.72 

6 Lyrae 7.85 @ Androm. 0.36 *) 

a Virginis 0.33 a, Gemin. 0.002 

V Puppis 34.2 

Group XII—XIV a (F—G) Group XII—XIV ac 

Solar type e@ Ursae min. 0.00001 

a Aurigae 0.185 $Geminorum 0.0023 

xy Draconis 0.120 7 Aquilae 0.0029 

(W Sagittarii- 0.005) J Cephei 0.0031 

(X Sagittarii 0.001) 

e Pegasi 0.117 Group XV (K) 

4 Pegasi 0.254 6 Herculis 0.061 

Of the K stars only one representative occurs here, so neither 

this material offers anything that could help us to test the results 
obtained about this stellar type. But all the same, some remarkable 
conclusions may be derived from this table. It appears here that 

notwithstanding their small number the Orion stars evidently surpass 

the others in mass, while the Sirius stars seem also to have a some- 

what greater mass than the solar stars. Very striking, however, 

is the small mass of the ¢ stars approaching towards a. Hence the 

c stars combine a very great luminosity with a very small mass, and 
consequently their density must be excessively small. If it should be 
not merely accidental that the three regularly variable stars of short 
period, occurring in Mavry, all happen to show c characteristics 

and a real connection should exist between this particularity of 

spectrum and the variability, we may reasonably include into the 

1) In the case of ¢ Ursae a has been taken equal to the semi major axis of the 

relative orbit; hence this number is proportionally too large by an unknown 

number of times. 
2) Assumed period 100 days, veloeity in orbit 32.5 kilometres. 
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group W and X Sagittarii which also yield small values; as has 
been remarked, for the southern stars no distinction is made between 
the a and the ¢ stars’). 

We may expect that within a few years our knowledge of the 
orbits of the spectroscopic double stars will have augmented consi- 
derably. Then it will be possible to derive conclusions like those 
found here from much more abundant material, and also to arrive 

at some certainty about the mean mass of the K stars. With regard 
to the latter our results show at any rate that in investigations on 
grouping of stars and stellar motions it will be necessary not to 
consider the 2¢ type as one whole, but always to consider the 
F and G stars apart from the redder K stars. 

1) In this connection may be mentioned that in 1891 the author thought he 
detected a variability of 2 Ursae minoris with a period of a little less than 4 days. 

The small amplitude and the great influence of biased opinions on estimations of 

brightness after ARGELANDER’s method in cases of short periods of almost a full 

number of days, made it impossible to obtain certainty in either a positive or a 
negative sense. CAmpBELL’s discovery that it is a spectroscopic binary system with 
a period of 34235 14m makes me think that it has not been wholly an illusion. 

Buk OR AT wk: 

In the Proceedings of the Meeting of June, 1905, p. 81: 

line 7 from top, read: “cooled by conduction of heat’, 

3 JO 4,8 o4 . dors? “iin 2) TV sread <P ae 

In Plate V belonging to Communication N°. 83 from the physical 
laboratory at Leiden, Proceedings of the Meeting of February 1905, 

p- 502, the vacuum glass B’, has been drawn 18 em. too long. 

(August 21, 1906). 
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Botany. — “On the harmful consequences of the secretion of sugar 

with some myrmecophilous plants.” By Mrs. M. Nrevwenuuis- 

VON UEXKULL-GULDENBAND. Ph. D. (Communicated by Prof. 

J. W. Mott). 

(Communicated in the meeting of June 30, 1906). 

During my residence of about eight months at Buitenzorg in 1901 

I occupied myself chiefly with an investigation of the structure and 

peculiarities of the sugar-secreting myrmecophilous plants. The results 

of these observations, extending over some 70 plants, are inconsistent 

with the opinion expressed by DeE.pino, Kerner, TRELEASE, Burck 

and many others, that the extrafloral secretion of sugar by plants 
would serve to attract ants which in return would protect the plants 
against various harmful animals. 

For I was unable to observe in a single instance that the secretion 

of sugar is useful to the plant; on the other hand it appeared to 
me that the ants feed on the sugar, but that, instead of being useful 

at the same time, they injure the plant indirectly by introducing 

and rearing lice; moreover the extrafloral nectaries attract not only 
ants but also numbers of beetles, bugs, larvae, etc. and these are 

not content with the sugar alone, but at the same time eat the 

nectaries themselves and often consume the leaves and flowers to no 
small extent. 

In about one third of the plants, investigated with this purpose, 
the secretion of sugar in this way certainly does much harm; with 
another third the plants experience only little harm by attracting 

the undesirable visitors, while with the last third no indication at 

all could be found that by secreting sugar they were worse off than 

other plants. 
Of those that were indirectly injured by secreting sugar I here 

only mention a few examples out of the many which I shall consider 

more extensively elsewhere. 

Spathoglottis plicata Bl. is a common orchid in the Indian archi- 
pelago. In the environs of Buitenzorg it is e.g. found on the Salak, 

and it is used in the Botanical Garden to set off the beds in the 

orchid quarter. Its leaves (all basal leaves) have a length of as much 

as 1.20 M., according to SmitH, they are narrow, have a long point 

and are folded lengthwise; their inflorescence is erect, reaches a 
height of about 2 metres and bears at its extremity, in the axils 

of coloured bracts, a number of flowers, the colour of which varies 

from red violet to white. The bracts and perianth leaves have blunt, 
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thick and darker coloured points. On the inflorescences two kinds 

of ants always abound, one large and one small species. Even when 
the flower-buds are- still closed the ants are already found on the 

bracts and no sooner are the flowers open than the ants also attack 

the perianth leaves. It appeared that sugar was secreted as a bait here. 

In order to prove this the flowers were placed for some time 

under a damp glass bell-jar; after a few hours by means of FEauine’s 

reagent sugar could be proved to be present in the liquid secreted 

by the leaves at the exterior side. I could find no special organs 

for this secretion, however; probably the secretion is an internal one 

the product being brought out by the epiderm or the stomata. 

It was already known to Dertrino that some orchids secrete sugar 

on the perianth; the remarkable point with the just mentioned 
Spathoglottis is that the ants have such an injurious influence on it. 
Whereas namely the small species remains on the flowers and is 

content with the sugar there secreted, the big species also descends 

to the basal-leaves and attacks these also, often to such an extent 

that only a skeleton of them remains. These harmful big ants are 

not expelled at all by the much more numerous small ones. It 
further appeared most clearly that the secretion of sugar was the 

reason indeed why such important organs as the leaves were eaten 

by the big species. The proof was namely afforded by those plants 

that had finished flowering and bore fruit; with these secretion of 

sugar took place no longer and the leaves, which were produced in 
this period, remained consequently uninjured. So it was the secretion 

of sugar during the flowering period which attracted the ants, while 

the leaves as such were no sufficient bait. 

A second instance of the great harm that may be caused to the 
plants themselves by the secretion of sugar, is seen with various 

tree- and shrublike Malvaceae. In the Botanical Garden stands an 
unnamed tree, a Malvacea from Indo-China. This not only has 
nectaries on the leaves and calyx, but also offers the ants a very 

suitable dwelling-place in the stipules, which occur in pairs and are 

bent towards each other. The spaces formed in this way are indeed 
inhabited by ants, but not by so many as might be expected. The 
reason is that in spite of the abundance of nectaries they find no 

sufficient food, since on these trees a species of bugs occurs which 

not only consume the secreted sugar but also eat the nectaries them- 

selves. These bugs moreover injure the leaves to such an extent 
that the tree suffers from it, as may be seen by a cursory examina- 
tion. The same may be stated of a tree named “Malvacea Karato” 
and of some other species of this family. 

411* 
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In order to prove that the secretion of sugar by attracting harmful 

insects is indeed injurious to these trees it would still be necessary 

to show that they remain uninjured when the secretion of sugar 

does not take place. This proof is readily afforded by some other 
Malvaceae. 

Two shrublike Malvaceae of common occurrence in India, namely 

Hibiscus rosa sinensis L. and Hibiscus tiliaceus [. have nectaries 
on their leaves. They are not frequented by ants or other harmful 

insects, however, because in the nectaries, as far as my observations 

go, a fungus always occurs, which may be recognised already from 

the outside by its black colour. This fungus prevents the secretion 

of sugar, and the nectaries cease to have an attraction for insects’ 

which otherwise would be harmful to the plant. These shrubs by 
their healthy appearance contrast strongly with the above mentioned 

plants in the Malvaceae quarter, which are frequented by ants and 
other insects. 

On account of the circumstance that the extrafloral nectaries are 

found chiefly on and near the inflorescences, Burck proposed the 

hypothesis, that in some cases they would serve to attract ants into 
the neighbourhood of the flowers in order to protect these against 
bees and wasps, which would bore them and rob honey. But even 
with the plants investigated by him I could find no confirmation of 

his hypothesis. First the nectaries only rarely occur on the inflores- 

cences exclusively; also the plants mentioned by him as proof as: 

Thunbergia grandiflora Roxb., Gmelina asiatica L., and Gmelina 

bracteata, Nycticalos macrosyphon and Nycticalos Thomsonii cannot 
serve as examples, since these plants also on their vegetative parts 

such as leaves and stems possess nectaries, which according to him 

are not present there or are not mentioned. In regard to the so-called 

“food-bodies’” (Burck’sche K®6rperchen) on the calyx of Thunbergia 

grandiflora, it appeared to me that these are no “‘food-bodies” at 
all, but ordinary sugar-secreting deformed hairs which I also found 

on the bracts, leaves and leaf-stalks of this plant. 

-Furtber it appeared to me that the number of bored flowers stands 
in no relation to the number of nectaries occurring on the calyx, 

as should be the case according to Burcx. It is much more dependent 
on external factors, as e.g. the more or less free situation of the 

plants, the weather ete. 

As an example the creeper Bignonia Chamberlaynii may be men- 
tioned. Of this plant on many days only 1,6 °/, of the fallen flowers 

appeared not to have been bored by Xylocopa coerulea, although 
numerous ants always occur on the nectaries of the calyx. 
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An example of the fact that the more or less free situation in 
fluences the number of perforations of the flowers is found in two 
species of the genus Faradaya, both having nectaries on the calyx 
and the leaves. With Paradaya papuana Scuerr., which stands in 
the Botanical Garden at Buitenzorg surrounded by many other rich|; 
flowering plants, the flowers are often perforated by a boring wasp; 

of the fallen flowers only 1 °/, was undamaged. This was different 

with another still unnamed species of the same genus which, as fai 

as the nectaries were concerned, showed no difference with the 
former and grew at some distance from it in a less open site. Its 

branches hung partly to the ground and bore far fewer flowers 
than Faradaya papuana. Now of this three 19,3 °/, of the flowers 
remained unperforated. 

And in regard to the weather it appeared that the number of 

bored flowers closely depends on it. After a sunny day a much 
larger number of flowers had been bored the next morning than 
when rain had prevented the insects from flying out. This was 

e.g. very conspicuous with [pomoea carnea Jacg., a shrub having 
nectaries as well on the leaves as on the calyx, the latter being 

bored by Vespa analis and two Xylocopas. Collected in the morning 
without regard to the weather of the preceding day 90°/, of the 

fallen flowers were bored; after rainy days 57 °/, of the flowers 

were damaged and after sunny days even 99,1 °/, were bored. 

From this appears most clearly how little value must be assigned 

to statistical data about the perforation of flowers and about their 

being eventually protected by ants if not at the same time all other 

circumstances which may influence the results have been taken into 
account. 

When trying to fix the part, either favourable or otherwise, played 
by insects with regard to a plant, one meets with greater difficulties 
in the tropics than e.g. in Middle Europe, because the vegetative period 

lasts so much longer. So one may meet an abundance of definite 

insects during one part of that period which are not found during 

another part. This special difficulty of the question whether special 

arrangements in a plant form an adaptation to a definite animal 
species is still enhanced in a botanical garden by the circumstance 
that there nearly all the plants are in a more or less uncommon 

site or surroundings. Yet here also the matual behaviour of the animals 

frequenting the plants may be investigated as well as their behaviour 
towards the plants themselves, while the results enable us to draw 

some justified conclusion as to the mutual relations in the natural 

sites of these plants. I took this point of view when I began my 
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investigation and among others put myself the following questions 

to which the here briefly mentioned answers were obtained: 
1. On what parts of plants is extrafloral secretion of sugar found ? 
In the cases examined by me | found secretion of sugar on the 

branches, leaves, stipules, bracts of different kind, peduncles and 

pedicels, ovaries and the inner and outer side of calyx and corolla, 
in each of these organs separately or in a great number of different 

combinations. The most commonly occurring of these combinations 

were: a. on leaf-sheaths and calyx together, 5. on the leaf-blade only 

ce. on the leaf-stalks, peduncle and calyx. Of other combinations I 

only found from one “to three examples each. 

2. Does the structure or place of the nectaries clearly indicate 

that they are made for receiving ants? 

Except in a few cases (as the nectaries occurring in the closely 

assembled flowers of Gmelina asiatica Scheff. on that side of the 

calyx, that is turned away from the axis of the inflorescence) this 

question must be decidedly answered negatively. Although it seems 

as if the very common cup shape of the nectaries were eminently 

suitable for storing the secreted honey, yet on the lower side of the 

leaves these nectaries are for the greater part found with their 

opening turned downward. I remind the reader of the two large, 
also downwardly directed cup-shaped nectaries at the base of the 
side leaves of some species of Erythrina. 

The frequent occurrence of nectaries on the calyces, which only 
in the budding period secrete honey, seems to indicate that these 

buds require special protection. But inconsistent with this view is 

the fact that sometimes, according to my observations, only half of 

the flowers has nectaries in the calyces (e.g. Spathodea campanulata 

BEAUV.). 

With many species of Smz/ax only part of the branches attracts 
ants and these are branches that carry no flowers and so, according 
to the prevailing conception, would least require protection. It is 

difficult to make the idea of the protection of the flowers agree with 

the fact that nectaries occur on the inner and outer side of the upper 

edge of the tube of the corolla of Nycticalos macrosyphon, Spathodea 
serrulata and others. Attracting ants to the entrance of the corolla, 

which is the very place where the animals causing cross-fertilisation 

have to enter, has certainly to be called unpractical from the biolo- 

gist’s point of view. 
Against the conception that these plants should require protection, 

also the fact pleads that exactly with young plants, where protection 

would be most necessary, these baits for protective ants are absent. 
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A short time ago Utz’) has drawn attention to this as a result of 
his investigation of American plants. 

3. Is sugar secreted in al/ nectaries? 

This is not the case; in some nectaries I could detect no secretion 

even after they had stayed for a long time under a bell-jar; this 

was the case e.g. with the leaves of Gmelina asiatica. Consequently 
they are not frequented by ants, although these insects always occur 

on the similarly shaped but strongly secreting nectaries of the calyx. 

The quantity of the secreted substances moreover fluctuates with 

the same nectaries of the same plant and depends on many external 
and internal influences. 

4. Are all the products secreted by the nectaries always and 
eagerly consumed by the ants? 

Evidently this also is not always the case, for whereas the necta- 

ries of some plants are constantly frequented by ants, with others 

the nectaries so to say overflow, witbout a single animal visiting 

them. (So with some species of Passi/lora). 

5. At what age of the organs do the nectaries secrete sugar? 

As a rule the nectaries of the inflorescences cease to secrete as 

soon as the flowers are opened; those of the leaves even only 

functionate in the youngest stages of development. 

6. Are the ants that frequent the plants with nectaries hostile 

towards other visitors? 
Although I daily watched the behaviour of the ants with the 

extrafloral nectaries for hours, I have never observed that they 

hindered other animals in any way. On the Luffa species one may 
see the ants at the nectaries peacefully busy by the side ofa species 

of beetles which does great damage to the plant by eating leaves 
and buds. 

The results of my investigations of some wild plants in Java in 

their natural sites agreed entirely with those obtained in the Buiten- 

zorg Botanical Garden. 
Exactly those species of ants that occur on the so-called ‘ant- 

plants” of the Indian archipelago, seem to belong to the harmless 

ones; the dangerous species with powerful mouth-apparatus, e.g. 

those which are called semut ranggrang in West Java and according 
to Dr. VorprrMAN are used by the Malay for defending Mango trees 
against beetles, are carnivorous. So these ants have to be specially 

allured by hanging animal food (dead leguans) in the trees to be 

protected. 

1) Eneter’s Bot. Jahrbiicher. Heft II], Bd. 37, 1906. 
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What the real meaning is of the often so highly differentiated 

organs as many extrafloral nectaries are and of the secretion of sugar 
which they present in most cases, can only be settled by new 
investigations which however will have to bear not only on the 

biology but also on the physiology of the plant. | 

/ 

Physics. — “Methods and apparatus used in the cryogenic labora- 

tory at Leiden. X. How to obtain baths of constant and 

uniform temperature by means of liquid hydrogen.” By Prof. 

H. Kameruinen Onngs. Communication N°. 94/ from the Physical 

Laboratory at Leiden. 

(Communicated in the meeting of 28 May, 1906). 

§ 1. Introduction. Communication N°. 14 of Dec. ’94 treated of 
the results I had obtained after I had employed regenerators for 

the cascade method, and especially discussed the way how to obtain 

a permanent bath of liquid oxygen to be used in measurements at 

the then observed lowest temperatures. At the end of that paper I 
expressed the hope to be able to construct a cycle of hydrogen 

similar to that of oxygen. A mere continuation of the cascade method 

would not do. By means of Jiquid oxygen or nitrogen, even when 

they evaporate in vacuo, we practically cannot reach the critical 

temperature of hydrogen; for the liquefaction of this gas we had 

therefore to avail ourselves of cooling by adiabatic expansion. 

In Comm. N°. 23 of Jan.’96 1 made some remarks on what could 

be derived from van DER Waats’ law of corresponding states for the 

liquefaction of hydrogen following this method. I had found that an 

apparatus to liquefy hydrogen beginning with — 210°C. might be 

constructed almost after the same model as an apparatus that had 
proved suitable for the liquefaction of oxygen beginning with ordinary 

temperatures and without any further frigorific agents. My efforts, 
however, to obtain an apparatus for isentropic cooling by combining 

to a regenerator the outlet- and inflow-tubes of a smali expansion 

motor, fed with compressed gas, had failed. Therefore I directed 

my attention towards the then newly published (1896) application 
of the Joune-KeLvin process (LinpE’s apparatus for liquefying air 

and Drwar’s jet of hydrogen to solidify oxygen). 

Though the process of LinpE was the most promising, because he 

had succeeded with his apparatus to obtain liquid air statically, yet it 
was evident that only the principle of this method could be followed. 
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The cooling of an apparatus of dimensions like the first of Linpr 
(weight 1300 kilogrammes) by means of liquid air (oxygen) evapo- 

rating in vacuo could not be thought of. And yet, according to 

what has been said above, this had to be our starting point. 
It rather lay to hand to magnify the spiral (enclosed in a vacuum 

glass) such as Dewar had used for his jet of hydrogen to solidify 

oxygen, and so to get an apparatus with which air could be liquefied, 

and which could then serve as a pattern for an apparatus to liquefy 

hydrogen. It was indeed a similar construction with which in 1898 

Dewar had statically liquefied hydrogen for the first time. About the 
installation which apparently afterwards enabled Dewar to collect 

large quantities of liquid hydrogen nothing further has come to my 
knowledge. 

The arrangement of the Leiden hydrogen circulation is based on 

Dewar’s principle to place the regenerator spiral into a vacuum 

glass (1896). As to the regenerator spiral itself Hampson’s apparatus 
for liquefying air (1896) has been followed because it appeared that 

the proportions of this spiral have been chosen very favourably, and 

with its small dimensions and small weight it is exceedingly fit, 
according to the thesis menticned above, to serve as a model for a 
regenerator spiral to liquefy hydrogen of about — 205° at expansion 

from a higher to the ordinary pressure. The other physicists, who 

after Dewar have occupied themselves with liquid hydrogen, — 

Travers 1900 and 1904, Ouszewsk1 1902, 1904 and 1905 (the latter 

rather with a view to obtain small quantities in a short time with 

simple accessories) — have also built their apparatus after this model. - 

The Leiden hydrogen liquefactor for constant use has enough 

peculiar features to occupy a position of its own as an independent 

construction by the side of the apparatus of TRAvErs and OLszEwskI, 

which do not satisfy the requirements for the Leiden measurements. 
Moreover I was the first to pronounce the principle according to which 

this apparatus is built and from which follows that the regenerator 

spiral fed with hydrogen that has been cooled by liquid oxygen (air) 

evaporating at a given low pressure, must lead to the goal. 

The problem of making a circulation in order to maintain a bath 

of liquid hydrogen —- and of this problem the arrangement of the 

liquefactor for constant use (which, tested with nitrogen, has really 

proved efficient) is only a part — has not yet been treated by others. 

That also at Leiden we had to wait a long time for its solution 

cannot be wondered at when we consider the high demands which, 

I held, had to be satisfied by this cycle. For with a view to the 
intended measurements I thought it necessary to pour a bath of 
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1.5 liter into the cryostat (described in VIII of the series “Methods 
and apparatus used in the Cryogenic Laboratory” of these commu- 

nications) and to keep it to within 0°.01 at a uniform and constant 

temperature. The requirements were therefore very much higher than 

they had formerly been for the bath of liquid oxygen. These require- 

ments could by no means be fulfilled before 1 had the disposal of 

a vacuum pump (mentioned as early as Jan. ’96 in Comm. N°. 23), 

(comp. Comm. N°. 83, March ’03), suitable to evaporate in a short 
time large quantities of liquid air at a pressure of a few centimeters, 

and before I possessed compressors for constant working with ex- 

tremely pure hydrogen. With the former instrument and the com- 

pressors, described in § 3, the liquefactor, described in § 2, delivers 

3 a 4 liters of liquid hydrogen per hour. Thus I was able to bring 

to this assembly (28 May ’06) 4 liters of liquid hydrogen prepared 

at Leiden the day before and to use it in several experiments. 
Our installation proved quite satisfactory for operations with the 

afore mentioned cryostat. After we had succeeded in making with 
it some measurements in liquid hydrogen boiling under ordinary 

and under reduced pressure the vacuum glass of the cryostat cracked 

and only by mere accidence the measuring apparatus were spared. 

Therefore we have constructed another modified cryostat, to be 

described in XII, which besides insuring the safety of the measuring 

apparatus has the advantage of using less liquid hydrogen than the 

cryostat, described in VIII (Comm. N°. 94¢, June ’05). This new 
cryostat entirely satisfies the requirements; the temperature is kept 

constant to within 0°,01. It is noteworthy that while the measure- 
ments are being made the cryostat shows in no way that we are 

working with a bath of no less than 1.5 liter of liquid hydrogen. 

I wish to express thanks to Mr. G. J. Fim, mechanist at the 

cryogenic laboratory, for his intelligent assistance. Under his super- 

vision the liquefactor and cryostat, to be described in the following 

sections, and also other accessories have been built upon my direc- 

tion in the workshop of the laboratory. 

§ 2. The hydrogen liquefactor for constant use. 

a. The apparatus does not yet entirely realize the original design‘). 

1) It might be improved by dividing the regenerator spiral in several successive 
coils, each opening into the next with its own expansion-cock, where the pressures 

are regulated according to the temperatures. Compare the theory of cooling with 

the Joute-Ketvin process and the liquefying by means of the Linpe process given 
by vAN per Waats in the meeting of Jan. 1900. 
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The latter is represented schematically by fig. 1 on Pl. I and 

hardly requires further explanation. The compressed pyerogen Z0es 

successively through the regenerator coils D,, D,, D,, D,, C, B, A. 

B is immersed partially in a bath of liquid air fliiehi being admitted 

through P, evaporates at a very low pressure; D,, D,, C and A 

are surrounded by hydrogen expanding at the cock M. and D, and D, 

by the vapours from the airbath in /. As, however, we can dispose 

of more liquid air than we want for a sufficient cooling of the admitted 

hydrogen, and the vacuum pump (comp. Comm. N°. 83, March ’03) 
has a greater capacity than is required to draw off the evaporating 
air’) at reduced pressure, even when we sacrifice the regenerator 

working of the spirals D,, D,, D, and D,, we have for simplicity 

not yet added the double forecooling regenerator D, by means 

of which a large quantity of liquid air will be economized, and hence 

the apparatus consists only of one forecooling regenerator C, the 

refrigerator / with cooling spiral 6 and the principal regenerator 
A in the vacuum glass # with a collecting vessel L, placed in 

the case V, which forms one complete whole with the case U. 

b. The principal regenerator, Pl. I fig. 2, consists of 4 windings 

of copper tubing, 2.4 m.m. in internal diameter and 3.8 m.m. in external 
diameter, wound close to each other and then pushed together, indicated 

by A,, A,, A, and A,, (number of layers 81; length of each tube 
20 M.). As in the ethylene regenerator (Comm. N°. 14, Dec. ’94, and 

description of Marutas °*), fig. 1 /’) and in the methy] chloride regenerator 
(Comm. N°. 87, March ’04, Pl. I) the windings are wound from the 
centre of the cylinder to the circumference and again from the circum- 

ference to the centre round the cock-carrying tube J/,, and are enve- 
loped together in flannel and fit the vacuum glass Z, (the inner 
and outer walls are marked with f,, and £,,). Thence the liquid 
hydrogen flows at #, into the collecting vessel Z,. At M,, the 
four coils are united to one channel which (comp. cock 7’ in fig. 3 

of Marutas’ description l.c.) is shut by the pivot point J/,, moved 
by the handle M,,. The packing | M, hermetically closes the tube 

M, at the top, where it is not exposed to cooling (comp. Maruias’ 
description l.c.). The hydrogen escapes at the side exactly as at 

the ethylene cock JZ, fig. 2 in Maruias’ description l.c., through 6 

openings J/,, and is prevented | from rising or circulating by the 

Screens. Le | ae 
The new-silver refrigerator case F, is suspended in the new- 

1) When using oxygen we might avail ourselves of cooling down to a lower 

temperature, which then must be carried out in two steps (comp. § 40). 

2) Le laboratoire cryogene de Leyde, Rev. Gen. d. Sc. Avril 1896. 
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silver case U,, from which it is insulated by flannel U,,. A float F,, 
indicates the level of the liquid air, of which the inflow is regulated 

through the cock P,, with pivot P,, and packing P, identical with 

the cock mentioned above, except that the glass tube with cock is 

replaced by a new-silver one /,. 

The evaporated air is drawn off through a stout copper tube F, 
(comp. § 44). The 2 outlet tubes 5,, and B,, of the spiral B,, and B,, 
(each 23 windings, internal diameter of tube 3.6 m.m., external diameter 

5,8 m.m., length of each 6 M.) are soldered in the bottom. The 

two inflow tubes 5,, and 4,, are soldered in the new-silver cover, 

on which the glass tube /, covering the index F,, of the cork 

float /',, are fastened with sealing wax (comp. for nitrogen Comm, 
N°, 83 IV, March ’03, Pl. VID. 

d. The forecooling regenerator spiral C,, C,, C,, and C, is 
wound in + windings like A, wrapped in flannel and enclosed in the 

cylinder of the new-silver case U,. The four windings (internal diam. 
of the tubing 2.4m.m., external diam. 3.8 m.m., number of layers 81, 
length of each tube 20M.) branch off at the soldered piece C,, from 
the tube C,,, soldered in the cover of U,. They unite to the two 

tubes C,a and C,b through which the hydrogen is led to the refri- 

gerator. The axis of this spiral is a thin-walled new-silver tube C, 
shut at the top. 

The hydrogen blown off is expelled through the tube U,. 

e. The liquid hydrogen is collected in a new-silver reservoir Z,, 

fitting the vacuum glass Z,, which by means ofa little wooden block 

V, rests on the wood-covered bottom of the insulated case V,, which 
is coated internally with paper V,, and capoc V,,. Thanks to LZ, 
the danger of bursting for the vacuum glass is less than when the 

hydrogen should flow directly from #, into the glass L,,. This beaker 
moreover prevents rapid evaporation in case the glass should burst 

(comp. § 1). 

The level of the liquid hydrogen is indicated by a float L,,,, 
which by means of a silk cord £Z,,, slung over the pulleys Z,, 

and £,, is balanced by an iron weight Z,,, moving in a glass 

tube V,,, which can also be pulled up and down with a magnet 

from outside. The float is a box Z,, of very thin new-silver, the 
hook JZ,,, is a bent capillary tube open at both ends and soldered 

in the cover. The glass V,, fits by means of india rubber on the 

cylinder V,,, which is connected with the case by means of a thin- 
walled new-silver tube V,,. 

The hydrogen is drawn off through the new-silver siphon tube J,,, 

which is continued as the double-walled tube V,, ,,,, leading 
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towards the delivery cock ,,. Here, as at the ethylene cock 

(description of Marnias l.c. fig. 2), the packing N, and the screw- 

thread are in the portion that is not cooled. The pin V,, made of a new- 

silver tube, passes through the cock-carrying tube N,. Both the outlet 
tube V, and the delivery cock N, are surrounded by a portion of 
the cold hydrogen vapours, which to this end are forced to escape 

between the double wall of the tube through J,,, and along Kha 

(Kd on PI. II). The outer wall J,,,, V;,, of the double-walled tube is 

insulated from the side tube V,, at the case V,, by means of wool. 

The glass Z is covered with a felt cover Z,, fitted at the bottom 
with a sheet of nickel-paper to prevent radiation towards the liquid 

hydrogen. This cover fits tightly on the lower end #, of EH and 
rests on the tube JV,,, and the pulley-case Z,,. 

jf. We still have to describe the various safety arrangements to 
prevent the apparatus from bursting when the cock J/ should sud- 
denly admit too much gas, as might occur when the opening has 

been blocked by frozen impurities in the gas, which suddenly let 

loose or when one of the tubes breaks down owing to the same 
blocking or an other cause. 

For this purpose serves in the first place the wide glass tube 

W,, which ends below mercury. The quantity of gas which of a sudden 

escapes, and the great force with which the mercury is sometimes 
flung away rendered it necessary to make a case W,, with several 

screens W,, all of varnished card-board to collect the mercury and 
to reconduct it into the glass W, (where a sufficient quantity of it must 

be present for filling the tube during the exhaustion). 

If the pressure in the reservoir rises higher than that for which the 

safety tube is designed, the thin-walled india rubber tube V,,, which is 
drawn over the perforated brass cylinder wall V,, (separated from 

it by a thin sheet of tissue-paper), breaks. The safety apparatus is 

connected with the case V, by a wide new-silver tube V,,. 
In order to avoid impurities in the hydrogen in the liquefactor 

through diffusion of air the india rubber cylinder V,,, that is drawn 
over the rings V,,, and V,,, after being exhausted is filled through 

the cock V,, with hydrogen under excess of pressure; during the 
exhaust the india rubber cylinder V,,, is pressed against the india 

rubber wall V,,. 
An arrangement of an entirely identical construction protects the 

ease U,, which encloses the principal regenerator, and the case U, 

which encloses the forecooling regenerator C. 
As to the protection against pressure which may occur in conse- 

quence of evaporation of air, it was sufficient to protect the refri- 
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gerator space & by means of the tube Y opening below mercury. 

g. In protecting the different parts against heat from the sur- 
rounding atmosphere, care has been taken that those surfaces of 

which the temperature might fall below the boiling point of air and 

which are not sufficiently protected by the conduction from less 

cooled parts, should not come into contact with air but only with 
hydrogen. The refrigerator vessel ', for instance, is surrounded 
with the hydrogen which fills the cases U and V; hydrogen is also 
to be found in the space between the vacuum glass Z and the wall 

of the case V; and lastly a side tube V,, and V,, branches off 

from the case V in order to surround with hydrogen the double-walled 

siphon tube V,,, V,,, and the double walled cock N,, .V,,,. 

The new-silver case V, from which the vacuum glass Z is insulated 

by layers of paper V,, and the refrigerator vessel # by a layer of 

flannel, and in the same way the new-silver case U, are further pro- 

tected from conduction of heat from outside by separate wrappings 
of capoe V,,, packed within a card-board cover V’,, pasted together. 
To prevent condensation of water vapour, the air in this enclosed space 

communicates with the atmosphere by means of a drying tube t.dr 

filled with pieces of sodium hydroxide, as in the ethylene- and 
methyl chloride regenerators (comp. above sub 6). 

The air-tight connection between the case U and the case V is 

effected by the india rubber ring Ua, which fits on the glass and 

on the strengthened rims U,, and V,, of the new-silver cases. India 

rubber of somewhat larger dimensions can only be used for tightening 

purposes when it is not cooled. In this case the conduetion along the 
new-silver wall, which is insulated from the vacuum glass by layers 

of paper, is so slight that the ring-shaped strengthened rims remain 

at the ordinary temperature and the closure can be effected by a 
stout stretched india rubber ring. When the india rubber is only 
pressed on the glass this closure is not perfectly tight; therefore the 

whole connection is surrounded with an atmosphere of almost pure 
hydrogen, which is obtained and maintained by the india rubber ring 

Ue, which fits tightly on U, and V, and which is filled with hydrogen 
under excess of pressure through the cock Ud. Thanks to the small 

conduction of heat of new-silver no cooling is to be feared for the 

connections of V,, and U,, no more than for the packings of the 

cocks M, and N,. 

h. The cases V and U are joined and form one firm whole by 
the three rods Ub with the screw-fastenings U,, and V,,. The vacuum 
glass £,, held by the india rubber ring Ua, rests with a wooden 

0? 

ring /, and a new-silver cylinder U,, against the refrigerator vessel /’. 
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The whole construction can stand exhaustion, which is necessary 

to fill the apparatus with pure hydrogen. After the case U, of which the 
parts U, and U, are connected together by beams, and the case V 

are mounted separately, the vacuum glass / is placed in position 
and the case V is connected with the case U. The entire lique- 

factor is suspended from the ceiling by means of some rods and is 

particularly supported by the stout outlet tube J’, for air and the 
outlet tube U, for hydrogen. , 

Plate II represents the circulation schematically: the pieces of appa- 
ratus in their true proportions, the connections only schematically. 

The liquefactor is designated by the letters iq. The compressed hydro- 
gen is admitted through ‘Ac, the hydrogen blown off is let out 
through Khd or Khe. 

7. Before the apparatus is set working it is filled with pure 
hydrogen (the cock J being open) by means of exhaustion and 

admission of pure hydrogen along Ac. In the drying tubes Da and 
®b the pure hydrogen is freed from any traces of moisture which 
it might have absorbed. 

§ 3. The compressors and the gasometers. 

a. The hydrogen is put under high pressure by means of two 

compressors in each of which the compression is brought about in 
two steps. 

While other physicists use compressors with water injection running 

at great speed of the same kind as I have formerly arranged for 

operations with pure gas (comp. Comm. N°. 14 of Dec. ’94, § 10, 

and N°. 51, Sept. ’99, § 3), I have used for the hydrogen circulation 

slowly running compressors (see Pl. Il © at 110 and 9 at 80 revo- 

lutions per minute) which are lubricated with oil. To enable 

constant working with hydrogen the highest degree of purity of 

the gas is required. For if air is mixed with the gas it is deposited in 

the regenerator spiral and when some quantity of it is collected there 

it will freeze and melt alternately through the unavoidable variations 

of temperature in different parts of the spiral, so that even small quanti- 

ties, taking into consideration that the melted air flows downward, 

necessarily must cause blocking. And such small quantities of air may 

easily come in through the large quantity of injection water which is 

necessary for the above mentioned compressors with water injection 

or may penetrate into the pieces of apparatus ~lich are required 

when the same injection water is repeatedly used. Lastly the chance 

of losing gas is much smaller with the last mentioned compressors 
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and the manipulation much easier. These compressors are made very 
carefully by the BurckHARDT company at Basel. 

In the first compressor (© Pl. II, displacing 20 M’* per hour) the 

gas is raised in the first cylinder (double-acting with slide) from 
1 to 5 and in the second cylinder (plunger and valves) from 5 to 25 

atmospheres; in the second compressor ) (plunger and valves) in 

the first cylinder from 25 to 50 and in the second from 50 to 250 
atmospheres. After each compression the gas is led through a cooling 
spiral. With the two first cooling spirals (those of © Pl. II) an oil- 

separator is connected. 
Safety-valves lead from each reservoir back to the delivery; 

moreover the packings are shut off with oil-holders (Comm. N°. 14 

794 and N°. 83, Pl. VIII). The hydrogen that might escape from 

the packing at $ is collected. 

b. The high pressure compressor forces the hydrogen through two 

steel drying tubes Da and Db filled with pieces of sodium hydroxide 

(comp. § 2, 7, and Pl. II), of which the first also acts like an air- 

chamber for the regenerator spiral. As in all the operations the gas 

(comp. ¢) originally is almost dry and comes only into contact with 

oil, we need only now and then run off a small quantity of 
concentrated sodium hydroxide solution. 

c. For the usual working the compressors suck the gas from 

gasometers. If these should float on water the separation of the water 
vapour, which is inevitably taken along by the large quantities of gas 

displaced, which constantly come into contact with water, would give 

rise to great difficulties in the compression. Therefore we have used 
for this purpose two zinced gasometers, Gaz a and Gaz 6, Pl. U, with 
tinned welds (holding each 1 M.*) floating upon oi *), which formerly 

(comp. Comm. N°. 14, Dec. 94) have been arranged for collecting 

ethylene ’). 

The cock Kpa (Kpb) is immersed in oil; likewise the connection 
of the glass tube, through which the oil of the gasholder can be 
visibly sucked up till it is above the cock, with the cover are immersed 
in oil. The india rubber outlet tube and the connection with the 

1) The drawing sufficiently represents the construction which has been followed 

for economizing oil. The gasometers can be placed outside the laboratory and 
therefore they are protected by a cover of galvanized iron and curtains of tarred 

canvas, which can be drawn round them. 

2) Formerly it was of the utmost importance that ethylene could be kept pure 

and dry in the gasometers. But now the purifying of ethylene through freezing in 
liquid air (comp. Comm. N°. 94e IX § 1) has become a very simple operation and 
weldless reservoirs for the storage of the compressed gas are obtainable in all 

dimensions. 
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copper exhaust tube are surrounded by a second india rubber tube 

filled with glycerine. From the cock onward the conduction can be 
exhausted; to prevent the tube from collapsing during the exhaust 

a steel spiral has been placed in it. A float with valve Aph (Kp) 
prevents the oil from being drawn over into the apparatus. 

- Besides these gasometers we dispose of two other gasometers holding 

5 M* each to collect hydrogen of a less degree of purity. They 

are built following the same system as the zinced gasometers for the 

economizing of liquid, carefully riveted and caulked and float on 

a solution of calcium chloride. The oil-gasholders serve only for the 
storage of very pure hydrogen and this only while the apparatus is 

working. 

During the rest of the time the pure hydrogen is kept in the 

known steel bottles shown on PI. Il at Xtha. When we wish to 
liquefy hydrogen, this is blown off into the gasometer through Kg (Khe, 
Kpe and Kpb for instance to (raz 5), after this gasometer, which has 

been left standing filled with hydrogen, is washed out on purpose with 

pure hydrogen. When we stop working the hydrogen by means of 
© and is repumped along Apf and Kpe through Ka and Kf 
into the reservoirs Rha. 

The gasometers may be connected with the pumps or the liquefactor 

either separately or together. The former is especially required when 

the cryostat is worked (comp. XII) and for the purification of 

hydrogen (comp. XIV). 

§ 4. The cooling by means of liqud air. 
a. The liquid air is sucked into the refrigerator vessel / (PI. I), 

which by As (Pl. II) is coupled to the vacuumpump %, along the 
tube Pb connected with the siphon of a vacuum bottle %a con- 

taining liquid air. 

This has been filled by catching the jet of liquid air from the 

apparatus (PI.IV, fig. 2) in which it is prepared (comp. XIII), into 
the open glass (see the annexed fig. 1) and is kept, covered with 

a loose felt stopper m (fig. 1). To siphon the liquid air into the 

apparatus, where it is to be used, the stopper is replaced by a cap 

A (fig. 1) with 3 tubes; one of these d is designed to raise the 

pressure uf the bottle with a small handpump, the other c is connected 

to a small mercury manometer, and the third 6 reaches down 

to the bottom, so that the liquid gas can be let out. (When 
the bottle is used for other liquid gases, d is used for the outlet 
of the vapours and ¢ for the admission of the liquid gas). One of 

the first two tubes reaches as far as the neck. It may also be used 

12 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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to conduct liquid air from a larger stock into the bottle. With the 

cap a closed glass tube & is connected, in which an index of a 

cork float dr indicates the height of the liquid. 
The caps, as shown in fig. 1, were formerly blown of glass and 

the three tubes were fastened into it by means of india rubber. After- 

wards the cap /,, as shown in fig. 2, with the three tubes and with 
a double wall h, of very thin new-silver have been soldered to form 

one whole, which is fastened on the bottle with an india rubber 

ring &. The space between the walls is filled with capoc /, and the 
whole piece rests on the neck of the bottle by means of a wooden 

block 7. After it is placed on the bottle the cap is wrapped round 
with wool. 

With a view to the transport the vacuum glass is placed in a 

eard-board box with fibre packing. 
When the siphon is not used it is closed with a piece of india 

rubber tubing, fitted with a small stopper. When we wish to 
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siphon over, this stopper is removed and the inflow tube P% (PI. I) 

is connected with the siphon-tube } (fig. 2) with a piece of india 
rubber tubing. To prevent breaking of the india rubber, which through 

the cold has become brittle, the new-silver tubes are arranged so 

that they fit into each other, hence the india rubber is not strained 

so much. 
The admission of liquid air into the refrigerator vessel is further 

regulated with the cock P, Pl. I. When the float indicates that the 

reservoir is almost empty, another reservoir is put in its place. 

The cock Ks is regulated according to the readings on the 

mercury manometer tube Y. 
5. The air is caused to evaporate at a pressure of 15 mm., which 

is possible because a BurckHarpt-Welss-pump % PI. II is used as 

vacuumpump. 
The vacuumpump is the same as that used in measurements with 

the cryostat containing a bath at — 217° (comp. Comm. No. 94? June ’05) 

and has been arranged to this end as described in Comm. No. 83 

V. March ’03. The letters at § on Pl. II have the same meaning as 

on Pl. VIII of Comm. N°. 83. As has been described in Comm. 
No. 94¢ VIII, June ’05, this vacuumpump %, displacing 360 M* per 
hour, is exhausted by a small vacuumpump, displacing 20 M* per hour’) 

(indicated by # on PI. II). 

§5. How the liquefactor is set working. 

a. When the apparatus is filled with pure hydrogen, as described 

in § 2, and when air evaporating under low pressure is let into the 

refrigerator, for convenience the hydrogen, admitted through © and 4 

Pl. II along Ke, is caused to stream through during some time 

with wide open cock ©, Pl. I, for the forecooling of the whole 
apparatus. Then the cock J is regulated so that the pressure in 

the regenerator spiral rises slowly. It is quite possible for the appa- 
ratus to deliver liquid hydrogen at 100 atm., it has done so at 70 atm. 
As a rule, however, the pressure is kept between 180 and 200 atm. 
because then the efficiency is some times larger *). The liquefactor 
then delivers about 4 liters liquid hydrogen per hour. Part of the 
hydrogen is allowed to escape along Aha Pl. I fig. 2 (Kd PI. Il) 

for the forecooling of the siphon N,, Pl. I and the cock JN. 
As soon as liquid hydrogen begins to separate we perceive that the 

1) When we use oxygen (comp. § 2 note 2), and a pressure as low as a 
few mm should be required, forecooling is required in the second refrigerator 

like F, where oxygen evaporate$ under low pressure, for instance towards §. 

*) v. p. Waats has shown the way how to compute this (comp. note 1 § 2). 

12% 
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cock M must be tightened a little more in order to keep the pressure 

within the same limits. | 
When liquid hydrogen collects in Z rime is seen on the tube 

No: Pl. I, fig. 2 near the cock JN. 

b. The gaseous hydrogen escapes along Khd (PI. Il) to © and 

to one or to both gasholders. When liquid hydrogen separates, the 

compressor © receives, besides the hydrogen escaping from the 

liquefactor, a quantity of hydrogen from the gasholders along Apa 

and Kpb. New pure hydrogen is then admitted from Jtha, Pl. Il, 

along Kg. 
c. The float (Z,,, Pl. I) does not begin to indicate until a fairly 

large quantity of liquid hydrogen is collected. 

§ 6. The siphoning of liquid hydrogen and the demonstration of 
liquid and solid hydrogen. 

a. When the float Z,,,, Pl. 1, shows that the glass is filled to the 

top (this usually happens an hour after the liquefactor is set working) 
the hydrogen is siphoned into the vacuum glasses Hydr a, Hydr 6 
ete., Pl. II, which are connected behind each other so that the cold 

hydrogen vapour, which is led through them, cools them successively 

before they are filled. When one is full the next is moved 6ne 

place further. 

They are fitted with caps of the same description as the bottles 

for siphoning liquid air, figs. 1 and 2 in the text of §4. Pl. Ill 
represents on a larger scale 2 bottles coupled behind each other and 

a third which has been filled, all as on PI. II, in side- and top-elevation. 

The evaporated hydrogen escapes along d', and d", and further along 
K, (see Pl. II) to the gasholder. The letters of the figures have the 

same meaning as in fig. 2; for the explamation I refer to the de- 

scription of that figure in § 4. 

The conduction of heat in the thin new-silver is so little that 

the new-silver tubes can be soldered in the caps h, and that they 

are sufficiently protected by a double wall h,, of new-silver with 
a layer of capoe between, which is again thickly enveloped in 

wool. 
It has occurred that the india rubber ring 4’ has burst through 

the great fall of temperature, but in general the use of india rubber 

has afforded no difficulties, and hence the somewhat less simple 

construction, which would lie to hand, and through which we avoid 

cooling of the india rubber at the place where it must fit, has not 

yet been made. 

b. If we desire to see the jet of liquid hydrogen flowing from 
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the cock NW, Pl. I, we connect with the tube NV, and the india 
rubber tube d,; instead of the 

silvered flasks of Pl. II and 

Pl. Ill, a transparent vacuum 
Ww. b : 

: cylinder fig. 3a, closed by an 
india rubber ring with a new- 

ee silver cap with inlet tube. After 
$ the cock is opened the india 

rpbber outflow tube d, covers 

with rime and becomes as hard 

as glass; soon the first drops in 

spheroidal state are seen splash- 

ing on the bottom of the glass and 

the lively liquid fills the glass. If, 

as shown by fig. 3d, a glass cover 

is placed on the top, the glass 

may be left standing in the 
Fig. 3 open air without the air con- 

densing into it, which would hasten the evaporation. In the same 

manner I have sometimes filled non-silvered vacuum flasks holding 

1 diter, where the liquid hydrogen boils vividly just as in the glass 

mentioned before. The evaporation is of course much less and the 

vising of the bubbles stops when the vacuum glass or the vacuum 
flask is placed in liquid air. 

ee en) 

i a 16: Ie 
is eee as Were es J 

To demonstrate the pouring of hydrogen 
from one open vessel into the other, I use 

a glass, cap round which a collar of thin 

india rubber sheet is bound (comp. the 

accompanying fig. +). The flask from which 

and the glass into which we want to pour, 

the latter after being filled with liquid air 

and quickly turned down and up again 

(if this is not done quickly a blue deposit 

of H,O from the air will come in), are placed 

Fig. 4 under the cap, which fills with hydrogen and 
hence remains transparent, then with the india rubber round the neck 
of the bottle and round the glass we take hold of the two, each in 

one hand. Through the cap we can observe the pouring. The escaping 

hydrogen rises in the air as clouds. 
In order to keep the half filled glass clear it is covered, under 

the pouring off cap, with a glass cap, and so it can be takeu 

away from the pouring off cap. 
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c. It is very instructive to see what happens when we proceed 

' to remove this cap and the glass is tilted over a little. Above the 

level of the liquid hydrogen thick snowy clouds of solid air are 

_ formed, the minute solid particles drop on the bottom through the 

extremely light hydrogen (specific weight ‘/,,), there they collect toa 

_ white pulver which, when the hydrogen is shaken, behaves as heavy 

sand would behave in water. When tbe hydrogen is evaporated that 

sand soon melts down to liquid air’). 

d. Solid hydrogen may be easily demonstrated when we place 

the glass, fig. 3a, under a bell as fig. 3c in which a wire can 

be moved up and down (for instance by fastening it into an india 

rubber tube) and connect the bell with the airpump. A starch-like 

white cake is soon formed, which can be moved up and down 

with the wire. 

e. To fill a vacuum flask as shown on PI. III we first cool it 

by washing it out with liquid air. The connection at J,, Pl. I fig. 2 

and Pl. Ill, is brought about simply by drawing a piece of india 

rubber tubing V,, over the new-silver tubes WV, and C; fitting into 

each other, round which flannel is swaddled. This again is enveloped 

in loose wool. When some bottles are connected they are filled with 

pure hydrogen through the tube 6, of Hydr. a after repeated 

exhaustion and care is also taken that each newly connected bottle 

is filled with pure hydrogen and that no air can enter the apparatus 

while the connections are being made. 

When from the indications of the float Z,,, (Pl. I, fig. 2) we 

conclude that a bottle is full, it is disconnected, but as long as the 

liquid hydrogen is kept in this glass the evaporating hydrogen is 

allowed to escape into the gasholder, as is represented by PI. III for 

Hydr. c. The disconnection at NV, is simply effected by taking off 

the flannel band C,, heating the piece of india rubber tubing N,, 

(unvoleanized) with one’s fingers (or with a pair of pinchers arranged 

to this end) till it becomes soft again and can be shoved from. the 

tube J,. 

§ 7. Transport to the cryostat, closure of the cycle. 

a. The vacuum glasses filled with liquid hydrogen (see Hydr. d 

on Pl. I) are transported to the room where the cryostat &7 is mounted 

1) All this has been demonstrated by me at the meeting of 28 May. To show 

the small specific weight of hydrogen I held a very thin-walled glass bulb, which 

sinks only a little in ether (as a massive glass ball in mercury), suspended by a 

thin thread in the glass with liquid hydrogen, where it fell like a massive glass 

ball in water and tapped on the bottom. 
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into which the hydrogen is siphoned. To this end the tube 4", of Pl. II] 

is connected (again by a piece of india rubber tubing, enveloped in 

flannel and wool) to the inflow tube a, of the cryostat and the 

tube d, to an inflow tube of pure hydrogen under pressure, which is 

admitted from Xhc, Pl. U, along Awa. With all these connections and 

disconnections care must be taken that there should always be an 
excess of pressure in the tubes that are to be connected, that the 
disconnected tubes should be immediately closed with stoppers 
but that first the apparatus after having been exhausted should prelimi- 

narily be filled with pure hydrogen. The liquid hydrogen is not 

admitted into the cryostat €7 until the latter has been cooled — 

coupled in another way (see the dotted line on Pl. Il) — by means 

vf pure hydrogen which has been led from the through a cooling 
tube immersed in liquid air. This refrigerator is of a similar construe- 

“tion as the nitrogen condenser Pl. VII of Comm. N°. 83 (March ’08). 

Instead of Nliqg should be read H, and instead of Oz lig, Aér liq, 
which is siphoned from the vacuum flask 2c. (comp. § 6). 

During the siphoning of the liquid hydrogen into Gr the rapidity 

of the influx is regulated after a mercury manometer, which is con- 

nected with the tube c on the cap h, Pl. III (comp. fig. 2 of § 4). 

b. From the cryostat the evaporated hydrogen escapes along Y,, 
into the compressor &, Pl. H, which can also serve as vacuumpump 

and which precautiously through 9 and Af at the dotted connection Kf 
stores the gas, which might contain minute impurities, in the separate 

reservoir Xhd; or it escapes along Y,, and Kpe or Kpd into the gas- 
holders Gaz a or Gaz b. 

XI. The purification of hydrogen for the cycle. 

a. This subject has been treated in Comm. N°. 94d IX. To be 
able always to obtain pure hydrogen, to make up for inevitable 
losses, and lastly to be freed from the fear of losing pure hydrogen, 

which perhaps might deter us from undertaking some experiments, a 

permanent arrangement for the purification has been made after the 
principle laid down in IX. The apparatus for the purification is 
represented on Pl. IV and is also to be found on PI. II at 3. 

The impure hydrogen from thd is admitted through An and along 
a drying tube into a regenerator tube (see Pl. IV) consisting of two 

tubes enclosing each other concentrically, of which the outer a serves 
for the inflow, the inner 6 for the outlet. Outside the apparatus 

a and 6 are separated as a, and 0,, within the apparatus from the 

point c downwards a is continued as a, and subsequently as the spiral 
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a, to terminate at the top of the separating cylinder d, from which: 

the gas escapes through 4,, and the impurities separated from the 

hydrogen as liquid escape along eand Km (comp. Pl. I). The liquid - 

air, with which the cooling tube and the separating cylinder are cooled, 

is admitted along / and the cock m (and drawn from the vacuum glass 
Wb, Pl. Il); a float dr indicates the level of the liquid air. The eva- - cc 

porating air is drawn off by the vacuumpump § (PI. I) along At. 
The refrigerator vessel p is protected against heat from outside by 

a double wall qg of new-silver with eapoe v packed between, of 
which the lower end is immersed in a vacuum glass 7, while the 

whole is surrounded with a layer of capoe enclosed in a varnished 

cover of card-board pasted together in the same way as for the 
hydrogen liquefactor. The glass tube Y, opening below mercury, 
serves among others to read the pressure under which the i cc 
takes place. mele’ 

The cock Am is turned so that some more bottles of known’ 

capacity are collected of the blown- off gas than, according to the 

analysis, would be formed by the impurities present in the gas. In 

this way the purity of the hydrogen is brought to */,,°/,. It is led 

along A7/ to the gasholders, and compressed by © and § in :thd. 

6. A second purification is effected in the following manner. When 

we have operated with the liquefactor with pure hydrogen we 

always, after the experiments are finished, admit a portion of this 

not yet quite pure gas into the apparatus. After some time, usually 

after 4 liters of liquid hydrogen are formed, the cock is blocked. As 
soon as it becomes necessary to move this repeatedly to and fro 

— Travers and OLszewski say that this is constantly necessary but 

I consider it as a sign that the apparatus is about to get more and 

more disordered — the work is suspended and the cock M (PI. I) 

closed, after which 2D, and ®, (Pl. I) are blown off to the gas- 
holders along K, and K,, and A, is shut. The liquid hydrogen, 

after being siphoned, is allowed to evaporate and to pass over into 

the gasholder for pure hydrogen. The impurities are found when, 

with J/ and X, closed, we return to the ordinary temperature and 

analyze the gas, which in D has come to high pressure. ; 

If necessary, the purified hydrogen is once more subjected to this 
process. 

When, after the liquefactor with pure hydrogen has been wieleaa . 

we go on admitting a quantity of preliminarily purified hydrogen of 

1/30 °/, and take care that the impurities are removed, we gradually 

obtain and maintain without trouble a sufficient quantity of pure 
hydrogen. 
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XII. Cryostat especially for temperatures from 

— 252° to — 259°. 

§ 1. The principle. In X § 1 I have said that we succeeded in 
pouring into the cryostat of Comm. N°. 94¢ VIII a bath of liquid 
hydrogen, maintaining it there and making measurements in it, but 

then the vacuum glass cracked. By mere chance it happened 
that the measuring apparatus which contained the work of several 

series of measurements came forth uninjured after removal of the 

sherds and fragments of the vacuum glass. With the arrangement 
which I am going to describe now we need not be afraid of an adversity 
as was imminent then. Now the bath of liquid hydrogen is protected 

against heat from outside by its own vapour. The new apparatus 
reminds us in many respects of that which I used to obtain a bath 

of liquid oxygen when the vacuum glasses were not yet known; 
_the case of the cryostat then used has even been sacrificed in 

order to construct the apparatus described now. 

The principal cause of the cracking of vacuum glasses, which I 

have pointed out in several communications as a danger for placing 

precious pieces of apparatus into them are the great stresses 

caused by the great differences in temperature between the inner 

and the outer wall and which are added to the stresses which 

exist already in consequence of the vacuum. To the influence of 

those stresses it was to be ascribed, for instance, that only through 

the insertion of a metal spring the vacuum tubes (described in Comm. 
N°. 85, April °05) could resist the cooling with liquid air. It some- 

times happens that a vacuum flask used for liquid air cracks without 

apparent cause and with the same cooling the wide vacuum cylinders 

are still less trustworthy than the flasks. At the much stronger cooling 

with liquid hydrogen the danger of cracking increases still. Habit 

makes us inclined to forget dangers, yet we should rather wonder 

that a glass as used for the cryostat of Comm. N°. 94? VIII filled 
with liquid hydrogen does not crack than that it does. 

In the new cryostat of Pl. V the cause of the cracking of the vacuum 

glass has been removed as much as possible and ‘in case it should 
break in spite of this we have prevented that the measuring apparatus 

in the bath should be injured. The hydrogen is not poured directly 

into the vacuum glass B’,, but into a glass beaker Ba, placed in the 
vacuum glass (comp. Comm. N°. 23, Jan.’96 at the end of § 4) but 
separated from it by a new-silver case, which forms, as it were, 

a lining (see X, LZ Pl. I). Further the evaporated hydrogen is led 
along the outer wall of the vacuum glass B’,,. To be able to work 
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also at reduced pressure and to prevent any admixtures of air from 

entering into the pure hydrogen used, the whole bath has been placed 

in a stout cylindrical copper case Ub, which can be exhausted. 

This cryostat is especially fit for hydrogen, yet may profitably 

replace those described till now, at least when it is not necessary 

that we should see what takes place inside the bath. A modified pattern, 

where this has become possible, in the same way as in the cryostat 
with liquid oxygen of Comm. N°. 14, Dec. ’94, I hope to describe 

erelong. 
In the eryostat now to be described, as in the former, the meas- 

uring apparatus, without our changing anything in the mounting 

of them, will go through the whole range of temperatures from 

— 23° to — 90° with methyl chloride, from — 103° to — 160° with 
ethylene, from — 183° to — 217° with oxygen and from — 252° 
to — 259° with hydrogen (only for the temperatures between — 160° 

and — 180° we still require methane). 

§ 2. Description. 
a. The new cryostat is represented on Pl. V. The letters, in so 

far as the parts have the same signification, are the same as for the 

descriptions of the other cryostats; modified parts are designated by 

new accents and new parts by analogous letters, so that the expla- 
nations of Comms. N°. 83, N°. 94¢ and N°. 94¢ on the attainment 

of uniform and constant temperatures, to which I shall refer for 

the rest, can serve also bere. Pl. Il shows how the cryostat is 

inserted into the hydrogen cycle. In chapter X § 7 is described how 
the liquid hydrogen is led into the cryostat. Especially for the regu- 

lation of the temperature this plate should be compared with Pl. VI 
of Comm. N°. 83, March ’03. Instead of Bu Vac on the latter plate, 

the compressor © serves as vacuumpump here (see Pl. II of the 
present paper). 

6. The measuring apparatus (as on the plate of Comm. N*. 94¢ 
VII I have represented here the comparison of a’ thermoelement 
with a resistance thermometer) are placed within the protecting 

cylinder §, of the stirring apparatus. This is held in its place by 4+ 

glass tubes &,, fitted with caps of copper tubing §,, and &,, at the 
ends of the rods. 

The beaker La, containing the bath of liquid hydrogen, is supported 
by a new-silver cylinder £a,, in the cylindrical rim Ba, of which 
the glass fits exactly; the beaker is held in its place by 4 flat, thin, 

new-silver suspension bands running downwards from Ba, and 

uniting below the bottom of La. The ring Ba, is the cylinder Ba, 



(175 ) 

continued, with which it is connected by six strengthened supporting 

ribs Ba,. At the top it is strengthened by a brass rim Ba, with a 

protruding part, against which presses the upper rim Ua of the 

ease U. On Ba, rests the cover .V',, in which a stopper is placed 

carrying the measuring apparatus. The india rubber band effects 
the closure (comp. also Comm. Nos. 83, 94° and 944). 

c. In the case U the vacuumglass 4',, of which the inner wall 

B',, is protected by the thin new-silver cup 5d, is suspended by 
bands LZ’, and supported by the wooden block Z’',. The card-board 
cover 5’, forces the evaporated hydrogen, which escapes between 

the interstices of the supporting ridges, over the paste-board screen 

B',,, with notches 5',,, along the way indicated by arrows, to escape 
at 7’,. The case is lined with felt, covered with nickel paper (comp. 
Comm. N°. 14, Dec. ’94, and Comm. N°. 51, Sept. 799). 

d. The keeping of liquid hydrogen within an enclosed space, o1 

which the walls have for a great part a much higher temperature 

than the critical temperature of hydrogen, involves special safety 

arrangements. That this was no needless precaution appeared when 

the vacuum glass cracked unexpectedly (comp. X § 1) and of a quantity 

of more than 1,5 liter of liquid hydrogen nothing was to be seen 

after a few seconds. Now this disappearance is equivalent with the 
sudden formation of some hundreds of liters of gas, which would explode 
the case if no ample opportunity of escape were offered to the gas 
as soon as the pressure rises a little above the atmospheric. 

In the new cryostat I have avoided this danger in the same way 
as at the time when I first poured off a bath of liquid oxygen within 
a closed apparatus (comp. Comm. N°. 14, Dec. 794). 

The bottom of the case U is made a safety valve of very 
large dimensions; as cover W, of perforated copper with strengthened 
ridges it fits into the cylindrical case Ub, which is strengthened 
with the rim W. Over the external side of this cover (as in the 

safety tubes for the hydrogen Jiquefactor) a thin india rubber sheet 

W, — separated from the copper by a sheet of paper — is stretched, 
which at the least excess of pressure swells and bursts, while moreover 
the entire vacuum glass or pieces of it, if they should be forced out 

of the case, push the cover JV, in front of them without resistance. 

As the airtight fit of the sheet of india rubber W, on the ring W 
is not trustworthy and diffusion through contact of the india-rubber 
with the air must be prevented, it is surrounded with hydrogen ; 

this is done by filling the india rubber cylinder Wa, drawn over 
the supporting ring Ud, and the auxiliary cover Wb, with hydrogen 
along We. 
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The cords Wd serve to press the auxiliary cover WO with a certain 

force against the safety sheet, namely by so much as the excess 

of pressure amounts to, which for one reason or other we want 

to admit into the case. To prevent the india rubber from cooling 

down, for then the arrangement would no longer satisfy the requi- 

rements, the lower end of the case is lengthened by the cylindrical 

piece Ub, which between the rim U6, and the principal body of 

the case is made of new-silver to prevent the cooling of the lower 

rim. The entire: lower part is stuffed with layers of felt and wool 

while also a copper flange Ub, by conduction of heat from outside 

protects the lower wall from cooling. 
e. The hydrogen is admitted through the new-silver tube a, on 

which the siphon tube of a vacuumglass (X § 7) is connected with 

a piece of india rubber tubing a, (which otherwise is closed with 

a stopper a,, comp. X § 4a). The new-silver tube is put into the 

new-silver side piece Ud, which is soldered on the case and, being 

stuffed with capoe held back by a paper tube Ue, carries at the 

end a piece of cork Uf for support. When the vacuum glass B, 

with the case U are placed round the beaker La, the tube a, is 

pulled back a little. When subsequently the case is fastened in its 

position the tube is pushed forward until a ridge on a, is checked 

by a notch in Ud, so that its end projects into the beaker Ba 

and the hydrogen can flow into it. The india rubber tube a, forms 

the closure on a, and Ud. 

§ 3. Remarks on the measurements with the cryostat. 

In chapter X §7 I have communicated how the preliminary cooling 

is obtained. In one of the experiments, for instance, 3 liters of liquid 

air were used for it and the temperature was diminished to —110°. 

Then hydrogen was very carefully siphoned into the cryostat under 

constant stirring; a quantity of 5 liters was sufficient to obtain a bath 

of 1.5 liter. About 0.2 liter per hour evaporated after this. During the 

reduction of the pressure to about 60 m.m. + 0.2 liter evaporated, 

and then the evaporation remained about the same. The temperature 

could be kept constant to within 0.01° in the way described in the 

former papers. The temperature curves obtained were no less regular 

than those of Pl. HI in Comm. N°. 83 (Febr. and March ’08). 

If the pressure is reduced down to 54 m.m. the tapping noise of 

the valves of the stirring apparatus becomes duller. This isa warning _ 

that solid hydrogen begins to deposit. 
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XII. The preparation of liquid air by means of the cascade process. 

§ 1. ficiency of the regenerative cascade method. In none of 
the communications there was as yet occasion to treat more in 

detail of the preparation of Jiquid air by the Leiden cascade pro- 
cess. In the description of the preparation of liquid oxygen (in Comm. 
N°, 24, Dec. ’94) I have said that especially the ethylene refri- 
gerator had been constructed very carefully, and that the principle 

after which various cycles operating in the regenerative cascade can 
be made was embodied there. 

When the new methyl chloride circulation (comp. Comm. N°, 87, 

March ’04) was ready and the inadequate methyl chloride refrigerator 
was replaced by one constructed after the model of the ethylene 
boiling vessel with application of the experience gained, it was possible 
to prepare a much larger quantity of liquid oxygen (10 liters per 
hour easily) with the same ethylene boiling vessel. This quantity 
will still increase when the regenerator in the ethylene boiling vessel 
will be enlarged so much as our experience with the new methyl 
chloride regenerator has again taught to be desirable and when the 

exhaust tube of the ethylene boiling vessel will have been replaced 
by one of greater width than could be used originally. The intro- 
duction of a nitrous oxide and of a methane cycle, which in ’94 

stood foremost on our programme, has dropped into the background 

especially when, also for other reasons (in order to obtain the tem- 
peratures mentioned at the end of XII § 1), it appeared desirable to 
procure vacuumpumps of greater displacing capacity (’96) and these, 

being arranged for operations with pure gases (described in Comm. 
N®. 83, March ’03) had become fit to be introduced into the ethylene 
and the methyl chloride cycles (while in general for the cryostats 
these two cycles were sufficient, ef. the end of XII § 1). Larger 
quantities of oxygen could be used in consequence, for which (as 
mentioned in °94) a BroruErHoop compressor was employed (comp. 
the deseription of the installation for operations with pure gas in 
Comm. N°. 51 § 3, Sept. ’99). A picture of the cascade method in 
this stage of development accompanies a description of the cryogenic 
laboratory by H.H. Francis Hynpman in “Engineering” 4 Mrech ’04. 

This picture represents how the oxygen cycle is used to maintain 
the circulation in the nitrogen cycle, described in Comm. N°. 83, 
March 1903. In the same way as nitrogen we also liquefy air with 
the oxygen cycle. When it is drawn off the liquid air streams from 
the tube in a considerable jet; about 9 liters of liquid air are collected 
per hour, so that in one day we can easily prepare half a hectoliter. 
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Liquid air has striking advantages above liquid oxygen when 

we have to store large quantities or when with the gas liquefied in 

the cryogenic laboratory we must cool instruments in other rooms. 

Only where constant temperatures are aimed at pure oxygen or 

nitrogen will be preferred for refrigerating purposes, and even then 

the liquid air can be the intermediate agent, for we need only lead 

the gases mentioned throngh a cooling tube immersed in liquid air in 

order to liquefy nearly as much of it as the quantity of air evaporated 

amounts to. And so the permanent stock of liquid air maintained 

in the Physical Laboratory has gradually increased, so that for several 

years liquid air has been immediately sent off on application both 

at home and abroad. 

§ 2. The airliquefactor. The apparatus for the preparation of liquid 
air by means of liquid oxygen is in principle identical with that 

serving for nitrogen, but of larger dimensions (see Pl. VI). 

Identical letters designate corresponding parts of the apparatus 

represented (Comm. N°. 83, Pl. VII) for the liquefaction of nitrogen. 
To liquefy air the ordinary atmospheric air, after being freed by a 

solution of sodium hydroxide from carbon dioxide, is compressed to 10 

atmospheres in the spiral Rgf/, Pl. VI fig. 1. This spiral branches 

off from the tube Rg,, in the soldered piece ftg,, and carries four 

branches Rg,, Rg,, Rg, and Rq,. Each of these tubes has an internal 

diameter of 3.5 mm., an external diameter of 5.8 mm., and is 22 M. 

long. The spiral is wound in 63 layers in the same way as the regenerator 

spiral of the hydrogen liquefactor (comp. X )and, lined with flannel, it fits 

the new-silver tube p,, round which it is drawn in the new silver ease p. 

The four windings are united below to one soldered piece to the 

spiral Rf, 8M. long, which is immersed in a bath of liquid oxygen 
and whence the liquid air flows through /, into the collecting 
apparatus (see fig. 2). This is placed by the side of the principal 

apparatus (see fig. 2) and contains the collecting vessel 7,, where 

the liquid air is separated and whence it is drawn through the 
siphon. The collecting glass is fitted with a float dr. During work 
we can see it rising regularly at a fairly rapid rate. 

§ 3. Further improvements. The regenerative cascade might still 

be modified in many points before the principle is fully realized and 

before one improvement or other, made for one of the cycles, has been 

introduced also in the others and the efficiency is grown to a maximum ; 

but this problem is rather of a technical nature. We prefer to spend 

the time at our disposal on other problems, as enough liquid air is 
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produced by the regenerative cascade. Enough but not too much, 

because for operations with liquid hydrogen (comp. X) and also for 

other experimentations in the realm of cryogenic work it is very 

important that we should dispose of such a relatively abundant 
stock of liquid air as is produced by the Leiden cascade. 

XIV. Preparation of pure hydrogen through distillation 

of less pure hydrogen. 

It was obvious that we could obtain pure hydrogen for the 

replenishment of the thermometers and piezometers*) when we distil 

liquid hydrogen at reduced pressure *), and then evaporate the very 

pure liquid thus obtained. Therefore the following apparatus has been 
constructed (fig. 5). 

A vacuum glass A is connected with the liquefactor (see Pl. 1 
and III at \,) or with a storage bottle, exhausted and filled with 
liquid hydrogen as indicated in X §7. Then C'(exhausted beforehand) 
in the vacuum glass £6 is filled several times out of A, and the 

vacuum glass 6 is connected with B, to the liquefactor and exhausted 

like A and also filled with liquid hydrogen and connected with the 

ordinary airpump at £6, so that the hydrogen boils in B at 60 m.m. 
Then hydrogen is distilled over along c, into the reservoir C, we 

1) In Comm. N°. 94e (June ’05) I have mentioned that a purification through 
compression combined with cooling might be useful in the case of hydrogen even 
after the latter in the generating apparatus (Comm. N°. 27, May 96 and N°. 60, 

Sept. 1900) had been led over phosphorous pentoxide. I said so especially with a 
view to the absorption of water vapour as, with due working, the gas — at least 
to an appreciable vapour tension — cannot contain anything but H,O and SO,H;: 
How completely the water vapour can be freed in this manner appears from a 
calculation of Dr. W. H. Keesom, for which he made use of the formula of ScHEEL 
(Verh. D. phys. Ges. 7, p. 391, 1905) and from which follows for the pressure of 
water vapour (above ice) at —180°C. 10-15 mm., so that water is entirely held back 
if the gas remains long enough in the apparatus. This holds for all substances of which 
the boiling point is higher than that of water (SO; vapours, grease-vapours etc.). 
The operation is therefore also desirable to keep back these substances. As to a gas 
which is mixed only with water there will remain, wher it is led in a stream of 3 liters 
per hour through a tube of 2 cm. in diameter and 8 cm. in length over phosphorous 
pentoxide, no more than 1 m.gr. impurity per 40000 liters (Mortey, Amer. Journ. 
of Sc. (3) 34 p. 149, 1887). This quantity of 1 m.gr. is probably only for a 
small part water (Morey, Journ. de chim. phys. 3, p. 241, 1905). Therefore the 
operation mentioned would not be absolutely necessary at least with regard to 
water vapour when a sufficient contact with the phosphorous pentoxide were 
ensured. But in this way the uncertainty, which remains on this point, is removed. 

*) This application follows obviously from what has been suggested .-by Dewar, 
Proc. Chem, Soc. 15, p. 71, 1899. 
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shut c, and disconnect the india rubber tube at a@ and remove the 

whole apparatus to the measuring apparatus which is to be filled 

with pure hydrogen; to this end the apparatus is connected with the 

mercury pump, intended for this purpose, at c,. To take care that 
the hydrogen in # should evaporate but slowly and the quantity 

in C should not be lost before we begin to fill the pieces of appa- 
ratus, B is placed in a vacuum glass with liquid air. 

Physics. — “On the measurement of very low temperatures. IX. 
Comparison of a thermo-element constantin-steel with the hydrogen 
thermometer.” By Prof. H. KameruincoH Onnes and C. A. 

CroMMELIN. Communication N° 957 from the Physical Labora- 
tory at Leiden. 

(Communicated in the meeting of June 30, 1906). 

§ 1. Introduction. The measurements communicated in this paper 
form part of a series, which was undertaken long ago with a view 

to obtain data about the trustworthiness of the determination of 

low temperatures which are as far as possible independent and 
intercomparable. Therefore the plan had been made to compare 

a thermo-element'), a gold- and a platinum-resistance thermometer?) 
— 

1) Comp. comms. N°. 27 and 89. (Proc. Roy. Ac. May 1896, June 1896, and 

Feb. 1904). 

2) Comp. comms. N°. 77 and 93. (Idem Febr. 1902 and Oct. 1904). 
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each individually with two gas thermometers and also with each 

other, while the deviation of the gas thermometer would be determined 

by means of a differential thermometer’). Nitrogen had originally 

been chosen by the side of hydrogen, afterwards nitrogen has been 

replaced by helium. Because all these measurements have often 

been repeated on account of constant improvements, only those figures 

have been given which refer to the gold- and the platinum-resistance 

thermometer *), and these, for which others will be substituted in 

Comm. N°. 95°, are only of interest in so far as they show that the 

method followed can lead to the desired accuracy. The results obtained 

with regard to the above-mentioned thermo-element do not yet satisfy 

our requirements in all respects; yet all the same it appeared desirable 

to publish them even if it was only because the temperature deter- 
minations for some measurements, which will erelong be discussed, 
have been made with this thermo-element. 

§ 2. Comparisons made by other observers. 

a. Constantin-iron elements have been compared with a hydrogen 
thermometer only by Hotsorn and Wren’) and Lapensure and 
Kricen *). The calibration of the two former investigators is based 

on a comparison at two points viz. in solid carbon dioxide and 
alcohol (for which — 78°.3 is given) and in liquid air (for which 

they found —189°1). They hold that the temperature can be 
represented by the formula 

t=—aE+ bE’ 

and record that at an observation for testing purpose in boiling 

oxygen (— 183°.2 at 760 m.m. mercury pressure) a good harmony 
was obtained. 

LaprNBurG and Kriicen deem Horzorn and WIen’s formula unsatis- 
factory and propose 

t=ab.-| be +. cE’. 

They compare the thermo-element with the hydrogen thermometer 

_at 3 points, viz. solid carbon dioxide with alcohol, boiling ethylene 

and liquid air. As a control they have determined the melting point 

of ether (— 112°) and have found a deviation of 1 deg. With this 
they rest satisfied. 

1) Comp. comm. N°. 94c. (Idem June 1905). 

*) Comp. comm. N°. 93. (Idem Oct. 1904). 

*) Silz.ber. Ac. Berlin. Bd. 30, p. 673, 1896, and Wied. Ann. Bd. 59, p. 213. 1896. 

4) Chem. Ber. Bd. 32, p. 1818. 1899. 

13 
Proceedings Royal Acad. Amsterdam. Vol. IX. 



( 182 ) 

Rotue’) could only arrive at an indirect comparison with the hydrogen 

thermometer. He compared his thermo-elements constantin-iron at 

— 79° with the alcohol thermometer which Wiese and BOorTcHer ?) 

had connected with the gas thermometer and at — 191° with a 

platinum-resistance thermometer which at about the same tempera- 

ture had been compared with the hydrogen thermometer in the 

Phys. Techn. Reichsanstalt by Ho.porn and DirTENnBerGEr °*). 

The thermostat left much to be desired; temperature deviations 

from 0°.4 to 0°.7 occurred within ten minutes (comp. for this § 7). 

As Rorue confined himself to two points, he had to rest content with 

a quadratic formula and he computed the same formula as HOoLBorN 

and WIEN. 
From the values communicated for other temperatures we can 

only derive that the mutual differences between the deviations of the 
different thermo-elements constantin-iron and constantin-copper from 

their quadratic formulae could amount to some tenths of a degree. 
Nothing is revealed with regard to the agreement with the hydrogen 

thermometer. This investigation has no further relation to the problem 

considered here. 

5. Among the thermo-elements of other composition we mention 

that of WrosBLewski *), who compared his new-silver-copper element 
at + 100° (water), —103° (ethylene boiling under atmospheric pressure) 

and —131° (ethylene boiling under reduced pressure) with a 

hydrogen thermometer and derived thence a cubic formula for ¢. 
He tested it by means of a determination of the boiling points of 

oxygen and nitrogen and found an agreement with the hydrogen 
thermometer to within O°.4. As, however, Wrosirewski found for 

the boiling point of pure oxygen at a pressure of 750 m.m. —181°.5, 

no value can be attached to the agreement given by him. 

Drwar’s °) investigation of the element platinum-silver was for the 

time being only intended to find out whether this element was suited 
for measurements of temperatures at — 250° and lower (where the 

sensitiveness of the resistance thermometer greatly diminishes), and 
has been confined to the proof that this really was the case. 

c. To our knowledge no investigation has therefore been made as 

yet, which like that considered in our paper, allows us to judge in 

’) Ztschr. fiir Instrumentenk. Bd. 22 p. 14 and 33. 1902. 

ete 3 ; Bd. 10 p. 16. 1890. 

8) Drude’s Ann. Bd. 6 p. 242. 1901. 

4) Sitzungsber. Ac. Wien Vol. 91. p. 667. 1885. 

5) Proc. R. §. Vol. 76, p. 317. 1905, 
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how far thermoelements are suitable for the accurate determination 

of low temperatures (for instance to within /,, precise), and also 

by what formula and with how many points of calibration any 

temperature in a given range can be determined to within this 

amount. 

§ 3. Modifications in the thermo-elements and auxiliary apparatus. 
We shall consider some modifications and improvements which 

have not been described in § 1 of Comm. N°. 89. The first two 

(a and 6) have not yet been applied to the element with which 

the following measurements are made, but they have afterwards been 

applied to other elements and so they are mentioned for the sake 

of completeness. 
a. If we consider that the thermo-element in different measurements 

is not always used under the same circumstances, e.g. is not immersed 

in the bath to the same depth etc., and that even if this is the case, the 

time during which this is done at a constant temperature will not always 

be so long that in either case the same distribution of the temperature 
will be brought about in the metallic parts of the element, it will prove 

of the greatest importance that care should be taken, that the tem- 

perature of the juncture, given by the electromotive force, differs 
as little as possible and at any rate very little from that of the 
surface of the copper protecting block, that is to say that of the 

bath. 
The construction of the place of contact shown by fig. 1 

is a better warrant for this than that on Pl. lof Comm. 
N°. 89. The wires a and & are soldered on the bottoms 

of small holes c, bored in the protecting block and are 

insulated each by a thin-walled glass tube. If the con- 

struction of Pl. I Comm. N°. 89 is not carried out as it 
should be (whether this has succeeded will appear when we 

saw through trial pieces) and consequently the juncture is 

a little removed from the upper surface of the block, it may 

be easily calculated that, owing to conduction of heat along 

the wires while the thermo-element is immersed in 

liquid oxygen a difference in temperature of as much 

as one degree may exist between the place of contact 

and the block. When the elements are used under 

Fig. 1. other circumstances, this difference in temperature will 

have another value and hence an uncertainty will come into the 
determination of the temperature of the block. Perhaps that also a 

_ retardation in the indications of the element will be observed. 
13* 
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Although this construction (fig. 1) (for which a block of greater 

thickness is required than for that of Comm. N°. 89, Pl. I) has not 

been applied to the element used, we need not fear uncertainties on 
this point thanks to the very careful construction of the latter. 

b. When temperatures below —253° have to be determined we 
might fill the apparatus with helium instead of hydrogen as men- 

tioned in § 1 of Comm. N°. 89. 

c. The glass tubes of the mercury commutators, described in’ 

Comm. N°. 27, are not fixed in corks (see Pl. IV, fig. 4, £) but in 

paraffin, so as to obtain perfect insulation, which, as experience has 

taught, is not guaranteed by the glass wall. The tubes are continued 

beyond the sealing places of the platinum wires ¢, c, c,and ¢,, (as shown 

Fig. 2 and 3. 

by figs. 2 and 3) to avoid breaking of the platinum wires as 
formerly frequently happened. 

d. The platinum wires of the Weston-elements have been amal- 
gamized by boiling with mercury (which method has since that time 
been replaced by the method with the electric current *)). The elements 
themselves have kept good through all these years. 

e. In spite of all the precautions which have been described in 
Comm. N°. 89, thermo-electromotive forces still remain in the wires, 

which with the great differences of temperature between various 

points of one wire must doubtlessly amount to a measurable quantity. 
When, however, care is taken that the circumstances under which 

the element is used with respect to the temperature along the wires 

are about the same as: for the calibration, a definite value of the 

electromotive forces will answer to a definite temperature of the 

copper block. We do not aim at an accurate determination of the 
electromotive force of the combination of the metals which at the 

1) Comp. Jazcer, Die Normalelemente, p. 57. 
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juncture are in contact with each other, but we only require that 
a definite electromotive force for a definite temperature of the bath 

in which the element is immersed should be accurately indicated. 
(for the rest comp. § 9). 

In order to lessen the influence of the conduction of heat along 
the wire at the juncture we shall for the new elements destined for 

taking the temperature of a liquid bath make a trial with the insertion 

into the glass tube at 2 c.m. above the copper rim of the copper 
block of a copper tube, 5 ¢.m. long, which is soldered on either 

side of the glass tube and remains over its whole length immersed 
in the liquid. 

§ 4. Precautions at the measurements of the electromotive forces. 

a. The apparatus and connections which have been described in 
§3 of Comm. N°. 89 have been mounted entirely on paraffin, with 
which also the enveloping portions of the apparatus are insulated. 

Only the wires running between the different rooms stretched on 

porcelain insulators, of which the high insulation-resistance has 

repeatedly been tested, have no paraffin-insulation. The ice-pots are 
hanging on porcelain insulators. As a matter of course, all parts of 

the installation have been carefully examined as to their insulation 

before they are used. 

6. The necessity of continually packing together the ice in the 
ice-pots has been argued before in Comm. N°. 89. 

c. The plug-commutators are of copper. All contacts between different 
metals in the connection have been carefully protected from variations 
of temperature by packing of wool or cotton-wool, from which they 
are insulated by paraffin in card-board boxes. This was only omitted 

at the contact places of the copper leads with the brass clips of the 
resistance boxes. To secure to the Weston-elements an invariable 
temperature, the latter have also been carefully packed. The accu- 
mulator is placed in a wooden box. 

d. With regard to the testing elements, care has been taken that 
the steam left the boiling apparatus (comp. Comm. N°. 27, § 8) at 
a given constant rate. 

e. Before a measurement is started we investigate by short-cir- 
cuiting in the copper commutators in the conductions, leading from 
the thermo-elements and the Weston-battery to the connections, whether 
all electromotive forces in the connections are so small and constant 
(not more, than some microvolts), that elimination through the reversal 
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of the several commutators may be considered as perfectly certain. 

§ 5. The control of the thermo-elements. 

It appeared : 
a. that when the four places of contact were packed in ice, the electro- 

motive force of the element amounted to less than one microvolt; 

b. that the changing of the two places of contact constantin-steel, 

so that they were alternately placed in the cryostat, indicated only a 
very small difference in electromotive force. Care is taken, however, 

that always the same limb is placed into the cryostat ; 

c. that while the place of contact was moved up and down in 
the bath no difference could be perceived in the reading (hence 
the difference of temperature certainly < 0°.02). 

All this proves that the electromotive forces which are raised 

in the element outside the places of contact, are exceedingly small. 

§ 6. Corrections and calculations of the determinations of the 
electromotwe forces. 

a. In the following sections Rk, AR, A’ have the meaning which has 

been explained in Comm. N°. 89 § 3. #,, #, and H’ signify the 
electromotive forces of the observation-element, the comparison-element 

and the Weston-battery respectively. If we have obtained #, FR, and 

R’ it follows that: 

Rw Ry _, 
era ome ee a 

As a test we use: 

z E' 
io R! ‘4 

5. In order to find &, we read on the stops of the resistance box 
R', (in the branch of small resistance), and A» (in the branch of 

great resistance) which are switched in parallel to form &,. 

a. To none of the resistance boxes temperature corrections had 

to be applied (nor to those given by A, and R’ either). 

8. To R', we sometimes had to add the connecting resistance of 

the stops. 

y. To R', is added the correction to international ohms according 

to the calibration table of the Phys. Techn. Reichsanstalt. 

Jd. To k",, is added the amount required to render the compen- 

sation complete, which amount is derived from the deflections on 
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‘the scale of the galvanometer at two values of R", (see tables I 

and IV). . 

c. In order to find R,, R'. and R"., which with regard to R, have 

‘a similar meaning as FR’, and R",, with regard to Ry, are treated 

like R', and R&R", concerning the corrections a, B, ¥ and Jd. The 

thence derived result A. holds for the temperature at which the 

water boils in the boiling apparatus at the barometric height B 

existing there during the observation. 

«. R"’, is corrected to the value which it would have at a pres- 

sure of 760 m.m. mercury at the sealevel in a northern latitude of 45°. 

d. To find R' the corrections mentioned sub y and d are applied 

to the invariable resistance L’. 

e. E', referring to the temperature ¢ of the Weston-battery, is 

derived from Jancer’s table *). 

§ 7. Survey of a measurement. Table I contains all the readings 

which serve for a measurement of the electromotive force namely 

for that at — 217° (comp. § 8). We suppose that during the short 

time required for the different readings (comp. § 3 of comm. N°. 89) 

the electromotive force of the accumulator (comp. § 4, c) remains 

constant. We further convince ourselves that the temperature in the 

boiling apparatus of the comparison-element has remained sufficiently 

constant and that we have succeeded *) in keeping the temperature 

of the bath in the cryostat constant to within 0°.01 *) (see table I). 

In exactly the same way we have obtained on the same day of 

observation the values for the electromotive forces which are combined 

in table III. 
From the preceding survey it appears that the measurements can 

be made with the desired precision even at — 217°. At — 258° the 

sensitiveness of the element constantin-steel is considerably less 
thah at — 217°. It seems to us of interest to give also for this very 
low temperature a complete survey of the readings and adjustments 

so that the reader may judge of -what has been attained there 

(see Table IV). 

1) Jarcer, Die Normalelemente 1902. p. 118. 

2) Comp. Comm. N®. 83, § 5 and Pl. III. 

3) Together with the readings we have also recorded the temperature of the 
room (¢k) and of the galvanometer (¢;); these are of interest in case one should 

later, in connection with the sensitiveness, desire to know the resistance of the 

galvanometer and the conducting wires during the observation. lor the notation of 

the combination P;-+ Q of the comparison-elements we refer to Comm. N’. 89 § 2. 
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From table I directly follows 
TABLE II. 

Corrections and results. 

Observation-element. Comparison-element. Weston-elements. 

corr. 6 #',,=+ 0.001 2 | corr. § R', =+ 0.001 n 

corr. ¥ R’,,= + 0.0080 Q | corr. y KR’, =—0.00015 0 | corr. y R’;=—2.4 9 

corr.3 R”,,=+179 0 corr. 5 R", =4-1490 corr. $ R';=+0.64.9 

Re, =50.3163 0 

barom.hght.45°N.B.=76.21cM. 

corr. € R'”, =— 0.0373 9 

Final results. 

R= 53.6404 2 Re =50.2787 0 R'=7998.3 0, 

[== 4.808 

E'=1.0187 volt. 

— | 

P.y= 6.8312 milliv. E, = 6.4037 milliv. | 

4u 3! | | 

EES — OOOO 

TABLE III. 

| Ey | E, 

| | 
6.8312 6.4037 

6.8308 6.4039 

6.8310 6.4038 

Aas ee 

Mean | 6.8310 | 6.4038 

§ 8. The temperatures. 
a. The thermo-element is placed in a cryostat, as represented on 

the plate of Comm. N°. 94¢ but there a piezometer takes the place 
which in our measurements was occupied by a hydrogen thermo- 
meter. To promote a uniform distribution of the temperature in the 
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iA BL EV. 

Corrections and results. 

Observation-element. Comparison-element, Weston-elements. 

corr. £. R',, = +0.001 o | corr.s. Rk’, =+0.001 0 

corr. 7. R',, =-+ 0.00537 | corr. 7. R’, = + 0.0084 9 corr. ». Rh’; =—2.49 

corr. ¢. RK", =-++ 200. corr. 6. R= — 209 n corr. ¢. R'; =+0.89 

RM”, = 50.4133 9 

Bar.hght. 45° N.B, =76.82 cM. 

corr. ¢ Rl”, =— 0.14592 

Final results. 

R,, = 55.9981 o | R, = 50.2644 9 | R' = 7998.4 o 

> t?’—=18°.5 

' =1.0187 volt. 

Ey = 7.1321 milliv. E,= 6.4075 milliv. 

Qn24’ 

bath a tube is mounted symmetrically with the thermo-element, and 
has the same shape and dimensions as the latter. Comp. also Comm. 
N°’. 94° § 1.. For the attainment of a constant and uniform tem- 

perature with this cryostat we refer to Comm. N°. 94¢ and the 
Comms. quoted there. The temperature was regulated by means of 
a resistance thermometer. For the two measurements in liquid hydrogen 

we have made use of the cryostat described in Comm. N°. 94/, 

6. With a bath of liquid methyl chloride we have obtained the 
temperatures — 30°, —59° and — 88°; with ethylene — 103°, 

— 140° and —159°; with oxygen — 183°, —195°, —205° —213° 

and — 217°; with hydrogen — 253° and — 259°. 

c. The temperatures are read on the scale of the hydrogen thermo- 
meter described in Comms. N°. 27 and N°. 60. On the measurements 
with this apparatus at low temperatures another communication will 

erelong be published. 



( 192 ) 

§ 9. Results. 

Column I of the following table VI contains the numbers of the 

measurements, column II the dates, column III the temperatures 

measured directly with the hydrogen thermometer, column IV the 
electromotive forces — /#,, in millivolts, column V the number of 

observations, column VI the greatest deviations in the different deter- 

minations of #,, of which the appertaining /,, is the mean, column VII 

the same reduced to degrees. 

TABLE VI. 

CALIBRATION OF THE THERMO-ELEMENT 

CONSTANTIN-STEEL. 

I | II | Il i at Vv | VI ee VII 

20 | 97 Oct. 05 — 58.753 2.3995 | 3 | 0.0006 0.016 

24 30 Oct. 05 — 88.140 3.4895 | 3 29 81 

47 | 8 July 05 — 103.833 4.0229 | 3 56 168 

16 | 7 July 05 — 139.854 5.1469 | 8 6 oA 

48 | 6 Oct. 05 — 139.873 5.1469 | 4 12 MA 

49 | 6 Oct. 05 — 158.834 5.6645 | 3 15 59 

41 27 June 05 — [182.692] | 6.9997 | 3 40 MG 

98 | 2 Mrch, 06 —'195.178 6.4717 | 4° 28 450 

42 | 99 June 05 — [204.535] | 6.6382 | 3 3! 186 

27 | 2 Mrch. 06 — 204.694 6.6361 4 26 156 

44 | 30 June 05 | —[212.832] | 6.7683 | 3 8 56 

43 | 6 July 05 — 242.868 6.7668 | 3 45 106 

299 | 3 Mrch. 06 — 7.44 6.8291 3 AA 412 

45 | 6 July 05 — 27.416 6.8310 | 3 4 32 

30 | 5 May 06 — 252.93 7.4315 | 4 47 39 

34 5 May 06 — 259.24 7.1585 | 4 = = 

The observations 11, 12 and 14 are uncertain because in those 

cases the hydrogen thermometer had a very narrow capillary tube 

so that the equilibrium was not sufficiently secured. According to 

other simultaneous observations (Comm. N°. 95° at this meeting), 

which have later been repeated, the correction for N°. 11 is probably 

— 0°.058. The two other ones have been used unaltered, 
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' The mean deviation of /#, for the different days from the mean 

value, and also the mean largest deviation of the values of 2 found 

on one day amounts to 3 microvolts, which amount shows that in 

the observation of the comparison-element the necessary care has 
not been bestowed on one or other detail, which has not been 
explained as yet. We must come to this conclusion because the 

observation-element yields for this mean only 1,8 microvolt. 

§ 10. Indirect determinations. 

In order to arrive at the most suitable representation of LZ, as a 

function of ¢, it was desirable not only to make use of the obser- 

vations communicated in § 9 but also to avail ourselves of a large 
number of indirect measurements, obtained through simultaneous 

observations of the thermo-element and a platinum-resistance thermo- 

meter, the latter having been directly compared with the hydrogen 
thermometer (comp. Comm. N°. 95%, this meeting). 

These numbers have been combined in table VII where the columns 

contain the same items as in the preceding table, except that here 

the temperatures are derived from resistance measurements. 

TABLE VII. 

INDIRECT CALIBRATION OF THE THERMO-ELEMENT 

CONSTANTIN-STEEL. 

I | I | IL IV V | VI | VII 

22 | 43 Dec. 05 — ofses | 1.9503 | 3 | 0.005 0.012 

% | 44 Dec. 05 — 58.748 2.3980 | 4 6 16 

23 | 13 Dec. 05 — 88.161 3.4802 | 3 6 17 

4 | 23 Jan. 05 — 103.576 4.0100 | 5 9 oy 

3 | 30Jan.05 | [— 192.604) | 6.9970 | 4 32 147 

5 | 46 Mrch. 05 | (— 182.828] | 6.2340 | 3 13 60 

4 | 2 Febr. 05 — 195.435 6.4730 | 3 20 407 

6 | 417 Mich.05 | — 195.964 6.4814 | 5 10 53 

7 | 30 Mrch. 05 | — 204.895 6.6397 | 3 55 330 

26 | 26 Jan. 06 — 212.765 6.7637 | 4 33 933 

8 | 3 April 05 — 212.940 6.7686 | 4 15 106 

25 | 95 Jan. 06 — 217.832 6.83176 | 4 29 932 
tS ee a | ee 
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§ 11. Representation of the observations by a formula. 

a. It was obvious that the formula of AVENARIUs: 
t a 

E=f 00 --b (<3) 

can give a sufficient agreement for a very limited range only. If, 

for instance, the parabola is drawn through 0°, —140° and —258°, 

we find: 
a= + 4.7448 
b= -+ 0.76117. | 

In this case the deviation at —204° amounts to no less than 7°. 

If we confine ourselves to a smaller range and draw the parabola 

through 0°, —88° and —183°, we find: 
a= 4.4501 

b= + 0.57008, 
while at —140° the deviation still amounts to 1°.3. 

Such a representation is therefore entirely unsatisfactory. 

6. With a cubic formula of the form 
=e t A ae : 

=a ag + (si5 +e (=) 

we can naturally attain a better agreement. If, for instance, we 

draw this cubic parabola through 0°, —88°, —159° and —253°, 

we find: 

a= + 4.2069 
b= +. 0.158 
c= — 0.1544 

and the deviation at —204° is 0°.94. A cubic formula confined to 

the range from 0° to —183°, gave at —148° a deviation of 0°.34. *) 
A cubic formula for 7, expressed in # (comp. § 2), gives much larger 

deviations. *) 

e. A formula, proposed by SransrieLD*) for temperatures above 

0°, of the form 

1) As we are going to press we become acquainted with the observations of 
Honter (Journ. of phys. chem. Vol. 10, p. 319, 1906) who supposes that, by 

means of a quadratic formula determined by the points —79° and —183°, he can 
determine temperatures at —122° to within 0°.1. How this result can be made 
to agree with ours remains as yet unexplained. 

2) After the publication of the original Dutch paper we have taken to hand 

the calculation after the method exposed in § 12 of a formula of the following form: 

he t h ee t : t : 
at Tap (sa) + °(sen) + * (arn 

We hope to give the results at the next meeting. 
3) Phil. Mag. Ser. 5, Vol. 46, p. 73, 1898, 
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H=aT+blogT+ ¢, 

where TZ represents the absolute temperature, proved absolutely 

useless. 

d. We have tried to obtain a better agreement with the observa- 

tions by means of a formula of five terms with respect to powers 
of ¢t. To this end we have tried two forms: 

t nN mea 7 naa, +0(z) +e(z15) a a cnet 
and 

t t 2 t 3 5 

First the constants of the two equations are determined so that 

the equations satisfy the temperatures —59°, —140°, —159°, —183° 
and — 213°. (A) indicated at — 253° a deviation of 113.1 micro- 

volts, (B) a deviation of 91.8 microvolts. We have preferred the 
equation (4) and then have sought an equation (LIV) which would 

represent as well as possible the temperature range from 0° to — 217°, 

two equations (61 and AIll) which would moreover show a not too 
large deviation at — 253°, for one of which (ASIII) a large deviation 
was allowed at — 217°, while for the other (AI) the deviations are 

distributed more equally over all temperatures, and lastly an equation 

(BID which, besides —253°, would also include —259°. 

§ 12. Calculation of the coefficients in the formula of five 
ivurms. The coefficients have first been derived from 5 temperatures 
distributed as equally as possible over the range of temperatures, 

and then corrected with respect to all the others without a rigorous 

application, however, of the method of least squares. 

In order to facilitate this adjustment we have made use of a 

method indicated by Dr. E. F. van pp Sanpr BakuuyzEN in which 
instead of the 5 unknown coefticients 5 other unknown values are 

introduced which depend linearly on the former’). For these are 

chosen the exact values of / for the five observations used originally, 

or rather the differences between these values and their values found 

to the first approximation. 

Five auxiliary calculations reveal to us the influence of small 
variations of the new unknown value on the representation of the 
other observations and by means of these an approximate adjustment 

1) Also when we rigorously apply the method of least squares this substitution 
will probably facilitate the calculation. 
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may be much more easily brought about than by operating directly 

with the variations of the original coefficients *). 

After the first preliminary formula was calculated all the 28 

observations have subsequently been represented. The values thus 

found are designated by f,. The deviations of the observed values 

from those derived from this first formula are given in column Il 

of table VIII under the heading W—R#,. The deviations from the 

temperatures in the immediate neighbourhood of each other have 

been averaged to normal differences and are combined in column 

IV under the heading (W—-R,). . 

These deviations have served as a basis for an adjustment under- 

taken according to the principles discussed above. 

It yielded the following results: 

leaving — 253° and — 259° out of consideration we find as co- 

efficients of the equation (4) (comp. § 11): 

a,= + 4.32044 e,=-+ 0,011197 

6, = + 0,388466 f, = — 0,0044688). . . . (BID) 

c, = — 0.024019 

If we only leave out of consideration — 259° we find for the 

coefficients of equation (B) the two following sets (comp. § 11): 

a, — + 4.33049 ¢,=- 0,053261 

b, = + 0.436676 f,= +0,003898) . . . (BIID 

c, = + 0,048091 

and 
a, = + 4.35603 e, = + 0,108459 

b, = + 0,581588 7, = + 0,01186382) . . . . . (BD) 

c, = + 0,157678 

If we include in the equation all the temperatures, also that of 

the liquid hydrogen boiling under reduced pressure, we find for the 

coefficients of the equation (5) 
a, = +4.35905 e,—=-+0,111619 | 

b- = + 0,542848 f/f, = + 0,01821380, . . - (BrP) 

c, = + 0,172014 | 
The deviations from the observations shown by these different equa- 

tions are found under (W—R,) (W—R,) (W—R,) and (W—R,) in 

columns V, VI, VII and VIII of table VIII. 

1) When the polynomial used contains successive powers of the variable beginning 

with the first power, that influence is determined by the interpolation-coefficients 

of LAGRANGE. 
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—103.576 

—103.833 

—139.851 

—139.873 

—158.831 

[—182. 604] 

[—182.750| 

[—182. 898) 

—195 .135 

195.178 

—195.261 

[—204 535] 

—204. 694 

—204 895 

2.765 

[212.839] 

—12..868 

—212.940 

—217.414 

—17.416 

—217.832 

—252.93 

259.24 
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TABLE VIII. 

DEVIATIONS OF THE CALIBRATION-FORMULAE FOR THE 

VIII VI VII 

W-R, | (W—R,) | (w-R,)| (W—R, | (W—R, | (W—R) 

—0.0080 | —0.0080 | —o 0930 | —o 0032 | —0.0013 | —0.0011 
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To observation 11 of this table we have applied the correction 

mentioned at table VI. To the observations 17 and 7 we have 

accorded half the weight on account of the large deviation from the 
single determinations mutually (comp. tables VI and VII) ’). 

§ 18. Conclusion. For the mean error of the final result for one 
temperature (when this is taken equal for all temperatures) we find 

by comparison with the formula found: 

microv. 

R, + 2.8 
R, + 38.2 
R, + 2.6 (2.1 when leaving also out of account — 217°) 

R, £138 

The mean error of the result of one day, according to the mutual 
agreement of the partial results, is: 

+ 2.9 microvolts, 

whence we derive for the mean error of one temperature, supposing 

that on an average two daily results are averaged to one final result : 

+ 2.0 microvolts. 

(2 microvolts agree at — 29° with 0°.05, at -- 217° with 0°.16). 
Hence it seems that we may represent the electromotive force of 

the thermo-element constantin-steel between O° and — 217° by the 

five-terms formula to within 2 microvolts. For the calibration to — 217° 

we therefore require measurements at at least 5 temperatures ’). 

The representation including the temperatures of liquid hydrogen 
is much less satisfactory ; for the mean error would be found according 

to this representation + 3.2 microvolts, agreeing with 0°.075 at 
— 29° and 0°.74 at — 252° and — 259°. 

In order to include the hydrogen temperatures into the formula a 

6 term will therefore probably be required. 

But for measurements at the very lowest temperatures the element 

constantin-steel is hardly suitable (comp. § 7). 

In conclusion we wish to express hearty thanks to Miss T. C. 

Joutus and Messrs. C. Braak and J. Cray for their assistance in 

this investigation. 

1) In the calculations for observations 3, 11 and 5 are used temperatures 0°,081 

lower than the observed ones. A repetition of the calculation with the true values 

has not been undertaken, as it would affect only slightly the results, the more 
because the observations are uncertain. 

2) If the four term formula (comp. footnote 2 § 11) should prove for this inter- 

val as sufficient as the five term formula, this number would be reduced to four. 
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Physics. — On the measurement of very low temperatures. X. | 

Coefficient of expansion of Jena glass and of platinum between 

+ 16? and —182°.” By Prof. H. KameriincH Onnes and 

J. Cuay. Communication N°. 95° from the Physical Laboratory 

at Leiden. 
(Communicated in the meeting of June 30, 1906). 

§ 1. Zitroduction. 

The difference between the coefficients @ and 4 in the expansion 
4 

Yee BB vs 
Sitar a | 

and k, and k, in the formula for the cubic expansion 

oh eed 

=+,[1+| haa th (5) a | 

‘between O° and —182° found by Kameriincn Onnes and Hevse 

(comp. Comm. N°. 85, June ’03, see Proceedings of April 05) and 

those found by Wisse and Borrcuer and Tuirsen and Scueen for 
temperatures above 0° made it desirable that the strong increase of 
6 at low temperatures should be rendered indubitabie by more 

accurate measurements *). 

In the first place we have made use of more accurate determi- 

nations of the variation of the resistance of platinum wires with the 
temperature (comp. Comm. N°. 95°, this meeting) in order to substitute 

more accurate temperatures for those given in Comm. N°. 85, which 

served only for the calculation of a preliminary formula, and then 

to calculate by means of them new values for a and 6 which 

better represent the results of the measurements than those given in 

Comm. N°. 85. 
By means of the formula 

W,—= W, (1 + 0,00390972 t — 0,0,9861 2°), 

which holds for the kind of platinum wire used in Comm. N°. 85, 

we have arrived at the following corrections: 

in table IV read — 87°14 instead of — 87°,87 

and —181°,42 __,, »» —182°,99 
in table V read — 86°,98 _,, » — 87°,71 

and —181°,22 _,, »» —182°,79 

formula for the linear expansion / = /, E + 

1) That the coefficient of expansion becomes smaller at lower temperatures 

is shown by J. Zaxrzewskt by measuremenis down to — 103°. This agrees with the 

fact that the expansion of most substances above 0° is represented by a quadratic 
formula with a positive value of 6! Our investigation refers to the question whether 

b itself will increase with lower temperatures. 

14° 



( 200 ) 

Thence follows 

Jena giass 16"! Tee bo 907 | 

k, = 23848 k,= 272. | one 
Thiringer glass (n°. 50) a= 920 b=120 \ : 

k, = 2761 k, — 362. 

Secondly it remained uncertain whether the mean temperatures 
of the ends were exactly identical with those found after the method 

laid down in § 4 of that Comm. The execution of the control- 

determination as described in Comm. N°. 85 § 4 (comp. § 4 of this paper) 
proved that in this respect the method left nothing to be desired. 

Moreover, availing ourselves of the experience acquired at former 

determinations, we have once more measured the expansion of the 
same rod of Jena glass and have reached about the same results 

which, owing to the greater care bestowed on them, are even more 

reliable. | 

Lastly it was of importance to decide whether the great increase 
of 4 at low temperatures also occurred with other solid substances 

and might therefore be considered as a property of the solid state 

of several amorphous substances. Therefore and because it was 

desirable also for other reasons to know the expansion of platinum 

we have measured the expansion of a platinum rod in the same 
way as that of the glass rod. Also with platinum we have found 
the same strong increase of 6, when this is calculated for the same 

interval at lower temperatures, so that cubic equations for the lengths 

of both substances must be used when we want to represent the 

expansion as far as — 182°. 

After these measurements were finished Scuegrt, (Zeitschr. f. Instr. 

April 1906 p. 119) published his result that the expansion of pla- 
tinum from —190° to O° is smaller than follows from the quadratic 

formula for the expansion above 100°. For the expansion from + 16° 

to —190° Scunen finds — 1641 per meter, while — 1687 w would 

follow from our measurements. But he thinks that with a small 

modification in the coefficients of the quadratic formula his observa- 

tions can be made to harmonize with those above 100°. Our result, 

however, points evidently at a larger value of 6 below O°. | 
The necessity of adopting a cubic formula with a negative coeffi- 

cient of ¢ may be considered as being in harmony with the 
negative expansion of amorphous quartz found by Scneer (I. c.) 

between —190° and 16° when we consider the values of a and 6 

in a quadratic formula for the expansion of this substance between 

0° and + 250°. 
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A more detailed investigation of these questions ought to be made 

of course with more accurate means. It lies at hand to use the 

method of Fizeau. Many years ago one of us (K.O.), during a 

visit at Jena, discussed with Prof. Punrricn the possibility of placing 
a dilatometer of Asse into the Leiden cryostat, but the means 

of procuring the apparatus are lacking as yet. Meanwhile the 

investigation following this method has been taken in hand at the 

Reichsanstalt*). A cryostat like the Leiden one, which allows of 

keeping a temperature constant to 0,01° for a considerable time, 
would probably prove a very suitable apparatus for this investigation. 

Travers, SeNTER and Jaquerop’) give for the coefficient of expan- 

sion of a not further determined kind of glass between 0° and — 190° 

the value 0,0000218. From the mean coefficient of expansion from 
0° to 100° we conclude that this glass probably is identical with 

our Thiiringer glass. 
The mean coefficient of expansion between 0° and — 190° for 

Thiiringer glass found at Leiden in 1903 is 0,00002074. 

§ 2. Measurement of the coefficient of expansion of Jena glass and 
of platinum between 0° and — 182°. 

The rod of Jena glass used was the same as that of Comm. N°. 85, 

At the extremities of the platinum tube of 85 c.m. length glass ends 

were soldered of the same kind as the Jena rod. For the determina- 
tion of the mean temperature of the ends thin platinum wire was 
wound round these extremities which wire at either end passed over 

into two platinum conducting wires and was enveloped in layers 

of paper in order to diminish as much as possible the exterior 

conduction of heat. 
The temperature of the middle portion of the Jena rod was also 

determined by means of a platinum wire wound round it as in 

Comm. N°. 85. The rod was further enveloped in thin paper 
pasted together with fishglue, and to test the insulation the resistance 

was measured on purpose before and after the pasting. The tempera- 
ture of the bath was determined halfway the height of the bath 
by means of the thermo-element constantin-steel (comp. Comm. N°. 95a, 

this meeting). 

This temperature was adopted as the mean temperature of 
the platinum tube, which was entirely surrounded with the liquid 
gas and was only at its extremities in contact with the much less 

1) Henning, afterwards Scuect, Zeitschr. f. Instrk. April 1905, p. 104 and April 1906, 

p- 118. Ranpaut, Phys. Review 20, p.10, 1905 has consiructed a similar apparatus, 

*) Travers, SENTER and JAgueroD, Phil. Trans. A 200. 
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conducting pieces of glass, which partly projected out of the bath. 

~The scale (comp. Comm. N°. 85) was wrapped round with a 

thick layer of wool enclosed in card-board of which the seams had 
been pasted together as much as possible. The temperature of the 
room was kept as constant as possible by artificial heating and cooling 

with melting ice,:so that the temperatures of the scale vary only 

slightly. 

They were read on three thermometers at the bottom, in the 
middle and at the top. 

- The seale and the points of the glass rods were illuminated by 
mirrors reflecting daylight or are-light, which had been reflected by 

paper and thus rendered diffuse. 

The vacuum tube (comp. Comm. N°. 85) has been replaced by a 
new one during the measurements. The evacuation with the latter 

had succeeded better. So much liquid gas was economized. For the 

measurement with liquid oxygen we required with the 

)B ‘first tube 1'/, liter per hour and */, liter with the 

— second. Of N,O we used with the first only */, liter 

| ) per 1*/, hour. } 
| In order to prevent as much as possible irregularities 

in the mean temperature the bath has been filled as 

high as possible, while dry air was continually blown 

against the projecting points. They were just kept free” 

from ice. In two extreme cases which had been chosen 

on purpose — the bath replenished with oxygen as high 

as possible and the points covered with ice, and the 

bath with the float at its lowest point and the point 

| entirely free from ice — the difference of the mean 

temperature of the ends was 10 degrees, corresponding 

to a difference in length of 4 microns. The greatest 

difference which has occurred in the observations has 

certainly been smaller and hence the entire uncertainty ~ 

of the length cannot have surpassed 2 microns. 

At the lower extremities the difference is still smaller. 

‘| All this holds with regard to oxygen, in nitrous 

ie oxide such variations in the distribution of the tem- 

eee?| perature can be entirely neglected. 
With some measurements we have observed that the 

he length of the rods, when they had regained their 

q ordinary temperature after cooling, first exceeded the 
original length, but after two days it decreased again — 

Fig. 1. to that value. 
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The cause of those deviations has not been explained. In a ease 

where a particularly large deviation had been stated which did not 

altogether return to zero, it appeared, when the points were un- 

wrapped, that a rift had come into the glass. 

To see whether a thermical hysteresis had come into play a 
thermometerbulb (see fig. 1) with a fine capillary tube was filled 

with mercury. First the level of the mercury was compared with 
an accurate thermometer at the temperature of the room ina water- 

bath in a vacuum glass. Then the apparatus was turned upside down 

so that the mercury passed into the reservoir 4, which is a little 

greater than A. Subsequently A and also a part of the stem was cooled 
down during 3 hours in liquid air in a sloping position so that thanks 

to the capillary being bent near 6 no mercury could flow back 

TABLE I. — JENA GLASS 16™. 

Date | Time sige ql; | ie | WV, K. | = | d 

16 Dec. | 24.35 | 15.7 | 1026.285 | 1026.280 | 40.620 15.9 

1904 | 3450 | 160 286 .279 | 40.786 17.0 

4h.22| 16.3 292 .290 | 40.845 17.4 

= 

20 Dec | 14.50 | 15.3 | 1025.574 | 1025.559 | s. 3.503 5.021 40.6 

. 24410} 15.4 .560 .950 |m.25.029 38.28 | — 86.78 

24.30 | 15.4 O71 .561 | 7. 6.300 1348 1;=22A 

21 Dec. | 34.15 | 14.6 | 1026.308 | 1026.291 |m.40.523 15.4 

3h.45 | 14.7 .299 . 284 15.4 

4h. AS} 414.7 . 308 -289 |m 40.583 15.6 

22 Dec. |104 50 | 15.0 | 1025.408 | 1025.091 | s. 2.405 5.021 1,=30.8 

4124.45} 45.0 442 .095 |m. 9.880 38.28 |—181.48 

124.50 | 15.0 115 .098 |i 5.005 7.191 4;=18.0 

23 Dec. |124.30 | 15.8 | 1026.344 | 1026.341 |m.40.606 15.6 

oh. 15.6 339 309 15.2 

34.30} 15.6 330 .300 |m.40.537 15.2 

41 Jan. | 34.40 | 15.4 1026.288 | 1026.278 | 40.634 15.9 

1905 | 44.30] 415.5 291 280 | 40.703 16.4 
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to A. When A had regained the temperature of the room the 

mercury was passed again trom £ into A and the apparatus 

replaced into the same waterbath as before. The deviation of the 

level of the mercury was of the same order as the reading error of 

the thermometer, about 0.003°. A perceptible thermical hysteresis 

therefore we do not find. 

me | eae eee ik = PLATINUM. _ 

D ii icokok W. W 
ate Time sEate 146° t 4 s 2 

46 Dee. 5h 59 16.5 1027.460 | 1027.461 A720 

4904 16.4 41027.461 | 1027.459 47-0 

17 Dec. ') 1h 4D 16 6 4026 .620 | 4026.630 

9h 45 16.3 1026 .618 622 

1015 4620 613 617 

19 Dec. Sh 14.8 1027 .459 | 1027.442 4525 

81 30 14.8 457 | 1027.440 $55 

—— 

20 ‘ec. 3h Ayes 4026 .627 | 1626.630 | s3.475| 4.993 °40.2 

3h 30 Aer | 630 633 | m — 86.32 
L= 

3h 55 15.4 631 635 |77.575| 8.653 ‘31.5 

21 Dee. 4h 40 14.7 1027.460 | 1027.444 1525 

5410 14.9 459 444 Ae S 

6h 14.8 459 449, sey 

= 

22 Dec. 10% 40 4523 1025.963 | 1025.951 | 52.440} 4.993 “28.9 

11410 A523 1025 .973 961 | m —182.6 
o\, —— 

1h 45 14.9 1025.964 947 115.649] 8.653 "48.5 

23 Dec, 11h 25 Aer 1027.434 | 1027.436 15.0 

15.6 440 44A 15.0 

45 a7 440 449 afar. 

3 Febr. Qh 15.4 1027.463 | 1027.459 55D 

15.4 459 455 45 2 

1) Journ. Chem. Soc. 63. p. 135, 1893, 
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In table II (p. 204) the temperatures are used which are found 

with the thermo-element. A control-measurement with the thermo- 

element placed in the same vacuum tube without rod gave for the 

temperature in nitrous oxide — 87°,3 instead of — 86°,32. 

The mean value of the two determinations is used for the calculation. 

Another reason for the measurement of the temperature of the 

bath with a thermo-element as a control was the large difference 

between the mean temperature found by us and the boiling point of 

nitrous oxide — 89° given by Ramsay and SHIELDs'). 

As we are going to press we find that Hunrpr’) has given 

— 86°.2 for that temperature. 

§ 3. Results. 
Jena glass 161II a 835 b 117 

k, 2505 k, 358. 
Platinum a 9053 b 49,4 | bee 

} k, 2716 k, 148,4. 

As regards platinum: 

Benoit finds irom, .-0° tos. S0- @ 890.1 6. 12,1 

SCHEEL from 20° to 100° a 880,6 6 19,5 

Honporn and Day from 0° to 1000° a 886,8 6 13,24 

As to the differences between the values obtained now and those 

of Comm. N°. 85 (comp. § 1), we must remark that these are almost 

entirely due to the differences in the determinations of temperature. 
The uncertainties of the latter, however, do not influence in the 

least the conclusion about 6 and the necessity of a cubic formula. 

There is every reason to try to combine our determinations on 
Jena glass above and below O° in such a cubic formula. Taking into 

account also the previous determination 242.10—° as the mean cubic 
coefficient from 0° to 100° (Comm. N°. 60, Sept. 1900, § 20) we 
find in the formula for the linear expansion below 0° and in the 

corresponding one for the cubic expansion 

t= H[1+ |e 300 +" (roo) + (yoo) |] 
Jena glass 16I1II a' 789,4 k', 2368,1 

b' 39,5 k', 120,2 

c’ — 28,8 as 86,2 

4) With this measurement in N,O we have not obtained a temperature deter- 

mination with the thermo-element. This determination is not included in the 

calculation. It is mentioned here on account of the agreement with the determi- 
nation of 20 Dec., which for the rest has been made under the same circum- 

stances. 

*) Journ. Phys, Chem. May 1906, p. 356. 
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§ 4. Control-experiment. 
The ends of the Jena glass rod were . subsequently cut off and 

sealed together with a short intermediate rod. This short stick was 

placed in a glass of the same width as the vacuum tube with the 

same stopper and so short that the points projected in the same 

TABLE Ill. — JENA GLASS ENDS. 

Date | Temp. | oF | L | W, | W | | 
scale t 716° t 7 Ss a 

=} 
42 April 1905 

404415 45.4 | 297.684 | 297 683 15.4 

Ah 686 685 15.4 

444 43 15.4 | 927.684 | 997.682 45.5 

45.4 681 679 45.5 

N,0 : 
= 

3h 50 45.4 | 297.533 | 297 536 | s 3.473 5.024 42.3 

4h 4 15.4 543 5A : 
— 

Ah 52 45.4 550 548 | i 5.490 7.491 32.3 

43 April 47.4 | 927.677 | 297.681 47.4 

14 April 16.2 | 297.675 | 227.676 15.9 

40h 10 

O 
; = 
2150 48.4 | 997.474 | 997.482 | s 1.94 5.021 35.5 

= 

4hQQ 18.9 482 494 | i 4.683 7.491 "8.9 

45 April 46.6 | 927.795 | 297°727 45.7 

Mn 16.6 724 726 16.0 

4h 20 16.4 | 227.706 708 45.8 

4h 46 16.4 mM 3 16.0 

“46 April 44.4 | 227.706 | 227.702 43.6 

“47 April 44.2 | 927.682} 227.678 14.0 
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manner as those of the rods in the vacuum glass. Now we have 
taken only a double glass filled with wool, enveloped in a card-board 

funnel and tube for letting out the cold vapours. 

The measurements are given in table IIT. 

The 4’s found in the experiment are of the same order of magnitude 

as those found with the long rods. The calculation with the coefficients 
a and 6 found in $2 yields: 

Ly,o0 = 227,547 while we have found Ly,o9 = 227,544 

Lo, = 227.487 a ee Lo, = 227,488. 

In conclusion we wish to express hearty thanks to Miss T. C. 

Jouies and Miss A. SiLievis for their assistance in this investigation. 

Physics. — “On the measurement of very low temperatures. XI. A 
comparison of the platinum resistance thermometer with the 
hydrogen thermometer.” By Prof. H. Kameruincu ONNes and 
J. Cray. Communication N°. 95° from the Physical Laboratory 
at Leiden. 

(Communicated in the meeting of June 30, 1906). 

§ 1. Introduction. The following investigation has been started 

in Comms. N°. 77 and N°. 93 VII of B. Mumiyk as a part of the 
more extensive investigation on the thermometry at low temperatures 

spoken of in Comm. N°. 95%. In those communications the part of 
the investigation bearing on the electrical measurements was chiefly 
considered. 

The hydrogen thermometer was then (comp. Comm. N°. 93 § 10) 
and has also this time been arranged in the same way as in Comm. 

N°. 60. Afterwards it appeared, however, that at the time the thermo- 

meter did not contain pure hydrogen, but that it was contaminated by 

air. The modifications which are consequently required in tables 

V and VI of Comm. N°’. 93 and which particularly relate to the very 

lowest temperatures, will be deait with in a separate communication. 

Here we shall discuss a new comparison for which also the filling 

with hydrogen has been performed with better observance of all the 
precautions mentioned in Comm. N°. 60. 

We have particularly tried to prove the existence of the point of 

inflection which may be expected in the curve (comp. § 6) represent- 
ing the resistance as a function of the temperature, especially with 

regard to the supposition that the resistance reaches a minimum at 
very low temperatures, increases again at still lower temperatures 

and even. becomes infinite at the absolute temperature O (comp. 
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Suppl. N°. 9, Febr. ’04). And this has been done especially because 

temperature measurements W ith the resistance thermometer are so 

accurate and so simple. 

From the point of view of thermometry it is important to know 

what formula represents with a given accuracy the resistance of a 

platinum wire for a certain range, and how many points must be 

chosen for the calibration in this range. 

In Comm. N°. 93 §10 the conclusion has been drawn that between 

0? and —4180° a quadratic formula cannot represent the observa- 

tions more accurately than to 0°.15, and that if for that range a 

higher degree of accuracy is required, we want a comparison with 

the hydrogen thermometer at more than two points, and that for 

temperatures below —-197° a separate investigation is required. In 

the investigation considered here the temperatures below — 180° are 

particularly studied ; the investigation also embraces the temperatures 

which can be reached with liquid hydrogen. 

It is of great importance to know whether the thermometer when 

it has been used during a longer time at low temperatures would 

retain the same resistance. We hope to be able later to return to 

this question. Here we may remark that with a view to this question 

the wire was annealed before the calibration. Also the differences 

between the platinum wires, which were furnished at different times 

by Herarvs, will be considered in a following paper. 

§ 2. Investigations by others. Since the appearance of Comm. 

N°. 93 there has still been published on this subject the investigation 

of Travers and Gwyer’). They have determined two points. They 

had. not at their disposal sufficient cryostats such as we had for 

keeping the temperatures constant. About the question just mentioned : 

how to obtain a resistance thermometer which to a certain degree 

of accuracy indicates all temperatures in a given range, their paper 

contains no data. 

‘§ 3. Modification in the arrangement of the resistances. The 

variation of the zero of the gold wire, mentioned in Comm. N°. 93 

VIII, made us doubt whether the plates of mica between the metallic 

parts secured a complete insulation, and also the movability of one of the 

glass cylinders made us decide upon a modification in the construction 

of the resistances, which proved highly satisfactory and of which we 

1) Travers and Gwyer. Z. f. Phys. Chem. LIl, 4, 1905. The wire of which 

the calibration is given by Otszewsx1, 1905, Drude’s Ann. Bd. 17, p. 990, is appa. 

rently according to himself no platinum wire. (Comp. also § 6, note 1). 
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have availed ourselves already in the regulation of the temperatures 
in the investigation mentioned in Comm. N°. 942. 

- A difficulty adheres to this arrangement which we cannot pass by 
unnoticed. Owing to the manner in which this thermometer has been 

mounted it cannot be immersed in acid. Therefore an apparatus 

consisting entirely of platinum and glass remains desirable. A similar 
installation has indeed been realized. A description of it will later 

be given. The figures given here exclusively refer to the thermometer 
described in Comm. N°. 94¢ (p. 210). 

Care has been taken that the two pairs of conducting wires were 
identical. Thus the measurement of the resistance is performed in 

a much shorter time so that both for the regulation of the tem- 

perature in the cryostat and, under favourable circumstances, for the 
measurement the very same resistance thermometer can be used. 

§ 4. The temperatures. 
The temperatures were obtained in the cryostat, described in Comm. 

N°. 94¢, by means of liquid methyl chloride —39°, —59°, —88°, of 
liquid ethylene — 103°, — 140°, — 159°, of liquid oxygen — 182°, 

— 195°, — 205°, — 212°, — 217°, by means of liquid hydrogen 

— 252° and — 259°. The measurements were made with the hydrogen 
thermometer as mentioned in § 1. 

§ 5. Results for the platinum wire. These results are laid down 
in table I (p. 210). 

The observations marked with [ | are uncertain on account of the 
cause mentioned in Comm. N°. 952 § 10 and are not used in the 

derivation and the adjustment of the formulae. For the meaning of 
W—R4z, in the column “remarks” I refer to § 6. 

§ 6. Representation by a formula. 
a. We have said in § 1 that the quadratic formula‘) was insuffi- 

cient even for the range from 0° to —180°. 
If a quadratic formula is laid through — 103° and — 182°, we 

find : 

) The correction of Cattenpar, used at low temperatures by Travers and 

Gwver, Z. f. Phys. Chem. LII, 4, 1905 comes also to a quadratic formula. 

Dickson’s quadratic formula, Phil. Mag. June 1898, is of a different nature but 
did not prove satisfactory either; comp. Dewar Proc. R. Soc. 64, p. 227, 1898. 

The calibration of a platinum thermometer through two fixed points is still 
often applied when no hydrogen thermometer is available (for instance BesTeLMEYER 
Drude’s Ann. 13, p. 968, ’04). 



COMPARISON BETWEEN THE PLATINUM RESISTANCE 

THERMOMETER AND THE HYDROGEN THERMOMETER. 

(2105 

DA Boe oe 

a hydrogentherm.| measured | Remarks 

0° 0° | 137 884 i mean cf 5 measurements, 

27 Oct bh. — 29.80 421 .587 
705 

2h. 50 — 58.75 105.640 

30 Oct. 3 h. 50 — 88.14 89.277 
05 

8 July 10h. 12 — 103.83 80.448 
05 

26 Oct. Hieh: 20 — 139.87 59.914 
05 

7 July 4h. 25 — 139.85 59.920 
05 

26 Oct. 3 h. 16 — 158.83 48 .929 
0d 

27 June 1 b. 40 [— 182.69] 34.861 W—R4,—— 0.061 
05 

30 June 11h. 0 — 182.75 34 858 
06 

27 June 3h. 50 [-- 195.30] 27.598 W—R 4, =-+-0.082 
0d 

2 March 3h. 35 — 195.18 27 .595 
706 

29 June 11h. 6 [— 204.53) 22.016 W—Ryy —— 0,110 
05 

2 March 1h. 30 — 204.69 22.018 
06 

39 June 3h. O [— 212.83] 17.255 W—R 4, =— 0.082 
O05 

5 July 5h. 53 — 212.87 17 290 
05 

5 July 3 h. 20 — 217.4 14.763 
05 

3 March 10h. O — 27.41 14.770 
05 | 

5 May AD |e | — 252.93 | 1.963 
06 ' 

5 May 5h. 7; —- 259.24 1 444 

Nee 
| Temperature |Resistance 
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t 3 

oe 9097 — 0,009862 os }1 +08 0 (a :) (35) f 

For instance at — 139° it gives IV—R: + 0,084. A straight line 

may be drawn through — 182°, — 195°, — 204° and — 212° and 

then — 217° deviates from it by 0°,25 towards the side opposite to 
— 158°. Hence the existence of a point of imflection is certain 

(comp. sub d). Therefore it is evident that a quadratic formula will 
not be sufficient for lower temperatures. 

6. But also a cubic formula, even when we leave out of account 
the hydrogen temperatures, appears to be of no use. 

For the cubic formula through the points —88°,14, —158°,83, 

—204°,69, we obtain: 
t 3 

—— —0,0,7367 0,0 ‘ 1. = W, }1+ 0,393008 — (CZ =) a 58880( 55 7 | 

It gives for instance at —182° a deviation of -—0,110, at — 217° 

a deviation of + 0,322 °*) 

c. In consequence of difficulties experienced with formulae in 

ascending powers of ¢, we have used formulae with reciprocal powers 
of the absolute temperatures (comp. the supposition mentioned in § 1 

- that the resistance becomes infinite at the absolute zero). 

Three of these have been investigated : 

eg 2S +5 (sia) + a( sca) +4( a — ara) Rearing 7s W, 100 100 100 273,09 

watt ati) (is) CF) W, 100 100 100 273,09 
=e 102 104 - 

fA] grana| © 
Ws —lta oo +? (soo) + (55 +4(=—sea0) + 
W, 100 100 100 YER 

10° 108 
ae ‘(Ge + er, ara.) a) 

We shall also try a formula with a term = instead of 7 

For the first we have sought a preliminary set of constants which 
was subsequently corrected after the approximate method indicated 
by Dr. E. F. van pe SanpE BakuuyzEN (comp. Comm. N°. 95a) in 
two different ways. First we have obtained a set of constants A, 
with which a satisfactory accurate agreement was reached down to 
— 217°, a rather large deviation at — 252° and a moderate deviation 
at — 259°. Column JW—R4, of table II contains the deviations. 
Secondly we have obtained a set of constants which yielded a fairly 

’) These values deviate slighily from those communicated in the original. 
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accurate agreement including — 252°, but a large deviation at — 259°, 

These are given in table II under the heading W— Ryzrz. 

Lastly we have obtained a preliminary solution B which fairly 

represents all temperatures including — 252° and — 259° and from 

which the deviations are given in table II under W—Afg, and a 

solution of the form C which agrees only to — 252° and to which 

W—Reg relates. 

The constants of the formulae under consideration are : 

C mre 2 
a i 0.399625 |- 0.400966 + 0.412793 | --0. 40082 

i |— 0.0002575|+- 0.001159 |4+ 0.013812 | +0.001557 

c  |-+ 0.0049442+ 0.0062417|+ 0.012683 | 0.00557 

d | 0.019380 FE: 0.026458 |4+- 0.056221 | +0.01975 

| a Boas —0.16504 
EAD ode 

COMPARISON BETWEEN THE PLATINUM RESISTANCE 
THERMOMETER AND THE HYDROGEN THERMOMETER. 

| I 

‘Number | Resistance | | 
Temperature | of obser- 

the hydrogen| with tho| PS! | Mar | Ran | Pe | 
thermometer.) hydrogen | jin o 

therm. | 

l 
0° | 137.884 | 0 0 | 0 0 

— 29.80 3 124 .587 + 0.025 | -+ 0.066 | + 0.210 | + 0.063 

— 58.75 3 105.640 + 0.0114 | — 0.014 | + 0.153 | + 0.048 

— 88.14 4 89.277 — 0012} — 0.050 | — 0.001 | + 0.008 

— 103.83 3 80.448 — 0.023 | — 0.061 | — 0.075 | -— 0.015 

— 139.87 3* 59.914 + 0.004 | — 0.005 | — 0.082 | — 0.005 

— 158.83 3 48 929 + 0.023 | + 0.044 0 + 0.008 

— 182.75 2 34.858 — 0.029 | + 0.027; + 0.083 | — 0.035 

— 195.18 2 27 .595 + 0.009 | + 0.061 | -+ 0.148 | + 0 007 

— 204.69 1 22.018 — 0.04) + 0.012} + 0.100 | — 0.014 

— 212.87 3 17.290 — 0.024 | — 0.065; — 0.001 | — 0.031 

— 217.41 Ae 14.766 + 0.028} — 0.048 | +- 0.270; + 0.007 

— 252.93 2 1.963 + 2.422 + 0.057 | — 0.001 0 

— 259.% 4 4.444 | 4+0.199}] — 4.201 0 
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In those cases where the W—R have been derived f.om two deter- 
minations the values in the 2.4 column are marked with an *?). 

If we derive from the differences between the observed and 

the computed values as far as —217° the mean error of an obser- 

vation by means of Ay;, this mean error is expressed in resistance 

+ 0,025 2, in temperature + 0?,044. 

The mean error of an observation of the hydrogen thermometer, 

as to the accidental errors, amounts to 0°,02 corresponding in resist- 

ance to + 0,010 &, while that of the determination of the resistance 

may be left out of consideration. We cannot decide as yet in how 

far the greater value of the differences between the observations and 

the formula is due to half systematic errors or to the formula. 

For the point of inflection in the curve representing the resistance 

as a function of the temperature we find according to B — 180°’). 
In conclusion we wish to express hearty thanks to Miss T. C. 

Jottes and Mr. C. Braak for their assistance in this investigation. 

Physics. — “On the measurement of very low temperatures. XII. 
Comparison of the platinum resistance thermometer with the 
gold resistance thermometer. By Prof. H. KamertincH OnNes 
and J. Cray. Communication N°. 95¢ from the Physical labora- 
tory at Leiden. 

(Communicated in the meeting of June 30, 1906). 

§ 1. Jntroduction. From the investigation of Comm. N°. 93, Oct. 
04, VIL it was derived that as a metal for resistance thermometers 

at low temperatures gold would be preferable to platinum on 

account of the shape of the curve which indicates the relation 

between the resistance and the temperature. 

Pure gold seems also better suited because, owing to the signifi- 

cation of this metal as a minting material, the utmost care has been 
bestowed on it for reaching the highest degree of purity and the 

quantity of admixtures in not perfectly pure gold can be exactly 

determined. The continuation to low temperatures of the measurements 

described in Comm. N°. 93 VIII — which had to be repeated 
because, although MEwinx’s investigation just mentioned had proved 

the usefulness of the method, a different value for the resistance . 

1) The deviations of the last two lines differ a little from the original Dutch 
paper. 

®) Owing to e being negative (B) gives no minimum; a term like that with ¢ 
does not contradict, however, the supposition w=o at 7T’'=O (§ 1) as the formula 
holds only as far as —259°, : 

15 
Proceedings Royal Acad. Amsterdam. Vol. IX. 



( 214 ) 

had been found before and after the exposure of the wire to low 

acquired a special value through this peculiarity temperatures 

of gold. 
As will appear from what follows, the pomt of inflection of the 

resistance as a function of the temperature must lie much lower for 

gold than for platinum.’ Our favourable opinion about gold as a 

thermometric substance was confirmed with regard to temperatures 

to a little below —217°. With respect to the lower temperatures 

our opinion is still uncertain. A minimum of resistance seems not 

to be far off at —259°. 

§ 2. The apparatus and the measurements. About the measure- 
ments we can only remark that they are performed entirely according 

to the methods discussed in Comm. N°. 98. 
The pure gold was furnished through the friendly care of Dr. 

C. Hortsema. It has been drawn to a wire of 0,1 mm. in diameter 

by HERagvs. 
The gold wire was wound upon 2 cylinders, it was about 18 m. 

in length and its resistance at 0° was 51,915 Ohms. The tempera- 

tures were reached in the cryostat of Comm. N°. 94¢ as in the 

investigation in Comm. N°. 95°. 

The determinations of temperature were made by means of the 
resistance of the platinum wire of Comm. N°. 95°. The zero 

determinations before and after the measurements at low fempera- 

tures agreed to perfection (this agreement had left something to be 
desired in the measurements dealt with in Comm. N°. 93). 

The measurements were made partly directly by means of the 

differential galvanometer, partly indirectly by comparing the gold resis- 

tance with a platinum resistance, which itself had been compared 
with the originally calibrated platinum resistance (comp. Comm. 

N°. 95°). 

§ 3. The Results, obtained after-the direct and the indirect method 
are given in column 3 of table II and indicated by d and 7 
respectively. 

For the observations the cryostat was brought to the desired 

temperature by regulating it so that the resistance of the platinum 

wire had a value corresponding to this temperature, and by keeping 
this temperature of the bath constant during the measurements of 

the resistance of the gold wire. The temperatures given in table III 
are the temperatures on the hydrogen thermometer according to the 

observations of Comm. N°. 95¢ belonging to the resistance of the 

platinum thermometer. 
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TABLE Ill. 

CALIBRATION OF THE GOLD RESISTANCE THERMOMETER. 

Temperature Observed : 
Date. W—R W—R W—R 

resistance. | gold resistance. d BI Bil 

1906 | 0 51.915 d 0 0 | 0 

4 Febr. 5 b.57| — 28.96 AG 137 — 0.002 | —0.018 | + 0.029 

» 3h. 4 — 58.58 40 326: + 92 + 442 |) + 46 

» 12h, 25| — 87.43 34. 640 i Pe Fe WDB hae 2 

42 June 2h. 20] — 103.82 31.432 d eet Oh ES A ee oe 

>» Wh, — 139.86 24.984 d So: ie Oe ras (0 ee ee 

17 Jan. 3h. 20) — 459.44 90.394 i a OR a | a ae 

4 June 41 hb. 50) — 182.75 15.559 d oo 6b AR ae ae a8 

>» 5h, 8| — 195.48 12.980 d Bee Sey ett toe Se oe an 

aw a — 204.69 10.966 d eo Ohh iae P18 op 

o° tEh. — 29.87 9.203 d ae iit a egle 

42 Jan. 41 hb. — 216.25 8.460 i eT a, ae 

48 May 4h. 10| —- 252.88 2.364 d aS BN gd ge ee a peel Wah ee 

i 6K — %9.18 2.047 d eer = OTT Te Me Ob 

In order to agree with Dewar, we ought to have found for the 

resistance of the gold wire at the boiling point of hydrogen 1.7082 

instead of 2.364 2. Also the further decrease of the resistance found 

by Dewar’) in hydrogen evaporating under a pressure of 30 mM. is 
greater than that was found by us. We may remark that this latter 
decrease of the resistance according to bim would belong to a decrease of 
4 degrees on the gas thermometer, and that we in accordance with 

Travers, SENTER and Jaquerop?) found a difference in temperature 

of 6,°3 between the boiling point of hydrogen at a pressure of 

760 m.m. and of 60 m.m. (preliminary measurements). 

§ 4. Representation of the variation of the gold resistance by a 
formula. As to this we refer to what has been said in Comm. 

1) Dewar, Proc. Roy. Soc. Vol. 68 p. 360. 1901. 
®) Travers, SenteR and Jaguerop, Phil. Transact. A. 200. 

Proc. Roy. Soc. Vol. 68, p. 361, 1901. 
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N°. 95°, XII. § 6. The resistance of the gold wire can be represented 

fairly well as far as — 217° as a function of the temperature by a 

formula of the form A. 

W, t 
Gr = 1+ 0,89070 + 0.017936 Ee 

0,0085684 0.0080999 70 (A) 
= 100 + 100.~»=— 273.09 J © 

This formula A is not oa to include the hydrogen temperatures. 

For the deviations W—R, comp. table III. 
We have therefore made use of a formula £, and 

W, t ae LoS 
po ee —— } + 0,0102335 | —_} + 

oO 

qe 09 

00052211 }( 12° pa 
ie 273,09 

is in good harmony down to — 258°, a 

We _ 1 + 0,894548 (sa) + 0,0200118 ry, | 
W, 100 

100 ~—-100 | 
T 278 “= 
100 100 

—(sai 

se 100 
+0 wich —0 268011 (> zs) | (B I) 

(BIL) 

' 
gives a fair harmony also at —- 259°’). 

The deviations are given under the headings W—Rg,and W—Rp yy 

in columns 5 and 6 of table III. The mean error of an observation 

with respect to the comparison with formula BJ is + 0,017 2 in 

resistance and + 0°,09 in temperature. Formula BJ gives for the 
point of inflection of the gold resistance — 220°. 

+ 0,0102889 € 3) + 0,0229106 (> 

— 0,00094614 (=) 

Mathematics. — “Quadratic complexes of revolution.” By Prof. 
JAN DE VRIES. 

§ 14. When the rays of a complex can be arranged in reguli of 

hyperboloids of revolution with the same axis, then the complex can 

bear revolving about that axis. If such a complex of revolution 2 

contains also the second regulus of each of the indicated hyperboloids, 

then it is symmetric with respect to each plane through its axis 

1) The coefficients of the formulae and the values of the deviations, found at 

a renewed calculation, differ slightly from those given in the original Dutch paper. 
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and it can be distinguished as a symmetric complex of revolution. 

This is the ease with the complexes of tangents of surfaces of 

revolution. 

We determine the general equation of the quadratic complexes of 

revolution with axis OZ in the coordinates of rays 
—— . ! —— — f —— ee »! 

Pi = & — .& , Ps —_ y 7] ‘ P: —_—_ «~ ~y 

' ' ! p,m yz —zy So 28 22, Peary — ye. 

By substitution of 

i=, Pr, > P,P, top, = Py 
P= p,— BPE > Ps PPT OPS Pe = Pes 

(where’a?’+ 8?=1) in the general quadratic equation we easily 

find that the equation of an 2 can contain terms only with 

(P.* + Ps')> (Pa +Ps’)s Por Por (Pi Ps—Ps Ps) and (Pp, Ps + Ps Ps)- 
As the latter combination can be replaced by — p, p, in consequence 

of a wellknown identity we tind for @ the equation 

A(p,?+-p.")+ Bp,?+2Cp,p.+ Dp. + Ep. +P, )+2F(Pips—PsPs)—9- (1) 

If C=O, equation (1) does not change when wz is replaced by 
— «x; so it represents a symmetrical complex. 

The coordinates of rays 

gq, Suu : gq, =v—v : g,=w—w , 

gq, vu —w' , gq; = wu —w' , J, = uv’ — w', 

where uw, v and w represent the coordinates of planes are connected 

with the coordinates p by the wellknown relations 

Pits =P 2? Vs = Ps * Vs = Pa? Qi — Ps? Ws = Po? Qs" 

So 2 can also be represented by 

Eq? +927) +-Dqy? +20 G96 +B? + A947 +957) +24 (92% —19s)=9- - (2) 
This equation is found out of (1) by exchanging p,; and qi, and 

ona, ©, DEF and £, D; C, B, A, — F. 

§ 2. The cone of the complex of the point (v’,7/, 2’) has as 
equation : 

A(e—#) + AQy—y'P + Be—2/)* +2€ (y'x—e'y)(z—2') + Diy'e—a'y)? + 
+E (e'y-y'2zl +E (2'a-2'2z)? + 2F (a-2')(a'2z—-z'x) + 2F (y—y')(y'z-z'y)=0. (8) 

In order to find the equation of the singular surface we regard 
the cones of the complex whose vertices Jie in XOZ and note the 

condition expressing that the section of such a cone and XOY 

breaks up into two right lines. After suppression of the factor 2’ 
which is to be rejected and substitution of z* + y?= 7’ for 2’, we 
find the equation 
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D(AE — F%)rt + (AE + BD — C? — PF?) (Ez? — ae ag 
4+ B(Eet—2Fe+ AP =0... . (4) 

As this can be decomposed into two factors oe se form 

Ir + M (Ez? —2Fz-+ A), the singular surface = consists of two 
quadratic surfaces of revolution. 

These touch each other in the cyclic points /, and J, of the plane 

XOY and in the points B, and B, on OZ determined by 

J pss ihe | 

The two surfaces cut each other according to the four isotropic 
right lines indicated by the equations 

a7? = 0 and M2" —- 22 | A= 0... 22 ee 

If 2 is symmetric (C= 0) the two parts of the singular surface 
have as equations 

(AE — F*) (w? + 4?) + B(Et —2Fz2+ A4)=0, . . (6) 
D(a? yt) elie! OBA = 0 oa 

If we find B=O and D=—O, then = breaks up into the four 

planes (5) and @ is a particular tetraedal complez. 
Out of (8) it is easy to find that the cones of the complex of the 

points B,, B,, 7, and J, break up into pencils of rays to be counted 

double. 

These points shall be called bisingular. 

§ 3. The rays of the complex resting on a straight line 7 touch 

a surface which is the locus of the vertices of the cones of the 

complex touched by 7. This axial surface is in general of order four 
and of class four and possesses eight nodes. *) 

We shall determine the axial surface of OZ. The points of inter- 

section (0, 0, 2’) of an arbitrary cone of the complex with OZ are 

indicated by the equation 

[E(#? + y*) + Blz? — 2[F (a? + y’) + Bel2' + [A (2? + y’) + Be*] = 0. 

This has two equal roots if 

(AE — F*) (a+ y*) + B(Ex —2 Fe + Aa? +y)=0 . (8) 
So the axial surface of OZ consists of the two isotropic planes 

through the axis and a quadratic surface of revolution which might 

be called the meridian surface. If 2 is symmetrical, it forms part 
of the singular surface as is proved out of (6). 

Also the axial surface of the right line 7. lying at infinity in 
XOY breaks up into two planes, and a quadratic surface. Its 

1) Sturm, Liniengeometrie Ill, p. 3 and 6. 
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equation is found most easily by regarding the rays of the complex 

normal to XOZ. From «=2’, z=2’ ensues p,=0, p,=0, 
Pp, =D» Ps =—9, Pp, —— zp,. By substitution in (1) we find 

(A + De? + E2* — 2 Fz)p,?=0, 

and from this for the indicated surface 

Diet? +y?)+ E?—2Fe+A=0 .... (9) 

For the symmetrical complex this parallel surface is according to 
(7) the second sheet of the singular surface. 

The planes of the pencils of rays of the bisingular points B,, B, 
form the lacking part of the axial surface of /.. We can show this 

by determining the equation of the axial surface of the right line 
z’=0, y’ =6, and by putting in it =o. We then find 

(Ez? — 2 Fz + A){D (e? + y*) + E2?—2 Fz + A}=0 . (10) 

The meridian surface, the parallel surface, and the two parts 
of the singular surface belong to a.selfsame pencil, having the skew 
quadilateral B,J, B,J, as basis. 

If in the equation of the cone of the complex the sum of the 
coefficients of 2’, y? and 2° is equal to zero, then the edges form 2 

triplets of mutually perpendicular rays. The vertices of the ¢triortho- 

gonal (equilateral) cones of the complex belonging to 2 form the 
surface of revolution 

(D+ EB) («? + y?) + 2Fe? —4Fz24 (24+ B)=0. . (11) 
Jt has two circles in common with each of the parts of >. These 

contain the vertices of the cones of the complex which break up 
into two perpendicular planes. 

§ 4. The distance /, from a right line to OZ is determined by 

Pa” ee ee Ge ag ss ea) 
Seer. 

the angle 4 between a ray and XOY by 

Ps ea (13) 
seat 2. 

So the condition /, tang 4—= a furnishes the complex 

PsP = a(p,* + Pp,*) - Pama siges 1) 

Here we have a simple example of a symmetrical complex of 
revolution. 

The equation 

eo lg 1-7) at a vee 5 > €15) 
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determines a complex 2 whose rays form with the axis a constant 

angle, so they cut a circle lying at infinity. 

The equation 

pF pF 4 pli. oa ee 

furnishes a complex 2, whose rays cut the circle 2*-+ y? =a’. 

For XOY euts each cone of the complex according to this circle. 

If 7 represents the distance from a ray O then 

2 Pa eee 
Pi + PF Ps 

If NOY is displaced along a distance c in its normal direction, 

p, and p, pass into (p,— cp,) and (p, + cp,). So for the distance 

/, from a ray to the point (0,0, c) we have 

1? — (py Pe eBid ote SOUP Sea) ie ete ag (18) 

’ Pi + Pa’ + Ps” 
If in this equation we substitute —c for c we shall find a relation 

for the distance 7, from the ray to point (0, 0, —c). 

The equation 

1? 

a,l,* + 4,1’ =8 
furnishes a complex 2 with the equation 

(a, + @,) c? — B}(p,? + p.”) — Bp,” + (a, + 4) (Pa? 1 Ps 1 Po’) + 
+ 2 (a, — @,)¢(p, Pp; — PsP.) = 9- : caterer oT (19) 

This symmetrical complex is very extensively and elementarily 

treated by J. Nevsere (Wiskundige Opgaven, IX, p. 334—341, and 

Annaes da Academia Polytechnica do Porto, 1, p. 187—150). The 

special case a,/, + a, 1, = 0 was treated by F. Corry (Mathesis, IV, 

p. 177—179, 241—243). 
For /, =J/, we find simply . 

ee | ee re 

This complex contains the rays at equal distances from two fixed 

points. As c does not occur in the equation the fixed points may 
be replaced by any couple of points on the axis having O as centre’). 

§ 5. When there is a displacement in the direction of OZ the 

coordinates of rays p,, P,, Pp, and p,, do not change whilst we obtain 

Pr=Pithp, and pp=p, — hp 
so 

P: Ps + Pa Ps = Pi Pa 1 Pa Po 
The forms (p,2-+p,”) and (p,p, — Pp, P,) are now not invariant. 

1) This complex is tetraedral. See Sturm, Liniengeometrie, I, p. 364. 
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When in equation (1) of the complex 2 the coefficients H and F 

are zero, the complex 2 is displaced in itself by each helicoidal 

movement with axis OZ..This complex can be called helicoidal. 

The singular surface has as equation 

(BD — C) (2? + y) + AB=0;... . . (21) 

so it consists of a cylinder of revolution and the donble laid plane 
at infinity. 

§ 6. By homographic transformation the complex 2 can be changed 
into a quadratic complex with four real bisingular points. 

If we take these as vertices of a tetrahedron of coordinates 

O,0,0,0,, it is not difficult to show that the equation of such a complex 
has the form 

Ap’, + B ps, + 2 CPis Pas + 2 DPis Pas + 2 EPs Pas = 9. (22) 
If we again introduce the condition that the section of the 

cone of the complex with one of the coordinate planes consists of 

two right lines we find after some reduction for the singular surface 

A(D-E)y,*y,’+2{ AB-(C-D) (C-E)}4,9,9sy,t+B(D-E)y,*¥,2=0 « (23) 
So this consists of two quadratic surfaces, which have the four 

right lines O,O0,, O,0,, O,O0,; and O,O, in common. 
_ For A=0, 4=0 the complex proves to be tetraedral. 

For D= FE the equation is reducible to 

eae Pa 2 (C — Dy p,,p,, = 9, 

and indicates two linear complexes. 

For the axial surfaces of the edges O,O, and O,0, we find 

a, 0,{2A0,2,+(D—E)a,27,{}=0.. . . (24) 
and 

eee eee, () — BE) ee} 0. 5. . (25) 

For a point (0,y,,0,y,) of the edge O,O, the cone of the complex 
is represented by | 

Ay, # + 2(C — B)y,y,2,2, + By,22,7=0;. ~ (26) 

so it consists of two planes through O,0,. 
This proves that the edges O,0,, O,0,, O0,0;, 0,0, are double 

rays of the complex °*). 

1) See Sturm, Liniengeometrie Mi, pp. 416 and 417. 



( 222) 

Physiology. — “A few remarks concerning the method of the true 
and false cases.” By Prof. J. K. A. WertHem SALoMONsoN. 
(Communicated by Prof. C. WINKLER.) 

The method of the true and false cases was indicated by FECHNER 

and used in his psychophysical investigations. He applied this method 
in different ways: first to determine the measure of precision 

(Pricisionsmasz) when observing difference-thresholds, afterwards to 
determine these difference-thresholds. 

Already in the course of his first experiences arose the difficulty 

that not only correct and incorrect answers were obtained, corre- 

sponding with the “true” and “false” cases, but that also dubious 

eases occurred, in which the observer could not make sure as to 

the kind of difference existing between two stimuli, or whether there 

did exist any difference at all. Frcuner himself, and many other 

investigators after him, have tried in different ways to find a solution 

to this difficulty. What ought to be done with these dubious cases? 

Frcuner has indicated several methods, which he subjected to an 

elaborate criticism. Finally he concluded that the method to be 

preferred to all others was that one, in which the dubious cases 
were distributed equally amongst the false and the true cases. If 

e.g. he found w true cases, v false cases and ¢ dubious cases, he 

calculated his measure of precision as if there had been w+ 3¢ 

true cases and 4¢-+ v false cases. 

Furthermore he showed that a method, employed especially by 

American experimental physiologists, in which the reagent is urged 

always to state a result, even if he remains in doubt, practically 

means the same thing as an equal distribution of the ¢ cases amongst 
the true and the false cases. 

FecuNer still worked out another method, by means of which 

the threshold value was first calculated from the true cases, then 

from both the true and dubious cases, whilst the final result was 

obtained with the aid of both threshold values. 

A most elegant method to calculate the results of the method of 

the false and true cases has been pointed out by G. E. Méuter, 

starting from this view, that as a matter of necessity the three groups 

of cases must be present, and that they have equal claims to exist; 

that the number of cases belonging to each of these groups in any 

case, are equally governed by the well-known law of errors. From 

the figures for the true false and dubious cases the thresh Ctes 

may afterwards be calculated. 
I need not mention some other methods, e.g. that of Foucav.t, 
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that of Jastrow, because the method of Foucavtr is certainly in- 

correct (as has been demonstrated among others by G. E. Mixer), 
whilst that of Jastrow is not quite free of arbitrariness. 

Against all these different ways of using the method of the false 

and true cases, I must raise a fundamental objection, which I will 

try to elucidate here. 

Whenever two stimuli of different physical intensity are brought 

to act on one of the organs of the senses, either the reagent will 

be able to give some information as to the difference between these 
stimuli, or he will not be able to do so. If he cannot give any 

information, then we have before us a dubious case, if on the con- 

trary he is able to give some information, this information may 

either be correct, — this constituting a true case — or it may be 

incorrect, when we shall have a false case. 

If the experiment is repeated a sufficient number of times, we 

shall have obtained at last a certain number of true cases w, of 

false cases v and of dubious cases ¢. 

Generally it is admitted that the reagent has indeed perceived 
correctly w times, that he has been mistaken v times, that he 
was in doubt ¢ times. If this premiss were correct, FECHNER’s or 

G. E. Miiurr’s views might be correct too. This however is not the 

case. An error has already slipped into the premiss, as will become 
evident furtheron. 

No difference of opinion exists as to the dubious cases. To 
this category belong first those cases, where the reagent got the 

impression of positive equality, and next those cases, where he 
did not perceive any difference, and consequently was in doubt. 

Together they embrace such cases only, in which a greater or lesser 

or even infinitesimal physical difference was not perceived. 

Neither need any difference of opinion exist as regards the false 
cases. In these cases a stimulus has been acting on the organs of 
the senses, and information was given about the effect, but on account 
of a series of circumstances, independent of the will of the reagent, 

his judgment was not in accordance with the physical cause. The 
. physical cause therefore has not been perceived, but accidental cir- 

cumstances led the reagent to believe that he was able to emit a 
judgment, though this judgment, accidentally, was an incorrect one. 

And now we are approaching the gist of the argument. If it be 
possible, that amongst a series of experiments a certain number 
occur, in which the reagent really does not perceive the physical 

cause, but is yet induced by chance to emit a judgment which proves 
to be an incorrect one, then there ought to be also a number of 



(224 ) 

cases, in which likewise the physical cause is not perceived, in 

which however by chance a judgment is emitted, though this 

time a correct one. These facts being dependent on circumstances 

beyond our will, the chances are equal that either a wrong or a 
right judgment may be given. If therefore we had v false cases, we 

may reasonably admit the existence of v cases, in which practically 

the physical cause has not been perceived, and where yet a judgment, 

this time a correct one, has been given. These v cases however have 

been recorded amongst the true cases, though they cannot be 

admitted as cases of correct perception: it is only in 2w—v cases that 

we may suppose the physical cause to have been really and correctly 
perceived; in all other cases, in 2v +7 cases therefore, there has 

been no perception of the real difference of the stimuli. 

In this way we have only to consider two possibilities, constitu- 

ting the perceiwed and non-perceived cases, the number of which 
I will indicate by § and y. The supposition that we may apply 

the principles of the calculus of probability to them, is justified a 

priori. 

This supposition is changed into a certainty, if we apply the 

mathematical relations, stated by FeEcHNerR to exist between the 

numbers of true and false cases. 
As is well known, Frcunrer added to the number of true eases, 

obtained by the experiment, one half of the dubious cases: he 

used therefore in his calculation a rectified number of true cases 

w =w-+kt. In the same manner he corrected the number of false 
cases by adding to them likewise one half of the dubious cases : 
v=v — 4 f 

In calculating the number of my perceived cases, I get § = w—, 

whilst the number of non-perceived cases is represented by x= ¢-+ 2v. 

Evidently I may also express the number of perceived cases by 

§ = w'—v'. 

As Fercuner has given for the relative value of the corrected 

number of true cases the expression : 

; Dh 

sat = Eb oe feve 
wtttv n eae hg 

0 

and for the corrected relative number of false cases the expression: 
Dh 

! x v+tht 1 
a ae a =} ——= Je"d 
w+t+tv n Va 

0 
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we obtain from these immediately for § and x the two relations : 

Dh 

and 

We find therefore that the way of dealing with the true, dubious 

-and false cases as proposed by me, allows us to use FEcHNER’s well- 

known tables. 

I wish to lay some stress here on the fact, that G. E. Méuzr’s 
formulae give the same result, saving only the well-known dif- 

ference in the integral-limits: these latter being 0 and (S,+D) hy. 
I need scarcely add that my remarks do not touch in the least 

the question about “thresholdvalue” between Frcuner and G. E. 
Mérier. | 

It is. evident, that the result of the calculation of a sufficiently 
extensive series of experiments according to the principles, given in 

my remarks should give numbers, closely related to those either of 
Frecuner or of G. E. Méiier — depending on the limits of inte- 

gration. Stilt I wish to draw special attention to the fact that the 
formulae of G. E. Mitier about the true, false and dubious cases 

are rather the statistical representation of a series of nearly identical 
psychological processes, whilst the opinion professed by me on the 

method of the false and true cases, represents a pure physiological 
view. 

Finally my remarks show, that Carret, and FULLERTON’s way of 
applying the method of the true and false cases is less arbitrary 

than it seems to be at first sight. They take for the thresholdvalue the 

difference of stimuli with which the corrected number of true cases 
attains 75°/,. Such being the case, § and x are both = 50°/,. They 

consider therefore the thresholdvalue to be a difference between two 

stimuli such, that there is an equal chance of this difference being 

perceived or not. 
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Chemistry. — “The shape of the spinodal and plaitpoint curves 

for binary mixtures of normal substances.” (Fourth communi- 

cation: The longitudinal plait.) By J. J. van Laar. (Com- 

municated by Prof. H. A. Lorentz.) 

1. In order to facilitate the survey of what has been discussed 

by me up to now, I shall shortly resume what has been communi- 

cated on this subject in four papers in These Proceedings and in 

two papers in the Arch. Teyler. 

a. In the first paper in These Proceedings (22 April 1905) the 

equation: 

| po RT = — [« (1—2) (ev—BY a)? + afv—b)*] «we CO) 

was derived for the spinodal lines for mixtures of normal substances, 
on the supposition that @ and 6 are independent of v and 7’, and 
that a,, =Va,a,, while 

(av—By/a)* [(1—2) »—8a (1—#)8] + 
1 Ya (o—0| 8(ee AV) (av—28)/a) + oe | —0 (2) 

was found for the v,a-projection of the plaitpoint line, when 

a Va,—VYa, and B=6b,—4,. 

b. In the second paper in These Proceedings (27 May 1905) the 

shape of these lines for different cases was subjected to a closer examina- 

tion. For the simplification of the calculations B=0, i.e. b,=6,, was 

assumed, so that then the proportion 6 of the critical temperatures of 

the two components is equal to the proportion 2 of the two critical 

a b Yt 
*=g, —=w,— =t (where 7, is the 

v diy 

“third” critical temperature, i. e. the plaitpoint temperature for 

v=), the two preceding equations become: 

t= 4w [#(1—2) + (y+ 2)? (l—w)*] . - - . (la) 

p +2) (1—o) (1—3 (p +2) (oF Ce) ory (2a) 

It now appeared that the plaitpoint curve has a double point, 

when gy = 1,43, ie. d= a = 2,89. If 6 > 2,89, the (abnormal) case 

of fig. 1 (loc. cit.) presents itself (construed for ¢= 1,0=(1-+ 4 

if on the other hand 6 < 2,89, we find the (normal) case of fig. 2 

(loc. cit.) (construed for g = 2, 6 = 2*/,). 

At the same time the possibility was pointed out of the appearance 

of a third case (tig. 3, loc. cit.), in which the branch of the plaitpoint 

v 

pressures. If we then put 
a 

(1—22) + 3 + #) (1—o)* + 
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line running from C, to C, was twice touched by a spinodal line. 
Here also the branch C,A is touched by a spinodal line fin the first 
two cases this took place only once, either (in fig. 1, loc. cit.) on the 

branch C,A (A is the point z=0, v4), or (in fig. 2 loe. cit.) on 
the branch C,A (C, is the before-mentioned third critical point]. 

So it appeared that a// the abnormal cases found by KuxENen may 
already appear for mixtures of perfectly normal substances. 

It is certainly of importance for the theory of the critical phenomena 
that the existence of two different branches of the plaitpoint curve 
has been ascertained, because now numerous phenomena, also in 
connection _with different “critical mixing points’ may be easily 
explained. 

c. In the third paper in These Proceedings (June 24, 1905)') the 
equation : 

1 (d 1 Life eee 

b=7(Z)= OY a [OY sh Avz)-1) 
was derived for the molecular increase of the lower critical temperature 

for the quite general case a, = ai, 6, So. whieh equation is reduced 

to the very simple expression 

(ESS st | eae 0 ei en 2k eee (3°) 

for the case x = 1(p,=>p,). 

This formula was confirmed by some observations of CeENTNERSZWER 

and BicHNER. 

d. The fourth paper appeared in the Archives Teyler of Nov. 1905. 
Now the restricting supposition §—0 (see 6) was relinquished for the 

determination of the double point of the plaitpoint line, and the quite 

general case a, a,, +, = 6, was considered. This gave rise to very = 
> Ps 

intricate calculations, but finally expressions were derived from which 
oi 

for every value of d= aa the corresponding value of Beds, and 
1 Py 

also the values of z and v in the double point can be calculated. 

Besides the special case 6 = 2 (see J) also the case 2 =1 was 

examined, and it was found that then the double point exists for 
6 = 9,90. This point lies then on the line v= 0. 

') The three papers mentioned have together been published in the Arch. Néerl, of 

Nov. 1908. 
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e. The fifth paper (These Proceedings, Dec. 30, 1905) *) contained 
the condition for a minimum critical (plaitpoint) temperature, and 
that for a maximum vapour pressure at higher temperatures (i. e. 
when at lower temperatures the three-phase-pressure is greater than 

the vapour pressures of the components). For the first condition 
was found: 

4nxnYx 

cS (3V a 1)? : (4) 

for the second: 

Fy 4 ae (5) 
which conditions, therefore, do not always include each other *). 

After this the connodal relations for the three principal types were 

discussed. in connection with what had already been written before 
by Korrewse (Arch. Néerl. 1891) and later by van per Waats (These 
Proceedings, March 25, 1905). The successive transformations of main 

and branch plait were now thrown into relief in connection with the 

shape of the plaitpoint line, and its splitting wp into two branches as 
examined by me. 

J. In the szvth paper (Arch. Teyler of May 1906) the connodal 
relations mentioned were first treated somewhat more fully, in which 

also the p,a-diagrams were given. There it was proved, that the 

points #,, A, and R',, where the spinodal lines touch the plaitpoint 
line, are cusps in the p,7-diagram. 

Then a graphical representation was plotted of the corresponding 

values of @ and za for the double point in the plaitpoint line, in 

connection with the calculations mentioned under d. 

Both the graphical representation and the corresponding table are 

here reproduced. The results are of sufficient importance to justify 

a short discussion. 

We can, namely, characterize all possible pairs of substances by 

the values of @ and 2, and finally it will only depend on these 
values, which of the three main types will appear. To understand 
this better, it is of importance to examine for what combination 
(7,6) one type passes into another. As to the transition of type I 

to If (Ill), it is exactly those combinations for which the plaitpoint 

line has a double point. In fig. 1 (see the plate) every point of the 

') Inserted in the Arch. Néerl. of May 1906. 

2) These results were afterwards confirmed by Verscuarrett (These Proceedings 
March 31, 1906; cf. also the footnote on p. 749 of the English translation). 
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plane denotes a combination (4,2), to which every time a certain 
pair of substances will answer. 

= = aa? | a | */o ite ae 
4,00 | 7,00 en O13 0,96 en 0,040 . 2,57 en 2,57 

1,19 7,21 » 0,13 0,94 » 0,036 2,49 » 2,60 

4,74 6,26 » 013 0,84 » 0,025 | 226 » 268 

1,88 5,76 » 0,13 0,78 » 0,024 218 » 2,74 

2,04 5,42 » 0,12 0,72 » 0,018 244 » 274 

2,22 4,94 » 0,12 0,63 » 0,014 2,02 » 2,79 

2,89 2,89 » 0,12 0,24 » 0,003 1,73 » 2,87 

9,90 1,00 » 0,14 0,01 » 0,001 1,00 » 2,95 

00 — » Of1 — » 0,000 — » 3,00 

In the said figure the line C”’APB denotes the corresponding 
values of 0 and za from 6=0 to 0=9,9. For C’ 0=0, x=9, 

for A 6=1, x=7,5; with 6 = 2,22 corresponds a = 4,94. (Case 
& = G@ or a,=<a,); for P r=6=2,89 (Case x =O orb, = 5,); 
for 5b 6=9,9, = 1. For values of 6 > 9,9 the double point would 

lie on the side of the line v= 6, where v <b. It appears from the 
figs. 23, 24 and 25 of the said paper, that then the line BD (a = 1) 

forms the line of demarcation between type I and II (III). For 
starting from a point, where 7< 1 (however little) and @ is com- 

paratively low, where therefore we are undoubtedly in region II (IID, 
we see clearly that we cannot leave this region, when with this 
value of a that of 6 is made to increase. For we can never pass 

to type I, when not for realizable values of v (so < 4) a double 
point is reached, and now a simple consideration (see the paper 
cited) teaches, that for <1 a double point would always answer 
to a value of v< b. 
Now it is clear that 0 = 0,7 =9 is the same aO=a0,x2='/); 

that 6 = a = 2,89 is identical with 0 = x = 1/29 = 0,35; ete., ete. 

(the two components have simply been interchanged), so that the 
line CA’ will correspond with the line C’A, while A’ B’ corresponds 
with AB. If we now consider only values of 6 which are i Bie 

in other words we always assume 7, > 7,, we may say that the 

16 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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region of the normal type II (III) is practically bounded by the 

lines ABD, AA’ and A’C. On the right of ABD we have the 

abnormal type I (C,H, + CH,OH, ether + H,O); on the left of A’C 
we have also the type I. But whereas in the first region of I the 

branches of the plaitpoint line are C,C, and C,A, they are CC, 
and C,B (see figs. 23—25 loc. cit.) in the second region. It is namely 

easy to show, (loc. cit.), that for 7 >1 the branches of the plait- 
point line are either C,C, and C,A (type Il and II), or C,A and 
C,C, (type I, while for «<1 these branches are C,C, and C,B 
(type II and III) or C,B and C,C, (type fl). The line w= 1 divides 
therefore the region of type II (III) into two portions, where we 

shall resp. find the shape of the plaitpoint line branches mentioned 

(viz. for 6>>1). But in practice it will most likely never happen, 

that with @>>1 a value of 2 corresponds which is much smaller 

than 1, for a higher critical pressure goes generally together witha 

higher critical temperature. We may therefore say that with a given 

value of a the abnormal type I is found when 6 is comparatively 

large {larger than the double point (of the plaitpoint line) value of 

6|, whereas the normal type I (or Ill) appears when 6 is compara- 

tively small (smaller than the said double point value). 

It is now of the greatest importance to examine, when type II 

passes into III, where the plaitpoint line C,C, is twice touched by 

a spinodal line (in A, and &,’). This investigauon forms the con- 

clusion of the last paper in the Arch. Teyler. 

The calculations get, however, so exceedingly intricate, that they 
> 

proved practically unfeasible for the general case a, a4, Oe Z by. 

Only the special cases 8 = 0 (6, = 6, or T= 6) and a — 1 admitted 

of calculation, though even then the latter was still pretty complicated. 

Then it appeared, that for 80 the region of type III is exactly 

—(, that it simultaneously appears and disappears in the double 

point P, where 7=6=>= 2,89. But in the case 71 the region 

lies between 6—4,44 and 6=9,9 (the double point). This is 

therefore QB in fig. 1; i.e. for values of 6>>1 and < 4,44 we 

find type II (see fig. 2°); for 6=4,44 (in Q) the plaitpoint line 

gets a point of inflection (see fig. 2°), whereas from 6 = 4,44 to 

6—9,9 we meet with type ILI (fig. 2) with two points R, and R,’, 

where the spinodal lines touches the plaitpoint line. This type 

disappears in the double point ?, where 6=9,9 and A, and &,’ 

coincide in P (fig. 2¢), and passes for values of 6 >9,9 into type I 

(fig. 22). We point out, that the figs. 2*—2¢ represent an intermediate 

case (i.e. between 7 =6 and a =1, see fig. 1), for in the case of 
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ma—1 the branch AR,C, would coincide with AB (v= d). There- 

fore the special value 4,44 has been replaced by 6, (the value of 
6 in Q) and the value 9,9 by 46, (the value of @ in P). 

Of the curve which separates type Il from type III we know as 

yet only the points P and Q (see fig. 1) and the further course of 
this line is still quite unknown, for which reason we have denoted 

it by a dotted line. 

In any case the investigations, described in the Arch. Teyler have 
proved, that this very abnormal type III zs possible for mixtures of 
normal substances. If the critical pressures of the two components 

are the same (7=—1), then we meet with this type when @ lies 

between 4,4 and 9,9. The critical temperatures must therefore lie 

far apart, but not so far (see fig. 1) as would be necessary for the 
appearance of type I. 

We shall once more emphatically point out that the nwmeric results 

of our investigation will naturally be modified, when @ is not assumed 

to be independent of v and 7’, or when one of the two components 
should be associating substances. This will cause the types II and I 

to make their appearance earlier than has been derived above (i. e. 
with lower values of 6 with for the rest equal values of 2), but 

that qualitatively everything will remain unchanged. This appears 

already from the fact that the substitution of the quite general assumption 

b, - 6, for the simplified assumption 6, = 4, (in the first paper in 

the Arch. Teyler) has made no change is the existence of a double 

point in the plaitpoint line with certain corresponding values of @ 

and a, and that also the calculations for the limits of type III 
(in the second paper in the Arch. Teyler) may be carried out tor 

the quite general case 6, = 6,. So the phenomena remain qualitatively 

the same for very different pairs of values of 6, and /,, and will 

therefore not change essentially either, when one definite pair of 
values, holding e.g. for the critical circumstances of one of the com- 
ponents, is subjected to changes, whether by association, or by other 

causes, when v or 7’ change — no more as e.g. the critical pheno- 
mena for a simple substance will essentially change when b is no 
longer constant, but is supposed to be dependent of v and 7) or 
when that substance forms complex molecules. 

The longitudinal Plait. 

2. In former papers it has been demonstrated that in the neigh- 
bourhood of C, a minimum plaitpoint temperature makes its appearance 
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both with type I in the line C,C, and with type II in the line C,A, 
and that therefore with decrease of temperature a separate plait 
begins to detach itself starting from C;, at a definite temperature 

T, (the plaitpoint temperature in C,), which plait will merge into 
the main plait (or its branch plait) later on in an homogeneous 

double point. The consequence of this is, that with type I e.g. at 

lower temperatures the main plait will always be open towards 

the side of the small volumes, so that increase of pressure will never 

‘cause the two split phases to coincide. 

Let us however specially consider the case of type II. Here the 

usual course, inter alia described in the last cited paper in the 
Proceedings of Dec. 30, 1905, is this. At a certain temperature, 

passing from higher to lower temperatures, a spinodal curve touches 
the branch of the plaitpoint line AC, in R,. In the well-known way 

a closed connodal curve begins to form within the connodal line 

proper, which closed curve gets outside the original connodal curve 

at lower temperatures, and gives rise to a new (branch) plait, and at 
the same time to a three phase equilibrium (figs. 8¢ and 3°). In many 

eases this branch plait has already appeared before the plait which 

starts from C,, begins to develop at somewhat lower temperature. 

Later on the two branches coincide (at the minimum temperature 

in J), and then form again a continued branch plait (fig. 3°). *). 

Now for the special case 6,0, the point D lies always very 

near C, (see the paper in these Proceedings referred to under 0. 

in § 1). If then e.g. 7./7,= 2), then 7,,/7;= 096; whee 

represents the temperature in the minimum at D. The real longi-° 

tudinal plait round C, exists then only at very high pressures 

(fig. 34), while the open plait of fig. 3° can hardly be called a 

longitudinal plait, but is much sooner to be considered as the 

branch plait of the transverse plait which has joined the original 

longitudinal plait. Increase of pressure makes here always the two 

coexisting liquid phases approach each other, unless with very high 

pressures, when these phases diverge again. 

the The calculation proves that in the quite general case 6, = b, 

point D may get much nearer in the neighbourhood of £&,, and also 
that the temperature in the plaitpoint C, may be comparatively bigh, 

so that in opposition to what has been represented in fig. 37 the 
longitudinal plait has already long existed round C, before a three 

phase equilibrium has formed at M (fig.4* and 4°). The meeting 

') In this and some other figures the spinodal curves seem to touch in the 

homogeneous double point D, instead of to intersect, as they should. 
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of this longitudinal plait, which has then already greatly extended, 

with the branch plait takes place much more in the neighbourhood 

of the line 1,2 of the three phase triangle, so that after the meeting 

the plait assumes the shape drawn in fig. 4°, which makes it for 
the greater part retain its proper character of longitudinal plait. So 

at first increase of pressure makes the phases approach each other 

(this portion may be exceedingly small, but as a rule it will exist); 
then further increase of pressure makes the phases 1 and 2 again 

diverge, till z, and x2, approach to limiting values at p = o, without 

the longitudinal plait ever closing again — as was formerly considered 

possible [ef. inter alia van per Waats, Cont. II, p. 190 (1900)]. 
For in consequence of the minimum at VD the longitudinal plait 

always encloses the point C,. Only at temperatures higher than 77, 
at which the longitudinal plait does not yet exist, there can be 
question of homogeneity till the highest pressures. But then the 

plaitpoint P belongs to the branch plait of the transverse plait, and 
not to the longitudinal plait. This is indicated among others by 
fig. 3", after the closed connodal curve in MW has broken through 
the connodal curve proper of the transverse plait; or by fig. 3°, 
before a longitudinal plait has developed round C,,. 

Of course we may also meet with the case, that the plait round 

C, coincides with the branch plait at the moment that the latter 
with its plaitpoint just leaves the transverse plait, as shown in fig. 5%, 

but this involves necessarily a relation between @ and 2, and is 
therefore always a very special case. Then the branch plait happens 

to leave the transverse plait exactly in the minimum at D. After 
the meeting the plait shows the shape as traced in fig. 5°. Now 

increase of pressure causes the two phases 1 and 2 to diverge from 
the beginning. 

But the longitudinal plait round C, may also meet the connodal 

line of the transverse plait, before the closed connodal line has got 
outside the transverse plait (fig. 6). Then the three phase equilibrium 
does not develop, as in fig. 4", at the transverse plait (from which 

a branch plait issues), but at the /ongitudinal plait round C,. The 
latter penetrates then further into the transverse plait, till its meets 

the isolated closed connodal curve in DP (fig. 6°), after which the 
confluence with it takes place in the unrealizable region (fig. 6°). 

This plait is then the longitudinal plait proper, of which there is 

generally question with mixtures of substances which are not miscible 

in all proportions. But we should bear in mind that just as well 

the above treated case of fig. 4 may present itself, with that of fig. 5 
as transition case. 
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The calculation teaches that the transition case presents itself when 

the proportion 4 of the critical temperatures of the two components 

is in the neighbourhood of 1, and the proportion a of the critical 

pressures is at the same time pretty large. 

A clear representation of these different relations is also given by 

the two p, 7-diagrams of fig. 7 and fig. 77. (The temperature of C, 

is there assumed to be lower than that of #,, but it may just as 

well be higher). The plaitpoints p’ on the part #,A below the cusp 

are the unrealizable plaitpoints (see also figs. 3—6); the plaitpoints 

p on the part 2, before J also (then the isolated closed connodal 

curve has not yet got outside the main plait); the plaitpoints P 

beyond JW are all realizable. 

So after the above we arrive at the conclusion that in all cases 

in which a distinct longitudinal plait appears of the shape as in 

figs. 4° or 6¢ (so when the minimum J lies near &,), the critical 

mixing point JM of the three phases need not always lie on the 

longitudinal plait (see fig.4%), and also that the longitudinal plait 

with its plaitpoint P will not always coincide with the transverse 

plait itself, but it ean also coincide with the branch plait of the 

transverse plait, so that at that moment no three phase equilibrium, 

i.e. no vapour phase is found (see fig. 4°). The two liquid phases 

1 and 2, however, coincide in this case. 

The case drawn in figs. 5¢ and 5° remains of course an exception, 

and the conditions for its occurrence may be calculated (see above). 

But this calculation, as well as that which in general indicates the 

situation of the points R,, D and M, will be published elsewhere 

(in the Arch. Teyler). It is, however, self-evident that the above 

general considerations are by no means dependent on these special 

calculations. 

It is perhaps not superfluous to call attention to the fact that the 

concentration a, of the vapour phase is neither in fig. 4%, nor in 

fig. 5 or 67, the same as the concentration of the two coinciding 

liquid phases a9, as VAN DER Lee wrongly believes to have shown 

in his Thesis for the doctorate (1898), [see p. 66—69, 73—74 and 

Thesis III; also vAN per Waats, Cont. II, p. 181 (1900)]. Now we 

know namely, that when «, lies between v, and wv, at lower tem- 

peratures, this need not continue to be so till v, and 2, have coincided. 

The latter would be quite accidental; in general one of the maxima, 

e.g. in the p,a-line, which lie in the unstable region between 2, and 

z,, will get outside the plait before 7, and «x, have coincided. 

Cf. the figs. 12« to 12/ in my Paper in These Proceedings of March 

25 1905 and §8 p. 669—670, and also the footuote on p. 665. 
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Already in a previous paper (These Proceedings June 27 1903) 1 
had elaborately demonstrated this, and somewhat later (These Proceed- 
ings 31 Oct. 1903) Kuenen arrived at the same opinion independently 

of me.') And in 1900 Scureinemakers (Z. f. Ph. Ch. 85,p. 462—470) 

had experimentally demonstrated that one maximum leaves the 
longitudinal plait for exactly the same mixture (phenol and water), 

for which van per Lex thought he could theoretically prove, that 

a Die.) 

Finally I shall just point out that in the peculiar shape of the 
p,T-diagram of the plaitpoint line (fig. 7) in the neighbourhood of 
the point D, and in the fact that the two critical moments represented 
by figs.4* and 4° (as D and MM in general do not coincide) do not 

coincide, the clue may be found for the explanation of a highly 

puzzling and as yet unexplained phenomenon, which has been observed 
as well by Gururin as by Rorumunp [Z. f. Ph. Ch. 26, p. 446 
(1898)|*) in their experiments, viz. the appearance and disappearance 

of a distinct cloudiness when the mixture is heated above the 
“critical temperature of mixing’, which cloudiness often continued 

to exist up to 10° above this temperature. 

1) C.f. also KueNEN: Theorie der Verdampfung und Verfliissigung von Gemischen. 

Leipzig 1906, p. 170, note. 

*) For the rest the assumption x3 = 2,2 at the point M leads, as the calcula- 
tions teach, not only to strange, but to highly absurd conclusions. 

8) C.f. also FRieDLANDER, Ueber merkwiirdige Erscheinungen in der Umgebung 

des kritischen Punktes. Z. f. Ph, Ch. 38, p. 385 (1901). 

(October 25, 1906). 
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Mathematics. — “The force field of the non-Euchdean spaces 

with positive curvature’ by Mr. L. E. J. Brouwer. (Commu- 

nicated by Prof. D. J. KorTewse). 

(Communicated in the meeting of September 29, 1906). 

D'). The spherical Sp,. 

I. The theorems under C $ I and II hold invariably for the sphe- 
rical and elliptical Sp,’s. But on account of the finiteness of these 
spaces we need not postulate a limiting field property for the 

following developments. We shall first consider the spherical spaces. 

Firstly we remark for the general linevector distribution of the 

spherical Spa that the total sum of the divergency is 0; for the 

outgoing vectorcurrents out of the different space-elements destroy 

each other. This proves already that as elementary oX we can but 

take the field of a double point. 

Scuerinc (Gottinger Nachrichten 1873), and Kinune (Crelle’s Journal, 

1885) give as elementary gradient field the derivative of the potential 

fon 
f ae ; 

function |——— = ? (r).”) 
sint—| 

re 

But the derivative of this field consists of two equal and opposite 

divergencies in two opposite points; and it is clear that an arbitrary 

integral of such fields always keeps equal and opposite divergencies 

in the opposite points, so it cannot furnish the general divergency- 
distribution limited only to a total divergency sum = 0. 

Il. If we apply for a spherical Sp, the theorem of Green to the 

whole space (i. e. to the two halves, in which it is divided by an 

arbitrary closed Sp,—1, together), doing this particularly for a scalar 

function g which we presuppose to have nowhere divergency and 

a scalar function having only in two arbitrary pots P, and P, 

equal and opposite divergencies and nowhere else (such functions 
we shall deduce in the following), we then find 

Pp, ae P p, == 0, 

i.o. w. g is a constant, the points P, and /P, being taken arbitrarily. 

1) A,B and C refer to: “The force field of the non-Euclidean spaces with nega- 
tive curvature”. (See these Proceedings, June 30, 1906). 

2) We pul the space constant =1, just as we did in the hyperbolic spaces. 
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So there is no =x possible with nowhere divergency, thus no x 

having nowhere rotation and nowhere divergency, and from this 

ensues : 

A linevector distribution in a spherical Sp, is determined uniformly 
by its rotation and its divergency. 

Ill. The general vector distribution in a spherical Sp, must thus 

be obtainable again as an arbitrary integral of: 

1. fields 2#,, whose second derivative consists of two equal and 
opposite scalar values close to each other. 

2. fields H,, whose first derivative consists of planivectors distri- 
buted regularly in the points of a small "~*sphere and perpendicular 
to that *—*sphere. 

At finite distance from their origin the fields #, and EF, have 
an identical structure. 

IV. For the spherical Sp, there exists a simple way to find 
the field #, namely conform representation by stereographic pro- 

jection of a Euclidean plane with a doublepoint potential, which 

double point is situated in the tangential point of the sphere and the 
plane. If we introduce on both surfaces as coordinates the distance 
to the double point and the angle of the radiusvector with the 

doublepoint-axis — in the plane @ and g, on the sphere rand gy — 
we have: 

4 o0=—tan}r. 

The potential in the plane: 7 becomes on the sphere: 

4 cos p cot 3 7r. 

This potential shows nothing particular in the centre of projection 
on the sphere, so it is really the potential to be found of a single 
double point, the field #,. (If we place in the opposite point of 
the double point an other double point in such a way that the 
unequal poles correspond as opposite points, we find as potential 

cos 
4 cos p (cot 4 r+tan}r) = — , Which is the Schering potential of a 

double point). 

V. Here too we can meanwhile break up the field of a double 
point into two fictitious “fields of a single agens point”; for this 

x 

we have but to take {cot hrdr—=— loin =F (9) so that for an 

r 

Li? 
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arbitrary gradient distribution holds 

fe W 0X FO as 2 a eee 

The ‘‘field of a single agens eae has however divergencies every- 

where on the sphere. 

1 
0 aX: — Aw 

VI. Out of the field H, we deduce in an analogous way as under 
B § VI the field #, of a rotation double point normal to the agens- 
doublepoint of the field £,. As scalar value of the planivector potential 

we find there: 

4 sin g cot $7, 

as we had io expect, col atete dual to the scalar potential of the 

field £,. 
As fictitious force field of a unity-rotationelement we deduce out 

of this (in the manner of B § VI): 

4 cott7, 

directed normally to the radiusvector. For the rest this force field has 

rotation everywhere in Sp,. : 

VII. Out of this we find (comp. under B § VII) for the scalar 

value of the planivector potential of a rotation-element: 
T 

fi cot 4 rdr— F(r), 

r 

so that for an arbitrary =e 

x= Wf WE ya a_i 

And an arbitrary vectorfield is the 7 of a potential: 

f * Fr () dr. 

E. The spherical Sp,. 

I. The purpose is in the first place to find #,; we shall compose 
it of some singular potential functions with simple divergency distri- 

butions, and which are easy to construct. 

Let us suppose a principal *sphere 6B with poles P, and P,, and 

on B a principal circle C with poles Q, and Q, debormnniag on B 
meridian circles M cutting C in points #. 
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We can construct in the first place out of the ScueriNe potential 
the potential of two double points, in P, and P,, the positive 

poles of which are both directed towards Q, (so that in opposite 

points unequal poles correspond). Let us determine a point S of the 

hypersphere by the distance PS=rand “ QPS=g (where for P 
and Q the index 1 or 2 must be taken according to S lying with 
P, or with P, on the same side of 5), then this potential (a) becomes 

cos ~ 

sin? r 
where the sign + (—) must be taken for the half hyperspheres 
between P, (P,) and BS. 

This field has no other divergency but that of the double points 
F, and F.. 

If we now reverse the sign of the potential in the half hyper- 
sphere on the side of P,, we obtain the potential (@): 

COs @ 

sin? r 

The divergency of this consists in the first place of two double 

points, one directed in P, towards Q, and one directed in P, towards 
Q, (so that now in two opposite points equal poles correspond) ; 
and then of a magnetic scale (indeed a potential discontinuity) in 

sphere 6 varying in intensity according to cos gy. 

Il. By the side of this we wish to find a potential, the divergency 
of which consists of only such a magnetic scale in sphere B with 
an intensity proportional to cosg. Now a field of a magnetic scale 

in £ with an intensity varying according to an other zonal sphe- 
rical harmonic, is easy to find. Let us namely take in each “meridian 

sphere” PQH# as potential of a point S the angle PHS=4a— / QHS 
(P and Q to be provided with indices in the way indicated above 
according to the place of S) = tan— {cos g tan r}, then we have such 
a potential: in the hypersphere it is a zonal spherical harmonic about 

PQ as axis; on the sphere B it has its only divergency in the 
shape of a magnetic scale, the intensity of which varies according to 

a zonal spherical harmonic with pole Q. 
Let us now take in turns all the points of the sphere B as pole 

Q' of such a potential function, and let us integrate all those poten- 
tials over the solid angle about P each potential being multiplied by 
cos Q'Q, then according to a wellknown theorem on spherical har- 
monics the integral is a zonal harmonic of form cos gf (r), where 

ety — cf cos p . tan {cos gy tanr}dm, (dw representing the element 
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of the solid angle about P), whilst this integral field has as only 
divergency a magnetic scale in 6 with intensity proportional to 

COS @. 
Effecting the integration we obtain : 

Tg 

T(r) = 22 a sin ~ cos ~ tan—! {cos g tan r} dg. 

0 

’ F(t) = 2% | — cotr + E 
sin? r 

and for the corresponding potential function (y) we find: 

aE A |. 
sin? r 

III. If we take the difference of the field (8) multiplied by 4 and 

2m cos ~ 

1 
the field (y) multiplied by Te the magnetic scale in B disappears 

7 

and we have left the field (d): 

Fs 4 
—_—r 

cos p )2 
: + cot r| , 

mz | sin?r 

which field has as only divergeney two double points in P, and P, 
of which in the opposite points equal poles correspond. 

The sum of this field (d) and the field (a) multiplied by 4 must 

now give a field having as divergency a single double point with 

unity-moment in P,, i. o. w. the field £,. 

We therefore find on the half hypersphere between P, and B: 

Tr 

+ cotr 
7 sin ? 

1 
— cos ~ 
5 4 

and on the half hypersphere between P, and B: 

—?r 
= + cot r 
is 

or if we define on both halves the coordinates 7 and g¢ according to 
P, and P, Q, we obtain the following expression holding for both halves: 

1 
ae cos 9 a Pp 

sin 

Sin 

1 xn—r vette 
= | = + cot r| = wy cov. 
x r 

IV. To break up this field into two fictitious “fields of a single 
agens point” (having however divergency along the whole hypersphere) 

we take for the latter fv (r) dr = F, (r). 
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Then for an arbitrary gradient distribution holds: 

a 
x= YW [LH oa, meen soot oe OY ER) 

V. The field £, of a circular current according to the equator 

plane in the origin, is identical outside the origin to the above’ field 
E,; but now each force line is closed, and has a line integral of 

4m along itself. 
According to the method of A §IX we find of this field 4, the 

planivector potential H in the meridian plane and independent of the 

azimuth. 
We find when writing 7—r=8: 

1 
= = — sin*g (1 + Boot r) dd. 

x 

vanishing along all principal circles in the opposite point. 

From which we deduce for the force of an element of current 

with unity-intensity in the origin directed according to the axis of 

the spherical system of coordinates : 

1. 1+ Beotr 
— sin —Y ——_——_ 
‘4 sin rT 

directed normally to the meridianplane. 

VI. From this we deduce as in A § XI a vector potential V of 
an element of current parallel to that element of current and a 
function of r only. For the scalar value U of that vector potential 

we have the differential equation : 

0 0 
—~ {Using sinrdg) dr — — \Ucosgdr}) dg= 

Or 0g 

1 1 t 

x sin P 
Or: 

0 ® 1 
U— 5, |Usins =— (1+ Bootr), 

or x 

of which the solution is 

a + — pen ae 
cos* ir zg l{cos*tr smr 

c 1 +B = 
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We choose c= 0, and we find as vector potential V of a unity- 

element of current: 

il 

Uv 

tftp 
— = #,'@). 

cos? kr sinr 

directed parallel to the element of current. The function £’, (r) vanishes 

in the opposite point. 

For an arbitrary flux now holds: 

| 
x 1x a wy fa rap)ide 2 ee 

An 

And finally the arbitrary vector field X is the V of the potential: 

Wiese +f yaaa yu yi ie 
An An 

F. The spherical Spn. 

I. To find the field #, we set to work in an analogous way as 
for the spherical Sp,. The principal sphere L becomes here a 

n—Isphere B; the principal circle C’ of the points H a principal 
sphere C of the points H. 

For the potential (a) is found: 

cos ~ 

sint—1 p? 
for the potential (@): 

COOP 

sint—l p’ 

this field (3) has in the sphere 6 a magnetic *—'scale. _ 

The potential (y) is integrated out of fields tan—'{ cos g tanr} 

according to cos g, the first zonal *—!spherical harmonic on B. This 
integration furnishes when dw represents the element of the n-dimen- 

sional solid angle about P: 

cos p f (r), 

where : 
Tv 

K(r) = | cosytan—| | cos gtanr | dw = baa rns cos ptan—} cogean ig= 

kn—1 : tan 7 dp 
= —— | sin"g ——___—__ 
n—1 1+ tan *r cos * 

0 

(k, defined as under C § III). ° 
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Putting under the sign of the integral a factor sin *y tan *r outside 

1 
the brackets and, by regarding that factor as 7 (1-++'cos *y tan *r), 

Tr 

writing the integral as sum of two integrals to the former of 

which the same division in two is applied, ete., we find, if we write 
: 

fons r dr = Sh: 

0 

n—l1 r : ; 
a Pe) sin "7 = — sin "—2r cos r Sp—9 — sin "—4r cos r Sy_4...- 

kn—1 

... — sin *r cos r S, 4- 2 (1 — cos 7) 

(for 2 even) 

= — sin"—°r cos r Sp_9 — sin "—4r cos 7 Sn—4.0es 

..e-— sinrcosrS, +2r 

(for 2 odd) 

er ue ea A 
— a fri n—|y dr = (n—1) S, 2 rin n—Ip.dr, 

. . 0 0 

; (for 2 even) 

—1)(n—8).... : ; / 
— oa rin n—|p dr = (n—1) Sof sin n—|p dr, 

Ge 2e— tyr 
0 0 

(for n odd) 

If we write &, for 2.”7.2.2.2...., to nm factors, we have 

n kn 

Siem ie ak Eee and el == Sa 
(n—2) (n—4).... kn 

Therefore : 
rT 

Ff (r) sin 817 = by fin n—ly dr, 

0 

and the potential (y) becomes : 
r 

cos ~ ’ 
kn = sin "—|r dr. 

sin "—|p 
0 

Il. We find the field (#) by taking difference of field (8) multi- 

1 1 
plied by 4 and field (y) by Bee.” i. e. 

: n On—1 1 
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; = 

S,—1 — | sin ®—r dr al, sin "—|p dr 
cos @ cos ~ Z 

Sp—1 sin "—lp ~ sin 2—Ip ~ Seen 

This field has as only divergency two double points, in P, and 

P,, of which equal poles correspond in the opposite points. The field 

E, is then obtained by adding to it the field (a) multiplied by 3 

We find on the half sphere between P, and B: 
wT 

i cos @ 
— .— sin "—|r dr. 
Sr—1 sin ®—|y 

Tr 

On the half "sphere between P, and B: 
r 

1 cos 
— — # sin "—|y dr. 

Sr—-1 sin™—|p 
0 

Or, if we define on both halves the coordinates r and ¢ according to 

P, and P,Q,, we arrive at the expression holding for both halves: 
us 

: fo n—I|y dr — Wn (r .) cos @. 

r 

1 cos ~ 

S,—1 sin ®—|p 

III. For the potential of the fictitious “field of a single agens 

point” we find: 

furs, o. 

And for the arbitrary gradient distribution holds : 

1 me W oX Kay f So node... 1. © 

Of the divergency distribution of F, (r) in points ofa general posi- 
tion we know that, taken for two completely arbitrary centra 
(fictitious agens points) with opposite sign and then summed up, 
it furnishes 0: so on one side that distribution is independent of 

the position of the centre and on the other side it lies geome- 
trically equivalent with respect to all points; so it is a constant. 

But if the function /, (r) has constant divergency in points of general 

position it satisfies a differential equation putting the divergency 

constant. In this is therefore a second means to determine the func- 
tion /, and out of this the field £,. 

The differential equation becomes : 
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E sin t— lp ys =csin"—|p (77 om oe ee a, ) 

' dF, : 
sin "Ip , oy =o f sin n—Ip dr, 

Ly 

aF, if sin "—|y dr 

— c . — +... 

dr sin "—\p 

If the field #, is to be composed out of the function /, (r) then 
the opposite point of the centre may not have a finite outgoing 

vector current; we therefore put na sin"—|r dr = 0, 80 that we get 

Tw 

dF, c ; 
= — —— | sin"—!r dr, 

dr sin "|p 
S 

which corresponds to the above result. 

IV. The field H, of a smal] vortex "—*sphere according to Sp,—1, 

perpendicular to the axis of the just considered double point, is iden- 
tical to that field #, outside the origin; but now each force line is 
closed and has a line integral £, along itself, 

According to the method of C § VII we shall find of this field 

£, the planivector potential H, lying in the meridian plane and depen- 

dent only on r and @;so that it isa x We find: 

dh = ce sin "—°p sin "2g, 

Force in 7-direction : 

Tw 

fen r—lp dp 

1 coir  ; 

es | ae a — (n—1) cos @ . w, (r.) (n—1) cos @ 

? 

= =f @-1 COS P Wy (7) . c& sin "—2r sin "2 . sin r dy = 

0 
= WnP . cé sin ™—|¢ sin "—lg, 

~ a 
H = — = @n (1) sin r sin y = yn (7) sin Q. 

From this ensues for the force of a plane vortex element with 
unity-intensity in the origin : 

Xn (7) sin gp, 
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directed parallel to the acting vortex element and projecting itself on 

that plane according to the tangent to a concentric circle; whilst » 

is the angle of the radiusvector with the Sp,—2 perpendicular to 

the vortex element. 

V. In the same way as in C § IX we deduce from this the 
planivector potential V of a vortex element directed everywhere 
parallel to the vortex element and of which the scalar value is a 
function of 7 only. That scalar value U of that vector potential is here 
determined by the differential equation : 

0 
aa = | U cos p . dr. cé sin "—3r cos 19) dg — 

Op 

) 
eos | sin sin» dip sin 2 co Mg | ar = 

7 

= Yn (7) sin p . sin r dp . dr . cé sin "—3r cos "3g. 

dU 
(n—2) U — re 5 (n—2) U cos r = Y (r) sin r. 

, 

dU 
oa — (n—2) Utgk r= — yn (r).- 

m3 

il 

U = eanaae forrear * In (r) dr, 2 

r 

a function vanishing in the opposite point, which we put = Ff, (7). 
We then find for an arbitrary flux : 

ae 
1 se \l/ oX 
<< wf — F(t) dt 333 =e ee 

And taking an arbitrary vector field to be caused by its two deri- 

vatives (the magnets and the vortex systems) propagating themselves 

through space as a potential according to a function of the distance 

vanishing in the opposite point, we find : 

aA | [Arnot [YA roar : 

G. The Elliptic Spp. 

Also for the elliptic Sp, the derivative of an arbitrary linevector 

distribution is an integral of elementary vortex systems Vo, and 

Vo.,, which are respectively the first and the second derivative of 
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an isolated line vector. For elementary 5X we shall thus have to put the 
field of a divergency double point. 

gn 

d 
The Schering elementary potential f. z 

stn "—Ip 
=p (r) is here a plu- 

rivalent function (comp. Kier, Vorlesungen iiber Nicht-Euklidische 

Geometrie II, p. 208, 209); it must thus be regarded as senseless. 

II. The unilateral elliptic Sp, is enclosed by a plane Sp,—1, 
regarded [twice with opposite normal direction, as a bilateral singly 

connected Sp,-segment by a bilateral closed Sp,1. If we apply to 
the Sp, enclosed in this way the theorem of Green for a scalar 

function g having nowhere divergency, and for one having in two 

arbitrary points P, and P, equal and opposite divergencies and 

fartheron nowhere (such a function will prove to exist in the follo- 
wing), we shall find : 

Pp, ea Pp, == 0, 

i. 0. Ww. g is a constant, the points P, and P, being arbitrarily chosen. 

So no )X is possible having nowhere divergency, so no ee having 

nowhere rotation and nowhere divergency; and from this ensues: 
A linevector distribution in an elliptical Spa is uniformly deter- 

mined by its rotation and its divergency. 

Ill. So we consider : 

1. the field £,, with as second derivative two equal and opposite 
scalar values quite close together. 

2. the field #, with as first derivative planivectors regularly distri- 

buted in the points of a small *—*sphere and perpendicular to that 
small "—*sphere. 

At finite distance from their origin the fields H, and £, are of 

identical structure. 

IV. To find the potential of the field #, we shall represent it 
uni-bivalently “on the spherical Sp,; the representation will have as 
divergency two doublepoints in opposite points, where equal poles 
correspond as opposite points; it will thus be the field (d), deduced 
under # $II, multiplied by 2: 
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Yam 

sin *—|r dr 

LL i r = 
ee = dn (r) cos ~ 
san *—'r $ Sn—1 

In the field corresponding to this in the elliptic space, all force lines 

move from the positive to the negative pole of the double point; a 

part cuts the pole Sp,—; of the origin: these force lines are unilateral 
in the meridian plane; the remaining do: not cut it; these are bilateral 

in the meridian plane. 

The two boundary force lines forming together a double point in 

the pole Sp,—i, have the equation : 
oT 

sin ™—l@ {sin "—!r + (n—1) cot rf sin n—ly an} =a FE 

The Sp,-1 of zero potential consists of the pole Sp,—: and the 

equator Sp,—: of the double point; its line of intersection with the 
meridian plane has a double point in the force lines doublepoint. All 
potential curves in the meridian plane are bilateral. 

V. For the fictitious “field of a single agens point’ the potential is 

are A, (r)dr. It is rational to let it become O in the pole Sp,-1; so 

we, find: 

am 

fr (7) dr= F,(), 

and for the arbitrary gradient distribution holds: 

oX = 1 es Fi\deoo 2: ooh eee 

We could also have found F, . out of the differential equation 

(7) of # § III, which it must satisfy on the same grounds as have 

been asserted there. For the elliptic Sp; also we find: 

aF, if sin "—|p dr 

— c 
dr sin "—|p 

But here in the pole Sp,-1, lying symmetrically with respect to 

the centre of the field, the force, thus fo ™—Irdr must be 0; so 

that we find: 
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Yom 
dF c : 
= i sin n—]p dr. 

dr sin %—Ip 
r 

VI. In the usual way we deduce the 1X, which is planivector 

potential of the field 4,. 

dh = cé sin "—*r sin "—? gp. 

Force in r-direction: 

Wat 

sin "—|p dr 

2 2Zcotr -r 
on ee ee es | = (n—] ’ A (n—1) cos @ eat coy a ei | (n—1) cos @ . Un (r) 

? 

= =fo-» COS P. Un (7). c& sin "—°r sin "—@ . sin rdgy = 

0 
= Ut, (7). ce sin *—!¢ sin "—¢. 

AS temas (7) sin 7 sin | = Xp (7) sin @. 

From which ensues for the force of a plane vortex element with 

unity-intensity in the origin: 

Xn (7) sin GY, 

directed parallel to the acting vortex element and projecting itself 

on its plane according to the tangent to a concentric circle; @ is 

here the angle of the radiusvector with the Sp,—s perpendicular to 

the vortex element. 

VII. Here too a planivector potential of a vortex element can be 
deduced, but we cannot speak of a direction propagated parallel 

to itself, that direction not being uniformly determined in elliptic 

space; after a circuit along a straight line it is transferred into 

the symmetrical position with respect to the normal plane on the 
straight line. 

But we can obtain a vector potential determined uniformly, by 
taking that of two antipodic vortex elements in the spherical Sp, (in 

their *sphere the two indicatrices are then oppositely directed). 
The vector potential in a point of the elliptic Sp, then lies in the 

space through that point and the vortex element; if we regard the 

plane of the element as equator plane in that space then the plani- 

vector potential V is normal to the meridian plane: it consists of: 
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1. a component U, normal to the radiusvector, according to the 

formula: 

T 

U. 1 

eet cos ease fee 2(n--2) $9» Yn (7) dr + 
= 

: 

= feos 2) ry, (7) ar 
sin 2(n—2) — : 27+ kn (”) 

™—r 

2. a component U, through the radiusvector, according to the 
formula : 

U. i 
zs = ee fos 2in—2) Lr xn (r) dr — 

27 sing cos %An—2) 

1 
SS 2(n—2) 1 

LP 

If we regard this planivector potential as function of the vortex 

element and the coordinates with respect to the vortex element and 

represent that function by G,, then 

x=wf 2 CARVE Ak . 4. ae 

holds for an arbitrary flux in the aa Spn- 
And regarding an arbitrary vector field as caused by the two 

derivatives (the magnets and the vortex systems) propagating them- 

selves through the space to a potential, we write: 

oh (ese (7%) 

ky 

Vill. In particular for the elliptic Sp, the results are: 
Potential of an agens double point: 

paag 

sin *r dr 

cone 209 (baa) | 
sin? r 4 S, aX sin ?7 

or if. we put }7—r=y: 

2 cos ~ y ) 
rae eh carmel ce det tL 

. mu sin “Pr 

Equation of the boundary lines of force: 
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sin*p (1 + ycotr) = +1. 

Potential of a single agens point: 

— .y- cor. 

Vector potential of an elementary circular current: 
ae 1+ ycotr 
— sin gp. - ; 
x sin rT 

So also force of an element of current: 

2 1+ y cotr 
— snp. 
x sin rT 

Linevector potential of an element of current: 

cosp| 48° x +7 
cos* tr smr_ sinrir 

4 ie 27r—zx 4 7? 

according to the radiusvector : 
~ 

normal to the radiusvector: 
xz (cos? ir sin 7 sin? rl 

IX. For the elliptic plane we find: 

Potential of an agens double point: 
cos ~p cot r. 

Equation of the boundary lines of force: 

sng—=+tsinr, or o=| ° 

Potential of a single agens point: 
— lsinr. 

Scalar value of the planivector potential of a double point of rotation: 
sin —p 

sin rf 

Thus also force of a rotation element: 
sin — 

Planivector potential of a rotation element : 

leot 4 r. 

We notice that the duality of both potentials and both derivatives 

existing for the spherical Sp,, has disappeared again in these results. 

The reason of this is that for the representation on the sphere a 
divergency in the elliptic plane becomes two equal divergencies in 

opposite points with equal signs; a rotation two equal rotations in 
opposite points with different signs; for the latter we do not find 

the analogous potential as for the former; the latter can be found 

here according to the Schering potential formula. 
With this is connected immediately that in the elliptic plane the 

field of a single rotation (in contrast to that of a single divergency) 
has as such possibility of existence, so it can be regarded as unity 

18 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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of field. That field consists of forces touching concentric circles and 

creat ; 
= 8in © 

Postscript. In the formula for vector fields in hyperbolic spaces: 

eyes Nive 
\ P(yar + (2 F,(r) dt 

nothing for the moment results from the deduction but that to \27_X 

and \1/ X also must be counted the contributions furnished by infi- 

nity. From the field property ensues, however, immediately that the 
effect of these contributions disappears in finite, so that under the 

integral sign we have but to read \2/_X and \1/ X in finite. 
For the \1/ at infinity pro surface-unity of the infinitely great 

sphere is < order e-”; the potential-effect of this in finite becomes 
<order -re— "—*)" %— e-" = re—™—r; so the force-effect < order 
e—™—lr; so the force-effect: of the entire infinitely great spherical 

surface is infinitesimal. 

Pot. xX = 

if 
And the \2/ at infinity pro surface-unity is << order — ; it fur- % : 

; nt yk 1 
nishes a potential-effect in finite < order e—"—l)r, —, thus a force- 

7 

1 ; 
effect << order e~—"—")". — ; so the force-effect, caused by the infi- 

Tr . 

nite, remains < order —. 
dh : 

The reasoning does not hold for the force field of the hyperbolical 
Sp, in the second interpretation (see under B § VIID), but it is in 
the nature of that interpretation itself that the derivatives at infinity 
are indicated as such, therefore also counted. 

Meteorology. — “On Magnetic Disturbances as recorded at Batavia.” 
By Dr. W. van BruMMELEN. 

(Communicated in the meeiing of September 29, 1906). 

Some months ago Mr. Maunpur of the Greenwich-Observatory 
addressed a request to the Batavia Observatory to provide him with 
a list of magnetic storms recorded at Batavia with a view of testing 
his results as to the influence of the synodie rotation of the sun to 
the occurrence of disturbances. 

Mr. Mavnper concludes from an inspection of the disturbances 
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recorded at Greenwich (and also at Toronto) that they show a 

tendency to recur after a synodic rotation of tle sun and that some- 

times even two and more returns occur. His conclusion is: 

“Our magnetic disturbances have their origin in the sun. The solar 

“action which gives rise to them does not act equally in all directions, 

“but along narrow, well defined streams, not necessarily truly radial. 

“These streams arise from active areas of limited extent. These active 

“areas are not only the source of our magnetic disturbances, but 

“are also the seats of the formation of sun-spots.” 

As soon as I could find the necessary leisure I prepared a list for 

the period 1880—1899, containing 1149 disturbances and immediately 

after made some statistical calculations based on them. 
A discussion of such statistical results is always better made by 

the author of the list, than by another person for whom it is impos- 

sible to consult the original sheets. 

Though intending to publish the list, statistics and some repro- 

ductions in full, I wish to give a preliminary account of my results, 

because these questions are now of actual importance. 

Rules followed in preparing the list. 

An exact definition of what is understood by the~ expression 
“magnetic storm” has never been given; certain features however 

are characteristic to it, viz: 

1. The sudden commencement. 
2. The postturbation. 

3. The increased agitation. 

Concerning the second, which I ealled the postturbation *), the 

well known fact may be remarked, that during’a storm the mean 
level of the components of the force changes, till a maximum digres- 

sion is reached, and afterwards returns slowly to its old value. 
In 1895 I called attention to this phenomenon and investigated 

its distribution over the earth. 
This research enabled me to give the following description of the 

postturbation. 
During a magnetic storm a force appears contrary to the earth’s 

ordinary magnetic force, with this difference, that its horizontal com- 
ponent is directed along the meridians of the regular part of the 
earth's magnetism, consequently not pointing to the magnetic pole, but 
to the mean magnetic axis of the earth. 

') Cf. Meteorologische Zeitschrift 1895, p. 321. Terrestrisch MagnetismeI p. 95, 

IE 115, V 1238, VIN 153. 

18* 
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In accordance with this description, during the earlier part of a 

storm the horizontal force diminishes, the vertical force increases, 

and during the latter part these forces resume slowly their original 

values. The characteristic features sub 1 and 2 either do not neces- 

sarily attend every storm, or if so, they do not show themselves 

clearly enough to enable us to decide definitely whether a succession 

of waves in a curve must be considered as a storm or not. 

On the contrary the increased agitation is an essential feature 

and has therefore been adopted by me as a criterion. 

Unfortunately it is impossible to establish the lowest level aoe 

which the never absent agitation may be called a storm, because 

the agitation is not only determined by the amplitude of the waves, 

but also by their steepness and frequency. 

To eliminate as much as possible the bad consequences which 

necessarily attend a personal judgment, the list has been prepared: 

1. by one person; 

2. in as short a time as possible; 

3. from the aspect of the curves for one component only (in 
easu the horizontal intensity, which in Batavia is most lable 

to disturbance); 

4. for a period with nearly constant scale-value of the curves 

(1 mm. = + 0,00005 C.G:S.); 

For each storm has been noted: 

1. the hour of commencement; 

ae eS ex piranon: 

3. i >» >», Maximum; 

4. the intensity. 

Mr. Mavunper calls a storm with a sudden start an S-storm 

analogously I will call one with a gradual beginning a G-storm. 
In the case of a sudden impulse the time of beginning is given to 

the tenth of an hour; in that of gradual increase of agitation only 

by entire hours. 

The hour of beginning of a G-storm is not easy to fix. I have 

chosen for it the time of the very beginning of the increased agita- 

tion, and not the moment in which the agitation begins to show an 

unmistakable disturbance character. 

Afterwards it became clear I had shown a decided preference for 
the even hours, which may be accounted for by the fact that only 

the even hours are marked on the diagrams. 

To eliminate this discordance I have added the numbers of G-storms 
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commencing at the odd hours for one half to the preceding and for 
the other half to the following hour. 

Becanse a storm as a rule expires gradually, it is often impossible 
to give the exact moment it is past. If doubtful I have always taken 

the longest time for its duration; hence many days following a great 
storm are reckoned as being disturbed, which otherwise would have 
passed as undisturbed. 

For the time of the maximum I have taken the moment of maxi- 

mum agitation, which does not always correspond with the hour 
of maximum postturbation. 

I believe the hour at which the mean H-force reaches its lowest 

level is a better time-measure for the storm-maximum, but to determine 

it a large amount of measuring and calculating is required, the 

change in level being often entirely hidden by the ordinary solar- 
diurnal variation. 

The intensity of the storm has been given after a scale of four 

degrees: 1 small; 2 = moderate; 3 = active; 4— very active. 

It is not possible to give a definition of this scale of intensity in 
words, the reproduction of typical cases would be required for this. 

Hourly distribution of the beginning of’ storms. 

It is a known fact, that the starting impulse is felt simultaneonsly 
all over the earth. The Greenwich and Batavia lists furnished me 
with 53 cases of corresponding impulses, which, if the simultaneity 
is perfect, must enable us to derive the difference in longitude of 
the two observatories. 

I find in 6 cases 7212™ 
eee eet eo 
eens eG 

Mean 7» 7™15s 

True difference 757™19s, 
It it very remarkable indeed to derive so large a difference of 

longitude with an error of 4 seconds only, from 53 cases measured 
roughly to 0.1 hour. 

The simultaneity should involve an equal hourly distribution if 
every S-impulse were felt over the whole earth. As this is not the 
case, which is proved by the lists of Greenwich and Batavia, it is 
easy to understand that the Batavia-impulses show indeed an unequal 
hourly distribution. We find them more frequent at 6"'and 10" a. m, 
and 7" p.m. 



( 270 ) 

Hourly distribution of S-impulses. 

Number Number 
Hour | Hour 

in %/ | in °%/g 

Sa a eg 
0 a.m 4A 12 4,7 

4 2.5 13 5.0 

2 3.0 14 3.3 

3 2.2 15 3.9 

4 4.4 16 4,4 

5 | 3.9 17 3.6 

6 6.3 18 4A 

7 ie ae 
8 Sep 20 3.6 

9 5.8 24 | ee ee 

10 6.1 22... | "3.6 

dA | 5.0 | 23 | 3.3 

This same distribution we find again in the case of the G-storms, 
but much more pronounced; a principal maximum at about 8" a. m., 
and a secondary one at 6" p.m. 

Accordingly the hour of commencement of the G-disturbances is 
dependent upon the position of the station with respect to the sun, 

and it seems, that the hours most appropriate for the development 

of a G-disturbance also favour the development of an S-impulse. 

Hourly distribution of the commencement of G-storms (in °/,). 

noon : 
0 2 4 6 8 10 -42: 44- 16. 18 20. 22 Hour 

| 

17:9 -T.4 4.7 6108.0 6b Fed Intensity: 4 6:0 6.05.1 ‘Gute 

» 2 4.5 4.9 4.2 5.7 20.8 164. 7.3 5.6 5.4 9.2 84 7.6 

» 3 and 4 7.4 3.5 43-75 185 43,4 3:9 55 5.1.9.1) 4175 

All on —S or — — or) for) w _ oO ~J 16.5 6.8 5.2;5.6 8.7 .8.3 | 7.& 
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Hourly distribrution of the maximum (in °/,). 

| é noon 
Hour | 0 2 4 G SOROS A ie . AG 1S. 20-1. 22 

Intensity 4 | Men ont 5... 1-8 4.7.12.8 12.6 5.3 6-4 1641-46.9.16.2 

2 » 2 | aoe yO Aa eS Oar 2.0710.8 13.5 45.2 

s » 3and4 | fie ee) 244-6 0-8: 4.0: -7-2-6.8 12.0 13.6 17.2 49.2 

n i ia = 

| All 44.4.7.4 4.91.594 8.6 9.2 4. 71.6: 29.7 13.3: 16.3 

Intensily 1 | 12.3 16.7 10.9 5.8 4.3 13.8 5 8 2.9 2.9 5.1 10.1 9.4 

ui » 2| 11.3 T1 3.65.63.3 8.5 11.38.5 6.1 5.2 14.1 14.9 

: » Zand 4) 12.2 9.3 5.83.23.5 7.7 9.0 6.4 8.0 7.7 10 317.0 

: : — = 
All | 114.910.2 6.0463.6 9.2 9.26.5 6 6.3 11.6 14.8 

These hourly numbers show for each intensity, and for both kinds 
of storms the same, strongly marked distribution over the hours of 

the day. 

Thus the development of agitation during a storm is dependent 

on the position of the sun relatively to the station in a manner 
which is the same for S- and G-storms. 

The period has a principal maximum at 10% p. m. and a secondary 

one at noon; and being compared to the diurnal periodicity of the 

commencement of G-storms, it is evident, that: On the hours when 

the chance for a maximum-agitation begins to increase, we may expect 
most storms to take a start. 

_ Hence we may come to the following supposition. 

The susceptibihty of the earth’s magnetic field to magnetic agitation 
is lable to a diurnal and semidiurnal periodicity. Whatever may be 
the origin of the merease of agitation, sudden or gradual, this period- 
icity remains the same. 

This was the same thing, that was revealed to me by the inspec- 

tion of the hundreds of curves in preparing the list. 
The agitation rises at about 85 a. m. after some hours of great 

calm and reaches a maximum at about noon. A second period of 

calm, less quiet however than in the early morning, is reached in 
the afternoon, and a second rise follows till a maximum is attained 

shortly before midnight. 



(2735 

The day-waves however are smaller and shorter, the night-waves 
larger and longer and also more regular in shape. These regular 

night-waves are often restricted to one large wave, very suitable 

for the study of these waves. 

Hourly distribution of the end of the storm. 

Number | Number 
Hour | Hour 

of cases of cases 

Oa.m.| 163 | 12 66 

2 172 14 60 

4 204 16 43 

6 140 18 50 

8 60 20 46 

10 36 22 4Y 

Quite in agreement with the above mentioned conclusions, the 
curve representing the diurnal periodicity of the final-hour is nearly 
the reverse of that for the maximum. 

Evidently the hour 0 (the end of the day) has been strongly 

favoured. 

Resuming we may according to the Batavia disturbance-record 
draw the following conclusions : 

1st. the origin of S-storms is cosmical ; 

24, the origin of G-storms may be also cosmical, but the com- 
mencement 1s dependent on the local hour; 

3°, the development of all storms, concerning the agitation, is in 
the same way dependent on the local hour. 

Storms and sunspots. 

Iu the following table the year has been reckoned from April 15 
till April 1st of the following year, with the exception of 1882, the 
diagrams for the months Dec. ’82, Jan.—March ’83 missing. For 

1880—’83 the yearly numbers have been increased in proportion 

to the number of missing record days. 
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Numbers in °/,. 

Intensity 

Sunspot - 

Year 4 2 | 3 and 4 | All 
number 

s | G Ss | G | s | G Ss | G 

1880/81 37.5 eae | Aco 6.6 7°42] 2.38) 4.6) 5.1 

81/82 5 a) fee oe? |} 8.0) oo) 41:2) 9.3) 0.8] 526 

82 70.8 foe) ace | goed ie i.6. 143-0) 6.1) 7.9] 5.2 

83/84 68.8 Peor icabedo oe | 6.9 | 5.3) 7.4) 6.2 

84/85 59.5 fe eee OLS Gla | 8.302641 8.21 5.7 

85/86 45.7 Pay eise oes | S01 40.6 | 6.91 9.0} 3.6 

86/87 19.6 ee tol eee Oe 1 429 | 7.6] 41.6) 4.5 

87/88 11.6 Beige tous. A oe! 4.6: 3.3) 5.6 

88/89 6.4 aed ALG | ACT | - 255 | 3.4 | 3.8) 4.5 

89/90 9.9 1S fF. 49.) 5.3 | -3.3 1] 1.2 | 4.6] 4:6] 4.4 

90/91 13.0 face) a0) 223°) 93.8 4. O36.) 3A | 3.8] 5.2 

91/92 | 41.4 B-8 les-6 | 5a 5.4) 6:9 |) 8.41 4:71 5.5 

92/93 74.5 9.5 | 6.4] 8.3] 3.3|42.4| 4.6)10.3|] 4.6 

93/94 85.2 Bee Oe M20 | 3.81 44.8 |. 5.3 | 10.3 | 4.8 

94/95 74.2 eee ore t| 2.1 heed | 6:9.) 5:7) Gib 

95/96 57.4 6.8] 5.3] 5.34 6.9] 5.0] 8.4] 54] 6.6 

96/97 38.7 Pees oad | OF | 2.5 )-3.4 1) 3.8 | 4.6 

97/98 26.5 Poets ot Oto 5.4), 05.1 |- 7.6 | 3.5 | 5.7 

98/99 22.9 aio owe 4.5 ) 5.9 | 41.9 | a8) |. (2.0) 6:5 

From these numbers it appears that those for the G-storms show 
no correspondence with the sunspot-numbers, also that those for the 
S-storms show a correspondence which is emphasised according as 
the intensity increases, and finally that the S-storms show a maximum 
when the G-storms have a minimum and the reverse. 

This latter fact is apparently caused by the circumstance of the 
storms hiding each other, the G-storms being eclipsed by the S-storms 
in a higher degree during greater activity of the sun, than the S- 
storms by the G-storms. Indeed a simple inspection of the diagrams 
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shows that the agitation of G-storms is greater during a sunspot 

maximum, than in minimum-years. Also in maximum-years the S- 
storms of intensity 1, are hidden by their stronger brothers to such 

an extent, that the eleven-yearly periodicity is nearly the reverse 

for them. 

Annual distribution of S- and G-storms. 

(Only the uninterrupted period April 1, 1883—April1, 1899 

has been considered). 

| Numbers 

Month | ear 

ee 
January 31 | 54 

February 31 53 

March 29 60 

April 24 57 

May 24 61 

June 27 51 

July 31 | 61 

August 29 47 

September 32 55 

October 31 64 

November 22 58 

December 18 58 

A strong difference in behaviour between G- and S-storms can be 

noticed. The G-storms have no annual periodicity as to their frequency, 
* whereas the S-storms show a strong one. 

This points, just like the daily periodicity of commencement, either 

to a different origin, or to a changing tendency of the development 

of the S-impulse during the day and year. 

Comparison with Greenwich-storms. 

_ Maunprr derives from the reproduction of storms published in the. 

volumes of the Greenwich Observations a maximum at. 6" p. m. and 
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from the original recording-sheets on the contrary at 1" p.m. The 
cause of this discrepancy he finds in the manner he looked for the 

commencement. He writes: ‘the times when the phases of diurnal 
disturbance are most strongly marked are naturally most often taken 
as the times of commencement.” 

At Greenwich these phases of agitation are most prominent at 
41" p.m. and 6° p.m. 

As I assumed for the hour of beginning the first increase of 

agitation it is clear my times of beginning are on an average much 
earlier. 

Thus the difference shown by the hourly distribution of commen- 

cement between the Greenwich- and the Batavia-list, may be ascribed 
chiefly to difference of interpretation. 

As appears from the figures given above, compared with those for 
Greenwich the annual periodicity is quite the same for both the 

northerly and the equatorial stations, which differ no less than 60 

degrees in latitude. But the Greenwich dates, quoted from a complete 
magnetic calendar, prepared by Mr. Enis and extending from 1848 

to 1902 give no separation of G- and S-storms. Thus it is not 

possible to decide whether at Greenwich the G-storms lack an annual 
periodicity in their frequency. 

The impulse at the start. 

The material at present at my disposal for investigating the features 

of this phenomenon in other places on earth, is very small. 

Notwithstanding this I may conclude: that this phenomenon is of 
great constancy in features all over the earth, and consequently a 
phenomenon of great interest, which might teach us much about the 

manner the S-storms reach the earth. 

Description of its features for some places. 

Greenwich. According to the reduced reproductions of disturbance- 
curves published in the volumes of the Greenwich-Observations, - 

the impulse consists of a sudden movement in H, D and Z, instantly 

followed by the reversed movement, the latter being considerably 

greater. The direction of the movement is always the same. 
I have measured 34 cases and have found on an average: 

HAD AH AZ 
25yW - + 77y + 39y (1 y= 0.00001 C.G.S.). 

Batavia. The preceding impulse is missing for H and Z, only for 
D it is often present. 
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Here also the direction of the movement is constant. 

35 cases for the years 1891 and ’92 gave on an average for the 
magnitude of digression HAD=9yW; AH=—-+45y; AZ——16y. 

duration __,, Ws 3.0 re: 5 min.; 12 min. 

Though the movement of H and D are not sudden in absolute 
sense, that for Z is too gradual to justify the application of the word 

sudden to it. 
The reproductions of disturbance-curves for Potsdam and Zi Ka Wei 

also show some cases of the preceding impulse. At both stations the 

direction of the movement is remarkably constant. In the publications 
of the Cape Hoorn observations (1882/83) I found three cases exposing 

also a constant direction. 

Summarizing them, we have: 

Station 

Potsdam 

Greenwich 
Zi Ka Wei 
Batavia 

Cape Hoorn a odie ia a a= 44un440 

eral 

Consequently with one exception for D and one for Z we find that: 

the commencing impulse of the S-storms is the reverse of the vector 
of postturbation, being deflected however to the West of it. 

Suppositions concerning the origin of disturbance. 

The hypothesis on the existence of defined conical streams of 
electric energy, which strike the earth, though not quite new, has 

obtained increased plausibility by MaunpEr’s results. From the statistics 

based on the record of disturbances at Batavia it might be concluded 

that it is chiefly the S-storms that find their origin in the sudden 
encounter of the earth with such a stream. 

And as the earth is first struck at its sunset-arc, it is not impos- 

sible that the G-storms, which begin by preference shortly after sun- 

rise and have no annual periodicity in their frequency as the S- 

storms have, are only partly caused by these encounters. 
When in the case of the streams we admit that energy progresses 

from the sun in the form of negative electrons, we might think the 

G-storms find their origin by electrified particles being propagated 

by the light-pressure according to the theory set forth by Sv. ARRHENIUS. 

Further we may suppose, that when the earth has received a 
charge the following development of the storm is the same as it is 
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dependent on the local hour only. Arrnenius has already given an 
explanation of the nocturnal maximum. 

In recent times it has often been attempted to explain magnetic 

fluctuations by the movement of electric charge through the higher 
layers of the atmosphere. (ScHUSTER, VAN BrzoLp, ScHMIDT, BIGELOW). 

The remarkable analogies which are met with in many cases 
between the streamfield of atmospherical circulations and the fields 
of magnetic fluctuations, lead to such speculations. 

I believe it is allowed to hazard analogous speculations concerning 
the cause of the beginning of impulse and postturbation. 

We may suppose the streams to contain negative electrons. When 

they strike the earth the outer layers will be charged with negative 
electricity. These outer layers do not rotate in 24 hours, but in a 
longer time increasing with their height. 

So a countercurrent of E—W direction charged with negative 
electrons will originate, causing an increase of H and a decrease 

of Z. The electrons, however, on entering the magnetic field of the 

earth, will follow the lines of force towards the magnetic south pole 

(the positive pole). The movement of negative electrons along the 
lines of force has been fairly well proved, as is well known, by the 
aurorarays. 

By this movement, the current of electricity will become NE—SW 
and a westerly deflecting S-impulse will be the consequence. 

The sudden charge of the extreme layers of the atmosphere with 

negative electricity, will attract the positive ions, with which the 
high layers may be supposed to be charged, to still higher layers. 

These positive ions will thus enter into a faster moving counter 
current, and a positive charged counter current will be the conse- 
quence. 

These ions will move along the lines of force towards the north, 

but much slower than the negative electrons, and therefore the 

resulting deflection of the magnetic force caused by such a + current 

viz. a force contrary to the ordinary one, will be of no appreciable 

magnitude. It is conceivable that the effect, which accordingly is in 

the same sense as the postturbation, will develop in a more gradual 

manner than the commencing impulse of the S-storms; moreover 

we may understand that it disappears still more gradually in propor- 

tion as the negative electrons again leave the earth or are neutralised 
by positive ions. 

Only we should expect the current to follow the latitude-parallels 
and accordingly the vectors of postturbation to point to the true 

south and not to the southerly end of the earth’s mean magnetic axis. 



Perhaps we may find an explanation for this fact in the influence 

no doubt exerted by the earth’s mean magnetic field and the 
distribution of positive ions in the atmosphere. 

These speculations are indeed very rough, but they have one great 

advantage, viz. to avoid the difficulty, raised by Lord Ketvin, of 

allowing an expenditure of the sun’s energy causing magnetic disturb- 

ances, much too great to be admitted. 

Curer (Terr. Magnet. X, p. 9) points to the fact, that also MAUNDER’s 
defined streams require far too great an expenditure of energy. 

According to my opinion we have only to deal with the charge 

received at the moment of the impulse, and by accepting an inter- 
mittent emission of the sun’s energy, it is not necessary to integrate 

it over the entire time between one or more returns of the stream. 

Part of the energy is also supplied by the rotation-energy of the 

earth; and it is curious to remark, that by such an influence the 

rotation of the earth would be lengthened for a minute fraction 

during a magnetic storm. 

Chemistry. — “Nitration of meta-substituted phenols”. By Dr. J. J. 
BianksMA. (Communicated by Prof. HonLEman). 

(Communicated in the meeting of September 30, 1906). 

Some years ago’) I pointed out that by nitration of meta-nitro- 
phenol and of 3-5-dinitrophenol tetra- and pentanitrophenol are formed. 
This showed that the NO,-groups in the m-position do not prevent 
the further substitution of the H-atoms in the o- and p-position by 
other groups. I have now endeavoured to increase these two cases 
by a few more and have therefore examined the behaviour of some 
m-substituted phenols which contain, besides a NO,-group in the 
m-position, a second group in the m-position, namely of 

C,H, . OH . NO, . (CH,,OH,OCH,,OC,H,,Cl,Br) 1.3.5. 
Of these phenols the 5-nitro-m-cresol?) and the monomethylether 

of 5-nitroresorcinol *) were known. The still unknown phenols were 
made as follows: 

The 5-nitroresorcinol (m.p. 158°) from its above cited monomethy1- 
ether by heating for five hours at 160° with (30°/,) HCl, or by 
reduction of 3-5-dinitrophenol with ammonium sulphide to 5-nitro- 

1) These Proce. Febr. 22, 1902. Rec. 21. 241. 
2) Nevite en WINTHER Ber. 15. 2986. 

’ 8) H. VERMEULEN Rec. 25. 26, 
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3-aminophenol (m.p. 165°) and substitution of the NH,-group in this 
substance by OH. 

The monoethylether of 5-nitroresorcinol (m.p. 80°) was prepared 

(quite analogous to the methylether) from 5-nitro-3-aminophenetol ; 

the 3-Cl (Br) 5-nitrophenol was obtained by substituting the NH,-group 
in the 5-nitro-3-aminoanisol by Cl(Br) according to SanpMrEYER and 

then heating the 3-Cl (Br)-5-nitroanisol so obtained m.p. (101°°) and 
88°); with HCl as directed. We then obtain, in addition to CH,Cl, 

the desired product 3-Cl (Br) 5-nitrophenol (m.p. 147° and 145°). 

The 3-5-substituted phenols so obtained readily assimilate three 

atoms of bromine on treatment with bromine water and three nitro- 

groups are introduced on nitration with H NO, (Sp. gr. 1.52) and 

H,S0O,. These last compounds, which all contain four NO,-groups 
resemble picric acid, tetra- and pentanitrophenol. From a mixture of 

nitric and sulphuric acids they crystallise as colourless crystals which 
are turned yellow by a small quantity of water; the compounds 
have a bitter taste, an acid reaction and communicate a strong yellow 

colour to organic tissues (the skin), others strongly attach the skin and 

all are possessed of explosive properties owing to the presence of 

four NO,-groups ’*). 

OH OH OH OH 

a Pa as 
| [1580 | 147° 

so f/f is Be ee od. Aoctiocs NO, oe 

| Ya Ya a OH 
NO. \NO, NOW \NO, NO,” \NO, NO, Sea 

175° 152° fadise 447° 
NO /CHs NO3\ ae NO\ Coe NO, Cl(Br) 

No, noe. 

with ye vio with 3 with |NH.C.H; 

OH 
x \w iG \vo Lo en ae \vo; 

HO CH, HO OH NH.\ //NH, C,H;HN NHC,H; 
we Xe ee Se NO; 

In this scheme are given only the melting points of the as yet 
unknown compounds. 

Tetranitro-m. cresol yields on boiling with water trinitroorcinol; 

1) 91° according to pe Kock Rec. 20, 113. 

*) A comparative research as to these properties in the different compounds 

has not yet been instituted. 
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in the same manner, tetranitroresorcinol *) yields trinitrophloroglucinol ; 

tetranitrochloro- and bromophenol also yield trinitrophloroglucinol on 
boiling with water or, more readily, with Na,CO, solution. By the 
action of NH, or NH, C, H, ete. in alcoholic solution various other 

products are obtained, such as those substances included in the scheme 

which have been obtained previously from pentanitrophenol’). We 

also see that water or alcohol cannot serve as a solvent for the 

purpose of recrystallising these compounds but that chloroform or 
carbon tetrachioride may be used. 

If, in the above cited 3-5-substituted phenols the OH-group is sub- 
stituted by OCH, it is not possible to introduce three nitro-groups. 
For instance the dimethylether of 5-nitroresorcinol yields two iso- 
meric trinitroresorcinoldimethylethers (principally those with the 
melting point 195°, just as in the nitration of 5-nitro-m-xylene)*); 
similarly, the methylether of 5-nitro-m-cresol (m.p. 70°) yields the 

methylethers of three isomeric trinitro-m-cresols, principally the 

compound with m.p. 139°. The constitution of these substances is 
not yet determined. 

Amsterdam, September 1906. 

Chemistry. — Prof. HoLieman presents a communication from him- 

self and Dr. H. A. Sirks: “ The siz isomeric dinitrobenzoic acids.” 

(Communicated in the meeting of September 29, 1906). 

Complete sets of isomeric benzene derivatives C,H, A,B have been 

studied but little up to the present; yet, for a closer understanding 

of those derivatives, it must be deemed of great importance to subject 

the six possible isomers of which such sets consist, to a comparative 
investigation. A contribution hereto is the investigation of the six 

isomeric dinitrobenzoic acids which Dr. Srxs has executed under 
my directions. 

The considerations which guided me in the choice of this series 

') According to Henriques (Ann. Chem. 215, 335), tetranitroresorcinol (m.p. 166°) 

is formed by the nitration of 2-5-dinitrophenol. In Bemstein’s manual (vol. II, 926) 

a reasonable doubt is thrown on the correctness of this observation. The sub- 
stance obtained has probably been an impure trinitroresorcinol formed by the 
action of water on the primary formed tetranitrophenol. (Rec. 21, 258). 

2) Rec. 21, 264. 
5) Rec. 25, 165. 
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of isomers were the following. Firstly, all six isomers were known, 

although the mode of preparation of some of them left much to be 

desired. Secondly, this series gave an opportunity to test V. Mryer’s 

“ester rule” with a much more extensive material than hitherto and 

to study what influence is exercised by the presence of two groups 
present in the different positions in the core, on the esterification 

velocity, and to compare this with that velocity in the monosub- 

stituted benzoic acids. Thirdly, the dissociation constants of these acids 

could be subjected to a comparative research and their values con- 
nected with those of the esterification constants. Finally, the melting 

points and sp. gr. of the acids and their esters could be investigated 

in their relation to these same constants in other such series. 

The six dinitrobenzoic acids were prepared as follows. The sym- 

metric acid 1,3,5, (1 always indicates the position of the carboxyl 

group) was obtained by nitration of benzoic acid or of m-nitroben- 

zoic acid. All the others were prepared by oxidation of the correspon- 
ding dinitrotoluenes. This oxidation was carried out partly by per- 

manganate in sulphuric acid solution, partly by prolonged boiling 

with nitric acid (sp. gr. 1.4) in a reflux apparatus. 
We had to prepare ourselves three of the dinitrotoluenes, namely, 

(1,3,4), (1,3,6) and (1,3,2), (CH, on 1); (4.2,4) and (1,2,6) are com- 

mercial articles whilst (1,3,5) was not wanted because the orre- 

sponding acid, as already stated, was readily accessible by direct 
nitration of benzoic acid. As will be seen the three dinitrotoluenes 

which had to be prepared are all derivatives of m-nitrotoluene and 

it was, therefore, tried which of those might be obtained by a further 

nitration of the same. 

m-Nitrotoluene, which may now be obtained from pg HAgn in a 

pure condition and at a reasonable price was, therefore, treated with 

a mixture of nitric and sulphuric acids at 50°. On cooling the 

nitration-product a considerable amount of 1,3,4 dinitrotoluene crys- 

tallised out, which could be stil! further increased by fractionated 
distillation in vacuo of the liquid portion ; the highest fractions always 

became solid and again yielded this dinitrotoluene, so that finally 

about 65 grms. of dinitrotoluene (1,3,4) were obtained from 100 grms. 

of m-nitrotoluene, 

As the fractions with a lower: boiling point, although almost free 
from dinitrotoluene (1,3,4), did not solidify on cooling, it was thought 

probable that they might contain, besides a little of the above dinitro- 

toluene, more than one of the other isomers, whose formation in the 

nitration of m-nitrotoluene is theoretically possible. If we consider 

19 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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that, in the many cases which I have investigated, the presence of 

14°/, of an isomer causes about 0.5° depression in the melting point, 

the fact that the oil did not solidify till considerably below 0° and 

again melted at a slight elevation of temperature whilst the pure 

isomers did not liquefy till 60° or above, cannot be explained by 

the presence of relatively small quantities of 1,3,4-dinitrotoluene in 

presence of one other constituent, but it must be supposed to consist 

of a ternary system. This was verified when the fractionation was 

continued still further; soon, the fractions with the lowest boiling 

points began to solidify on cooling, or slowly even at the ordinary 

temperature, and the solidified substance proved to be 1,2,3 — dini- 

trotoluene. The fractionation combined with the freezing of the 

different fractions then caused the isolation of a third isomer namely 

1,3,6 — dinitrotoluene, so that the three isomeric dinitrotoluenes 

desired had thus all been obtained by the nitration of m-nitroto- 

luene. The fourth possible isomer (1,3,5) could not be observed even 

after continued fractionation and freezing. 

As regards the relative quantities in which the three isomers, 

detected in the nitration product, are formed, it may be mentioned 

that this product consists of more than one half of 1, 3, 4-dinitro- 
toluene, whilst (1,2,3) seems to occur in larger quantities than 

(1, 3,6), as the isolation of the latter in sufficient quantity gave the 

most trouble. 
The corrected solidifying points of the dinitrotoluenes (the sixth, 

symmetric One was prepared by Brmstxm’s method A. 158, 341 in 

order to complete the series) were determined as follows. Those of 
the dinitrobenzoic acids and of their ethyl esters are also included 
in the subjoined table. 

Dinitrvtoluenes | 58.3 92.6 59.3 50.2 65.2 70.4 

Dinitrobenzoic acids | 163.3 206.8 204.4 479.0 | 206.4 480.9 

Ethyl esters 71.0 92.9 | 88.4 68.8 74.7 40.2 

The specific gravities of the dinitrotoluenes and the ethyl esters 
were determined by means of Eykman’s picnometer at 111°.0 with 
the following result : 
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= oe on 4 | toluenes 
3 

esters 

Jel Dig Oe 
3.4 ! 4.9594 | 4.9791 

3.5 | 1.9772 | 1.2935 

2.3 | 1.2625 | 1.2895 

2.5 | 4.2890 | 1.2859 

2.4 | 4.2860 | 4.2858 

2.6 1.9923 | 429993 

Water at 4° as unity. Corrected for upward atmospheric pressure 

and for expansion of glass. 

Conductivity power. This was determined in the usual manner 
with a Wheatstone-bridge and telephone at 25° and at 40°. As the 

acids are soluble in water with difficulty v= 100 or 200 was taken 

as initial concentration; the end concentration was v = 800 or 1600. 

In the subjoined table the dissociation constants are shown. 

3.4 | 3.5 2s [20 2.4 2.0 Dinitrobenzoic acids 

at 40° 

l 

at 25° 0.103 0.163 | 1.44 2.64 | 

0.171 | 0.177 | 1.38 a 

On comparing these figures it is at once evident that the acids 

with ortho-placed nitro-group possess a much greater dissociation 

constant than the other two, so that in this respect, they may be 

divided into two groups. In the acids without an ortho-placed nitro- 

group, the value of the dissociation constant is fairly well the same. 

In the other four, the position of the second group seems to cause 

fairly large differences. That second group increases the said con- 

stant most when it is also placed ortho: in N/,,, solution 2-6-dinitro- 

benzoic acid is ionised already to the extent of 90 °/,. Again, a NO,-group 
in the para-position increases the dissociation constant more than one 

in the meta-position; and for the two acids 2,3 and 2,5 which both 

-have the second group in the meta-position, K is considerably larger 

for 2,5, therefore for the non-vicinal acid than for the vicinal one, so 

that here an influence is exercised, not only by the position of the 
19* 
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eroups in itself, but also by their position in regard to each other. 

It also follows that OstwaLp’s method for the calculation of the 

dissociation constants of disubstituted acids from those of the mono- 

substituted acids cannot be correct as is apparent from the sub- 

joined table: 

Dinitrobenzoic acid 
K calculated | K found 

CO,H on 4 

oe 

3.4 0.23 0.16 

3.5 0.20 0.16 

2.4 4A 3.8 

2.5 3.6 2.6 

2.3 3.6 1.4 

2.6 64 8.1 

In the two vicinal acids 2,3 and 2,6 the deviations from the cal- 

culated value are particularly large, as I have previously shown for 

other vicinal substituted acids (Rec. 20, 363). 

In view of the comparison of the figures for the dissociation 

constants of these acids and for their esterification constants, it seemed 

desirable to have also an opinion as to the molecular conductivity 

of these acids in alcoholic solution. They were, therefore dissolved in 

95 vol. °/, alcohol to a N./,,, solution and the conductivity power 

of those liquids was determined at 25°. The subjoined table shows 

the values found and also those of the aqueous solutions of the 

same concentration and temperature : 

dinitrobenzoic sid 3.4 | aS | 2.3 | 2.5 | 2.6 | 2.4 

SS 
LL. 

9 in alcoh. sol. | A | | 1.45 1.75 | 2.25 2.7 | 2.9 

go) in aqueous sol. | 161.5 | 162.5 be pe — | 335.5 

from which it appears that also in alcoholic solution the acids with 

an ortho-placed nitro-group are more ionised than the others. 

Esterification velocity. The method followed was that of GoLDscHMIDT, 

who dissolved the acid in a large excess of alcohol and used hydro- 

chloric acid as catalyzer. The alcoholic hydrochloric acid used here 
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was 0,455 normal. Kept at the ordinary temperature it did not 

change its titre perceptibly for many months. As Gotpscumipt showed 

that the constants are proportionate to the concentration of the 

catalyzer, they were all recalculated to a concentration of normal 

hydrochloric acid. Owing to the large excess of alcohol the equation 

for unimolecular reaction could be applied. The velocity measure- 

ments were executed at 25°, 40° and 50°. At these last two tempera- 
tures, the titre of the alcoholic acid very slowly receded (formation 

of ethylchloride) and a correction had, therefore, to be applied. The 

strength of the alcohol used was 98.2 °/, by volume. 
In order to be able to compare not only the esterification-constants 

E of the dinitrobenzoic acids with each other but also with those of 

benzoic acid and its mononitroderivatives, the constants for those acids 

were determined at 25° under exactly the same circumstances as 

in the case of the dinitroacids. The results obtained are shown 

in the subjoined table: 

Acids | E at 25°} E at 40°; E at 50° 

benzoic acid 0.0132 | _ _ 

m. NO, » 0.0074 | -— = 

OF io2 » 0.0010 oo — 

3.4 dinitro » 0.0086 0.033 0.077 

3.5 » » 0.0053 0.028 0.060 

Tes DS » 0.0005 0.0025 0.0071 

2D » 0.0003 0.0027 0.0076 

2.4 » » 0.0002 0.0017 0.0056 

2.6 » ») unmeasurably small 

As will be seen, E is by far the largest for benzoic acid and each 

subsequent substitution decreases its value. 
On perusing this table it is at once evident that in the dinitroben- 

zoic acids two groups can be distinguished: Those with an ortho- 
placed nitro-group have a much sma//er constant than the other two. 
Whilst therefore the dissociation constant for acids with an ortho- 
placed nitro-group is the largest their esterification constant is the 
smallest. As shown from the subjoined table, this phenomenon 
proceeds quite parallel; the acids whose dissociation constant is 

greatest have the smallest esterification constant and vice versa. 
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Dinitrobenzoic acids | diss. const. at 40° | esterif. const at 40° 

a EE a ES EE 

3.4 O-171 0.033 

Do 0.4177 0.028 

2.3 1.38 0.0025 

2.5 2.16 0.0027 

2.4 3.20 0.0017 

2.6 7.6 < 0.0001 

On perusing. the literature we have found that this regularity 

does not exist in this series of dinitrobenzoic acids only, but is observed 

in a comparatively large number of cases. The strongest acids 

are the most slowly esterified. This might lead us to the conclusion 

that in the esterification by alcoholic hydrochloric acid it is not the 

ionised but the unsplit molecules of the acids which take part in 

the reaction. 
A more detailed account of this investigation will appear in the 

Recueil. 

Amsterdam ees: 
, Sept. 1906, Laboratory of the University. 

Groningen 

Chemistry. — Prof. Ho1ieman presents a communication from 
himself and Dr. J. Huisinca. “On the nitration of phthahe 

acid and isophthatc acid”. 

(Communicated in the meeting of September 29, 1906). 

Of phthalic acid, two isomeric monoderivatives are possible, both 
of which are known particularly by a research of Minuer (A. 208, 
233). Isophthalic acid can yield three isomeric mononitro-acids. Of 

these, the symmetric acid, which is yielded in the largest quantity 
during the nitration, is well known. As to the mononitrated by- 

products formed, the literature contains a difference of opinion ; in 

any case, there is only made mention of one second mononitro-acid 
whose structure has remained doubtful. 

The investigation of the nitration of phthalic and isophthalie acid 

was taken up by us in order to determine the relative amount of 

the isomers simultaneously formed, as in the case of the mononitro- 
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phthalic acids only a rough approximation (by Mrmer) was known, 

whilst in the case of the mononitroisophthalic acids it had yet to 
be ascertained which isomers are formed there from. 

We commenced by preparing the five mononitro-acids derived 

from phtalic acid and isophthalic acid in a perfectly pure condition. 
In the case of the e- and £-nitrophthalic acids no difficulties were 

encountered, as the directions of Misr, save a few unimportant 
modifications, could be entirely followed. The acids were therefore 

obtained by nitration of phthalic acid and separation of the isomers. 
The symmetric nitro-isophthalic acid was prepared by nitration 

of isophthalic acid. It crystallises with 1 mol. of H,O and melts at 

255—256° whilst it is stated in the literature that it crystallises 

with 1'/, mol. of H,O and melts at 248°. At first we hoped that 
the other two nitroisophthalic acids might be obtained from the 

motherliquors of this acid. It was, therefore, necessary to obtain the 

isophthalic acid in a perfectly pure condition, as otherwise it would 

be doubtful whether the byproducts formed were really derived from 

isophthalic acid. By oxidation of pure m-xylene (from KAHLBaAUM) an 

isophthalic acid was obtained which still contained terephthalic acid 

which could be removed by preparing the barium salts. 

The motherliquors of the symmetric nitro-isophthalic acid appeared, 

however, to contain such a small quantity of the byproducts that 
the preparation of the nitro-acids (1, 3,2) and (1, 3,4) was out of 

the question. These were therefore, prepared as follows: 

Preparation of asymmetric nitro-isophthalic acid (A, 3, 4). On 
cautious nitration of m-xylene at 0° with nitric acid of sp. gr. 1.48 
a mixture is formed of mono- and dinitroxylene which still contains 

unchanged m-xylene. This, on distillation with water vapour, passes 

over first and when drops of the distillate begin to sink to the 

bottom of the receiver the latter is changed and the distillation is 

continued until crystals of dinitroxylene become visible in the con- 
denser. 100 gr. of xylene gave about 85 gr. of mononitroxylol (4, 3, 4). 

After rectification of this mononitroxylene (b. p. 238°) it was 
oxidised in alkaline solution with a slight excess of permanganate ; 

20 gr. yielded 12 a 13 gr. of acid which, however, consisted of a 
mixture of nitrotoluylic acid and nitro-isophthalic which could be 
separated by crystallisation from water. In this way, the as. nitro- 

isophthalic acid was obtained with a melting point of 245°. In water 
it is much more soluble than the symmetric acid, namely to the 
extent of about 1°/,. at 25°. Unlike the symmetric acid, it crystal- 

lises without water of crystallisation in small, fairly thick, plate-like 

erystals. It is very readily soluble in hot water, alcohol and ether, 
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Preparation of the vicinal nitro-isophthalic acid (1, 3, 2). GrevInex has 

observed that in the nitration of m-xylene with nitric and sulphuric acid 

NO, \, 
there is formed, besides the symmetric dinitro-m-xylene | Vion 

NO, 
CH; 

| abe: /\xO: 3 
as main product, also the vicinal isomer | | - . On reduction 

CH; 
NO, 

with hydrogen sulphide both dinitroxylenes pass into nitro-xylidenes 
CH; 

which are comparatively easy to separate. The nitro-xylidene | Ne 
J Us 
NoH 

yields by elimination of the NH,-group vicinal nitro-m-xylene. Whilst 

however, GREVINGK states that he obtained a yield of 25°/, of vicinal 

nitroxylidene we have never obtained more than a few per cent of 

the same so that the preparation of vicinal nitro-m-xylene in this 

manner is a very tedious one, at least when large quantities. are 

required. When it appeared that the “fabrique de produits chimiques 

de Thann et Mulhouse” exported this nitroxylene, the oxidation, 

although to some extent with material of our own manufacture, has 

been mainly carried out with the commercial product. This oxidation 

was also done with permanganate in alkaline solution. The vicinal 

nitro-isophthalic acid is a compound soluble with great difficulty in 

cold, but fairly soluble in hot water, crystallising in small beautiful, 

shining needles, which melt at 300°. It crystallises without any water 

of crystallisation and is readily soluble in alcohol and ether, from 

which it is again deposited in small needles. 

The three possible mononitroisophthalic acids having now been 
obtained, we could take in hand the problem to ascertain the nature 
of the byproduct formed in the nitration of isopthalic acid. After the 
bulk of the nitroisophtalic acid formed had been removed by crystal- 
lisation, a residue was left which was far more soluble in. water 

than this acid, which pointed to the presence of the asymmetric 

nitro-acid and which, indeed, could be separated by fractional crystal- 

lisation. We will see presently how it was ascertained that the 

nitration product was really only a mixture of the symmetric and 

the asymmetric acid. 

As in the determination of the relative quantities in which the 

nitration products are formed, use was made of solubility determina 
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tions, we first give the solubilities in water at 25° of the five 
nitrophthalic acids, in parts per 100. 

a-nitrophtalic acid 8-nitrophthalie acid 
2.048 very soluble 

symmetric nitroisophthalic acid 
with water of crystallisation. Asymmetric nitroisophthalic acid 

0.157 0.967 

Vicinal nitroisophthalic acid 

0.216 

Quantitative nitration of phthalic acid. This was done with abso- 

lute nitric acid. It appeared that it proceeded very slowly even at 
30°, and therefore the phthalic acid was left in contact with six 

times the quantity of nitric acid. for three weeks. After dilution 
with water the acid was expelled by heating on a waterbath or else 

evaporated over burnt lime. The solid residue was then reduced to 

a fine powder and freed from the last traces of nitric acid by pro- 
longed heating at 110°. As under the said circumstances the mono- 

nitrophthalic acids are not nitrated any further, it could be ascer- 
tained by titration whether all the phthalic acid had been converted 
into the mononitro-acid; the product had but a very slight yellow 

colour so that a contamination could be quite neglected. Of the pro- 
duct, now ready for analysis, different quantities were weighed and 

each time introduced into 100 c.c. of water, and after adding an 

excess of a-nitrophthalic acid they were placed in the shaking appa- 
ratus. The amount of acid dissolved was determined by titration and 
from these figures the content in S-acid was calculated by making 

use of a table which had been constructed previously and in which 

was indicated which #-nitroacid contents correspond with a definite 

titre of a solution so obtained. As the mean of four very concor- 

dant observations it was found that in the nitration of phthalic acid 
with absolute nitric acid at 30° is formed: 

49.5 °/, a- and 50.5 °/, @-nitrophthalic acid. 

The quantitatwe nitration of isophthalhe -acid was done in the 
same manner as that of phthalic acid; here also, a few weeks were 

required for the complete nitration at 30°. The contamination with 
yellow impurities could again be quite neglected as a but very faintly 

coloured nitration product was obtained. This nitration product so 

obtained contains the anhydrous symmetrical nitroisophthalic acid, so 

that in the solubility determinations by which its composition was deter- 
mined the hydrated acid had to be employed as the anhydrous acid 

takes up water but very slowly and has a greater solubility. The 
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determination of the total amount of byproduct showed that this 

had formed to the extent of 3.1 °/, only. The qualitative investigation 

had shown already that this contains the asymmetric acid, and that 

it consists of this solely was proved in the following manner. If the 

3.1 °/, found were indeed simply asymmetric acid, a solution, 

obtained by shaking 100 grams of water with excess of symmetric 

and vicinal acid -+ 1 gram of nitration product (containing 0.031 

gram of asymmetric acid), ought to have the same titre as a solution 

obtained by shaking 100 grams of water with excess of both acids 

+ 0.031 gram of asymmetric acid. If on the other hand the nitration 

product also contained vicinal acid, therefore less than 0.031 gram 

of asymmetric acid, the titre ought to have been found less. This 

however, was not the case, which shows that the asymmetric acid 

is the sole byproduct. The result, therefore, is that in the nitration 

of isophthalic acid with absolute nitric acid at 30° there is formed : 

96.9°/, of symmetric and 3.1°/, of asymmetric nitroisophtalic acid. 

If we compare the above results with that of the nitration of 

benzoic acid where (at 30°) is formed 22.3°/, ortho-, 76,5 °/, meta- 

and 1.2°/, paranitrobenzoic acid the following is noticed. 
COgII 

/1\ COH 
As in phthalic acid 5 al the positions 3 and 6 are meta in 

il 
regard to the one carboxyl and ortho in regard to the other and 

the positions 4 and 5 are also meta in regard to the one carboxyl 

but para in regard to the other it might be expected from my 

theories that the a-acid (the vicinal) is the main product and 

the f-acid the byproduct, because in the latter the nitro-group 

must be directed by one of the carboxyles towards para and 

because p-nitrobenzoic acid is formed only in very small quantity 

in the nitration of benzoic acid. As regards the isophthalie acid 
COsH 

URS it might be expected that the chief product will be sym- 

; seo. Metric acid but that there will also be byproducts (4, 3, 2) 

Noy and (1, 3,4) the first in the largest quantity, although it 

should be remembered that a nitro-group seems to meet with great 

resistance if it must take a position between two other groups. 

As regards the nitration of isophthalic acid the result of the above 

investigation is fairly satisfactory, although the total absence of the 

vicinai nitroisophthalie acid is somewhat remarkable. In the case of 

phthalic acid this is true in a less degree as about equal quantities 

are formed of the two possible isomers. 

In his dissertation, Dr. Huistnca has now endeavoured to calculate, 
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more accurately than before, from the relative proportion in which 
the isomers C,H,AC and C,H,BC are formed by the introduction of 
C in C,H,A or C,H,B, in what proportion the isomers C,H,ABC 
are formed by the introduction of C in C,H,AB. He observes first 

of all that in a substance C,H,A there are two ortho and two meta 

positions against one para position so that if the relation of the 

isomers is as C,H,AC p:q:r (ortho, meta, para) this relation for 

each of the ortho and meta positions and for the para position will 

be */,p:"/,qir 
He further gives the preference to an addition of these figures of 

proportion instead of a multiplication, which had been used by me up 

to the present in the prediction of these isomers. He prefers the 

addition because he considers the figures of proportion to be proportional 

to the directing forces which are exercised by the groups A and B 

on the other positions of the core and that the cooperation of such 
directing forces on one H-atom should be represented by a sum. 
But only the proportion of those directing forces are known and 

not their absolute value; the foree which, in the nitration of 

nitrobenzene, pushes the NO,-group towards the m-position may be 

of quite a different order than the force which in the {nitration 

of benzoic acid directs the same group towards the m-position. 

Therefore the figures. which represent the directing forces (or are 

proportionate to the same) of two different groups cannot always 

be simply added together; this then will be permissible only when 

the two substituents present are equal. 

As an example of his method of calculation the following may be 
mentioned. As in the nitration of bromobenzene 37.6°/, ortho, 62.1°/, 

para and 0.3°/, of meta nitrobromobenzene is formed, the substitution 

in the different positions of the benzene core takes place in the 
Br 

18.8 J \188 

proportion | |; for the proportion in which the isomers are 
O15 0.15 

62.1 
formed in the nitration of o-dibromobenzene the calculation gives 

Br 

18.8 + oe 

| 
621 O.15\ 7 18.8 + 0.15 

62.1 +.0.15 

0-dibromobenzene and 23.3°/, vicinal whilst the experiment gave 

81.3 °/, asymmetric and 18.3° , vicinal. 
It cannot be denied that in a number of cases this method of 

calculation gives figures which approach to the experimental ones a 

or 62.25: 18.95; or 76.7 °/, asymmetric nitro- 
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good deal more than those obtained formerly when the undivided 
figures were simply multiplied. But on the other hand there are 

other cases, particularly those in which a metasubstituted substance 
is nitrated, where this calculation does not agree with the experiment 

by a long way. If we take into account the figures of proportion for the 
single positions we obtain as a rule a much better approach to 

the figures observed by means of the products than with the sums, 
even in the case where the two substituents present are unequal, when 

Huisinea’s method of calculation cannot be applied. The proof there- 
of is laid down in the subjoined table which gives the figures of 
proportion in which the isomeric nitroderiva tives are formed from 

the substances at the top of the columns, with the figures obtained 

from both the sums and the products. 

Cl:Clortho/Cl:Cl meta/Br:Brortho|/Br:Br meta Co, H:CO; H | CO, H: CO: H 
| ortho meta 

| 
found 193 4:96 18.3:81.7| 4.6:95.4 49.5:50.5 3.1:96.9 

product 18:82 9:91 23-3: 1621 Ass si 82. :48 *10.6:89 4 

sum, 18: 82 15:85 |93.3:76.7| 19:81 | 55.6:44.4| *88 :62 

*totalquantity byproduct. 

CO, H: Br ortho o, H: Cl ortho|\CO, H: Cl meta CO, H: Br meta 

16.0:84.0 19.7:80.3 

17.7:82.3 23.3 :76.7 

A fuller account of this investigation will appear in the Recueil. 

Amsterdam, org. lab. Univ. 1906. 

11.4:88.6 

23.3: 76.7 

8.7: 91.3 

17.7:82.3 

found 

product 

Astronomy. — “The relation between the spectra and the colours 
of the stars.’ By Dr. A. Pannexorx. (Communicated by 
Prof. H. G. vAN pg SANDE BAKHUYZEN). 

(Communicated in the meeting of September 29, 1906). 

The close relation between a star’s colour and its spectrum has 

long been known. The stars of the 1st, 24 and 34 types are usually 
called the white, the yellow and the red stars, although accurately 

spoken the colour of the so-called yellow stars is a very whitish 
unsaturated yellow colour and that of the so-called red stars is deep 
yellow mixed with very little red. In a paper read at Dusseldorf ?) in 

*) Die ‘Farben der Gestirne. Mittheilungen der V. A. P. Jahrg. 10. S. 117. 
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1900 we showed that in the different glowing conditions the colours 
must succeed each other in this order. If for a given high tempera- 
ture we accept the colour to be white, we find that with decrease 
of temperature the colours in the triangular diagram of colours make 
a curve which from white first goes directly to yellow of 2587 but 
which, as the colour becomes deeper, bends towards the red and 
‘corresponds to light of greater wavelength. With increase of tem- 

perature, on the contrary, the line of colour runs from white to 
the opposite side, to the blue of 2 466. 

Because the colours which are produced by white light after having 

been subjected to different degrees of atmospheric absorption, also 

follow about this same line, we may expect that the colours of 

the self-luminous celestial bodies will in general lie on this line 

or near it; they are determined on this line by one coordinate, one 

number. This renders it comprehensible why on the one hand the 

designation by means of letters and words, or the measurement with 

ZOLLNER’S colorimeter, which produces quite different colours, has 

given so few satisfactory results, and on the other hand why the scale 
of Scummpt, who designates the colours by one series of figures, 

where 0 is white, 4 yellow, and 10 red has proved to be the best to 

work with. After this method has been drawn up the best and most 

complete list of stellar colours, published in 1900 by H. Ostuorr at 
Cologne, in the A. N. Bd. 153 (Nr. 8657—58). This list in which 

the colours of all stars to the 5 magnitude are given, down to a 

tenth class of colour, and which was the fruit of systematic estimates 

during 14 years, enables us to accurately determine the relation 
between spectrum and colour. 

In a former paper’) we remarked that we did not know where 
in the continuous series of spectra of the Oriontype and the first 
type we have to look for the highest temperature or at any rate the 
greatest luminosity. We may assume that it will be there where the 

colour is whitest; the spectral-photometric measurements, to which 

we have alluded in that paper, are still wanting, but for this purpose 

we can also avail ourselves advantageously of estimates of colour ; 

this has been the reason for the investigation of which the results 
follow here. 

In this case where we required a specification of the spectra, as 

detailed as possible, to serve as an argument for the colour, we 
have naturally used again Mavry’s classes. In order, however, to 
determine a mean colour for each class we must correct the colours 

1) The luminosity of stars of different types of spectrum. Proceedings of June 
30 1906 p. 134. 
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observed for two modifying influences, viz. the influence of the 

brightness and that of the altitude above the horizon. Quantitatively 

nothing is known about the values of these influences; experiments 
of OstHorr himself to determine the influence of the brightness 

have as yet yielded few results. Therefore we must derive them 
here from the material of stellar colours themselves, which serve 

for our investigation; this may be done in the very probable assump- 

tion that the real colour within each spectral class is an almost 

constant value and is independent of brightness. 

§ 2. The stars of Osrnorr’s list which occur in the spectral cata- 

logue of Maury, were arranged according to their classes and then 

(excluding those which are marked c¢, ac, C, P or L, as was always 
done in this investigation) always taking together some classes, we 

classified them according to their brightness and combined their 

magnitudes and classes to mean values. These mean values must 

show the influence of the brightness on the colour; they are given 
in the following tables: 

Classe IJI— VI Classe VII—VIII Classe [IX—XII 
Mg. Col. Mg. Col. Mg. Col. 
1.78 1.46 (5) Olay Hee (8) 10; 39 3 
2.80 2.27 (6) 2.4 1.83 (6) 2.69 2.97 (9) 
3.35 1.96 (5) 3.17 2.59 (7) 3.18 38.06 (8) 
3.70 2.86 (7) 3.95 2.57 (6) 3.65 3.73 (10) 

4.00 9.47 (8) 8.82 2.95 (6) 3.85 3.40 (8) 
4.15 2.91 (7) 4.00 2.86 (5) 4.10 8.69 (9) 
4.50 2.60 (9) 4.10 2.60 (7) 4.29 4.17 (7) 
4.95 2.42. (11) 4.20 2.50 (5) 4.65 3.79 (8) 

4.36 2.96 (5) 5.10 3.34 (9) 
4.62 2.72 (A) ? 
4.96 2.66 (5) 

Classe XIJI—XIV Classe XV Classe XVI—XVIII 
Mg. Col. Mg. Col. Mo” «Col: 
0.2 3.4 (1) 0.7, 4.0 (2) 0.95 6.45 (2) 

3.07 4.71 (7) 2.12 5.50 (6) 250 6.40 (6) 
3.54 4.61 (7) 2.92 5.66 (9) $.22 6.65 (6) 
3.98 4.72 (9) 3.37 5.74 (9) 3.72 6.65 (4) 
424 4.88 (8) 3.55 5.46 (9) 4.15 6.75 (6) 

4.84 4.88 (8) 3.75 5.71 (8) 4.63 7.07 (7) 

3.90 5.55 (10) 4.88 7.22 (9) 
4.00 5.70 (7) 5.28 7.228) 
4.14 5.85 (11) 
4.45 6.08 (6) 
4.87 6.48 (7) 
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In all these series we clearly see an increasing deepening of colour 

with decreasing brightness. We have tried to represent the colour as 

a linear function of the magnitude; and by a graphical method 
we found: 

Cl. WI—VI c= 2.15 + 0.35 (m — 3) 

VII—VIII 2.27 + 0.36 e 

IX—XIl 3.17 + 0.39 2 
,, XITI—XIV 4.45 + 0.42 3 
SA's 5.47 + 0.39 - 

XVI—XVIII_ 6.60 + 0.20 S 

Thus we find about the same coefficient in all groups except in 
the last. The value of the coefficients is chiefly determined by the 

difference between the observed colours of the very bright stars of 
the 1st magnitude and of the greater number of those of the 34 and 
4th magnitudes. In order to make the coefficient of the last group 
agree with the others, it is necessary to assume for the apparent 

colour of @ Tauri and a Orionis 5.6 instead of the real estimates 
6,4 and 6,5. It does not do, however, to assume such a large error 

for these bright and often observed stars; therefore we must for 

the present accept the discordant coefficient of the red stars as real, 
although it is difficult at the present to account for it. 

If now we combine the results of the five first groups by arranging 

the deviation of each observed value of c from the constant for the 

group (the value of c form = 38), according to brightness and deriving 
thence mean values we find: 

> 

? 

2? 

m c—c, C, C, O—C, O—C, 

a 1.03 116 OUt +-.07 Ba, 
£6 - 0.63 —0.54 —0.47 —09 ae | 
2.91 -+0.02 +0.04 0.02 =o 4.04 
3.73 +£0.32 =O 3f 20.27 + 01 + 05 
412 +0.48 +040 10.39 + 08 + 09 
4.73 +£0.50 +0.52 +0.60 — 02 50 

A linear relation c = c, + 0,34 (m — 3) yields the computed values 

given under C, and the differences obs.-comp. 0 — C,. These are 
distributed systematically and show the existence of a non-linear 

relation. A curve, which represents as well as possible the mean 
values, gives the computed values C, and the differences, obs.-comp. 

O— C,. For a greater brightness the curve gives a greater variation of 
the colour with the luminosity and for fainter stars a smaller one. In 
all the six groups, except the fifth and the sixth, we remark that 
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the last values, which hold for the faintest magnitudes, show a 

decrease in the colour figures with regard to the preceding ones. 

This phenomenon may be accounted for by the existence of the 

colourless perception of faint sources of light. In faint stars we do 

not see any colour at all; there the perception of colour disappears 

almost .entirely and there remains only a colourless (i. e. whitish) 

impression of light. With stars which approach this limit, the 

impression of colour will be mixed up to a high degree with the 

colourless impression, and therefore they appear paler and will be 

indicated by a lower figure. As for the redder stars this colourless 
impression is relatively much weaker, the paleness of colour for 

these stars occurs only with a much less degree of brightness; in 

this manner we explain why the 5 and 6 groups do not show 
this decrease. Whether in these cases the phenomenon occurs with 

fainter stars cannot be decided because Maury’s spectral catalogue 

does not contain fainter stars. 
For the practical purpose of reducing the observed colours to one 

brightness it is about the same which of the two relations is 
adopted, as long as we keep within certain limits of brightness, for 
instance between the magnitudes 1 and 5. To facilitate the reduction 

we have made use of the linear formula given above for the 5 first 
groups (down to class XV included) while for the redder classes 

0,20 has been adopted as the coefficient of brightness. 

To explain the long known phenomenon that the colour deepens 
with decreasing brightness as is shown in the tables on p. 

Hetmnottz in his Physiologische Optik has given a theory called 
“Theorie der kiirzesten Linien im Farbensystem”. In the diagram 
of colours in space, where each impression of light is represented 

by a point of which the 3 coordinates represent the quantities of the 
elemental colours, red, green, blue, the lines of equal colours are 

not straight radii through the origin, but curved lines which with 

increasing distance from the origin bend more and more towards 
the axes and so diverge more and more from one radius which is 
straight and represents the ‘“Principalfarbe”’. Hence in the triangle 
of colours the points of equal colour diverge the more from the 

principal colour and run in curved lines towards the sides and the 

vertices as the triangle of colours is removed farther from the origin, 
and thus represents a greater brightness. HELMHOLTZ gives as principal 

colour a certain “yellow-white’ to which with extremely great 

intensity all colours seem to approach. Therefore colours which 
lie on the blue side of this principal colour must become bluer 
by fading. | 



( 297 ) 

This does notagree with what we have found here, in the supposition 
that Hetmnortz’s “yellow-white” is also yellow-white in our scale, i. e. 

is also represented by a positive number in Scumipt’s scale. We 
also find here with the whitest stars that when they become fainter 

the colour becomes more yellow to just the same degree as with 

the yellower stars. Now the expression “yellow-white” is vague, but 
if we consider that what is called white in the scale of Scumipr is 

whiter, that is to say bluer than the light of Sirius, and that the 

solar light, the standard for white for ordinary optical considerations, 
if weakened to the brightness of a star, in the scale of Scumipr 

would be called 3 a 4 (Capella 3, 4), then the principal colour, 

if Hetmno.tz’s theory is true, instead of being yellow-white would 
still lie on the blue side of the Sirius light. 

§ 3. After the colours had thus been reduced to the brightness 

3,0, they had still to be freed from the influence of the atmosphere, 

which makes them redder. This cannot be done with the desired 

accuracy, because neither time nor altitude are given along with the 

observations. The influence at high and mean altitudes is probably 

very small, and the observer is sure to have taken care that most 
of the stars were observed at a proper altitude (for instance between 

30° and 60°). Therefore this correction is only practically important 
for the few southern stars which always remain near the horizon ; 

in these cases it will be possible to represent the variation of colour 

by a correction depending on the declination. Instead of the declina- 

tion of the star we have taken the declination of the B. D.-zone 

which Ostuorr has added to his catalogue. 
For each spectral class we have determined mean colour-values 

for all stars north of the equator, and for the stars south of the 

equator we have formed the deviations from these class-means which 
then were arranged according to their declination and combined to 

mean values for groups of stars. We have excluded, however, those 

classes in which too few northern stars occurred, namely I, II and III. 
The means found are: 

Zone Deviation n. Curve Zone Deviation n. Curve 

Oe O56.) oh 20h. | 090. 0.14 5 ++ 0.26 
ee ee) ee 0G 10.2" , 410.35. 4. -- 32 
eee Gee 09-159. 1038 6 +. 57 
=50 4050 5 + 12 |—150 4117 6 + 79 
eGo eae ty) 189 = 6|=6 9.98. 6, 1.32 
Seo  =0.05 5 4-22 | 

20 
Proceedings Royal Acad. Amsterdam, Vol. IX. 



( 298 ) 

Through these values we have drawn a curve which from the 

equator towards the southern declinations ascends steeper and steeper 

and which gives the values of the last column. According to this 

curve we have applied the following corrections, for 

zone 1° 2°-5° 6°-8° 9°-10° 11° 12° 13° 14° 15° 16° 17° 18° South 
neg. corr.0 0,1 0,2° 0,3 0O,f 0,5 0,6 0,7 0,8 0,9 1,1 1,3 

We may assume that by these corrections the variation of colour 

due to atmospheric absorption has at least for the greater part been 

eliminated. 

§ 4. After the two corrections (§ 2 and § 3) had been applied we 

could determine for all spectral classes the mean values of the colour; 

they are given in the following table. Class XV was again subdivided 

into 3 classes according as the spectrum agreed with « Bootis (A) 

or with @ Cassiopeiae (C’) or was not accompanied by any such 

remark; the result shows indeed that here class C’ is considerably 

redder than class A while the 4b’s lie between the two. 

Class _—- Colour Number Class Colour Number 

I 2.47 6 XII 3.68 17 

Il 2.36 10 XU 4.12 13 

IIL 2.30 9 XIV 4.45 12 

IV 1.94 14 XIV 5.09 9 

LYE 1.62 10 XVA 5.18 18 

a’ 7a Mi 9 XVB 5.35 26 

Vi 2.16 10 XVC 5 55 31 

Vil 2.27 23 XV 6.34 5 

Vit 2.37 o4 XVI 6.47 ia 

IX 2.64 20 AINE 6.80 15 

xX 3.11 14 XVUI 6.74 15 

XI 3.40 {) XIX 6.67 6 

XI 3.41 4 

The deviations of the separate values from these mean values 

give, as a measure for the accuracy of the results, for the mean 

error of a colour-number, / 0,20 = 0,45; the real accuracy will be 

ereater, however, and the mean error smaller because in these values 

are also included the errors of the adopted corrections for brightness 

and declination, the errors which may have been made by Maury while 

classifying each star in a definite class, and also the real deviations 

of the single stars from their class-means. 
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‘With 9 stars (out of 355) the deviation exceeds a unit of colour: 
the reduced colours are here: 

B Can. maj. I11 1,2 « Hydrae XIII 5,2 y Persei XVB 6,8 

o, Cygni IX 1,4 w Persei pA ares ws: 11 Urs.min. XVB 6,6 

JS Delphini IX 3,8 0, Cygni XIV 6,5 5 Orionis XVII 7,9 

In this investigation we have, as it was said before, excluded the 

c- and ac-stars, the LZ (bright lines), the P (peculiar spectra) and 

the C' (composed spectra). It is important to examine the ¢ and the 
ac-stars among them more closely in order to see whether they show 

a distinct difference in colour from the a-stars of the same class- 

number. In the mean 11 ac-stars give a deviation of + 0,1 (from 
+ 0,5 to —0,3), and 12 c-stars + 0,7; so these last ones are a little 

redder than the a-stars. Here, however, the great individual deviations 

are very striking; the extreme values are: 

o Cassiop XIII + 2,5; x, Orionis HI + 1,8 ;4H Camelop VJ + 2,0; 

3H Camelop V/ + 1,5; 4 Leonis VIT — 0,3 ; 8 Orionis Via. 

The differences are very great, but no regularity can be detected. 

§ 5. The results found solve a problem which in my former paper 
remained unsolved, namely where in the continuous series of spectral 

classes shall we have to look for the maximum of radiating power. 
The colour-numbers show very distinctly a fall in the first classes, a 

minimum between the 4 and the 5 class and then a continual 
rise. The stars which in order of evolution directly follow on 
y Orionis (u Aurigae, uw Hydrae, uw Herculis) have the whitest colours ; 

both the earlier and the later stages of evolution are yellower ; 
classes I and II agree in colour best with class VIII. Therefore, in 

so far as we are entitled to derive the entire radiation from the 

colour, the maximum of radiating power lies between the 4" and 
the 5* class. 

The mean colour-numbers for each of the groups formed before are: 

Gl TSW }%2:35 

IV—V_ 1.87 

VI—VIIE_ 2.30 

IX—XII 3.20 

XHI—XIV 4.58 

eV, = 5:43 

XVI—XIX 6.66 

20* 
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Is it possible to derive from these numbers, even though only 

approximately, values for the radiating power per unit of surface? 

The two influences mentioned above which determine the colours of 

the self-luminous celestial bodies may be subjected to a calculation, 

if we disregard the specific properties of the composing substances 

and treat them as abstract theoretical cases. In other words we can 

investigate the radiation of a perfectly black body and in the absorp- 

tion neglect the selective absorption in lines and bands in order only 

to examine the general absorption. As a first approximation this may 

be deemed sufficient. 

In this calculation we have made use of the measurements of 

A. Konic on the relative quantities of the elemental colours red, 

ereen and blue as functions of the wavelength in white sunlight. Ir 

for an other source of light we know the relation of the brightness 

with regard to the former source as a function of the wavelength, we 

ean calculate the quantities of the red, green and blue in this second 

source of light. If we call the numbers of Konic & (4), G (4), B (a), 

which are chosen so that 

f®e da = 1000 uk G (2) da = 1000 Ap B (a) da = 1000 

and if #(4) represents the brightness of another source of light, then 

ib f(a) R(a) da [ro G(a)da and [7@ B(a) da 

represent the quantities of R, G, and B occurring in this light. As 

the impression of brightness of a source of light is almost proportional 

to the quantity of red, this calculation gives at the same time a 

measure for the optical brightness. 

The radiation of a black body may be represented by : 
c 

— 5 ies ada 
where 7’ is the absolute temperature and @ and c constants. For two 

sources of light of different temperatures the relation of the imten- 

sities is: 

1 1 
if b= e(F. -z) and 5'= 0.43 6. As unit for 4 we adopt 0,001 mm; 

0 

T, is supposed to be given, then 6’ is a function of the variable 
temperature 7’ only and may be called the degree of glowing with 

regard to the glowing of a body at a temperature 7. If we adopt 
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for 6' different values (¢ = 15000 about)'), we can calculate for 

each of them the brightness and colour of the light, as well as the 
temperature 7. We then find for the degrees of glowing +1, 0 
and —1 

’=+1 69200 R + 68100 G + 175800 B 

0 1000 R + 1000 G;]+ £41000 B 

— 1 17,7 kR-+ 15,7 G + 6,3 B 

If we represent the colour contained in a total quantity of light 

of 1000 by the quantities R, G, B and the brightness by magnitudes, 
we shall find for 

Bot L Col = 221K 218G4562R Br=+44,6 My. 
s=—1 Col. = 445 R + 396G + 160 B Br. = — 4,4 Mg. 

Thus the first colour, may be described as a mixture of 654 white 

and 347 of a blue consisting of 3 Land 344 4, hence corresponding 
in tint to 4 466; the second colour is a mixture of 480 white and 

©21 of a yellow consisting of 285 & and 236 G, hence corresponding 

to the wavelength 4 587. A degree of glowing 6’ = — 2, corre- 

sponding in colour almost with the light of petroleum, involves a 
decrease in brightness of 8,6 magnitudes. 

For the calculation of the atmospheric absorption we have assumed 

that the general absorption in a gas is inversely proportional to 

the fourth power of the wavelength. For a layer of gas adopted 
arbitrarily, which after a comparison with MUiLuur’s spectral-photo- 
metric measurements appeared to correspond to 1,05 atmosphere, 

we have calculated /(4) and thence found for the remaining quantity 

of light, the initial quantity being 1000 & + 1000 G+ 1000 B: 

783 R+ 771 G4 571 B, 

or reduced to 1000 as the sum, 

368 R + 363 G + 269 B; 

the brightness is then 0,783 of the original brightness or is diminished 
by 0,27 magn. 

The colouring due to the absorption by 1.05 atmospheres is almost 

equal to that brought about by a diminishing of the degree of glowing 
of '/,. For the latter yields 

257 R+ 248G +1184 B 

henee when reduced to a sum of 1000 

372 R+ 361G+ 267 B 

1) In the paper read at Dusseldorf (see note p. 292) wrong temperatures are 

given because the difference between b and b' was overlooked. The temperatures 
16000°, 7500°, 5000’, 3750°, 3000°C do not differ inter se 1, but only 0.43 
in degree of glowing. 
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which is nearly identical with the value above. Here, however, the 

brightness is diminished to 0.257 of the original, hence by 1.48 

magnitude. 
Therefore it appears here that these two different causes produce 

similar colours, but that they correspond to an entirely different decrease 

of brightness. When comparing the two we may say that atmospheric 

absorption is more apt to redden, a decrease of temperature more 

apt to fade the light. Therefore it is impossible to derive the 
radiating power from the colour only, as we do not know to what 

degree each of the two influences, temperature and absorption, is at 

work in the different spectral classes. Perhaps that one day accurate 

speciral-photometric measurements will enable us to separate the 
two influences, for they give a different distribution of intensity over 

the spectrum. For the log. of the brightness of different 2 with regard 
to 2500 we find 

A= 650 = 600550500 © 450 - 400 
with abs. 1.05 atm. + 0.114 + 0.083 + 0.051 0.000 —0 084 —0.231 

with glowing — */, + 0.154 + 0.111 + 0.061 0.000 —0.074 —.0166 

For the latter the decrease in intensity from the red to the violet 

is more regular, for the former the decrease is slower for the greater 

and more rapid for the smaller wave-lengths. 

These calculations show that it is not strictly true that, as has 

been said in the preceding paper, a redder colour must necessarily 

involve a smaller radiating power. Where we have two influences 

which in different ways bear on the colour and the brightness, the 
possibility exists that-a redder colour may be accompanied by a 
greater radiating power, namely when one source of light has a 
much higher temperature and at the same time a greater atmospheric 
absorption than the other. An increase of the degree of glowing of 
+ */, combined with an absorption of 2 atmospheres gives such a 
case according to the figures given above. 

Herein we have therefore a new possibility to account for the 
peculiarities found in the X stars, namely by assuming that, as 

compared with the G stars, they have a much higher temperature, 
which causes a stronger radiation, and which by very strong atmos- 
pheric absorption, is only little faded but greatly reddened. We 
must add, however, that this explanation seems little probable to us 
as the band-absorption, which begins at the A-stars and which is 
characteristic for the J stars (the 34 type) indicates a lower tem- 
perature, 
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Chemistry. — “Action of Potassium hypochlorite on Cinnamide’’. 
By Dr. R. A. Weerman (Communicated by Prof. Hoocrwerrr). 

(Communicated in the meeting of September 29, 1906). 

From the experiments of Bavcke') on propiolamide and those of 

FREUNDIER *), VAN Lince*) and Jrrrreys ‘*) on cinnamide it appears 

that in the case of these unsaturated acids, the HormMann reaction 

to prepare an amine from an amide by means of a halogen and an 
alkali does not succeed. 

As to the non success we may form two hypotheses: first of all 

that the double bond *) prevents the intramolecular rearrangement of 

atoms which must be assumed in the HOFMANN reaction, and secondly 

that the amine supposed to be formed, in this case C,H,CH = CH NH,, 
suffers decomposition under the said circumstances. °). 

The first, however, is not the case as from cinnamide may be 
prepared the urea derivative: 

C,H,C# = CH _NH 

* 

C,H,Cu = Ca —Co—Nu 

where consequently one-half of the amide has undergone the trans- 

formation. 

This being a case of an unsaturated amide, it is necessary to make 

use of the modification proposed by Hoocewrrrr and van Dorp and 

not to work with free halogen. Further the hypochlorite solution 

must not contain any free alkali; on account of the insolubility of 

cinnamide and the consequent inertness, an alcoholic solution is 

employed. 

Although at first sight it appears strange that in alcoholic solution 

the urea derivative is formed and not the urethane, this may be 
explained by the experiments of Srimexirz and Earte‘), which show 
that isocyanates react very readily with halogen-amides °*). 

1) Rec. 15, 123. 
2) Butt [3] 17, 420. 
8) Dissertation vAN Linge, Bazel 1896. 
4) Am. Chem. Journ. 22, 43. 
5) On account of the great analogy existing between the Lossen transformation 

of hydroxamic acids and the Horsann reaction, this first supposition was not very 
probable, as Tuiere had prepared from the acylated cinnamohydroxamic acid the 
urethane C,H;CH =CH—N4¥—CO,C,H;. A second indication, though less conclusive, 
in the more distant analogy between the Beckmann rearrangement and the 
Hormayn reaction was the formation of isochinolin from the oxime of cinnamaldehyde. 
(Ber. 27, 1954). 

6) Tutete, Ann. 309. 197. 
7) Am. Chem. Journ. 30, 412. C 1904, I, 239. 
8) This is the reason why, in the preparation of urethanes according to JerFReys, 

the sodium ethoxide should be added all at once. 

CO 
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In order to prepare the urea derivative, the cinnamide is dissolved 
in eight times its weight of 96 pCt. alcohol, and when cooled to the 

temperature of the room the hypochlorite solution, prepared according 

to GRAEBE*), is slowly dropped in, the free alkali being neutralised 
with 2N hydrochloric acid immediately. before .use. For every 2 
mols. of amide, 1 mol. of potassium hypochlorite should be added. 

The liquid gets warm, and very soon a crystalline mass composed 

of very slender needles is deposited. After a few hours the mass is 
collected at the pump; this does not go very readily on account of 

the fine state of division. The yellowish mass is treated with hot 

alcohol and then washed with water. A fairly pure urea derivative 

is thus obtained (m. p. about 218). By recrystallisation once or twice 
from glacial acetic acid it is obtained pure in needles (m. p. 225—226). 

0,1733 grm. yielded 0,0894 grm. H,O and 0,4682 grm. CO, 

0.1654 _,, 53 0.1863 4, 2g) Ae Se 

0,1654 _,, » 13,9 CC.N at 194° and 765 m.M. 

Found 73,68 5,78 

pct. C pCt. H 9,70 pCt. N 

73,66 5,85 | 

Theory C,,H,,N,O,: 73,95 pCt. C 5,51 pCt. H 9,59 pCt. N 

The compound is insoluble at a low temperature in water, ligroin, 

alcohol, methyl alcohol, ether, carbon disulphide and benzene; at the 

boiling temperature slightly soluble in alcohol and benzene and freely 

so in glacial acetic acid, chloroform and acetone. It is insoluble in 

alkalis or acids. 

Chemical Laboratory, Technical High School, Delft. 

Astronomy. “Mutual occultations and eclipses of the satellites of 

Jupiter in 1908. By Prof. J. A. C. OvupEmans. 

(Communicated in the meeting of September 29, 1906). 

N.B. In the present communication the four satellites of Jupiter, known 

since 1608, have been denoted by I, II, HI and IV in accordance 

with their mean distances from the planet. The further letters and 
f indicate whether the satellite is near or far, i.e. whether it is in 

that half of the orbit which is nearest to or furthest from the Earth. 
The jovicentric longitudes as well as the geocentric amplitudes are 

counted in “signs” and “degrees”’, the latter beginning from the superior 

1) Ber. 35, 2753. 
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geocentric conjunction. Eastern elongation, denoted by ¢.e, has an 

amplitude of 3s, western elongation, w.e, one of 9s . 

Not to interrupt the text unnecessarily, all particulars have found a 
place at the end of the paper. 

FIRST PART. OCCULTATIONS. 

In the numbers 3846 and 3857 of the Astronomische Nachrichten 
we find two communications relative to observations of the occul- 
tation of one satellite of Jupiter by another. The first (1) is by 
Mr. Pu. Favura at Landstuhl, dated 8 December 1902, with post- 
scripts of 29 December 1902 and 14 January 1903. The other (2) 
by Mr. A. A. Nuzanp at Utrecht, dated 27 Februar y 1908. 

Fautu notes in addition that Houzrav, in his Vademecum, p. 666 
mentions a couple of similar observations (3), and further that STANLEY 
WILLIAMS, on the 27%" March 1885 at 125 20™, saw the third satellite 
pass the first in such a way that the two satellites combined had a 
pear-shaped appearance. (4) 

The -satellites of Jupiter move in orbits but little inclined to the 

plane of Jupiter’s equator. Laptace assumed a fixed plane for each 
satellite; the plane of the satellite’s orbit bas a constant inclination 
on this fixed plane, whereas the line of intersection, the line of 

the nodes, has a slow retrograde motion. The inclinations of the fixed 

planes on the plane of Jupiter’s equator amount only to a few 
minutes; their intersection with the plane of Jupiter’s orbit is identical 
with the line of the nodes of the equator. The value generally 

adopted for the inclination of the latter plane on the orbit of Jupiter 
is 3°4’, whereas the longitude of the ascending node, which therefore 
is also that of the fixed planes, is at present about 315}°. 

In order to be able to assign the time at which, as seen from the 

Karth, an occultation of one satellite by another is possible, it is necessary 
to know the longitude of the ascending node and the inclination of 

the mean fixed plane on the orbit of the Earth. At the time that 

the mean fixed plane, prolonged, passes through the Earth, occultations 

of one satellite by another may be observed. As Jupiter completes 
a revolution around the sun in nearly 12 years, these times will 

succeed each other after periods of six years. Jupiter will pass 
alternately through the ascending and the descending node of the plane 
which passes through the centre of the sun parallel to the mean 
fixed plane. 

It follows that, as occultations of one satellite by another have 

been observed in 1902, we must expect that these phenomena will 
be again visible in 1908 (5). 
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To facilitate these observations I thought it desirable to calculate 

in advance the conjunctions of any two satellites for the most favourable 

part of 1908. 

We have to consider that while formerly the orbits of the 

satellites were determined by repeatedly measuring the distances 

and their angles of position relatively to the planet, this method is 

now replaced by the measurement of the distances and the angles 

of position of the satellites relative to each other (especially with 

the heliometer) (6). For observations during a moderate interval the 

periodic times of the satellites may be assumed to be accurately 

known. Admitting this, if, leaving out of consideration KEpPLErs 

third law, we introduce the major axis of each satellite as an unknown 

quantity, the total number of such unknowns will be six for each 

orbit at a determined time. If, as was done by BgssEL at Kéningsberg 

in 1834—39, and by Scuur at Gottingen in 1874—1880, the distance 
and the angle of position between the planet and the satellite are 

measured, we get two equations with six unknown quantities. If 

however we measure the distance and the angle of position of 
two satellites relative to each other, the number of unknown 

quantities in these equations is doubled and thus becomes 12. If 

finally all the combinations two by two, are observed, as was done 

by Git and Finnay at the Observatory of the Cape, we get a great 

number of equations with a total of 24 unknown quantities. These 

equations must then be solved by the method of least squares. 

This number becomes 29 if we add the masses of the satellites, (only 

to be found by the perturbations caused by one satellite in the 

motion of the others,) and the compression of Jupiter (7), given by 

the retrogradation of the lines of the Nodes on the fixed planes. 

Now the observation of an occultation, even of a conjunction with- 

out an occultation, can be made by everybody possessing a telescope 

of sufficient power. Such an observation also furnishes two equations 

between the unknown quantities, at least if, for a non central occul- 

tation or a simple conjunction, the difference in latitude is measured 

at the filar micrometer. This consideration engaged me to compute 

in advance the time of these conjunctions for the most favourable 

part of 1908. If by experience we find that this preliminary work 

leads to valuable results, it might be worth while to continue it for 

some future period, for instance for 1914. 

For the moment at which the mean fixed plane passes through 

the centre of the Earth, I find, 1908 July 8, 195,6 Mean Time at 

Greenwich, (5). 
This date, it is to be regretted, is very unfavourable. For on that 
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day Jupiter culminates at Greenwich at 210" M. T., its declination 
being 16°48’°5 North, whereas the Sun’s declination is 22°30’ North. 

From these data I find for the 8% of July, for Utrecht, duly making 

allowance for refraction : | 

Setting of the upper limb of the sun at 8°20" mean time, 

hs ,, Jupiter aoe O° 

So there is but a poor chance for an observation of the computed 
occultation at Utrecht. For southern observatories it is somewhat 
better. At the Cape for instance, we have; 

> 

Sunset at 55 5™ mean time, 

Setting of Jupiter ,, 7 25 ce ee 

' We thus find that on July 8, 1908, at Utrecht, the setting of the 

sun precedes that of Jupiter by 1°24™5; at the Cape by 220”. 

We have computed all the conjunctions of the satellites of Jupiter 

which will occur between 31 May and 20 July 1908. In what follows 

a short account is given of the way which led to our results. 

In the Nautical Almanac are given the Geocentric Superior Conjunc- 
tions; in the Almanac of 1908 they will be found on pp. 504, 505. 

To begin with, a separate drawing was made of the four orbits, 
which were supposed to be circular, for each interval of two periods 
of I (about 85"). On these orbits we plotted the positions of the 

satellites for each second hour, making use of divided pasteboard arcs. 

The number of hours elapsed since the moment chosen as a starting- 

point were noted for each position. The equation of the centre ete. 
was neglected. 

The scale of this drawing gave 4” to 1mm. The radii, of the 

orbits therefore were: for I 27°9 mm.; for Il 4445 mm.; for III 

70°9 mm. and for IV 124:7 mm. 

The direction from the Zero of I to the common centre of all 

the circles showed the direction towards the Earth. Knowing this, we 

could easily find for each of the six possible combinations of two of 
the satellites, those equal hour numbers, the connecting line of which 

is parallel to this direction. 

These connecting lines show the approximate times at which, as seen 

from the Earth, one of the satellites is in conjunction with another. 

The want of parallelism of the real lines joining the Earth with the 
satellites, in different parts of their orbits, may safely be disregarded. 

The plate annexed to this paper represents, reduced to half the scale, 

the drawing for the period of 85 hours, following 12 July 1908, 

1152™-3 M. T. Greenwich. 

The dotted lines indicate the lines connecting the equal numbers, 



( 308 ) 

Each of them represents a conjunction of two satellites. The corre- 

sponding hours read off from the figure are : 

6"2 : IVy occulted by III, 

21°32 BY; - tees 

BoC IV; os ” IL, 

ao OU): | ae Pee © 

e725. Tiel. es 

TO 2c Tile ees Oe t= 

They were added to the instant which must be regarded as the 

startingpoint for this figure. The instants of the conjunctions were next 

converted into civil time of Paris by the addition of 12°9™21s. 

The elongation and the latitude of both the satellites, expressed in 

radii of Jupiter, were then computed by the aid of the Tables écliptiques 

of Damoisrau, 2nd part. (8). In the case that the elongations did 

not perfectly agree, a slight computation led to a more accurate 

result for the time of conjunction (9). 

In the case that the two satellites moved apparently in opposite 

directions, (wbich happens if the one is in the further part of ils 
orbit, the other in the nearer part), the correction to the adopted 
time was mostly insignificant. 

If, on the contrary, they moved the same way (which happens if 

both are “far” or if both are “‘near’’, so that the one has to overtake 

the other) the correction amounted sometimes to an hour or more. 

In every case, in which the correction exceeded 20 minutes, the 
computation was repeated with the corrected time. Further below 
will be found the list of the results. From May 31 to July 19, ie. 
during a period of fifty days, there occur 72 conjunctions. It is to 
be regretted that at a determined place of observation but very few 

of them will be visible. For only those conjunctions are visible which 

occur between sunset and the setting of Jupiter. For Utrecht we have, 
in mean time: 

Setting of the Setting 
upper limb of 
of the Sun Jupiter Difference 

1908 June 1 810m 11554m 3h44m 

ge 8 20 °5 1119 258 °5 

eee 8 24 10 44 2 20 

July 1 8 24 10 9 1 45 

wea | 818 9 34 116 

a ae ee 8 59 051 ‘5 
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For the Cape of Good Hope: 

1908 June 14 4059" gh4gm uj gm 
5 odd 457-5 846-5 349 
Pee 458. 8 16 3 18 

July 1 5 2 7 46 2 44 
Be 5 | 5 6°5 7 16 2 95 

aria 5 5 18 6 47 1 34 

The circumstances are thus seen to be considerably more favourable 

for a southern than for a northern observatory. 

Several of the occultations will not be visible because the common 

elongation falls short of unity i.e. of the radius of Jupiter. This is 

the case of Nos. 8, 9, 12, 18, 15, 16, 20, 23, 39 and 64. In the first 

eight of these cases and in the last one the planet stands between 

the two. satellites. In case No. 39 both the satellites I and IV are 

covered by the planet ’). 
For other conjunctions it may happen that one of the satellites is 

invisible because of its being in the shadow of the planet. Such cases are : 

(N°. 21), June13 9828" M. T. Grw., II eclipsed, 
(N°. 31), ,, 20 1251 rata . Pala 
er oletaly: 4.245 15-27 os, ays) Wy ann a 
NY AGS on 5 12,19, 3 ee ee 5 ee 

If the satellite which at the conjunction is nearest to the Earth 

is eclipsed by the planet’s shadow, it might, as seen from our stand- 

point, project itself wholly or partially as a black spot on the other 

satellite. The case however has not presented itself in our computations. 

Possibly the last of the conjunctions just mentioned may really 

be visible; for according to the WN. Almanac, the reappearance of 
IV from the shadow of the planet takes place at 1257™15s M. 

T. Greenwich and the predicted eclipses of this satellite are occasionally 

a few minutes in error. A few minutes later, according to the J. 

Almanac at 1216™, II enters the dise of Jupiter. 

1) According to the Nautical Almanac we have for this night (M. T. of Greenwich): 

IV. Occultation Disappearance 10°19", 

I. Occultation Disappearance 11 20, 

I. Eclipse Reappearance 14 26 273, 

IV. Occultation Reappearance 15 13, 

IV. Eclipse Disappearance 18 5 6, 

IV. Eclipse Reappearance 2252 2. 
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NO. Taps. 

(1) The article of Faurs, abridged, runs thus: 

— — — Ausser den in Hovzeav, Vademecum p. 666 aufgefiihrten 

Beobachtungen, (vid. below Note 3), kenne ich aus neuerer Zeit nur 

einen Fall: Stantey Winiiams sah am 27 Marz 1885 an einem 7 cm. 

Rohre mit 102-facher Vergrésserung um 12 20™ den III Trabanten 

vor dem I, wobei beide ein birnformiges Objekt bildeten. 

— — — In fiinf Wochen konnte ich drei Bedeckungen verfolgen, 

wobei auzunehmen ist, dass mir durch schlechte Witterung etwa 10 

andere Gelegenheiten entgangen sein mégen, unter denen sicher 

einige Bedeckungen vorkommen. Nach meiner Erfahrung kénnen Kon- 
junctionen der Jupitermonde unter sich weit genauer beobachtet 
werden als Bedeckungen durch Jupiter oder Voriibergange vor ihm. 

Somit méchten die hier angegebenen Beispiele Anlass bieten, in den 

spiteren Oppositionen Jupiters den durchaus nicht seltenen Bedeck- 
ungen oder wenigstens Beriihrungen und sehr nahen Konjunktionen 
der Trabanten unter sich mehr Aufmerksamkeit zu schenken, zumal 

schon kleine Instrumente zur Wahrnehmung der Phasen einer event. 
Bedeckung geniigen. Die Beobachtungen der letzten Zeit sind: 

1. Oct. 7; II bedeckt I; die S. Rander beriihren sich und I ragt 

im N. etwas hervor. Konj. um 9° 16™ M. E. Z. ’) 

2. Oct. 23; II bedeckt III so, dass die Mitte von II nérdlich am 

N. Rand von III vorbeigeht; Konjunktion um 8' 7™ 38,5, 

3. Nov. 10; III bedeckt I so, dass der S. Rand von III die Mitte 

von I streift (gute Luft); Konjunktion um 7’ 33™ 205. 

Instrument: 178 mm., Vergrésserung 178 fach. 

Landstuhl, 1902 Dez. 8. 

P.S. vom 29 Dezember. Am Abend des 24 Dezember gelang 

nochmals die Beobachtung einer Bedeckung, bei welcher I tiber IV 

hinwegzog. Aus je fiinf vor- und nachher notierten Zeitmomenten 

folgen als Mittelwerte 65 24™,25, 24,625, 24™50, 24™625 und 

24™,50. Die Konjunktion fand also statt 6 24™ 305. 

Der Uhrstand war um 3" mit dem Zeitsignal verglichen worden. 

IV Stand ein wenig siidlicher als I, vielleicht um ein Viertel seines 

Durchmessers. Die weitaus interessantere Konjunction zwischen II 

und IV am 25 Dezember blieb gegenstandslos, weil IV um etwa 
zwei Durchmesser voriiberging, 

P.S. vom 14 Januar (1903). Heute Abend, am 14 Januar, bewegte 

1) i. e. Mittlere Europiische Zeit, 1 later than Greenwich-time. 
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sich der Trabant III tiber II hinweg. Die sehr schlechte Luft liess 

nur den ersten Kontakt auf etwa 6" 2™ feststellen. Um 6" 18™ mochten 

sich beide Komponenten so weit getrennt haben, dass dies in einem 

weniger schlechten Augenblick bemerkt wurde; um 65 32™, dem 

nachsten blickweisen Auftauchen der beiden Lichtpunkte, waren diese 

um etwa einen Durchmesser von einander entfernt. Die Bedeckung 

war fast genau central. Pu. BP, 

(2) Mr. Nistanp writes in N°. 3857 of the Astronomische Nachrichten: 
— — — Am 15 Juli 1902 fand eine Konjunktion der Trabanten 

II und III statt, welche ich bei guter Luft am Refraktor (Brennweite 

319 cm., Oeffnung 26 cm.) mit Vergr. 248 beobachten konnte. Es 

wurde III nahezu central von Il bedeckt. Einige Minuten lang blieb 

eine feine schwarze Linie zwischen den beiden Scheibchen sichtbar, 

welche um 14'40™11s M.Z. Utrecht verschwand and um 14520™31, 

wieder erschien; die Konjunktion musz also um 14)15™21s statt- 

gefunden haben. Dass diese Trennungslinie vor und nach der Kon- 

junktion immer dieselbe Richtung hatte, und zwar scheinbar senk- 

recht auf der Bahnebene der Trabanten stand, mag als Beweis dafiir 

gelten, dass der Voriibergang wirklich nahezu central gewesen ist. 

Dann lasst sich aber aus dieser centralen Passage die Summe der 

Durchmesser der Monde II und Ll mit erheblicher Genauigkeit 

bestimmen. 

Nehme ich fir die mittlere Entfernung %—© die Halbmesser 

der Bahnen gleich 177’’,8 und 283’’,6, so finde ich fiir die relative 

Bewegung von IT und III zur Beobachtungszeit 13’’,86 pro Stunde. 
' Aus der beobachteten Zeitdauer von 10™208 = 05172 folgt dann fiir 

die Summe der beiden Durchmesser, 2’’,38. Wird (siehe die Angaben 

von Dovue.ass, Astr. Nachr. 3500) fiir das Verhaltniss der Durch- 

messer von II und III */,, angenommen, so finde ich, in vorziiglicher 

Uebereinstimmung mit den a.a. O. genannten Werten, fiir den Durch- 

messer von Il 0’’,87 und von III 1’’,54 (in mittl. Entf.). 

Utrecht, 1903 Febr., 27. A. A. NIJLAND. 

Remark. As from the observed instants I derived a result slightly 
different from that of Mr. Niszanp, this gentleman allowed me to consult 

his reduction of the observation. It appeared that, in order to find the 

amplitudes, he had combined the preceding geocentric superior conjunc- 

- tion with the following transit, from the ingress and egress of which the 

inferior conjunction could be derived. A slight error had however been 

committed in the computation. After correction the relative motion of 
the two satellites was found to be 13'°786 and the sum of the dia- 

meters 2'-374, Moreover their proportion was, evidently erroneously and 
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against the real intention, put at 4 to 11 instead of at 4 to 7. We 

thus get for the diameters 0-863 and 1511, which is still in good 

agreement with the result of Mr. Nranp. As values have been assumed 

for the radii of the orbits which hold for the mean distance of Jupiter 

from the sun, these values need no further reduction. 

(3) We find in Hovuzxrav, Vademecum (Bruxelles, 1882), p. 666: 

On rapporte une occultation du satellite II par le satellite III, 

observée a Sommerfeld, prés de Leipzig, par C. Arnoupt, le 1% 

novembre 1693, (Wuiston, The longitude discovered by the eclipses, 

8°, London, 1738), et une auire du satellite IV, également par le 

IlI™e, vue par Lutumer a Hanovre, le 30 octobre 1822 (Nature, 4°, 

London; vol. XVII, 1877, p. 148). 

1st Remark. The little book of Wuiston here quoted is in the 

library of the University at Utrecht, Division P, 8¥°, number 602. We 

have turned over the leaves several times, but have not found any 

mention of the observation of C. Arnott. It is true that the author, 

in § XVIII, recommends the observation of the mutual occultations of 

the satellites. He remarks that, if at such an occultation they have 
opposite motions, the relative velocity is “doubled”. He mentions the 
complaint of Derxam}), that the strong light of Jupiter renders the 

observation of these occultations rather difficult. He remarks that, the 
interval being equal, their number must be one and a half time as 

large as that of the eclipses. Again he mentions that Lynn is the 
first who, in the Philosophical Transactions N°. 393, has proposed to 
apply these conjunctions to the determination of the longitude, seeing that 
they can often be observed with an accuracy of less then half a minute *). 
But I do not find the observation of a single occultation nor its prediction. 

It needs hardly be said that the conjunctions, visible from places, 

the difference in longitude of which is to be determined, are too rare 

to be of much importance for the purpose. In accuracy of opservation 

they are at all events surpassed by occultations of stars. But they 
may well be compared with the eclipses of the satellites of Jupiter and 
are indeed superior to them in this respect that they yield a result in 

a few minutes which is independent of the optical power of the telescope. 
For the eclipses this is only true in the case of the combination of a 

disappearance with a reappearance. 

2nd Remark. The original account of the observation of LurHmer 

was communicated by him to Bope who inserted it in the (Berliner) 

Astronomisches Jahrbuch fir 1826, p. 224: 

“Am 30 Oct. Ab. 6" 55’ Bedeckung des vierten % Trabanfen vom 

dritten.”’ 

1) Poacenporrr’s Biographisches Worterbuch, (article W. Dernam) gives no 

reference to the passage where this complaint is to be found, nor even to any 

paper on the observation of the satellites of Jupiter. 
2) At least if there were no undulation of the images. See at the end of note 4 
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If we assume 9°42'= 38m48s East of Greenwich for the longitude 

of Hannover, this is = 6h 16m 12s M. T. of Greenwich, at least sup- 

posing that at that time it was already usual to give the observations 

expressed in mean time. 

In Nature, XVIl (Nov. 1877—April 1878) p. 149 (not 148) we find 

in “Our Astronomical Column” : 
“Jupiter’s SATELLITES. — Amongst the recorded phenomena connected 

with the motions of the satellites of Jupiter are several notices of 

observed occultations of one satellite by another, and of small stars 

by one or other of the satellites.1) The following cases may be men- 

tioned: — On the night of November 1, 1693, CurisropH Arnotpr, of 

Sommerfeld, near Leipzig, observed an occultation of the second satellite 

by the third at 10h 47m apparent time. On October 30, 1822, Luruer, 

of Hannover, witnessed an occultation of the fourth satellite by the 

third at 6h 55m mean time. 
It thus appears that the editor of Natwre also took it for granted 

that the statement must be understood to have been made in mean time. 

(4) I did not succeed in finding the account of this observation 

of Sranney WiniiaAms in any of the journals accessible to me, and 

therefore applied to the author, who lives at Hove near Brighton, 

for particulars about the place of its publication. 

He kindly replied on the 7‘ instant, that the details of his obser- 

vation of 27 March 1885 were published both in the 41'* volume 

of the “English Mechanic” and in the volume for 1885 of the German 
Journal “Svrius’’. 

He had moreover the courtesy of communicating to me the original 

account of the observation in question. From this account the 

following passages may be quoted: 

Occultation of satellite I by satellite I11. 

1885 March 27, ... . 2’/, inch refractor. Power 102. 

11°55" (Greenwich mean time). They are now only just free from 

contact. mot like an elongated star with little more than a 

black line between the components. 

12°00™ to 12504m. After steady gazing I cannot see any certain 
separation between the satellites, and therefore with this instrument 

and power first contact must have occurred about 12"02™. Definition 

is very bad, however, and in a larger telescope there probably might 

still be a small separation between the limbs. 

. ») It is to be regretted that these “several notices of observed occultations of 
one satellite by another” are not more fully quoted. 

21 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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12510™. They now appear as one elongated satellite. At times a 

trace of the notches is apparent. : 

1220. The elongation is now very nearly at right angles to the 

direction of the motion of the satellites, and is so slight as to be 

scarcely noticeable in this bad and unsteady definition. I think from 

the smallness of the elongation that nearly half satellite I must be 

concealed behind III. In this bad definition it is not possible to say 

which satellite is in front of the other from the appearance alone. 

In his letter Mr. Stani.zy WuniiamMs mentions the remarkable fact 

that he too observed on 15 July 1902 the same conjunction which 

has been described by Nuanp. His instrument was a reflector of 

6'‘/, inch, with a power of 225. The following are the particulars 
as communicated : 

1902 July 15, 13545™-2. Satellites II and III are in contact. The 

one will occult the other. See diagram MC 7° 

13°52™. The satellites form one disc, which has the slightest 

possible elongation in a north and south direction. Owing to con- 
fused seeing this disc always appeared more or less fuzzy, and it is 

impossible from the appearance alone to say, which satellite is occult- 

ing the other. 

13°56™. The combined dise is considerably elongated now. 

14°02™-2. Satellites II and If] in contact as in diagram adjoining 
noo Wl . 

14°04". Satellites clearly separated. The occultation must have 
been nearly central. II is a little more south now relative to III, 

than it was before occultation. Possibly the slight elongation noted 
at 1352™ was not real. 

The above times are Greenwich mean times. Satellite III was on 

the farther side of its orbit moving east, IJ on the near side moving 

west. As the dise of II is larger than that of II, the phenomenon 
should be described as a transit of II over or across III, rather than 
an occultation of one satellite by the other. 

The arithmetical mean of 13545™-2 and 1452™-2 is 13553™-7, which 

is 1™:1 earlier than Ni LANp’s observation. 

(5) For the numbers which follow we refer to Katsmr’s “Sterren- 

hemel’, 4th Edition, p. 707 and following. 

In the 4» Vol. of his Mécanique Celeste, p62, Tisseranp, following 

SOUILLART, adopts inclinations for the orbits of II and IV, which 
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respectively exceed those given in the “Sterrenhemel”’ by + 4" and — 8", 
According to LEverRIER we have, for the orbit of Jupiter in 1908,0: 

Ascending Node = 99°31'56", 

Inclination = 11829. 

The fixed plane of the first satellite coincides with the plane of 

Jupiter’s equator: the longitude of the ascending node on the plane 

of Jupiter’s orbit, for the beginning of 1908 is therefore 315°33'35", 

the inclination 3° 4' 9". 
Furthermore we have for the four fixed planes relative to the 

plane of Jupiter’s orbit : 

Long. asc. node Inclination 

I 315°33' 35" 3° 4' 3” 

II 315 33 35 3.34 
Epoch 1908.0. 

IIl 315 33 35 2 5911 

ry 315 33 35 2 3957 

For the mean fixed plane of the three first satellites we thus 

find: longitude of ascending node on the plane of Jupiter’s orbit 

at the beginning of 1908: 315°33' 35", inclination 3° 2' 6". 
Moreover we have for the respective fixed planes in 1908, according 

to TIssERAND: 

Change in 

long. ase, node 1000 days Inclination 

II 122°-293 — 33°:031 0°28' 9" 

Ill 26 “403 — 6 -955 010 44 

IV 238 -982 — 1-856 13.51 

The effect of these inclinations, however, is but trifling. At the 

distance of 90° from the node they produce only deviations 

for II of 1°46, 

eee) PT | dare! 

aes ee os ae CEE 

The determination of the position of the fixed planes, as also 

that of the planes of the orbits of the satellites relative to these, 

will be much improved by the measurements which Ds Sitter at 

Groningen is making on photographic plates. Eventual observations 
of conjunctions of the satellites, rather even of occultations, will 

contribute their part in this determination and will furnish a test 

for the adopted values. 

» 21* 
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In the meeting of our section of last March a provisional account 

of these measures by DE SITTER was communicated by Messrs J. C. 

Kapreyn and E. F. van DE SANDE BAKHUYZEN '). 

Our computations were then already too far advanced to keep 

them back altogether; but we hope that by the side of these mea- 

sures they still may have their use, for this reason that conjunctions 

and mutual oceultations of the satellites may well be observed at 

several observatories which are not equipped for taking photographs. 

From the preceding numbers we find for the position of the fixed 

plane relative to the ecliptic (for 1908,0). 

Ascending Node 336°48'23" = Q, 

Inclination — 2 “4a == 

Now, if Ry, Ly and 8 represent the radius vector, the longitude 

and the latitude of Jupiter; A *? L * the radius vector and the longi- 

tude of the Earth, (those given in the N. Almanac after correction 

for aberration), the condition that the fixed plane must pass through 

the Earth is expressed by: 
ed =e : rots aes 

R,, cos B sin (Loy Q) Roy sin B cot [= ii. sin fe ie 
Yf 

which is satisfied July 8, 1905 at 19°38™-3. For at that moment 

log Ry = 0°728527 log h. = 0007179 

Ly, =. 14122390 L. = 286°40' 3'°5 

B =+ 05226°:73 2 = 336 4852 -0 

so that our equation becomes 

1:423706 — 2:204190 = — 0:780484 

Similarly we find for the instant at which the same plane passes 
through the centre of the sun: 

25 April 1908 at 18":5 M. T. Grw. 

On both sides of this latter epoch there exists the possibility of 

an eclipse of one satellite by another, at the time of the heliocentric 

conjunctions. We hope to treat this subject in the second part of this 

communication. 

1) This provisional account may be considered as a sequel to the thesis of 

Mr. be Sirrer. This thesis, maintained by him at Groningen on 17 May 1901, bears the 
title: Discuesion of Heliometer-observations of Jupiter's satellites made bysir Davin 

Gur K.C.B, and W, H. Fixtay M.A. Further particulars will be given in the 
Annals of the Royal Observatury at the Cape of Good Hope. 
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(6) In 1833—39 Besse, at the Heliometer, measured not only 

distances of all the satellites from both limbs of the planet, but also 
angles of position of the centre of the planet to III and IV. 
His heliometer was the first big instrument of the sort made in 

the establishment of FraunHorErR; the objective had an aperture of 

70°2 Par. lines and a focal distance of 1131-4 Par. lines = 7 feet 

10 inches 3-4 lines, Paris measure, (15°84 and 255-22 ¢.M.). The 

mean error of a single observation of distance (which properly was 
the mean of eight pointings) appeared to be 

for | +0"26, for the mean distance resulting from all the measures, + 0"055 

2 VERS), ee re ne . p > 9 . + 0:067 

qu) WSS | ae : 2 oe os - + 0:042 

aE OAS km » ” Bicabige! 278 , + 0:045 

Mean: Orsi, cg . - oe ee ’ + 0°052 

Scaur, at Gédttingen, used the heliometers which were made by 

Merz at Miinchen for the observation of the transits of Venus in 

1874 and 1882. The aperture of the objectives of these instruments 

was 34 Par. lines, something less than half that of the heliometer 

of Koéningsberg; the focal distance was 33 feet (113-7 cM.). 

At these heliometers the reading, instead of being made on the 

drums of two micrometers, was made by a microscope at right 

angles to two scales fitted to the two halves of the objective. As 

however in this way more time was required than for reading the druns 

of a micrometer of BessxL’s instrument, Scuur, instead of taking the 

mean of eight pointings, was content with the mean of four pointings, 

which also make a complete measurement. 

The mean errors of each observation obtained by Scuur for a 
complete set of four measures was: 

far. sek. a=: O34, 

“a te O44: 

jie 3, OF, 

» 1V + 0-42, 

Mean: = 39, 

a result, which, taking into account the shorter focal distance, may 
be considered fairly good. BrsseL as well as Scuur aimed not so 
much at the determination of the position of the orbits of the 
satellites as at that of the mass of Jupiter. 
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Scuur improved in different respects the reduction of the observations 

of the measures made by BrsseL. In consequence, the mean errors 

of the single determinations of Brssgl. were considerably lessened. 

The numbers quoted just now, became: 

for * ta. Ft. 

PS a), 

lil. 2") 36. 

ee fase 1S: be 

Mean: + O24. 

39 

bP] 

As has been mentioned already, Gitt and Finnay, acting on a 
suggestion formerly made by Orro Srrvve'), did not measure the 

distances and the angles of position of the satellites relative to the 

centre of the planet, but relative to each other. (The instrument 

at their disposal, a heliometer of Repsotp, aperture 7} inch = 19-05 
em., focal distance somewhat over 2 Meter, far surpassed in 

perfection all the instruments used up to that time). These observations 

can be made with much more precision. The drawback is that the 
formation of the equations of condition and their solution become 

more complex and absorb much more time. Both the gentlemen 

named and Mr. de Sirrer have not been deterred by this conside- 
ration. They found + 0"-087, a number considerably less than that 

of BrsseL, for the probable error of the measurement of a single 

distance. Mr. de Sirrer even finds that the probable error of the 

mean distances (the real unknown quantities) does not exceed 
+ 0"-020 or + 0"-021. 

(7) It may be remarked that Mr. de Sirrer found it expedient 

to alter the choice of the unknown quantities. He retained for 

each satellite: the longitude in the orbit, the inclination and the 

ascending node relative to an adopted position of the fixed plane, 
but not the eccentricity nor the position of the perijovium and 

the mass. There thus remained as unknown quantities only three 

elements of each satellite. On the other hand he introduced corrections 

of the coefficients of the perturbations or rather of the periodic 
terms, which afterwards must lead to the knowledge of the mass 
of the satellites, to that of the eccentricities and of the position of the 

1) Vide the first report of Hermann Srruve, in the first supplementary vol. of 

the Pulkowa observations, lst page at the bottom. 



( 319 ) 

apsides. He further introduced two unknown quantities, vz. the 
constant errors which might vitiate the observations of the two 

observers Ginn and Finuay. He thus also obtained a total of 29 
unknown quantities. It need not be said that the solution of about 

400 equations with so many unknown quantities, is an enormous 
labour. Still, owing to the help of some other computers, this labour 

has been brought to a happy issue. 
We must not enter here into further particulars about this impor- 

tant work, though we did not feel justified in omitting to mention it 

altogether. I will only ‘remark that it is not sufficient to determine 

the position of the planes of the orbits of the satellites for one 

epoch; for as was already remarked the position of these planes 
changes continually. It seems that these changes may be sufficiently 

represented by assuming a regular retrogradation of the line of 

intersection with a fixed plane, the inclination remaining the same. 

The main cause of this retrogradation is the polar compression of 

Jupiter. It is desirable however to establish the amount of this 

retrogradation by the observations, and to derive afterwards the 

compression by means of this amount. Consequently the position of 

the planes of the orbits has to be determined for different epochs. 

In this respect too Mr. pr Sirter has done good work, vide the 
communication already mentioned, presented in the meeting of last 

March by Messrs Kapreyn and EK. F. van DE SANDE BAKHUYZEN. 

(8) The same volume, which contains the ecliptic tables of DamotsEau, 

contains also in a second part (not mentioned on the title) tables 

“nour trouver les configurations des satellites de Jupiter.” 
We have contemplated whether it would not be desirable not to 

use these tables, unmodified, for our computations. We have therefore 

taken note of the investigations of SouiLLarT, ADAMS, Marry, GILL, 

Finuay, and de Sitter, but it appeared that such a course would 

aggravate our labour very considerably. We would have had to 
determine new elements for all the satellites and to compute new 

tables. This would have caused considerable retardation, unnecessary 

for our purpose, which was no other than to prepare astronomers 
for the observation of the conjunctions visible in 1908. 

We therefore have based our computations on the tables of DAMoIsEAu, 

but we have first examined in how far they represent the observed 

conjunctions. The following summary shows not only the difference 
between the observation and the tables in the elongations z and a’, 
of the two satellites, expressed in radii of Jupiter, but also their 

difference in time. 
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Relative | Oceul- | | ey 

Observer Date ; tation) by |Error) hourly | o¢ able | YY 
| of | | motion | 

————— aT Le ee ee r 
Fauth 1902 Oct 7 | Uy | 1, | 0,025) 1,278 | + 4,2 |+ 0,04 

» | » » 93 | m, | om, |oc2 | 14390 | +14 |4 008 

> >» Nov.10 | Ir | III, | 0,00 | 0,883 0,0 |+ 0,3 

. > Dec. 24 | IVe | 1, | 0,10 | 4,089 | —55 |-+ 0,005 

p 1903 Jan. 14 | IL, | U1, | 0,41 | 03'4 | —192 |— 0,05 

Nijland | 1902 July 15 | I, | UL, | 008 | 0751 | +64 |— 001 
7 

Stanley Williams, » » » | » » 0,07 0,751 + 5,3 is 0,01 

» » | 188 Mareh o7|-1, | Ill, | 0,00 | 0,992 | 0,0 + 0,01 

The observation of Luramer in Hannover, of Octob. 30, 1822 is 

not contained in this table. Its calculation yields the result: 

Jovic. Long. | Amplitude & | yeny’ 

III 10826°-77 85,22°-25 | — 15-21 | + 0°18 

IV 9 674. | 0 9 222) See ee 

Difference cae On81 -+ 0°92 

So there is a difference in the amplitudes, of 0°81, = 081 

18"37 = 14"9, in the latitudes, of 0°92 —=16"9. Probably the 

observation has been made with an unsatisfactory instrument, for it 

is impossible to suppose an error of this amount in the tables of 

DamoisEav for 1822. The difference in sign of the latitudes y and g/ 
is explained by the fact that the longitude of the ascending node of 

the fixed plane was 10%14°°37, which is intermediate between the 

two jovicentric longitudes. 

As the two satellites moved in the same direction, the hourly 

change of distance was small, viz. O'280. It would thus require 

nearly three hours to annul the difference of O'-81. 
The remaining conjunctions, however, show a satisfactory accuracy 

and we may thus expect that the table, as given below, will serve 

its purpose. 

As a second test I have computed, by the aid of the second part 

of Damoiseau, the two superior conjunctions and the intermediate 

inferior conjunctions of II, and I have compared these to those given 
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in the Nautical Almanac of 1902. The epochs were found a little 
earlier, to wit: 

superior conjunction of 10 July, 10°46™-9 M.T. Grw. 0™-7 earlier 

inferior conjunction (mean 

of ingress and egress) 16July 5°4070 ,, ,, O™3 ,, 

superior conjunction Settee ot en OMT ,, 

all three less than a minute. 

Now, as the conjunctions in the Nawtical Almanac have been 
calculated by the aid of Damorszav’s tables écliptiques (making allow- 

ance for some slight corrections indicated by Apbams) the differences 

must be solely due to the fact that in DamoisEav’s second part the 

mam terms only of the equations and perturbations have been taken 

into account. 

The same tables represent as accurately the superior conjunction 

of I on January 1, 1908, 14°4™-2 M.T. Grw. = January 2, 2°13™-55 

civil time of Paris; the error amounts to 0°07 or O01 linear 

measure only, an are traversed by the satellite in O™5. 

(On the terms taken into account in the second part of the tables 

of Damoisgau vide 3'¢ appendix below). 
In his letter Mr. Stantey Witiiams mentions another rare obser- 

vation, made as well by himself as by the Spanish observer J. Comas 

of Valls, (near Taragona), on 14 August 1891, to wit of the coin- 

cidence and of the subsequent separation of the shadows of two 

satellites on the planet. He concludes that an eclipse must have 

taken place. These phenomena will be treated in the second part of 

this communication. 

(9) Below follows the table which has served for this computation. 

The unit, the radius of Jupiter, is 18°37. SourtLart states that he 

found mentioned in the papers of Damoisgau that this number was 

borrowed from AraGco. According to Hovuzzav, Araco must have 
made the determination by means of the double image micrometer 

(an invention made nearly simultaneously by himself and Parson ; 
of the latter the observatory at Utrecht possesses a specimen). 

Particulars about these measures are not known. The number is 
smaller than that found by other astronomers, vide for instance 
Hovuzeau, p. 647—650; Sxxn, Astron. Nachr. N°. 3670 (15 Aug. 1900). 



Hourly change of the elongation « as a function of the amplitude. 

| ae I Il Ill IV ae 
r r r r 

Os; O°] 05(12), 0°70 895 0,708 | 0,560 | 0,420 | 6s 0° 6s} Om! 
| 4 fs ne [- 2 

5] 41 | 25 70,891 | 0,705 | 0,558 0,448 | 515 | 25 
10 8 7 | 4 

| | 40} 41 | 20 90,881 0,697 | 0,554 0,444 | 1015 | 20 
47 | 44 10 8 

45 | 414 | 15 [0,864 0,683 0.544 0,406 1515 | 45 
| 93 18 | 45 4 

90} 411 | 10 [0,841 0,665 | 0,526 0,3°5 20015 | 10 
| 30 | 23 18 14 

|} |95] 44 | 590,814 0,642 | 0,508 0,381 315] 5 
| | | 36 29 23 47 

1/ o} nt | 0 40,775 | 0,613 | 0,485 0,364 an ee) 
| | 42 33 26 20 

5 | 410 | 25 [0,733 | 0,580 0,459 0,344 5141 9 
48 37 30 92 

40] 40 | 20 [0,685 0,543 0,429 0,322 401 4! 20 
53 42 33 25 

15] 10 | 15 [0,632 0,501 0,396 0,297 15 | 4 | 45 
57 46 36 97 

90} 40 | 40 0,575 0,455 0,360 0,270 20 | 4 | 40 
| 62 49 39 29 

21 10 | 540513] | 0,406 0,324 0,244 5414/5 
| 66 52 4A 31 

2/ 0} 10 | 040,447 0,354 0,280 0,210 8| 0} 4] 0 
69 5D 43 32 

5] 9 | 25 $0,378 | 0,299 0,237 0,178 | 513] 
| 72 57 45 34 

140} 9 | 20 [0,306 0,242 0,192 0,144 4013 | 20 
| 75 59 47 35 

45} 9 | 45 0,234 0,183 0,145 0,109 4513 | 45 
| 76 60 48 36 

| 901 9 | 10 $0,155 0,123 0,097 0,073 20 | 3 | 40 
77 61 48 36 

| |9 71 9 | 5 J0078 0,062 0,049 0,037 913] 5 
| 78 62 49 37 

L 0} 9 | 0 40,000 0,000 0,000 0,000 9| OfSio8 

Finally we will give below, vide pp. 334 and 335, two instances 
of computation ; one of a case in which the apparent motion of the 

two satellites was opposed, the other in which it was in the same 
direction. 

1st Appendix. What is the maximum duration of the several occul- 
tations of one satellite by another ? 

We ‘have seen above that it took 19™2 to annul the small 

difference of the elongations of O11 (2"°0). This was caused by 

the minuteness of the relative motion of the satellites. But in the 

case that the hourly motions, which we will denote by wu and w’, 
v'—-x 

are absolutely equal, the denominator of the fraction ——— is zero. 
Ci —=— 5 
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The case then corresponds to that of the “Station of Venus” and 
it is a very ancient problem to compute its epochs. 

Let be r and r’ the radii vectores of two satellites; 6 and 6’ the 
corresponding amplitudes, then for the occultation : 

r sin 0 = 1' sin 6'. 

The condition of an equal change of longitude leads to: 

ok Mager ao 
dt dt 

Now, if 7’ and 7” represent the sidereal periods, we have, neglecting 
the apparent movement of Jupiter: 

deems te HEY 
ae ae et Pw wee Wek 

consequently : 

r—'lz cos @ = r'—"l cos 6’, 

from which: 

cos? @ — — cos? 6 = — —— sin’ Gh 
r is ? 

Adding 
y? 

sin? 9 = — sin? 6’, 
Ue 

we get 
1\ 2 

i=— (=)-+ sin? 6 
Tr 7 Tr 

Therefore, putting = 

1 
eee ee 

a E Suse : : 
airs? eae tee 

re 

and 
2 

sin? 6 = eat Ss: 

w+ue+l 

The equality of the hourly changes of the two elongations of 
course only lasts for an instant; very soon inequality sets in and 

the two satellites begin to separate. Meanwhile it may be long ere 
such becomes perceptible at the telescope, only, in a case like the 
present, the satellites do not pass each other, but after the conjunction 
they have the same position the one to the other as before. 

As an example take a conjunction of I and II under the cireum- 
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stances in question. Let the amplitudes be between 0 and 3 signs, 

so that both the satellites, as seen from the Earth, (the head being 

turned to the North Pole), are to the left of and both receding from 

the planet. Before the conjunction I is to the right of II, but the 

motion of I is quicker than that of IL. I will overtake II as soon 

as its amplitude is 44°39’, that of II being then 26°14". At the 

same time, however, the apparent velocities are equal. Now as I 

approaches its greatest elongation it retards its motion much more 

considerably than II, the amplitude of which is so much smaller. 

The consequence is that, after the conjunction, I is left behind, and 

gets again to the right of II as before conjunction. 

This case represents a transition between two other cases. 1. If, 

under the same circumstances I is somewhat more in advance (has 

a greater amplitude), it will pass II, but after a while will be over- 

taken by I, which then, as seen from the Earth, passes behind it. 

2. If, however, I is somewhat less ahead, it will continue to be 

seen to the right of IH, the distance [ — II going through a minimum 

but not reaching zero. 

Now, in order to answer the question, how long will be the 

duration of the occultation counted from the first external contact, 

the apparent radii of the satellites must be known. Owing to the 

irradiation they are greater at night than in daytime’) as several 

observers have actually found. The observations of the satellites of 

Jupiter being made nearly exclusively at night time, we will adopt 

the apparent radii holding for the night. I took the mean of the 

values found by Sere at the giant telescope at Washington on the 

one hand and that found by several observers on the other. (I have 

taken the values as summarised by Sere himself). For the reduction 

to the unit used throughout for these computations, viz the radius 

of the equator of Jupiter, this radius is taken = 18":37 in accordance 

with DAMoIsEav. 

Diameter Radius 

I 1"-07 = 0'-058 O'-029 

II 0:95 0:052 0 -026 

Ill 1'-56° 0-085" 0 0425 

IV 1 41 20/076 0-038 

1) Vide e.g. T. J. J. See, Observations of the Diameters of the Satellites of 

Jupiter, and of Titan, the principal Satellite of Saturn, made with the 26 inch 

Refractor of the U. S. Naval Observatory, Washington; 19 Oct. 1901. Astr. Nach- 

richten N°. 3764, (21 Jan, 1902). 
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Therefore ; 
Sum of the diameters Sum of the radii 

Pied sO 120 O'-055 

Issa) none 20-148 0 -0715 

I +I1V .. 0:134 0 067 

BPEL 22 t= 0-137 0 0685 

Ei tok vis 2, 0 128 0 064 

Ti+ 1V 0 161 0 -0805 

For the mean radii recites we will take two figures more than 

did Damorsgav in his tables, and we will adopt for the purpose the values 

found by Sovurttart in DamoisEav’s papers, (SOUILLART, second paper, 

Mémoires présentés par divers savants a l’Académie des Sciences, 
Tome XXX, 2™e Série, 1889; p. 10) ’). 

I 60491, 

II 96245, 

Ili 15°3524, 

IV 27-0027. 

The result of our computation is, that the time between the first 

contact and the central occultation is: — 
for I and II 1 and III I and IV II and III II and IV III and IV 

45-324, 15-245, 15403, 25263, 15-774, 35-725 ; 
between the central occultation and the second contact: 

15-204, 4%:161, 15-059, 2190, 42-767, 35-725, 

therefore in all 

2h-528, 25-406, 25-162, 4h-453, 3-541, 75-450, 
or 

2532™ 7) 2h24™, 2510, 4h27™, 3532™, (hie 

Still even these numbers do not represent the maximum of the 

time during which the two satellites may be seen as a single body. 

For we can imagine the case that the shortest distance becomes 

equal to —(r-+7’), i.e. that between two central conjunctions there 

1) According to SOUILLART, DAMOISEAU derived these numbers in the following 
way: He adopted the mean distance of IV, in accordance with Pounn’s determi- 

nation = 496"0, and took 18'-37 for Jupiter’s semidiameter, so that, by division 
Try = 27:00102834. The mean distances of the other satellites were then derived 

from the sidereal periods by the application of KeppLer’s third law. But to these 

mean distances he added the constant terms preduded in the radu vectores by 
the perturbing force. 

1 beg leave to remark that 496”"0: 18°37 is not 27:00102834 but 27:000544366. 
Happily the 4th, 5th, 6th, 7th and 8 figure have no appreciable influence on our 
computations, nor probably on those of SourLuart. For the rest the 2.4 appendix, 
further below, may be consulted on such numbers of many decimals. 

*) On June 4, 1908, such a conjunction must take place according to our com- 

putation. Vide the table further below. 
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occurs a contact on the other side. In this case the duration will, 

very nearly indeed, have to be multiplied by V2. It thus becomes — 

for Iand II, IandIII, IandIV, IlandIII, IlandIV, II] andIV 

30-574, 35402, 35-057, 6":296, 5-006, 10"-43, 

or: 

334m, 3b24m, gh 37, 618, 5h On, 10°26". 

These numbers hold only for those very rare occasions in which 1°. 

the occultation is central and 2"4. the rate of change of the elongation 
is equal or nearly so for the two satellites. As soon as there is 

some difference of latitude the time during which the two satellites 

are seen as a single body is of course smaller. 

2-4. Appendix. Investigation of the uncertainty, existing in the 
determination of the synodic periods of the satellites. 

In his introduction to the Tables Ecliptiques, p. XIX, DeLampre says: 
‘Nous n’avons aucune observation d’éclipse antérieure 4 1660”. Now let 
us assume that the difference in time between the first eclipse observed 

in 1660 and the last observed in 1816, two years before the publica- 
tion of these tables, (taking into account also the next ones in 1660 

and the preceding ones in 1816) leaves an uncertainty, in the case 
of the four satellites, of 20, 30, 40 and 60 seconds, which will be 

too favourable rather than too unfavourable. If we divide this un- 

certainty by the number of synodic periods in 156 years, to wit 

32193, 16032, 7951 and 3401, we get for the uncertainty of a 
single period 

for I for II for II for IV 

Os:00062, Os00188, 080050, 0s:0176. 

Therefore, if we find that DeLamBrE gives these periods to 9 places 

of decimals of the second, we cannot attach much importance to 
the fact. 

When Damoisravu, 20 years after DeLAMBRE, published new eclipse- 

tables") for the satellites of Jupiter, he adopted the period of I un- 

1) The tables of Detampre and DamorseAu were destined mainly to serve for the 
prediction, in the astronomical ephemerides, of the eclipses of the satellites caused 

by the shadow of Jupiter. It is for this reason that both he and Detamrre, united 
all those terms of the perturbations in longitude which have the same argument 

at the time of the opposition of the satellites, even though these arguments might 

be different for all other points in the orbit. Therefore it becomes necessary once 

more to separate these terms as soon as tables have to be computed from which 
may be derived the longitude and the radii vectores of the four satellites for any 
point of their orbits, tables such as have been given by Besse in his Astrono- 

mische Untersuchungen and by Marrn in the Monthly Notices of the Royal 
Astronomical Society, Vol. LI, (1891). 
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changed, but applied the following corrections to the remaining ones: 

Il + 0s:005 127 374, 

III + 0-029 084 25, 

IV — 0-092 654 834, 

the amount of which is even respectively nearly 3, nearly 6 and 

somewhat over 5 times that of the uncertainties derived just now. 

But even if we increase the number of intervening years from 156 to 

1 
176, our estimated uncertainties are only diminished by about a of 

their amount. We thus conclude that these periods can only be con- 
sidered to be determined with certainty : 

that of I to 3 decimals of the second 

>» os Ll, Til and IV to 2 decimals ,, _,, sgh 

The Nautical Almanac, which, where it gives the superior conjunc- 

tions of the satellites, gives also the synodic periods, wisely confines 

itself to three decimals. The use of 9 decimals may therefore provi- 

sionally be taken for astronomical humbug. Some other instances of 
the same kind might be quoted e.g. the formerly well known con- 
stants, 20"-4451 for the aberration and 8"57116 for the parallax of 
the sun! 

3d Appendix. Meaning of the equations taken into account in 

the 24 part of the tables of DamotsEav. 

On p. 321 we have referred to the 3'4 appendix for information 
as to the equations which have been taken into account for each 

satellite in the second part of the tables of Damorszav. We will now 

supply this information; we will denote by U, uw, w, wi, ui and 

ury the mean longitudes of the sun, of Jupiter and of the four 

satellites; by 2, the longitude of the perihelium of Jupiter, by 2' that 

of the Earth, by ayy and ayy the perijovia of III and IV; by the 

longitude of the ascending node of Jupiter’s equator on its orbit ; 

finally by At, Atm and 4;y the longitudes of the ascending nodes 

of II, III and IV each on its own fixed plane. 

In order to be able to supply the data following below we have 
taken the daily motion of the argument of each equation from the 
tables in the second part of Damoisrav. This amount was then mul- 
tiplied by the synodic period expressed in days; the product thus 
obtained was then compared with the factor by which, in the first 
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part, p.p. (III), (V), (VI) and (VIII) the letter z (the number of 

synodie periods) is multiplied. 

These daily motions are so nearly equal for several of the equations 

of IJ, Il and IV that, in order to make them out, we must take 

from the tables the motions for a long interval, e.g. for 10 years, 

(duly taking into account the number of periods). These must then 

be divided by the number of days (10 years = 3652 or 3653 

days). Multiplying this quotient by the synodie period in days, we 

get 360° + a fraction. The 360° are of no account ; the fraction 

is the factor of 7; we thus recognise which is the equation we have 

to deal with. In the preface of the second part of Damoisrau we 

look in vain for any information on the subject. 

I. For this satellite five terms have. been taken into account. 

N°. 1 with an amplitude of 1°16, is the equation of the ee 

of a its argument is U—uw,. 

. 2, (amplitude 0°29), is the equation caused by the ellipticity 

of ee s orbit ; the argument is the mean anomaly of Jupiter u,— 2, 

N°. 3 is 180° -++ the mean anomaly of the Earth, U—a'; i 

its aid and that of N°. 1 ze. the difference in longitude between 

the Sun and Jupiter, we find, in the table of double entry IX, one 

term of the geocentric latitude of the satellite. 

N’. 4 with an amplitude of 0°45, shows the perturbation caused 

by II in the motion of I. The argument iS wj—2wUI. 

N°. 5, (amplitude 3°-07) gives the jovicentric latitude of I, neces- 

sary to find the second term of the geocentric latitude. The argument 

is wj—Aj. 

II. Seven terms. N°. 1, 2 and 38 have the same arguments as the 

analogous terms for I; the amplitudes of N°. 1 and 2 are halfthose 

of I. The term of the latitude to be taken from IX, by the aid of 

1 and 3, is of course the same for all the satellites. 

N°. 4, (amplitude 1°-06), shows the perturbation caused by III in 

the motion of II. The argument is wyy—wnmrt. 

N°. 5, 6 and 7 serve for the latitude. 

N° 5, (amplitude 3°:05), has the argument wy—aqyv; 

: ba Re 0°27), 5) ae ee uyi—Aq ; 

|e Ts ( ” 0 ‘03), » » ” uyy —Ajrt. 

Ill, Nine terms. Nos. 1, 2 and 3 are the same as for I and II; 

the amplitudes of N°. 1 and N°. 2 are 0°29 and 0°:07, 
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N°. 4, (amplitude 0°07), has the same argument as N°. 4 for I, 

but it now shows the perturbation caused by II. 

N°. 5, (amplitude 0°15), is the equation of the centre ; argument 

UTIT XIII. 

N°. 6, (amplitude 0°-04), has the argument wr—-ry, it thus must 

account for a perturbation in III depending on the longitude of the 

perijovium of IV. 

Nos. 7, 8 and 9, with the amplitudes 2°98, 0°18 and 0°-03, 

serve for the latitude. The arguments are respectively wir 

and wyyy—Ary. 

X, UI— At 

IV. Seven terms. 

Nos 1, 2 and 8 are similar to those of the preceding satellites. 

N° 4, (amplitude 0°83), is the equation of the centre, argument 

Uuyy — NIV. 

Nos 5, 6 and 7 serve for the latitude. N° 5, (amplitude 2°64) 

depends on the mean anomaly of Jupiter; its argument therefore 

is u, — %,. 

N° 6, (amplitude 0°:24), depends on the argument of the latitude 
of the satellite itself; argument wry— Ary. 

N° 7, (amplitude 0°04), is a minute perturbation, caused by III; 
its argument is wyy—AyIr . 

Now in regard to the following table of the computed conjunctions. 

The first column contains the ordinal numbers. 

The second shows the epoch of the conjunction, accurate to the 

nearest minute, expressed in civil time of Paris. This time is reck- 

oned from midnight and has been used by Dawmoisgzav in his 
tables; it thus represents the direct result of our computations. In 

the cases that the computed time was just a certain number of 

minutes and a half, the half minute has been set down. By sub- 
tracting 12° 9™ or, where necessary, 12" 9™-35, the mean time 

of Greenwich was found, which is contained in the third columm. 

The 4% and the 5 columm contain the numbers of the occulted 
and the occulting satellite. The appended letters /# and n show 

whether the satellite is far or near (vide supra p. 304). The satellite 

is far if its amplitude is between 9° and 38, near if it is between 
3° and 98. Furthermore ee denotes an eastern elongation, for which 

the amplitude is about 3° and we a western elongation, for which 

the amplitude differs little from 9>. 

. 22 
Proceedings Royal Acad. Amsterdam. Vol. IX. 



( 330 ) 

At the conjunction the elongations, counted along the orbit of 

Jupiter, are equal; they are to be found in the next column. If the 

elongation is ++, the satellite, as seen by a northern observer, using 

a terrestrial telescope, will be to the left of the planet. Therefore 

if he uses an inverting telescope, as is the rule for the observation 

of the heavenly bodies, he will see it to the right. 

The three following columns contain the ordinates of the two 

satellites and their difference; northerly latitudes are positive. The 

tenth column shows the duration, which the eclipse would have, if 

the conjunctiun were central. In a few cases (Nos. 20, 23, 30, 48, 

53 and 64), we find y'=y, consequently y’—y=O. If the tables 

were correct these conjunctions would be central. But in testing the 

tables by the conjunctions observed by Messrs Fauru, NiLanp and 

Srantey Witu1ams the difference of the y’s did not completely agree 

with the observations and even a small difference may considerably 

change the duration of any eventual occultation. Therefore, not to 

fill a column with figures, which, likely enough, may be contra- 

dicted by the observations, I omitted the value found by calculation 
for the true duration. 

We remarked before (p. 308) that, if at all, any conjunction will 

be visible at a determined place of observation only for a short 

time, viz. between sunset and the setting of Jupiter. As a conse- 
quence the list will be of little use, unless observatories distri- 

buted over the whole of the earth cooperate in the work. The last 

column was added as a help to such cooperation. It contains on 

every line an observatory, at which the conjunction of that line 
will be visible. It is certainly desirable that other astronomers also, at 

observatories in the vicinity, examine whether the phenomenon will 

be visible, and, if so, prepare for its observation. 



A. C. OUDEMANS. Mutual Occultations and Eclipses of the Satellites of 

Jupiter in 1908.” 
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foo U LTS. 

Geocentric conjunctions of two satellites in June and July 1908. 
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Pathology. — “On the Amboceptors of an Anti-streptococcus serum.” 
By H. Eysprorkx. (From the Pathological Institute of Utrecht). 

(Communicated by Prof. C. H. H. SpRonck.) 

(Communicated in the meeting of September 29, 1906). 

As is known, there exists in the serum of an animal which is 

treated with the bloodcorpuscles of an animal of another species, a 

substance, which is capable of bringing the bloodcorpuscles of the 

second animal to solution with the aid of another substance, which 

is already present in normal serum. The first substance, which only 

appears in immune-sera, is thermostatic and is named differently by 
different investigators, according to the idea which they make of its 

influence (Amboceptor of Exruicn, Substance sensibilisatrice of BorDET, 

Fixateur of Mercunikorr). The other substance, which normally is 
present in all sorts of sera in greater or smaller quantities, is easily 

made inactive by heating to 55—56° C. or by being exposed to light. 

It has been proved, that the last mentioned substance is identical with 

a bactericidal substance, demonstrated by Fopor*) and FLteer ’) in 

normal blood-serum, to which is given the name of alexin by BucHnrr. 

Next to this name at present the denominations complement (EHRLICH) 

and cytase (METCHNIKOFF) are used. 

Had Mercunikorr in 1889 already pointed out the analogy between 

hemolytic and bacteriolytic processes, later investigations have com- 

pletely comfirmed this supposition. 

In 1901 Borper and Geneou *) published a method to demonstrate 
the presence of a ‘substance sensibilisatrice’ in the serum of an 

animal, which was immunized against a certain micro-organism, by 
means of a combination with the complement. At the same time 

they found, that this amboceptor is specific; for instance, the ambo- 

ceptor, present in the bloodserum of animals which were immunized 

against cholera spirilla, is indeed active against the cholera spirilla, 

but not against other bacteria, such as the typhoid bacilli. 
On the other hand one is capable of distinguishing with the aid 

of an amboceptor at hand, the micro-organism belonging to it from 

others, by means of a combination with the complement. 

Using the above mentioned method of Borper—Grneou, BEsREDKA *) 

succeeded in pointing out an amboceptor also in an anti-streptococcus 

') Deutsche Med. Wochenschrift, 1887, N°. 34, S. 745. 

*) Zeitschrift fiir Hygiene, Bd. IV, S. 208. 

5) Annales de I'Inst. Pasteur, T. 15, 1901, p. 289. 

4) Annales de |’Inst. Pasteur, T. 18, 1904, p. 363. 
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serum prepared by himself. This serum was obtained from a horse, 
which for some time was injected intravenously with a mixture of 

6—8 different streptococci, which but for one exception originated 

‘immediately, so, without passage through animals, from pathological 

processes of man. Besides, he has made use of the presence of an 

amboceptor in his serum to investigate, whether it might be possible 

to separate different races of streptococci from each other with the 

aid of this substance. 
Among the principal difficulties, which are still experienced in the 

preparation of an anti-streptococcus serum, must be mentioned in the 

first place, that the streptococci proceeding directly from patholo- 

gical processes of man and being very virulent for him (scarlatina, 

erysipelas, septicemia etc.) possess in general for our common test- 

animals a comparatively small degree of virulency. By this the pre- 

paration of a very powerful serum is somewhat impeded and on the 

other hand it is almost impossible to controll the obtained serum. 

In the second place the question prevails, whether all streptococci, 

cultivated from different processes of disease, must be regarded as 

representatives of one aud the same species, and to be taken as 

varieties, or that the mutual affinity is much smaller. A solution of 

this question in such a sense, that it might be possible to come to 

a rational sub-division in the large group of the pathogenic strepto- 

cocci, would be of great importance for the bloodserum-therapy. 

Some years ago ScHoTTMiLuer *) tried to give a new division, based 

on biological grounds instead of the older morphological division in 

streptococcus longus and streptococcus brevis (voN LINGELSHEIM ’), 

Benrine*). By cultivating different races of streptococci on blood- 
agar, he was enabled to discern two types: firstly dark grey 

colonies with lucid area, secondly greenish ones without area. The 
streptococci, belonging to the first group, are very virulent for man and 

are found in erysipelas, septicemia, scarlatina, phlegmon etc., while 

those, belonging to the second group, are generally less pathogenic 

for man and animals. Therefore ScHoTrmtLierR divides the pathogenic 

streptococci as follows: | 

1. Streptococcus pyogenes s. erysipelatos. 
2. Streptococcus mitior s. viridans. 

3. Streptococcus mucosus. 
Several other investigators (Eve. FRaEnKeL ‘), SILBERSTROM °), 

1) Miinch. Med. Wochenschrift, 1903, N°. 20, S. 849; N°. 21, S. 909. 

*) Zeitschrift fiir Hygiene, Bd. X, S. 331. 

8) Centralblatt. fiir Bakteriologie, Bd. 12, S. 192. 
4) Miinch. Med. Wochenschrift, 1905, N°. 12, S. 548; N°. 39, S. 1869. 
5) Centralblatt fiir Bakt., le Abth., Orig., Bd. 41, S. 409. 
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Baumann?) have latterly come to the same result in an almost 

similar way. 

BrsREDKA *) on the contrary tried to separate the different strepto- 

cocci from each other with the aid of the method of the combination 

with the complement. The conclusion to which he comes, is, that 

the “substances sensibilisatrices’ present in his serum, are “rigoureu- 

sement” specific; that the serum of a horse, immunized with the 

streptococcus A, only contains the amboceptor A", which corresponds 

with that special streptococcus. Thus he found this amboceptor A" 

not only active against the streptococcus A, but also against other 

races (B,C), from which Brsrepka decides on the identity or at 

least on the near relationship of the above mentioned streptococci 

A, B and C. 
According to these results, some experiments have been taken by 

me, to trace, in how far a separation of the different pathogenic 

streptococci is really possible by means of the specific action of the 

amboceptors. 
The anti-streptococcus serum, which I usec, Prof. Spronck willingly 

provided me with, for which I offer him my best thanks as well 

as for his further assistance in my work. 

The above mentioned serum originated from a horse, which was 

injected for a great length of time viz. from Jan. 1905 till July 1906, 

with a number of specimens of streptococci and staphylococci of 

different origin. These injections, which were subcutaneous, took place 

weekly. The quantities used were gradually increased during the 
first months; whilst after that on an average 40—60 c¢.C. of a mix- 

ture, composed of even parts of a culture in ascitic-bouillon of the 

different streptococci and of a bouillon-culture of the staphylococci, 

were administered. The mixture was twice heated for half an hour to 

55° C. Strepto- as well as staphylococci originated directly from man, 

without passage through animals. 

That the serum really possesses curative qualities is evident, not 

only from observations in the clinical surgery, but also from experi- 

ments upon animals. Rabbits, which were injected with a mixture 

of strepto- and staphylococci, could be kept alive by administering 

comparatively small quantities of the anti-streptococcus serum, whilst 
animals used for controll died shortly after. 

The method, followed by me, is that of Borper—Gerneou'). For 

1) Miinch. Med. Wochenschrift, 1906, N*. 24, S. 1193. 

2) |. ¢. 

s) lic. 
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each experiment six tubes were used, which contained consecutively *) : 

1. a eed eee Oe complement, °*/, e.C. emulsion of streptococci, 
/10 2 

‘/, ¢.C. anti-streptococcus serum. 

N°. 2: ?/,, ¢.C. compl., '/, c.C. emulsion of str., */, c.C. normal 
horse-serum. 

N°. 3: 7/,, ¢.C. compl., */, e.C. physiological NaCl, */, c¢.C. 

anti-streptococcus serum. 

2 

Nees eA compl. “/, ¢C. physiol. NaCl, '/, c.C. normal 

horse-serum. 

N°. 5: ?/,, c.C. physiol. NaCl, */, c.C. emulsion of sir., '/, c.C. 
anti-streptococcus serum. 

N°. 6: ?/,, eC. physiol. NaCl, */, e:C. emulsion of str., '/, ¢.C. 
normal horse-serum. 

The tubes are stirred and then remain at the same temperature as 

the room. Afler 3—5 hours to each of the tubes is added */,, ¢.C. 

of a mixture, composed of 2 ¢.C. of hemolytic serum and 1 c.C. 

corpuscles of a rabbit, which were suspended in physiol. NaCl to 
remove the adherent serum. Very soon, mostly within ten minutes 

the tubes 2, 3 and 4 distinctly show the phenomenon of hemolyse; 

which is naturally not brought about in tubes 5 and 6, the com- 

plement being absent. The absence or presence of an amboceptor 

in the examined serum is proved by the existence or non-existence 

of the hemolyse in the first tube. 

It is necessary to repeat all these controll-experiments each time; 

firstly, because some streptococci produce a hemolysin at their growth ; 

secondly, because bacteria are able to combine the complement with- 

out the aid of an amboceptor, although in a much smaller degree. 
This may be observed very distinctly in vitro; for instance: in six 

tubes successive dilutions of a culture of diphtheria bacilli were made; 
to each tube 7/,, ¢c.C. of the complement was added. After three 

hours ?/,, ¢.C. of a mixture, composed of 2 ¢.C. of hemolytic serum 

(heated to 56° C.) and 1 c.C. corpuscles of a rabbit, suspended in 

physiol. NaCl, was added. The result after half an hour was as 

1) As complement, the fresh blood-serum of a guinea-pig was used. The strep- 
tococci, which were to be examined, were cultivated on LoEFFLER’s coagulated 

blood-serum and after 24 hours suspended in physiological NaCl to a homogeneous 
emulsion. The antistreptococcus serum was heated in advance for one hour to 

56° C., as well as the fresh normal horse-serum, used for controll, and the hemolytic 

serum originating from guinea-pigs, which were treated 3 or 4 times with 5 c.G. 
of defibrinated blood of rabbits. The physiological NaCl used, was always a solution 

f 0,9/). 
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follows: no hemolyse in the first (least diluted) tube, a little hemo- 
lyse in the 2.4 tube, more and more hemolyse in tubes 3, 4 and 5 

whilst in the sixth (most diluted) tube it was perfect. 

The same experiment was made with different other bacteria with 

a similar result. 

It may be easily understood, that it sometimes occurs, that no 
hemolyse is formed in the first of the tubes, used in the method of 

BorpDET—GENGOU, in consequence of a surplus of bacteria, as is seen 

by the absence of the hemolyse in the second tube at the same time. 
Without the controll-tubes, one might wrongly decide on the presence 
of an amboceptor in the examined serum. 

In the first place an investigation was made, whether in the anti- 

streptococcus-serum, used by me, an amboceptor was present against 

some five streptococci used at the immunization. The result was 

positive. After this, different other streptococci were investigated. 

These streptococci originated directly from different diseases of man, 

such as: scarlatine, cholecystitis, septicemia, febris puerperalis, angina, 

and had not served at the immunization. Among these streptococci 

there were some of patients who during their lifetime had been 

injected with the same anti-streptococcus serum, but without success. 

The latter streptococci were cultivated from the blood or from the 

spleen post mortem. Others were cultivated from patients with whom 

the injections of the serum had had a very distinct curative effect. 

It was therefore supposed that against the first streptococci no 

amboceptor would be found in the anti-streptococcus serum. 
The investigation however did not confirm this supposition. Add 

streptococci, no matter what their origin, showed a strong combination 
with the complement under the influence of the anti-streptococcus serum. 

Keeping to the specific of the amboceptors, the conclusion of 
BrsreDKA ') might be accepted, regarding all the latter streptococci as 
identic or at least closely related to those used at the immunization. 
Continued experiments with some pathogenic streptococci originating 
from animals, have led to a different interpretation. A streptococcus 
was used, which was cultivated from the lungs of a guinea-pig, 
which had died spontaneously from pneumonia; further the well- 
known streptococcus equi and a couple of other streptococci, which 
were cultivated with the Str. equi from pus, originating from horses 
suffering from strangles. Also against the latter streptococci, the 
presence of an amboceptor in the used serum was an undoubted fact. 

Considering that the str. equi by its qualities, apparently from its 

Hl. 
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deviating growth on the usual culture-media, shows very distinct 
differences from the other pathogenic streptococci, whether from man 

or from animals, the conclusion is at hand, that at least in the anti- 

streptococcus serum, used by me, very little of the specific working 
of the amboceptor is left. It is however quite possible that all patho- 
genic streptococci, originating from man as well as from animals, 

are very closely related, by which supposition one might keep at 
least to the specific of the amboceptors. 

However later experiments have shown that the anti-streptococcus 
serum is also active against micro-organisms, which do not belong to 
the streptococci viz, pneumococci and meningococci. 

By the above is fully shown, tbat the specific action of the ambo- 

ceptors in the serum of a horse to which large quantities of strepto- 
cocci have been administered for a very long time, has strongly 

decreased and made room for a more general action. Probably this 
general working might be put to the account of one and the same 

amboceptor, although the presence of more amboceptors in the same 
cannot be denied. 

The above mentioned serum exercises, though in a small degree, 

also a distinctly sensitive action on anthrax, typhoid and tubercle bacilli. 

From the above it appears, that the method of the combination 

with the complement of BorpeEt—GeENcou, is not to be used, if it is 

necessary to distinguish nearly related bacteria from each other, which 
in other ways are also difficult to separate. 

Granted that it must be accepted, that such a diminution of the 
specific activity only takes place with sera of animals which have 

been treated for a great length of time, so that the specific activity 

of the amboceptor is more asserted in proportion to the shorter time 

in which the animals are immunized, it is evident here, that there 

is no question about a certain method being used, because one never 

knows, — and this is also the case with sera of animals which have 

only shortly been immunized .— how far the specific action extends. 
Even if it may be accepted that the horse, from whom the anti-strepto- 
coccus serum originates, is a most favourable test-animal as regards 

the forming of anti-bodies, then the above mentioned facts would 

remain the same. 
Dorper’) has recently found, that the amboceptor, present in the 

serum of a horse which has been treated with dysenteria bacilli 

(type Suga) during 18 months, next to the action on these bacilli, 

1) Annales de I'Inst. Pasteur, T. 19. 1905, p. 753: 
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also presented the self-same effect against the so-called pseudo- or 

para-dysenteria bacilli (type Frexner, Kruse). Asserting the specific 

activity of the amboceptor, he decides on “‘l’unité specifique”’ of 

the dysenteria bacilli. This conclusion appears to me, looking at the 

above, very venturesome. 

At the same time it is evident, that we must not attach too much 
importance to the presence of an amboceptor in a serum for the 

effect of that serum. It is not to be accepted, that the anti-streptococ- 
eus serum will have a favourable effect on patients suffering from 

pneumonia, typhus, anthrax ete. although a certain effect is to be 
observed in vitro against the respective causes of these diseases. I 
purposely treated this for anthrax bacilli. Different guinea-pigs of 
nearly the same weight received partly a small quantity of anti- 
streptococcus serum (2—3c.C.), which contained some anthrax bacilli 
(one eye of a deluted twelve hours, old culture on bouillon-agar), 

partly normal horse-serum (2—3c.C.) with an equal dose of anthrax 
bacilli. A favourable effect of the anti-streptococcus serum compared 
to normal serum was never perceptible. The animals died generally 
about the same time, within 48 hours. 

Yet PrepTETscHENSKY'), who has made such investigations with 
rabbits, is of opinion that a favourable effect can be perceived from 
anti-diphtheria as well as from anti-streptococcus serum, but the colossal 
quantities of serum, which he used, justify the supposition, that here 
is Only question of the favourable effect, which, as is known, is already 
produced in several cases by the injection of normal horse-serum. 

It is therefore not permissible, to ascribe a favourable effect to a 
serum by force of the presence of an amboceptor, still less, to base 
on this a quantitative method for the determination of the force of 
such a serum, such as Konig and WassrrMann’) do with regard toa 
meningococcus serum prepared by them. In the meningococcus serum 
of Jocumann (E. Merck) the presence of an amboceptor could not 
only be clearly discerned against meningococci, but also, naturally 
in a smaller degree, against some streptococci. 

The question, if such a diminishing of the specifie activity in 
relation to a prolonged administering of antigens is known for other 
substances in immune-sera too, must be answered in the affirmative. 
This is especially the case with regard to the precipitins. It is well known 
that it is not possible to obtain them absolutely specific. Thus NurraL * 
was able to get a precipitation with the blood-serum of all kinds 
1) Centralblatt fiir Bakt., le Abth., Ref., Bd. 38, $, 395. 

*) Deutsche Med. Wochenschrift, 1906, n° 16, S. 609. 
*) Blood immunity and blood relationship, Cambridge, 1904, p. 74, 135, 409. 
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of mammals even with a very strong precipitin-serum, which was 

obtained with and against an arbitrary mammifer-albumen (‘“‘“mamma- 

lian reaction’). Hauser’) comes to a similar result; only quantitative 

differences remain. 3 

Also with relation to the amboceptor such a diminution of the 

specific action seems to me sufficiently well pointed out. 

Physics. — “Arbitrary distribution of light im dispersion bands, and 

its bearing on spectroscopy and astrophysics.” By Prof. W. H. 

JULIUS. 

In experimental spectroscopy as well as in the application of its 

results to astrophysical problems, it is customary to draw conclu- 

sions from the appearance and behaviour of spectral lines, as to the 

temperature, density and motion cf gases in or near the source of 

light. 
These conclusions must in many cases be entirely wrong, if the 

origin of the dark lines is exclusively sought in absorption and that 
of the bright ones exclusively in selective emission, without taking 

into account the fact that the distribution of light in the spectrum 
is also dependent on the anomalous dispersion of the rays in the 

absorbing medium. 

It is not in exceptional cases only that this influence makes itself 
felt. Of the vapours of many metals it is already known that they 

bring about anomalous dispersion with those kinds of light that 

belong to the neighbourhood of several of their absorption lines’). In 

all these cases the appearance of the absorption lines must to a greater 

or less extent be modified by the above mentioned influence, since the 
mass of vapour, traversed by the light, is never quite homogeneous. 

Hence it is necessary, separately to investigate the effect of dis- 

persion on spectral lines; we must try to separate it entirely from 

the phenomena of pure emission and absorption. 

A first attempt in this direction were the formerly described 

experiments with a long sodium flame’), in which a beam of white 

1) Miinch. Med. Wochenschrift, 1904, n° 7, S. 289. 

*) After Woop, Lummer and Prinesuem, Expert, especially Pucctanti has inves- 

tigated the anomalous dispersion of various metallic vapours. In Nuovo Cimento. 
Serie V, Vol. IX, p. 303 (1905) Pucctanti describes over a hundred lines, showing 

the phenomenon. 
5) W. H. Junus, “Dispersion bands in absorption spectra.” Proc. Roy. Acad. 

Amst. VII, p. 184—140 (1904). 
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light alternately travelled along different paths through that flame. 
With these relative displacements of beam and flame the rays of the 

anomalously dispersed light were much more bent, on account of the 

uneven distribution of the sodium vapour, than the other rays of the 

spectrum; absorption and emission changed relatively little. The 

result was, that the distribution of the light in the neighbourhood of 

D, and D, could be made very strongly asymmetrical, which could 

easily be explained in all details as the result of curvature of the 
rays. The existence of “dispersion bands” was thus proved beyond 

doubt. 

But the pure effect of emission and absorption was not absolutely 

constant in these experiments and concerning the density of the sodium 
vapour in the different parts of the flame only conjectures could be 
made. Moreover, the whirling ascent of the hot gases caused all rays, 

also those which suffered no anomalous dispersion, sensibly to deviate 

from the straight line, so that the phenomena were too complicate 

and variable to show the effect of dispersion strictly separated from 

that of emission and absorption. 

So our object was to obtain a mass of vapour as homogeneous as 

possible and, besides, an arrangement that would allow us to bring 

about arbitrarily, in this vapour, local differences of density in such 

a manner, that the average density was not materially altered. The 
absorbing power might then be regarded as constant. At the same 

time it would be desirable to investigate the vapour at a relatively 

low temperature, so that its emission spectrum had not to be 
reckoned with. 

In a series of fine investigations on the refractive power and the 

fluorescence of sodium vapour R. W. Woop’) caused the vapour to 
be developed in an electrically heated vacuum tube. It appeared 
possible, by adjusting the current, to keep the density of the vapour 
very constant. Availing myself of this experience I made the following 
arrangement for the investigation of dispersion bands. 

Apparatus. 

NWN’ (see fig. 1) is a nickel tube of 60 centimetres length, 5.5 ems. 
diameter and 0,07 cm. thickness. Its middle part, having a length 

of 30 cms., is placed inside an electrical furnace of Hrraxus (pattern 

E 3). Over its extremities covers are placed, the edges of which fit 
into circular rims, soldered to the tube, and which consequently 

1) R. W. Woop, Phil. Mag. [6], 3, p. 128; 6, p, 362, 
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shut air-tight when the rims are filled with cement. When the 

furnace is in action a steady current of water, passing through the 

two mantles M and JM’, keeps the ends of the tube cool. Each of 

the two caps has a rectangular plate glass window and also, on both 

sides of this, openings a and 6 (6' and a’), placed diametrically 

Fig. 1. 

opposite to each other and provided with short brass tubes, the 
‘purpose of which will appear presently. Moreover in one of the two 

caps (see also fig, 2) two other short 

tubes c_and d are fastened in openings: 
through c¢ the porcelain tube of a Lr 
CHATELIER pyrometer is fitted air-tight, 
while on d a glass cock with mercury 
lock is cemented, leading to a mano- 

meter and a Geryk air-pump. As soon 
as the sodium (a carefully cleaned 
piece of about 7 grammes) had been 
pushed to the middle of the tube in 

a small nickel dish provided with elas- 

Fig. 2. tic rings, the tube had been immedi- 
ately closed and exhausted. 

We shall now describe the arrangement by which inside the mass 
of vapour arbitrary inequalities in the density distribution were pro- 
duced. It consists of two nickel tubes A and B of 0,5 cm. diameter, 
leading from a to a’ and from & to 0’ and so bent that in the heated 
middle part of the wide tube they run parallel over a length of 30 
centimetres at a distance of only 0.8 ems. In the four openings of 
the caps, A and B are fastened air-tight by means of rubber packing, 
This kind of connection leaves some play so that by temperature 
differences between the wide and the narrow tubes these latter need 
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not alter their shape through tension. At the same time the rubber 

insulates A and B electrically from NN’. The four ends of the 

narrow tubes which stick out are kept cool by mantles with streaming 

water (these are not represented in the figure). 

If now an electric current is passed through A or B, the tempera- 

ture of this tube rises a little above that of its surroundings; if an 

air-current is passed through it, the temperature falls a little below 

that of its surroundings. The intensities of the currents and, conse- 

quently, the differences of temperature can in either case be easily 

regulated and kept constant for a long time. 

I, Fig 3 gives a sketch of the whole arrangement. 

The light of the positive carbon Z is concentrated by 
K the lens / on a screen Q, having a slit-shaped aper- 

ture of adjustable breadth. The lens / forms in the 

plane of the slit S of the spectrograph a sharp image 

of the diaphragm P. The optical axis of the two lenses 

passes through the middle of the tube containing the 

sodium vapour, exactly between the two small tubes 

| A and B. 

Nn’ If now the opening in the diaphragm P has the 

it shape of a vertical narrow slit and if its image falls 
, al exactly on the slit of the spectograph, then in this latter 

i the continuous spectrum of the arec-light appears with 

great brightness. If the tube NN’ is not heated, D, 
and J, are seen as extremely fine dark lines, attri- 

| buted to absorption by the sodium, which is always 

| present in the neighbourhood of the carbons. In order 

that this phenomenon might always be present in the 

| field of view of the spectograph as a comparison 

----ObF--- witenédncacut 

---OL5 

spectrum, also when the tube is heated, a small totally 

reflecting prism was placed before part of the slit S, 

| to which part of the principal beam of light was led 

« q by a simple combination of lenses and mirrors without 

passing the electric furnace. So on each photograph that 
i =F 

was taken the unmodified spectrum of the source is 

: also seen. 
The spectral arrangement used consists of a plane 

diffraction grating 10 cms. diameter (ruled surface 8 
by 5 ems.) with 14436 lines to the inch, and two sil- 

“a vered mirrors of Zrtss; the collimator mirror has a 

Fig. 3. focal distance of 150 ems., the other of 250 cms. Most 

of the work was done in the second spectrum. 

“06> 
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When heating the sodium for the first time a pretty large quan- 

tity of gas escaped from it (according to Woop hydrogen), which of 

course was pumped off. After the apparatus had functionated a 

couple of times, the tension within the tube remained for weeks 
less than 1 mm. of mercury, also during the heating, which, in the 

experiments described in this paper, never went beyond 450°. The 

inner wall of NWN’ and also the small tubes A and B are after a 
short time covered with a layer of condensed sodium, which favours 

the homogeneous development of the vapour in subsequent heatings. 

It is remarkable that scarcely any sodium condenses on the parts of 

the tube that stick out of the furnace, so that also the windows 

remain perfectly clear. The density of saturated sodium vapour at 
temperatures between 368° and 420° has been experimentally deter- 
mined by Jewrtt'). He gives the following table. 

temperature | density 

368° | 0 00000009 

373 / 0.00000020 

376 | 000000035 

380 | 000000043 

: 385 | 000000103 

387 / 000000135 

390 ~ 0.00000160 

295 - 0.00000270 
400 | 0 00000350 

406 | 0.00000480 

408 | 0.00000543 

M2 | 0.00000590 

418 | 0.00000714 

490 | 0.00000750 
| 

These densities are of the same order of magnitude as those of 

mercury vapour between 70° and 120°. At 387° the density of 

1) F. B. Jewerr, A new Method of determining the Vapour-Density of Metallic 
Vapours, and an Experimental Application to the Cases of Sodium and Mercury. 

Phil. Mag. [6], 4, p. 546. (1902). 
23 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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1 : 
saturated sodium vapour is about T000 of that of the atmospheric air 

at O° and 76 ems. 

Observations. 

If we now regulate the intensity of the current in the furnace in 

such a manner that the thermo-couple indicates a steady temperature 
(in many of our experiments 390°), then within the tube the density 

of the vapour is not everywhere the same, to be sure, for the 

temperature falis from the middle towards the ends, but since the 
surfaces of equal temperature are practically perpendicular to the 

beam of light, ail rays pass nearly rectilimearly through the vapour. 

Accordingly the spectrum is only little changed; the two D-lines 

have become somewhat stronger, which we shall, for the present, 

ascribe to absorption by the sodium vapour in the tube. 

We now blow a feeble current of air through the tube A which 

thus is slightly cooled, so that sodium condenses on it, the vapour 

density in its neighbourhood diminishing. We soon see the sodium 

lines broaden considerably. This cannot be the consequence of in- 
creased absorption, since the average vapour density has decreased 

a little. The reason is that rays of light with very great refractive 

indices are now bent towards q’ (fig. 3), rays with very small indices 

towards g; hence in the image of the slit ? which is formed on, 

rays belonging to regions on both sides of the D-lines no longer 

occur, while yet this image remains perfectly sharp since the course 

of all other rays of the spectrum has not been perceptibly altered. 

If now at the same time the tube 6 is heated by a current of e.g. 

20 Amperes, by which the density gradient in the space between 

the tubes is inereased, the breadth of the lines becomes distinctly 

greater still. The heat generated in the tube by the current is about 

1 calory per second; it is, however, for the greater part conducted 
away to the cooled ends of the tube, so that the rise of temperature 

can only be small. 

By switching a current key and a cock, A and 6 can be made 
to suddenly exchange parts, so that Ais heated, 6 cooled. The dark 
bands then shrink, pass into sharp D-lines and then expand again, 

until, after a few minutes, they have recovered their original breadth. 

Fine and sharp, however, the lines in the transition stage are 

only if the temperature of the furnace is very constant. If it rises 

or sinks the minimal breadth appears to be not so small. In this 
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case, however, there certainly exist currents in the mass of vapour 

which cause the distribution of density to be less regular. Also when 

A and #& are at equal temperatures, we sometimes see the sodium 

lines slightly broadened; it stands to reason to attribute this also to 
refraction in such accidental irregularities. 

That spectral lines possess some breadth is commonly aseribed 

either to motion of the light-emitting molecules in the line of sight 

or to changes in the vibrational period of the electrons by the col- 

lisions of the molecules. We now have a third cause: anomalous 

dispersion in the absorbing medium. The whole series of phenomena, 

observed in our sodium tube, corroborates the opinion that this latter 

cause must in general be regarded as by far the most important. It 

will appear that this conclusion holds not only for dark but also for 

bright spectral lines. 

If the slit in the diaphragm P is made much broader towards p’, 

this has no influence on the spectrum as long as A and B are at 

the surrounding temperature. The D-lines appear as in a, Pl. I. If 

now A is cooled below this temperature, 6 raised above it, the 

dark D-lines only broaden in the direction of the shorter wave- 
lengths, while at the side of the longer wave-lengths the intensity of 

the light is even increased, since now also anomalously bent rays 

from the radiation field p’ can reach the point S through the slit Q. 

(see 8, Pl. I). The spectrum @ passes into y when the temperature 

difference between A and JB is made to change its sign or also when the 

original temperature difference is maintained and the slitin P is made 

much broader towards p instead of towards p’. A small shifting of 

the whole diaphragm / (starting from the condition in which it was 

when taking 8) so that S falls exactly in the shadow, causes the 
spectrum d to appear, which makes the impression of an emission 
spectrum of sodium with slightly shifted lines, although it is evidently 
only due to rays from the field p’ which have undergone anomalous 

dispersion in the vapour. 

Let us now return to the diaphragm P with a narrow slit placed 

on the optical axis. (A piece of glass coated with tiffoil in which 
a slit was cut out, was generally used). The spectrum then shows 

broad bands when there is a density gradient between A and B. 

If beside the slit an opening is cut in the tinfoil, a group of rays 

of definite refractivity (and consequently also of definite wave-lengthis) 

is given an opportunity to reach S through Q, and a bright spot is 

formed in the dark band, the shape of which depends on the shape 
of the opening in the tinfoil, but is by no means identical with it. 

23* 
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If e.g. the opening in the diaphragm has the shape 
N of fig. 4, then the spectrum ¢ is obtained. When the 

YY density gradient is diminished the figure shrinks, §; if 

IN now the density gradient is made to change its sign 

| A and to increase, the spectrum proceeds through the 

J stages a (gradient exactly zero) and 4 to @. 

Fig. 4. The relation between the shape of the opening 

in the diaphragm and that of the bright spots in the spectrum might 

easily have been foretold from the shape of the 
Nie dispersion curve. Having, however, experimentally 

ia found the relation between the two figures for a 

sid /| \ simple case as the one above, it is not difficult to 

a | \\\\. design for any desired distribution of light the shape 

| of the required opening in the diaphragm. The 
Fig. 5. flower c and its inversion x required the diaphragm, 

represented in fig. 5. By reversing the gradient the image ¢ passes into z. 

So in this way one may also arbitrarily produce duplications, 

reversals, bright or dark ramifications of spectral lines and it would 

e.g. be possible faithfully to reproduce all phenomena observed in 

this respect in the spectra of sun-spots, faculae or prominences. On 

Plate II a number of arbitrary distributions of light have been 

collected. They were all produced in sodium vapour of 390° on the 
average; a is again the spectrum with equal temperatures of the 

tubes A and B. In vr on the dark dispersion band D, a bright 
double line is seen, reminding us of the spectrum of the caleium 

flocculi of Hair. In the same negative D, also shows a fine double 

line, which however is no longer visible in the reproduction. The 

spectra g, xy, w imitate the origin of a sun spot and prominence 

spectrum; ~ namely represents the spectrum of the quiet solar limb 
with radially placed slit; in % a prominence appears and a spot with 
phenomena of reversal; w shows all this in a stronger degree. If 

now the density. gradient is made to change sign, the image first 

shrinks again to @ after which it expands to , in a certain sense 

the inversion of y. The remarkable aspect of these gradual changes, 

admitting of perfect regulation, is only imperfectly rendered by the 

photographs. 

The relation between the curvature of the rays and 
the density gradient. 

The question arises whether it is- probable that circumstances as 

were realised in our experiments are also met with in nature, or in 
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common spectroscopical investigations undertaken with entirely diffe- 
rent purposes. 

We remark in the first place that curiously shaped diaphragm 
openings are not absolutely essential for the production of phenomena 
as those described above. If e.g. our source of light had a constant, 

say circular shape; if on the other hand the direction and magnitude 
of the density gradient in our tube had not been so regular, but 

very different in various places of the field reproduced by the lens F, 
then the D-lines would also have shown all sorts of excrescences, 

now determined by the configuration of the density distribution. 

In the second place we will try to form some idea of the quan- 
titative relations. 

The radius of curvature @ of the path of the most deviated rays, 

occurring in our photographs, may be easily estimated from the 

distance d of the diaphragm to the middle of the furnace, the 

distance J of the most distant diaphragm openings to the optical 

axis, and the length / of the space in which the incurvation of the 
rays is brought about. For: 

rd Mar" a 

Putting d=1 cm., d=110 ems., /=27 ems. this gives: e=3000 ems. 
The average density 4 of the sodium vapour was in this case about 

pee of that of the atmospheric air. 
1000 

Let us see how @ changes with the density gradient. 
We always have: 

v = rp ° ° ° . ° . ° 2 (1) 

if n represents the local index of refraction of the medium for the 
; : meee 1) 

ray under consideration and x ae the change of this index per cm. 
s 

in the direction of the centre of curvature. Approximately we have, 
for a given kind of light: 

n—l1 

A 
= consiant = # 

n—=RA+1 

dn dL 
——R 

From this follows: 
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but since for rarefied gases n differs little from unity, even for the 

anomalously dispersed rays which we consider, RA may be neglected 
with regard to 1 and we may write 

For every kind of light @ is consequently inversely proportional 

to the density gradient of the vapour in the direction perpendicular 

to that of propagation. 

An estimate of the magnitude of the density gradient existing, in 

our experiments, between A and £, may be obtained in two ways. 

It may namely be inferred from the produced difference of tempe- 
rature, or from formula (2). 

The temperature difference between A and & would have been 

pretty easy to determine thermo-electrically ; up to the present, 

however, I had no opportunity to make the necessary arrangement. 

Besides, the relation between the density distribution in the space, 

passed by the rays, and the temperatures of A and £& cannot be so 

very simple, since we have to deal not with two parallel planes but 

with tubes, from which moreover hang many drops of liquid sodium. 
: dh 

The second method at once gives an average value of a for 
s 

n—I 
the space passed by the rays. It requires a knowledge of R = 

for a kind of ray for which in our experiments also @ has been 

determined. 

Now Woop (Phil. Mag. [6], 8, p. 319) gives a table for the values 

of n for rays from the immediate vicinity of the D-lines. These data, 
however, refer to saturated sodium vapour of 644°; but we may 

deduce from them the values of x for vapour of 390° by means of 

the table which he gives in his paper on page 317. 

For, when we heat from 389° to 508’, the refractive power of the 

vapour (measured by the number of passing interference fringes of 
98 

helium light 2 = 5875) becomes moe 11 times greater, and at fur- 

0 
ther heating from 508° to 644° again othe 12,5 times greater (now 

found by interference measurement with light from the mercury line 

4= 5461); hence from 390° to 644° the refractive power increases 

in ratio of 1 to 11 « 12,5 = 137. 

Since now for rays, situated at 0,4 AnGstrOm-unit from the D- 
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lines!) we have n—1=—= + 0.36, (as the average of three values 
taken from Woop’s table on page 319), we ought to have with 

sodium vapour at 390° for the same kind of rays 

36 0. 
Regent ==) NOR6. 

137 

The density A at 390° is, according Jewett, 0.0000016, hence 

n—1 0.0026 
A 0.0000016 

Then from formula (2) follows 

d& if L 

ds Ro 1600 x 3000 
sS 

ho == L600: 

= 0,0000002. 

Dispersion bands im the spectra of terrestrial sources. 

It is very probable that, when metals evaporate in the electric 
arc, values of the density gradient are found in the neighbourhood 

of the carbons that are more than a thousand times greater than the 

feeble density gradient in our tube with rarefied sodium vapour ’). 
The radius of curvature will, therefore, in these cases be over a 

thousand times smaller than 30 meters and so may be no more 

than a few centimetres or even less. A short path through the vapour 

mass is then already sufficient to alter the direction of certain rays 

very perceptibly. 

_ If now an image of the carbon points is produced on the slit of 
a spectroscope, then this is a pure image only as far as it is formed 
by rays that have been little refracted in the arc, but the rays which 

undergo anomalous dispersion do not contribute to it. Light of this 

latter kind, coming from the crater, may be lacking in the image 

of the crater and on the other hand penetrate the slit between the 
images of the carbon points. Thus in ordinary spectroscopic obser- 

vations, not only broadening of absorption lines, but also of emission 

lines, must often to a considerable extent be attributed to anomalous 

dispersion. 

1) The spectrum < in our plate shows that the extremities of the peaks corre- 
spond pretty well to light of this wave-length; for they approach the D-lines to 

a distance which certainly is no more than 1/;; of the distance of the D-lines 
which amounts to 6 Anesrr.-units. For these rays the opening of the diaphragm 

was 1 cm. distant from the optical axis. 
*) If we e.g. put the vapour density of the metal in the crater, where it boils, 

at 0.001, the density of the vapour outside the are at a distance of 1 cm. from 
the crater, at 0.0001, then we have already an average gradient 5000 times as 

large as that used in our experiments. 



When we bear this in mind, many until now mysterious phenomena 

will find a ready explanation. So e.g. the fact that Liverye and Dewar’) 

saw the sodium lines strongly broadened each time when vapour 

was vividly developed after bringing in fresh material, but saw them 

become narrower again when the mass came to rest, although the 

density of the vapour did not diminish. If by pumping nitrogen 

into the evaporated space the pressure was gradually increased, the 

lines remained sharp; but if the pressure was suddenly released, they 

were broadened. All this becomes clear as soon as one has recog- 

nised in the lines dispersion bands, which must be broad when the 

density of the absorbing vapour is irregular, but narrow, even with 

dense vapour, if only the vapour is evenly spread through the space. 

Another instance. According to the investigations of Kayser and 

Runce the lines, belonging to the second secondary series in the 

spectra of magnesium, calcium, cadmium, zinc, mercury, are always 

hazy towards the red and are sharply bordered towards the violet, 

whereas lines, belonging to the first secondary series or to other series 

are often distinctly more widened towards the violet. With regard 

to the spectrum of magnesium they say:*) “Auffallend ist bei mehre- 

ren Linien, die wir nach Roth verbreitert gefunden haben, dass sie 

im Rowu1anp’schen Atlas ganz scharf sind, und dann stets etwas 

kleinere Wellenlainge haben. So haben wir 4703,33, RowLanp 4703,17 ; 

wir 5528,75, Rowianp 5528,62. Unscharfe nach Roth verleitet ja 

leicht der Linie gréssere Wellenlainge zuzuschreiben; so gross kann 

aber der Fehler nicht sein, denn die Row.anp’sche Ablesung liegt 

ganz ausserhalb des Randes unserer Linie. Wir wissen daher nicht, 

woher diese Differenz rithrt.’”’” Kayser has later*) given an explana- 

tion of this fact, based on a combination of reversal with asymme- 

trical widening; but a more probable solution is, in my opinion, 

to regard the .widened serial lines as dispersion bands. 
If we namely assume that, when we proceed from the positive 

carbon point, which emits the brightest light, to the middle of the 

are, the number of the particles associated with the second secondary 

series decreases, then rays coming from the crater and whose wave- 
length is slightly greater than that of the said serial lines will be 

curved so as to turn their concave side to the carbon point. Their 

origin is erroneously supposed to be in the prolongation of their 

final direction, so they seem to come from the arc, and one believes 

1) Livernc and Dewar, On the reversal of the lines of metallic vapours, Proc. 

Roy. Soc. 27, p. 132—136: 28, p. 367—372 (1878—1879). 
2) Kayser und Runee, Uber die Spektren der Elemente, IV, S. 13. 

1) Kayser. Handbuch der Spektroskopie II, 5. 366. 
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to see light emitted by the vapour, in which light different wave- 

lengths occur, all greater than the exact wave-length of the serial 

lines. The observed displaced lines of the second secondary series 
are consequently comparableto apparent emission lines of the spectrum 
J of our piate I. 3 

In this explanation things have been represented as if the light of 
these serial lines had to be exclusively attributed to anomalous dis- 

persion. Probably however in the majority of cases emission proper 
will indeed perceptibly contribute to the formation of the line; the 

sharp edge must then appear in the exact place belonging to the 

particular wave-length. 

How can we now explain that lines of other series are diffuse at 
the opposite side? Also this may be explained as the result of ano- 
malous dispersion if we assume that of the emission centres of these 

other series the density icreases when we move away from the 

positive carbon point. In this case namely the rays originating in 

the crater, which are concave towards the carbon point and conse- 

quently seem to come from the arc, possess shorter wave-lengths 

than the serial lines, i.e. the serial lines appear widened towards 

the violet. This supposition is not unlikely. For the positive and 
negative atomic ions which according to Srark’s theory are formed 

in the are by the collision of negative electronic ions, move in opposite 

directions under the influence of the electric field; hence the density 

gradients will have opposite signs for the two kinds. Series whose 
lines are diffuse towards the red and series whose lines flow out 

towards the violet would, according to this conception, belong to 
atomic ions of opposite signs — a conclusion which at all events 

deserves nearer investigation. 

The examples given may suffice to show that it is necessary syste- 

matically to investigate to what extent the already known spectral 

phenomena may be the result of anomalous dispersion. A number 

of cases in which the until now neglected principle of ray-curving 

has undoubtedly been at the root of the matter are found in Kayszr’s 

handbook II, p. 292—298, 304, 306, 348—351, 359—361, 366. 

Dispersion bands in the spectra of celestial bodies. 

Since almost any peculiarity in the appearance of spectral lines 

may be explained by anomalous dispersion if only we are at liberty 
to assume the required density distributions, we must ask when 

applying this principle to astrophysical phenomena: can the values 
of the density gradient for the different absorbing gases in celestial 
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bodies really be such, that the rays are sufficiently curved to exert 

such a distinct influence on the distribution of light in the spectrum? 

In former communications’) I showed that the sun e.g. may be 
conceived as a gaseous body, the constituents of which are intima- 

tely mixed, since all luminous phenomena giving the impression as 

if the substances occurring in the sun were separated, may be 

brought about in such a gaseous mixture by anomalous dispersion. 

We will now try to prove that not only this may be the case, but 

that it must be so on account of the most likely distribution of 

density. 

Let us put the density of our atmosphere at the surface of the 
1 

earth at 0.001293. At a height of 1050 cms. it is smaller by 760 of 

this amount, so that the vertical density evadient is 

0.001293 

1050 s< 760 

The horizontal gradients occurring in the vicinity of depressions 

— 16 X 10-10, 

i 1 
are much smaller; even during storms they are only about oo 

of the said value’). Over small distances the density gradient in the 

atmosphere may of course occasionally be larger, through local heating 

or other causes. 

Similar considerations applied to the sun, mutatis mutandis, cannot 

lead however to a reliable estimate of the density gradients there 

occurring. A principal reason why this is for the present impossible 

is found in our inadequate knowledge of the magnitude of the 

influence, exerted by radiation pressure on the distribution of matter 
in the sun. If there were no radiation pressure, we might presuppose, 

as is always done, that at the level of the photosphere gravitation is 

28 times as great as on the earth; but it is counteracted by radiation 

pressure to a degree, dependent on the size of the particles ; for some 

particles it may even be entirely abolished. The radial density gra- 

dient must, therefore, in any case be much smaller than one might 

be inclined to calculate on the basis of gravitational action only. 
Fortunately we possess another means for determining the radial 

density gradient in the photoshere, at any rate as far as the order 

of magnitude is concerned. According to Scumipt’s theory the photo- 

sphere is nothing but a critical sphere the radius of which is equal 

') Proc. Roy. Academy Amsterdam, II, p. 575; IV, p. 195; V, p. 162, 589 and 
662; VI, p. 270; VIII, p. 184, 140 and 323. 

*) Arruenius. Lehrbuch der kosmischen Physik, S. 676. 
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to the radius of curvature of luminous rays whose path is horizontal 
at a point of its surface. This radius of curvature is consequently 
@ =7 X 10'° cms., a value which we may introduce into the expres- 
sion for the density gradient: 

dQ __ 1 

ds ~~ Re 
The refractive equivalent # for rays that undergo no anomalous 

dispersion varies with different substances, to be sure; but in an 
approximate calculation we may put A=0,5. Then at the height of 

the critical sphere we shall have : 

dh = at 

ds (05X 7X 100 
(this is 50 times less than the density gradient in our atmosphere). 
All arguments supporting Scumipt’s explanation of the sun’s limb, 

are at the same time in favour of this estimate of the radial density 

gradient in the gaseous mixture. 

Let us now consider rays that do undergo anomalous dispersion. 

In order that e.g. light, the wave-length of which differs but very 
little from that of one of the sodium lines, may seem to come from 

points situated some are seconds outside the sun’s limb, the radius 

of curvature of such anomalously bent rays need only be slightly 

smaller than 7 x 10'° cms. Let us e.g. put 

ob, -10" ¢:m-. 

If we further assume that of the kind of light under consideration 
the wave-length is 0.4 Angstrom-units greater than that of D,, then 

for this kind of light A’ = 1600, as may be derived from the obser- 
vations of Woop and of Jrewert'); we thus find for the density 

gradient of the sodium vapour 

dL a aoe 1 

ds Ro 1600 X 6 & 1010 
a quantity, 2900 times smaller than the density gradient of the 

gaseous mixture. 

— 0.29 < 10-10, 

== 0.0001 < 10-10, 

- 

1 
Hence if only 3000 part of the gaseous mixture consists of sodium 

vapour, then, on account of the radial density gradient, the critical 

sphere will already seem to be surrounded by a “chromosphere” of 

light, this light having a striking resemblance with sodium light. This 

kind of light has, so to say, its own critical sphere which is larger 

than the critical sphere of the not anomalously refracted light. If the 

1) See page 352. 
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percentage of sodium were larger, the “sodium chromosphere’ would 

appear higher. 

It is customary to draw conclusions from the size of the chromo- 
spheric and flash crescents, observed during a total eclipse with the 

prismatic camera, as to the height to which various vapours occur 

in the solar atmosphere. According to us this is an unjustified con- 

clusion. On the other hand it will be possible to derive from these 

observations data concerning the ratio in which these substances are 

present in the gaseous mixture, provided that the dispersion curves 

of the metallic vapours, at known densities, will first have been 

investigated in the laboratory. 

Until now we only dealt with the normal radial density gradient. 
By convection and vortex motion however irregularities in the density 
distribution arise, with gradients of various direction and magnitude. 
And since on the sun the resultant of gravitation and radiation 

pressure is relatively small, there the irregular density gradients may 
sooner than on the earth reach values that approach the radial 
gradient or are occasionally larger. 

The incurvation of the rays in these irregularities must produce 

capriciously shaped sodium prominences, the size of which depends, 
among other causes, on the percentage of sodium vapour in the 
gaseous mixture. 

So the large hydrogen and calcium prominences prove that rela- 

tively much hydrogen and calcium vapour is present in the outer 

parts of the sun; but perhaps even an amount of a few percents 

would already suffice to account for the phenomena °*). 

If we justly supposed that non-radially directed density gradients 

are of frequent occurrence in the sun, and there disturb the general 

radial gradient much more than on the earth, then not only rays 
from the marginal region but also rays from the other parts of the 
solar disc must sensibly deviate from the straight line. Chiefly con- 
cerned are of course the rays that undergo anomalous dispersion. 

Every absorption line of the solar spectrum must consequently be 
enveloped in a dispersion band. 

To be sure, absorption lines of elements which in the gaseous 

mixture only occur in a highly rarefied condition, present themselves 

as almost sharp lines, since for these substances all density gradients 

are much smaller than for the chief constituents, and so the curvature 

of the rays from the vicinity of these lines becomes imperceptible. 

1) This result would be in accordance with a hypothesis of Scumipr (Phys. 

Zeitschr. 4, S. 232 and 341) according to which the chief constituent of the solar 

atmosphere would be a very light, until now unknown gas. 
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Also of strongly represented elements some lines may appear sharp, 

since not all lines of the same element, with given density, cause 

anomalous dispersion in the same degree. Perhaps even there are 

absorption lines which under no condition give rise to this pheno- 
menon; though this were rather improbable from the point of view 

of the theory of light. 
Be this as it may, the mentioned limitations do not invalidate our 

principal conclusion: that the general interpretation of the solar spectrum 

has to be modified. We are obliged to see in FRAvUNHOFER’s lines not 

only absorption lines, as Kircnyor does, but chiefly dispersion bands 
(or dispersion lines). And that also on the distribution of light in 
the stellar spectra refraction has a preponderant influence, cannot be 

doubted either. 

We must become familiar with the idea that in the neighbourhood 

of the celestial bodies the rays of light are in general curved, and 
that consequently the whole interstellar space is filled with non- 

homogeneous radiation fields*) of different structure for the various 
kinds of light. 

Chemistry. — “On a substance which possesses numerous *) different 
liquid phases of which three at least are stable in regard to 
the isotropous liquid.” By Dr. F. M. Jazcrr. (Communicated 
by Prof. H. W. Baxxuis Roozesoom). 

§ 1. The compound which exhibits the highly remarkable phenomena 

to be described, is cholesteryl-cinnamylate: C,,H,,0,C.CH:CHC,H,. 
I have prepared this substance by melting together equal quantities 

of pure cholesterol and cinnamyl-chloride in a small flask, which 

was heated for about two hours in an oilbath at 190°. It is of the 
greatest importance, not to exceed this temperature and the time of 

heating, as otherwise the liquid mass, which commences to darken, 

even under these conditions, yields instead of the desired derivative 
a brown resin which in solution exhibits a green fluorescence. 

1) Das ungleichmassige Strahlungsfeld und die Dispersionsbanden. Physik. Zeitschr. 

6, S. 239—248, 1905. 
2) In the Dutch publication, I have said: five. Since that time however, more 

extended microscopical observation has taught me, that probably there are an 
infinite number of anisotropous liquid phases, no sharply fixed transition being 
observed in this manner. The hypothesis, that the transition of the first anisotropous 
liquid phase into the isotropous should be continuous, would therefore be made 
more probable in this way. However there are observed some irreversibilities by 
passing from solid to liquid state and vice-versa, which yet I cannot explain at this 

moment. 
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The solidified mass is dissolved in boiling ether, and the brown 

liquid is boiled with animal charcoal for an hour in a reflux-appa- 

ratus. To the filtrate is then added absolute alcohol, heated to 40°, 

until the liquid gets turbid. On being set aside for a few hours the 

ester deposits in small, almost white glittering leaflets. These are 

collected at the pump, washed with a little ether-alcohol, and then 

recrystallised several times from boiling ethyl acetate, to which each 

time some alcohol may be added to precipitate the bulk of the ester. 

The pure, quite colourless, beautifully crystallised compound shows 

no heterogenous components under the microscope. 

§ 2. The following experiments were carried out in the usual manner; 

the substance was contained in small, thin-walled testtubes, whilst 

surrounded of a cylindrical air-bath, and whilst the thermometer 

was placed in the liquid completely which covered the mercury reser- 

voir. The temperature of the oilbath was gradually raised with constant 

stirring and now the following facts were noticed. 

At about 151° the solid mass begins to soften‘) while brilliant 

colours appear here and there at the sides, principally green and 

violet, with transmitted light the complimentary colours red and 

yellow. At about 157° the mass is a thick fluid and strongly doubly 

refracting; the ground tone of the phase is orange-red, whilst, on 

stirring with the thermometer, the liquid crystals everywhere form 

links of lustrous bright green and violet slides. Afterwards, by the 

construction of the cooling curve, I determined sharply the tempe- 

rature ¢{155°.8 C.] at which the substance solidifies; the break in the 

curve is distinct as the heat effect is relatively large and the under- 

cooling was prevented by inoculation with a solid particle of the 

ester. 

The colour of the liquid phase is now but little changed on further 

heating; on the other hand its consistency becomes gradually more 

and more that of a thin liquid. At 199°.5 it is nearly colourless and 

one would expect it to become presently quite clear. 
But at that temperature the mass becomes all of a sudden enamel- 

white, and rapidly thickens, while still remaining doubly-refracting. 

We now observe plainly a separation into two liquid layers which 

are here both anisotropous. The interference colours have now 

totally disappeared. Then, on heating slowly, the liquid phase becomes 

isotropous at 201.3° and quite clear. The isotropous liquid is colourless. 

1) Bonpzynskt and Humnicki (Zeitsehr. f. physiol. Chem. 22, 396, (1896), describe 

a cinnamylate which as regards solubility etc. agrees with mine, but which melts 

at 149°. This is evidently identical with my first temperature of transition, 
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On cooling, the following phenomena occur: At about 200° the 

isotropous liquid becomes turbid, at 198° the doubly-refracting mass 

attains its greatest viscosity; at 196° it has already become thinner, 

but now at about 198° it again becomes thicker and the whole 

appearance of the phase is strikingly altered, although still remaining 
doubly refracting. It then seems to pass gradually into the green 

and red coloured, doubly refracting liquid phase, which, if we prevent 

the undercooliug by inoculation, solidifies at 155°.8. 

If the solid substance is melted under Leamann’s crystallisation- 
microscope, — where the conditions. of experimenting are naturally 

quite others than before, — it seems, that but one liquid phase, the 
green and red coloured, is continually changed into the isotropous 

one: no sudden changing is observed. On cooling, the aspect of the 

anisotropous phase now obtained, is quite different from the first 

mentioned. 

I also think I must come to the conclusion that the liquid 

phase (¢= about 190°) occurring on cooling is perhaps only the 

passage to the other three, so that here, three stable liquid phases 
might occur. It is very remarkable that the transitions of the 
two stable anisotropous phases into the intermediate one appear, 

when we work carefully, quite continuous; the viscosity appears 

to pass gradually into that of the more stable phases. Remarkable 

also is the impossibility to find the temperatures of transition 

exactly the same on the rising, or falling, temperature of the 

external bath. The values obtained for the initial and final tempe- 

rature of each phase-traject vary within narrow limits. The same 

is the case when, on melting the solid substance, one wishes 

to determine the point where the first softening of the mass takes 

place; in the determination of the temperature, intervals such as from 
147° to 156° are noticed. The progressive change of the cooling of 

isotropous-liquid to solid resembles here in a high degree a process 

where a continuous transition exists between the different stadia. It 

is as if the labile phase is composed of an entire series of condi- 

tions which occur successively to form the connection on one side 

between anisotropous and isotropous-liquid. The whole shows much 

resemblance to a gradual dissociation and association between more 
or less complicated molecule-complexes. It is quite possible that 

the transitions solid-liquid occur really continuously instead of 
suddenly, in which case an uninterrupted series of labile inter- 
mediate conditions — which cannot be realised in most substan- 

ces — are passed, some of which intermediate conditions might 

be occasionally fixed in those substances which like these chole- 
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steryl-esters usually display the phenomena of the doubly-refracting 
liquid-conditions. All this seems probable to the investigator, the more 

so as it has been proved by Lrnmany, that in my other cholesteryl- 

esters, even in the case of the caprinate, both or one of the two 

anisotropous liquid-phases were always labile and only realizable on 
undercooling; some of them, such as the zsobutyrate, only exhibited 

their labile anisotropous liquid-phases, when containing some impurities 

and not when in a pure condition. With the idea of a gradual 

dissociation of compound molecule-complexes into more simple ones, 

agrees the fact that the anisotropous liquid phases have never been 

known yet to occur after the isotropous ones; this is always the 
end-phenomenon, which is accounted for by the fact that a dissocia- 

tion of this kind is always found to increase with a rise of temperature. 

That the cooling between solid and anisotropous-liquid does not 

proceed so suddenly as may be predicted from the great calorific 

effect is shown in the case of the cinnamylate from the fact that, 

after the solidification, particularly at the side of the test tubes, the 

interference-colours, which are characteristic before the transition of 

the phases into each other, remain visible for a very long time, 

often many hours, then slowly disappear. Even with great enlarge- 
ment, no well defined crystals can be discovered in those coloured 

parts; the whole conveys the impression of a doubly-refracting, irre- 

gular network of solidified liquid droplets, just like the liquid crystals 

which present themselves to the eye with the aid af a powerful 
enlargement *). 

In these obscure phenomena we are bound to notice the more or 

less labile and partially realized intermediate stadia in a continuous 

transition liquid S$ solid. The view expressed by Leumany, that there 

should be present a difference between the kinds of molecules in 

the different aggregate conditions, is adopted here with this difference, 
that such a difference of association of the molecules is thought quite 

compatible with the phenomenon of the continwity of the aggregate 

conditions, treated of here. 

§ 3. I wish to observe, finally, that cholesteryl-cinnamylate when 

subjected frequently to these melting experiments, soon undergoes 

a small but gradually increasing decomposition, which shows itself 

in the yellow colour of the mass and the fall of the characteristic 

temperature-limits. 
Zaandam, 26 Oct. ’06 

1) A still more dislinct case of this phenomenon has now been found by me 
in .-phytosteryl-propionate, which | hope soon to discuss in another communication. 
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Chemistry. “The behaviour of the halogens towards each other’. 
By Prof. H. W. Bakuuis RoozEsoom. 

_If the phase-doctrine in its first period was concerned mainly with 

By an omission the pagination of the 

Proceedings of the Meeting of Saturday 

October 27, 1906 begins with page 249 

instead of page 237, so pages 238-248 

do not exist. 

Finally it now appears from an investigation Dy MISS KARSTEN 

that Chlorine and Bromine only give mixed crystals on cooling and 

that in a connected series, whilst, in agreement with this no indication 

for the existence of the compound in the liquid or vapour could be 
deduced from the form of the boiling point line. 

We, therefore come to the conclusion that IC], is a feeble and 

ICl a strong compound. IBr is also a feeble compound and no com- 

pound exists between Cl and Br. The combining power is, therefore, 

1) Still closer than represented in Fig. 7, p. 540. These proceedings [VIII] 1904. 

2) These proceedings VI, p. 331. 

24 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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steryl-esters usually display the phenomena of the doubly-refracting 

liquid-conditions. All this seems probable to the investigator, the more 

so as it has been proved by Leamany, that in my other cholesteryl- 

esters, even in the case of the caprinate, both or one of the two 

conaitions, treated of here. 

§ 3. I wish to observe, finally, that cholesteryl-cinnamylate when 

subjected frequently to these melting experiments, soon undergoes 

a small but gradually increasing decomposition, which shows itself 

in the yellow colour of the mass and the fall of the characteristic 

temperature-limits. 
Zaandam, 26 Oct. ’06. 

1) A still more distinct case of this phenomenon has now been found by me 
in .-phytosteryl-propionate, which | hope soon to diseuss in another communication. 
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Chemistry. “The behaviour of the halogens towards each other’. 
By Prof. H. W. Bakuuis RoozEBoom. 

_If the phase-doctrine in its first period was concerned mainly with 

the question whether two or more substances in the solid condition 
give rise to chemical compounds, or mixed crystals, or remain un- 

changed in the presence of each other, lately it has commenced to 
draw conclusions from the form of the melting point lines of the 

solid mixtures, both for the nature of those solid mixtures and of 

the liquid mixtures into which they pass, namely whether, and to 
what extent, compounds occur therein: 

Likewise, the same questions may be answered in regard to liquid 

and vapour from the equilibrium lines for those two phases, namely 
boiling point lines or vapour pressure lines. 

The three systems of the best known halogens having now been 

investigated their mutual behaviour may be surveyed. 
As regards chlorine and iodine, SToRTENBEKER had proved in 1888 

that no other compounds occur in the solid condition but ICI, and 

IC]. He also showed that it is probable that ICI, on melting, liquefies 
to a very large extent without dissociation, whilst on the other 
hand ICI, is almost entirely dissociated into IC] + Cl,. 

Miss Karsten has now added to this research by the determination 

of the boiling point lines. This showed that the liquid and the vapour 
line approach each other so closely in the vicinity of the composition 

ICl*), that the conclusion must be drawn that the dissociation of 

IC] is also exceedingly small in the vapour, it being already known 
that it is very large in the case of IC\I,. 

From the investigation of Merrum TerwocrT?) it has been shown 

that Br and I form only one compound BrI which in the solid state 
forms mixed crystals both witb Br and I and which on account of 
the form of the vapour pressure and boiling point lines is largely 
dissociated in the liquid and gaseous states. 

Finally it now appears from an investigation by Miss KarsTEn 

that Chlorine and Bromine only give mixed crystals on cooling and 

that in a connected series, whilst, in agreement with this no indication 

for the existence of the compound in the liquid or vapour could be 

deduced from the form of the boiling point line. 
We, therefore come to the conclusion that ICI, is a feeble and 

{Cl a strong compound. IBr is also a feeble compound and no com- 
pound exists between Cl and Br. The combining power is, therefore, 

1) Still closer than represented in Fig. 7, p. 540. These proceedings [VIII] 1904. 
#) These proceedings VI, p. 331. 

24 
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greatest in the most distant elements and greater in Br- I than in 

Br + Cl. 
From the researches of Moissan and others it follows that Fluorine 

yields the compound IF, which is stable even in the vapour-condition. 
With Bromine, the compound BrF, is formed but no compound is 

formed with Chlorine. This, also, is in harmony with the above result. 

As, however, the compounds with Fluorine have not been studied 
from the standpoint of the phase-doctrine, there does not exist as yeta 

reasonable certainty as to their number or their stability. 

Mathematics. — “Second communication on the PuicKer equivalents 
of a cyclic point of a twisted curve.” By Dr. W. A. VERsivys. 
(Communicated by Prof. P. H. Scuours). 

§ 4. If the origin of coordinates is a cyclic point (n,7,m) of a 

twisted curve C the coordinates of a point of C lying in the vicinity 

of the origin on a branch passing through the origin can be repre- 

sented as follows: 
eal’, 

y = bt + Ob, i tr+l 4 by im trt+2 + ete., 
zo, Mtrt™ 4 ¢, ttt! + ¢, ttt? + ete. 

Let g, be the greatest common divisor of m and r, let q, be that 

of r and m, qg, that of m and n-+-r and finally g, that of m and 

r+ m. 

If @. =.= 4%: =% =1 the Puicker equivalents depend only 

on n, r and m. In a preceding communication’) I gave the PLUcKER 

equivalents for this special case ’). 

§ 2. If the 4+ G. C. Divisors g are not all unity, the PLUickER 

equivalents of the cyclic point (n,7,m) depend on the values of the 

coefficients 4 and c, just as in general for a cyclic point of a plane 

curve given by the developments: 
2 ve 

y = irtm td, te tmtl 4+ d, mtmt? + ete., 

the vanishing of coefficients d influences the number of nodal points 

and double tangents equivalent to the cyclic point (n, m) *). 

1) Proceedings Royal Acad. Amsterdam, Nov. 1905. 
2) The deduction of these equivalents is to be found among others in my treatise : 

“Points sing. des courbes gauches données par les equations: x=t, y=irb, 

z= itnt+r+m,” inserted in “Archives du Musée Teyler”, série Il, t. X, 1906. 

8) A. Brit and M. Noerner. Die Entwicklung der Theorie der algebraischen 

Functionen, p. 400. Jahresbericht der Deutschen Mathematiker-Vereinigung, Ill, 

1892—93. 
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If the coefficients c and 6 are not zero, if no special relations 
exist between these coefficients and if besides n, 7 and m are greater 

than one, the cyclic point (”,7, m) is equivalent to 

n —1 stationary points 8 and to 

fn —1)(n + 7— 3)+ 9, —1}:2 nodes H. 

The osculating plane of the curve C in the cyclic point (n, 7, m) 

is equivalent to 

m —1 stationary planes @ and to 

{(m — 1) (r + m— 3) + gq, —1}:2 double planes G. 

The tangent of the curve C in the cyclic point (n,7,m) is equi- 

valent to 

7 —1 stationary tangents 4, to 

fn — 1) (n +r — 3) + gq, —1}:2 double tangents » and to 

{7 — 1) (r + m— 3) + q, —1}:2 double generatrices w’ of the 

developable O formed by the tangents of the curve C. 

§ 3. The cyclic point (n,7,m) of the curve C’ is an n+ r-fold 

point of the developable O of which C is the cuspidal curve. 
The cyclic point (‘n,7,m) counts for 

(n+ r— 2)(n-+7r +m) 
points of intersection of the cuspidal curve C with the second polar 
surface of O for an arbitrary point. 

Through the cyclic point (”,7,m) of the cuspidal curve C’ pass 

{n(n + 2r + m— 4) + 9,—q,}: 2 

branches of the nodal curve of the developable O. 
All these nodal branches touch in the cyclic point (n,7,m) the 

tangent of the cuspidal curve C (the «-axis). 
They have with this common tangent in the point of contact 

(a + 7) (n + Ar + m— 4) + g, — q,}: 2 

points in common. 

The nodal branches passing through the cyclic point (n, 7, m) all 

have in this point as osculating plane the osculating plane z= 0 of 
the cuspidal curve C. 

These nodal branches have with their osculating plane z= 0 in 
the cyclic point (n, 7, m) 

(na + r+ m) (n+ 2r+m— 4)+ 9, —49,}:2 

points in common. 

§ 4. The case of an ordinary stationary plane «, the point of 

contact of which is a eyclic point (1,1, 2), shows that through a 

24* 
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cyclic point branches of the nodal curve can pass not touching: in 

this point the cuspidal curve. 
These intersecting nodal branches exist only when g, >1. If 

r->1 the coefficients 5 and c must satisfy special conditions. 
If r=1 then through the cyclic point (n,7r,m) of the cuspidal 

curve pass either qg,:2, or (g,—1):2 of these nodal intersecting 

branches. All intersecting nodal branches have a common tangent 

in the plane z=0O if r=1. 

§ 5. The case of an ordinary stationary point 8 (2,1,1) shows 

that through a cyclic point of the cuspidal curve nodal branches 

can pass which have the same tangent, but not the same osculating 

plane as the cuspidal curve. These particular nodal branches exist 

only when g,>1. If q,>>1 and m=1 these particular nodal 

branches are always present. If g, > 1 and also m >1 the coefficients 
6 and c must satisfy special conditions. These particular nodal 

branches have in the cyclic point (n, 7, m) a common osculating 

plane (differing from the plane z= 0) if m= 1. 

§ 6. The tangent to C in the cyclic point (n,7,m) is an r-fold 
generatrix g on the developable O. The r sheets of the surface O 
passing through the generatrix g all touch the osculating plane z = 0 

of C in the point (n, r, m). 
The generatrix g moreover meets in g—(n-+2r-+™m) points & 

a sheet of the surface O, when QO is of order og. 
In every point R the generatrix g meets 7 branches of the nodal 

curve. These 7 branches form, when m >~, a singularity (7, r, m—r) 

and the osculating plane of these nodal branches is the tangent 

plane of O along 4. 
If m <r these r nodal branches form a singularity (7, m,r— m) 

and the osculating plane .of these 7 nodal branches is the tangent 

plane of O along the generatrix intersecting g in AR. 

If » =m these r nodal branches form a singularity (7, 7, 1). 

§ 7. In general the singular generatrix g will meet only nodal 

branches in the cyclic point (n,7,m) and in the points A. Ifg, >1 

the generatrix g may meet moreover nodal branches arising from 

the fact that some of the 7 sheets, which touch each other along g pene- 

trate each other. These nodal branches meet g in the same point Q. 

If g, >1 and n=1 there is always such a point of intersection Q. 
If g, >1 and n >1 the coefficients 6 and c must satisfy some special 

conditions if the sheets passing through g are to penetrate each other. 
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Physics. — “On the measurement of very low temperatures. XII. 

Determinations with the hydrogen thermometer.” By Prof. H. 

KaMERLINGH OnneS and C. Braak. (Communication N° 95¢ 

from the Physical Laboratory of Leiden). 

§ 1. Introduction. 

The results of determinations of low temperatures made with the 

bydrogen thermometer, which was described in Comm. N°. 27 (June 
1896) and more fully discussed in Comm. N°. 60 (September 1900), 

have already frequently been used, but no further particulars 
have as yet been given about these determinations themselves. We 
give them now in connection with a series of observations made in 
1905 and 1906. They have served for the investigations described in 

Comm. N° 952 and 95° (June 1906) and further for determinations 

of isotherms of hydrogen at low temperatures, which will be discussed 

in a following communication. Comprising also measurements on liquid 

hydrogen, they extend over the whole of the accessible area of the 
lower temperatures. All the precautions which proved necessary in 
former years, have been taken. The temperature of the bath, in 

which the thermometer was immerged, could be kept constant 

to 0°.01 at all temperatures. It was therefore to be expected, that 
the accuracy and reliability aimed at in the arrangement of the 

thermometers, might to a great extent be reached.') In how far this 

is really the case, the following data may show. 

§ 2. Arrangement of the thermometer. 

There is little to add to Comm. N°.60. The steel capillary con- 
necting the thermometer bulb and the manometer, was protected from 

breaking by passing a steel wire along it, the ends of which are 

soldered to copper hoods, which may be slidden on the steel pieces 
ce and ¢ (Plate Il, Comm. N°. 27) at the end of the capillary. The 
dimensions of the thermometer reservoir of Comm. N°. 60 (80 ¢.M°.) 

did not present any difficulty in our measurements, the bath in the 

cryostats (see Comm. N°. 83, 94°, 94¢ and 94/ (May and June 
1905 and June 1906)) offering sufficient room besides for the 

thermometer and other measuring apparatus, for the stirring appa- 

ratus, which works so thoroughly, that no variation of tempe- 

1) A complete example of the determination of very low temperatures with the 
hydrogen thermometer was as yet not found in the literature. Such an example 
follows here. . 
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rature could be found') at least with the thermo-element’). The 

section of the glass capillary forming the stem of the thermometer 

was 0,0779 mM?. With regard to the temperature correction (see 

§ 4, conclusion), it is desirable that this section is small. It appears 

both from calculation and from observation’), that the equilibrium of 

pressure between the space near the steelpoint and reservoir is still very 

quickly reached with these dimensions of the capillary *), much more 

quickly than the equilibrium of the mercury in the two legs of the mano- 

meter, which is inter alia also confirmed by the rapidity with which 

the thermometer follows fluctuations in the temperature of the bath’). 

The determination of the pressure which is exerted on the gas, 

may, when the determination applies to very low temperatures, be 

simplified and facilitated by following the example of CHappuis‘) 

and making the manometer tube serve at the same time as baro- 

meter tube. The modification applied for this purpose to the arran- 

gement according to Comm. N°. 60 Pl. VI, is represented on PI. I, 

which must be substituted for part of Pl. VI belonging to Comm. N°. 60. 
By means of an india-rubber tube and a T-piece /, the thermometer 

(a, b, c, d, e, h, k) is connected on one side with the manometer 

1, to which (see Pl. VI Comm. N°. 60) at m, the reservoir at 
constant temperature is attached and at m, the barometer, on the 

other side with the barometer tube (v,, 7, (airtrap) 7,). Besides from 

the manometer and the barometer joined at m,, the pressure can 

now also immediately be read from the difference in level of the 

mercury in nm, and in g. We have not availed ourselves of this 
means for the determinations discussed in this Communication. 

§ 3. The hydrogen. 

The filling took place in two different ways: 

1) Travers, SenTeR and Jaguerop, (Phil. Trans. Series A, Vol. 200, Part. II, § 6) 

who met with greater difficulties when trying to keep the temperature constant in 
their measurements, had to prefer a smaller reservoir. 

2) A resistance thermometer is more sensible (Cf. Comm. Nos. 95% and 95%), 

As soon as one of suitable dimensions will be ready, the experiment will be repeated. 
5) Calculation teaches that for reducing a pressure difference of 1 c.M. to one 

of 0.01 m.M., the gas flowing through the capillary requires 0.1 sec., the mercury 

in the manometer 4 sec. Experiment gives for this time 25 sec. This higher 

amount must be due to the influence of the narrowing at the glass cock k. 
4) We must be very careful that no narrowings occur. 

5) A great deal of time must be given to exhausting the reservoir with the 

mercury airpump when filling it, as the equilibrium of reservoir and pump is 
established much more slowly than that between dead space and reservoir. 

6) Travaux et Mémoires du Bureau International, Tome VI. 
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a. By means of hydrogen prepared in the apparatus of Comm. 

N°. 27 with the improvements described in Comm. N°. 94¢ (June 1905) 

§ 2. After having beforehand ascertained whether all junctures of 
the apparatus closed perfectly, we maintained moreover all the time 

an excess of pressure in the generator, in order to exclude any 
impurity from the gas. The expulsion of the air originally present 
in the apparatus was continued till it could be present in the gas at 
the utmost to an amount of 0.000001. 

b. By means of hydrogen prepared as described in Comm. 

N°. 947 XIV. In order to apply this more effective mode of 

preparation, we must have liquid hydrogen at our disposal. ') In § 7 
the equivalence of the first method with the last is demonstrated 

for measurements down to — 217°. It is still to be examined whether 

systematic errors may result from the application of the first method 

of filling, in measurements on liquid hydrogen by the deposition 
of impurities, less volatile than hydrogen. ’) 

§ 4. The measurements. 
The zero point of the thermometer is determined before and after 

every set of observations. Both for the zero point and for every 

determination of temperature, an average value is derived from 

three or four observations. Each of these observations consists of a 
reading of the barometer, preceded and followed by a reading of the 
manometer. The thermometers, indicating the temperature of the 

mercury, Of the scale and of the gas in the manometer spaces are 

read at the beginning and at the end of every observation. The tem- 
perature of the room is kept as constant and uniform as possible. 

The temperature of the thermometer reservoir is taken equal to 

that of the bath. This is permissible for the cryostats described in 
Comm. N°. 94¢ and Comm. N°. 94/ and the treatment given there. 

The temperature of the bath is kept constant by means of the 
resistance thermometer, described in Comm. N°. 95¢. In order to 

facilitate the survey of the observations, the resistance was adjusted as 

accurately to the same value as possible, and by means of signals the 
pressure in the cryostat was regulated in such a way, that in the very 

sensible galvanometer the mirror made only slight oscillations about 

1) The hydrogen in the vacuum glass B (see Comm. N°. 94,7 XIV, fig. 4) proved 

to evaporate so slowly, that a period of two hours was left for filling and 

exhausting the thermometer again, which previously had been kept exhausted for 
a long time, being heated during part of the time (cf. footnote 5 § 2). 

*) In a former set of observations deviations were found, which in conjunction 

with each other prove that the hydrogen must have been mixed with air. 
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its position of equilibrium. So far as it proved necessary, a correc- 

tion curve was plotted of these oscillations (see Plate II Comm. N°. 83, 

December 1902). As a rule, however, these deviations were so slight, 

that they could be neglected. 
Part of the capillary glass stem of the thermometer has the 

same temperature as the liquid bath. The length of this part is 

derived from the indications of a float!) in the cryostat, which is 

omitted in the drawings, not to render them indistinct. In order 

to find the distribution of temperature in the other parts of the 

capillary within the cryostat, special determinations are made, 

viz. a. by means of a resistance thermometer placed by the side of 

the capillary, (see Comm. N°. 83 Plate II*)), 6. with the aid of a 
thermoelement, whose place of contact was put at different heights 

in the cryostat, the distribution of temperature in the cryostat was 

examined for the case that liquid air, liquid ethylene or liquid 

hydrogen was used as bath, and finally c. the distribution at other 

temperatures of the bath was derived from this distribution. This 

may be deemed sufficient, as the volume, the temperature of which 

is determined, amounts only to of the reservoir, and as an error 
| 

3000 
of 50° in the mean temperature of the capillary corresponds to 
only 0°.01 in the temperature of the bath, while the agreement of 
the observations sub a and 6 show that an error of more than 20° 

is excluded. 

§ 5. Calculation of the temperatures. 
The calculation of the zero point is made by reducing the observed 

pressure of the gas to that under fixed circumstances, the same as 

taken in Comm. N°. 60. Put: 

V, the volume of the reservoir at 0°. 
u, the volume of that part of the glass capillary that has the same 

temperature ¢ as the reservoir. As such is considered the part 

immerged in the liquid bath, to which is added 2 cm. of the 

part immediately above it. 
u,' and w," the volumes of the parts of the glass capillary in the 

cryostat outside the bath at temperatures ¢,' and ¢,". 

u, the volume of the part of the glass capillary outside the cryostat 

(u,') and of the steel capillary at the temperature ¢,. 

1) For determinatiouis on liquid hydrogen no float was used. The level of the 
liquid in the bath was derived from the volume of the evaporated gas. 

2) The lowest part from %, to & 9 with close windings is 9 cm.., the part where 

the windings are farther apart (about 20 cm.) reaches up to in the top of the 

cryostat. 
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u, the volume at the steel point of the volumenometer. 
8, and 8, the variation of the volume V, caused by the pressure 

of the gas. 

If Hy is the observed pressure, and H, and uw have the same 

meaning as in Comm. N°’. 60, the temperature is found from the 
formula: 

Vil htthe tBu Ms) se x ie 1+at, iT 1+ at," ED 1+ at, as aa a 

=F) Y, +8, +4 +4, ee ae back) 
The change of volume of the glass stem caused by the change of 

temperature need not be taken into account, as little as that of w. 
That of the thermometer reservoir has been calculated by means of a 
quadratic formula, of which the coefficients 4, and /, have the fol- 

lowing values: 4, — 23.43 X 10-*, £, = 0.0272 x 10%’). 
Put 

' " Us Us u, u, > u } 

= pe are 1+ at | 2) 

! "” m . — 

Mle tatu tus tute ee |—* | 
then follows from the above for = ead 

tatu —p + +%%,¢ 
t= ike 3 ——— - + (3) 

eee =) V, k, 
Ary l+at 

If the term with ¢ is omitted, we find an approximate value for 

the temperature. Now ¢ may be calculated again, while in the term 
with ¢ this value is substituted. This approximate calculation is quite 
sufficient. 

§ 6. Survey of a measurement. 
The observations communicated in this §, yielded the temperature 

corresponding to the electromotive force of the thermoelement deter- 
mined in Table IV and V of Comm. 952 and corresponding to the 
resistance measured in the observation given in Table I of Comm. 

N°. 95¢ (in the last case even almost simultaneous). 

i) These values have been derived from Comm. N°. 95%. They refer to the 
determinations made in 1903 on the expansion of glass. If we calculate the tem- 
peratures by means of the quadratic and cubic formula derived in the same Comm. 
from the observations of 1905, we find but slight differences, which amount 
respectively to —0°.014 and — 0°.016 at — 100°, and remain always below 

0°.01 at — 200° and lower. 
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The tables I and II are analogous to those of Comm. N°. 60, 
only column X has been added to the former, in which the readings 
from the kathetometer scale are noted down. In every measurement 

they are always determined, in order to be used, if necessary, as a 

control for the readings by means of the standard scale, in connection 
with the collimation differences of the telescopes. 

TA Boa 

DETERMINATION IN A BATH OF LIQUID HYDROGEN. 

(ABOUT — 253°). READINGS. 

May 5,’06,3.10-3.30) 4 | B 

Point y RY Esa a (eS) 

lower top | 23.00 | 9.0 

meniscus rim | 26.01 | 9.0 

Manometer 

Barometer 

EE EE Sr _ 

higher top | 15.10 | 7.9 

meniscus rim | 18.43 | 7.9 

lower top | 21.03 | 8.7 

meniscus rim | 22.70 | 8.6 

higher top | 25.82 | 9.6 

meniscus rim | 27.98 |40.0 

lower top 22.98 | 9.3 

meniscusrim | 25.99 | 9.3 

Manometer higher top | 15.06 | 7.9 

Point 14.76 | 8.0 

meniscus rim | 18.42 | 8.0 

C | D | BE | .F | as eogey | K 

974 | 20.17 | 9.4 

975 | 17.86 | 8.4 

997 | 22.02 | 9.3 | 15.5 | 45.5 | 15.4 

998 | 19.90 | 10.3 15.6 | 15.4 | 24.996 

15.5 | 14.3 

974 | 20.17 | 9.4 

975 | 17.86 | 8.4 | 15.5 89.294 

997 | 22.02 | 9.3 | 45.5 

998 | 19.90 | 10.3 | 15.5 

1058 | 28.07 | 41.3 | 45.7 103.279 

4059 | 25.43 | 44.0 | 45.7 

997 | 22.02'| 9.3 | 15.4 | 15.5 | 15.4 

998 | 19.90 | 10.3 15.4 | 15.2 

15.3 | 14.3 

974 | 20.17 | 9.4 

975 | 17.86 | 8.4 | 15.5 

974 | 20.17 | 9.4 

975 | 17.86 | 8.4 
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PA Bi ‘TT. 

DETERMINATION IN A BATH OF LIQUID HYDROGEN 

(ABOUT — 253°). CORRECTED AND CALCULATED DATA OF 
THE OBSERVATION. 

| A B' | C' | Dp! | F | F' 

., | lower meniscus 296.55 296 .70 14.8 14.9 | 
o 

= height 1.39 44.9 | 14.8 

= | higher meniscus 976.4 | 976.37 | 14.9 | 13.8 | 81.53 | 0.14 
= 

height 41.46 

lower meniscus 297.46 297 .48 14.8 
ol 

= | height 0.77 
= 

= | higher meniscus | 1058.87 | 1058.90 | 45.0 
= 

height 0.83 

The correction was applied for the difference in level of barometer 
and manometer (cf. also Comm. N°. 60). In this way we find H7, 
the pressure of the gas in the thermometer. 

a Ay BEE LH, 

DETERMINATION IN A BATH OF LIQUID HYDROGEN. 

(ABOUT —253°). DATA FOR THE CALCULATION, 

u, =0.0105 cm3 

#,' =0.0126 » ' #, = — 162° 

uq''=0.0140 » gO 0° 

u, =0.6990 » a 149.5 

ug =0.2320 » | a 14° .9 

as —0. 1144 | > | 

A p= 81.53 m.m, 

V¥,= 82.265 cm’ | 

2, = —0.004 » ,2,—-+ 0.0021 cm3 

H,=1091.88 mm. 

“*= 0.799 cm® | 
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From the indication of the float the value of u, is found. u,' and 
u,' are chosen such that the circumstances are as closely as possible 
equal to those for which the distribution of temperature in the 

cryostat is determined. We get now the table III, in which A, is 
the zero point pressure. 

From these data with formula (3), where the value 0,0036627 
of Comm. N°. 60*) was assumed for a, follows for the approximate 
value of the temperature: 

t = — 252°.964 | 

and after application of the correction for the quadratic term : 

t= — 252°.964 + 0°.035 = — 252°.93. 

§ 7. Accuracy of the determinations of the temperature. 

In order to arrive at an opinion about the error of the observations 
with the hydrogen thermometer, we determine the differences of the 

hydrogen temperatures found in different observations in which the 
resistance was adjusted to the same value, reduction having been 
applied for small differences left. 

The mean error of a single determination derived from the diffe- 
rences of the readings of the thermometer, which succeed each other 
immediately, is on an average + 0°.0074, from which we derive 
for the mean error of a temperature + 0°.0043, assuming that on an 
average 3 observations have served to determine a temperature. As 
a rule no greater deviations than 0°.02 were found between the 
separate readings of one determination. Only once, on Oct. 27th ’05 
(cf. Comm. N°. 95¢ Tab. I) a difference of 0°.04 occurred. Even at 
the lowest temperatures only slight deviations occur. Thus on May 
5th ’06 two of the observations in the neighbourhood of the boiling 
point of hydrogen (cf. Comm. 957 Tab. VI,, observation N°. 30, and 
Comm. N°. 95¢ Tab. I) yielded : 

3°20’ — 252°.926 
3458’ — 252°.929 

the two others with another resistance : 

2135/ —= 28 ole 
3u 7’ — 252°.866 ”) 

Determinations of one and the same temperature on different days 

1) From the values of «# found by Cuappuis at different pressures and from 
BertHetot’s calculations follows by extrapolation from Cunappuis’ value for 

p= 1000 mM. 2 =0.00366262 for »=1090 m.M., from Travers’ value of a for 

700 m.M. with the same data z = 0.00366288 for p=1090 m.M. 

*) At both these temperatures the indications of the resistance thermometer were 
not made use of, but only the pressure in the cryostat was kept constant. That in 

spite of this the readings of the thermometer differ so little is owing to the great 
purity of the liquid hydrogen in the bath. 
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with the same filling of the thermometer yielded the following results: 
(cf. Comm, N°. 95¢ Tab. VI and N°. 95° Tab. I) ') 

July 7, ’05 — 139°.867 
Oct. 26%, ’05 — 139°.873 

July 6%, ’05 — 217°.416 
March 3'¢, ’06 — 217°.424 

June 30%, *06 — 182°.730 
July  6t, ’06 — 182°.728 

For the deviation of tle determinations on one day from the mean 

of the determinations on the two days follows resp.: 

0°.003, 0°.004 and 0°.001 so mean 0°.0027, 

which harmonizes very well with the mean error derived above for 

a single observation*), from which appears at the same time that 
different systematic errors are excluded. This justifies at the same 
time the supposition from which we started, that the error in the 
resistance thermometer may be neglected. 

Determinations with different fillings agree very well. 

The determinations made on July 6%, ’05 and March 3°4, ’06 

with the thermometer filled with electrolytic hydrogen (see § 3) and 

those made on June 30%, ’06 with the thermometer filled with 

distilled hydrogen, give: 

mean of July 6, 05 and March 3'¢, ’06 — 217°.420 

June 30%, 06 5%50' — 217°.327 
6" 5' — 217°.362 > mean — 217°.345. 
6"25' — 217°.347 

If the last temperature is reduced to the same resistance as the 

first, we find — 217°.400, hence the difference of these values is 

0°.020, from which, only one determination being made, we must 

conclude, that also with regard to the filling systematic errors are 
pretty well excluded down to — 217°. 

§ 8. Results. 

It appears from the foregoing that with our hydrogen thermometer 
determinations of temperature, even at the lowest temperatures, 

1) The temperature for June 30‘ ’06 given here differs slightly from that given 
in Table I of Comm. N® 95¢, though both refer to the same resistance. This diffe- 

rence is due to the fact that in Comm. N°. 95¢ the result of one reading has 

been used, and here the mean has been given of more readings. 

*) It gives namely for the probable error 0°.0029, so only a trifling difference 
with the above. 
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may without difficulty be effected accurate to 0 if the requisite 

precautions are taken. Though it is not certain that the determina- 

tions in liquid hydrogen of the last series come up to this accuracy, 

as there a systematic error caused by the filling may show its influ- 

ence, which does not yet make its appearance at —217°, yet it 

lies to hand to suppose, that, at least with the thermometer filled 

with distilled hydrogen, also these temperatures may be determined 

with the same degree of accuracy. 

§ 9. Vapour tension of liquid hydrogen at the melting point. 
By sufficiently lowering the pressure over the bath of liquid 

hydrogen the temperature was reached at which the hydrogen in the 
bath becomes solid. This temperature indicates the limit below which 

accurate determinations are no longer possible by the method discus- 
sed in this Communication. 

It could be accurately determined by a sudden change in the 
sound which the valves of the stirrer in the bath bring about. (See 
Comm. N°. 947, XII § 3). 

It appeared from the indication of the resistance thermometer that 
the gas in the hydrogen thermometer had partly deposited. Hence 
the pressure in the hydrogen thermometer gives the vapour tension 

of liquid hydrogen near the melting point. For this we found: 

Hae Doraa ‘i-m."). 

§ 10. Reduction on the absolute scale. 

The reduction of the readings of the hydrogen thermometer on 

the absolute scale by means of the results of determinations of the 
isotherms will be discussed in a following Communication. 

§ 11. Variations of the zero point pressure of the thermometer. 
It is noteworthy that the pressure in the thermometer in determi- 

nations of the zero point slowly decreases. This change is strongest 

when the thermometer has just been put together and becomes Jess 

in course of time. This is very evident when the results of the 
determinations made at the beginning of every new period of obser- 
vation are compared, so after the thermometer has been left unused 
for some time under excess of pressure. 

Thus on the fifth of July ’05 shortly after the thermometer had 

') For this Travers, Senter and Jaguerop (loc. cit., p. 170) find a value lying 
between 49 and 50 m.m. The great difference is probably owing to the inferior 
accuracy of these last determinations. 
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been put together we found: 

H, = 1093.10 mm. 

whereas at the beginning of the two following periods of observation 

was found: 

on Oct. 13% ’05 Ff —— 1092.11 mm. 

on Febr. 26% ’06 fee 1091.93. mm. 

The determinations before and after every period of observation 

give but slight differences when compared. As a rule the pressure 
decreases slightly as in the second of the above-mentioned periods of 

observation (March 7% ’06, H, = 1091.83 mm.), sometimes there is 

a slight increase, as in the first period of observation (Nov. 2.4 ’05, 
AH, = 1092.23 mm.) after observations under low pressure. Before 

and after the last series of observations, when shortly after the 

thermometer had been filled with distilled hydrogen, determinations 

were made at — 183° and — 217°, this difference was particularly 

large. The zero point pressure after the measurements was then 

0.33 mm. larger than before them. 

From earlier observations made with another thermometer the 

“same thing appeared. 
Thus on Nov. 19% ’02 

H, = 1056.04 mm. 

was found, and the pressure on June 8 ’04 was 

AH, = 1055.48 mm. 

while during further measurements up to July 7 ’O4 the pressure 

retained a value which within the limits of the errors of observation 

remained equal to this. 

Cuappuis') found a similar decrease viz. 0.1 mm. in three months 

with a zero point pressure of 1 M. of mercury. 

Finally a decrease of the normal volume was observed by KuRNEN 

and Rosson and by Kzxsom also with the air manometer (see 

Comm. N°*. 88 (Oct. 1903) III § 3). The same phenomenon was 
recently observed with the auxiliary manometer filled with hydrogen 

mentioned in Comm. N°. 78 (March 1902), when it was again 
compared with the open standard manometer. This comparison will 

be discussed in a following Communication. 
The possibility of there being a leak is excluded by the fact that 

a final condition is reached with the thermometer. 
It lies to hand to attribute the variations of the zero point to an 

1) Nouvelles études sur les thermométres 4 gaz, Travaux et Mémoires du Bureau 
International. T. XIII p. 32. 
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absorption which comforms slowly to the pressure. As to the 

absorption of the gas in the mercury, its adsorption to the wall 

and the interchange of gas with a thin layer between the wall and 

the mercury they (and especially the last) may be left out of account, 
though they are not rigorously zero. For with manometers, where 

no influences but these can exert themselves, the pressure of the 

gas is sometimes considerably raised during a long time, and not- 

withstanding the variations of the normal volume are much slighter 

than with the thermometers. 

Consequently we shall rather have to think of a slow dissolving 

in and evaporating from the layer of glue, which is applied between 
the steel caps and the glass. 

EAE AT A. 

p. 193 1. 1 from top for : deviation, read : value of the deviations. 
1. 2 from top for: largest deviation, read: of the largest 

deviations. | 
p. 195 1. 8 from bottom and |. 2 from bottom for: values read: 

. quantities. 

p. 196 1. 7 from top for: from, read : for. 

1. 9 from top for: and are combined, read: and these 
are given. 

p. 198 1. 19 from top for: agree, read: correspond. 

1. 6 from bottom in note, for: calculations, read: calculation 

of the formulae we used. 

l. 6 from top must be omitted: “are used” 

p. 211 1. 16 from top for: with, read: containing also. 

(November 22, 1906). 
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Zoology. — “On the placentation of Sciurus vulgaris.” By Dr. 

F. Mcrier. (Communicated by Prof. A. A. W. Huprecut). 

(Communicated in the meeting of September 29, 1906). 

I. The very eariiest stages. The ovule of Sciurus under- 

goes its first developmental stages in the oviduct. Meanwhile the 

bicornuate uterus has prepared itself for the reception of the ovule: 

underneath the single layer of epithelium the mucosa, which meso- 

metrially remains very thin, has become very strongly thickened, 

so that an excentrical T-shaped slit is left open, the transverse part 

of which lies closest to the mesometrium. A special arrangement 

for the attachment of the ovules can nowhere be detected ; a sub- 

epithelial zone is found to be richer in nuclei, however, than the 

loose connective tissue, separating this layer from the muscularis. 

Il. Preplacentary stages (From the arrival of the ovule 

in the uterus until the first formation of the allantoid placenta). 

The ovules fix themselves in varying numbers, to the right generally 

more than to the left, at about equal distances on the anti-mesometral 

(i.e. anti-placentary) uterine wall; they are fixed with their vegetative 

poles: A pellucid zone is absent, on the other hand the ovule becomes 

surrounded by a mass, formed from glandular secretions of cellular 

origin from the uterine wall. 

The ovules grow pretty quickly, for the greater part by dilatation 

of the umbilical vesicle, which in these stages still forms the principal 
part of the ovule. It is remarkable that the area vasculosa remains 
so small, so that only entoderm and trophoblast form the wall of the 

germinal vesicle over the greater part of the umbilical vesicle. 

The uterine wall shows intense activity during this stage. Many 

processes take place here in rapid succession and simultaneously. 

They all start from the spot where the ovule has settled, and from 

this point extend in all directions, successively reaching the spaces 

of the uterine horn, left open between the fixations of the ovules, 

as also the mesometrally situated parts; all these processes begin 

sub-epithelially, gradually penetrating deeper and deeper. These 

successive processes thus gradually give rise to dish-shaped layers 

of varying structure, surrounding the ovule at the anti-mesometral 

side and the character of which is most sharply pronounced in the 
points that are at the greatest distance from the mesometrium. By 

the extension of the anti-mesometral part of the long end of the 
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T-shaped slit, a broadening is brought about here, which, progressing 

more and more in the mesometral direction, finally produces a space, 

the cross-section of which presents a shape like that of a cone, 
truneated mesometrally by the old transverse part of the T, and 

bordered anti-mesometrally by a circular segment corresponding to 
the umbilical vesicle. The ovular chambers, formed in this way, 

have originated as the result of growth and extension of the anti- 
mesometral uterine wall, as a consequence of which the parts of 

the horn that connect them, are implanted at the mesometral side 

of the foetal chambers and at the same time are bent in this direction. 

The proliferation in the stroma tissue, beginning in the sub-epithelial 

layer, squeezes the mouths of the glands asunder. Later the epithelium 
in these latter degenerates, the walls agglutinate, finally only 

remnants of glands are found in the more normal stroma under the 

muscularis. 

The processes by which the first formation of dish-shaped layers 

takes place (the existence of which is always of a relatively short 
duration, however) are the oedematous imbibition of the tissue and 

disintegration of cell-elements, accompanying the proliferation of the 

sub-epithelial multinuclear zone, the final result being a system of 

cavities, separated by thin cell-partitions and filled with the products 

of oedema and disintegration of tissue. This layer is externally 

surrounded by layers which form the transition to the still normal, 

although proliferating tissue, while at the opening they are more 

and more separated by products of a later process. 
Very remarkable is the appearance at this time of “giant cells”, 

plasma-lumps of different size, which assume a dark colour and 
contain many giant nuclei with a large nucleolus. Continuous layers 
or more isolated groups are found as individual differences, apparently. 
They lie mostly superficially, often connected with the trophoblast, 
not with the vessels. At first sight one would feel inclined to regard 
them as the foetal “suction roots” of the trophoblast, described for 
Spermophilus by Ressex. Since all transitions are found between the 
mucosa tissue and these elements (in some cases even the transition 
having been followed up); since, moreover, they are found on the 
ovule, in course of being dissolved in the surrounding mass; since, 
on the other hand, in no case an origin from the trophoblast could 
be made probable, the giant cells are for this and other reasons in 
my opinion to be considered as a degenerative maternal formation, 
as a symplasm. They cannot be identified with the “monster cells” 
of Minor, ScHOENFELD and others, described for the rabbit, since these 
elements are also found in Sciurus, only much later. Finally com- 

25* 
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parative anatomical considerations plead for my opinion (see below). 

The uterine epithelium gradually disappears in all places where 

the germinal vesicle is in contact with it. There is never question of 

proliferation now. 
Relatively soon “already (even with a very extensive material the 

transitions are difficult to follow) a second stage sets in, in which 

by proliferation of the stroma cells, beginning from the surface, a 

dish is formed of cubical cells with granulated plasm (decidua), 

which extends more and more, while the above described cavities 

disappear, probably by resorption under influence of the pressure. 

In the mean time the decidua cells at the surface undergo further 

alterations and are resorbed (very likely by the umbilical vesicle, 

since in this and in the cells of the wall a similar substance can 

be found), so that a fine meshy texture is formed by the peripheral 
part of the cells remaining; by the pressure this meshy texture is 

compressed to a thin layer of lamellar structure, which in its youngest 

parts still shows the meshes. Vessels are not or scarcely found in 

the decidua. The separation between the decidua and the little or 

not changed subdecidual tissue outside it, is the limit to which the 

differentiating processes in the wall have progressed, at the same 

time approximately the limit, marking how far the agglutination 

of the germinal vesicle with the wall has advanced ; it may therefore 
be called “differentiation limit’. 

At this time the above described giant cells become fewer and 

fewer in number, have an increasingly degenerate appearance and 

soon disappear altogether. At the mesometral side especially by 

proliferation of the epithelium an increase in number and size of 
crypts takes place (not of glands). 

A second period in these pre-placentary stages is characterised for 

the ovule by the origin of the amnion ete. The growing embryo 
seeks place in an impression of the upper part of the umbilical 

vesicle, which becomes more and more accentuated. At the umbilical 

vesicle begins, starting again at the part that is most distant from 

the embryo, an outgrowth of the trophoblast cells with their nuclei, 
which process also continually advances towards the embryonic pole. 

Characteristic for this stage are different processes beginning on 

the ovule as well as on the uterus in equatorial bands above the 

differentiation limit, and from here also proceeding mesomefrally on 

all sides. For the ovule these processes consist in a proliferation .of 

the trophoblast which will later cover the outer layer of the amnion 

fold; irregularly placed, dark, polygonal cells with distinct borders 

appear; on the surface of the trophoblast small cell-heaps rise every 
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where. On the corresponding spot of the uterine wall a progressive 

process sets in; first: formation of crypts by proliferation of epithelium, 

at the same time thickening of the intermediate stroma; later by 
this process a ring has been formed, which everywhere projects a 

little into the lumen above the differentiation limit, dividing the cavity 

of the foetal chamber into a mesometrally situated placentary part, 
and an omphaloid part situated below it, while by this arrangement 
the meanwhile completed diplotrophoblast (chorion) with its very 

strongly thickened layer of trophoblast bulges out. The hyperplastic 
stroma of the projecting ring is everywhere well provided with 

crypts. 

In the meantime this proliferation process has been closely followed 
by a regressive one; the epithelium begins to degenerate, first at 

the surface, later deeper and deeper in the formed crypts; plasm 
and nuclei become darker, more homogeneous, smaller; later the 

pyenotic nuclei dissolve in the plasm and a mass is formed, epithelial 
symplasm, in which finally greater and smaller vacuoles are evenly 

distributed. Everywhere short ramifications of epithelium have pene- 
trated into the stroma, which soon degenerate. Also the stroma 

itself undergoes similar alterations later. 

Wherever this degeneration has somewhat advanced, a third process 

sets in, likewise extending as a band: the thickened trophoblast 
penetrates with its ramifications some distance into the crypts, later 

also between these into the degenerated mass. Here and there the foetal 

mass thereby changes, after its elements have become enlarged and 

paler, into a syncytium, the nuclei of which contrast well with those 

of the maternal symplasm. In this connecting ring the syncytium 

soon disappears again; extension causes the trophoblast with its 
hollow ramifications, penetrating into the crypts, to become a single 

layer once more; exactly here the area vasculosa still remains for a 

time in connection with the trophoblast: everything pleads, in my 

opinion, for the hypothesis that this has to be considered as a rudi- 

ment, namely of an omphaloid placentation (Sorex, which among the 

Insectivora stands nearest the Rodents, shows a distinct omphaloid 
placentation). 

The products of the crypts and glands, transsudates and symplasm 

masses, are shed over the cupola of the diplotrophoblast and probably 

are resorbed by this latter. 
The vessels in the meantime proliferate strongly in the wall of 

the mesometral part of the foetal chamber between the crypts, which 

has remained unchanged yet; their wall consists as before of simple 

endothelium, without a perivascular sheath. 
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Ill. Placentary stages (After the beginning of the for- 

mation of the allantoid placenta). In the omphaloid part of the foetal 

cavity the wall is more and more attenuated by extension and re- 

sorption of tissue, although the layers may be recognised as before. 

The increase in size of the trophoblast cells of the umbilical vesicle, 

which had set in formerly, now leads to the formation of true 

“monster cells”, the cellular body of which often shows concentric 

rings and other peculiarities, while the big nucleus often lies like a 

crescent round a vacuole. This process comes nearer and nearer the 

mesometrally situated formations. The entoderm, covering these monster 

cells, is very narrow and _ small-celled; where it covers the area 

vasculosa, it consists on the other hand of cubical, strong cells. In 

the umbilical vesicle a coagulated mass is always present. The large 

embryo more and more invaginates the upper part of the umbilical 

vesicle. Between the monstercells and the entoderm a sort of cuticle 

develops. 

The processes, extending in equatorial bands, continally advance 

towards the mesometral pole of the foetal chamber, also in the 

partitions of the foetal chambers, so that they are more and more 

incorporated by these latter. In this manner extremely complicated 
pictures are formed, especially in cross-sections. 

The dilatation now affects very strongly as well the placentary 

part of the foetal chambers as their mutual connecting pieces, so that 

the omphaioid part becomes smaller and smaller, while the formerly 

existing comb-shaped division between them disappears. 

The progressive process finally reaches the mesometral pole of the 
placentary space and continually advances further into the connecting 

pieces of the foetal chambers: the still intact part of the wall, which 

at first had the shape of a cupola, later assumes the form of an 8, 

finally reduced to two round planes, which by the proliferation are 

more and more limited to the connecting pieces. The progressive 

process now forms crypts, which in other places are narrow and 

deep, but in the place of the placenta are broad and wide by 
dilatation and excessive proliferation of the stroma. The epithelium 

has many layers, its surface still rises everywhere in papillae. In 

the stroma not all the cells reach their full development as decidua 

cells simultaneously, so that a peculiar reticulated aspect is produced. 

Also the vessels increase. 

In this soil now the degenerative process occurs, again advancing 
centripetally towards the mesometral pole. The epithelium becomes 

a symplasm, exactly like that described above, but this time more 
abundant and, everywhere covering the trophoblast. In the stroma 
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a conjunctival symplasm is formed, and, as was the case in the 
hyperplastic process, not everywhere simultaneously, so that small 

partitions of symplasm still surround more healthy groups. Outside 

the placentary trophoblast all this goes on until a single mass 

of epithelial and conjunctival symplasm is formed; within reach 

of the placentary trophoblast, however, the trophoblast has already 

penetrated before that time. During this degeneration also vessels 

are opened, so that extravasates are not rare now and altered blood 

is found against the trophoblast. 

The third process by which the trophoblast is connected with 

the uterine wall, consists in the formation of hollow, one-layered 

invaginations in the erypts, which trophablast papillae are covered 

by caps of symplasm; between the crypts the trophoblast is extremely 
thin by extension, often irrecognisable, also when later the forma- 

tion of giant cells had advanced thus far: these latter are then very 
long and narrow. 

Finally the placentary trophoblast (which now forms if it were 

the keystone of the cupola of the diplotrophoblast and consists of a 

distinct basal layer of cells of one cell thickness and an often 20 

cells thick layer above it) now lays itself everywhere against the 

papillae of the mesometral cupola of the placentary foetal chamber 

cavity, which papillae are in progress of being degenerated ; the 

trophoblast papillae are likewise still covered by the symplasm, 
when between them this has already been resorbed. 

Next comes the formation of a foetal syncytium from the super- 

ficial layers of the thickened placentary trophoblast, the process 

beginning above and centrally and proceeding centrifugally downwards ; 

the nuclei which at first were dark and small, become larger and 

clearer, contain one big nucleolus and are clearly distinct from all 

maternal elements. This syncytium everywhere penetrates into the 

maternal tissue in strands, so that an intimate interweaving of 

maternal and foetal tissue results, proceeding centripetally into the 

papilla. Then everywhere ‘vacuoles’ are formed in this mass 

(probably now for the first time at the expense of maternal tissue), 

which, when they become larger, bend the basal trophoblast layer 

(cytotrophoblast) inwards and finally fill with maternal blood. The 

allantois has meanwhile penetrated into the trophoblast papillae and 

is divided into small lobes by the growth of pairs of bulges of 
the cytotrophoblast. Foetal vessels soon penetrate freely into each 
lobule. 

The primordium of the placenta as a whole has no round shape, 

the edges facing the connecting pieces of the foetal chambers are 
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concave to these sides, corresponding to the shape of the surface, 

here occupied by the progressive and regressive processes. 

Gradually all the maternal tissue is replaced by foetal, so that 

finally the papillae which at first were entirely maternal, have become 

entirely foetal. Now the “vacuoles”, surrounded by foetal syncytium 

dilate further (also grow at the expense of a foetal symplasm which 

now forms everywhere) and subdivide, a process, accompanied by 

constantly increasing separation of the allantoic villi by these 

cavities, containing maternal blood; the final result is that papilla- 

shaped lobes with secondary lateral lobules are formed, all separated 
by allantois-strands with foetal vessels; these are surrounded by the 

eytotrophoblast, which in its turn surrounds the “vacuoles” (now 

identical with cavities, containing maternal blood), enclosed by a 

layer of syncytium which at first is broad, later becomes gradually 

narrower. The placenta, originated in this way rests on a substructure 

of maternal tissue, composed of the same elements as formerly 

(decidua, ete.); the decidua-cells often grow out strongly, while the 

border between foetal and maternal tissue is in many places marked 

by a narrow streak of symplasm. The formation of trophoblastic 

giant cells gradually reaches also the supra-placentary parts, so that 

here also the enormous cells (later often free) lie in the maternal 

tissue. 

Outside the placenta a stage soon is reached in which the progressive 

and regressive processes, described above, have attained their extreme 

limit. Superficially all has been changed into symplasm, only in the 

depth decidua-cells still exist, which meanwhile, since the degene- 
ration does not reach to this depth, have become pretty large. The 

parts of the mucosa spared by these processes, are only the mucous 

membrane of the dilated connecting pieces, now entirely incorporated 
in the foetal chambers and whose mucosa, attenuated by extension, 

only possesses crypts still, that are squeezed flat, and a rather thick 

epithelium which for a part turns into symplasm. Against all these 

extra-placentary parts lies the extra-placentary trophoblast, now con- 

sisting entirely of giant cells which at present often get loose and 

then lie freely amid the decidua. 

The embryo has, during its further growth, found place in the 

umbilical vesicle which gradually has become entirely invaginated 

and whose walls almost touch each other. The edges of the bowl, 
thus originated and containing the embryo, are not formed by the 

sinus terminalis; this latter lies further down in the inner wall. The 

small space in the umbilical vesicle is still filled with coagulating 

masses, while the entoderm, covering the area vasculosa, which now 



( 387 ) 

often forms papillae, has still a very healthy appearance. The outer 

wall of this bowl never disappears. In its further growth the placenta 

reaches the edges of the bowl of the umbilical vesicle, later still it 

grows into it and coalesces with the inner wall: the sinus terminalis 

then lies halfway the thickness of the placenta, while a fold of the 

endoderm seems to have been incorporated into it. 

In the last period of pregnancy, from the above described parts, 

left free by the progressive and regressive processes, epithelium grows 
between the degenerated and the normal part of the mucosa, perhaps 

joins with the meanwhile proliferating glandular remains in the 

depth: the umbilical vesicle is lifted off from the mucosa. Somewhat 
later this begins also all round the placenta, so that at the end of 

pregnancy this organ is more or less stalked and after parturition 

the greater part of the uterine wall is already provided with anew 

epithelium. 

Comparative considerations. Among Rodents the in- 
vestigation of the times at which various processes and organs of 

the ovule (not of the foetus) are found, leads to the following series : 

Seiurus — Lepus — Arvicola — Meriones — Mus — Cavia, in which 
the first has retained the most primitive’ forms, Lepus in many 

respects forms a transition to the last, in which more and more by 

new processes coming to the fore, the old, primitive ones are sup- 

planted, mixed up and altered, in a word become nearly irrecognisable. 

Of this latter fact the study of the literature on the relation of ovule 

and uterus in Rodents, gives sufficient evidence ; it also appears here 

how great a support is afforded by a comparative anatomical in- 
vestigation; even, that various problems cannot be solved without 

its assistance. 

The progression appears clearly in the pecularities of the umbilical 
vesicle in the various animals: in all the upper part is invaginated 

into the lower, with Sciurus not until late, with Cavia the process 

is among the first; the distal wall always remains with Sciurus, 

with Lepus it disappears late, with Cavia already quite at the be- 

ginning; the endoderm covers the inner wall already very early in 

Seiurus, very late in Mus, never entirely in Cavia. 
In the same order the antimesometral fixation and the allantoid 

placenta occur earlier and together with these the trophoblast thickening, 
which causes them. It is exactly the remarkable pre-placentary 

processes which have been so carefully studied with Mus and Cavia, 
which by this replacing present the greatest difficulties. 

With all Rodents the vegetative ovular pole becomes connected 
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with the anti-mesometral wall of the uterus. This connection only 
ends in Sciurus towards parturition, in Mus and Cavia already very 

early, in Lepus at an intermediate stage, by epithelium being pushed 

underneath from the connecting pieces of the foetal chambers. 

In this fixation the umbilical vesicle is surrounded by proliferating 

mucosa tissue which later degenerates and is dissolved and resorbed 

by the ovule. The epithelium soon disappears after slight progressive 
changes, the stroma changes into decidua by very strong proliferation 

which in Mus, Cavia, ete. rises as reflexa round the ovule, corre- 

sponding with the smallness of the umbilical vesicle and consequently 
of the ovule. In accordance with an existing inclination, in the 

order of the above mentioned series, to replace nutrition by stroma 
products by maternal blood, the vascularisation of the decidua is 

very small in the squirrel, very strong in Cavia and correspondingly 

the extravasates, surrounding the ovule are very rare in Sciurus, 

common and abundant in Mus and Cavia. 
In these processes in Sciurus maternal giant cells appear (sym- 

plasm) and later foetal ones, when the former have disappeared. 

In Lepus ScHorENFeELD and others found the foetal giant cells 
(monster cells) already in earlier stages, in accordance with our 

series; all the cells then occurring are by him considered as foetal; 

probably, however, the maternal cells occur at the same stage and 

part of the described cells are of maternal, symplasmatic origin. With 

Mus both were found and distinguished by JrnkiNson at much earlier 

stages, Konsrer did not see the foetal ones, DuvaL not the maternal 

ones. So they must occur still earlier in Cavia; the foetal ones 
are then probably the proliferating ‘‘Gegenpolcellen” of v. SpEx, 

which perforate the zone at the vegetative pole; the maternal ones 

correspond to the products of the processes in the “Implantationshof”’ 

of v. Spee. Also the disappearance of these formations takes place 

at an increasing rate (By all this it becomes clearer still that the 

comparison of Cavia and man by v. Spes, which already from a 

phylogenetic point of view is hazardous, must be received with caution). 

In the light of the comparative investigation these foetal ‘monster 

cells’ may be considered as rudiments of an organ which was 

strongly developed in the ancestors of the Rodents. 
In Sciurus the mass surrounding the ovule (‘“coagulum’’) consists 

especially of tissue products; these become less prominent in the 

order of the series and are replaced by blood. 
Of the omphaloid placentation, which in Sciurus is already rudi- 

mentary, not much can be expected in the other members, although 

the study (until now neglected) of the morphology of the extra- 
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placentary parts of the foetal chamber might perhaps shed light on 
this subject. 

The now following appearance of the allantoid placenta is found 

latest in Seiurus, earliest in Cavia. The tendency, increasing in the 
well-known order, to bring about as much as possible a nutrition 

without tissue products of the mucosa of the uterus and an allantoidean- 

placentary exchange between foetal and maternal blood, causes the 

processes, playing a part in placentation, to change: in Sciurus we 

still have a very strong hyperplasia of stroma-epithelium, later de- 

generation, disintegration and resorption with penetration of the 

trophoblast into this mass, all temporarily clearly distinct and rela- 

tively slow, in Cavia we find almost exclusively vascular proliferation, 

while proliferation and degeneration go hand in hand and the invasion 

of the trophoblast follows closely on these, this latter process not 

proceeding far and being soon finished (since the object: amener une 

hémorrhagie maternelle a étre circonscrite par des tissus foetaux 

(DuvaL), is sooner reached). In the other animals all intermediate 

stages are found. 

The later processes in the development of the placenta are in all 
different, although they are alike in principle: subdivision of cavities 
respectively vessels, containing maternal and foetal blood. The allantois 

remains passive, the foetal mass grows further and further round 

the allantois-ramifications, as it penetrates further into the cavity of 

the foetal chamber. 

The formation of foetal giant cells proceeds with all Rodents over 

the whole trophoblast from the vegetative to the placentary pole; 

also the decidual cells become larger, so that also the giant cells, 

which in all have been found supra-placentary (as JENKINSON already 
stated for the Mouse), are partly of maternal, partly of foetal origin ; 

with Sciurus the two always remain easy to distinguish. 
The more or less isolated place, which according to the statements 

of authors, Lepus would in some respects occupy, will perhaps 
disappear, when the until now somewhat neglected study of the 

pre-placentary period will have been more extensively carried out 

(also in regard to the morphology of the foetal chamber). 

Finally I have not become convinced that also for the morphology 

of the foetal chamber cavities the unity in the structural plan goes 

for all Rodents as far as is claimed by Freiscumann; the difference 
in the statements I met with, will however perhaps disappear when 

all this has been studied with the aid of a more extensive material, 

although FLEISCHMANN’s conceptions, for similar reasons, are certainly 

incorrect in their present shape. 
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Botany. — “On the influence of the nectaries and other sugar- 

containing tissues in the flower on the opening of the anthers.” 

By Dr. W. Burcx. (Communicated by Prof. F. A. F.C. WeEnr.) 

(Communicated in the meeting of September 29, 1906). 

The consideration that the opening of the anthers is preceded by 

a very considerable loss of water") and that with very many plants, 
e.g. Compositae, Papilionaceae, Lobeliaceae, Antirrhineae, Rhinantha- 

ceae, Fumariaceae and further with all plants, chasmogamous as 
well as cleistogamous, which fertilise in the bud, this opening takes 

place within a closed flower and consequently cannot be caused by 
transpiration to the air, gave rise to the question whether perhaps 

the nectaries or other sugar-containing tissues in the flower, which 

do not secrete nectar outwardly, have influence on the withdrawal 

of water from the anthers. 
My surmise that also among the plants whose anthers only burst 

after the opening of the flower, some would be found in which this 

process is independent of the hygroscopic condition of the air, was 

found to be correct. If the flowers are placed under a glass bell-jar, 

the air in which is saturated with water-vapour, the anthers of many 

plants burst at about the same time as those of flowers which are 

put outside the moist space in the open air. 
This led me to arranging some experiments, yielding the following 

results : 

1. If in a flower of Déiervilla (Weigelia) rosea or floribunda, 
which is in progress of unfolding itself, one of the stamens is squeezed 

by means of a pair of pincers, so that the drainage of water from 

the stamen downwards is disturbed, the four anthers whose stamens 

have remained intact, spring open, but the fifth remains closed. 

With this plant it is not necessary to place the flower in a moist 

space; the same result is generally obtained if the flower remains 

attached to the plant. 
If a flower is placed in the moist space together with the loose 

1) This loss of water amounts e.g. with Fritillaria imperialis to 90°/, of the 
weight of the anthers, with Ornithogalum wmbellatum to 86 °/o, with Diervilla 
floribunda to 87/5, with Aesculus Hippocastanum to 88 °/), with Pyrus japo- 

nica to 80"/,, with different cultivated tulips 59—68 °/), etc. With plants whose 

anthers barst in the flower, the loss is smaller; the anthers and the pollen remain 

moist then. With Oenothera Lamarckiana the loss amounts to 41%, with 

Canna hybrida grandiflora to 56%, with Lathyrus latifolius to 24 °/. 
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anthers of another flower, those which are attached to the flower 

spring open; the loose ones don’t. If only the corolla with the 
stamens attached to it is placed in the moist space, the anthers open 

as well as those of the complete flower. Consequently the nectary 
which is found in the middle of the flower at the side of the ovary, 

exerts no direct influence on the bursting of the anthers. If further 

a stamen is prepared in its full length and placed in the moist space 
together with some loose anthers, the anthers of the stamen burst, 
whereas the loose anthers remain closed. 

From these experiments we infer that the anthers open under the 

influence of the stamen whether or not connected with the corolla, 

Now an investigation with Ferxuine’s solution shows that as well 

the stamen as the whole corolla and even the corollar slips, show 

the well-known reaction, indicating glucose. 

Of Digitalis purpurea two of the anthers of a flower in the moist 
chamber, were separated from the corolla by an incision. The uncut 

anthers burst open, but the other two remained closed. A stamen 

prepared free over its full length causes the anther to burst in 

the moist chamber; loose anthers, on the other hand, remain closed. 

An investigation with Frauine’s solution showed that here also the 

corolla contains glucose everywhere, but in especially large quan- 
tities where the stamens have coalesced with the corolla. Also the 
stamens are particularly rich in sugar over their entire length. 

Of Oenothera Lamarckiana, the anthers of which burst already in 
the bud, a flower-bud was deprived of sepals and petals. One of the 
stamens was taken away from the flower in full length; of another 
stamen only the anther was removed. These three objects were placed 

together in the moist chamber. The anthers of the stamens which 

had remained connected with the tube of the calyx and those of the 
loose stamen sprang open; the loose anther, however, remained 

closed. An examination with FrHLING’s solution gave the same result 

as was found above with Digitalis. 
Similar experiments were made with the flowers of Antirrhinum 

majus L., Lamium album L., Glechoma hederacea L., Salvia argentea 
L., Nicotiana afjinis Hort. and sylvestris Comes., and Symphytum 
officinale L., which all gave the same results, while with the flowers 

of Ajuga reptans L., Stachys sylvatica L., Scrophularia nodosa L., 
Cynoglossum officinale L., Anchusa officinalis L., Echium vulgare L., 
Calceolaria pinnata, Hibiscus esculentus, Anoda lavateroides, Malva 
vulgaris Tr., Torenia asiatica, Corydalis lutea De., Colchicum autum- 

nale L., Lysimachia vulgaris L., Atropa Belladona \.. and Rhinanthus 
major Ehrh. the experiments were restricted to showing that with 
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all of them the anthers spring open in a space, saturated with water- 

vapour. With all these plants the corolla and stamens react very 

strongly with FEHLINe’s solution. 

These experiments indicate that the water is withdrawn from the anthers 

by an osmotic action, having its origin in the glucose-containing tissue. 

I remark here that the presence of glucose — in so far as we 

may infer it from the precipitate of cuprous oxide after treatment 

with Frxunac’s solution — in other parts of the flower than the 

nectaries proper and especially in the corolla, is a very common 

phenomenon (to which I hope to return later) and that it is not 

restricted to those flowers in which stamens and corolla have coalesced. 

There is rather question here of a quantitative difference than of a 

special property, peculiar to these flowers. 

2. With Stellaria media the epipetalous stamens are mostly abor- 
tive, while of the episepalous ones only three have remained, as a 

rule. These three stamens bear at the base on the outside, a gland, 

secreting nectar. 

If a flower is placed in the moist chamber and one of the stamens 

is injured with the pincers, the anthers of the uninjured stamens 
will afterwards burst, but the other remains closed. And when loose 

anthers from the flower are placed in the moist chamber, together 

with an intact flower, the loose anthers remain closed, while the 

anthers of the-flower open. As well the petals as the stamens preci- 

pitate cuprous oxide from Frxuine’s solution; also the tissue at the 

base of the sepals reacts with it. But the bursting of the anthers 

stands in no relation to this; if the petals are removed, this has no 

influence on the result of the just mentioned experiment. 

The experiment indicates that the water is withdrawn from the 
anthers by the osmotic action, proceeding from the nectary. 

In this connection it deserves notice that the nectaries of the 

epipetalous whorl and also those of the missing stamens of the epise- 

palous whorl are abortive together with the stamens. The same is 

observed with Cerastium semidecandrum l., C. erectum L. and Holo- 

steum umbellatum L.; here also the nectaries of the missing stamens 

have disappeared as a rule. 
With the Papilionaceae, of which I investigated Lupinus luteus L., 

Lupinus grandifolius L., Lathyrus odoratus L., Lathyrus latifolus L. 

and Vicia Faba L., the anthers are known to open already in the 
closed flower. The petals precipitate cuprous oxide from FEHLING’s 

solution, but exert no influence on the opening of the anthers. Flower 

buds of Lathyrus latifolius and Lathyrus odoratus were deprived of 
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their petals and placed in the moist chamber together with loose 

anthers. The loose anthers remained closed, but the others burst open. 
In the same way as the flowers of Stedlaria media and the men- 

tioned Papilionaceae, behave with respect to the opening of the 
anthers in a space, saturated with water-vapour : 

Stellaria Holostea L., St. graminea L., Cerastium Biebersteinii C. 
arvense L., Cochlearia danica L., Sisymbrium Alliaria Scop., Crambe 

hispanica L., Bunias orientalis L., Capsella Bursa pastoris Mnch., 
Hesperis violacea L., H. matronahs L., Thlaspi arvense L., Alyssum 

maritimum Lam., and further Lychnis diurna Sibth., Silene inflata 
Sm. Galium Mollugo L., Asperula ciliata Rochl., Campanula media 
L., C. latifolia L. 

With all these plants the bursting of the anthers must, in my 

opinion, be ascribed to the influence of the nectaries. 
With Hesperis two large nectaries are found at the inner side of 

the base of the two short stamens and between these and the four 
long stamens. If a flower of Hesperis violacea or H. matronalis L., 
after being deprived of its petals and sepals, is placed in the moist 
chamber, nearly always the four long stamens only burst; the other 
two remain closed. 

It has been repeatedly observed that the secretion of nectar begins 
as soon as the stamens open. 

In connection with what was stated above, one would be inclined 

to infer from this that flow of water from the anther causes the 

secretion of nectar. If, however, with Stellaria media, the anthers 

are removed before they have discharged water to the nectaries, one 

finds all the same the nectaries amply provided with honey, when 
the flower opens. The same may be observed in the male flowers 

of Aesculus Hippocastanum. In the still nearly closed flowerbud 
the nectary is dry yet. When the flower continues to open small 
drops of liquid are seen to appear on the surface of the nectary, 
still before the anthers extend halfway from the bud. These droplets 
increase in size as the anthers approach the moment in which they 
open. By weighing it may be proved that the anthers have already 
lost part of their original weight when the first droplets of nectar 
appear on the surface of the nectary. From this circumstance also 
one would be inclined 1o infer that the water of the anthers comes 
out again as nectar. When, however, from very young buds, whose 
nectary is not moist yet, the anthers are removed, yet at a later stage 
of development of the bud, secretion of nectar is found in them as 
in buds that have kept their anthers. 
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With Fritillaria imperialis 1 found the same; but here the secretion 

of nectar was not so abundant as in buds, the anthers of which had 

not been removed. In my opinion these observations indicate that 
the sugar, stored up in the nectaries or other sugar-containing tissues 

of the flower, at the moment when it begins to exert its osmotic 

action, attracts water not only from the anthers but also from other 

parts of its surroundings. 

3. With the following plants the anthers remain closed in a space, 

saturated with water-vapour. In so far as they possess nectaries, 

these latter appeared to exert no influence on the bursting of the 

anthers. 

ranunculus acris L., R. bulbosus L., Aquilegia vulgaris L., 

Clematis Vitalba L., Chelidonium majus L., Brassica oleracea L.., 

Geranium molle L., G. Robertianum L., G. macrorhizum L., Geum 

urbanum L., Rubus caesius L., Philadelphus coronarius L., Heracleum 

Sphondylium. L., H. ianatum Miche, Aegopodium Podagraria Spr., 

Carum Carvi L., Pimpinella magna L., Valeriana officinalis L., 
Ligustrum vulgare L. Majanthemum bifolium De., and Iris Pseuda- 
corus L. 

It is remarkable that Brassica oleracea L. forms an exception to 
what is otherwise generally observed with the Cruciferae; the position 

of the stamens with respect to the nectaries which secrete honey 
abundantly, would make us expect that in a moist chamber they 

would behave like the others. The same remark holds for the species 

of Geranium. 

The secretion of nectar in the flower attracted the attention of 
various investigators many years before SprenceL published his view 
of the matter. Also after SpreneEL, in the first half of the preceding 
century, it has many times been the object of investigation. All these 
investigators agreed in being convinced that, apart from the signi- 
ficance of the honey-seeretion for the fertilisation of the flowers by 
the intervention of insects, to which SprenceL had drawn attention, 

the sugar-containing tissues and the secreted liquid were still in 
another respect useful to the plant. 

After Darwin had in 1859 brought to the front again SprRENGEL’s 
observations on the biological significance of the various properties 
of the flower — which observations were falling more and more 
into oblivion — and had accepted their consequences by bringing 
them into relation on one hand with his conceptions about the 
necessity of cross-fertilisation for the maintenance of the vital energy 
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of the species, on the other hand with the theory of natural selection, 
the investigation of still another significance of the nectaries for the 
plant was for a long period entirely abandoned. 

Not until 1878 this subject was again broached by Bonnigr *) who, 

in his extensive paper on the nectaries, in which as well the ana- 

tomical as the physiological side of the problem were submitted to 
a very extensive investigation, proved that sugar-containing tissues 

in the flower and especially in the immediate vicinity of the ovary 

are not only found with plants which regularly secrete nectar during 

the flowering, but also with such plants as under normal conditions 

never secrete:such a liquid. With these plants, which in the literature 

on flower biology are called “pollen flowers’, since the insects find 

no nectar in them, he found as well sugar-containing tissues as in 

the so-called ‘insect flowers”. Even with anemophilous plants he 

found “nectaires sans nectar’, e. g. with Avena sativa, Triticum 

sativum and Hordeum murinum. A number of plants which under 

ordinary conditions of life contain no nectar, he could induce to 

nectar-secretion by placing them under conditions, favourable for 

this purpose. 

At the end of his paper he reminds us that an accumnlation of 

reserve materials, wherever a temporary stagnation in the develop- 

ment exists, may be considered a very general and well characterised 

phenomenon. When a plant stops its further development at the end 

of its growing period, it has stored up reserve material in its sub- 

terranean, parts and when the seed has finished its development, it 

has aceumulated nourishing substances in the endosperm or in the 

cotyledons of the embryo. These reserve materials, turned into assi- 

‘milable compounds, then serve for the first nutrition of the newly 

formed parts. 

He then arrives at the conclusion that in the vicinity of the ovary 

saccharose is stored up, and that this reserve substance after fertili- 
sation and in the same proportion as the fruit develops, passes partly 

or entirely into the tissue of the fruit and into the seed, after having 

first been changed, under the influence of a soluble ferment, into 

assimilable compounds. 

Investigation showed me also that the accumulation of saccharose 

as a reserve substance in the flower is a very common phenomenon *). 

1) Gaston Bonnier. Les nectaires. Etude critique, anatomique et physiologique. 

Annales des sciences naturelles. Tome VIII. 1878. 

2)On this point see also: Paut Knuru, Uber den Nachweis von Nektarien auf 

chemischem Wege. Bot. Centralbl. LXXVI. Band, 1898, p. 76 and Ros. SrAceEr, 

chemischer Nachweis von Nektarien bei Pollenblumen und Anemophilen. Beihefte 

zum Bot. Centralbl. Band XII. 1901, p. 34. 

26 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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But besides the function, discovered by Bonnier and the signi- 

ficance of the secreted nectar for the fertilisation, it has become 

clear to me that as well the glucose, formed from saccharose, as 

the outwardly secreted nectar, are also in other respects of great 

importance to the plant. The observations, here communicated, point 

already to one very important function, i. e. to enable the stamens 
to bring their pollen to the surface at the right time, dependent of 
the hygroscopic condition of the arr. 

I hope before long to be able to point out still another function. 

The secretion of nectar now appears in another light. The view 

that it must be considered as an excretion of ‘‘a waste product of 
chemical changes in the sap’ ’), which in the course of time has become 

more marked through natural selection, as a useful adaptation for 
promoting cross-fertilisation, since this liquid was eagerly taken away 

by insects, has to give way to the conception that, preceding any 

adaptation, it has in its further development kept pace with the 

sexual organs. ; 

Anatomy. — “On the relation of the genital ducts to the genitat 

gland in marsupials.” By A.J. P.v.D. Bronk. (Communicated 

by Prof. L. Bok). 

(Communicated in the meeiing of October 27, 1906). 

in the following communication the changes will be shortly described 
which the cranial extremities of the genital ducts in marsupials 

undergo during the development and their relations in regard to the 

genital gland. In more than one respect the ontogenetic develop- 

ment differs in these animals from what can be observed in other 

mammals. 

It is especially a series of young marsupials of Dasyurus viverrinus 

in successive stadia of development from which the observations are 

derived. The preparations of other investigated forms (Didelphys, 
Sminthopsis crassicaudata, Phascologale pincillata, Trichosurus vulpe- 

cula, Macropus ruficollis) correspond however completely with the 

conditions we meet in Dasyurus. 

In our description we start from a stadium schematically represented 

in figure 1 that still prevails for both sexes, (Dasyurus, Didelphys, 
Macropus). The genital gland (Figure 1 #) is situated at the medial 

1) Cx. Darwin. Origin of species. Sixth Edition. 1872. Chap. IV, p. 73 and 
The effects of Cross and Selffertilisation. Edition 1876. Chap. X, p. 402. 
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side of the mesonephros and is attached to it by a narrow band 

(afterwards the mesorchium or mesovarium) (Fig. 1m). The genital 
ducts are developed on their whole length. The Wolffian duct 
(w.g.) joins transversal mesonephridial tubules in the mesonephros 

but has no connection whatever as yet with the genital gland. The 

Miillerian duct (Figure 1 m.g.) commences with an ostium abdomi- 
nale (0.a.) and runs as far as the region of the mesonephros is 
concerned at the lateral side of the Wolffian duct. 

relation of the genital gland and genital ducts 

in an indifferent stadium. 

k. genital gland. 

0.a. Ostium abdominale tubae. 

g.s. genital cord. 

w.g. Wolffian duct. 

m.g. Miilerian duct. 

$.u.g. Sinus uro-genitalis. 

We firstly will follow the transformations, which appear in the 

female sex. The first change is a reduction in the cranial part of 

the mesonephros. Here nothing is to be observed that points to 
a transformation of the mesonephridial tubules by renovation of the 

epithelium. The Wolffian duct meanwhile grows cranially, remains 

situated near the Miillerian duct, and moves then, passing archwise 

through the mesovarium, to the ovarium, penetrates in it and there 

ends blind (Figure 2 w.g.). The condition which issues from this 

I have demonstrated in Figure 2 (Dasyurus 40 m.m.). 
Only now the reduction of the Wolffian duct begins. This occurs 

in such a way, that the medial part disappears; both at the cranial 

and at the caudal extremity, a remnant of the duct remains. 

The cranial rudiment of the Wolffian duct is then found as a little 

tubule blind at both ends, which commences in the ovarium and 

can be traced till in the mesovarium. Figure 3 points out this little 
tubule as I have found it in several animals (Dasyurus, Smin- 
thopsis) (Fig. 3 w.@.). 

In how far the remnant of the Wolffian duct has relation to the 

26* 
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little tubules which I described and represented in the mesovarium 

of a fullgrown Petrogale penicillata, remains out of discussion here *). 
, 

Fig. 2. 

Relation of the genital ducts 

Ov. 

0. d. 

mM. g. 

W. ¢. 

Ts Cs 

3.U. U: 

to the ovarium. Ov. 

Ovarium. 0. d. 

Mesovarium. t. 

Ostium abdominale tubae. a 

Miillerian duct. oa 

Wolffian duct. w'.g'. 

Transversal combination of both * i 

the genital cords. 

Sinus uro-genitalis. §.U. J. 

IE-k ing 

Fig. 3. 

Relation of the genital ducts 

to the ovarium. 

Ovarium. 

Mesovarium. 

Ostium abdominale tubae. 

Tuba Falloppie. 

Uterus. 

Vagina. 

Remnant of the Wolffian ducts. 

be] n ” 9 bs] 

genital cord. 

Transversal combination of both 

the genital cords. 

Sinus uro-genitalis. 

In the male sex the Wolffian duct shows in the development of 

its cranial extremity, very much resemblance to that of the female 

sex. (Fig. 4 and 5). 

During the reduction of the mesonephros the cranial extremity of 

1) y. p. Broex, Untersuchungen iiber die weiblichen Geschlechtsorgane der 

Beuteltiere. Petrus Camper IIL. 

—_ 
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the Wolffian duct grows forth and takes its course archwise through 
the mesorchium in the testicle. (Fig. 4 w.¥4.). Here is brought about 

in one place (Dasyurus) a connection with the future spermatic tubes, 
which are still present in the stadium of solid cords of cells. 

The mesonephridial tubules disappear almost quite, so that at a certain 

stadium (Dasyurus viverrinus 538 m.m.) the Woffian duct, strongly 

grown forth in length, runs twisting through the mass of tissue, which 

must be considered as the epididymis, without any appearance of 
tubules in the form of the coni vasculosi. 

Relation of the genita! ducts Relation of the genital duct 
to the testicle. to the testicle. 

t. Testicle. t. Testicle. 
m. Mesorchium. m. Mesorchium. 

m.g. Remnants of the Miillerianduct. m.g. Remnants of the Miillerian duct. 
w.g. Wolffian duct (vas deferens). d.a. Glandule part in the epididymis. 
g.s. Genital cord. w.g. Wolffian duct (vas deferens). 

s.u.g. Sinus uro-genitalis. . g-s. Genital cord. 

v.a. Vas aberrans. S.u.g. Sinus uro-genitalis. 

Meanwhile the Miillerian duct is for the greater part reduced. The 
cranial extremity remains as a remnant of the duct either beginning 
with an ostinm abdominale or not, and ending caudally blind in the 
epididymis tissue. 
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The change following on this consists therein that the spermatic 

tubes obtain a lumen and combine in one or two places (Didelphys) 

with the Wolffian duct grown into the testicle. In the epididymis 

a great many cell cords have meanwhile appeared in the course of 

the Wolffian duct (Vas epididymidis), out of which cell cords the 

little tubules of the epididymis will develop. 

Of the Miillerian duct a rest has remained in the tissue of the 

epididymis, I have not observed rests of this duct in the form of 

hydatids. Neither did 1 find them mentioned in literature. 

In the genital gland of the full grown animal I found that the 

connection of the testicle and epididymis is formed by a mesorchium, 

in which “evidently a single tube forms the communication between 

the two parts (Didelphys, Halmaturus). Probably the same holds true 

for Hypsiprymnus, where, according to DisseLHorst *), the epididymis 
is a spindle shaped swelling in the course of the vas deferens. 

About the microscopic structure of the testicle and epididymis I found 

in DisskLHorsT the communication that it agrees with that of other 

animals, As on this immediately follows: “die Spermatogenese war 

in vollem Gange’, it seems to me that this communication relates 

more to the structure of epithels of the tubules than to the nature 

of the connection of testicle and epididymis. 

A comparison with what we find in other mammals shows us the 

following. 

There now and then is to be observed in the female sex (at least 

in man) an excrescence of the cranial extremity of the Wolffian 

duet, which then becomes the tubo-parovarian tube, which was first 

described by Rorn’) and recognised by Minatkovics*) as a part of 

the Wolffian duct. Where however in Marsupials the Wolffian duet 
penetrates into the genital gland, the tubo-parovarian tube of man 

remains in the Ligamentum latum. 

For the male sex the following holds true. 

A rete testis, whether it has to be considered as tubules, which 

have appeared afterwards, and must be considered as a second 

generation of tubuli seminiferi (Cogrt)*‘) or as homologa of the 

') KR. Dissetuorsr. Die miinnlichen Geschlechtsorgane der Monotremen und 
einiger Marsupialen. 

Semon’s Zodlogische Forschungsreisen in Australién und den Malayischen Archipel. 
1904. p. 121. 

*) Quoted by Mrnarxkovics. 

°) Mrmarkovics, Untersuchungen tiber die Entwickelungsgeschichte der Uro-genital- 
organe der Cranioten. 

Internat. Zeitschrift fiir Anatomie und Histologie. Bd. 2. 

4) Corrt, Over de ontwikkeling der geslachtsklier bij de z ogdieren. Diss. Leiden 
1898. 
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“Markstrange”’ of the ovarium (Mimmatkovics), or as tubules of the 
mesonephros grown into the tissue of the testicle (KoLLMANy) *) is 

not found in marsupials. If, during further development a network 

resembling the rete testis, arises in the marsupial testicle, it must 

be considered as a part which appears quite secondary. 
The connection of the testicle and epididymis is not -caused by 

a number of tubules of the mesonephros, transformed to vasa effe- 

rentia, but by a single tube which must be considered as a part of the 

Wolffian duct. For the conception that the connecting tube really is 

the Wolffian duct, the phenomena of development in the female sex 

can be cited together with those in the male animals. In the marsu- 
pials all the tubules of the mesonephros are reduced to minimal 

rests (vasa aberrantia). In the mass of tissue, which represents the 

so-called epididymis of these animals, a great number of tubes arise 
secondary, which afterwards probably possess as epididymis tubules 
the same function as the coni vasculosi in the epididymis of other 

mammals. 

To explain the differences in the connection of the testicle and 

epididymis in marsupials and in other mammals, the following con- 

siderations seem to me to be of importance. 

About the changes, which the mesonephros undergoes, by its con- 

nection with the testis, which connection furnishes the later vasa 

efferentia testis, we read the following in the extensive investigations 

of Coxrt’): In the proximal part of the Wolffian body where the 

Malpighian bodies are connected with the blastem of the rete 

testis, we see the glomeruli and the inner epithelium of the capsules 

disappearing gradually ; after which the outer walls of these capsules 

form the blind extremities the mesonephridial tubules. The epithelium 
of the mesonephridial tubules also begins to have another aspect. 

Two kinds of processes occur here together: a number of epithelium 

cells are pushed out into the lumen and are destroyed, while on the 

other hand many new cells are formed (mitosis). With this the cells 

get another appearance both as concerns the nucleus and the proto- 

plasm. The result is that at last the tubules of the menonephros are 

surrounded all over their extent, which formerly was not the case, by 

an uniform epithelium, formed by cylindrical cells, the nuclei ranged 

regularly at the basis of the cells. Whether the connection of these 

tubes with the Wolffian duct always remains unchanged during those 

transformations or is perhaps broken off and afterwards re-established 

in another place I have not been able to investigate. 

1) Kottmann, Lehrbuch der Entwickelungsgeschichte des Menschen. 

#)-'Le. qe: 96. 



( 402 ) 

My opinion is that these investigations show that the vasa efferentia 
testis must not be considered as simple tubules of the mesonephros, 

but newly formed tubules, which use quite or for the greater part 

the way given to them by the tubules of the mesonephros. And that 

they are able to use this way finds its cause in this, that, according 

to Fruix and Biuimr') there is most probably no idea of a functioning 
of the mesonephros in monodelphic mammals, even not in the pig, 

where if is so strongly developed. 

Not so in the didelphic mammals. Here the mesonephros does 

not only function embryonally, as is known, but still during the 
first period of the individual life. A separation of the mesonephros 
in two parts as is found in reptilia does not come about here. 

The connection of the genital gland, especially of the testicle and 

its duct, the Wolffiian duct, could not, it may be supposed, in the 

stadium in which this connection will come about in other animals, 

be established in marsupials with the help of tubules of the mesone- 

phros, because these had still to fulfill their excretory function. 

Instead of this the connection could be established in such a way 
that the Wolffian duct grews out cranially and brings about itself 

the connection between the gland and its excretory duct. 

At last the tubes, which occur secondary and independently ot 

the tubules of the mesonephros in the tissue of the epididymis, might 
be explained in the same way, i.e. as tubules which have the same 

signification as the coni vasculosi, but for the same reason do not 

originate on the bottom of tubules of the mesonephros but are 

separated from them both locally and temporarily. 

Another view may be, that the tube which encroached in the 

genital gland, might not be the Wolffian duct but the most cranial 

tubule of the mesonephros so that in other words the so-called sexual 

part of the mesonephros in marsupials should be reduced. I do not 

believe that this conception is true, firstly because no separation 

between the tubules can be observed, and secondly because at the 

reduction of the mesonephros, as is mentioned above, in marsu- 

pials, nothing can be observed, as far as my preparations are con- 

cerned, of differences between the tubules of the mesonephros, what 

must surely be the case at a transformation of a tubule of the 

mesonephros to a connecting duct. 

1) Feux und Binter, Die Entwickelung der Harn und Geschlechtsorgane in 

Hertwie's Handbuch der vergleichenden und experimentellen Entwickelungsgeschichte 

der Wirbeltiere. 
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Physics. — “Supplement to Communication N°. 954 from the 

Physical Laboratory of Leiden, on the comparison of the 

thermo-element constantin-steel with the hydrogen thermometer’. 

By Prof. H. KamernincH Onnes and C. A. Crommenin. 

§ 14. Corrected representation of the observations by a five term 
Formula. 

As appears from note 1 the calculations in § 12 were made with not 
perfectly accurate values of the temperature at — 182° and in the 

same way the mean errors were derived from the assumption of 

those less accurate values. ’) 

If the correct values of those temperatures for the calculations of 

the deviations W—R,, W—R,, W—R,, W—R, in Table VIII, are 

used, the mean errors in microvolts become : 

for formula (BI) + 3.0 

(BIB + 3.4 

(BIT) + 2.8 (2.5 without — 217°) 

CEI) 2.4 

4 

instead of 

(ily. 25 

(BI). + 3.2 

(AIT) = 2.6 (2.1 without —- 217°) 

(BIV) + 1.8 

which would also have been obtained if the observations at — 182° 
were. excluded. 

Now it was necessary to examine whether a repetition of the 

adjustment would diminish these mean errors. It appeared convincingly 
that this was not possible to an appreciable degree for (BI), (BID), 

(SU). It appeared possible for (LIV) to distribute the errors more 

equally. However, this only reduced the sum of squares from 26,57 
to 26,14. 

Instead of the coefficients a,,b,,¢,,¢,and f, (see § 12) we get then 

a’, = + 4.32513 é', = + 0.023276 

b', = + 0.409153 t',== — 0.0025269 

c', = + 0.0015563 

The deviations are given in Table IX under W—R’,. 

1) The correction amounted to 0°,081 in temperature or to 1.7 microvolt. in 

electromotive force. 
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§ 15. Representation of the observations by means of a four 

term formula. 

We have now quite carried out the calculation of a formula of 

the form 

oe t : t 

=*(i) + foe (a5) « - 
announced in note 2 of §11, by the method of E. F. v. D. SANDE 

Baknvyzen, which proved to facilitate matters greatly again. 

Four solutions (C) were found, viz. (CTI), (CII), (CIID) representing 

the observations down to — 253°, whereas in (CIV) only agreement 

down to — 217° has been sought for. 

The coefficients in millivolts are the following : 

1 2 3 4 

| | 
a + 4.30192 | + 4.30571 | + 4.30398 + 4.33031 

6) + 0.357902 | + 0.366351 + 0.363681 + 0.421274 

Bi — 0.0250934 — 0.0192565 | — 0.020071 | + 0.018683 
| 

+ 0.0270158 | + 0.0270044 | + 0.035268 +. 0.0257462 

The residuals have been given in tenth parts of microvolts in 

Table IX under W—Re, W—Reun, W—Rcew, W—Reiv: 

Just as with the five term formula, the residual at — 182° 

appeared also now greater than the others. 
In calculation 3 it was tried to distribute the errors more equally, 

but the sum of squares appeared now to have increased. 

The mean errors are if we include the observations down to 

— 253° for (Cl), (CID, (CH, and only those down to — 217° for 

(CIV), for 

(Cl) 0 
(CID) + 2.9 

(CIII) + 3.0 

(CIV) + 2.3 

If — 182° is excluded, they become : 

(Cl) + 2.7 
(CII) + 2.6 

(CIV) a mes LE 

The mean errors of (CTI), (CID, (CIT) must be compared with 

those of (BI) and (BIL), those of (CIV) with those of (BIV). 



( 405 ) 

This comparison teaches that the four term formula for the represen- 
tation of the observations may be considered to be almest equivalent 

to the five term formula, and that therefore (this remark is in har- 

mony with note 2 of §13) for the calibration to — 217° the lowest 
number of temperatures for which observations are required, amounts 
to jour. That three are not sufficient was already proved in § 11. 

This appears also clearly, when the mean error is determined, which 
rises to + 7.6 microvolts for the three term formula. 

ands ty Ei (EX, 

DEVIATIONS OF THE CALIBRATION-FORMULAE FOR THE 

THERMO-ELEMENT CONSTANTIN-STEEL. 

rv. =| Vv | - VE..|-. VII I | II I | | 

No, | f | W—R; | Wey | W Boy aa 

| — oof — 12 | + 20 Ea Pe Se oa eee 

24 and 90|'— 58.75 | + 46) + 30) + % | 4:99) 4+ 4 

Mand 93) — 88.45 uw) + ttt al 4+ 4 ae 

1 and 47) — 103.70 | — 6 | — 299 | — 98 | — 30 | — 2 

16 and 18, eager ee cog) | — 31 | — 47 

19) — 458.83 | — 40 | — 10 | — 10 | — 48 | — 40 

3, 11 and 5 | [~ 182.73] 4+ 96 ee ee eerie el eee 

4,8 ad6| 15.10 | + 2 | + 03 | 4 mm | 4 19-4} 4 41 

12, 27 ‘a — 7 | — 0} — 9 | — 41 | — 19 | — 48 
14 18and =898 | - a) pom | ow | as | 4 
99, 15 and 5 | — 917.55 | — 15 | — 30 | — 299 | — 37 | — 93 

0 | — sae | + 9m oo) 0.) 4-90. | 4450 
sg — 9.9% | +485 | +4415 | +14 | 4443 | + 313 
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Mathematics. — “On a special class of homogeneous linear dif- 

ferential equations of the second order”. By Prof. W. Kapreyn. 

The differential equation of LEGENDRE 

Py dy 
(l—#?) — — 2a —~ +ur(n+]lhy=0 

z dz 

is satisfied by a polynomium P, (2) of the nth degree and by a 
function Q,(@) which may be reduced to the form 

1 

FP, dz 

—l 

This function however is not determined for real values of the 

variable in the interval —1 to +1, the difference on both sides 

of this line being 227 P, (q). 
In analogy to this we have examined the question: to determine 

all homogeneous linear differential equations of the second order of 

the form 

d*y dy 
x dz 

where the coefficients are polynomia in 2, which possess the property 

that y,(z) being a first particular integral, the second integral may 

be written 

ne is 
Ys = 2 

where a and ~# represent two Seal values, supposing moreover that 
this integral has a meaning everywhere except on the line of dis- 

continuity. 

Let 
} y i 

R(@)= 2 ir, 4? (A) = a By gs (a) = = ty uP 
UV 0 0 

then we obtain firstly the conditions 
1—2 

R(x) = («a —a) (e— 8) r (x) = (w7—a) (x — 8) = Op xP 

S (a) = R' (x) + («—a) (vB) = hy uP, 

If now we put 

: ig B 

peep? ys" Ce) de® .° 1G; = fe y, (2) dé- 5. G, ={# y, (2) de 

a « 
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and 

M = — G,' 

N = (e+ 8) G,"—G,"—2G,' 

m= — G,! 

vt (a+-8) Gij-=G—G;, 

the further necessary conditions may be deduced from the equation 

ft J = 0 

where J and / represent the following polynomia of degree 2—1 
es 

I= Z(@N+ opi M) a 
p=0 

d—1 

+E [hy + (P+Y epi n + Hypa + pep} mi] ax 
p=—9 

J—1 

= Cr Gp + spi Gp' + tpi Gp) 
p= 

d—2 

+4 SA ae Gp" == Sp+2 G,! sin ty+2 Gp) 
p= 

ae 

1 
a 2 > (Tp+i—1 Gr, Spi—l Gy + tyti—1 Gp) 

p=0 

5 ae ane 2 Crh Gp" + spi Gp + tpi Gp). 
p> 

From this we may easily deduce that if 42, the most general 

differential equation of the second order possessing the property in 
question is 

d*y dy 
el ee ge ee) aeet - e — BW + Ce e)y=0 

where a, 8, ¢, and ¢, are arbitrary constants. 

When 2= 8 the most general equation may be written 

d?y dy (ea) (@—B) (Q,0-+0,) 5 + (te? +507 +0-+5,) 2 + 
+ (t0*-fie-tt,) y = 0 

Here however the ten constants must satisfy the following three 
conditions 

8, + (4+8) 8, + (@?+48+8") t, = 20, + (2+8) 0, 
8) — aps, — aB (a+B) t, = — (2+8) e, — 2aBo, 
(¢,—s,+29,) G, —t, G, = 0. 
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Mathematics. — “Some formulae concerning the integers less than 

n and prime to n.” By Prof. J. C. KLuyver. 

The number g(n) of the integers » less than » and prime to n 

can be expressed by means of the divisors d. 

We have 

gy (rn) = = u(d)d, (dd' = n) 

if we denote by u(q) the arithmetical function, which equals 0 if ¢ 

be divisible by a square, and otherwise equals + 1 or —1, according 

to g being a product of an even or of an odd number of prime 

numbers. 

This equation is a particular case of a more general one, by means 

of which certain symmetrical functions of the integers » are expres- 

sible as a function of the divisors d. 
This general relation may be written as follows *) 

k=d' 

S/O) = THO, 
For the proof we have to observe that, supposing (m, 7”) ~ D, the 

term f(m) occurs at the righthand side as often as d in a divisor 

of D. Hence the total coefficient of the term 7 (m) becomes 

= u(d), 
d/D 

that is zero if D be greater than unity, and 1 when m is equal to 

one of the integers ». 
We will consider some simple cases of KRONECKER’s equation. 

First, let 

f(y) =e. 
The equation becomes 

: —a. pun 9 

Ser J py (d) > etkd = J yu (d) 4 3 3 
y d/n oa djn 

or because of 

= p(d) = 0, 
djn 

is ern — | 
= et = = p(d) ——. 

vy d/n erd —s d 

If we write 

wer? 

a | am u erd __ i; 

1) Kronecker, Vorlesungen iiber Zablentheorie. I, p. 251. 
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we may introduce the BrrnovuiiiANn functions Jif), defined by the 

equation 

a k— 
gad ooh , > whfi(9), 
e —1 —1 

and hence show that 

1 [2 lf tr 

si— + > aknk-lf | — 
» (7 ei nr 

By equating the corresponding terms on the two sides we get 

B, 
= Paes (=) —- 

(— 1 aoe Ss u(d)d'—2m 
+ l 

m! ain 

1 B B 
— ad) l—Lad + — 27d?— — x‘ +. | ; 

ee 2/ 4! 

as a first generalisation of the relation 

= ¥— —> id)d-. 
y djn 

Observing that we have 

1 
> p(dd'—2m $1 = x u(d)a2n—1 , 
djn nim la 

there. follows for two integers n and 7’, pe having nos same set 
of prime factors, 

AG) Peay: 

= /'m(2) aC 
In the same way an expression for the sum of the /*® powers 

of the integers » may be obtained. Expanding both sides of the 
equation 

Fer=s e S Wd) i 

we find 

1 
— Svk = D u(d)d*f;,(d’). 
| ae djn 

Other relations of the same kind, containing trigonometricad functions 

are deduced by changing « into 2z7z. 
From 

e2n IN 1 
eee OO) ey 

c e2niad ___ | 

we find by separating the real ad imaginary parts 

= cos 2rav = } sin 2aen T w (d) cot red, 
y d/n 

= sin 2xaev = sin? xan J ww (d) cot xed. 
: | y [n 
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In particular the first of these equations gives a simple result if 

1 a : E 
we put «=— +e, where « is a vanishing quantity. As _the factor 

nr 

sin 22xn tends to zero with « the whole right-hand side is annulled 

but for the term in which d= 7. 

So it follows that 

2y 
= Cos : == (x), 
¥ 

and we have u(v), originally depending upon the prime factors of 

n, expressed as a function of the integers prime to 2. 

1 
Similarly we may put in the second equation «= 5 and write 

n 

sin HY ad 
=> — = = pu (d) cot — 

y n d/n 2n 

Still another trigonometrical formula may be obtained by the sub- 

stitution eae +e. Let D be the greatest common divisor of the 
a 

integers and gq, so that 

n=n,D . Q= O03 

then as ¢€ vanishes, we have to retain at the right-hand side only 

those terms in which gd is divisible by », or what is the same the 

terms for which the complementary divisor d’ divides D. 

Hence, we find 

= 2arqv t ' ys 1 t = cos = Sa|— )|/d=—=DZul(a,d)—. (dd' = D) 
d'/D d/D d y 7 

Instead of extending the summation over all divisors d of D, it 

suffices to take into account only those divisors ¢ of n, that are 
prime to ”,. In this way we find 

i 1 
DZ u(n,d) — = p(n,) D = u(d) —, 

d/D d 3 Jd 

and as the second side is readily reduced to 

gin) fu) £) 

we obtain for any integer g, for which we have (n,q) ~ D, 

$ ij Paes * p(n) 
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Concerning the result 
~- 20 

=' cos —— = pt (n) 
n 

a slight remark may be made. To each integer vy a second »v’ = n — v 

is conjugated; hence denoting by @, an irreducible fraction << 4 with 

the denominator n, we may write 

2= cos 270, = u(n), 

and also 
2 cos 270n = = u(r). 
nSg ng 

Now for large values of y the fractions 9, will spread themselves 
not homogeneously, but still with some regularity more or less all 

over the interval 0 — } and there is some reason to expect, that in 

the main the positive and the negative terms of the sum + cos 2z@,, 

ng 

will annul each other, hence the equation 

2 cos 2x0, = & p(n) 

nSq nSg 

is quite consistent with the supposition of voN STERNECK, that as g takes 

larger and larger values the absolute value of 2u(n) does not 

ah 

exceed Vy. 

Another set of formulae will be obtained by substituting in 
KRONECKER’S equation 

T(y) =log\e" —e -). 

Thus we get 
2riz Qnty fed’ 2nir Qnikd 

ren caere = (6 panes 
y djn — 

2rix 2xiy Qxizd' 

¥ tog n—en =e n a8 
y d/n 

and after some reductions 

or 

It - & 

= log 2 sin — (v—a) = DJ p(d) log 2 sin = . 
y nr ] a d/n 

By repeated differentiations with respect to « we may derive from 
this equation further analogies to the formula 

y(n) = Suda. 
d/n 

So for instance we obtain bij differentiating two times 

27 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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1 
> —— = — = u(d) d” 

y TY 3 djn 

and by repeating the process 

an By 2m 
ee log sin y at = u(d) a" 

< | Ss 9 u y Pe = Im din’ ( ) b] 

a result included in the still somewhat more general relation 

k=o if 

nt > > SS] SS Gaye. * ee oe (s) Fn ue (d) 

which is self evident from. 

Returning to the equation 

Tt v 

= log 2 sin y — (v—2x) = J pe (A) log 2 sin a j 
) 7. djn d 

we obtain as x tends to zero 

5 
= log 2 sin — = — J pw (A) log d. 
y n djn 

In order to evaluate the right-hand side, we observe that for 

np, p43... we have 

d 
— {u(d)lgd= — E (1 — eylogp) (1 — evan). | . 

d/n dy y=0 

So it is seen that, putting 

— Su(d) log d = y (n), 
djn 

the function y(n) is equal to zero for all integers 7 having distinct 

prime factors, and that it takes the value /og p, when n is any powe1 

of the prime number p. 

Hence we may write 

_ IY Po 
12 sn — = 7 ™), 
> n 

a result in a different way deduced by KRONECKER ’). 

Again in the equation 

_ ot — ma\e(d) 
IT 2 sin — (v — #) = | 2 sin — 
y n d d/n 

n 
we will make w tend to ee 

If x be odd, all divisors d and d’ are odd also and we have 

at once 

1) Kronecker, Vorlesungen tiber Zahlentheorie. I, p. 296, 
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d’—1 
i 4) ——-_ & (d) 

2 cos — = IT (— 1) 2 = (— 1)39), 

y n din 

If n= 2m and m be odd, we shall have g (m) = ¢ (%). Half the 

numbers x prime to m and less than m will be equal to some 

integer », the other half will be of the form »—-m. 

Hence we have 

22 20% a 
112 sin = (— 1) IF2 vin —— = (— 1)8#) 172 sin — , 
y n x n z m 

and therefore 

ITH 
IT2 sin —— _ 

x m ° / (axe 

12 Palate (— 1)37(%) —— = (— ie 2G 

y n SEL 
IT 2 sin — 
> n 

—n) 

Lastly, if m= 2m, and m be even, we shall have (m) = 3 p(n). 

Now each of the numbers x prime to m and less than m at the 

same time will be equal to some integer y and to one of the dif 

ferences vy — m. Reasoning as before we have in this case 

n ™m 

_ wH ; 
n(2 sin =) a (G)-™ 

nV ‘ _ 2y 
IT 2 cos — = (— 1)3?™) = (— 1)ire 
y n mee 2) 

IT 2 sin — 
y nr 

27 v 27 2 3 2 

112 sin —— = (— 1) n(2 sin =) — (— 1) n(2 sin =) 
y z n x 

and therefore 

From the foregoing we may conclude as follows. If we put 

IT 2 cos ates (— 1)? 2), 
y n 

the arithmetical function (nm) is different from zero only when 
n is double the power of any prime number p, in which case we 

have 4(n)=/og p. 
Again we introduce here the irreducible fractions @, less than 3 

with the denominator n; then denoting by J/(q) the least common 

multiple of all the integers not surpassing gq we may write 

2 = log2sinxe, = = y(n) = log M(9), 
n <9 n <9 

2 = log 2 cos xn =  A(n) = log u(2). 
n<g n<g 2 

27* 
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If we consider the quotient Jog M(qg):logg as an approximate 

(but always too small) value of the number A(g) of prime numbers 

less than g, to Kronucker’s result 

= log 2 sin 1On A 
og Inca 

we may add 

q 2, 
A|—)=— =& log 2 cos xo, . 

é lo LES 
79 

Astronomy. — “Researches on the orbit of the periodic comet Holmes 

and on the perturbations of its elliptic motion. IV.” By Dr. 

H. J. Zwmrs. (Communicated by Prof. H. G. vAN DE SANDE 

BAKHUYZEN). 

At the meeting of the Academy on the 27 January of 1906, a com- 

munication was made of my preliminary researches on the pertur- 

bations of the comet Holmes, during the period of its invisibility 

from January 1900 till January 1906, and also of an ephemeris of 
its apparent places from the 1st of May till the 31st of December 1906. 

This time again this computation led to its rediscovery. Owing to 

its large distance from the earth and the resulting faintness of its 

light, there seemed to be only a small chance for its observation 

during the first months. This proved to be true, as not before the 

30 of August of this year, the Leiden observatory received a 

telegram, that the comet was found by prof. Max Wo r at the 

observatory Koenigstuhl near Heidelberg, on a photograph taken in 

the night of the 28% of August of a part of the heavens where 

according to the ephemeris it ought to be found. The roughly 

measured place 

a=612 01 d= + 42° 28' 

for 1352™1 local time, appeared to be in sufficient agreement with 

the calculation. 
Afterwards the place of the comet has been twice photographically 

determined: on the 25 of September and on the 10% of October, 

and each time prof. Wor was so kind, to communicate immediately 

to me the places as they had been obtained, after carefully measur- 

ing the plates. Although Wotr declared in a note to the observed 

~~ 4 
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position of the 25t of September’) that the brightness had increased 

sufficiently, to make the comet visible in a powerful telescope, till 
now I did not hear, that any visual observation of the comet has 

been made. The three Heidelberg plates are therefore the only material 

that can be used for testing the elements and ephemeris given before. 

I communicate here the results as I had the pleasure to receive 

them from prof. Wo r. 

1. “Den Kometen Holmes habe ich auf der Platte von 28 August 
rechtwinklig an die 4 Sterne 

A.G. Bonn 3456, 3462, 3472, 3493 

angeschlossen, und die Messungen nach der Turner’schen Methode 

reduziert. Ich finde fiir 1906.0: 

a = 4h 7m 34884 d= + 42° 30' 59"9 

fiir die Aufnahmezeit: 1906 Aug. 28, 13852™1 Kgst. Das dusserst 

schwache zentrale Kernchen wurde dabei eingestellt. Die Messung 
und Rechnung bezieht sich auf die mittleren Orte der 4 Sterne fiir 

1906; sonst ist gar nichts angebracht.” 

(Note of the 5 of September 1906). 

2. “Ich habe Ihren Kometen nochmals am 25 aufgenommen und 

finde ihn entschieden etwas heller. Den Ort nach Turner mit 3 

Sternen (A.G. Bonn 3710, 3760, 3778) fand ich 

1906 Sept. 25: 1254670 M.Z. Kegst. 

1906.0 = 45 32™ 10802 di9u6.0 = + 47° 34' 546 

Ich habe auch den letzten Ort (viz. of Aug. 28) mit nur 3 Sternen 
nochmals gerechnet (weil ein Stern sehr ungiinstig war) und fand 
fir 1906 August 28: 13452™1 Kest.: 

@1906.0 — 45 7™ 35s00 Ji906.0 = _— 4 a pee 

Ich bin nicht sicher, ob diese Bestimmung aus 3 Sternen besser 

ist als die erst mitgeteilte.”’ 

(Note of the 29" of September 1906). 

3. “Herr Dr. Koprr hat gestern den Ort einer Aufnahme vom 
10 Okt. 1906 des Kometen Holmes ausgemessen..... 

1906 Okt. 10: 951™0 Kest. 

1906.0 — 45 34m 48594 di906.0 = -+ 49° 54’ 59”2 

piemne. AG. snean at90. 3168, 3777 ..... Der Komet war 

1) Astron. Nachr., N°, 4123, S. 302. 
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diesmal schon recht schwach, wahrnehmbar schwacher als im Sep- 

tember. Die Messung ist deshalb auch wohl etwas unsicherer.”’ 

(Note of the 13 of October 1906). 

Concerning the observation on the 28 of. August I preferred the 

position obtained from 3 reference stars. 

For the reduction to the apparent place, I used as before in the 

ephemeris the constants of the Nautical Almanac, where the short 

period terms are omitted. Assuming for the parallax of the sun 

880, I find for the Heidelberg Observatory the following constants: 

A= — 0b34m5 458 
tg yp! = 0.06404 
A= 9.58267 
D = 0.82425 

which are used for the computation of the parallax of the comet. 

The following table gives an account of the reduced observations. 

a eA Baa: 

| Red. on app. pl. | Parallax Apparent geoc. place. 

Pig CG ce OMS Se Z 
Ax | Aé Aa | Ae a | é 

" " h | ° ! " s | s m s | 
1 | + 1.888 | —8.55 | — 0.191 | 44.24) 4 7 36.697 | 442 3050.99 

2| + 2.929 | —8.57 | — 0.217 | 40.92 | 4 32 12.732 | 447 3446.95 

3 | + 3.593 | —7.51 | — 0.298 | 42.35 | 4 34 52.235 | +49 5454.04 

I used for comparison with the ephemeris my original computations, 

which contained in @ as well as in dé one decimal place more than 

the published values. The computed places and their comparison with 

the observed positions, are given in the following table. 

T +.B An, 

| Comp. apparent place Observ.—Comp. | 

Aberration- | - = we 
Local time ihe. 

a | é a | é 

n rc P| " | d hm s | ed 
Aug. 28.553602 0.013211 |4 7 29.753) +423024.28 | 46.94 | 426.7 

| Sept. 25.507699 .012005 | 4 32 4.255) +473429.94 | +8.48 | 417.0 

| Oct. 10.351449 011462 | 4 34 43.017] +4954 43.02 | 49.92 | +41.0 
| 
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Together with the ephemeris I communicated a table containing 

the variations of the right ascension and the declination by a variation 

of the perihelion passage of + 4 or — 4 days. In comparing the 

above given values O—C with the numbers of that table, it is evident 

that by a small negative variation of the perihelion passage, the 

agreement between observation and computation may be nearly attained, 

at least in a. The deviations in d cannot be used so well for that 

purpose, as the variations of d, resulting from a variation of 7’, are 

always much smaller than those of «, and this is especially the case 

in the period during which these observations are made. Yet we 

may conclude from the table for A7’=—— 4 days that the positive 

errors in d will not entirely disappear by a variation of 7’. 

By means of a rough interpolation I derived from the 3 differences 

O—C in right ascension the following corrections for the time of 

perihelion passage : 

Observ. of Aug. 28: AJ’ = — 0.0900 day 

3 Ge Sept: BS — 0.0916 _,, 

rere. ocr 20 : — 0.0896 _,, 

In the average AT — — 0.0904 day, which at the rate of a mean 

daily motion of 517"448 corresponds to an increase of the mean 

anomalies of 468. 
As a first step to correct the adopted elements of the orbit, I 

therefore computed the 3 places, in the supposition of an increase 
of the mean anomalies: 1° by 40", 2° by 50". I interpolated the following 
sun’s co-ordinates (with reference to the mean equinox of 1906.0) 

from the Naut. Almanac. 

7 A B i. I. 

| SS aia 
| | | Aug. 28.540391 | — 0.9134887 | + 0.3947635 | ++ 0.1712510 | 

| Sept. 25.495694 | — 1.0018399 | — 0.0318699 | — 0.0138250 | 

Oct. 10.339987 | — 0.9565810 | — 0.2616405 | — 0.1135029 | 

For the reduction to the apparent places I added to the mean @ 
of the comet: F+ 4 sin (G + a) ig J, to its mean J: g cos (G + @). 

The following table contains the computed apparent places in the 
two suppositions. 
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oA LS Ty: 

ia aM —=-} 40" | aM = +50" 
Io, | elect. 

+ é a é 

| 
hm s eer hms | 7 0 

4 4 7 35.758 | + 42 3034.72 | 4 1 37.266 + 42 3037.38 

+ 47 3431.46 | 432 13.248 | + 47 3431.85 

° 

bo & ee) bo — — iS oO — 

iS ww Ss 3] 434 51.050 | 4+ 49 5442.90 | 53.060 | + 49 5444.99 
Ke gl it alana 

| 

| 

| 

A sufficient control is obtained here by comparing the values for 
A M= 0" (ephemeris), A M = - 40" and A M= - 50". 

In comparing with the observed apparent places we obtain the 
following differences O — C: 

fA Bi ive 

AM =-+ 40" AM =-50" | Se hoe 
" | ' Ss Ss 

4 | + 0.939 | + 16.27 | — 0.569 | + 13.64 

2 | + 1.281 | + 15.49 | — 0.516 | + 15.10 

3 | + 4.185 | + 11.84 | — 0.825 | + 12:05 
4 ed 

By means of interpolation between the values of Aa we find as 
resulting value for A A/ + 46"412, leaving the following errors : 

we | ae | Aa 
: atts 

4 |—0.03 | 4+ 14.7 

| 2 | + 0.43 | 4 45.2 | 

3 ia ad aoe 

From this follows that by a variation of M alone, the differences 
O—C in @ can be reduced to very small quantities, but this is 

not the case with the differences in d. It could be seen beforehand 
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that no further improvement could be expected from alterations in =, 

y or uw; at the end I will add a few words on these elements. So 
we must try to bring it about by variations in the position of the plane 

of the orbit, viz. of 7and sR, and for this reason I determined the relation 

between those elements and the computed places of the comet. As 

from the two suppositions A 1/=-+ 50" seems to be nearer to the 
truth, I computed the apparent places of the comet: for AM = + 50" 

=-+10" and Asj§=O and also for AM=—-+ 50" Ai=0 

AS = — 10". Probably a somewhat larger value of AS 

had been more convenient. The following table gives the variations 

of « and d in the two cases. 

fat «VI, 

Se ee ee 

oe. é Aa | Ad 

: 
" " 

4 | — 0.149 | + 10.00 | + 0-040 | + 1.96 
2 | — 0.108 | + 41.95 | + 0.067 | + 0.83 
3 | — 0.141 | + 12.88 | + 0.080 + 0.50 | 

The numbers from the tables V and VI give the following values 
of the differential quotients of @ and d with respect to M,zand y, 

which will be used as coefficients in the equations of condition. 

Aug. 28 Sept. 25 Oct. 10 
0a 
os 4. 0.1508 +. 0.1797 +. 0.2010 

qa 0.266 0.039 0.021 oa +0. a9: 48) 

0a 
ae — 0.0149 — 0.0108 —— Orel 

od 
os + 1.000 + 1.195 + 1.288 

0a 
—— — 0.0040 — 0.0067 — 0.0080 
Odd 

od 
—- 0.126 — 0.083 — 0 056 
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For a the second of time and for the others quantities the second 

of arc have been adopted as unities. I multiplied the equations of 

condition for «@ by 15cosd, and instead of A sb I “introduced — 

a unknown quantity. 

Equations of condition. 

a. From the Right ascensions : 

ASb 
0.22202 AM + 9.21681, Ai + 9.64568, — 

0.25966 ,, -- 9.08853, ,, + 9.88118, ,, = 0.71776, 
0.28811 ,, -+ 9.038023, ,, + 9.88800, ,, = 0.90136, 

6. From the Declinations : 

On uoren 

ASsb 
9.42488 AM + 0.00000 Az + 0.10037, = 1.13386 

10 

8.59106. ,, = 0.07737 ..,--. 9.91908, _,, == 117898 

8.32222, ,, + 0.10992 ,, + 9.74819, ,, = 1.08099 

The coefficients are written logarithmically ; the second members 

are taken from column 4 and 5 of table V, and therefore to AM, . 

found from these equations, the correction + 50" has still to be applied. 

From the above equations of condition we derive in the ordinary 

way the following normal equations : 

Adv 
+ 9.9278 AM — 0.39596 Ai — 3.8260 7 eee 31.495 

— 0.39596 ,, + 4.1875 ,, — 2.7484 ,, = + 49.637 

— 3.8260 ,, — 2.7484 ,, + 3.8423 ,, = — 238.951 

These equations are much simpler if we introduce besides AM, 

only one of the two unknown quantities. If we try e.g. to represent 

the observations only through variations of MM and 7 we have not 
only AS&=O but the third equation falls out entirely. 

1. Solution for ASo=0. 
The results are: 

AM=— 2" 7042 

Ai =4+11.74 

and the remaining errors : 

1. Aa=+ 09014 Ad = + 2"59 
2. = + 0.097 4,18 
3. = — 0.151 — 3.13 
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2. Solution for Ai=0O. 

In this ease we find: 

AM =—_ 9"0461 

AQ = — 2'32"41 

and for the remaining errors: 

1 Aa=-+03185 Ad= — 3"18 

2, + 0.089 4+ 2.80 
3. — 0.226 + 3. 32 

3. Solution with 3 unknown quantities: 

The results are: 

AM =— __5"3045 

(a a a Sy 

AQ = — 1 2.90 

and according to the equations of condition there remain the following 

differences Obs.—Comp. 

1. Aa= + 09088 Ad= —0"23 
2. 4+ 0.095 4.1.34 
3 — 0.181 ip 

As we see the solution with Ad& =O and that with Ai—0 
satisfy the observations fairly well, the first one somewhat better, 

especially in right ascension. Stili we cannot deny that in the values 

Obs.—Comp. of d in both solutions, there exists a systematic varia- 
tion. On account of that I prefer for the present the solution with 

3 unknown quantities, where such a systematic variation doesnot 

appear. I therefore take the following elements as the most probable 

for the return in 1906: 

Epoch 1906 January 16.0 M.T. Greenw. 

M, = 1266456"838 

= 351°47'36"838 

ue = 517"447665 
loga = 0.5574268 

T = 1906 March 14.09401 

@ = 24°20'25"55 

e = 0.4121574 

~ == 20°49' 062 

x = 346 231.63 } 1906.0 

Se = 331 4437.85 | 
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Yet it is evident that the accuracy of these elements is not equal to 

the accuracy of those I could derive for previous returns of the comet. 
In the first place the observations include only a period of 43 days, in 

which the heliocentric motion of the comet with its large perihelion 

distance was not even 12°. Secondly three observations with their 

inevitable errors are in general only sufficient to obtain a mere 

approximate idea of the orbit. We must admire the ability and 

accuracy of the Heidelberg astronomers, who, from measurements on a 
short focal photographic plate taken of a still wholly invisible nebula, 

could deduce the position of the comet with an accuracy that could 
be compared to that of micrometer measurements of objects several 
hundred times brighter. Still we must bear in mind that the rejection 

of only one of the 4 reference stars on the plate of the 28 of August, 
had an influence of 0816 in @ and 1"6 in declination, or of 239 

in are of a great circle. 

As a test to my calculations, I derived the 3 places finally by 

direct computation from the obtained elements. 

Heliocentric aequatorial co-ordinates : 

a — 19.993 7648.63] sin (v + 77°37'28"36) 
y = [9.876 2140.59] sin (v — 20 58 46.82) 
z = [9.832 7020.56] sin(v — 1 4646.76) 

The following table contains the computed apparent places of the 

comet and the differences Obs.—Comp. 

dpa oe a 8 

NO. | a e | Au | Aé | 

| | 1 
Omni elt i " | {ho “ai 3s s 

4 |4 7 36.602 | + 42 3051.32 || + 0.095 | — 0.33 

4 32 12.633 | + 47 3445.69 || + 0.099 | + 1.26 K 

434 52.42 | 4+ 49 5455.19 || — 0.177 | — 1.15 
| | 

2 

The agreement between these differences found directly, and the 

quantities obtained by substitution in the equations of condition forms 

a sufficient control on the whole computation. 

The elements p, a and g. 

The elements from which the ephemeris for 1906 has been derived 

are those given in “Systeme VII” p. 78 of my Deuxiéme Mémoire, 
reduced to 1906 by applying the perturbations, arising from the 

action of Jupiter. The mean error of the obtained value for pu is so 
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small, that although not absolutely impossible, it is hardly probable 

that the correction obtained for the mean anomaly should have been 

caused totally or for the greater part by an error in wu. Taking the 

obtained AM for the 25 of Sept. we get: 

44" 6955 
2662.50 

and thus the real error of uw should be 67 times the mean one. 

Adopting this correction of u, the mean anomalies for the 28t of 

August and the 10% of October would be only 0" 469 smaller and 
0" 249 greater than the adopted ones. 

It is more probable that the correction of JM arises from neglected 

perturbations of that element by Saturn. This perturbation is given 

by the formula 
t t 

dM du 
M = dt —— dt’. 

A f ap ok f dt 
to to 

Even if instead of the sum of the values each term was known 

separately it would be equally impossible to conclude from the value 
d 

of the double integral, the final value of f — dt, or the correction 

Au=+ — + 0" 016787 

t 

of w for 1906. Observations during a much longer period can only 

decide in this case. 
Something like this holds for 2 and g. During the short period of 

the observations, we may even substitute for a part of the correction 
AM corresponding variations of a and g. If we keep to the plane 

of the orbit, the apparent place, except for small variations in the 
radius-vector (of little influence near the opposition), depends wholly 

on the longitude in the orbit, or on 

l=a-+». 

So we can apply small variations to the elements without varying 

perceptibly the computed positions, if only 

Al=Az+Av=0 

or 

ize —— — Av. 

This relation provides us with the means to throw a part of the 

correction found for M on 2 or on y or on both together. In the 

first case we have to satisfy the equation 

Ov - 
BB — —— A M. 

0M 
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We can derive the values sg directly from the comparison of 

the two former computations with A M= - 40" and AM=-+ 50". 
And so I find for the three dates of the observations: 

AM = — 0.506 Aa 

— 0.549 Aa 

— 0.573 Az 

If we keep a constant and want to substitute a part of the correc- 
tion of M/ by a variation of gy, we must satisfy the relation 

Av = 0 

or 

AM= (5 Ag. 
oy v const. 

0M : 
I derived the values of (5) by computing from the three values 

f /v const. 

of v, with a varied excentricity, the corresponding values of the 

mean anomaly. Hence I got for the three observations: 

AM = — 1.040 Ag 

— 1.186 Ag 
— 1.260 Ag 

Although the coefficients as well those of Aa as of Ag show a 

small variation in the influence of the corrections of the elements 

on the three positions, practically this influence differs too little from 

that of a constant variation of J to allow a determination of 

4M, 4g and Aa separately from the three observations. 

Leiden, November 1906. 

Mathematics. “On the locus of the pairs of common points and 
the envelope of the common chords of the curves of three 
pencils.” (1st part). By Dr. F. Scaun. (Communicated by 
Prof. P. H. ScHovure). 

1. Given three pencils (C,), (Cs), (C1) of plane curves of degree 
r, 8, t. To find the locus L of the pairs of points through which 
passes a curve of each of those pencils. 

Let P and J” be the points of such a pair. When determining 
the locus we shall notice but those points P and P’ which are for 

each couple of pencils movable points of intersection (i.e. points not 
necessarily coinciding with the basepoints), a distinction to be made 
only when the pencils have common basepoints. The locus L arrived 
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at in this way we shall call the locus proper, to distinguish it from 
the total locus to be arrived at by allowing one of the points P and 
P’ to be a fixed point of intersection of two of the pencils. 

Suppose the pencils (C,) and (C,) show a fixed points of inter- 
section and that this number amounts to # for the pencils (C;) and 
(C,) and to y for the pencils (C,) and (C;). 

The degree n of ZL is determined from its points of intersection 
with an arbitrary straight line 7. On / we take an arbitrary point Q,, and 
through Q,,; we let a C,. and a C; pass, which cut each other besides 

in the basepoints and in Q,. still in rs —y—1 points. Through 
each of these points we let a curve C; pass. These rs — y — 1 curves 
C, eut / in t(rs — y—1) points Q,, which we make to correspond 
to the point Q,,. To find reversely how many points Q,; correspond 

to a given point Q of 7 we take on / an arbitrary point Q, through 
which we allow a C, to pass cutting the C; through Q; in rt — 86 

points differing from the basepoints. Through each of those points 

we allow a C, to pass, of which the points of intersection with / 

shali be called Q,. To a point Q, now correspond s(r¢— 8) points 
Q, and to a point Q, correspond r (st—e) points Q,. The 27st—ar.—8s 

coincidences Q,Q, are the ¢ points of intersection of / with the C, passing 

through Q; and the points Q,, corresponding to Q,, whose number 
therefore amounts to 2 rst — ar — Bs —t. 

So between the points Q,, and Q, of / we have a (rst—yt—t, 

2 rst — ar — Bs —?)-correspondence. The 3 rst — ar — Bs — yt — 2t 

coincidences are the points of intersection of / with Z and the points 

_ of intersection of 7 with the curve of contact of the pencils (C,) and 

(Cs), i.e. the locus of the points of contact of the curves C, and C, 
touching each other. If there are two systems of curves (u,, »,) and 

(u,, v,)*), the order of that curve of contact is 

#,?, + #,P, + H,U, *)- 

1) A system of curves (,, v) is a simply infinite system of curves, of which 
» pass through an arbitrarily given point and » touch an arbitrarily given straight line. 

*) This order is found by counting the points of intersection with an arbitrary 
line 7. To this end we consider the envelope of the tangents of the curves of the 

system (yj, +) in its points of intersection with /; this envelope is of class 4) +1, 
the tangents of that envelope passing through an arbitrary point Q of / being 

the tangents in @Q to the ~, curves of the system through Q and the line / 

counting », times. In like manner does the system (yg, v2) give an envelope of class 

Bo vg. The (j++) (4g-+- ve) common tangents of both envelopes are the 
line 7 counting »». times and yyy9+ p,%9-+ po», other lines whose points of 
intersection with / indicate the points of intersection of 7 with the curve of contact. 

For a deduction with the aid of the symbolism of conditions see Scuusert, “Kalkiil 

der abzdhlenden Geometrie’”, p. 51—52. 
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If we take for ithe systems the two pencils (C,) and (C;) then 
u, =u, = 1 and (as ensues immediately from the principle of corre- 

spondence) », = 2(r—1), », = 2 (s—1). So the order of the curve of 

contact is 

Qn + 2s—B. 

For the number of points of intersection of 7 with Z remains 

3rst— ar —Bs— yt—2t—(2r+ 2s—3) = 38(rst+- 1)—2(r4 s+-t) —(ar+fs-+ yt). 

So we find: 
The locus L of the pairs consisting of two movable pomts by which 

a curve of each of the pencils is possible is of order 

n—=3(rst + 1)— 2(r +s +2) — (ar + Bs + yt); 

here a is the number of fixed pots of intersection of the pencils 
(C;) and (C), B that of the pencils (Ci) and (C,) and y that of 
(C,) and (C3). 

2. Whilst the preceding considerations remain accurate when of the 

basepoints of one and the same pencil some coincide, we shall suppose 

in the following that the pencils (C,), (C,) and (C;) have respectively 

r?, s? and ¢ different basepoints, so that we can only allow the 
basepoints of one pencil to coincide in part with those of an other 

pencil. Then a@ is the number of common basepoints of the pencils 

(C,) and (C;) (which can however also belong to (C,)), ete. If the 

pencils have no common basepoints («= 8—=y= 0), the order of 

the locus becomes 

8(rst + 1) — 2 (r+s-+2). 

This is also in the case of common basepoints the order of the 

total locus as long as that is definite, i.e. as long as there are no 
basepoints common to the three pencils. If there is such a point, this 

furnishes together with an entirely arbitrary point a pair of points PP 
through which a curve of each of the pencils is possible; of this 

pair of points however only one is movable. The locus proper however 

is still definite then. 

A basepoint of the pencil (C,) only we call A,, a common base- 
point of the pencils (C,) and (C;) which is not a basepoint of the pencil 

(C,) we call A, and a common basepoint of the three pencils we 
call A, If d is the number of points A, then the number of 

points A, amounts to a = aW— d, that of the points A,,to p =B—d 

and that of the points A,, to y' = y— d, whilst the number of points 

A, is equal to r? — p' — y' — d, ete. By introduction of a’, @’, y' and 
J the order n of this locus proper becomes 
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naz3(rst+ W—2(r e+ )—(a'rt hist yQ—dr +549. 
From this we see that the order of the locus proper is lowered by 7 

en account of a common basepoint A,,. If there are no points 

A;s:(d = 0) one can easily account for that lowering of order 

by noticing that from the total locus the (C. passing through 

A, separates itself, as not belonging to the locus proper. The point 

A,, furnishes namely together with an arbitrary point of that Ca pair of 

points satisfying the question ; of which points bowever only the latter is 

movable '). Farthermore we see that a point A,.; diminishes the order 

of L by r+s-+47, a fact one cannot account for by separation, the 
total locus becoming indefinite *). 

3. The locus proper L has in the basepoints of the three pencils 

multiple points, the multiplicities of which are easy to determine. 
A basepoint A, of the pencil (C,) only is an (st — a —1)-fold 

point of Z. In fact, the curves C; and C; passing through A, have, 

A, and. the basepoints excepted, still ss:—«—1 points of intersection 

each of which combined with A, furnishes a pair of points satisfying 
the question. The tangents in A, to the curves C’, passing through 
the st—-a—1 mentioned points of intersection are the tangents of 

J, in the multiple point. 
To determine the multiplicity of a point A, we remark that to 

obtain a pair of points satisfying the question and of which one of the 

movable points coincides with Ay, it is necessary for C, to pass 

through Ay (by which it is determined), whilst C, and C; which 

always pass through A, must present a movable point of intersection 

in As, thus must touch each other in A,. The question now rises: 

How often do two curves C, and C; touching each other in Aj, in- 

tersect each other again on the curve C, passing through Ay? To 

answer this question we introduce an arbitrary C, intersecting the 

above mentioned, C, in rs — y — 1 points differing from the basepoints. 
Through each of these points we allow a C;, to pass which gives 

rise to a correspondence between the curves C, and C; (so likewise 
between its tangents in A,,) where rs— y—1 curves C; correspond 

to a C, and rt— B—1 curves C, to a (:. Thus for the curves C, 

and (; touching each other in A, it happens (7s ++ rt — 8B — y — 2) 

1) If Ase counts for ¢ fixed points of intersection of the curves C, and Cy, the 

C, passmg through Aw separates itself < times by which the degree of L is lowered 

by &Y. ; 

*) If As: counts for = fixed points of intersection of C; and C, for € fixed points 
of intersection of C, and C; and for » fixed points of intersection of C, and C;, then 
Ay dimimishes the order of L by er+¢s +t; this holds for a point As. too, 
but then we must regard ¢ and , as being zero. 

28 
Proceedings Royal Acad. Amsterdain. Vol. [X 
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times that C, and C. have besides A,, another movable point of inter- 

section, being at the same time movable point of intersection of C; and 

C.. Here is included the case in whicb this second point of inter- 

section coincides with A,,, thus where the curves C, and C, touch 

C, in Ay; then only one movable point of intersection of C, and 

C, still coincides with A,, whilst there need be no other movable 

point of intersection lying on C;,, so that in this way we get no 

pair of points furnishing a branch of ZL passing through Ay. So 
the point Ay is an (rs + rt— B— y — 3)-fold point of L. 

To determine the multiplicity of a point A, we have to consider 

how many times three curves C,, C; and C; touching each other 

in A, pass once more through a same point. To this end we con- 

sider an arbitrary C, and the C, which touches this C, in A,s:. 

Through each of the 7s — y—41 points of intersection of these C, and 

C,, differing from the basepoints, we allow a C; to pass. Then the 
question arises how many times this C; touches C, and Cs in A,st. 

Let us call /,, the common tangent in A,,, of C. and Cs and J; the 

tangent of C, in that point. To J/,, correspond rs—y—1 lines 

/, To find reversely how many lines J/., correspond to an arbi- 

trary line /, we consider an arbitrary C;, intersecting the C deter- 

mined by / in rt—8 points differmg from the basepoints. Through 

each of those points of intersection we imagine a C,. If J, and / 
are the tangents in A, of C, and C, then rt—@ lines /, corre- 

spond to /, and st—a lines /, to /, The rt-+ st—a—B rays of 

coincidence indicate the lines /,, corresponding to i; to those rays 

of coincidence however belongs the line /; itself, which must 

not be counted, so that rt-+-st—a—f—t1 lines /,, corresponding to 

l, vemain. So between the lines 7, and /; exists an (7s—y—1, rt + 

+ st—a—pB —1)-correspondence. 

The required lines /,,, are indicated by the st--tr--rs—(a-+-p+-y)—-2 

rays of coincidence of this correspondence of which however three 

must not be counted. When namely the contact in A, of C. and 

C, becomes a contact of the second order one of the 7s—y—41 points 

of intersection differing in general from the basepoints of C, and C, 

coincides with A,s, namely in the direction of /.,. The C, passing 

through that point of intersection will touch J/,, in A,s; in other 

words /, coincides with /.,. As however the curves C. and C,, but 

not the curves C. and C;, neither the curves C,, C; have in A,., a 

contact of the second order we do not find in this way a pair of 

points satisfying the question. Now it happens three times with two 

pencils 0 curves with a common basepoint, between which a pro- 

jective correspondence has been in such a way arranged that the 
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curves must touch each other in that basepoint, that this is a contact 

of the second order, so that from the number of rays of coincidence 

three must be subtracted to find that of the lines J... wanted. 

From this ensues that the multiplicity of the point A,., amounts to 

st + tr ee eek 1) 9. 

So we find: 

A basepoint of the pencil (C,) only is a 

(st — a — l)- 

fold point of the locus proper L. A common basepoint of the 
pencils (C3) and (C,) which is not basepoint of (C,) is a 

eat 8 7 —3)- 

fold point of L and a common basepoint of the three pencils is a 

(st + tr + rs — a — B— y — 35)- 

fold point of L*). 

4. With the help of the preceding the points of intersection of 

£ with an arbitrary curve of one of ke pencils, e.g. a C;, are 
easy to indicate. These are: 

1. The r?> —8B—y-+d points A, counting together for 

(r? meee) 1) 
points of intersection. 

2. The 8—d@ points A, counting together for 

(8 — d) (sr + st —a—y— 3) 

points of intersection. 

3. The y — d points A,,, giving 

(y — d)(@ +s —a——83) 
points of intersection. 

4. The d points A,., giving together 

1) If there are no points A;s (3 =0) and therefore the total locus is not inde- 

finite, we can also ask after the multiplicities of the points A, and Ay as 
points of the total locus. Now the improper part of the locus consists of z curves 
C, , B curves C; and y curves (; . Of these pass through a point 4, the @ curves 
C, and through a point As, the B curves C;, the y curves C; and one of the 

curves C,. From this ensues: 
A point A, is an (st — 1), a point Ay an (rs+rt — 2)-fold point of the 

total locus. 

So the multiplicity of A, as a point of the total locus is not changed by the 
coincidence of the basepoints, whilst the multiplicity of As: is equal to the sum 
of the multiplicities which this point would have if it were only basepoint of the 

pencil (Cs) or only basepoint of the pencil (C.). 

28* 
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dst + trp + rs —a—B—y—5d) 

points of intersection. 
5. The movable points of intersection of L with C, ; these are 

those points of intersection which displace themselves ed we 

choose another C’.. These are found as the pairs of common points 

of the simply infinite linear systems of pointgroups intersect on C, 

by the pencils (C,) and (C;).. The number of these are found from 
the following theorem: 

If there are on a curve of genus p two simply enfinite linear 
systems of pointgroups consisting of a and b points, the number of 
common pairs of points of those systems ts 

(a — 1)(b— 1) — p. 

In our case a=rs—y, b=rt—f8 and (as C, is am arbitrary curve 

of the pencil (C,)) p= 4 (r—1) (v7—2). For the number of pairs of 
common points we therefore find 

(rs — 7 Dt 8 1) aie Die 
and for the number of movable points of intersection of L and C,: 

2(rs — y — 1) (rt — B — 1) — (r — 1) (vr — 2). 

So the total number of points of intersection is: 

r(drst +- 3 — 2r — 2s — 2t — ar — Ps — yt), 

in accordance with the formula we have found for the order of L. 

5. The pairs of points PP’ through which a curve of each, of 

the pencils is possible determine on Z an involutory (1,1)-correspon- 

dence; in the following we shall indicate P and P’ as corresponding 

points of L. 

If P falls into a doublepoint of Z differing from the base- 
points, then in general two different points P' and P” will correspond 

to P according to our regarding P as point of the one or of the other 

branch of Z passing through P. The curves of the pencils passing 

through P now have two more common points P’ and P", so that 
we get a triplet of points ? P' P", through which a curve of each 
of the pencils is possible. 

It may however also happen that the points P' and P" coincide. 
In that case correspond to the two branches through P two branches 
through P’, so that P' is likewise doublepoint of Z. The curves of 
the pencils passing through P have now but one other common 

point P’, but now the particularity arises that P or P’ can be 
displaced in two ways such that the other common point is retained. 

So PP' is then to be regarded as a double corresponding pair of 
points. 
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If reversely we have a triplet of points PP'P" lying on curves 

of each of the pencils, then P is a doublepoint of ZL, for P' as well 

as P" corresponds to P, and so it must be possible to displace P 

in such a way that the corresponding point describes a branch passing 

through P' and in such a way that a branch passing through P" 
is described. The curve Z has thus two branches’? 1 and P2 passing 

through P to which the branches P'l and P'2 correspond. Through 
the point P’ (which is of course likewise doublepoint of L”as~well 
as’ P") a second branch P'3 passes and through P" a second branch 
P"3, which branches ‘correspond mutually. If a point Q describes 

the ‘branch P1 the curves C,, C;, C, passing through Q have’a 
second common point describing the branch /P’1, whilst a third 

common point P” appears and again disappears when Q passes the 
point P. This third common point displaces itself (along the branch 

P"2) when Q describes the other branch passing through P, whilst 
then the common point coinciding with /’ appears and disappears. 

Triplets of points PP'P", and therefore doublepoints of ZL 
differing from ‘the basepoints, there will be as a triplet of points 

depends on 6 parameters and it is a 6-fold condition that a curve of 
each of the pencils must pass through it. So we have: 

The curve L has doublepoits, differing from the basepoints of the 
pencils, belonging in triplets together and forming the triplets of points 
through which a curve of each of the pencils is possible. To one or 
other branch through a doublepoint of such a triplet corresponds a 
branch through the second resp. the third doublepoint of this triplet. 
Moreover L can however have pairs of doublepoints indicating the 
double corresponding pairs of points. To the two branches through 
the doublepomt of such a pair correspond the branches through the 
other doublepoint of the parr. 

6. The number of coincidences of the correspondence between P 

and P’ can be determined as follows. The points ? and P’ coincide 
if the curves C,, C, and C, passing through P have in P the same 

tangent. Then P must lie on the curve of contact /,, of the pencils 

(C;) and (C,) as well as on the curve of contact R,, of (C,) and (C,). 

The number of points of intersection of those curves of contact 

which are of order 27 + 2s — 3 resp. 27 + 2¢— 3 amounts to 

(2r + 26 —:3) (2r + 2t — 3). 

Some of these points of intersection however do not lie on the 

third curve of contact R,, , and so they must not be counted. The curve 

R,, namely passes once through a basepoint A, or A, and three 
times through a common basepoint A,; or A,:; in fact in a point of 
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R,, two movable points of intersection of C, and C;, coincide so that 
the point A,, as a point of the curve of contact is found when C, 
and C, show in A,, a contact of the second orderwhich takes place 

three times. Further Ff, passes through the doublepoints of the curves 

C, and ©,, of which the number for the pencil (C.) amounts to 
3(r—1)? and for the pencil (C,) to 3(s—1)’, which follows imme- 

diately from the order of the discriminant. 
Each of the 7? — p’ — y'— d points A, is a simple point of inter- 

section of R,, and R&,, (simple, the tangents in A, to A,, and Ry, 

being the tangents of the curves C, and C;, passing through A,, 

differing thus in general), but no point of Ry. Each of the a’ points 

Ay is a double point of intersection of A,, and R,,, as those curves 

of contact in Ay have a simple point with the same tangent, namely 

that of the C, passing through A,, ; these points are also points of Rg , 

namely threefold ones. Each of the # points A, is threefold point 

of intersection of #,, and AR, (it being simple point of #,, and 
threefold point of #,;) and lies at the same time on Ry; the same 

holds for the y' points A,;. Each of the d points A, which are common 

basepoints of the three pencils is 9-fold point of intersection of R,. 
and R,,, being threefold point of each of those curves ; moreover it 

‘is threefold point of Ry. Finally the 3(— 1)? doublepoints of the 

pencil (C,) are simple points of intersection of #,; and A, , but not 

points of Ry; of the curves C., C, and C; passing through such a 

doublepoint C. has an improper contact with Cs and with C,, without 
however C, and C, touching each other. 

From this we see that the curves of contact R,, and R, have 

r— p—y'—d4+ 3(r— 1)? = 47? — 6r + 3 — ' — y'— Gd 

points of intersection which are not points of Ry, and so do not 

furnish coinciding points P, P'. Moreover f&,, and R&R, have 

2a’ + 3p + 3y' + 9d 

points of intersection coinciding with the common basepoints, which 

do fall on Ry, but which do not give any coinciding points P and 

P', as for this it is necessary that of three curves C,, C, and C 

passing through the same point each pair shows two movable points 

of intersection coinciding with that point. So for the number of coin- 

ciding points P and P' remains : 
(2r + 2s — 8) (Qe + 26 — 8) —= (4 Geo 8 — By ee 

— (2a + 38’ + 3y' + 9d) = 

= A(st + tr + 7s) — 6(r +84+4H4+6—2(¢4+ 84+ y' 4+ 40). 

So we find: 

It happens 

A(st + tr + rs) — Or +s +2) 4+6—2%et+e+y4) 
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times that the two points P and P' through which a curve of each 
of the pencils is possible coincide. 

7. With the help of this result the class of the envelope of the 
lines connecting P and P' can easily be determined. To this end 

we have to count how many lines PP’ pass through an arbitrary 

point SS. We find this number by regarding the correspondence 

between the rays SP and SP’, which we call / and /. This is an 
involutory (7, 7)-correspondence where 7 represents the order of the 

locus L of the points P and P'; for on an arbitrary ray / (or 7) 
lie n points P (or P'), to each of which one point P' (or P) cor- 

responds. So there are 2m rays of coincidence which can be furnished 
either on account of PP’ passing through S or of Pand P’ coinciding. 

So for the number of rays of coincidence where PP’ passes 
through S we find: 

2 {8(rst + 1) — 2 (r + 84 t) — (ar + Bs + yt)} — f4(st + tr + rs) — 

— 6r+s64+4+4+6—2(a4+ 8+ y4 d)} = Grst — 4 (st + tr + rs) + 

4+ 2(r+s- t) — 2a(r — 1) — 28 (s — 1) — 2y (¢ — 1) 4 29. 

These rays of coincidence however coincide in pairs. For if the 
line connecting the corresponding points P, and P,’ passes through 

S, then to P,P,’ regarded as line / correspond 7 lines /', two of 
which coincide with P,P,', for if point P of / is taken in P, or in 

P,' the corresponding point P’ lies in P,' resp. P,. Likewise to P,P, 
regarded as line / correspond n lines /, of which also two coincide 
with P,P,', from which ensues that P,P,’ is a double ray of 

coincidence’). So to find the number of the lines PP' passing 

through S, thus the class of the envelope, the above found number 

must still be divided by 2, so that we get: 

1) One can easily convince oneself of the accuracy of this conclusion by a 
representation of the correspondence between the rays SP and SP’. To this 

end we regard the parameters of the lines SP and SP’ as rectangular Cartesian 

coordinates x and y of a point which is the representation of those two lines. 
The curve of representation (which is symmetrical with respect to the line y= 

on account of the correspondence being involutory) indicates by its points of 
intersection with the line y=-z the rays of coincidence. If B is the point of 
representation of the rays J and /’ coinciding in P,P,’, the curve of representation 
is cut in two coinciding points B by a line parallel to the y-axis as well as by 
a line parallel to the x-axis, on account of P,P,' regarded as / or /' corresponding 

twice to itself regarded as J’ resp. /. So B is doublepoirt of the curve of repre- 
sentation, so that the line y=. furnishes two points of intersection coinciding 
with B. 
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The envelope of the lines connecting pairs of points, through which 
a curve of each of the pencils is possible, is of class 

3 rst — 2 (st-Lir+rs) + (r+s+t) — a(r—1)— B(s—1)-y-l) + d= 

— 3 rst — 2(st+tr+rs) + (rts+t—e'(r—1)— B(s—-)— 7 €—-)— 

— S(r+s-+t—A4). 

8. If the pencils have no common basepoints then the class of 
the envelope is 3 rst — 2 (st + tr + rs) + (r+ 5-2). By a common 

basepoint A, of the pencils (C) and (C;) that class is lowered with 

r7—1. This is because point Ag has separated itself from the 
envelope r—1 times. In fact, the curve C, passing through A, has 

separated itself from the locus of the points ? and /’. If we take 
P arbitrarily on this C,, the corresponding point ?’ coincides with 
Ay. So an arbitrary line passing through A, is to be regarded 

(r—1) times as a line connecting P and P”’, as any of the r—1 
points of intersection with C;, differing from Ay may be chosen for P. 

If the three pencils have a common basepoint A,; the total envelope 
of PP’ remains definite (in contrast to the total locus of P and 

P’. It is true P can be taken quite arbitrarily, but then 

coincides with a point A,., so that the line P/’ passes through that 
point A,., and therefore is not quite arbitrary. As the class of the 

envelope proper is lowered by the point A, with r+ s + ¢— 4 iit 

follows, that A,s: separates itself (r+s+t—4) times from the 
envelope. As one of the points of the pair becomes entirely indefinite, 

that multiplicity is not easy to explain, as far as I can see. 

Physics. — “On a new empiric spectral formula.” By KE. E. 

MocenporFr. (Communicated by Prof. P. Zeeman). 

3y the fundamental investigations of Kayser and Runer and those 

of RypprrG the existence of spectral series was proved. The formulae 

of these physicists, however, give in general too great deviations for 

the first lines of a series. | have tried to improve the formula given 
by RypBeEre: 

Particularly noteworthy in RypsBere’s formula is the universal 
constant NV,. From Barmer’s formula, which is included as a special, 

case in Ryppera’s formula, follows for hydrogen for the observation: 
corrected to vacuo N, = 109675. > i aitiz 
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Assuming for a moment that the .V, was also variable for the 
different series, I have calculated the constants A, a@ and .V, from three 

of the best observed curves. For NV, the following values were found : 

Principal Series Lithium — 109996 

Z “A Natrium 107178 

cs Z | Potassium | 105638 

; » | Rubidium 104723 

03 = Caesium 104665 

1st associated series) Hydrogen 109704 

¥5 5 Helium 1097038 

to Natrium 110262 

5 63 Potassium | 109081 

9 $5 Silver 107162 

a a Magnesium | 108695 

a3 - Zine 107489 

9 A Oxygen 110660 

Second _,, Natrium 107819 

= a Magnesium | 105247 

s és | Calcium 103702 

» A Zine 105399 

is pe | Aluminium | 105721 

These values have been calculated from wave frequencies not 

corrected to vacuo. 

As appears from these values NV, is not absolutely constant. As 
Kayser *) found in another way, we see, however, that relatively 

1) Kayser, Handbuch IIL. p. 553. 
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NV, changes little from element to element '). The supposition lies at 
hand, that a constant of nature will occur in the rational formula. 

For the first associated series of Aluminium calculation gives a con- 

siderable deviation. Calculating from the first terms of this series we 

find N,—207620 calculating from the middle lines N,—138082, 
and from the lines with smaller 2 V, = 125048. 

The first asssociated series of aluminium behaves therefore quite 
abnormally. 

In Rypsere’s formula another function than (m—- a)—? must be 

used to get a better harmony, specially with the first terms of a series. 

In my thesis for the doctorate, which will shortly appear, I have 
examined the formula: 

109675 
eo SRE 

(m +a +5) 

in which m represents the wave frequency reduced to vacuo, A, a 
and 6 are constants which are to be determined, m passes through 

the series of the positive integers, starting with m=1. In most 

eases with this formula a good agreement is obtained, also with the 

first lines of a series. The associated series converge pretty well to 

the same limit, while also the law of RypBERG—ScuustTEr is satisfied 

in those cases where besides associated series, also a principal series 
is observed. 

A spectral formula has also been proposed by Rutz ?). 

In my thesis for the doctorate I have adduced some objections to 

the formula of Ritz, as it gives rise to highly improbable combinations 

of lines. Moreover for the metals of the 2°¢ column of MENDELEJEFF’s 

system his views are not at all in harmony with observation. 

In the following tables the observed wavelength in A. E. is given 

under 2,, the limit of error of observation under F, the deviation 

according io the formula proposed by me under A, the deviation 

according to the formula of Kayser and Runer under A. K. R. The 
mark * on the right above a wavelength indicates that these lines 

were used as a basis for the calculation of the constants A, a and 6. 

The constants are calculated from the wave frequencies reduced 
to vacuo *). 

(hs 

1) The * in Kayser and Runee’s formula varies within considerably wider hmits 
than the VV) of Ryppere’s formula. 

*) Ann. d. Phys. Bd. 12, 1903, p. 264. W. Rivz, Zur Theorie der Serienspectren. 
8) Where it was possible, | have always taken these values from the “Index of 

Spectra” from MarsHatt Warts. 
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Lithium. 

Principal series: A = 4348013; «= + 0,95182 ; b= + 0,00722 

1st ass. series : A = 28581,8 ; a=-+1,998774; 6 = — 0,000822 

ands =: A= 285818 5 a= + 1,59872 5 6 = — 0,00821 

ga) 5 A= 285818 5 a= + 1,95085 5 b= + 0,00404 

The associated series converge here evidently to one limit. 

The difference of wave frequency between the limits of principal 
and associated series is 43480,13—21581,8 = 14898 33. The wave 

frequency of the 1t line of the principal series is 14902,7. So the 

formula satisfies the law of RypBrre-ScuustTER pretty well. 

m dy E * kK VN a 

: 
1 | 67082 * | 0,20) 0 | + 408 

2 | 3232,7" | 003 | 0 0 

3 | 9741,39 | 003! — 006 | 0 

4 | 62,60" 1003]. 0 0 

5 | 947513 | 010 | — 0,2 | — 02 

6 | 495,55 | 0,40 | — 0,18 | — 001 

7 | 9304,54 | 0,20} — 043 | + 0,30 
| ? 
} 

Ser eeers oe AMS (a Rell O02} 0,75 

9 | 93594 LD.) ? | +047 |:4 418 

FIRST ASSOCIATED SERIES. 

m a | abla ake. Ke R- 
| 

a | 6103,77" 0,03 0 0 

9 4602,37* | 0,10 Gmc 63.0 

3 413944 | 0,20 | — 0,11 0 

4 | 3915,20* 0,20 n= 0.20 

5 3794,9 | 5,00} -—- 0,09 | — 0,35 

6 3718.9 5,00 | — 1,94 | — 2,95 

7 36706 5,00 | — 1,06 | — 4,44 
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SECOND ASSOCIATED SERIES. 
nn nr ncn nnn es enn 

| 
m dw F A: Sp AGREES 

4 | 8127,0° S 0,30 | 0 | — 65 

2 | 497244 0,10 | — 0,13 | 0 

3 4973,44* 0,20 | 0 | 0 

4 3985,94 0,20 | + 0,22 | 0 

5 3838,30 3,00 | + 2,40 | — 02 
l 

THIRD ASSOCIATED SERIES. 

m dw | Eat A AAT 

— : 
4 | 6240,3*° S 040) Oe he 

2 | 4636,3* S | 040/ 0 Sop 

3 | M482 S 400 | 46. 4s 

4 | 3928 EH dc eS 

The capitals after the wavelengths denote the observers: L. D. 

Liveinc and Dewar; S. Saunpers and E. H. Exner and HAscnek. 

Where no further indication is given, the observation has been made 

by Kayser and Runeér. 

Natrium. 

Principal series (the lines of the doublets with greatest 2) 

A = 41447,09; a—=1,147615; b= — 0,031484 

Principal series (lines of the doublets with smallest 2) 

A = 41445,20; a= 1,148883; 4b = — 0,031908. 

For the calculation of the limit of the associated series RyDBERG- 

ScuustEr’s law has been used. With a view to the constant differences 

of wave frequencies of the doublets of the associated series, I have 
only carried out the calculation for the components with small 
wavelength. 

For the 1% ass. series A = 244911; a—1,98259: 6 = + 0,00639 

For the 2"™¢ ass. series A = 24491,1; a= 1,65160; 4 = — 0,01056 
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PRINCIPAL SERIES. 

re Oo HO 

or 

1 

m iw F A Ae Ke 
| 

1 | 5896,16" a 0 |+478 

1 | 3890,19° _ 6, £4.86 

9 | 3303,07° 0,03 0 0 

2 | 330247" + 0,03 0 0 

3 | 2852.91 (0,05 | — 0,14 0 

3 | 9852.91 1005 | —006 | 0 

4 | £680,46" 0,10 0 0 

4 | 9680,46" oso | -0 0 

2593,98 (040 | +003 | + 003 

9593,08 010 |. — 0,02 | + 0,09 

2543.85 L. D. | 040 | — 0,06 | + 0,10 
| | 

2543.85 L. D. | 040 | — 014 | + 0,24 

9512.93 L. D. | 0,20 | + 003 | + 0,50 

2512,93 L. D. | 0,20 | — 0,0 + 0,60 

FIRST ASSOCIATED SERIES. 

= | = ae 

818433" L. | 02 0 | 0 

5682,90 0,15 0,04 | 0 

4979,30° 020} 0 | 0 

4665,20 0,50} — 013 | + 0,52 

4494,30 | 400 | — 0,28 | + 0,50 

4390,70 L. D. | 2 | +098 | + 4,30 

4395,70 L. D | 2 | +400 | + 4,76 | 

| 
{ 

SECOND ASSOCIATED SERIES. 

11404 2 +400 | + 100, 

. 6154,62* 0,10 Gove 26 

5149.19* O10 0 0 

4748,36 | O45 + 0,12 0 

4549.75 | obo + 0,65 + 1,39 

4420.0 L.D.| 2 +002 4,55 
4343,70 r | + 2,00 | — 1,36 
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Zine. 

For this element I have calculated the formulae of the 1s* and 

2d associated series for the components with the greatest wave- 

length of the triplets. 

The limits are determined for the two series separately, for the 

first associated series the calculation gave 42876,25 and for the 

second associated series the limit appeared to be 42876,70. A very 
sood agreement. , 

The formula gives as 1*' line of the 1st associated series of Zinc the line 

8024.05, which has not been observed. The 8'" line of the first associated 

series 2409,22 has not been observed either. As 9 jine of this series 

2393,93 was calculated, which is in remarkably good harmony with 
the intense line 2393,88. As yet this line had not yet been fitted 
in the series. The great intensity of a curve in the root of the series 

is certainly strange; an investigation of the magnetic splitting might 
decide whether it is correct to range this line under the first associated 

series. 

The formula for the 1st associated series is: 

109675 
n = 42876,25 — 

0,007085 \? 
ASN OOO NS Ss ee 

m 

and for the 224 associated series: 

mee 109675 
nm == 42876,70 — 

We 0,058916\? 
m + 1,286822 — 

m 

FIRST ASSOCIATED SERIES. 

m dw | Neat A ie Keeht 

| | | 
| 

1 | eae pte ae cas 

2 | | 334513" — | 0,03 | 0 os 0@8 

3 | © 2801,00° | 0,03 0 +. 0,08 

4 |  2608,65* | 0,05 One as ope 

5 | — 2816,00 0,20} + 0,04 | — 041 

6 263,41 0,20 | — 0,14 | — 039 

7 2430,74 0,30) + 0,22 | + 9,00 

8 = Es | 2 — 

9 2393,88 005 | -=e0rel 
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SECOND ASSOCIATED SERIES. 

m dw Bah Soke A ee 

4 4810,71* | 0,03 | Oh ta6 
| | 

ae 3072,19* | 0,05 | oy | > 16:00 

3 Q712,60* | 0,05; 0 | + 0,02 

4 9567,99* | 0,10 | + 0,14 | — 0,01 

2493.67 . | 015 | + 042 | — 0,04 

6 219,76 =| (0,95 | — 04 | — 0,20 

Thallium. 

The formula for the 18* associated series is: 

109675 
nm = 41466,4 — 

0 ,00366 
pia Ne emis 

mm 

for the satellites : 
109675 

(m Br 68956425 2 = 
m 

and for the second associated series: 
109675 

n = 41466,4 — TEES -G 07 10557 

(m eet 9651 6: — ee) 
m 

The limit has been calculated from three lines of the 1st associated 

series; only two more lines were required of the satellites and of the 24 

associated series. So in this spectrum all the constantshavebeen calculated 

from 7 lines and 31 lines are very well represented by the formula. 

FIRST ASSOCIATED SERIES. 

m | = | F A A. K. R. 

1 3519,39° | 0,03 0 a 
2 2918,43 0,03 | — 004 | — 
3 9709,33* 0,03 0 = 
4 2609,08 003!) =. 004 | — 
5 2552,62* 0,10 0 ae 
6 9517,50 040} — v6 | — 0,34 
7 9494,00 0,10 | — 003 | — 0,19 
8 QAT7,58 0,10 | — 0,09 | + 0,06 
9 | 9465,54 0,20 | —0,A7 | + 0,2% 

10 | 2456,53 0,20 | — 015 | + 0,47 

1 4957 0,30 | — 0,7 | + 068 
12 2444,00 0,30 — 0,28 | + 0,79 
43 2439,58 0,30 | — 0,24 | + 0,95 
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SATELLITES. 

| is So ee eee Pye 

‘ | 

1 3509.58 003} 90 | 4 002 

2 292163 | 0,03} +006 | — 007 

3 ono77* | 009} Oo | +4 0,43 

4 260986 | 0,03 | — 0,03 | — 0,02 

5 | 955307 | 0,10) — 005 | — ofe 
| | 

SECOND ASSOCIATED SERIES. 

m hw i A hee ie ke da 
| 

1 5350,65* | 0,03 | 0 |= 468 

2 | sea9gs- | 003; 0 Pe 2,7 

3 20627 ~—s«|-:0,05 | — 0,05 | — 365 

4 2665,67 | 0,05 | — 4,32 | — 4,69 

5 2585,68 | 0,05 | — 0,16 | + 0,01 

6 | 953897 .| 040] — 047 | + 004 

7 | 2508,03 015 | — 044 es 0,01 

8 | 248757 | 0,20 | — 0,06 | + 0,08 

9 | 249765. | 020 | — 0,34 | — 0,21 

10 246201 | 030} — 020 | — 0,3 

44 | 9453.87 | 0,30 | — 0A7 | + 007 

12 | Q4AT 59 | 0,30 | — 0,05 | + 0,22 

13, | 2442.94 = | 030 | — 0,37 — 001 

I shall just add a few words on the spectrum of Aluminium. 

None of the formulae given as yet represents the first associated series of 

this element at all satisfactorily; nor is a satisfactory result attained 

with my formula. In the beginning of this paper I have pointed out, 

that very deviating values for NM, were calculated from three of the 

1st lines of the series. 

The formula runs : 

109675 . 

1,038060\? 
n = 48287,9 — 

(m + 0.89436 + ——_—_— 
m 
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The constants have been calculated from the lines 4, 5 and 6. 

ALUMINIUM. FIRST ASSOCIATED SERIES. 

m dy F | A AC Kees 

| | bi cated) 
1 31 82.27 0,03 | —268,82 | +3848 

D) 9568,08 003! + 346 | + 535 

3 2367,16 003) + 252 | + 64 

4 | 9963.83" 0,10 0 + 0,03 

5 | 9204,73" 0,10 0 + 0,7 

6 2168,87* 0,10 0 = O13 

7 145,48 0,20/ + 006 | — 0,31 

8 129,52 0,20; + o44 | — 01 

9 2118.58 oy | — 098 | 4 o4 

The agreement with the first lines (1,2 and 3), leaves much to be 

desired. The value of the constant > is here 1,03806, greater than 

the value of @ in that formula; this does not occur with any of the 

other series. 

With 4 constants, so with: 

109675 
a 

b ey 
(m+o4+-4+35) 

a better result is most likely reached. When the constants / and here 
probably also the c, are not small with respect to a, then the influ- 

ence of those constants is very great, particularly for small values 

of m. The deviation for the first line of the above series (3082,27), 

however, is so great, that I doubt if this is really the first line of 

this series. 

The behaviour of this Aluminium series is certainly peculiar, and 

a further investigation is desirable. 
For the way in which the constants in the formula were calculated, 

and for the spectra of Potassium, Rubidium and Calcium, of Magne- 

sium, Calcium, Cadmium and of Helium and Oxygen, I refer to my 

thesis for the doctorate, which will shortly be published. 
29 
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Astronomy. — “Mutual occultations and eclipses of the satellites 

of Jupiter in 1908.” By Prof. J. A. C. OupeMans. 

SECOND PART. — ECLIPSES. 

(Communicated in the meeting of October 27, 1906). 

From occultations to eclipses there is but one step. 

Between the two phenomena there is this difference that, as has 

been communicated on p. 305, the occultations have been observed 

more than once, but that of the eclipses of one satellite by another 

we have but one, incomplete account given in a private letter of 

Mr. Stantey Witu1AMs dated 7 December 1905. In his letter to us 

he writes: “With regard to the heliocentric conjunctions there does 

“seem to be one observation of the rare phenomenon of the eclipse 

“of a satellite in the shadow of another one on record. It occurred 

“on the 14 August 1891 and was observed by Mr. J. Comas at 

“Vatis in Spain and by the writer at Hove. Mr. Comas’ observation 

“was published in the Frenca periodical L’Astronomie, 1891, p. 397 

“(read 398) 1). The following is an account of my observation. No 

“particulars of this have hitherto been published.” 

« «4891 Aug. 14. 6'/, inch reflector, power 225. Definition good, 

“but interruptions from cloud. Satellite I. transitted on the $. Equa- 

“torial belt, (N. component). Jmmediately on its entering the dise 

«<it became lost to view. At 11°49™ a minute dark spot was seen 

“ «about in the position which the satellite should have then occupied. 

«<The shadows of satellites I. and Il. were confounded together at 

“this time, there seeming to be one very large, slightly oval, black 

“spot. At 11°59™ the two shadows were seen neatly separated, 

“<«thus, @® . The preceding shadow must be that of II., the follow- 

‘ing and much smaller one that of I.. At 12'10™ satellite I. was 
“certainly visible as a dark spot, much smaller than the shadow 

“““of either satellite. It had moved with respect to the shoulder of 

“<«<the Red Spot Hollow, so that there could be no doubt of its 

“<identity. It is on the north band of the north (south) equatorial 

“ «belt 2). Satellite I {this should evidently be II.] shines brightly 

““on the dise near the limb. Definition good, but much thin cloud 

oS eapout.-) 

n “ 

“The foregoing is an almost literal transcript from my observation 

“book. I take it that when satellite I. entered on the disc of Jupiter, 

“it was already partly eclipsed by the shadow of IL, so that it 

“became lost to view immediately, instead of shining, as usual, for 



al 

tee 

Tpowiee “ iy 

a? 

in 



Pla 

J. A. C. OUDEMANS. “Mutual occultations and eclipses of the satellites of Jupiter 
in 1908.” Second part: Eclipses. 

= 
s 
N 

Scale — : ——, On this scale the sun’s diameter is 0.24 meter and its 
30 168 000 000 

distance 25.783 m. 

Proceedings Royal Acad. Amsterdam. Vol. IX. 



( 445 ) 

“some time as a brillant disc. Also that the minute dark spot seen 

“at 11549™ was produced by the portion of the shadow of II., then 

“projected on I. Also that the small size of the following shadow 

“spot at 11'59™ was due to a part only of the shadow of U. being 

“projected on the disc of Jupiter, the other part of this shadow 
“having been intercepted by satellite I. 3) 

— — — “But combining Mr. Comas’ observation with my own, 

“there can be no doubt but that satellite I. was actually partially 

“eclipsed by the shadow of II. on the night of August 14, 1891. 

“So far as I am aware, this is the only indubitable instance of one 

“satellite being eclipsed by the shadow of another.”..... 

“PS. The above times are Greenwich mean times. The Nautical 

“Almanac time for the transit ingress of satellite I. is 11533™.” 4). 

Before proceeding to the computation of epochs of such heliocentric 

conjunctions we have investigated to what extent generally eclipses 

of one satellite by the shadow of another are possible. That they 
may occur is proved by the shadows of the satellites on Jupiter 

itself. The question however is: 1s* whether the shadows of the 

foremost satellite reaches that of the more distant one in every helio- 

centric conjunction and 2°¢ whether the occurrence of total eclipses 

is possible in any case. In order to find an answer to these questions 
we assume that the orbits all lie in a single plane which, being 

prolonged, passes through the centre of the sun. We further imagine 

a line in the plane of the orbits starting from the sun and passing 

Jupiter at a distance equal to its radius, the distance from the centre 

thus being equal to its diameter (see Plate I). This line cuts the 

orbits of the four satellites each in two points. Beginning with the 

point nearest the sun we shall call these points g, @, ¢, a, Baie 

and h. For clearness, sake the figure is given below (Plate [). 

Now suppose that I is placed either at a or at 4. In both cases 

the other satellites will be involved in its shadow cone as soon as 

they come: II, at d, Hl,at f and IV; at 4. 
The points of intersection with the orbit of II are c and d. If 

II, is at ¢ then I,, may be eclipsed in a but also I; in 6; Illy at f 

and IV; at h. 
But if I, is in d then only II, and IV; can be eclipsed, the former 

at f and the latter at h. 
The points of intersection with the orbit of III are e and /. If 

III is at e there is the possibility of an eclipse for’ Ey, at<, 1, at a, 

I, at 6, ly at d and IV; at 4. If on the other hand it is in F there 

is such a possibility only for IV; at /. 

It is evident that IV can only cause the eclipse of another satel- 

29% 
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lite if it is at the position g, one of the other three satellites being 

then at one of the points of intersection already mentioned. 

Each of the satellites might thus produce six different eclipses ; 

if however we compute the radii of the umbra for the positions of 

the other satellites we are led to a negative value in some of the 

cases. This means of course that the vertex of the cone of the 

umbra does not reach the other satellite. 

If for the radii of the satellites we adopt the values mentioned in 

the first part of this communication, diminished however by the 

amount of the irradiation, it appears that a total eclipse is only pos- 

sible in two cases. III, may cause a total eclipse of I, and In; I+ 

may nearly produce such an eclipse of Il, If the shadow does not 

reach the other satellite then an inhabitant of the latter would see 

an annular eclipse of the Sun. 

This case presents itself 

for the shadow of I, in respect to IV;. 

ULE ee yk TR and, Ve 

pape ib eee i ebay RAS 

re) IV, » > > Il; and Ill. 

In the fifteen remaining cases there may be a partial eclipse. 

It need hardly be said that this case can only present itself if, at 

the time of heliocentric conjunction, the difference of the heliocentric 

latitudes (y’—y), is smaller than the sum of the radi. In computing 

however the occultations observed by Messrs FautH and NIJLAND it 

appeared that this difference in latitude, according to the tables of 

DamolsEAu, is sometimes slightly greater. The latitudes found by these 

tables are therefore not entirely trustworthy. For this reason we in- 
cluded all the heliocentric conjunctions between 1 April and 20 May 
1908 (both dates inclusive). 

The preparation for the computation, vz the drawing of the orbits 

of the satellites is the same as for the computation of the geocentric 

conjunctions (see 1st part). First however the epochs of the helio- 

centric superior conjunctions must be derived from the epochs of 

the yeocentric superior conjunctions taken from the Nautical Almanac 
by the aid of the hourly motions of the satellites and of the angle 
G, i.e. the angle Earth—Jupiter—Sun. Furthermore, the jovicentric 

mean longitudes should be corrected for their equations and pertur- 

bations and diminished by S. i.e. the heliocentric longitude of Jupiter, 

instead of by S—G which is its geocentric longitude. 

Of the arguments N°.3 need not be computed; for this argument 

only serves, combined with 1, tor the computation of the jovicentric 

ii li, 
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latitude of the Earth, which need not be known in the present case. 
The number of columns in our tables will thus be found to be 

diminished by one for each of the satellites. 

Our results are contained in the annexed table. Between 1 April 

and 20 May we found 81 heliocentric conjunctions; the last column 

but one, (y—y’), shows that in a very great number of the cases an 

eclipse is possible. 

(1) The account of Mr. José Comas is as follows: 

Ombres de deux satellites de Jupiter et eclipse. — Dans la nuit 

du 14 aofit, j'ai observé un phenomene bien rare: la coincidence 

partielle, sur Jupiter, des ombres de ses deux premiers satellites, et 

par suite l’éclipse de Soleil pour le satellite | produit par le satellite II. 
A 11 (temps de Barcelone)') lVombre du satellite IL est entrée 

sur la planete. Pres du bord, elle n’était pas noire, mais dun gris 

rougedtre. Comme limage était fort agitée, j'ai cessé d’observer, 
mais je suis retourné a Jlobservation vers 11°37™ pour observer 
Yimmersion du premier satellite, qui a eu lieu a 11°42™ (erossis- 

sement 100 fois; lunette de 4 pouces). Jai été surpris de voir 
disparaitre Io?) a son entrée sur le disque, ne se détachant pas 

en blanc, quoiqu’il se projetat sur la bande foncée équatoriale 

australe. 

A 11"52™, avec des images plus tranquilles et un grossissement 

de 160, je remarquai que l’ombre completement noire que lon 

voyait était allongée dans une direction un peu inelinée vers la 

droite, relativement a l’axe de Jupiter. La phase maxima de I’éclipse 
du satellite I était déja passée de quelques minutes. A 11556™ je 
pris le petit dessin que j’ai l’honneur de vous adresser; les deux 

ombres se touchaient encore’). Aussitdt elles se séparerent et, 

quoique je n’aie pas pu noter lVinstant du dernier contact, je crois 

étre assez pres de la vérité, en disant qu’il s’est effectué vers 11°58". 
L’empiétement d’une ombre sur l’autre pourrait étre de la troisieme 

1) Barcelone is 2°10' East of Greenwich; mean time at Barcelone is therefore 

8m 40s later than of Greenwich. 
2) Since a few years the Nautical Almanac mentions the names of the Satel- 

lites of Jupiter proposed by Srwon Marius: Io, Europa, Ganymedes and Callisto. 
3) This drawing shows, as seen in an inverting telescope, the right hand 

(following) part of the well know Red spot in the Southern Hemisphere of Jupiter. 

Below it, at some distance, a dark band and still further two dark shadows each 

4 mm. in diameter, which are not yet separated, The common chord is 2,5 mm, 
in length; the total length of the two shadows together 7,2mm, The line connecting 

the centres makes an angle of 40° with the vertical. Meanwhile the motion of the 

two shadows must have been nearly horizontal. 
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partie du diametre. Dans cette supposition la distance minima des 

centres des deux ombres a di avoir lieu vers 11°47™ et le premier 

contact vers 11»37™. Le premier satellite pénétra dans le disque de 

la planéte a 11°42™, comme j'ai dit plus haut, done l’éclipse a com- 
mencé quand le satellite se projetait encore dans lespace, cing 

minutes avant |’immersion. 

L’invisibilité de lombre d'Europe sur lo peut s’expliquer par la 

mauvaise qualite des images. Toutefois, la penombre et lombre du 

II satellite ont été suffisantes pour diminuer notablement l’éclat du 

premier. 

(2) The meaning evidently is that, as seen in an mverting tele- 

scope the dark spot seemed to be situated on the North band of the 
North belt, but that in reality it was on the South band of the South 

belt. It is well known that the so-called Hed spot is there situated. 

(8) The author does not refer here to the visibility of a shadow 

of II on I. This may be explained, in my opinion, by irradiation and 

diffraction. 

(4) According to the tables of Damoisgav, second part, the time of 

the heliocentric conjunction of the two satellites is 28°45™ civil time 

Paris = 11"36™ Greenwich. In the Nautical Almanac of 1891 we 

find the following data for 14 August: 

II Shadow. Ingress 10"51™ M. T. Grw. 

I = ne A GI cer k ee 

I Transit gee | eS eae 

II a Piper Vee bags: ee ae Ree 

I Shadow. Egress 1318 ,, ,, ,, 

II ‘ 5S 43 eee 

I Transit ryan de ee ee 

ll z ion EEO oe pee 

If from the 1st, 294, 5t and 6 line we compute the time at 

which the shadows must coincide we get 11"31™. This result differs 

by 5™ from that found just now. We have to consider, however, 

that the two satellites went the same way, and that their relative 

mofion in five minutes, consequently also that of their shadows, was 
very minute. 

Mr. STanLEY WILLIAMS seems not to have perceived a shadow 

before 11°49" M. T. Greenwich; Mr. Comas already saw an oblong 

shadow at 11°43™20: M. T. Greenwich. For the rest Mr. STaniey 
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Wituams makes the shadow of II larger than that of I whereas 
in the estimation of Mr. Comas they were equal. It seems hardly 
doubtful but the English observer must be right. 

(5) In 1901 Sex repeatedly measured the diameters of the satellites 

of Jupiter at the 26 inch telescope of Washington. He made use of 

the filar micrometer but took a special care to eliminate the syste- 

matic errors peculiar to this instrument ( Vid. Astron. Nachr. N°. 3764, 

21 Jan. 1902. The communication of Sex is dated 19 Oct. 1901). 

During the months May—August (both inclusive) of the year 1901 

he measured the diameters in the night. He was then much troubled 

by the undulation of the limbs caused by the unsteadiness of the 
‘air. Afterwards in the months of September and October of the same 

year he observed a little before and a little after sunset. Artificial 
illumination was then not needed; and the satellites appeared as 
quiet discs. Moreover the field and the satellites were coloured greenish 
yellow by a screen filled with protochloride of copper and picric acid. 

Tne results for the diameters turned out to be smaller in every case 

than those formerly found. The difference was attributed to irradiation. 

The results, reduced to the mean distance of Jupiter to the sun 
(5,2028), are as follows. 

Difference, attributed 
Satellite At night In daytime Fie acti ie 

I 1",077 + 0”018 0"834 + 0,006 0"243 + 0"019 

II 0 976 + 0,043 0,747 + 0 ,007 0 229 + 0 0435 

Ill 1 604 + 0,038 4 ,265 + 0 ,009 0,339 + 0,039 

FY 1 44 + 0,018 1 169 + 0,006 0 372 + 0,019 

It is remarkable that the brightest satellite, II1, shows also the 

strongest irradiation. If however we consider the difference insuffi- 

ciently established, and if therefore we combine the several results 
obtained for the irradiation, duly taking into account the weights 
corresponding to the probable errors, we get 

Irradiation = 0",264 + 0,012. 

This is the irradiation for the whole diameter and we thus get 

0",132 for each of the limbs. This number however holds only for 

the telescope at Washington for which, owing to its great aperture, 

the diffraction must be exceedingly small. 
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It seems worth while to call attention to the differences between 

the diameters found by the same observer in 1900 and 1901. 

| 1900 | 1901 - 1901—1900 
1 | ove72 + 07098 | 0",834 + 0"006 + 07162 
1 | 0,624 + 0,078 0,747 + 0,007 + 0,124 
Il | 1,361 + 0,103 | 1,265 + 0,009 | — 0,096 
Iv | 1,277 + 0,083 | 1,169 + 0,006 | — 0,108 

Stone, at Oxford, once told me that Arry, in a conversation on 

the determination of declinations at the meridian circle, remarked to. 

him: “I assure you, SToNE, a second is a very small thing’. 

If we consider the differences just adduced between the results 

obtained by a single observer in two consecutive years we are led 

to conclude that, for micrometer observations, even now ‘a tenth of 
b) a second is an exceedingly small thing”. 

Appendix. Jn how far are the tables of Damotsnav still reliable ? 

In the first part of this paper, pages 319 and 521, we explained 

why we felt ourselves justified in using the tables of Damoisravu for 

these computations in advance. We may now add that we also 

investigated the differences of the eclipses, as observed in some recent 

years at different observatories, from these tables, or rather from 

the epochs given by the Nautical Almanac. In these investigations 

we have been assisted by Mr. Kress, amanuensis at the Observatory 

of Utrecht, who has carefully searched some volumes of the Astrono- 
mische Nachrichten and of the Monthly Notices for the time of 
“disappearance and reappearance’ of each satellite. He has further 

combined these times, reduced them to the meridian of Greenwich, 

and has then compared them with the data of the Nautical Almanac. 

In order to simplify, we requested him to note only the observation 

of the last light seen at disappearance and the first light at reappear- 

ance'). We intended to extend our investigation from 1894 to 1905 

1) DeLamBre in the introduction to his tables, does not state explicitly the 

precise instant to which his tables refer but from some passages we may conclude 

that he also means the instant as here defined. So for instance on page LIII 

where he says: “Les demi-dureées ont été un peu diminuées, pour les rapprocher 

des observations qu’on a faites depuis la decouverte des lunettes achromatiques’’. 

That Laptace also takes it for granted that such is his real meaning, appears 

from Ch. VIII, 8th book of the Mécanique Céleste. 

9 gh eel 
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or 1906, but after having completed som> four years there seemed 
reason to think that there was hardly need for further information. 
The general result arrived at was, that the tables were still sufti- 
ciently accurate for our purpose, which was no other than to prepare 
astronomers for the observation of the mutual occultations and eclipses 

of the satellites. 

Now that the work is finished we will not suppress its results 
though it cannot at all claim to be complete. It never was our 

intention to make it so, and the journals appearing in France, in 

America ete. have not been searched. 

The following observatories have contributed to our investigation. 

Aperture of the telescopes 

in m.m. 

cecamiee nt = ty , te LOD E70; 254, 714! 

Uc 5) i Oh ee i er a 260 

JE le oe it ee 5 ta 150 

demaeCWWINKEBR YS =< < i. . 162 

Palitax (GEEDHIEL) ocs.. 2°. 230 

Ls DUE ee SI Ria Ae ee 162 

GChrsitatien 64, tes —_. as. ~5.-j. 74, 190 

Marwnere, oie, Yo. a. of 66, 84, 84, 96,244 

OD. ea rr 2 161 
Windsor (Tebbutt) near Adelaide 203 

Lyon (a single observation) 2 

At Greenwich, Christiania and Kasan the eclipses have been often 

observed by two or more astronomers using telescopes of different 

aperture. In such cases we have only taken into account the instant 

observed by means of the telescope of largest aperture. As a rule 

the observer at this telescope could follow the satellite longer at 

“disappearance” and he would pick it up earlier at “reappearance”. 

There are however a few exceptions to the rule. 

For the eclipses observed during the period of a single opposition 

of Jupiter the corrections to the data of the Nautical Almanac in 
no case showed a regular progression. They fluctuated on both sides 

of the mean in such a way that there could be no objection to 

adopting their arithmetical mean, a proceeding which still would be 

perfectly justified, even if there had been a regu/arly increasing or 

decreasing progression. No further attention was paid to the diffe- 

rences in the aperture of the telescopes. If these apertures exceed 

a certain amount, for instance 150 mm. we find, theoretically as 
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well as practically that the differences due to the varying apertures 

are very small. 

The results arrived at are as follows: 

Corrections to the epochs given in the Nautical Almanac for 

the eclipses of Jupiter’s satellites. 

Oppo- | ee \Num-| Mean ES Num-}| Mean Mean 
| Corr. N.A. Corr. N.A. 3(D+-R) 

sition. Disapp. ber. error. Reapp. ber. | error. error. 

E> 

i 

1894/95 | -+ 37s | a | +14 | — 18s | + 4s |-+ 98.5! + 7s 

1895/96 | + 30 | 9 8 | 0 | 32 | +145 | 45 

1897 — 19° | 2 | 18 | — 5 12 6 | — 12 9° 

4s98 | 441 one = es a, 6 [ 4 

II. 

9418 | — 78 2 +32 0 7 +11s | — 39s | +17s 

1894/95 | + 52 4 225 | — 42 15 Fla b 12 

1895/96 | + 73 6 18 — 4 19 6° | + 34 10 

1897 — 72 3 26 + 11 10 9 | — 30 14 

1898 — 36 5 20 — 15 9 95 | — 26 41 

Ill. 

1894 +4151s 3 +228 | —24%s 3 +38 | — 45s | +25s 

1895 +101 4 419 —127 4 33 | — 13 11° 

1895/96 | + 87 9 13 — 50 9 22 | + 19 Ei 

1897 +181 4 | 19 + 37 law 22 | +109 148 

1898 +266 eae ae ee ae | 1 66 | +4138 34 

1899 +361 3 2 | 49% ee: 33 | +118 20 

iV. 

1895 | a oa et —17m9s| 2 | +138s | 

uF a) = aa | | | 
1895/96 + 3 49 | 10 Se fn 7 | +22 Poe 16 | +17s 

iM | = 0 2) Say Oh ee ee 1 | 60 | 437 4M 
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Average mean error of a single observation. 

Disappearane Reappearance | Mean _ | Delambre *) Introd. p. LIV 

I | + Bs A 203 | Sie 2255 1785 

II 45 29 37 

7 ea F 88,5 

= "3 be (795 rejecting the observations 

IV 80 60 70 deviating more than 3 mi- 
; nutes). 

According to these numbers the complaints about the increased 

inaccuracy of the tables of DamorsEau seem rather exaggerated, at least 
fur the first and second satellites. 

Taking into account the mean errors contained in the last column 

we get the most probable correction at the epoch 1894—98 

for I + §:,0 with a mean error of + 28,6 

similarly ,, II — 3 8 ee eas bee aa ge 

Both corrections can hardly be vouched for. 

For III the case stands otherwise. It is true, the subtractive cor- 

rection at the reappearances as well as the additive one at the dis- 

appearances may be attributable to the use of more powerful tele- 

scopes; still there seems to be a progression in the numbers of the 

last column but one, which calls for a more exhaustive investigation. 

In regard to IV, we found great corrections for the year 1895. 

After some years in which this satellite had not been eclipsed, owing 

to the fact that at the opposition it passed to the north of the shadow 

cone of Jupiter, there began a new period of eclipses in this year. 

In such a case the satellite travels high above the plane of the 
orbit of Jupiter, and describes only a small chord in the shadow. 
The consequence is that any small error in the latitude appears 

strongly magnified in the duration of the eclipse. The observations 

of Mr. Winker at Jena and of the observer at the observatory at 
Uccle near Brussels, of 8 March 1895 are very suggestive in this 

regard. The corrections were found to be: 

Jena. Brussels. Mean 

at disappearance -+ 19™48s + 21™58s + 20™53s 

at reappearance —19 36 —18 33 —19 45 

which shows that it is not the mean longitude of this satellite which 

is mainly in error. 

*) DELAMBRE gives mean differences; we have multiplied his numbers by 11/4 

in order to get mean errors. 
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The explanation of these extravagant differences must rather be 
sought, either in a correction needed by the longitude of the node 

of the satellite’s orbit or in the adopted flattening of Jupiter. It is 

also possible that for suchlike eclipses the diminution of light is 

very slow. 
For the rest, according to the Nautical Almanac, this eclipse 

would be the fourth after the long period in which no eclipse of 

this satellite occurred. The data, on pages 450, 452, 454 are as 

follows: 

1895 

17 Jany. D. 15 36™16s M. T.Gr., R. 2" 8™17s, duration 32™ 15 

Devic 4, 19°26 12.~—5, 53 3° See ee af: 1610 46 

MO oe 14:5, dd 24), CO ityig eign, Ae 4 Bs 5 1 34 57 

poMarch;, °°% D4) ako 2s ee oa ko = 1 54 14. 

Only, according to Scott-Hansen, who, on the North-Polar expedition 

of NAaNsEN, was in charge of the astronomical observations, the 

satellite has not been eclipsed at all on the 17 of January °). 

On the 2"¢ February 1895 too an eclipse of IV was not observed; 

(I cannot now call to mind where I saw this negative observation). 

On the 19% February, however, an observer at Greenwich, using the 

Sheepbanks equatorial, aperture 120 mm., got a correction of +- 23™30s, 

for the disappearance of IV. This agrees quite well with the preceding 

results, obtained at Uccle and at Jena on 8 of March. 

If we adopt the mean result of the observations at Brussels and 

at Jena, the duration of the eclipse on that day was 

144] 4s — 3957s,5 = 11141655, 
The number might be of some use for the correction of the ele- 

ments of IV. 

The difference here found cannot be attributed to a too small value 

of the adopted flattening, for DamorsEavu’s value exceeds already 
:| 

that found by direct measurement by most observers. Taking into 

account however the results obtained by De SrrrEr, as communicated 

at the meeting of the Section (Proceedings Vol. VIII p. 777), it 

appears that the longitude of the ascending node of the 4* satellite 

must be increased by about + 10°, whereas for the inclination on 

1) The Norwegian North Polar Expedition 1894 — 1896. Scientific Results, edited 

by Friptsor Nansen. Vi. Astronomical Observations, arranged and reduced under 

the supervision of H. Gretmuypen, p. XXIV. 
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the fixed plane is found the value = 0°,2504 — 15' 2"4, which exceeds 

DamorsgEav’s inclination only by somewhat less than a minute. 

The remaining eclipses of IV in 1895 and the two following years 
do not show any extraordinary divergencies. 

Now, as in 1908 the eclipses of the satellites will be nearly central, 

as may be gathered from the drawings in the Nautical Almanac 

accompanying the table of these phenomena, there is no need to 
fear that such great divergencies will occur for IV in that year. 

Our result therefore is that the Nautical Almanac, which is based 

on the tables of Damotszav (taking into account only a few necessary 

corrections), may be considered sufficient for preparing ourselves for 

the coming observations. The only exception would be for an early 
eclipse of IV after a period in which it is not eclipsed at all. 

Utrecht, 23 November 1906. 
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Mutual heliocentric conjunctions of the satellites in April and May 1908. 
A.A. = Ann Arbor ; Fl. = Flagstaff ; H.K. = Hong Kong; La Pl. = La Plata; P. = Perth ; Tac. = Tacubaja ; 

1a, == Tokio ; ve; wlan Wi: = Waar 
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 Kas., Taschk., Madras, HK., Pertt 

| Lick, Fl., Tac., AA., Harvard. 

 Grw., Pulk., Kas., Taschk., Rio. 

| a — near | 

sr & 
> ap => 

Mean time | | Zo ——-) 
No.| TS a Ss ar | BS a= | y—y’ 

at Greenwich | 2= | a= | | se ss 
ae |e — eo 

1/4 April4h 8m) 1; | Is 45°70 | —0r30 | —0r955} —or04 

Soe e483. 1:17 «| Tie | +3,21 | —0,46 | —0,20 | +0,04 
| 3 | 3» 445 |Iy | Uh —2,49 | +0,08 | +0,10 | —0,02 

4/3 > 95 My | | 44,30 | —0,105] —0,09 | —o,015| 
513 » 440 | IVy | Mh —6,19° | 10,40 | 40,32 | +008 
6 | 3 » 169 | IV; | Is —4, 03 | +0,30 | +0,49 | +041 

7/4 » 1652 |IVy | Tl, | +46,03' | 0.20] —0.97| +007 

8/4 > 17% |Iy |e | 45,75 | 0,31 | 0,05] —o06 | 
9/5 » 1956 |Iy |i. | 9,94 | 40,54 | 40,30 | 0,94 

| | 

10/6 » 2012 | Iy|Ie | +43,61 | —0,485] 0,94 | +0,095) 

44/6 » 2258 |My | 1. | +1,37 | —0,10 | —0,09 | —0,01 

12/8 » 631 |Iee |Te |  -+45,82 | -0,31| 0,95 | —0,06 
13/9 » 252 | Ty Bue +3, 85° | —0,18 | —0,24 | 10,06 
14/10 » 728 | Wy | Te |  —2,055 | 40,06 | 40,095) —0,03° 
4510 » 12 4 |My | Ip | 441, 4 | —0,09 | —0,08 | —0,01 

| b 

16 44 » | | | Il 1-7, 87 | 
4542 | | Iv | —0,36 | —0,48 | +012 

114 »\smallest | IV+7, 96 | | 
distance | 

47 » 19 43 Tee. | IIn | +5, 88 | —O0, 314 —0), 26 | —0,055 | 

| } 

18 is > 20% |Iee. |1Ve | 45,99 | —0,32 | —0,38 | 10,06 
19 a >» 93.33 | Illy | Ine. —9, 4 | 40,54 | 10, 45 | +0,09 
20 te » 357 | Il; | IV, | —7,35 | 40.42 | 10,97 | 0,15 
a1 ie » 2322 | ly |In | +49,64 | 0,16 | —0,49 | +0,03 

| ' 

22 ie > 444 |My | in | 441,41 | 0,09 —0, 06 | —0,03 
} 

Paes g) aiog aay | Ti +5,93 | —0,32 | 0,96 | —0,06 
%46 » 9344 |Iy | I. +4, 45° | 0,93 | 0.96 | +0,03 
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96 17 » 1417 | iy eis | +0,98 | —0,09 | —0,06 | —0,03 b] ? 

97 ie 22 1-03 AA | +5,97 | —0,32 | —0,26 | —0,06 

2. Kas., Taschk., Madr., HK., Perth, Te 

Grw.,Pulk.,Kas.,Taschk.,La Pl.,Ric 

Grw., Pulk., Kasan, La Pl., Rio. 

Lick, Fl., Tac., AA., Harv., La Pl 

Lick, Fl., Tac., AA., Harvard. 

Lick, Fl., Tac., AA., Harvard. 

Wi., We., Lick, Fl., Tac., AA. 

Wi., We., Lick, Fl., Tac., AA. 

Perth, Tokio, Wi., We. | 

Bresl., Pulk., Kas., Taschk., Madras 

Wi., We., Lick, Fl. 

Grw., Pulk., Kas., Taschk., Ma 

Grw., Pulk., Kas., Harv., La PL.,Ri 

Lick, Fl., Tac., AA.,Harv.,La PL. Ric 

Wi., We., Lick, Fl., Tac., AA: 
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Perth, HK., Tokio, Wi., We. 

Kasan, Taschk., Madr., HK. 

HK., Perth, Tokio, Wi., We. 

HK., Perth, Tokio, Wi. 

HK., Pe., To., Wi. We. 

Grw., Pulk., Kasan, La PL, Ri 

Grw., Fl.,Tac., AA.,Harv.,La PI.,Ri 

Perth, To., Wi., We. 
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II 

6,04 

5,02 
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absolute value, reaches its minimum 0,49 at the time assigned and then 
increases again. So there is no eclipse. 
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Taschk., Madras, HK., Perth, To. 

Madras, HK., P., Tokio. 

Madras, HK., P., Tokio. 

Madras, HK., P., Tokio. 

Taschk., Madr., HK., P., Tokio. 

Grw., Pulk., Harv., La Pl., Rio. 

Lick, Fl., Tac., A.A., Harv., La PI: 

We.; Lick. -Fl., Tac., A.A. Har, 

Grw., Pulk, Kasan, La PI., Rio. 

Grw., Pulk., (Kasan), La Pl., Rio. 

Taschk., Madr., HK., P., To. 

HE. 2:; Te. Wr 

Bresl., Pulk., Kasan, Taschk. 

Kasan, Taschk., Madr., HK. 

Kasan, Taschk., Madras. 

Grw., Tac., AA., Harv., La Pl., Rio. 

|} — 0,08 |-+ 0,08 | Taschk., Madr., HK. 

Tac., AA., Harv., La Pl., Rio. 

| Lick, Fl., Tac., AA., Harv., La PI. 
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| Grw., Pulk., Kasan, (Taschk ). 
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We., Lick, Fl., Tac., AA. 

To., Wi., We., Lick. 
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Lick., Fl., Tac., AA., Harvard. 

Bres]. Pulk., Kasan, Taschk. Ma‘ 
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Bresl., Pulk., Kasan, Taschk., Mad 

Wi., Wellington. 

Perth, Tokio, Windsor. 

Kasan, Taschk., Madras. 

Kasan, Taschk., Madras. 

Lick., Fl., Tac., AA., Harvard. 

HK., P., Tokio. 
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Grw., Pulk. Rio. 
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| Perth, To., Wi. 

Perth, To, Wi. 
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Grw., Pulk., Kasan, La PI., Rie. 

Grw., Pulk., La Pl, Rio: 

Lick, Fl., Tac., AA., Harvard. 

Taschk., Madras, HK, 

Wi., Wellington. 

Grw., Pulk., Kasan, 
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Physics. — “Contribution to the knowledge of the w-surface of 

vAN DER Waats. XI. A gas that sinks in a liquid.” By Prof. 

H. KamertincH Onnes. Communication N°. 96 from the 

Physical Laboratory of Leiden. 

If we have an ideal gas and an incompressible liquid without 

vapour tension, in which the gas does not dissolve, the gas will gather 

above the liquid under the action of gravity, if the pressure is suffi- 

ciently low, whereas the compressed gas will sink in the liquid if 

the pressure is made high enough. 

I have observed a phenomenon approaching to this fictitious case 

in an experiment which roughly came to this, that helium gas was 

compressed more and more above liquid hydrogen till it sank in the 
liquid hydrogen. Roughly, for so simple a case as was premised is 

not to be realized. Every experiment in which a gas is compressed 

above a liquid, is practically an application of the theory of binary 

mixtures of vAN DER Waats. In such an experiment the compressi- 

bility of the liquid phase and the solubility of gas and liquid inter 

se may not be neglected, as generally the pressure will even have 

to be increased considerably before the density of the gas-phase 

becomes comparable with that of the liquid phase. 

If the theory of vAN per Waats is applied to suchlike experiments, 

the question lies at hand whether in the neighbourhood of the plait- 

point phenomena where gas and liquid approach each other so closely 

that of the ordinary gas and liquid state they have retained nothing 

but the name, perhaps on account of a higher proportion of the 

substance with greater molecular weight’) the phase, which must be 

called the gas phase, may become specifically heavier than the phase, 
which must be called the liquid phase. On closer investigation 1! 

appears however, to be due to relations between the physical proper- 

ties and the chemical constitution (so also the molecular weight) of 

substances, that a liquid phase floating on a gas phase has not been 

observed even in this favourable region. 

I was the more struck with an irregularity which I came across 

when experimenting with helium and hydrogen in a closed metal 

vessel, as I thought that I could explain it by the above mentioned no! 

yet observed phenomenon, and so the conviction took hold of me, 

that at — 253° and at a pressure of 60 atmospheres the gaslike phase 

which chiefly consists of helium, sinks in the liquid phase which 

chiefly consists of hydrogen. 

1) The limiting case is that in the y-surface construed with the unity of weight 

the projection of the nodal chord on the xv-plane runs parallel to the line v ==) 
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In order to ascertain myself of this I compressed hy means of the 

mercury compressor described in Communication N°. 54 a mixture 

of about one part of helium and 6 parts of hydrogen in a glass tube, 

which had a capillary inflow tube at the top, and a capillary 

outlet tube at the bottom, and which was merged in liquid hydrogen. 

Up to 49 atmospheres the liquid hydrogen was seen to deposit 

from the gas mixture, bounded by a distinct hollow meniscus against 

the helium. At 49 atmospheres the helium, or properly speaking 

the gas phase consisting chiefly of helium, went down just as water 

through oil, and remained on the bottom as a large drop. With 

further compression to 60 atmospheres and decrease of pressure to 

32 atmospheres the volume of the bubble appeared to follow the 

change of the pressure as that of a gas. At 32 atmospheres the 

bubble rose again. By changing the pressure the bubble was made 

to rise and descend at pleasure. 

The closer investigation of these phenomena in connection with 
the isotherms of helium and the y-surfaces of H, and He is an 

extensive work, so that in anticipation of the results which most 

likely will be definitely drawn up only much later, I feel justified 

in confining myself to this sketchy communication. 

One remark may be added now. It appears that the 6 of helium 

must be small, from which follows again that @ must have an 

exceedingly small value, because the critical temperature, if it exists, 

must lie very low. In this direction points also a single determination 

of the plaitpoint of a mixture of helium and hydrogen which I have 

already made. Whether @ has really a positive value, whether it is 

zero, or whether (what is also conceivable) @ is negative, will have 

to be decided by the determination of the isotherms of helium. 

(December 21, 1906). 
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KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN 

TE AMSTERDAM. 

PROCEEDINGS OF THE MEETING 

of Saturday December 29, 1906. 
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(Translated from: Verslag van de gewone vergadering der Wis- en Natuurkundige 

Afdeeling van Zaterdag 29 December 1906, DI]. XY). 
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Max Weser: “On the fresh-water fish-fauna of New-Guinea”, p. 462. 

N. H. Cowen: “On Lupeol’”. (Communicated by Prof. P. van Rompurcn), p. 466. 

N. H. Cowen: “On « and f-amyrin from bresk”. (Communicated by Prof. P. van Rompcurcny 

p. 471. 

F. M. Jaecer: “On substances which possess more than one stable liquid state. and on the 

phenomena observed in anisotropous liquids”. (Communicated by Prof. A. P. N. Francuimonr), 

p- 472. 

F. M. Jarcer: “On irreversible phase-transitions in substances which may exhibit more than 

one liquid condition”. (Communicated by Prof. A. P. N. Francuimonrt), p. 483. 

O. Postma: “Some additional remarks on the quantity H and Maxwerv’s distribution of 

velocities”. (Communicated by Prof. H. A. Lorentz), p. 492. 

H. Kameriincu Onnes and W. H. Kersom: “Contributions to the knowledge of the y-surface 

of vAN DER Waats. XII. On the gas phase sinking in the liquid phase for binary mixtures”, 

p. 501. (With one plate). 

W. H. Kersom: “Contribution to the knowledge of the ¢-surface of van DER Waats. XIII. 

On the conditions for the sinking and again rising of the gas phase in the liquid phase for 

binary mixtures”. (Communicated by Prof. H. Kameritincu OnneEs), p. 508. 

Erratum, p. 511. 
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Zoology. — “On the fresh-water fish-fauna of New Guinea”. By 

Prof. Max Wersrr. 

(Communicated in the meeting of November 24, 1906). 

In the year 1877 there appeared a ‘‘Quatrieme mémoire sur la 

faune ichthyologique de la Nouvelle-Guinée”’, written by P. J. 

BLEEKER and containing 841 species. These species are exclusively 

marine and brackish-water fishes and shew clearly, as might be 

expected, that the littoral fish-fauna of New Guinea belongs to the 

great Indo-Pacific fauna which extends from the East coast of Africa 

to the islands of the Western Pacific. 

The same result is arrived at from the lists published by W. 

Macieay in 1876 and 1882, which treat of the fishes of the South 

coast of New Guinea and Torres Straits. But none of these lists 

accomplished what BLEEKER desired, namely, to give some insight 

into the nature of the fresh-water fish-fauna of New Guinea. The 

information which Breeker desired was partly supphed by certain 

communications, published by W. Macreay, E. P. Ramsay, J. Dov- 

eLas Ocinpy, A. Perucia and G. BovLEneer, about fishes caught in 

the Strickland, Goldie and Paumomu rivers, and in a number of 

rivulets all situated in the south-eastern part of the island. The number 

of fishes mentioned amount to about 30, but so long as the fish-fauna 

of German and Dutch New Guinea remained unknown, it was 

impossible to give a complete idea of the ichthyological fauna of this 

big island. 

This was the more to be regretted inasmuch as fresh-water fishes 

are of very great assistance in solving zoo-geographical problems. 

In using them for this purpose we should however keep well in 

mind the following points. 

If in regions, at present separated by the sea, identical or closely 

allied fresh-water forms are found, to which the sea affords an insur- 

mountable barrier, one may freely draw the conclusion that these 

regions were formerly either directly or indirectly connected. Among 

the fresh-water fishes there are however whole categories which 

cannot be used as factors in such an argument or only with great 

caution. These are the migratory fishes and those that can live also 

in brackish water and indeed even in sea-water. 

The so-called law of E. von Martens states that from the Poles 

to the Equator the number of brackish water animals increases. 

This is also true for fishes and especially for those of the Indo- 

Australian Archipelago, and in a very remarkable degree for those 

of the islands east of Borneo and Java. The great Sunda Islands 
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in consequence of their former connection with the continent of 

Asia possess a fish-fauna of which the most important elements, both 

as regards quality and quantity, had no chance of further distribution 

in. an eastern direction. The rivers of the eastern islands of the 

Archipelago were therefore almost devoid of fishes, and offered a 

good place of abode for such forms as, though denizens of the sea 

or of brackish water, possessed sufficient capacity for accommodating 

themselves to a life in fresh-water. The competition of those Asiatic 

forms (Cyprinidae, Mastacembelidae, Ophiocephalidae, Labyrinthici 

ete.), originally better fitted for a fresh-water life, failing, everything 

was in favour of the immigrants from the sea. The river-fishes of 

Celebes favour this view, as also does all that we know about the 

fishes of Ternate, Ambon; Halmahera, etc. 

We observe the same phenomenon in the fresh waters of Australia. 

These however contain also indigenous forms, partly very old, partly 

younger forms; the latter were obviously, at least in part, marine 

immigrants, which have accommodated themselves so entirely to a 

fresh-water life as to adopt the characters of fresh-water fishes. 

The fauna of Australia enjoy at present a general and vivid 
interest — are there not even people who believe that the cradle 

of mankind stood there? A remarkable point of interest in the 

study of its fauna is the question how long Australia has been 

isolated from other parts of the globe. New Guinea plays a pro- 
minent role in answering this question. 

It is therefore a welcome fact that the Dutch New Guinea Expe- 
dition of 1903 under the direction of Prof. A. Wichmayn has brought 
home, besides other treasures, a large collection of fishes from diffe- 
rent lakes and many rivers and rivulets, giving us a good insight 
into the fresh-water fauna of the northern part of the island. It was 
of great help to me, while studying this collection, that I was able 
to make use of the fishes collected in the brackish water at the 
mouth of the Merauke river, by Dr. Kocu the medical man of the 
Royal Geographical Society's Expedition to South New Guinea. The 

results of this investigation will be published elsewhere, but some 
more general conclusions may be mentioned here. 

When we reckon up all the fishes known up to the present date 
from the lakes, rivers, and rivulets of New Guinea, we find that 
their number amounts to more than 100 species, but only about 40 
of these were found exclusively in fresh-water. 

A careful examination shews further that the latter species, with 
a few exceptions, are either known from brackish or sea water at 
other places, or that their nearest relatives may be found in brac- 

31* 
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kish or sea water. New Guinea shews clearly the fact that immi- 

gration from the sea or from brackish water has played and perhaps 

still plays a predominant part in the populating of its rivers. 

Let us now return to the point at issue: namely, that the marine 

fish-fauna of New Guinea forms part of the great Indo-Pacific fish- 

fauna and particularly of that of the Indo-Australian Archipelago. 

Keeping this in mind one might be inclined to draw the conclusion 

that there is not much to be learned from the fauna of the rivers 

of New Guinea concerning the history of this island. Such a con- 

clusion however would be erroneous, for it is clear that the very fishes 
which are characteristic of the fresh-water of New Guinea belong: 

1. to genera which outside New Guinea are known only from 

Australia (Pseudomugil, Rhombatractus, Melanotaenia, Eumeda) ; 

2. or to genera nearly related to exclusively Australian genera. 

Lambertia for instance is nearly related to Eumeda; Glossolepis to 

Rhombatractus and the three new species of Apogon are closely 

allied to Australian ones. Finally the species of Hemipimelodus 
from New (Guinea form a special group, distinct from those of the 

neighbouring Indian Archipelago. Everything that gives to the 

fresh-water fish-fauna of New Guinea a character different from that 

of the Indian Archipelago is at the same time characteristic of 

Australia. Twelve of its species belonging to the genera Pseudo- 

mugil, Rhombatractus, Melanotaenia, Glossolepis, belong to the family 

or subfamily of the Melanotaenidae, only known from Australia. 
I do not hesitate therefore to maintain that the river-fishes of New 

Guinea belong to two groups: 

1. A fluvio-marine group, which is Indo-Australian or, if one prefers, 

Indo-Pacific and which may also be met with, for instance, in Ambon 

or Celebes. To this category belongs also Rhiacichthys (Platyptera) novae- 

guineae Blgr. discovered by Pratt in mountain rivers of the Owen 

Stanley Range four thousand feet high. Boulenger speaks of the disco- 
very of a fish of the genus Rhiacichthys ‘“‘so admirably adapted to life 

in mountain torrents’ as highly interesting. He tells us that the closely 

allied Rhiacichthys asper C. V. is known from Bantam, Celebes and 

Luzon. This is likely to create the impression that Rhiacichthys novae- 

guineae does not belong to this category, but is a species whose nearest 

relative is confined to rivers in regions occupied by the Asiatic fauna. 

Rhiacichthys asper however, differing but little from Rhiacichthys novae- 
guineae, was also found by BLEEker in Sumatra and, what is far 

more interesting, it occurs, according to Giinther, also in Wanderer 
Bay on the island of Guadaleanar in the Solomon Islands — in 

“fresh-water. At all events it is thus found close to the sea. This 
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is also true for a specimen which I described from Ambon and still 

more so for a specimen that I caught near Balangnipa in the lower 

part of the Tangka, close to its mouth in the gulf of Boni. The 

water was here already brackish and ran slowly. Rhiacichtys has 

therefore a very wide distribution, it does not fear brackish water, 

and its presence in New Guinea loses therewith much of its importance. 
2. The second group, the characteristic element, is Australian. 

This last group requires further explanation as to its origin. In the 

present state of things, now that New Guinea is separated from 

Australia by Torres Straits, these offer a barrier impassable to those 

fishes which I called characteristic. Some species of Rhombatractus 

and Melanotaenia may it is true, descend to the mouth of the river 

and be able to endure even slightly brackish water, but none of the 

24 recorded species is known from the sea. The barrier can therefore 
not be bridged by the group of islands in the Torres Straits. They 
are too poorly supplied with fresh-water and far too strictly coral 
islands, even when we leave out of consideration the fact that they 
are separated from each other, from New Guinea and from Australia 
by broad tracts of sea with a high salt percentage and strong tidal 
currents. The simultaneous presence of these characteristic forms in 
New Guinea and in Australia cannot be explained otherwise than by 
the existence of a more solid and extensive connection in former 
ages. This connection must have been so far back in the past that, 
to take an instance, the representatives of the abovenamed Melano- 
taeniideae had time to separate themselves specifically. And this 
actually happened; for among the 12 species of Melanotaeniidae 
already known from New Guinea and among the 12 species described 
from tropical or sub-tropical Australia not one is common to the two 
regions, although the differences between some species are very 
small. On the other hand therefore it cannot have been so very 
long ago from a geological point of view that this connection between 
Australia and New Guinea existed. How long a time may have 
elapsed since that period is at present a matter of hypothesis. But 
if zoo-geographical and more particularly ichthyological experience 
may venture an opinion, | should seek the period of this connection 
not earlier than in the pliocene, and the breaking up of it in the 
pleistocene. Other zoological observations may perhaps be in favour 
of this supposition. 

It will be a long time yet before the last word is spoken on this 
question. We may express the hope that the new expedition to Dutch 
Southern New Guinea under the guidance of Dr. H. A. Lorentz, which 
intends to investigate especially its big rivers, will bring us further light, 
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Chemistry. — “On Lupeol’'). By Dr. N. H. Conny. (Communi- 
cated by Prof. P. vy. Rompuren). 

(Communicated in the meeting of November 24, 1906). 

Notwithstanding the many and_ beautiful researches of several 

chemists, the structure of cholesterol, which is important also from 

a physiological pomt of view, is far from being known. Therefore, 

Prof. van Rompcrcn invited me to investigate a substance closely 

connected with the same, namely lupeol, a phytosterol. For the 

phytosterols may be included with the cholesterols in one common 
group “the cholesterollic substances”. The original intention was to 
study the alstol found by Sack *) in ‘“bresk’*). From the “bresk” 

investigated by me, alstol, alstonol and isoalstonol could not be iso- 

lated, although Sack claims to have found them in the same, but 

I obtained a@- and B-amyrin and lupeol. It appeared afterwards that 

Sack’s alstol is not a chemical individual. 

Lupeol was first found by Likrernik*) in the skins of lupin seeds; 

afterwards Sack *) met with it in the bark of Roucheria Griffithiana, 

whilst van Rompuren and van DER LinpEN*) demonstrated its presence 

as a cinnamate in the resin of Palaquinm calophyllum. Finally, 

VAN RompurGu proved that Tscuircu’s’) crystal-albane simply consisted 

of lupeol cinnamate. The lupeol was prepared from ‘“bresk” by 

extracting the same first with boiling aleohol. On cooling, a white 

mass was deposited which, without any further purification was 
saponified with alcoholic potassium hydroxide. The saponified product 

was then benzoylated with benzoyl chloride and pyridine and the 
reaction product treated repeatedly with acetone by heating just to 

boiling on the waterbath and then filtering off without delay. 

Finally, a lupeol benzoate was left, which after repeated recrystal- 

lisation from acetone, consisted of fine, flat needles; m.p. 265°—266°, 
(corr. 273°—274°). 

Found C 83.71—83.81 Calculated for C,,H,,0, 84.07 

H 10.41—10.36 10.03 
These, like all subsequent combustions, were made with lead 

chromate. 

[«]p = + 60°,75 in chloroform. 

1) For a more elaborate description see Dissertation N. H. Coney, 1906, Utrecht. 

) Sack. Diss. 1901, Géttingen. 

8) Bresk or djetulung is the dried milky juice of some varieties of Dyera. 

*) Ztschr. f. physiol. Chem, 15. 415 (1891). 
6) Sack l.c. 

6) Ber. 37. 3440 (1904). 
7) Arch. der Pharm. 241. 653 (1903), 
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By saponification of lupeol benzoate with alcoholic potassium 

hydroxide and recrystallisation from alcohol or acetone, the lupeol 

was obtained in the form of fine, long needles m.p. 211°, (corr. 215°). 

Found: C 84.62 84.65 84.40 84.50 Calculated for C,, H., O 84.85 

H 11.78 11.93 11.82 12.02 11.49 

faJp = + 27°,2 in chloroform. 

In the first place it seemed to me of importance to ascertain 
whether double bonds occur in lupeol. Therefore, a solution of 

lupeol in carbon disulphide was treated with a solution of bromine 

in the same solvent. Hydrogen bromide was evolved. By recrystal- 
lising the reaction product from methyl alcohol, needles containing 

1 mol. of the latter are formed. The melting point of this substance, 

dried at 100°, was 184°, (corr. 185°). 

Found: | i >be Sey V VI VII eale. for C,, H,, OBr. 

C 72.14 72.30 71.90 
H 10.26 10.07 CARIUS LIEBIG 9.55 

Br 44.48 14.50 15.40 15.07 14.67 15.45 
fe]p = + 3°,8 in chloroform. 

Most probably, « monosubstitution product had formed and I now 

tried to obtain an additive product of the benzoate. When dissolved 

in a mixture of glacial acetic acid and carbon disulphide and then 

treated with a solution of bromine in glacial acetic acid, it yielded, 

after spontaneous evaporation of the carbon disulphide, beautiful 

leaflets. On extracting this product with boiling acetone a less easily 

soluble substance was left, which proved to bea monobromide. After 

repeated recrystallisation from aethyl acetate, I obtained fine, thick 

crystals which when melting were decomposed. Placed in the bath 

at 240° it melted at 2439. 
Found I I TEE cu kV aves VIE VIII IX xX 

C 72.62 72.90 72.58 72.46 72.59 
H 8.85 8.88 8.72 9.09 8.84 Carivs LIEBIG 

ee Se 

Br 13.14 13.04 12.97 13.40 13.01 

Calculated C_,H,;O, Br, C=73.38, H=8.61, Br = 12.87. 

[a]p = + 44°,9 in chloroform. 

The bromine atom is contained in the lupeol nucleus, because on 

saponification an alcohol containing bromine, and benzoicacid are formed. 
The more readily soluble portion crystallises from acetone in 

beautiful leaflets. It is also a monobromide but could not with 

certainty be characterised as a chemical individual. 
One of the means to trace the structure of a substance is the 

gradual destruction by oxidation. 
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The lupeol was, therefore, oxidised with the Kimianr mixture’), 
Lupeol dissolved in benzene was shaken with a weighed quantity 

of the oxidising liquid, 6 atoms of oxygen caleulated for 1 mol. of 

lupeol. Titrations of the oxidising liquid with potassium iodide and 

sodium thiosulphate showed, that after six hours one atom of oxygen 

had been consumed and as the amount of chromic acid did not 

diminish any further, this one atom had been taken up quantitatively. 

The oxidation product, which crystallised from alcohol in beautiful, 

thick needles, melted at 169° (corr. 170°) and proved to be a ketone, 

to which I gave the name of dupeon. 

Found C 84.95 84.91 85.07 84.76 Cale. for C,, H,,0 85.24 

MW 41.64 11.81 11.62 11.68 1%a3 11.09 

[@|p = + 63°,1 in chloroform. 

Dr. Jagcer was kind enough to examine the crystalform of the 

lupeon. It belongs to the rhombo-bipyramidal class. A complete 

deseription will appear elsewhere. 
With hydroxylamine an oxime of the lupeon was obtained, which 

is but little soluble in alcohol. 
Reerystallised from ethyl acetate, it forms white, soft, light needles, 

which are decomposed when melting. Placed in the bath at 278°, 

they melt at 278°,5. 

Found C 81.98 Cale. for C,,H,, NOH 82.41 
H 11.44 with lead chromate 10.94 

N 3.08 3.11 
[@|\p = + 20°,5 in chloroform. 

sromine dissolved in glacial acetic acid added to a solution of 

lupeon in the same solvent gave hydrogen bromide and a dibromide, 

which was deposited from the acid. Recrystallised from a mixture 

of benzene and glacial acetic acid it consisted of beautiful, hard 

needles, which were decomposed when melting. Placed in the bath at 

253° the melting point was 254’. 

Found J II Il IV Y. VI Vil Vib tea 

© 62.31 62.71 62.50 62.30 
H 813 8.26 8:05. S06 Carivs LIEBIG 

ee TE ES 

sr 926.88 26.91 27.08 26.85 27.35 27.23 

Cale. for C,, H,, O Br,, C = 62.58, H = 7.80, Br = 26.90. 

[a|p = + 21°,4 in chloroform. 

When dissolved in ether, lupeon gave with hydrogen cyanide 

under the influence of a trace of ammonia a cyanobydrin, which 

!) Ber, 34, 3564 (1901). 
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after some time deposited in the form of beautiful, thick needles. 

This substance is decomposed at a higher temperature and also on 

melting. Placed in the bath at 192°, it melts at 194°. By collecting 

the hydrogen cyanide liberated on heating in aqueous potassium 
hydroxide and then titrating with silver nitrate I determined the 

nitrogen content. 

Found: I II bit PV V ME VIL “eale; for C,H, ON 

C 82.63 82.76 82.86 

Bm 14.20°11.26 copper oxide lead chromate _ titrated 10.66 

N So aoe 3.00. OL 20 3.03 

One mol. of cyanohydrin gave, with one mol. of ethyl alcohol 

and one mol. of hydrogen chloride, a substance, which, when placed 

in the bath at 230’, melted at 235°; as shown by a combustion, 

this was not, however, the expected ethyl ester of the corresponding 

acid. This substance has not been investigated further. 

Lupeol benzoate treated in the same manner as lupeol with the 

KiILIANI mixture was not affected. Lupeon dissolved in benzene and 

stirred with the mixture for four hours at 40° also remained unaltered. 

By the action of chromic anhydride on lupeon at a higher tem- 

perature, acid products were formed, which could not be obtained 

in a crystalline state. 
The neutral oxidation product of lupeol with potassium perman- 

ganate and sulphuric acid consisted of a mixture, which could be 

separated only with extreme difficulty. Excepting lupeon no well- 
defined substance could be isolated from it. As Senkowsk1') had 

obtained phthalic acid from cholic acid by oxidation with alkaline 

permanganate, | treated 23 grams of lupeol in the same manner, 

but it suffered complete destruction. This fact does, therefore, not 

favour the idea of a benzene nucleus in lupeol. 
By the oxidation of an acetic acid solution of lupeol acetate with 

chromic acid, I obtained a product which, on analysis, gave figures 

which agree satisfactorily with the calculated values for C,, H,, Q,. 

Placed in the bath at 285° it melted at 295° to a dark brown mass. 

In alcoholic solution this substance did not turn blue litmus red, 

not even on diluting with water, but still it could be titrated very 

readily with alcoholic potassium hydroxide, phenolphtalein being used as 

an indicator. Assuming that one mol. consumes one mol. of KOH the 

titrations pointed to a molecular weight of 521 and 524, the formula 

C,, H,, O, representing 512,5. 
Found: © 77.59 77.23 76.87 77.24 calculat. for C,, H,, O, 77.28 

H 10:75-10.49° 10.09 10.79 10.23 
~ 1) Monatsh. f. Chem. 17. 1 (1896). 
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On saponification with alcoholic potassium hydroxide a substance 

was obtained which erystallised from ether in needles. Placed in the 
bath at 260°, the melting point was 263-—265°. In regard to litmus 

this substance behaves like the unsaponified product, but it may be 
again titrated with alcoholic potassium hydroxide and phenolphthalein. 

From these titrations the molecular weight was found to be 452 

and 461; the formula C,, H,, O, represents 470,5. 

Found: C 78.42 78.61 calculated for C,, H,, O, 79.08 
H-41.07 71208 LOVE 

The potassium compound of this substance is soluble, with diffi- 

eulty, in alcohol, and erystallises from this in needles. 

On treating either the saponified or the unsaponified oxidation 

product the same compound was obtained, which seems to be a 

diacetylated substance. The results of the combustions, however, were 

not very concordant, but I have not been able to account for this. 

Found: C 75.39 74.71 75.67 74.96 74.47 caleul. for C,, H,, O, 75.75 

H 10.12 10.16 10.51 10.24 9.81 

By boiling with excess of alcoholic potassium hydroxide and 

titrating with alcoholic sulphuric acid the molecular weight was 
found to be 549, assuming that the molecule contains two acetyl 

groups. The formula C,, H,, O,; represents 554.5. 

It is desirable to investigate more closely these oxidation products, 

which are so important in the study of lupeol, before trying to 

explain their formation. 

Lupeol is not reduced by metallic sodium and boiling amy] alcohol; 

whereas lupeon is reduced by sodium and ethyl alcohol to lupeol. 

Therefore, if lupeon should possess a double bond, this is sure not 

to be in @$-position in regard to the carbonyl group. 

Neither lupeol, nor lupeol acetate dissolved in boiling avetone are 

acted upon by potassium permanganate. This behaviour does not 

agree with the theory of a double bond, but the presence of the 
latter in lupeol and lupeon could be satisfactorily demonstrated by 

means of Hitst’s iodine reagent. On the other hand the oxidation 

product C,, H,, O, no longer seemed to contain the double bond. 

On the strength of various combustions and bromine determinations, 

particularly of dibromolupeon, I consider C,, H,, O to be the most 

likely formula for lupeol. The formula C,, H,, O given by Likmrntk *) 

and Sack *) is certainly not correct. 

Utrecht, Org. Chem. Lab. University. 

1) Likrernik |. c. 

2) Sack l. c. 
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Chemistry. — “On a- and 3-amyrin from bresk?*). By Dr. N.H. 

Conen. (Communicated by Prof. Van Romevren). 

(Communicated in the meeting of November 24, 1906), 

Communications as to pP-amyrin, which is present as acetate in 
“bresk’’ or “djelutung’” have already been presented (These Proc. 
1905, p. 544). Since then, I have prepared also B-amyrin cinnamate. 
This erystallises from acetone in small needles, which melt at 236.°5 

(corr. 241°). 

In addition to @-amyrin and lupeol another substance was obtained 

from “bresk”’, which proved to be identical with the e-amyrin found 
by VESTERBERG. 

This substance crystallises from alcohol in long, slender needles ; 

m.p. 185° (corr. 186°). VesrerBerG gives the melting point as 181— 

181°,5. 

Found: C 84.22 84.30 calculated for C,,H,,0 84.43 
H 14.91 12.02 11.82 

These, like all subsequent combustions have been made with lead 

chromate. 

[¢]p=+82°,6 in chloroform; in benzene was found [«] p—-+88°,2.*). 
For the purpose of characterisation, different esters were prepared 

from @-amyrin. 

a-Amyrin acetate was obtained by heating with acetic anhydride 

and sodium acetate. Recrystallised from alcohol it forms needle- 

shaped leaflets; m.p. 220—221°, (corr. 224—225°). VeEsTERBERG gives 

the melting point as 221°. 

Found: C 81.85 82.27 81.79, caleulated for C,,H,,O, 81.98 

H 11.384 11.40 11.33 11.19 

|@|p = + 75°,8 in chloroform. 
a-Amyrin benzoate was obtained with the aid of benzoyl chloride 

and pyridine. From acetone it crystallised in long, prismatic needles ; 

m.p. 192°, (corr. 195°). According to VESTERBERG it melts at 192°. 
a-Amyrin cinnamate, which has not yet been described was obtained 

like the benzoate. When recrystallised repeatedly from acetone it 
forms small hard needles which melt at 176,5—177°, (corr. 178°). 

Utrecht. Org. Chem. Lab. Univ. 

1) For a more elaborate description see, Diss. N. H. Conen. 1906, Utrecht, 

*) VesTERBERG found in benzene [z]n = + 91°,6. 
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Chemistry. — “On substances, which possess more than one stable 

liquid state, and on the phenomena observed in anisotropous 

liquids.” By Dr. F. M. Jagerr. (Communicated by Prof. 

I’ RANCHIMONT). 

§ 1. The compounds now investigated belong to the series of fatty 

cholesterol-esters, which were the subject of a recent communication *). 
They are intended to supplement the number of the synthetic esters, 

studied previously and include: Cholesterol-Heptylate, Nonylate, 
Laurate, Myristate, Palmitate and Stearate. The Palmitic ester, as 

is well known, is also important from a physiological point of view, 

as it occurs constantly in blood-serum accompanied by the Oleate 
m.p. (43° C.) *). 

I have prepared these compounds by melting together equal parts 

by weight of pure cholesterol and fatty acid, and purifying by frac- 
tional crystallisation from mixtures of ether and alcohol, or ethyl 

acetate and ether. The details will be published later on in a more 

elaborate paper in the “Recueil”. The substances were regarded as 
pure, when their characteristic temperature-limits and the typical 

transformations occurring therein, remained the same in every parti- 

cular, even after another recrystallisation, whilst also the solid phase, 

when examined microscopically, did not appear to contain any 

heterogenous components. 

Most of these esters were obtained in the form of very flexible, 

tabular crystals of great lustre and resembling fish-scales; some of 
them, such as the heptylate and the /aurate, erystallise in long, hard 

needles. 
The investigation showed, that most of these esters of the higher 

fatty acids possess three stable liqued phases. Whereas, in the first 

terms of the series one at least of these anisotropous phases was 

labile in regard to the isotropous fusion, all three are now stable 

under the existing circumstances, although sometimes definite, irre- 

versible transitions may still occur. It is a remarkable fact, that the 

stearate again exhibits an analogy with the lower terms, as it appears 

that only labile liquid-anisotropous phases may occur, or else none 

at. all. A relation and similarity between the initial and final terms 

1) F. M. Jaeger, These Proc. 1906; Rec. d. Trav. d. Chim. d. Pays-Bas, T. 

XXIV, p. 334—351. 

2) K. Hirruie, Z. f. physiol. Chem. 21. 331. (1895); The blood serums of: 

man, horse, ox, sheep, hog and dog were investigated. 
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of the homologous series is plainly visible here. In what follows 
there will be described, tirstly, the thermic, and then the microscopic 
behaviour of these substances. 

§ 2. The Thermometric Behaviour of these Substances. 
Cholesterol- Laurate exhibits the following phenomena: The isotropous 

fusion £ of this substance has still, at 100° the consistency of gly- 

cerol, and gradually thickens on cooling. At 87°.8 C. (=4#,) there 

suddenly occurs a peculiar violet and green opalescence of the phase, 

which commencing at the surface, soon embraces the whole phase. 

The still transparent thin- jelly-like mass quite resembles a coagulating 

colloida! solution; the opalescence is analogous to that often noticed 
in the separation of two liquid layers. 

As the cooling proceeds, the opalescence colours disappear and the 

mass gradually becomes less transparent and also more liquid. It is 

then even thinner than the isotropous fusion Z. This doubly-refracting 
liquid A now solidifies at 82°.2 C. (=7,) to a crystalline mass S, 
accompanied by a distinct heat effect. 

If, however we start with the solid phase S and subject the same 

to fusion, the behaviour is apparently quite different. The substance 

softens and yields after some time a thick doubly-refracting mass, which 

will prove to be identical with the phase A. On heating further the 
viscosity decreases, and at about 86° it becomes very slight. There 

is, however, no sign of opalescence this time. The turbid mass may 

be heated to over 90°, without becoming clear and now and then A 

seems as if solid particles are floating in the liquid phase. At 90°.6 C. 

(= t,) everything passes into the isotropous fused mass /. The micros- 

copical investigation shows, that between A and Z another stable, 

less powerfully refracting liquid phase 6 is now traversed, and that, 
owing to retardation occurring, the phase S may be kept for afew 

moments adjacent to L, when A and B& have already disappeared. 

This is therefore, a case where a substance may be heated a few 
degrees above its actual melting point without melting. 

It should, however, be observed that the order of the temperatures 

is here quite irreconcilable with the phenomena considered possible 

up to the present, with homogenous substances; the temperature of 

90°.6, at which these crystals disappear in contact with ZL finds no 
place in the p-t-diagram of Fig. 1. Such a position of the said 

temperatures might be possible, when the system could be regarded 

as containing two components, for instance, if there was question 

of tautomeric forms which are transformed into each other with 

finite velocities. I think it highly probable that in all these substances, 
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“phenomena of retardation” play a great role; moreover the enormous 

undereooling which the phase A can undergo without transformation, 

proves this satisfactorily in the majority of these esters. 

The different behaviour of the laurate on melting and on cooling 

the fused mass is so characteristic, that no doubt can be entertained as 

to the irreversibility of each series of transformations. Fuller details 

will be given below in the micro-physical investigation. 

§ 3. Cholesterol-Nonylate forms at 90° an isotropous fused mass of 

the consistency of paraffin oil; on cooling to 89°5 a stable, greyish, 

doubly-refracting liquid appears which, gradually thickening, passes 

into a second strongly doubly-refracting liquid phase A, — which trans- 

formation is accompanied with a brilliant display of colours. All three 

liquids are, however, quite stable within each specific temperature- 

traject. On melting, as well as on cooling the substance, they succeed 

each other in the proper order. 

The viscous, strongly doubly-refracting, liquid phase A now 

becomes more viscous on cooling, and is finally transformed into a 

horny, transparent mass which exhibits no trace of crystallisation. 

Even after some hours, the often still very tenacious mass has not 

got crystallised. In the case of this substance it is therefore impos- 

sible to give the solidifying point or the exact temperature at which 

the heated mass begins to melt. The reason of this is, that the doubly 

refracting liquid A can be undercooled enormously and passes gra- 

dually into the solid condition without crystallising. 

As the micro-physical research has shown, a spherolite-formation 

occurs afterwards suddenly in the mass, which ultimately leads to the 

complete crystallisation of the substance. 

The velocity, with which such spherolites are formed appeared in 

some cases not to exceed 0.0000385—0.000070 m.m. per second ! 

§ 4. Cholesterol-Myristate, at 80°, is still an isotropous, paraffin 

oil-like liquid. On cooling, it gradually becomes viscous; at about 

82.°6 the glycerol-like phase then turns, with violet-blue opalescence, 

into a thick, strongly doubly-refracting mass A which, gradually 

assuming a thicker consistency, is finally converted into a horny 

mass, without any indication of a definite solidifying point. In this 

respect the substance is quite analogous to the previous one. On the 

other hand, on being melted, it behaves more like the laurate, in so 

far as it is converted into a double-refracting liquid 4, before passing 

completely into “. The transition temperature cannot be determined 
sharply, but I estimate it at about 80°. 
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§ 5. Cholesterol-Palmitate at 80° is a clear, isotropous liquid 
as thick. as simple syrup. On cooling, the isotropous phase is con- 

verted at 80° with green opalescence into a fairly clear, transparent, 
doubly-refracting jelly A, which rapidly assumes a thinner consistency, 

and becomes at the same time more turbid, and finally solidifies at 

77.°2, with a perceptibte caloric effect, to a crystalline mass S. In 

this case also, a doubly-refracting phase B appears to be traversed 

when the mass is being melted, before the occurrence of the isotropous 

fusion Z; I estimate the transition temperature at about 78°. 

§ 6. With Cholesterol-Stearate, 1 did not succeed in demonstrating 
the occurrence of a doubly refracting liquid. The isotropous, thick- 

fluid fusion solidifies at 81° to well-formed crystals S. 

§ 7. Cholesterol-Heptylate exhibits, in undercooled fusion only, one 

doubly-refracting liquid phase which is labile in regard to the solid 

phase SS. The compound behaves, thermically, analogously to the 

caprylate. The temperature of solidification is at 110.°5, the tran- 

sition-temperature of the labile doubly-refracting phase lies a little 

lower. 

Of Cholesterol-Arachate, 1 could only obtain an impure product 
on which no further communications will be made. The ester could 

not be purified properly as it is not soluble to any extent in the 

ordinary solvents. The crude substance obtained does not seem to 

exhibit any anisotropous liquid phases. 

§ 8. Micro-physical behaviour of these substances. If a 

little of the pure solid cholesterol-laurate is melted on an object 
glass to an isotropous, clear liquid Z, and the same is allowed to 

cool very slowly, there is formed, usually, a very strongly doubly- 

refracting, liquid phase, gleaming with lucid interference colours. It 

consists of large, globular drops, which exhibit the black axial cross 

and, on alternate heating and cooling, readily amalgamate to a syrupy, 

_highty coloured, but mainly yellowish-white liquid. This phase will 

be called A in future. On cooling, it gradually thickens, until no 

more movement of the mass is noticed, which continues to exhibit 

a granular structure. Around this mass an isotropous border liquid 
is found. At first I felt inclined to look upon this tenaceous, isotropous 

mass, which is visibly different from the fusion L, as a distinct 

phase differing from the fusion A. But on using a covering glass 

and pressing the same with a pair of pincers, or by stirring with 

a very thin platinum wire, I found that this border liquid is only 
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“‘pseudo-isotropous’ (LEHMANN) and is, in reality, not different from 

A; only, the optical axes of the liquid crystals are all directed 
perpendicularly to the glass-surface. The other cholesterol-esters also 

exhibit this phenomenon. On further cooling, this phase A crystal- 

lises like the pseudo-isotropous border to a similar mostly spherolitie 

erystalline mass _S. 
Between the spherolites one often sees currents of the pseudo- 

isotropous border liquid. 

If now the entire mass is allowed to solidify to S, and then again 

is melted carefully, it is at once transformed into the liquid A, recog- 

nisable by its high interference colours and its slow currents. Then, 

there appears suddenly a new, greyish liquid 4, consisting of smaller 

individuals with a less powerful double refraction, which after a 

short time is replaced suddenly by the isotropous fusion ZL. If Z is 
now cooled again, it is A which appears at once and not the phase B. 

Only a very feeble, greyish flash of light, lasting only for a 

moment, points to a rapid passing of the phase 6; it cannot, however, 

be completely realised now. On further cooling, S is formed sud- 

denly, sometimes in plate-like crystals. When once crystallisation has 

set in, S will not melt when the mass is heated, as might have been 

expected, but actually increase in size of the crystals occurs, and 

the velocity of crystallisation is now many times increased. It must 

be remarked that the growing flat needles of |S drive before them, 

at their borders, the liquid phase A amid violent currents. If the 

heating is now continued a little longer, we may notice sometimes, 

that whilst the little plates of S remain partly in existence, A passes 

first into the grey phase 4, which then is converted into the isotropous 

mass L. We then have adjacent to Z the solid phase S, which 
therefore, may be heated above its melting point, before disappearing 
finally into the isotropous fusion ZL. 

All this shows, that the dawrate possesses three stable liquid phases 
and also that the isotropous fusion being coled, B is always passed 
over, but is realised when the solid phase is heated. All this is repre- 

sented in the annexed p-é-diagram; the arrows, therefore, indicate 

the order of the phases traversed on melting and on cooling. The 

phase A in its quasi-immovable period may be kept a long time 
solid at the temperature of the room, and may be considerably under- 
cooled before it passes into S. Notwithstanding its apparently solid 

appearance in that undercooled condition, A is still a tenaceous, 

thick liquid, as I could prove hy stirring the mass with a thin 
platinum wire. 

The point (f,) agrees with the opalescence which occurs when 
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Fig. 1. Schematic p-t-diagram for 

Cholesterol-Laurate. 

the isotropous fusion is cooled; this indicates, therefore, the moment 

where the stable phase B is replaced by the as yet still less stable 
phase A, which will soon afterwards be the more stable one; 

a fact which may be perhaps important in the future for the 

explanation of the analogous phenomena observed in the separa- 

tion of two liquid layers and the coagulation of a colloidal solution. 
Indeed, the transition at (f,) presents quite the aspect of a gela- 

tinising colloidal solution. The temperature of this transition point 

may be determined, but not sharply, at 87°.8. The temperature at 

which, when the solid substance melts, the liquid may be still 
kept turbid, owing probably to the presence of the meta-stable plate- 

like crystals of S, was determined at 90°.6; the solidifying tem- 
perature (¢,) lies at 82°.2. 

32 
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That the border liquid, obtained by cooling the isotropous fusion Z, 
differed from JZ itself, could be demonstrated in more way than one. 

By heating and cooling we may get so far that, apparently, nothing 

more of A is visible, but that we have only the border liquid, which 

on cooling, crystallises immediately to S. Occasionally, the doubly- 

refracting individuals of A turn up in the mass for a moment to 

disappear again immediately. However, that isotropous liquid thus 

obtained is nothing else but A itself, when owing to the temperature 

variations, all individuals have, like magnets, placed themselves 

parallel with their (optical) axes and the whole has, consequently, 

become pseudo-isotropous. This same phenomenon also occurs with 

the other esters, for instance very beautifully with the nonylate and 

the myristate. The difference between these pseudo-isotropous phases 

and the isotropous ftsed masses “4 of these substances, is shown by 
the fact that the pseudo-isomorphous mass of A, and also the doubly- 

refracting portion of the same has a very thick-fluid consistency ; the 

isotropous fusion £ of the laurate has a consistency more like 

that of glycerol. 

As regards the solid phase and its transformation into the liquid condi- 

tion, it cannot be proved in this case that there exists a continuous 

transformation between the last solid partic lesand the first anisotropous 

ones. From the velocity, with which~the diverse phases usually 

make room for each other in the microscopic examination, one would 

feel inclined to believe just the opposite. The thermic observation 

of the transformation, which generally exhibit only insignificant 

caloric effects, would, however, make the observer feel more inclined 

to look upon the matter as an uninterrupted concatenation of more 

or less stable intermediate conditions, which I have observed pre- 
viously with cholesterol-cinmamylate. A somewhat considerable heat 
effect occurs in some cases in the crystallisation of the solid phase 

only; in all other phases the exact transition temperature cannot be 

determined accurately by the thermic method. 

§ 9. Cholesterol-Nonylate exhibits microscopically the following 

phenomena: 

Starting from the crystallised substance, this was fused first on an 

object glass to an isotropous liquid Z. On cooling a greyish doubly- 

refracting liquid phase appears, which, at a lower temperature, 

makes room for a very tenaceous, strongly doubly-refracting, mostly 

vellowish-white phase, 4. This phase A is often surrounded by an 
isotropous border; if pressure is applied to the covering glass or if 

fhe mass is stirred with a very thin platinum wire, this isotropous 
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liquid appears to be identical with A, and to be pseudo-isotropous 

by homoeotropism only. The optical axes of the doubly-refracting 
modification A again place themselves perpendicularly on the surface 

of the covering glass. On continued cooling A becomes increasingly 
thicker; at last a movement in the mass can be seen only on stirring. 

After a longer time there are formed from numerous centres in this 

tenacious mass thin, radiated spherolites, whose velocity of growth 

is but very small. When a number of these spherolites have formed 

and the mass is then heated carefully, the spherolites do not melt, 

but actually decrease owing to the greater crystallisation-velocity. 

Soon afterwards —- however, they melt, on further heating, to the 

doubly-refracting phase A, where the circumferences of the spherolites 
and the black axial crosses are preserved for some time; so that the 

whole much resembles a liquid mozaic. Subsequently the phase 6b 
reappears and afterwards the isotropous fusion L. The whole series 

of phases is traversed in a reversible manner; the liquid phase A, 

however may be so much undercooled, that a proper melting or 
solidifying point of the substance cannot be given. In larger quantities 

of the substance, the crystallisation does not set in till after some 

hours, and the substance turns first to a horny mass, which always 

remains doubly-refracting to finally exhibit local, white spots, from 

which the spherolite-formation slowly spreads through the entire 

mass. One would feel inclined to call this transformation of liquid- 

anisotropous into crystallised substance a continuous one, if it were 

only possible to observe, even for a moment, the intermediate con- 

ditions in that transition. As the matter cannot be settled by direct 

experiment, the transition must be put down, provisionally as a 
discontinuous one. 

In this case also, and the same applies to the other cholesterol- 
esters as well, the spherolite-structure of the solid phase is of great 
importance for this entire transformation of undercooled, anisotropous- 

liquid condition into the solid one. At the end of this communication 
I will allude briefly to a few cases from which the particular signi- 
ficance of the spherolite-structure in the transitions between aniso- 
tropous-liquid and anisotropous solid phases is shown also plainly in 
a different manner. 

§ 10. Cholesterol-Palmitate behaves in quite an analogous manner : 
I observed one solid phase and three liquid conditions A, B and L: 
as in the case of the laurate, B is generally observed only on 
warming. The succession of the liquid and solid phases takes place, 
however comparatively rapidly, so that a real solidifying point may 

32* 



( 480 ) 

be observed, which has also been proved by the thermic research. 

The solid phase crystallises in broad flat needles, when fused and 
then solidified in conglomerated spherolites. On melting, the thick, 

doubly-refracting liquid A is mostly orientated in regard to the 

previous solid spherolites. 

§ 11. Cholesterol-Stearate could not be obtained in a doubly- 
refracting liquid form: the isotropous fusion always crystallises 

immediately amid rapid, rotating movements, to small needles, which 

often consist of a conglomeration of rosettes. It is possible that labile 

anisotropous phases are formed, owing to strong undercooling or by 
addition of some admixture *). 

§ 12. Cholesterol- Myristiate \ends itself splendidly to the experiment. 

It behaves mainly in the same manner as the /aurate; the phase B 

can only be observed on heating, but not on cooling the isotropous 

fusion 4. Most brilliant is the formation of large, globular crystal- 

drops of the modification A, also the colour-zone which precedes the 

formation of A from LZ, on cooling. This phase A also exhibits the 
phenomenon of pseudo-isotropism in a particularly distinct form. On 

the other hand, an important difference between this compound and 

the laurate is the much smaller velocity with which, on cooling, 

the spherolites S are formed from A; in this respect the compound 

exhibits more similarity with the nonylate. Sometimes it may be 

observed readily how in the phase A, which consists of an enormous 

number of linked, globular crystal-drops, which all exhibit the black 

cross of the spherolite crystals, centrifugal current-lines are developed 

from a number of points in the mass, along which the crystal-drops 

range themselves. After the Japse of some time those doubly-refracting 

globules are seen to disappear, while the current-lines have now 

become rays of the spherolite. Here again, the question arises whether 

the transformation of the doubly-refracting liquid globules, which are 

orientated along the current-lines, into the true spherolite form, does 

not take place continuously, and whether we do not speak of a 
sudden transformation merely because we are not able to observe 

the stadia traversed in this transformation. 

The liquid globules of the phase <A themselves exhibit much 
similarity with a kind of liquid spherolites; a few times, | have 

even been able to observe such “liquid spherolites” of greater dimens- 

') Prof. Leamany informed me recently that the stearate possesses mdeed two 
labile, anisotropous liquid phases. 
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ions, which rapidly solidified to solid spherolite crystals. In the case 

of this compound also, one feels convinced that there must exist a 

very intimate relation between the spherolite-formation of a substance 

and its power of forming anisotropous liquid phases: on the nature 

of this relation, | hope to make a communication later on. 

It may, however, be observed, provisionably that in all trans- 

formations: liquid SS solid, where serious “phenomena of retardation” 

may occur, the undercooling, or superfusion, for instance is generally 

abrogated amid a differentiation of the phase into spherolites. All 

the cholesterol-derivatives, mentioned in this paper, exhibit this sphe- 
rolite-formation. In the case of «-phytosterol-propionate, | have been 

able to show, that a complex of a large number of doubly-refracting 

microscopic spherolites may imitate the optical peculiarities of the 

liquid phases in process of separation and of the colloidal opalescence. 

This might lead to the strengthening of the previous conception of 

the colloidal solidification as a separation-phenomenon of labile liquids. 

§ 13. Cholesterol-Heptylate contains only /adile liquid anisotropous 
phases. It exhibits great similarity with the caprylate described previ- 

ously: I have only a few times been able to obtain one single thick- 

fluid phase A from the undercooled isotropous fusion LZ. The solid 

phase erystallises rapidly and in beautiful flat needles, which exhibit 

high interference colours. On warming, the substance readily migrates 

towards the colder parts of the object glass. 

§ 14. In conelusion, I will communicate a few more points as 

regards some phenomena, which prove plainly the signiticance of 

the spherolite structure for with these questions. 

Some time ago, I published a research on the fatty esters from 

Phytosterol from Calabar-fat and stated how they all are wont to 
erystallise in the spherolite-form from their cooled, isotropous fused 

mass, while anisotropous liquid phases are not observed therein, with 
the exception of the normal valerate which possesses a thick-tluid 

anisotropous modification, and exhibits the phenomenon of the chang- 

eable melting point, which again becomes normal on long keeping: 

a fact also observed in the case of a few fatty glycerol-esters. Since 
then, Wiypats has proved that the phytosterol, extracted from Calabar 
fat is a mixture of two isomorphous phytosterols, which cannot be 
separated by crystallisation. Being engaged in preparing the pure 
fatty esters from the principal of those two phytosterols, namely 

the a-compound (m.p. 136°), I discovered that the fused propionate 
of a-phytosterol (m.p. 108°), when cooled rapidly in cold water, 
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exhibited the most brilliant interference-colours, which is also the case 

with the cholesterol esters (acetate for instance), which possess labile 
anisotropous liquid phases. The thought naturally at once occurred, 

to attribute these phenomena to the appearance of liquid crystals in 

the now pure a-phytosterol-ester. A similar behaviour was also 

shown by perfectly pure a-phytosterol-acetate, but with a much less 

display of colours. It was, however, a remarkable fact, that a-phyto- 

sterol-propionate even after complete solidification sti/l retained those 
colours for an indefinite length of time, particularly at those sides of 
the testtube, where the layer of the substance was thinner and had 

cooled rapidly. 

The microscopic investigation now showed that these two sub- 

stances exhibit extremely rapidly disappearing anisotropous liquid phases 
or, more probably, none at all‘); but that the said colour-phenomenon 
is caused by a very peculiar spherolite-structure. 

In what follows, I have given the description of the solidifying 

phenomena of the «-propionate, and also a figure representing the 

typical structure of the fused and then cooled compound, such as is 

present at the coloured sides of the tube. 

If a little of the solid substance is fused 
on a slide to an isotropous liquid the fol- 

lowing will be noticed on cooling. The 

mass solidifies completely to spherolites, 

namely to a conglomeration of circular, 

concentrically grouped figures, which appear 

connected with a series of girdles. When 

three spherolites meet, they are joined by 

means of straight lines which inclose angles 

of about 120°. 

The mass is slightly doubly-refracting 
and of a greyish colour; the rings and girdles are light greyish on 

a darker back-ground. Each spherolite exhibits besides a concentric 

structure, the black cross, but generally very faint. The whole 

resembles a drawing of polished malachite from the Oeral, or of 

some polished agates. 

') Whereas the phytosterol-esters from Calabar fat which, of course, contain 

a definite amount of the B-homologue, exhibit no liquid crystals, the pure z-esters 

commencing with the butyrate [or perhaps the propionate] did show this pheno- 
menon. This discovery is a powerful argument against the remarks often made 

in regard to the cholesterol-esters, that the remarkable phenomena described are 

attributable to an admixture of homologous cholesterols. Foreign admixtures 

prevent as a rule these phenomena altogether; in any case they are rather spoiled 
than improved. 
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The walls of the test-tube or the object-glass, which exhibit the 

said colour-phenomena, have that same structure, but with this diffe- 

rence, that the globular, concentrically deposited spherolites have 

much smaller dimensions and lie much closer together. Each little 

spherolite has also a cross; this however, is not dark, but coloured 

with yellow and violet arms. The spherolite is also coloured in the 
alternate circle-quadrants. 

This ensemble of small, coloured spherolites is the cause of the 

said brilliant colour-phenomena; they are quite analogous to those 

which are wont to appear in the case of liquid crystals and remain 

in existence for an indefinite period. Each of them exhibits one or 

generally two luminous points in the centre; they exhibit a strong 

circular polarisation and are left-handed. The whole appears between 

crossed nicols as a splendid variegated mozaic of coloured cellular 

parts. The size of each individual is 0.5—1 micron. 

The acetate also exhibits something similar, but the spherolites are 

built more radial and the whole ts not at all so distinct. 

I hope to contribute more particulars as to these remarkable 
phytosterol-compounds shortly. I have mentioned them here merely 

to show the importance of this structure-form for the optical pheno- 
mena, observed in the anisotropous phases. 

Zaandam, 14 November 1906. 

Chemistry. — “On irreversible phase-transitions in substances which 
may exhibit more than one liquid condition.’ By Dr. F. M. 

JAEGER. (Communicated by Prof. FRaNcHionr). 

(Communicated in the meeting of November 24, 1906). 

§ 1. The fatty esters of a-Phytosterol from Calabar-fat, which the 
Phytosterol mostly occurring in the vegetable kingdom, and which has 
also been isolated from rye and wheat under the name of “sitosterol”, 
exhibit very remarkable properties in more than one respect. 

In my previous communication, I alluded briefly to the colour 
phenomena and the spherolite-structure in the propionate and the 
acetate. In the latter | could not observe anisotropous liquid phases; 
n the former a doubly-refracting phase is discernible just before 
melting, but it lasts too short a time to allow the accurate measure- 

ment of the temperature-traject. 
With the following four terms of the series, however, these pheno- 

mena are more distinct, and occur under conditions so favourable as 
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could hardly be realised up to the present in the other known sub- 

stances. They also exhibit enormous phenomena of retardation in their 

diverse transitions and often a typical irreversibility thereof, of 

which I will now communicate some particulars. 

§ 2. Thermometrical behaviour of the fatty a-phytosterol- 

esters. 

A. a-Phytosterol-n.-Butyrate, on very slowly raising the temperature, 

melts at 89°.5 to a turbid, doubly-refracting liquid A, which at first 

is very viscous but rapidly becomes thinner and is converted, at~ 

90°.6, into a clear isotropous fusion ZL of the consistency of glycerol. 

On cooling the same carefully, the thermometer falls gradually ~ 

while the isotropous liquid thickens more and more but remains 
quite clear. At 80° the whole mass crystallises all at once to small 

crystals S with so great a caloric effect that the thermometer goes 

up to 85°. There is no question now of anisotropous liquid phases 

at all. These two experiments may be repeated at will but always 

with the same result. As to the nature of the turbid phase, compare 

“micro-physical behaviour”. 

[If the isotropous fusion is suddenly cooled in cold water, a bluish- 

grey coloration appears and a soft, doubly-refracting mass is obtained, 

whieh does not become crystalline until after a very long time. 

Bb. a-Phytosterol-Isobutyrate, when treated in the same manner, 
melts at 101°.4 to a glycerol-like, turbid, doubly-refracting liquid A, 

which gradually assumes the consistency of paraffin-oil and is con- 

verted at about 108°.2, apparently continuously, into a clear fusion L. 

If this is cooled, it certainly becomes gradually thicker but it 

still remains quite clear and isotropous. 

At 80°.4 it becomes turbid and doubly-refracting ; this phase is 

identical with A, and it has the consistency of glycerol; at 73° it 

has become as thick as butter, and at 66° the thermometer can be 

moved only with difficulty, whilst it may now be drawn into sticky, 

doubly-refracting threads. At 65° the thermometer suddenly goes up 

to 68°.8 and the mass crystallises in long, delicate needles ‘5S. 

On rapid cooling of the fused mass, this is converted into a turbid, 

greasy looking, doubly-refracting mass, which crystallises but very 

slowly ; no colour-phenomena occur. 

C.  a-Phytosterol-n.- Valerate melts, when in the crystallised condi- 

tion, at an wncertain temperature. At about 48°, the substance com- 

mences to soften visibly, at 54° its consistency is that of thick butter, 
at 80° it is somewhat thinner, at 85° it is actually liquid, but still 

turbid and doubly-refracting. A// these transformations proceed quite 
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continuously. At about 97.°5 the liqnid is clear and isotropous; it 

has then the thickness of paraffin-oil. 

If, however, the isotropous fused mass is cooled, the isotropous 

varaftin-oil-like liquid remains clear to about 87.°3, when a turbid 

doubly-refracting phase is formed. This, on further cooling, gradually 

becomes more viscous; at 80° it is as thick as butter, at 66° it can 

hardly be stirred, and may be drawn into threads. It may be cooled 

to the temperature of the room without solidifying. It remains in 

this condition for hours, but after 24 hours it has again become 

crystalline. The substance, therefore, has no determinable melting 

or solidifying point. 

D.  «-Phytosterol-Isovalerate behaves quite analogously to the n- 
valerate. Neither a definite melting point, nor a solidifying point can 

be observed. The mass softens at about 45°, is anisotropous thick- 

fluid at 65°, and becomes clear and isotropous at 81°. 

On cooling to 78.°1, a beginning of turbidity is noticed, the liquid 

gradually becomes thicker and is converted at an uncertain temperature 

into a tenacious sticky, doubly-refracting mass, which after 24 hours 

has again solidified to a crystalline mass. 

§ 3. The thermometrical behaviour of these remarkable substances 

is represented in the annexed schematic p-/-diagram, for the case 

of the n-butyrate and isobutyrate. The typical irreversibility of these 

phenomena is thus seen at once. Moreover in the case of the two 

valerates, the whole behaviour can be described only as a real, 

gradual transformation, solid = liquid with an intermediate realisation 

of an indefinite number of optically-anisotropous liquids. 

)4. The micro-physical behaviour of the fatty «-phytosterol 

esters. Perhaps, there are no substances known, which exhibit under 

the microscope the characteristic phenomena of anisotropous liquids 

in so beautiful and singular a manner as these esters; in this respect 

the isobutyrate and the valerate excel in particular. In the normal 
butyrate, the traject, where the liquid crystals are capable of exis- 

tence iS rather too small. For this reason, although the behaviour of 

the four substances differs in details, I will describe more particularly 

the behaviour of the n-valerate and as to the others, I will state 

occasionally in what respect they differ from the valerate. In conse- 
quence of the totally different circumstances which the microscopic 

method involves, nothing more is seen of the thermically observed 

peculiar irreversibility and even progression of the transformations. 

For the study of the nature of the diverse phase-transformations, the 
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Fig. 1. Schematic p-t-diagram for »-Phytosteryl-lsobutyrate. 

thermometric method is certainly preferable to the microscopic one, 
because in the latter, the delicate changes in temperature cannot be 

controlled so surely as in the first method. For this reason, the phase- 
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transformations, when observed microscopically, convey the impression 

of being more sudden than in the thermic observation. 
Still, the microscope completes the task of the thermometer in a 

manner not to be undervalued, at it gives an insight into the structure 

of the diverse phases and allows one to demonstrate their difference 
or their identity. 

§ 5. If a little of the beautifully crystallised n-valerate is carefully 

melted on an object glass, the substance, at a definite temperature 

changes, apparently suddenly, into an aggregate of an enormous 

number of globular, very large and strongly doubly-refracting liquid- 
drops, which all exhibit the black cross of the spherolites *) but can 

flow really all the same. This condition may be rendered permanent 
for a long time at will. But they may also amalgamate afterwards 

to larger, plate-like, highly coloured liquid individuals, somewhat 

resembling sharply limited crystals. These are frequently multiplets 

of liquid drops; the demarcations between the separate individuals 

vary constantly by changes in temperature. 

The isotropous border of the mass is very striking. By pressure 

or by moving the covering glass, also by the sliding currents which 

we can induce herein by changes in temperature, it may be readily 

shown that this isotropous border, owing to a parallel orientation 

of the liquid individuals, is only psendo-isotropous and really identical 
with the rest of the phase. Sometimes one may succeed even in 
communicating this pseudo-isotropous aspect to the entire mass *) by 

') We can, however, often observe a slanting projection of the optical symmetry 
axis, which gives the same impression as if we look perpendicularly to one of 

the optical axes of a biaxial crystal, or on a monoxial crystal cut obliquely to 

the optical axis. We observe at the same time coloured rings which exhibit an 
elliptic form. It is very remarkable that, when the phase has become very viscous 

on cooling, these ellipsoidal drops, provided with rings and slanting but mutually 

parallel-directed axes may he kept for a long time in an apparently immobile conditicn 
in the midst of the pseudo-isotropous or double-refracting liquid. They place them- 

selves mutually like little ellipsoidal magnets. 
However, | could observe, that ihese drops are often not quite ellipsoidal, but 

that they are sharply broken a little at the one side, just there, where the optical 
axis is slanting. By turning the object-table, the axial point turns in the same 

direction as the table, while the black line or cross is preserved. (Added in the 
English translation Januari 1907). 

*) The anisotropous-liquid phase has, in the case of the two valerates, an extra- 

ordinary tendency to place itself in this pseudo-isotropous condition. We can 
- observe this, because the border of the drop often moves inward with widening 

of the isotropous-looking line. It is also remarkable to see how the flowing crystals 

when meeting an air bubble arrange themselyes close together, normally on the 
border thereof. 
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often repeated warming followed by rapid cooling. This substance 

is about the best known example of this phenomenon. 

§ 6. If now we go on heating very cautiously, the larger flowing 

crystals and also the smaller drops situated between them are seen 

to move about rapidly; the larger individuals, which consist mostly 

of twins or quadrupleis, are split up into a multitude of globular 

drops and these, together with the smaller ones, disappear at a definite 

temperature entirely in the isotropous liquid, which is now isotropous 
in reality. Tbe globules of the liquid rotate to the right and the left 

under distortion of the mass, as may be observed from the spiral- 

shaped transformation of the black cross. Sometimes, before the mass 

becomes isotropous we may notice a temporary aggrandisement of 

the plate-like flowing crystals at the expense of the smaller interjacent 

globules; a result of the momentarily increased crystallisation-velocity 

due to heating. 

§ 7. On cooling the isotropous fusion this is first differentiated 

into an infinite number of the double-refracting liquid globulus, which 

here and there amalgamate to the more plate-like flowing crystals. 

On further cooling, these latter individuals remain in existence 

notwithstanding the undercooling, while the little globules in the 

meanwhile unite to the same kind of plate-like individuals. This aggre- 

gate, brilliant in higher interference colours becomes in course of time 

thicker and thicker in consistency while the aggregation, owing 

to an apparent splitting, becomes more and more finely granu- 

lated. But even after the lapse of some hours, the phase remains 

anisotropous-liquid as may be easily proved by shifting the mass and 

by the pseudo-isotropous border, which commences to exhibit delicate, 

double refracting current-lines. In the end when the pseudo-isotropous 

liquid has passed like the remainder into the same, almost completely 

immobile aggregation of doubly-refracting individuals, it is, gradually, 

transformed after a very long time into an aggregate of plates and 

spherolite-like masses, which possess a strong double refraction. 

§ 8. If, after the lapse of some hours, the partially or completely 

solidified mass is melted cautiously, we sometimes succeed, in the 

‘ase of the two valerates, in keeping the crystals of the phase S 
(therefore the solid crystals) for a few minutes near the isotropous 

fusion L at a temperature above the highest transition point. This 

phenomenon is, therefore, again quite homologous to that first observed 

by me with cholesterol-laurate and which might be described as a 
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heating of a solid substance S above its melting point without fusion 
taking place. For the present, at least according to existing ideas, this 
behaviour can only be explained by assuming the presence ofa two- 

-component-system with tautomeric transformations subject to a strong 

retardation. 
When the isotropous fusion 1 which has scarcely cooled to afew 

doubly-refracting drops is melted cautiously, we may observe some- 

times that where a moment before the strongly luminous, yellowish- 

white globules were visible, there are now present greyish globules 

showing the black cross, which gradually decrease in size and also 

darken, to disappear finally as (isotropous ¥) little globules in the 

isotropous fusion’). This phenomenon, in connection with those of 

erystallised ferric chloride to be described later, and with similar 

phenomena observed with the cholesterol esters appears to me to 
have great significance for the theory of the formation of liquid crystals. 

§ 9. Finally, there is something to be observed as to the separation 

of «-Phytosterol-valerate from organie solvents. The substance may 

be obtained from ethyl acetate + a little alcohol in beautiful, hard, 
well-formed little crystals. If, however, the saturated co/d solution 

in ethyl acetate is mixed with much acetone (in which the substance 

is but sparingly soluble) the liquid suddenly becomes a milky-white 

emulsion which deposits the compound not as a fine powder, but in 

the form of a doubly-refracting, very thick and very sticky liquid. 
| have repeated this precipitation in a hollow object glass under 

the microscope. The emulsion consists of a very great number of 

doubly-refracting, globular liquid-globules, which are either moving 

about rapidly in the liquid, or, when united to larger masses, are 

quite identical with the ordinary anisotropous phase A, when this 

is cooled to the temperature of the room. These little globules all 

exhibit the cross of the spherolites, and the doubly-refracting liquids. 
They soon become solid and then form small needles and spherolitic 

aggregations. It may be easily proved by stirring that the globules 
deposited first are liquid; moreover, the doubly-refracting masses 

often communicate with each other by means of very narrow, doubly- 

refracting currents, while they often exhibit the phenomena of pseudo- 

isotropism. 

Therefore, we have evidently obtained here the liquid-anisotropous 

') Before that happens, we may sometimes see here the globules becoming 
enlarged to multiplets by amalgamation there larger ones being changed into 

smaller ones, sometimes here one disappearing in the liquid while very close by 

new individuals appear. 
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phase A from a solution by rapid precipitation at the temperature of 

the room, and that in isolated drops! A few other phytosterol esters 

exhibit analogous phenomena which | will describe later on in a 

more elaborate communication on these substances. 

§ 10. A very remarkable fact in the w-valerate, the iso-valerate 

and the zsobutyrate, is the differentiation of the isotropous fusion into 

a large number of globular, doubly-refracting liquid drops of con- 

siderable dimensions, which like the circles of fat on soup float 

alongside and over each other and often unite to multiplets, whose 
separate parts are still recognisable. Wreathed aggregations of the 

liquid globules are also observed occasionally. In most cases the 

separate liquid globules exhibit the black cross and the four lummous 

quadrants grouped centrically. They are, however, also seen to roll 

about frequently, so that the projection of the optical symmetry axis 

now takes place excentrically. Owing to the enormous size of the 

individuals and the low temperature-limits, these esters lend them- 

selves to the study of these phenomena certainly VorLANDER’S p- 

azoxy benzoic-ethy lester. 
If the temperature of the mass, when totally differentiated into 

liquid globules — and the isobutyrate is particularly adapted for this 
differentiation — is slightly raised, the liquid globules are often seen 

to disappear suddenly just after they have enlarged their limits as it 
were by an expansion. It is like a soap-bubble bursting by over 

blowing. 

§ 11. Finally, I wish to observe that the thermical transitions 

just described and particularly those of the two valerates, can only 

be interpreted by assuming a quite continuous progressive change. 

For all these gradual transformations. either on melting or on soli- 

difying, a measurable time is required and nowhere is to be found 

any indication of a sudden leap. An exception is, however, afforded 
by the sudden crystallisation of the two butyrates. 

§ 12. As regards the differentiation of the fusion Z into an 

aggregate of anisotropous liquid globules, I will now make a com- 

munication as to an experiment upon the erystallising of ferric 

chloride heaahydrate, which substance exhibits something similar, and 

which, like most undercooled fusions and like many compounds 

which exhibit liquid crystals, crystallises in typical spherolites. 

If we melt the compound Fe, Cl, + 12 H,O cautiously in a little 

tube, taking care that no water escapes, and a drop of this brownish- 
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red fusion is put on an object glass, it may be lett for hours at the 

temperature of the room without a trace of crystallisation being 

noticed. The liquid is now greatly undercooled and exists in a state 
of metastable equilibrium. For all that, it has the same chemical 

composition as the solid phase from which it was formed. 

On prolonged exposure, smal/ liquid globules appear locally in the 
fairly viscous mass, probably owing to local cooling, or by a spon- 

taneous evaporation of water at those 

points. These liquid globules are quite 

isotropous and are surrounded by a 

delicate aureole having an index of 

refraction different from that of the 

rest of the liquid (fig. 38a). The ob- 

servation shows that, optically, they 
are, practically, no denser than the 
liquid, and from the fact that they 

afterwards become, im their entirety, a 
Fig. 3a. spherolite of the hexahydrate, we must 

conclude that their chemical eomposi- 

tion does not differ from that of the 

fused mass. 

These globules of liquid are con- 

verted gradually into doubly-refracting 

masses whose section is that of a 

regular hexangle with rounded off 

angles: individual crystals are not yet 

visible in the doubly-refracting mass 

and the luminous zone around still 
appears to exist (fig. 34). Fig. 30. 

Here and there, hexangular, sharply 

limited, very small plate-shaped crystals 

are also seen to form in the liquid 

without previous formation of liquid 

globules*). In the end, the doubly- 

refracting hexangular mass gets gra- 

dually limited by more irregular sides, 

while a greater differentiation of the 

mass into light and dark portions 

points to a crystallisation process com- 
Fig. 3c. mencing and progressing slowly. 

1) These may, however, be formed perhaps owing to the presence of traces of 
sal ammoniac, 
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Finally, we can observe a spherolite of the hexahydrate with a 

radial structure which now grows centrifugally to the large well- 
known semi-spheroidal spherolites of ferric chloride (fig. 8c). 

§ 13. This experiment proves that the abrogation of the metastable 

condition, or at all events of a liquid condition which is possible 

under the influence of phenomena of retardation may happen owing to 

the formation of spherolites which are preceded by the differentiation 
of the fusion into an aggregate of liquid globules. True, the latter 
are here isotropous in contrast with the phytosterol esters just 

described, but the anisotropism of the latter liquids may be caused 

also by factors which are of secondary importance for the apparently 

existing connection between: metastability of liquid conditions, their 

abrogation by spherolite formation and the possible appearance of 

liquid globules as an intermediate phenomenon. I will just call atten- 

tion to the fact that if we set aside a solution to crystallise with 

addition of a substance which retards the crystallisation, this will 

commence with the separation of originally isotropous liquid globules, 

so-called globulites, which BrHRrENpDs and VoGELsANG commenced to 

study long time ago. 

All this leads to the presumption that the formation of the aniso- 

tropous liquid phases as aggregates of doubly-refracting liquid globules 

may have its origin in a kind of phenomena of retardation, the nature 
of which is still unknown to us at the present. Before long, I hope 

to revert again to this question. 

Zaandam, 24 Nov. 1906. 

Physics. — “Some additional remarks on the quantity Hand MAXWEL1’s 

distribution of velocities.’ By Dr. O. Postwa. (Communicated 

by Prof. H. A. Lorenz}. 

§ 1. In these proceedings of Jan. 27% 1906 occur some remarks 
by me under the title of: “Some remark§ on the quantity A in 
BoLtTzMANN’s Vorlesungen iiber Gastheorie’’. 

My intention is now to add something to these remarks, more 
particularly in connection with Grpps’ book on Statistical Mechanics a 
and a paper by Dr. C. H. Wind: “Zur Gastheorie” ae 

In my above-mentioned paper I specially criticised the proofs given 

1) J. Wittarp Gipes ‘Elementary Principles in Statistical Mechanies’’, New-York, 
1902. 

*) Wien. Sitzungsber. Bd. 106, p. 21, Jan. 1897. 
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by Borrzmann and Jeans that Maxwei’s distribution of velocities in 

a gas should give the most probable state, and demonstrated that they 

wrongly assume an equality of the probabilities a priori that the point 

of velocity of an arbitrary molecuie would fall into an arbitrary 
element of the space. 

The question, however, may be raised whether it would not be 

possible to interpret the analysis given by BorrzMann and JEANS in 

a somewhat different way, so that avoiding the incorrect fundamental 
assumption, the result could all the same be retained. And then this 

proves really to be the case. When the most probable distribution 

of velocities is sought from the ensemble of equally possible combi- 

nations of velocities with equal total energy, we make only use 

of the fact that the different combinations of velocities are equally 

possible, how they have got to be so is after all of no consequence. 

Or else, it had not been necessary to occupy ourselves with the 

separate velocities of the molecules and make an assumption as to them. 

This way of looking upon the matter is of exactly the same nature 

as that constantly followed by Gisss in his above-mentioned work. 

Gipgs treats in his book all the time instead of a definite system, 

an ensemble of systems of the same nature and determined mostly 

by the same number of general coordinates and momenta (p,... pn; 

G1 +++Qn), Which he follows in their general course. Such an ensemble 

will best illustrate the behaviour of a system (e.g. a gas-mass), of 

which only a few data are known and of which the others can assume 

all kinds of values. He calls such an ensemble micro-canonical when 
all systems, belonging to it, have an energy lying between / and 

E+ dE and for the rest the systems are uniformly distributed over 
all possibilities of phase or uniformly distributed over the whole 

extension-in-phase the energy of which lies between 7 and E+ dL. 
When the energy of a gas-mass is given (naturally only up to a 

certain degree of accuracy) we should have reason according to Grpps 

to study the microcanonical ensemble determined by this energy, and 

to consider the gas-mass as taken at random from such an ensemble. 

The -extension-in-phase considered is thought to be determined by 

for. ... dda; but in the case of a gas-mass with simple equal 

molecules this is proportional to 

sf dx, dy, dz,... din dyn dzn, dx, dy, dz, ... dity dyn Un; 

so that we may say that every combination of velocities and con- 
figuration is of equally frequent occurrence in the ensemble. 

It is now easy to see that when the energy is purely kinetic- the 

33 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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same cases occur in such an ensemble, with regard to the distribu- 

tion of velocities, as are considered as equally possible cases by 

Bo.tzMaNn and Jeans. The difference in the way of treatment of 

Gipps on one side, and that of Botrzmann and Jeans on the other 

consists besides in the fact that the one occupies himself with separate 

velocities and the other not, in this that Gress treats the configuration 

and the distribution of velocities at the same time (both belong to the 

idea phase), whereas Jzans treats the latter separately, and Bo.tz- 

MANN does not occupy bimself with the configuration in this connection. 

Every phase of BoLtzMann (combination of velocities) corresponds 
with as many phases of Gisss (combination of velocities and con- 
figuration) as the molecules can be placed in different ways with 

that special combination of velocities. This number being the same 
for every combination of velocities according to the independence of 
the distribution of velocities and configuration following from the 

fundamental assumption, it will be of no consequence, comparing 

the different combinations of velocities inter se, whether we also take 

the configuration of the molecules into account or not. So when 

seeking the most probable distribution of velocities (that, with which 

the most combinations of velocities coincide), we must arrive at the 

same result whether we follow Gisss or BoLTZMANN. 

It is obvious that the phases of the microcanonical ensemble meant 

here are what Grsss calls the specific phases. Gisss distinguishes 

namely between specific and generic phases: in the former we con- 

sider as different cases those where we find at the same place and 
with the same velocity, other, even though quite equal molecules, 

in the latter we do not. In other words: in the former we consider 

also the individual molecules, in the second only the number of the 

molecules. So we may now say that in such a microcanonical 

ensemble the most probable distribution of velocities and that which 

will also occur in the great majority of cases (compare JEANs’ 

analysis discussed in the first paper) will be that of Maxwe t. 

When therefore an arbitrary mass of gas in stationary state may be 

considered as taken at random out of such a microcanonic ensemble, 

Maxwel1’s distribution of velocities or one closely resembling it will 
most probably occur in it. In this way a derivation of the law 

has been obtained to which the original objection no longer applies, 

though, of course, the assumption of the mivrocanonical ensemble 

remains somewhat arbitrary '). 

‘) With the more general assumption of a canonical ensemble Maxwett’s law is 

derived by Lorentz; “Abhandlungen tiber Theoretische Physik”, Lpzg. 1906 I, 
p. 295, 
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Finally the question might be raised, when we want to consider 

the separate velocities, whether it is possible to arrive at the 

equally possible combinations under discussion on another suppo- 

sition a priori about the chances of every value for the velocity than 

the one indicated by BoLTzMAnn and Jeans. The supposition must of 

eourse be such, that the chance is independent of the direction of 

the velocity, so that the chance of a velocity c, at which the point 

of velocity ‘falls into a certain element of volume didyd5, may be repre- 

sented by f ()dddi,d=. When we moreover assume that the probabilities 
for the different molecules are independent of each other, the probability 

of a certain combination of velocities is proportional tof (¢,) 7 (¢,)--- 7 (¢), 

and this must remain the same when the kinetic energy ZL, or 
because the molecules are assumed to be equal, 2c? remains the 

same. For every change of c, and «| into cz, and c, so that 

cy, + c?; — ce, + c7, must f(cc)-f()=—/ (cr) -f(c). This is an 

equation which frequently occurs in the theory of gases, trom which 

follows /(c)= ae. As a special case follows from this: /(c) =a, 

i. e. the assumption of BoLtzMANN and Jeans, that the probability a 

priori would be equal for every value of the velocity. 

§ 2. In the second place | wish to make some remarks in con- 

nection with the proof that BoLTzMann gives in his ‘“Gastheory”’, 

that for an ‘“‘ungeordnetes’” gas with simple suppositions on the nature 

of the molecules in the stationary state Maxweri1’s distribution of 

velocities is found. Dr. C. H. Winp shows in his above-mentioned 

paper that in this Bottzmann makes a mistake in the calculation of 
the number of collisions of opposite kind. Bottzmann, namely, assumes, 

that when molecules whose points of velocity lie in an element 
of volume dw, collide with others whose points of velocity lie in 

dw,, so that after the collision the former points lie in dw’ and the 

latter in dw,’, now the elements of volume dw and dw’, dw, and dw,’ 

would be equal, so that now dw' dw’, = dw dw,. He further assumes 

that when molecules collide whose points of velocity lie in dw’ 

and dw,', they will be found in dw and dw, after the collision. 
These last collisions he calls collisions of opposite kind. Wisp now 

shows that this assumption is untrue; dw is not =dw', dw, not 
=do',, nor even dwdw, = dw'dw,', except when the masses of the 
two colliding molecules are equal’). 

Further the points of velocity of colliding molecules which lay 

in dw' and dw,', do not always get to dw and dw, after collision, 

1) I point out here that even then it is not universally true, but only when the 
elements of volume dw and dw; have the shape of rectangular prisms or cylindres 
whose side or axis has the direction of the normal of collision. 

33* 
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so that another definition is necessary for collisions of opposite 

kind, viz. such for which the points of velocity get in dw and da, 

after the collision. Wixp proves further that the number of collisions 

of opposite kind is all the same represented by the expression which 

BoLTzMaNn had found for it. 

It is ‘then easy to change (what Wuyp does not do) the proof 

given by Borttzmann in § 5 of his “Gastheory”, that Maxwell's 

distribution of velocities is the only one possible, in such a way that 

it is perfectly correct. But the error in question makes itself felt all 

through Boirzmany’s book. Already with the proof of the H-theorem 

given in more analytical form in a footnote to § 5 we have some 

difficulty in getting rid of this error. 

We meet the same thing when the molecules are treated as centres 

of force, and when they are treated as compound molecules. At the 

appearance of the second volume of his work, Boitzmann had taken 

notice of Wunp’s views, but the inaccurate definition for collisions 

of opposite kind has been retained *). 

In connection with this error, made by BoLTzMANN in a geometrical 

treatment of the phenomena of collision, is another error of more 

analytical nature, so that also JrANs, who treats the matter more 

analytically, gives a derivation which in my opinion is not altogether 
correct. ‘Though preferring the geometrical method, BOLTZMANN repeat- 

edly refers to the other’). The method would then consist in this, 

that the components of the velocities after the collision §'7/'$'s',7/',9, 

are expressed by (/(§$S,7,5,) and then by means of Jacosr’s func- 

tional determinant d&'dy'de'd§',dy',ds',_ is expressed in d§dydSd&,dy,d6, . 

We find then that here this determinant is = 1 and so 

deidyd§idé dy! ,d8', = d&dydéd§,dy,d8, or dw'do', = dwdw,. 

The number of collisions of opposite kind = /'f",dw'de' oy cos ddddt 

according to BortzmManxn, and so also = /'F",dwdw,o*g cos Idadt. In 
this the mistake is made, however, that dé&dy/d¢'d&',dy/,d0', the 

volume in the space of 6 dimensions that would correspond with the 

volume didydSd3,dy,d5, before the collision, is thought as bounded 

by planes such as §&'—c, which is not the case. JEANS too equates 

the products of the differentials, in which according to him, dg’... do, 

being arbitrary, the d§...d$ must be chosen in such a way, 

that the values of §..., caleulated by the aid of the functions 
§'— f(§...6,) ete. fall within the limits fixed by d§’ etc *). This, 

however, is impossible. 

1) Cf. § 78, 2nd paragraph. 

*) Cf. among others volume I, p. 25 and 27. 

8) Cf. *The dynamical Theory of Gases” p. 18. 
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In my opinion the correct principle that the calculation of the 

extension occupied by the combinations of the points of velocity 

after the collision when that before the collision is known and vice 

versa, would come to the same thing as a transition to other vari- 

ables in an integration, has not been applied in exactly the correct 

way. The property in question says that in an integral with transi- 

tion from the variables §'7’S'§',7',5', to §7$5,7,5, the product of the 

differentials d§'dy/d8id3',dy',d3', may be replaced by asuSsi0S) 
A(55§,7,5,) 

dzdyd$ds,dy,d8,, if we integrate every time with respect to the corre- 

sponding regions, but these expressions are not equal for all that. 
The first expression may be said to represent the elementary volume 

in the space of 6 dimensions, bounded with regard to §)...¢,, the 
second the elementary volume bounded with regard to —...S, *). 

We have a simple example when in the space of three dimen- 

sions we replace frteana, which e.g. represents the weight of a 

body, by { pr? sin 8drd9dp, which represents the same thing, without 

du dy dz having to be equal to 7? sin & dr dd dg. 
So we have here: 

1 I 1(§' 5 Q ) | | dg’ dy! dS’ dg’, dy, a5 = — d5 dy do ds, dn, a, 
ae —26,).| 

which two expresssions represent the “extension”’ in the space of 6 dimen- 

sions after the collision. That before the collision is {uaa dgds,dy,d,, 

so that, when the determinant = 1, the extension remains un- 

changed by the collision. This proves really to be the case, as 
JEANS shows. We may, however also consider this property as a 
special case of the theorem of Liovuvinin, and derive it from this *). 

This theorem says, that with an ensemble of identical, mutually inde- 
pendent, mechanic systems, to which Hamiron’s equations of motion 

apply, [eedn= dP,...dQn, when p,..dn represent the coordinates 

and momenta of the systems at an arbitrary point of time, P,... Qn 
those at the beginning. Grsps calls this law: the principle of conser- 
vation of extension-in-phase, which extension we must now think 
extended over a space of 22 dimensions. When now ihe two collid- 
ing molecules are considered as a system which does not experience 
any influence of other systems, and it is assumed that during the 

1) Cf. Lorentz, l.c. Abhandlung VII. 

*) As Borrzmann cursorily remarks: volume II p. 225, 
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collisions forees act which only depend on the place of the particles 

and not on the velocities, we may apply the formula f op ee 

| dp,...dg, to an ensemble of such pairs of molecules, the former 

representing the extension-in-phase after, the latter that before the 

collision. In the case discussed by Bottzmann the masses of these 

molecules are m and m, so that we get: 

' ! ’ “! ! ' ' ' 9 tod | ! al) fae dy' dz' m® d&! dy! dS da’, dy’, dz, m,* d3', dy’, dS, = 

. 

= fae dy dz m* dg dy d§ dea! di' dz' m,* dg dy dq. 

As we may consider the coordinates during the collision as inva- 

riable, it follows from this that: 

jas dy! dq ds’, dy, de, == ds dy Tks ds, dy, dS. 

. . 

§ 3. However as has been referred to above, we may, without 

assuming anything about the mechanism of the collision, prove the 

property by means of the formulae for the final velocities with 

elastic collision, making use of the functional determinant. Another 

method is followed by Wuyp in his above-mentioned paper (the 
second proof) and by Borrzmann (vol. I p. 225 and 226); this 
method differs in so far from the preceding one, that the changing 
of the variables takes place by parts (by means of the components 

of velocity of the centre of gravity), which simplifies the caleu- 

lation’). A third more geometrical method is given by Wunp in his 

first proof. This last method seems best adapted to me to convey 

an idea of the significance of the principle of conservation of exten- 

sion-in-phase in this special case. I shall, however, make free to 

apply a modification which seems an abridgment to me, by also 
making use of the functional determinant. So it might now also be 

called a somewhat modified first method. 

In the first place I will call attention to the fact that with these 

phenomena of collision it is necessary to compare infinitely small 

volumes; if we, therefore, want to use ms formula: 
| 

jee d§' dr} d3' dg’, dy, ds, = (Fe ig eu! ds dy d§ dS, dy, ds, 
eth I 

1) It seems to me that in this proof aya does not abide by what he 

himself has observed before (§ 27 and § 28, vol. Il), viz. that the equality 

of the differential products means that they may be substituted for each other in 

‘integrals. The beginning of § 77 and the assumption of du dv dw, and dUdV 

dW, as reciprocal elements of yolume, is, in my opinion, inconsistent with this 
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we must take infinitesimals of the 2°" order. We can, however, also 

proceed in a somewhat different way. For how is the above formula 
derived? By making use of the fact, that with a volume d§ dy ds dé, 

dy, dS, in the region of the §.. $, corresponds a volume 

ia@.. &)| 
es ~| d5 dy d5 dz, dy, dS 
id ae | bo} ] -) 1 Ny “il 

in the region of the &'...%,, or also that the first mentioned exten- 
sion, occupied by the representing points in the space of 6 dimensions 

before the collision, will give rise to the second extension after the 

collision. We can, therefore very well compare these expressions 
inter se, without integration, if only the second expression is not 

interchanged with ds’ dy d3' dz’, di’, dS',, i. e. the volume element obtained 

by dividing the extension after the collision in another way. 
We now suppose the points of velocity before the collision to be 

situated in two cylindres, the axes of which are parallel to the 

normal of collision. The bases of the cylindres are dOdQ, and the 
heights dd and dd,. The extension occupied by the combinations of 

the points of velocity is evidently equal to the product of the con- 

tents of the cylindres : dOdO, dddd,. In case of collision the compo- 

nents of the velocities perpendicular to the normal remain unchanged, 

so the points of velocity are shifted in the cylindres in the direction 

of the axis, so that d becomes J’, and d, becomes d',. Between 

md + m, (2d,—d) 

m+ m, 
these quantities exist the relations: dd’ = 

m,d, + m(2d—Jd,) 

m + mM, 

molecules (i.e. the same relations as between the normal initial and 

final velocities with elastic collision. 

If we now wish to calculate the extension after impact we may 

make use of the fact that dO and dO, have not changed, so that 
we need only examine what happens to dddd, or what extension in 

the region of the d’d’, corresponds to the extension dddd, in the 
region of the dd,. 

and d', = 

, When m and m, denote the masses of the colliding 

; ae aw 
According to the above this is: | \ : (aay dddd, , and as it follows 

from the formulae for d' and Jd’, that the absolute value of the 

determinant = 1, the extensions before and after impact are equal. 
The extension after the collision is, however, not equal to the 

product of the cylindres in which the points of velocity will be found 
after the collision. This will be easily seen with the aid of the 
geometrical representation given by Winp. The extension before 

impact may be thought as the product of the extension in the space 
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of four dimensions dV0dO, and the extension dddd,, which we may — 

imagine as a rectangle in the region of the Jd,, when we project them 

as two mutually normal coordinates in a plane. 

Every point in the rectangle represents therefore a number of 

combinations of velocities with equal Jd and d,. The sides of the 

rectangle with equations d—=c and d, —c,, correspond in the region 

of the dd’, with the right lines md’ + m, (2d, — d)=(m-+ m,)e 

and m,d', + m (2d — d',) = (m+ m,) ¢,, so that from the combina- 

tions represented by points within the rectangle after the impact 

others follow represented -by points within an oblique parallelogram. 

The formula ——» = 1 expresses that the two figures have the 
d(d6,) : 

same area. Now the extension after impact is equal to this paralel- 

0; 
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logram XX dOdO, or the product of the two cylindres in which points 

of velocity were found before impact. The product of the cylindres, 
in Which points of velocity are found after impact is equal to the 

product of dOdO, and the area of the rectangle with sides parallel 
to the axes O'd’ and O'd', deseribed round the parallellogram under 

investigation. In this rectangle lie a number of points which have 

no corresponding points in the first rectangle. Only when m—= m, 

rectangle and paralellogram coincide. 

Collisions of opposite kind, now, are such for which the combina- 

tions of velocity before impact are represented by points of the 

paralellogram in the plane d'Od', and after impact by points of the 

rectangle in the plane d0d,. 

Physics. — “Contributions to the knowledge of the wesurface of 
VAN DER Waats. XII. On the gas phase sinking in the liquid 
phase for binary mixtures.” By Prof. H. KamErninan OnNus 
and Dr. W. H. Krrsom. Communication N°. 96 from ithe 

Physical Laboratory at Leiden. ; 

§ Ll. Introduction. In what follows we have examined the equi- 

librium of the gas phase with the liquid phase for binary systems, 

with which the sinking of the gas phase in the liquid-phase may 

occur. 
It lies to hand to treat this problem by the aid of yw (free 

energy)-surfaces for the unity of mass of the mixture (VAN DER WAALS, 

Continuitaét I] p. 27) for different temperatures construed on the 

coordinates 7 (volume of the unity of mass of the mixture) and « 

(quantity of mass of the second component contained in the unity 

of mass of the mixture). 

As VAN DER WAALS (loc. cit.) has already observed, the laws refer- 

ring to the stability and the coexistence of the phases are the same 

for these y-surfaces as for the more generally used ~w-surfaces for 

the molecular quantity: in particular also the coexisting phases are 

indicated by the points of contact of the y-surface with a plane 

which rolls with double contact over the plait in the y-surface. In 

what follows we have chiefly to consider the projections of the con- 
nodal curve and of the connodal tangent-chords on the zv-plane. 

More particular cases as the occurrence of minimum or maximum 

critical teinperature or minimum or maximum pressure of coexistence 

we shall leave out of account; we shall further confine ourselves 

to the case that retrograde condensation of the first kind occurs. 

Moreover we shall restrict ourselves to temperatures, at which the 
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appearance of the longitudinal plait does not cause any irregularity’). 

The component with the higher critical temperature (7;) is chosen 

as first component; its critical temperature is, accordingly, denoted 

by 7;,. The special case that 7;,—0, is that of a gas without 

cohesion with molecules having a certain extension. The investigation 

of the w-surfaces becomes simpler for this case. For the present it 
seems probable to us that helium. still possesses some degree of 

cohesion. We will, however, in a following communication compare 

the case of a gas without cohesion with what the observations yield 

concerning mixtures with He. 

§ 2. Barotropic pressure and barotropic concentration. We shall call 
» and « of the gas phase v, and z,, of the liquid phase v, and ay. 

At a temperature 7’ a little below 7;,, we shall always have 
vg>vi1. For then the plait extends only little on the w-surface (see 

fig. 1), the plaitpoint is near the top of the connodal enrve, which 

is turned to e=—1, and all the projections of the connodal tangent- 
chords deviate little in direction from the v-axis, the angle with 

Lg—tl ; - 

/_"  inereases regularly if we go from « =0 
Vg—V 

along the connodal curve to the plaitpoint, but it has but a small value, 

when 7; —T is small. Only when we take for 7’ a value a certain 

amount lower than 7%, the plait extends sufficiently on the w-surface 
x 4 

to allow that vy =v, and 6=-<. 
_ 

the v-axis, 6, = arc tg 

If at a suitable temperature 7’ we have substances as mentioned 

at the beginning, as e.g. helium and hydrogen at the boiling-point 

of hydrogen, we shall find the projection of a connodal tangent- 

chord denoting the equilibrium considered in the zv projection of the 

gas-liquid-plait on the y-surface for 7’; to reach it we shall have 

to ascend from «=O along the connodal curve up toa certain value 
of the pressure of coexistence p, before @, which itself is zero for 

Pt - 

«==0, can become >. A pressure of coexistence p= po, under 

which v, = at the temperature 7, we call a barotropic pressure 
Jor that temperature, the corresponding concentrations of liquid and gas 
phase the barotropic concentration of the liquid and of the gas phase 
at that pressure and that temperature. For when v,—v, with increasing 

pressure of coexistence p passes through zero at p= po, we find 
in equilibria with pressures of coexistence above and below the value 

p, the phases to have changed positions under the influence of gravity. 

1) This will be treated in a following communication. 
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In order to examine how a barotropic tangent-chord first makes 

its appearance on the plait on decrease of 7’, we point out that with 

extension of the plait from 7%, at first Fe remains positive all over 
v 

the liquid branch of the connodal curve, so that at tirst we have to 
look for the greatest value of @ at the plaitpoint, where we shall 

denote its value by 6p). 

When, however, on decrease of 7’ the plait extends over the y- 

surface, this need not continue to be the case, and we may find 

dO 3 ae . 
a alternately positive and negative. This is immediately seen when 
v 

we notice that this must always be the case when the plait extends 

all over the w-surface. 

If with decrease of 7’ the maximum value of 6 more and more in- 

creases, and 7’ has fallen so low, that the maximum of 6 somewhere 
big : eh 

in the plait has just ascended to >, then at this 7’ the condition for the 

barotropic equilibrium v, =v, will be satisfied just for the corre- 

sponding tangent-chord, and only for this tangent-chord. The higher 

barotropic limiting temperature is then reached. On further decrease 
of temperature the barotropic tangent-chord will then split into two 

parallel barotropic tangent-chords, the higher and the dower tangent- 

chord, which at first continue to. diverge with further falling tempe- 
rature, so that the higher barotropic tangent-chord may even vanish 

from the plait through a barotropic plaitpoint, and then, at a lower 
temperature, make its appearance again through a barotropic plaitpoint’). 

At still lower temperature it follows from the broadening of the 

plait in the direction of the v-axis, which at sufficiently low tempe- 
rature renders the occurrence of a barotropic tangent-chord impossible, 

that the maximum of 6 falls again, and the barotropic tangent-chords 

draw again nearer to each other. At == the tangent-chords 

coincide again, and the lower barotropic limiting temperature is reached. 
At lower temperatures vy, = 7, is no longer to be realized, and v, 
is always > w. 

Figs. 2, 3 and 4 represent different cases schematically. In the 

spacial diagram of the y-surfaces for different temperatures the 

barotropic tangent-chords supplemented with the portions of the con- 

‘) The latter supposes that 7;,/Z', is not very great; in accepting the contrary 

we would come in conflict with the supposition that the longitudinal plait dves 

not become of influence Moreover we preliminarily leave out of account the case 

that both barotropic tangent-chords follow one another in disappearing or appearing 

through a barotropic plaitpoint. [Added in the translation]. 
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nodal curves between the lower and the higher tangent-chords form 

together a closed surface, which bounds the barotropic region. 

If on the other hand G@nax = 4,i remains, till it has reached or 

2 w 
exceeded the value —, and if not asecond maximum value ford > 5 

4, 

occurs on the plait, a barotropic plaitpoint will oceur at the higher 

barotropic limiting temperature, whereas at lower temperature a 

single barotropic tangent-chord on the plait indicates the equilibrium 

with v,= vi. With decreasing temperature this barotropic tangent- 

chord will at first move along the plait starting from the plaitpoint, 

but at lower temperatures it will return, and finally (the occurrence 

of a longitudinal plait being left out of consideration) it will disappear 

from the plait through a barotropic plaitpoint at the lower barotropic 

limiting temperature. In this case the barotropic region is bounded 

on the side towards which the plait extends by barotropic tangent- 

chords, on the other side by the portions of the connodal curve which 

are cut off. 

It follows from the above that — when the occurrence of barotropic 

tangent-chords on the y-surfaces for a definite pair of substances is 

attended by the occurrence of barotropic plaitpoints — if 7, > Toyis 

(higher baratropic plaitpoint temperature) or Ts << Topix lower barotropic 
plaitpoint temperature there always exists at the same time a higher 

and a lower barotropic tangent-chord; if Ti. > Ts > Tsp there 

exists only one barotropic tangent-chord. 

The nature of the barotropic phenomenon for He and H, may 
serve for arriving at an estimation of the critical temperature of He. 

According to the investigation of one of us (K. See Comm. N°. 96 ¢.) 

it is probable that the appearance of a single barotropic tangent- 

chord for He—H, at the temperature of boiling hydrogen would 
point to 7ye< about 2°, whereas on the other hand when Tye 

is higher, a higher and a lower barotropic tangent-chord is to be 

expected. Further that, as was already observed in Comm. No. 96 a. 
(Noy. °06) a barotropic tangent-chord can only appear in the gas- 

liquid-plait when very unusual relations are satisfied between the 

properties of the mixed substances, which for the present will most 

likely only be observed for He and H,. 

Whether it is possible that more than one barotropic region occurs, 

and whether one or more barotropic tangent-chords can move from 

the plaitpoint past the critical point of contact, is still to be examined. 

Also whether it is possible that the lower barotropic limiting tem- 

perature descends lower than 7%,, so that fig. 5 might be realised. 

With regard to these questions too it is only of practical importance to 
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know in how far the properties of He and H, create that possibility. 

§ 3. Barotropic phenomena at the compression of a mixture of definite 
concentration. What will take place in this case is easy to be derived from 

the foregoing survey of the different equilibria which are possible at a 

same temperature. For the further discussion we have to trace the 
isomignic line, the line of equal concentration (@ = const.) for this 

mixture, and to examine the section with the connodal curve, the 

successive chords, and finally again with the connodal curve. 

In the deseription of the barotropic phenomena we shall confine 

ourselves to the more complicated case, that at the 7’ considered 

both a higher and a lower barotropic tangent-chord occur, after 
which it will be easy to survey the phenomena when only one 
barotropic tangent-chord appears. 

To distinguish the different cases we must divide the liquid branch 
of the connodal curve at 7’ into an infra- (7 =0 to «= 2y;7, lower 

barotropic concentration of the lhquid phase at T), inter- (xy;7 to xys7) 

and supra-(@=tpsr to «= x, )-barotropic part, and the gasbranch 

into the three corresponding pieces falling within and on either side 

of the region between the two barotropic tangent-chords (the lower 

b;r and the higher 6,7) at that temperature. 

Whether the phenomena of retrograde condensation attend those 

of the barotropic change of phase or not depends on this: whether 
both barotropic concentrations of the gas phases fall below the plait- 
point concentration or not. 

Let us restrict ourselves in this description to the case that this 

complication does not present itself or let us only consider mixtures 
for which «<< #,;. On compression the first liquid accumulates in the 

lower part of the tube for «<< &giT and for rR > «> wys7, and in the 

higher part for 2j;7 >“ > xyi7. On further compression, when 
Lypbit > tisT, Change of phase will take place once for mixtures of 
the concentration 2, so that LgbsT > L > Lghi7 OF LysT > L > LT; 

it will take place twice ‘for- mixtures of the concentration ., so 
that aynr > ¢ > ausr. So the last remains of the gasphase will 
vanish above for «< wy7r and for Lp > & > Xps7, and below for 
tsT > & > xpir. If it is possible that over a certain range of 
temperature the barotropic tangent-chords get so far apart that 
LbsT > XgviT, Change of phase will again take place once for these tem- 
peratures for mixtures of the concentration z, so that 2.57 > @ > Lusr 
Or LynT > L > Uw - 

This description will, of course, only be applicable to He and H, 
when the suppositions mentioned prove to be satisfied. 
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$4. Disturbances by capillary action. As is always tacitly assumed 

in the application of the w-surface when the reverse is not expressly 

stated, the curvature of the surfaces of separation of the phases is put 

zero in the foregoing discussion. If the curvature may not be ne- 

elected, e.g. at the compression of a mixture in a narrow tube, 

then, when the barotropic pressure is exceeded, the phase which has 

thus become heavier, will only sink through the lighter phase under it, 

when the equilibrium has become labile taking the capillary energy of 

the surface of separation into account. For this it is required that 4, 
a ae : 

has become larger than =i to an amount of AG cays which will depend 

on the capillary energy of the surface of separation and the diameter 

of the tube in which the experiment is made. Thus capillarity causes 

a retardation of the appearance of the barotropic phenomenon: both 

with increase and with decrease of pressure the barotropic tangent- 

chord must be exceeded by increase or decrease of pressure to a 

certain amount, before the two phases interchange positions. In this 

way the difference of pressure mentioned in Comm. N°. 967, (Nov. 

1906, p. 460) between the sinking of the gas phase chiefly consisting 

of helium and its rising again at expansion (49 and 32 atms.) is 

e.g. to be explained by the aid of the following suppositions which 

are admissible for a first estimation. 

1. that at — 258° and 32, resp. 49 atms. He is in corresponding 

state with H, at 150° and 160, resp. 245 atm., in agreement with the 
3 

assumptions Mf. 0.2 = rie vi according to the ratio of the molecular 

refractive powers, 7:7. —=1°.5 (according to O1szewskt < 1°.7); if 

the gas phase consisted only of He (molec. weight 4), the density 

at the temperature and pressures mentioned would be 0.062, resp. 
0.081, and if moreover the liquid phase had the same density with 

the two pressures, 46,,, would have to correspond to a difference 

of density of + 0.01; owing to the fact that the two last mentioned 

suppositions are not satisfied, the difference of density will be smaller ; 

2. that the capillary energy of the surface of separation between 

the phases coexisting at the above temperature and pressures is not 

many times smaller (or greater) than that of liquid hydrogen at that 

temperature in equilibrium with ifs saturated vapour, and that the latter 

may be derived from that of nitrogen *) by the aid of the principle 
of corresponding states. The gas bubble will then in a tube like 

that in which the experiment described in Comm. N°. 96a was made 
(int. diam. 8 mm.) only sink through the liquid or rise again, when 

1) Baty and Donnan, Trans. Ghem. Soc. 81 (1902) p- 907, 
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the difference of the radii of curvature of the tops of the bounding 

menisci exceeds that between 3 and 5 mm. 
T 

At those temperatures for which maz << > + 4 Oca), the phenome- 

non of the phase which is uppermost at low pressure, sinking and 
rising again does not make its appearance in consequence of gravity 

alone. If this condition is satisfied for mixtures of a definite pair 

of substances for every temperature between the lower and the 
higher barotropic limiting temperature, the phenomenon could only 
be realised for these mixtures by the aid of a suitable stirrer. 

§ 5. Remarks on further experiments with helum and hydrogen. 

a. In the experiments mentioned in Comm. N°. 967 the gas phase 

proved to remain below on compression to the highest pressure which 

the apparatus will allow. When we repeat these experiments at a 
higher temperature (which may e. g. be obtained by boiling the 

hydrogen of the bath under higher pressure')) it is to be expected 
that the barotropie pressure will first rise, as in the beginning starting 

from — 253° the gas phase will continue to expand more strongly 

than the liquid phase. At higher temperature the liquid phase begins 

to expand more strongly than the gas phase, but the mutual solu- 
bility plays already such an important role then that a definite expectation 

cannot be expressed, unless this, that on account of the retreating 

of the plait and the impossibility of the barotropic tangent-chord to 
reach the side of the hydrogen, the higher barotropic limiting tem- 
perature may be pretty soon reached. Also in connection with the 

estimation, which may be made from this concerning 7.7, it will 

be of importance to investigate whether with a suitable concentration and 

at a suitable higher temperature we may observe the liquid phase sinking 
after ut had first risen. That the phenomena at higher temperature, 
if the glass tube used should prove strong enough to bear the pres- 

sure, should be prevented by capillary action, is not probable, as 
capillarity together with the differences of density decreases at higher 
temperature; moreover in spite of capillarity the phenomena might 
be realised by the aid of a suitable stirrer. 

6. With decrease of temperature the limit is soon reached at 
which we meet with the solid phase. The question rises whether 
then the phenomenon: the solid phase, (the solid hydrogen) floating 
on the gas phase (chiefly the as yet still gaslike helium), might not 
be realised. 

1) Or by using the vapour from boiling hydrogen in a separate vessel [added 
in the translation]. 
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Physics. — “Contributions to the knowledge of the w-surface of 

van per Waats. XII. On the conditions for the sinking and 
again rising of the gas phase in the hquid phase for binary 
mixtures,’ by Dr. W.H. Kresom. Communication N°. 96c from 

the Physical Laboratory at Leiden. (Communicated by Prof. 
H. KAMERLINGH ONNES). 

§ 1. Introduction. As has been observed in Communication N°. 966 

(See the preceding paper) (cf. Comm. N°. 96a, Nov. ’06, p. 459, 

note 1) it lies to hand, to take as point of issue the y-surface for 

the unity of mass of the mixture considered, in the investigation 

according to vAN per Waats’ theory of binary mixtures, of the sinking 

and subsequent rising of the gas phase in the liquid phase, i.e. the 

barotropic phenomenon. Two coexisting phases of equal density are 

joined on this y-surface by a tangent-chord whose projection on the 

v,v-plane') is parallel to the z-axis. It has already been observed 

in Comm. N°. 964, that with decrease of temperature starting from 

the critical temperature of the first (least volatile) component such 

a barotropic tangent-chord may make its appearance in two ways: 
a. by the angle of inclination of the tangent to the plait in the 

plaitpoint, 4,;, reaching the value of = at a certain temperature 7%,,; 

and by its exceeding this value at lower temperature. 

b. by @ showing a maximum and a minimum on the plait at a 

certain temperature, and by this maximum reaching or exceeding 

wu : : ; : 
the value of 5. Also in this latter case one of the two barotropic 

tangents-chords which then appear, might reach the plaitpoint at 
1 4 

lower temperature, and thus become 4,7 = = 

: : 7v ; : 
In both cases in which 6,; => at a certain temperature it should 

“/ 

be expected apart from complications as e.g. a longitudinal plait 
etc. (cf. Comm. N°. 966, p. 502), the description of which will be 

ie i Leela 3 ; given later on, that 4): becomes again = — for mixtures of the same 

substances at a lower temperature. 

In the first part of this paper the conditions are discussed on which 

a plaitpoint with 4,. = —, barotropic plaitpoint, occurs on the y-sur- 
DOS | 

1) Cf. for the meaning of x and v Comm. N?. 96d. 
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face, whereas in the second part the conditions are treated for the 

appearance of a barotropic tangent-chord on the plait. 

A. On the conditions for the occurrence of a barotrojic-plaitpoint. 

§ 2. In a barotropic plaitpoint the isobar, which in a plaitpoint 

always touches the plait, must run parallel to the v-axis. This gives 

the condition : 

0?» 
ae SS Oe Ee 
i , = 

Moreover a section v =v, of the y-surface with the limiting 
position of the tangent-chord must then have a contact of the 3"¢ 

order. This furnishes: 

07yp Ow ; 
== =e — . . . . . 1 d c = 1 as es (1 } and c) 

The two conditions (1 6) and (1c) follow also by applying ( a) 

to the general relations for the plaitpoint of Comm. N°. 75 (Dec. 

1901) p. 294. 
The same may be obtained from the property of the barotropic 

Oa 

shows & maximum or minimum'), so that the substitution-curve ; 

Ow 
points on the connodal curve that there ( |) along the connodal 

Ow ae 
i) = const. (see for the substitution curves on the y-surface for the 

U 

molecular quantity Comm. N°. 597), touches the connodal line in 

these points. 

§ 3. For a first investigation we shall use van DER WAALS’ equation 

of state: 

sa Sek ec onan 6 Se) 

with an a, and 6, not depending on v and 7’ for a definite «. 
In this: 

1) This property for coexistence with 7; —7, is analogous to the property that 

( \= — p along the connodal line is a minimum or a maximum for coexisting 
ov 

Ow 
) along an isome- phases with 2, =. In the same way the mean value of ( 

© 
tric line v =v, which joins two barotropic phases on the J-surface, is equal to 

) 
the value of & 

a“ 
) for these phases. 

34 

Proceedings Royal Acad. Amsterdam. Vol. VIII. 
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he BE (lay Ee, a) oe + ee tae 

if R, = R/M,, R, = R/M,, F representing the molecular gas-constant, 

M, and M, representing the molecular weights; we put for this first 

investigation a,, = Va,,4,,, so that 
Wa, (i —2)'- \/0,, 20 2 ee 

and when we put for the molecular volumes 26,947 = 6)131 + boo, 

the relation for }: given by VAN DER WAALS Contin. II p. 27, reduces to: 

bz = 0, (1—2) =~ bag att ig Go eee, er 

We get then (van per Waats Contin. I p- 28): 

pee ade 6,) — = + TR, (1—z)ln(l—a) + Ryelna} . (4) 

§ 4. Taking equations (8) into consideration, and putting 

b..- eee = 1+ 

v—b Z 

we get by the conditions (1) 

1-F2{ 2 eis 2 v—b da 
ea Ei Stas aay» pee es — :; oe re ef |) 2 | eee w 
1+< hs eas 1—z ra lia 

hk, 5 ieee ct ce R, ee | “u— = = Pi dai (65) 

1+-z 2 | 1 1l—<z aoe d 
Rp EN yp | ee eee 

ae git ne eae eae Eee + Bg peat fo eee 

These equations are sufficient to calculate the data for a barotropic 

plaitpoint 2,1, Vopi, 7,, for a definite pair of substances. Eliminating 

T from (6a) and (64), we get, taking (6c) into consideration and 
putting : 

(a, + V2,,)/Ve. =e) = 2) eee 

2 4 
b (v—b) ir -+ mae (ute) +0 ie _ = = 0, 8) 

while elimination of v from this equation and (5), putting: 

(6,,+5,,)/ Gg—=),,) = 8. ee eo 

i = 

eo 

Ae + |\«- = fata t fut =a] botan+t=0. © 
Bese ee equation (et (6c): 25), may be found for given #,/f,, 

wand vy, after which x»,;, vy, and Th,i, as well as po, follow easily. 

§ 5. That a barotropic plaitpoint exists on the liquid-gas-plait 

with the assumed suppositions (2), (34), (3c) and with suitable 
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values of the constants, appears as follows: for 2=0.5, R,/R,=°/,, 
b,,/b,, =/,, (6c) yields: u = — 1.957, after which (9) yields: 
w= — 1.176, so that a,,/a,, = 0.00653. Thus we find fora mixture 

of two substances with M, = 2 M,, v,,='*/, vz, (so that the ratio of 
the molecular critical volumes is ‘/,), 7), = 0.052 f ae barotropic 

plaitpoint for 1 — 0.26 Vk; » 1 ALE) igs » Phyl = 4.8 Pky - 

(To he continued). 

ERRATUM. 

In the Proceedings of the meeting of September 29, 1906. 

p. 209, line 15 from the bottom: for § 10 read § 9. 

p. 210, Table I, line 5 and 4 from the bottom, for: 5 July read 

6 July. 

ed from the bottom, for 3 March ’65 

read 3 March ‘O06. 

(January 24, 1907). 
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Chemistry. — “«- and 8-thiphenic acid.” By Prof. A. F. HoLLEMAN 

and Dr. G. L. VoERMAN. 

(Communicated in the meeting of December 29, 1907). 

A very remarkable research on these acids was published in 1886 

by V. Meyer, who discovered the same. In the main it amounts to 

this, that in addition to the theoretically possible monocarboxylic 

acids of thiophen 

z|CO,H 
|CO:H 

EEA 
5 S 

Mp. 126°.2 Mp. 138°.4 

a third isomer was obtained, called a-thiophenie acid m.p. 117.5—118°, 

which, however, in its derivatives such as the amide, the phenylurea 

derivative of the amide, the amidoxime and the thienone (C,H,S),CO, 

so completely resembled the corresponding derivatives of the a-acid 

that they would have been declared identical, were it not that from 

the a-derivates the a-acid m.p. 118° was regenerated, whilst the 

a-derivates yielded the a-acid m.p. 126°. V. Mryrr expresses himself 

as follows: “Die Vergleichung der a- und a-Sdure ergab immer von 

“Neuem das merkwiirdige Resultat, dass die beiden Sauren wirklich 

“in ihren Eigenschaften durchaus verschieden sind, und dass die Ver- 

“schiedenheiten sich als constante, durch keinerlei Reinigung oder 

“Umwandlungen zu entfernende Eigenschaften erwiesen; dass aber 

“alle Derivate der beiden Saduren in ihren physikalischen Eigenschaften 

“absolut zusammenfallen und fiir identisch (im gewoéhnlichen Sinne) 

“erklart werden miissten, wenn sie nicht die Eigenschaft besassen, 

“dass jedes aus der a-Sdure dargestellte Derivat bei der Riickfiihrung 

“auch wieder «-Siure, jedes a-Derivat dagegen a-Siure lieferte.” 

As the a-acid had also been obtained by oxidation of tar-thiotolene 

which is a mixture of a- and }-thiotolene {2—3 methylthiophen |], 

V. Meyer suspected that this a-acid might be after all a mixture of 

a- and #-acid, and he really succeeded, by oxidation of a mixture 

of the two thiotolenes in definite proportion, or by slow erystallisa- 

tion of a mixture of «- and B-acid from cold water, in obtaining an 

acid which agreed in every respect with the a-acid. This was no 

doubt an important step forward, but the behaviour of such a 

mixture and also of the derivatives obtained therefrom still remained 

a very remarkable one. 

1) A, 236, 200; also V. Meyer, die Thiophengruppe p. 188—207. 
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Notwithstanding all this, nobody, since this elaborate research of 

V. Meyer, has been engaged during the last 20 years in the study 

of these acids, although it might have been expected from the deve- 

lopment of the phase-rule that the latter might possibly give us a 
closer insight into the phenomena described above. 

The probable cause of all this is that these acids are not readily 
accessible, and that those engaged in researches connected with the 

phase-rule have not ventured to prepare the same. When Dr. Vorrman, 

at my request, undertook the closer study of these acids we had, first 

of all, to find a better process for the preparation of these substances. 

In the case of the a-acid we have indeed succeeded in a very 
satisfactory manner. We have also worked out another and improved 
method for the preparation of the B-acid; but it is still unsatisfactory 

owing to the small yield. Therefore, we have been obliged to restrict 

ourselves, provisionally, to the study of the acids themselves; the 

derivatives will be taken in hand when more material has been 

obtained. 

Preparation of a-thiophenie acid. By V. Meyer and his pupils, this 
acid was best obtained by oxidation of propiothienon C,H,S.COC,H,, 
because the oxidation of the much more readily accessible acetothienon 

C,H,S.COCH, yielded a mixture of «-thiophenic acid and thienyl- 
glyoxylic acid, which it was rather troublesome to separate. We have 
succeeded in converting acetothienon almost quantitatively into a- 

thiophenic acid, being guided by the following considerations. If 

we oxidise a methyl ketone, experience has taught that the methyl 

group very readily changes to carboxyl thus forming a glyoxylic 

acid: R.CO.CH,—>R.CO.CO,H. If, however, we attempt to go further 

and obtain the corresponding carboxylic acid: R.CO.CO,H—R.CO,H 
a difficulty is experienced and the oxidising mixture then also attacks 

the group R so that the yield of the carboxylic acid becomes 

generally unsatisfactory. Now some time ago, I found a method for 

converting acids R.CO.CO,H quantitatively into R.CO,H; this is 

rendered possible by the application of hydrogen peroxide which 

causes a ready resolution according to the scheme: 

R.CO60,8 =, HO OH = R-COOH + CO, + H,0 

This method has led to the desired result in this case. The 

oxidation of acetothienon is, therefore, done in two stages, first the 

formation of thienylglyoxylic acid which is subsequently oxidised to 

-thiophenic acid. The practical application of these processes was 
as follows: ; 

35* 
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Acetothienon was prepared from thiophen according to the method of FriepeL 

and Crarrs, and a very good yield was obtained. The thiophen was prepared by 

ourselves by distillation of sodium succinate with P,S;. 11.5 grams of ketone and 

12 grams of sodium hydroxide were introduced into a litre of water, and to this 

was added slowly, at the ordinary temperature, a solution of 42 grams of potas- 

sium permanganate dissolved in a litre of water. After each addition the pink 

colour was allowed to change to green before addition of a fresh portion. 

After all the permanganate had been added the liquid was allowed to remain 

overnight; the solution was heated gently on the waterbath until the green colour 

had disappeared, then filtered off from the manganese dioxide, and concentrated to 

250 ce. Without isolation of the thienylglyoxylic acid, beforehand the liquid, after being 

nearly neutralised with hydrochloric acid, is mixed with 9 grams of 30°/9 hy- 

_ drogen peroxide previously diluted with its own volume of water. The whole is 

set aside for a few hours, and afterwards heated for a few moments on a water- 

bath. On acidification the liquid the greater part of the z-thiophenic acid formed is 

precipitated in a pure condition; a further small quantity may be recovered from 

the mother-liquor by extraction with ether. By recrystallisation from water and 

distillation in vacuo, the acid may be obtained pure and quite free from thienyl- 

glyoxylic acid. The yield amounts to about 9 grams. 

The solution of a-thiopbenic acid saturated at 24°.9 contains 0.75 °/,. 

Preparation of @-thiophenic acid. V. Meyer has effected this by 
oxidising with potassium permanganate in very dilute, cold solution. 

The yield of B-acid was however very poor, in fact only about 

5—8°/, of the thiotolene employed. After trying various modifications 

of this direct oxidation process without arriving at a better result 

we decided to follow an indirect way by first chlorinating the side 

chain, then preparing the aldehyde from the thienalchloride and 

finally oxidising the former to the acid: 

C,H,S . CH,-> C,H,S . CHCl,  C,H,S . CHO > C,H,S . COOH. 
Bearing in mind van per Laay’s research") on the bromination 

of toluene where it was shown that in presence of PCI, the sub- 

stitution in the side chain is accelerated, this substance was added 

in the chlorination of §-thiotolene. The above mentioned processes 

all proceeded very smoothly, but unfortunately an acid rich in 

chlorine was finally obtained as, apparently, the chlorination had 
also extended to the nucleus. This certainly could be freed from 

chlorine by treatment with sodium-amalgam but a large proportion 

of the p-thiophenic acid was lost thereby so that the yield did, finally, 

not exceed 10°/, of the thiotolene employed. 

We add a few particulars as to the modus operandi followed. 

G-thiotolene was prepared by ourselves by distilling sodium pyrotartrate with 

phosphorus trisulphide. The chlorination took place in direct sunlight in the presence 
of 10°/, of PCI;. The reaction product is boiled in a reflux apparatus with water 

and calcium carbonate. The aldehyde is distilled in steam and purified over the 

1) These Proc. Oct. 1905). 



bisulphite compound. From 10 grams of thiotolene about 5 grams of the aldehyde 

are obtained. Of this, 3 grams are oxidised with 500 cc. of water containing 
3.2 grams of potassium permanganate and !.3. gram of 80"/) potassium hydroxide ; 

afler standing over night the liquid is filtered from the manganese dioxide, con- 
centrated and acidified when about 3 grams of thiophenic acid are precipitated. 

The dechlorination of this product with sodium amalgam in dilute aqueous solution 

takes 15—20 days during which a large portion of the acid gets lost. 

As regards the solubility of @-thiophenic acid at 25° it was found 
that the saturated solution contains 0.45 °/, of acid. 

Melting point line of mixtures of the two acids. According to the 

present views of the phase rule it was natural to suppose that the 
impossibility of separating these~ acids by crystallisation is due to 

the fact that they yield mixed crystals. In fact by determining the 

melting point line, Dr. Vorrman has succeeded in demonstrating 

with certainty that they give an interrupted mixing series. The 

initial solidifying points may be observed very sharply but the final 

solidifying points can only be determined within 0°.5. 

A list of the initial and final solidifymg points is appended; and 

in the annexed curve these figures are represented graphically. 
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SOLIDIFYING POINTS OF @ AND £-THIOPHENIC ACID AND THEIR MIXTURES. 

Wy a % # | 4st solidifying prez 2nd solidifying point 

400 0 196°9 

99.01 0.99 125.4 | 493°9 494° 

98.25 4.75 195.4 | 

96 .56 3.44 194.6 | 123.4—193.6 

94.3 5.7 124.4 121.0 

93.60 6.40 193.4 

90.60 9.40 422.2 

88.20 41.80 121.3 + 118 

85.82 14.98 | 120.3 + 116.6 

85.0 15.0 120.4 

79.45 20.55 417.7 443.5114 

77.45 92.55 417.2 112 112.6 

15.3 4.7 116.3 110.8—111 .2 

74.60 95 40 116.0 + 110.6 

69.45 30.55 114.3 440 —144 

66.20 33.80 113.3 110.5—110.8 

63.35 36.65 | 412.5 410.8 

59.70 40.30 411.5 110.5 

58.0 42.0 111.0 410.7 

55.0 45.0 112.6 110.8 

00.85 49.A5 115.0 410.7 

42.50 57.50 | 119.6 id. 

38.9 61.4 121.2 111.2 

33.60 66.40 124.0 416.5—117.5 

93.80 76.20 498.2 193194 (+193.5) 

14.0 86.0 132.6 129.5—129.8 

54 94.6 136.3 134 —134.3 

0 | 400 138.4 

It appears that the series of mixed erystals is interrupted on one 
side at 25° /, B-acid, and on the other side at 61°), ; 

/, B-acid at a temperature of 111°. 
=) is a eutectic point at 42.5 

and that there 
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The erystallographical investigation of these acids and their mixtures 

kindly carried out by Dr. JAncrr leads to exactly the same result. 
Dr. Janger reports as follows : 

Of the two isomeric compounds p-Thiophenic acid erystallises the 
most readily in sharply defined, small erystailine plates. 

Whether obtained by crystallisation from solvents or by fusion 

and subsequent cooling, the compound exhibits the microscopical 

appearance of the subjoined figure. The crystals are monoclino-pris- 

4] 
} 

aa 
, AY) Vg 
“GU, op Z& 

Fig. 2. Microscopcial aspect of z+ and @-Thiophenic acid. 

matic, and combinations of the form: {001}, very predominant, 

{110} and {100}; the angle of inclination ¢ deviates considerably 

from 90°, so that the smaller individuals often exhibit rhomboidal form 

owing to simultaneous development of {110} and {001}. Often the 

plates are so thin that only a single parallelogrammatic circumference 

can be observed with a very slight stunting of the sharp angle which 

was determined at 42°—48°, by {100}. 
In addition, small rectangular plates occur which, as the investi- 

gation shows, are formed with {100} as predominant form, and 

therefore show prolongation along the /-axis. Although representing 
apparently a second form they are, however, quite identical with 

the parallelogrammatic phase. 

The optical axial plane is parallel { 010} and falls along the longest 

diagonal of the parallelograms or perpendicular to the longitudinal 

direction of the needle-shaped individuals. In convergent light one 

hyperbole with rings is visible at the border of the field of vision. 
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Very feeble inclined dispersion with @ > v; double refraction nega- 

tive. The longitudinal axis of the parallelograms and the shortest 

dimension (breadth) of the more needle-shaped individuals are the 

directions of a smaller optical elasticity. 

a-Thiophenic acid crystallises from solvents or from the fused 
mass in long more or less broad needle-shaped individuals, which 
usually exhibit only a rudimentary limitation and cannot therefore 

be properly determined morphologically. Although the optical proper- 

ties seem to point to a monoclinic symmetry one might also feel 

inclined to conclude to a triclinic symmetry on account of the form 

limitations occurring here and there. The extinction of the needles 

is, however apparently orientated perpendicularly to their longitu- 

dinal direction. The smaller optical elasticity axis coincides with the 

longitudinal direction of the needles. The optical axial plane is 

orientated perpendicularly to the longitude of the needles; in con- 

vergent light a single very characteristically coloured hyperbole is 

visible at about ?/, of the diameter of the fields of vision. 

Knormously strong dispersion with @ < v; the sign of the double 

refraction around the correlated bissectrix is positive. 

The two isomers are, therefore, readily distinguished microscopic- 
ally by the following properties : 

B-Thiophenic acid a-Thiophenic acid 

Parallellogrammic limitation, or Long, very slender needles, 

short rods of rectangular form. mostly with rudimentary limita- 
Very high interference colours. | tion. 

One optical axis with elliptical Grey, or unconspicuous colours. 

rings, very weak dispersion @ < v. One coloured hyperbole ; very 

Negative double refraction. strong dispersion: @ < v. 

Monoclinic symmetry ; angle of Positive double refraction. 

the parallelograms 42°—43°. Triclinie or monoclinie sym- 
Optical axial plane for the paral- | metry. 

lelograms // to the longest dia- The optical axial plane is per- 
gonal for the needles perpendicular | pendicular to the longitudinal 

to the longitudinal direction. direction of the needles. The latter 

The largest  elasticity-axis is | comeides with the shortest elas- 

parallel to the longitudinal direc- | ticity-axis of the crystals. 
tion of the needles or to the 

shortest diagonal of the paralle- 

lograms. | 
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On account of the evaporation of the two substances when melting, 

one is obliged always to use a covering glass under the crystallisation- 

microscope. 

On mixing the two isomers I have noticed the following on melting 
and subsequently cooling the mixtures. 

a. Mixture containing 61,6°/, of B-acid yields exclusively mived 

crystals of the @-form; formation of minute traces of a-erystals is 

not improbable. 

4. Mixture containing 42 °/, of p-acid yields chiefly mixed crystals of 

the a-form; at the edges of the fused mass, however, are found also 

very small, slightly coloured parallelograms of the p-form. Negative 

mixed erystals in the a-form (see d@) were not noticed; only positive 

ones with 9 < v. 

c. Mixture containing 35,5°/, of 8-acid behaves on solidification like 0. 

d. Mixture containing 22,5°/, of B-acid, only yields mixed crystals 

of the a-form both positive and negative doubly-refracting but with 

o<v like the a«-acid itself. 

e. Mixture containing 86°/, of a-acid only gives mixed crystals 

of the a-type with strong dispersion @ < v and a positive double 

refraction. 

Dr. JAEGER comes to the following conclusion : 

“There exists here an isodimorphous mixing series with hiatus. This 

extends from a f-acid concentration > 22,5°/, to mixtures containing 

61—62 °/, of the @compound. The mixed crystals of the a-type 

become on addition of the negative B-compound less strongly positive 

optically and in the immediate vicinity of the hiatus even negative ; 

they, however still retain the strong dispersion with @ << v, which 

is so characteristic for the pure a-compound. 

On the other hand, the mixed crystals ef the p-type have at all 

concentrations of 62—100°/, a negative double refraction and a 

very feeble inclined dispersion.” 

V. Mryer states in his treatise that in the oxidation of mixtures 

of the two thiotolenes, he has obtained various other mixtures of 

a- and 8-thiophenie acid, and that these showed no sign of separation 

into their components when subjected to fractional crystallisation. 

Dr. VorrMan, however, cannot confirm this observation. When he 

recrystallised a mixture of 85.3°/, a-acid and 14.7°/, of p-acid (solidi- 
fying point 120°.3) from hot water, the solidifying point increased 

to 121 .6 which corresponds with a mixture of 89°/, «- and 11°/, of 
B-acid. As, however, V. Meyer does not state the temperature at 
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which he earried out his fractional crystallisations, it is possible that 

this was not the same as in VoERMAN’s experiment and this might 

account for the difference. 

Dr. VorRMAN has finally been engaged in the determination of the 

conductivity power of the two acids and their mixtures in the hope 
of obtaining indications of a combination of the two acids when in 

solution. The observations are as follows : 

CONDUCTIVITY POWER OF a-THIOPHENIC ACID AT 25°, 

v p a 100 & 

25 | 32.44 | 0.085 | 0.0314 

50 45.37 0.118 0.0319 

100 - 62.49 0.163 0.0319 

200 | 85.06 0.222 0.0318 Mop = 382.7 

400 113.87 0.298 0.0315 

800 149.44 0.390 0.0312 

[1600 189.34 0.495 0.0303] 

Average 0.0316 

In this table, 7 represents the volume in which 1 mol. is dissolved, 

w the molecular conductivity power, «@ the degree of dissociation, 

100 4 the dissociation constant according to Ostwatp X 100. 

The conductivity power has been determined, previously, by 

Ostwatp (Ph. Ch. 38, 384) who found for 100% 0,0302, and by 

Baber, (Ph. Ch. 6, 313) who found for 100% 0,0329. 

CONDUCTIVITY POWER OF g-THIOPHENIC ACID AT 25°. 

| 
| p | | x | 100 & 

50 23.20 | 0.061 pusher 00783 

100 32.32 0.084 | 0.00779 

200 44.90 0.417 | 0.007795. - == seeen 

400 62.06 0.162 0.00784 

800 84.66 0.2914 (), 00785 

[1600 144.17 0,298 0.00793] 

Average 0.00783 
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CONDUCTIVITY POWER OF MIXTURES OF 

a+ §@THIOPHENIC ACID AT 

44 0/, ‘ 

thiophenic acid 
89/% « 

v pe g 

50 | 13.96 | 0.413 | 

100 Seb. 485 | 

200 80.94 0.21 
400 108.05 0.282 
800 141.29 0.309 | 
1600 180.75 0.572 | 

33 .339/9 
thiophenic acid 

66 .66/p 

7] b- a 

33 .333 31.79 0.083 

66.666 4h 28 0.416 

123.333 | 60.86 0.159 

266.666 82.33 0.215 

533.333 409.83 | 0.287 

1066. 666 AB 3 Ne 02375 

50%/, 2 
thiophenic acid 

50%/, 4 

D ia a 

50 35.12 0.092 

400 48 52 0.127 

200 66.04 0.472 

400 88.58 0.234 

800 447.45 0.306 

4600 ADA .7 0.396 

70.4°/, 2 
eniopnene acid 

99.69), x 

PY - a 

100 42 O04 0.442 | 

900 58.63 | 0.153 

400 79:06 | 0.207 | 

800 405.02 | 0.274 

1600 198.90 | 0.361 

25°. 

400 & 

(0). 0288 

0.0286 

0.0284 

0.0278 

0.0270 

0.0264 

100 & 

0.0226 

0.0227 

0.0226 

0.0221 

0.0217 

0.0210 

100 & 

0.0185 

0.0184 

0.0180 

0.0174 

0.0170 

0.0163 

100 & 

0.0143 

0.0139 

0.0135 

0.0130 

0.0128 

a 
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The conductivity of the pure ~-acid has been determined previously 

by Loven (Ph. Ch. 19, 458) who found : 

100 £ = 0,0078. 

which agrees well with the value found by myself. 

The influence of the position of the sulphur atom in regard to 

the carboxyl group is very marked. 

From these observations it appears that the acids in aequeous 

solutions exert but very little influence on their mutual conductivity 

power, as the conductivity power of the mixtures agrees fairly well 

with the calculated result. A condensation of their molecules in such 

a solution cannot therefore be supposed to take place. 

Physics. — “A remark on the theory of the w-surface for binary 

mixtures.” By Prof. J. D. VAN DER WaAats. 

(Communicated in the meeting of December 29, 1906). 

KAMERLINGH QOnNzs’ startling experiment, in which a gas was 

obtained that sinks in a liquid, has drawn the attention more closely 

to the direction of the tangent in the plaitpoint of a binary mixture. 

Leaving the further particulars required for the realisation of sucha 

mixture to the investigations of KaMERLINGH OnnEs and his collaborators, 

I will make a remark of general significance, in close connection 

with this experiment. 

In my Théorie moléculaire and more fully in Cont. II I have 
examined the condition, on which the tangent in the plaitpoint runs 

parallel to the v-axis, or in other words () =o. The problems 

related to this may be reduced to 3. All three refer to the inter- 
dp dp 

section of the two curves | — ]|=0O and {| — |= 0. 
dv) .7 dz) yT 

As first problem I should like to regard the principal one, namely 
2 2 

yw wy ‘ 
that where re 0 and ae 0. The point considered lies, there- 

v v& ov 

‘ : 07) 
fore, on the spinodal curve, and at the same time the curve = —— 

v 

3 

has for constant value of 2 two equal values for v and so also 8 =@, 
v 

Then the point considered is the critical point of the mixture 
taken as homogeneous. The value of 7’ is that of 7), for such 

a mixture and the value of x is then found, when the approximate 

equation of state with % constant is applied, from : 



which value ?7/, becomes = 

volume is relinquished. 

/,, when the independence of 4 of the 

2 2 

cuts the line —— — 0 still in two 
up 

Ox Ov Ov? 

points. One point is that above mentioned, the second lies at smaller 
x and larger v. So nearer the component with the smallest value of +. 

With increase of temperature the two points of intersection draw 

nearer to each other, and as second problem we may put: to exa- 

mine the circumstances under which the two points of intersection 

of these curves coincide. The three equations from which this cir- 

Op : Ow 

Ov ~=——d Ow Ov 

which expresses that these curves touch, viz. : 

dp \? dp d*y 

(53 dz) dx? Ov v3 

0p ches 0?p 0?p 

dcdv ) Ox? du? 
Above the temperature at which these circumstances are fulfilled, 

O7y Ow 
= (0 and 

Ov? dxdv 

cation in the course of the isobars, viz. that there is one that 

intersects itself, has disappeared. 

The third problem is more or less isolated, but yet I should like 
2 

In this ease the line 

=0 and a third cumstance is determined, are then: 

or 

=O do not intersect any longer, and the compli- 

to treat it in this connection: viz. that for which the line eS 0 
7 

: Of Oty 
-has a double point, and so at the same time Fe = Oand 5 aor 0. 

v xzov 

If there is a minimum 7’, for mixtures taken us homogeneous, such 

a point is really a double point. If there should be a maximum 77, 

it is an isolated point. We find then again »v = 7,, 7’= 7, and the 

value of x is that for which 7). has a minimum or maximum value. 

Let us call the three values of « obtained for those three problems 

a; , #, and a,, then : 

ay <a <a, 
fe ee fe e i, : 
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Now there are three more problems, and to this [ will call atten- 

tion in this note, which may be considered as the analogues to the 

three above-mentioned ones. 

If in the above problems we substitute the quantity « for v and 

d*y ee dy 
vice versa, so that —— changes into ——,and=—— remains unchanged 

Ov? Ow? Oxvdv 
2 2 

then the intersection of the curves ——- —0O and = 0 will give 
0a? Ox0v 

rise to three problems, which are of as much importance for the 

theory of the binary mixtures as the three above-mentioned problems, 

| | 3 O° ory 
which relate to the intersection of —~— = 0 and ——— = 0. 

Ov dvdv 

*~ 
In the first place the points at which the two curves 5,2 Vand 

ve 

0*yp , 
nay intersect will belong to the spinodal curve, as appears 
&OvV 

F 07 0? 07w \? 
‘om = : 

Ox? Ov? dxdv 

In the second place these points of intersection will have the same 
dw 

significance for the course of the curves (5") = g = constant, as 
wv 

WA és OB Oy ; 
the points of intersection — ~ = 0Oand.=~-=—0O have for the course 

Ov? adv 

dw 5 tet 
of the curves ei —= — p=constant. The first point of inter- 

v r 

section will be a double-point for the qg lines, whereas the other 

point of intersection will present itself as an isolated point, the centre 

of detached closed portions of the g lines. 

In the third place there will be a limiting temperature for the 
2 

: w font mre 
existence of the locus 3 = Q. With increasing value of 7’ this curve 

v 

Wb 

i — 0 with contracts to an isolated point, just as is the case with 
v 

ab 

maximum 7, or as the curve — —O has a double point with 
Ov? 

minimum 7%. 

In the fourth place there is a temperature at which the curves 
07yp d*y eh 
> = 0 and = yn) =0( only touch, and the two points of intersection 

U 

have, accordingly, coincided. 

And finally, and this is the most important case, there is a tem- 

— 
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perature at which the intersection of these curves takes place in 

such a way that at one of the points of intersection a tangent may 
2 } dv 

be drawn to = (), for which — (). 
Ox? dx 

To determine these circumstances we have the three equations 
07 02y O*yp : 
au 0, =) and —- =O and this problem proves to be the 
0x? dxdv 0a* 

07 yp Oy 
analogue of that mentioned above, for which iae =a), arn =0 and 

] vav 

0° dv da dv 
= 0. If there was =o, now — => or — = 

Ov? da dv da 

i a: | 
So if the 3 equations = — 0 and —-—0 admit of a 

Ow? d2dv dx° 

solution, the circumstances may be realised in which at the plaitpoint 

a tangent may be drawn /) «z-axis. Neglecting the variability of 4 
with v we find for the three equations: 

b\? 
Wea iva hs 

mp MRT da) da 
== ie De I aT 

On? vl—e (v —b)? v ( ) 

db\?* 
Ree | — 

0*w MRT(1 — 2.) °F 
a 4 =e enc 

02? Head = fae (v—b)° 

db da 
DORE a 

Op dix da ; 

O.x0v ig (v—b)? v io 
(5) 

If.we puta = A + 2Bue+ Co’ and b = b, + «v8 = b, + w (b, — 4,) 

we get the equation: 

Va ob — c F re) ea 4(B + Cw) (Cb,—BB) 

(23245 2a 7° BS Ce Ca BO =e) 

If B=a,,—a, should be small in comparison with a.--a,—2a,,)v=Cr, 

h 
we get « equal to */, by approximation, at least if — is aiso small. 

Then real values are found both for x and for 7 and v; only 

this value of 7’ can lie below the melting point in many cases, and 

consequently it cannot be observed. 

However, I shall not enter into a further discussion. I will only 
2 

point out, that for suitable values of 7’ the curve a 
Uv 

a closed curve, which contracts with increasing value of 7, and 

may contract into a point. 

= 0 represents 



; dv ia: : : 
In the problem, for which — =o at the plaitpoint, this case is 

at 

dv . ate : 
the transition for the cases where ote positive or negative. In the 

Xe 

dv dy: Ne 
same way in the problem for which — = 0 in the plaitpoint, this 

Ak 

dv = . 
is a transition case between — positive or negative. So the cases 

Ae 

may also exist for which on the side of the small volumes, the 

2 00: ee 
quantity aa the plaitpoint may have reversed sign. 

Ax 

d°y d*y 
= 0 and — = 0, 

dx0v Ou? 

it appears that it is required for the realisation of the case, that when 
db As da da a 
— is positive, also — and —~ are positive, and that the calculated 
aL ak Ak 

temperature must lie above 7). of the first component when we want 

to apply the result to the coexistence of gas and liquid phases. 
At the top we have the limiting case of two coexisting phases. 

If the tangent is // w-axis, the molecular volume is equal and the 
density will be proportional to m,(1—«) + m,a. 

Put 

_m, (1—2) + mex ad m, (1 = eee __(m,—m,) (#'—a) 
— and d = nd d'—d—=——____—_—_ 

v v v 

When we examine the shape of the curves 

When (m,—m,) and (v’— x) have the same sign, d’—d is positive. 

As «’—wv is negative when the first component has the smallest size 

of molecule, m,—m, must also be negative, which is satisfied for 

helium and hydrogen. 

We can, in general, represent the limiting density of a substance 

m : . 

by a and then the law would hold: When the most volatile substance 
} 

has the greatest limiting density, the gas phase can be specifically 

heavier than the liquid phase. For Helium the limiting density is 
probably equal to that of the heavy metals. From the supposition 

that it is formed by splitting off from heavy metals this follows 

already with a certain degree of probability. 

1) On further investigation it has appeared to me that a point that satisfies the 

07yp 07 O*~p 
sae Se one 0, and ar = 0, possesses the analytical character of 

a plaitpoint, but at least in many cases, does not behave practically as such. I 

hope to show this before long. (Added in the English translation). 

equations 
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Mathematics. — “The rule of Neper in the four dimensional space.” 

By Dr. W. A. Wytsorr). (Communicated by Prof. P. H. 

SCHOUTE. 

(Communicated in the meeting of December 29, 1906). 

1. The wellknown ‘rule of Neper” 

as follows: 

If we regard as elements of a spherical triangle A, A, A,, rectan- 

gular in A,, the two oblique angles A, and A, the hypothenuse a, 

and the complements of the two other sides 4a — a, and } a—a,’) 

we can apply to each formula generally holding for the rectangular 

spherical triangle the cyclic transformation 

can in principle be formulated 

(A, 4+@7—a,, a, 42—a,, A,) 

without its ceasing to hold. 

Fig. 1. 

We prove this rule by prolonging the sides A, A, and A, A, which 

(Fig. 1) for convenience’sake we shall imagine as < } 2, through the 

vertex A, = A’, with segments A’, A’, and A’, A’, so that A, 4’, = 

A, A’, =i. The spherical triangle A’, A’, A’, then proves to be 

again rectangular, namely in A’,, whilst furthermore between the 

elements of both spherical triangles the following relations prove to 

exist : 

tele a Co o Pay ~ 2 

ON eee: Fe 

From this is evident that the above mentioned cyclic transformation 

can be applied to the elements of each rectangular spherical triangle 

without their ceasing to be the elements of a possible rectangular 

Al i ' 
i = SE es G Oks ine —— Oe x 6 

! + — a, =A) 

1) These are the complements of what Neper himself calls the “quinque 

circulares partes’? of the rectangular spherical triangle. See N. L. W. A. GRAvELAAR, 

Joun Napier’s werken, Verh. K. A. v. W., First section, vol. VI, N°., 6, page 49. 

36 

Proceedings Royal Acad. Amsterdam, Vol. LX, 
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spherical triangle, from which further the rule of Neprer immediately 

follows. 

The train of thoughts followed here will be found back entirely 

in the following. 

2. A hyperspherical tetrahedron I shall call doublerectangular, if 

two opposite edges stand each normal to one of the faces. 

Let us suppose .the letters A,, A,, A, and A, at the vertices of 

the tetahedron in such a manner that A, A, is perpendicular to the 

face A, A, A, and A, A, perpendicular to the face A, A, A. 

To make the tetrahedron doublerectangular it is necessary and 

sufficient for the angles of position on the edges A, A,, 4, A, and 

AAS 40 -be right: *) 

0, = 24 =f S—eas 

from which then ensues: 

A, = A= ee 

A 

Ang = G&,° 

a 

Asn53 
21 — 

If we do not count the rectangular elements and if we count 

those which are equal only once the doublerectangular hy perspherical 

tetrahedron has 15 elements, namely @,,, G15; G41 Go3> a4 349 ras 

Woes ens: As oy: Ay Se yea gee ee ee 
12° 13) 

3. We now form, starting from a doublerectangular hyperspherieal 

tetrahedron A,A,A,A, of which we think the edges all <42, a second 

hyperspherical tetrahedron (Fig. 2) by prolonging the edges meeting 

in A, = A’, through this vertex, namely the edge A, A, with a seg- 

ment A’, A’,, the edge A, A, with A’, A’, and the edge A, A, with 

i A' 

By very simple geometrical considerations we find that the tetra- 

hedron A’, A’, A’, A’, is again doublerectangular, that namely 4’, 4’, 

is perpendicular to A’, A’, A’, and A’, A’, perpendicular to 4’,4’, 4’ ; 

furthermore it is evident that the following relations exist between 

= ; Mie po Ali tg eee 

4? sO that Jae A’, == batt A. —— vale AN —— 4 nN. 

1) The signs used here | have derived from Prof. Dr. P. H. Scuoure, Mehr- 

dimensionale Geometrie, 1st vol., page 267, Sammlung Scuupert XXXV, Leipzig, 

G. J. Géscuen, 1902. 

So I understand 

by Gy, the edge A, Ap; 

by «2 the angle of position formed by the faces lying opposite the vertices 

A, and Ag, i.e. the angle of position on the edge A, A,; 

by Aje the facial angle having A, as vertex and lying in the face opposite Ag, 

i.e. the angle As A, Ay. 
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Fig. 2. 

the elements of the two tetrahedra 

1 ee 
gUW—4,, = 4, 

! —— 

G44 — 47 —4,, » 

1 
=U — Ay, = As, ; 

' —- 

G34 = &o53 3 

! — 

@o3 — 41. 

' os ° 
GREG Be 

' —— ! ee 

ee Ay e (fa—A,,)+4,=47 ; 

' ee | 
ah pe 4 e, 

' 

er ee a ae ee 
' 

a te a hoe 

(eis eee . ! ) — 
AoA » 1. €. Se eee a — IE ’ 

y \ Se 1 : L ! 1 —— 2 A 
A, + Ay, =} 2"), 1. €. (¢272—A,,) + a7—A,)=432 ; 

! — ] 
a Se Gy 5s 

a _— gin. 
$a —a,,=—A,, , 

! oe 

Ag adit 

4. So if we regard instead of a,,, a,,, A,,, 4,, and a,, their 

complements as elements of the tetrahedron, then the elements of the 

1) In giving the proof of this we must remember that A', A's and A, A; lie on 

a sphere and therefore cut each other in a point P, just as A’, A’, and A, A; cut 

each other in a point Q. 

o6* 
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doublerectangular hyperspherical tetrahedron can be arranged in 

three cycles, two of 6 and one of 3 elements, namely 

1. (BO — ayy s Og) $ — Myo Begs Gar Gs): 

2. (3 JS ro 22 ’ Ad > A139 Tas AG ; 4 Jt. — A,,), 

3. (A,, 3 u— Os3 1 A,;); 

so that it is possible to allow the elements of each cycle to undergo 

all simultaneously a cyclic transformation, if only afterwards those 

of the second cycle are replaced by their complements,*) without 

these elements ceasing to be the elements of a possible doublerect- 

angular hyperspherical tetrahedron. 

These same simultaneous transformations may thus be applied to 

each formula holding in general for elements of the doublerectan- 

gular hyperspherical tetrahedron. 

5. If we again apply the construction described in § 1 to the 

newly formed spherical triangle, ete. we find a closed range of five 

spherical triangles of which the hypothenusae form a_ spherical 

pentagon. 

The sides of these five spherical triangles are parts of five great 

circles on the sphere, namely the circles part of which is formed by 

the three sides of the original spherical triangle and the two polar 

circles of the vertices of its oblique angles. These five great circles 

form, however, another second similar range of five spherical triangles, 

namely that of the opposite triangles of the former range. 

6. We can likewise deduce in a manner indicated in § 3 out of 

a doublerectangular hyperspherical tetrahedron a range of such 

tetrahedra of which the faces all belong to six spheres, namely the 

spheres part of which is formed by the faces of the original tetra- 

hedron and the polar spheres of the points A, and A,. 

Let us call B, the polar sphere of A,, 6, that of A,, 5, the 

sphere A, A, A,, B, the sphere A, A, A,, B, the sphere A, A, A, 

and B, the sphere A, A, A,. 

Each of these spheres divides the hypersphere into two halves of 

which I shall designate the one to which the original tetrahedron — 

1) If we write the second ‘cycle 

L ee 1 a=, 2 
(2% Ai,, 3m A,, 1 ,, 4% —a,,, Ay A,,) 

or 

(A 
then no replacement of the elements by their complements is necessary, but the 

cycle has lost its symmetry with respect to the tetrahedron. 

/ er ea 1 / <= 
14? Ay,» 4m Gigs Cea tx—A,,, a A,,); 
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belongs by +, the other by —. The following list then indicates on 
which side of each of the six spheres the successive tetrahedra I, 

II, etc. are situated and by which they are limited. For the non- 

limiting spheres the sign has been placed in brackets. 

B, | By | Be 19 B, B, 

eee yo) +f te | ele + 
eee. ey = | | 
ashe eG) |B] 
Bere (are 1 er) | = 
Vv uf zy = + Coy ees 

NE ee) z a3 + ele 

A pat ed eg = = = — 

FT Sh) Ne Oy Ss ea es a ee a 

Pera eee Pe | =| 
Sha | eS | | OO +t 
eee seem). ef co 
ee ere | | 
eG ee tl | + 

It is clear that the tetrahedra I and VII are opposite to each 
other, likewise II and VIII, III and IX, ete., whilst the tetrahedron 

I again follows tetrahedron XII. 

Thus the whole range consists of 12 tetrahedra which are two by 

two opposite to each other, in contrast to what we found in the three- 

dimensional space, where fvo ranges of spherical triangles are formed 

_ of which one contains the triangles opposite to those of the other. 

7. Between the volumes of each pair of tetrahedra belonging to 

the range exists a simple relation. 

If we call V7 the volume of the first tetrahedron then the relation: 

dVyj= 3a,, da,, + 44a,,da,, + 44,, da,, 

holds for each variation of the tetrahedron remaining doublerectan- 

gular (thus @,,,@,, and a@,, not changing). 
Likewise 

dV — 3 (32 = a, 4) da,, == 3 ($7 =< As) da,, =; (4x <5 at; 5) da,, - 
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So therefore 

Vit j= ina, + i 2a,, —}4,, (4a — a,,) + constant. 

The constant is found by putting @,, equal to @,, = @,, = 4, = 2%, 

in which case V; takes up the sixteenth part of the whole hyper- 

sphere, i.e. | 2?, whilst V7z becomes = 0. 

The constant then proves to be —- } 2’, hence 

ie i ee AO, eo, = 4 a,, (4% — @y,)- 

Likewise we find. 
7; : ; : F 
Vil ae Vin = 8 n* = i 7 (37 — ,,) + ; os a (3% zs a, 4) ($2 = a5), 

Vin + Viy=-;2 +4 %4,, +120 ($n —a,,) — $4,, (3% —- a,,), ete. 

Every time the sum of the volumes of two successive tetrahedra 

can be expressed by means of four successive elements of the first 

cycle mentioned in § 4. We deduce easily from this: 

whe 

Vy — Vyi1 = $ 44485, — $4,, (9% -— Oy 5)s 

whilst in like manner we can find Vy — Viy, Viz— Vy, ete. 

Further we find 

Vi + Viv = 44,,4,, — 44;, (4% — @,,) — 

and in like manner Vz + J'y, ete. 

If we remember that the tetrahedra I and VII are alike with 

respect to their elements and volumes, I and VIII also, ete. and that 

with respect to the volumes we have to deal with only a closed 
range of six terms we see that of each arbitrary pair always either 

the sum or the difference of the volumes can be expressed in a 

simple manner. 

rhe a1, (420 = ats) 

Mathematics. — “Vhe locus of the cusps of a threefold infinite 
linear system of plane cubics with six basepoints.” By Prof. 

P. H. ScHOUTE. 

In the generally known representation of a cubic -surface S* on 

a plane @ to the plane sections of S* correspond the cubies through 

six points in @; here to the parabolic curve s’* of S* answers the 

locus C™? of the cusps of the linear system of those cubies. The 

principal aim of this short study is to deduce from wellknown 

properties of s'* properties of c'? and reversely. 

1. If a plane rotates around a right line / of S* the points of 

intersection of that line / with the completing conic describe on / 

an involution, the double points of which are called the asymptotic 

points or /. According to the condition of reality of these asymptotic 
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points the 27 right lines of S*, supposed to be real, are to be 
divided into two groups, into a group of 12 lines with imaginary 
asymptotic points, the lines 

2 3 4 5 6 

ie a he B.D, SB, 

of a doublesix and into a group of 15 lines ¢,,,¢,,,...,c¢,, with 

real asymptotic .points. If to the six basepoints A’; of the linear 

system of the cubics the six lines a correspond and this case 
we shall in the following continually have in view — then to the 

six lines 6; correspond the six conics } through all the 

basepoints except A’; and to the fifteen lines cz correspond the 

5 Z : 2 ~ z 2 
connecting lines cz, —=(A’;, A’,), whilst to the systems of conics (a;) 

in planes through 4a;, (bj) in planes through 6;, (cy) in planes 

through cy correspond successively the pencils of thg curves of the 

linear system with A’; as doublepoint, the lines (4';) through A’; 

and the conies (cz) through the four basepoints differing from 

A; and A;,. The situation of the six points A’; is then such that 

each of the fifteen lines cc’, is touched in real points by two conics 

of the pencils (cz), whilst on the other hand the points of contact 

of the tangents out of the points A’; to the conics b; are imaginary 

. . . . . 2 . . 

so that each point A’; lies within the conic 6; with the same index. 

2. As a matter of fact all real points of a line / of S* are hyper- 
bolic points of this surface with the exception of the two asymptotic 

points of this line showing a parabolic character; whilst each of 

these asymptotic points is point of contact of 7 with a conic lying 

on S*, / touches in both points the parabolic curve S**. If we apply 
this to each of the six lines a;, imaged in the points A’; and if 

we consider that to a definite point P of a; corresponds the point 

P’ lying infinitely close to A’; connected with A’; by a line of 

detinite direction (Versl., vol. I, pag. 143) we find immediately : 

“The six basepoints A’; of the linear system are fourfold points 

of the curve c™ of a particular character, consisting of the combi- 

nation of two real cusps with conjugate imaginary cuspidal tangents, 

the cuspidal tangents of the curves out of the system with 

a cusp in A’;”. 

The twelve points of intersection of the line cz. with ct? consist 

of the isolated points A';, A’, counting four times and the real points 
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of contact with two conics out of the pencil (cy) counting two 

times. Likewise do the 24 points of intersection of the conic 

b; with c'? consist of the five basepoints differing from A’; counting 

four times and the imaginary points of contact with the tangents 

through A’; counting two times. 

3. From the investigations of F. Kiem and H. G. Zevtuen dating 

from 1873 and 1875 it has become evident that the surface S* with 

27 real right lines has ten openings and the parabolic curve s*‘? has 

ten oval branches. In connection with this we find: 

“The locus c'? has ten oval branches.” 

We ask which situation of the six basepoints A’; corresponds to 
the particular case of the ‘“‘surface of diagonals” of CLEBscH, in which 

the ten oval branches of the curve s'* have contracted to isolated 

points. In this case the fifteen lines with real asymptotic points, i.e. 

in our case the lines cj, pass ten times three by three through a 

point; this is satisfied by the six points consisting of the five vertices 

of a regular pentagon and the centre of the circumscribed circle. 

Fig. 1. 

What is more, each six points having the indicated situation can be 
brought by central projection to this more regular shape. The ten 
meeting-points of the triplets, of lines then form the vertices of two 
regular pentagons (fig. 1). The curve c' corresponding to these six 
basepoints then consists of merely isolated points, namely of fourfold 
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points. in the six basepoints and twofold points in the ten meeting 

points of the triplets of lines. 

The remark that the curve c'? belonging to the six basepoints of 

fig. 1 has the line c’,, as axis of symmetry and transforms itself 
into itself when rotating 72° around A’,, enables us to deduce in a 

simple way its equation with respect to a rectangular system of coor- 
dinates with A’, as origin and c’,, as x-axis. The forms which pass 

into themselves by the indicated rotation are 

= 27 + 77, P= a’ — 102*y? + day*, Q= 5aty — 10a7y? + y'. 

If we pay attention to the axis of symmetry and to the identity 

P? + Q? =v" the indicated equation can be written in the form 

o* + ap* + bo* + co” + do” + P(e + fo" + g9* + ho*) + P*(t+ko*) = 0, 
so that we have to determine only the ten coefficients a,b,..,k. If 

now the common distance of the points A’,, A’,,.., A’; to A’, is 
unity, then 

3—e\" 8 +) 
= (« — 5 j («—1)* (« — = ‘) =O, 

where e stands for 5, represents the twelve points of intersection 
of the curve with the z-axis. By performing the multiplication this 
passes into 

w* (#® + 227 — 72° — 6a§ + 2024 — 6e* — 727 +22 41)=— 0. 

From this follows 

a= i, b= -20, -¢-- t= — 7, d+k=—1, 

= Wee: f= =, g= — 6, h =22: 

So the equation 

@ — 19° +209* — 79-9" +-2P (I — 39" — 3e*+0') — Q? (i +407) = 0 
is determined, with the exception of the coefficients 7 and /: still 

unknown. Now the parallel displacement of the system of coordinates 

to A’, as origin furnishes a new equation, of which the form 

(4— 1—h) y? + 2 (12 —4i—dk)awy? + a4 + (54 —281—45h)a7y? 4 (54-414 8h)y' 

represents, after multiplication by 25, the terms of a lower order 
than five. The new origin being a fourfold point of c'? and the 
terms with y* and ay? having thus to vanish, we find 

: i=8 , k=—4, 
on account 6f which the indicated form passes into 

(a? + 5y7)?. 

The correctness of this result is evident from the following. Just 
as the two tangents in the old origin counting two times are represented 
by 2* + y* =0,and therefore coincide with the tangents out of 4’, 
to the conic through the other basepoints, so x? + 57? = 0 represents 
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for the new origin A’, the pair of tangents out of A’, to the conic through 

the other basepoints. Or, if one likes, just as 7? + 7? is with the exception 

of a numerical factor, the fourth transformation (‘‘Ueberschiebung’’) of the 

first member of the equation Q—O of the lines connecting A’, to 

the remaining basepoints, so #* + 5y° represents, likewise with the 

exception of a numerical factor, the fourth transformation of the first 

member of the equation ee = 0, which indicates with respect to the 

new origin A’, the five lines connecting A’, to the remaining base- 

points. 
Finally the equation of c’*? is 

o*(o°—7e° + 2009*— 79° + 1) + 2P(9*—39* —30* + 1) +4Q7(97—2)=0, (1) 
or entirely in polar coordinates (@, g) 

(o"-2)g%cosp=(e? + Ve"49" + )H(@-'V(@"-de"+ Ne"). Q) 
It is easy to show that this curve admits of no real points differing 

from the six basepoints A’; and tbe ten points of intersection of the 

triplets of connecting lines. If tor brevity we write (2) in the form 

Lcstig=M+ YN, 

then we tind 
—Dsintbp=(M+N—L)+2MYN .. . (3) 

and ; 

M? +N — L? = 2 (9?—1)? (20? —1)(0* —60° + 1404+ 20’?—1) 

(M?+ N—L?*)? ae 4M? N == 40° (e?—1)’ (v?-— 2)? (o*—7o?+1)’ 

If now we moreover notice that N is negative and therefore 

(4) 

1 
cos 5g complex when go? lies between — and 1, the following is ~ 

immediately evident : 

a. The first member of the second equation (4) tends to zero, 

when 0? assumes one of the values 0, 1, 2, = (7 + 382); it is positive 

for all other values of 9?. 

6. If VN is real and g? differs from unity the second member 
of the first equation (4) is positive; for the equation 

0° — 60° + 140% + 207 —1=0 

Rela 1 
has, as is evident when the roots 9? are diminished by 1 —, besides 

ae 1 
one real negative root only one real positive one between — and 1. 

vo 

c. If @° differs from 0, 1, 2, ey (7 + 3e) the second member of 
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(3) is positive when A is positive, and therefore g is imaginary. 

d. Neither does 9? = 2 give a real value for g; for substitution 
o 

in (1) furnishes for cos 5g the result rua 

e. So we find only the real points : 

o—, wantemie, -~.. . . A’,, 

eee eee ee. rs A, Aly A’,, A’, A’, 

oa cosdp—=—1. . . the ten points of intersection 

of the fifteen connecting lines three by three. 

4. We now consider a second case, in which the position of the 

six basepoints is likewise a very particular one, where namely these 

points form the vertices of a complete quadilateral. Through these 

six points not one genuine cubic with a cusp passes. For the three 

pairs of opposite vertices (4,, A,), (B,, B,), (C,, C,) of a complete 
quadilateral (fig. 2) form on each curve of order three, containing 

them, three pairs of conjugate points of the same system, and these 

do not occur on the cubic with a cusp, because through each point 
of such a curve only one tangent touching the curve elsewhere 

can be drawn. In this special case the locus of the cusps has broken 
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up into the four sides of the quadrilateral each of those lines counted 

three times. For it is-clear that an arbitrary point of the line A,B,C, 
e.g., as a point of contact of this line with a conic passing through 

A,, B,, C,, represents a cusp of the linear system of cubics. We can 

even expect that each of the four sides must be taken into account 

more than one time, because each of those points instead of being an 

ordinary cusp is a point, where two continuing branches touch each 
other. And finally the remark that the sides of the quadrilateral 

divide the plane into four triangles e with elliptic and three quadran- 

gles h with four hyperbolic points, so that they continue to form 

the separation between those two domains, forces us to bring them 

an odd number of times into account, namely three times because 

we must arrive at a compound curve c’. 

Some more particulars with respect to the domains e and h. The 

nodal tangents of the cubic (fig. 3) passing through the three pairs 

of points (A,, A,), (B,, B), (C,, C,) and having in P a node, are 

the double rays of the involution of the pairs of lines connecting 

‘Be 

Fig. 3. 

P with the three pairs of points mentioned, so also the tangents in 
P to the two conics of the. tangential pencil with the sides of the 

quadrilateral as basetangents, passing through P?; now, as these two 

conics are real or conjugate imaginary according to P lying in one 
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of the three quadrangles / or in one of the four triangles e, what 

was assumed follows immediately. 

To the case treated here of c*? broken up into four lines to be 

counted three times corresponds the parabolic curve of the surface 

S* with four nodes. 

5. In the third place we consider still the special case of six 

basepoints lying on a conic, in which the linear system of cubies 

contains a net of curves degenerating into a conic and a right line; 

in this net of degenerated curves the conic is ever and again the 

conic c’ through the six basepoints and the right line is an arbitrary 

right line of the plane. 

This case can in a simple way be connected with a surface 

S* with a node V. If we project this surface out of this node 

O on a plane e@ not passing through this point, then the plane 

sections of the surface project as cubics passing through the six 

points of intersection of @ with the lines of the surface passing 
through 0; because these six lines lie on a quadratic cone, the six 

points of intersection with a@ lie on a conic. Besides, the sections 

with planes through O project as right lines; therefore the completing 

conic c*? must evidently be regarded as the image of the node 0. 

Of course we must here again think that c’ corresponds point for 

point to the points of UO? lying at infinite short distance from O*; 
for c? is the section of @ with the cone of the tangents to S* in 0. 

As c? with one of its tangents represents a curve of the linear 

system, this conic belongs at least twice to the locus of the cusps. 

Here too this locus of cusps improper with continuing branches must 

be accounted for three times, so that the locus proper is a curve 

ce’ of order six, touching c’* in the six basepoints. 

Let us suppose that c’ is a circle and that the six basepoints on 

that circle (fig. 4) form the vertices of a regular hexagon, then the 

curve c* has the shape of a rosette with six leaves having the centre 

O' of the circle and the points at infinite distance of the diameters 

A,A,, A,A,, A,A, as isolated points. Of the ten ovals there are four 

contracted to points, whilst the six remaining ones have joined into 

the circle of the basepoints and the curve c’. 

If we take point O' as origin and the line O'A, as z-axis of a 
rectangular system of coordinates, then if O'A, is unity of length 

we find for the equation of c° 

4y? (y? — 3a)? + 9 (x? + y*)? — 9 (a? + y?) = 0. 

It is evident from this equation that the curve c® can really stand 
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rotation of multiples of 60° round OQ’, for then x? + y? and y(y? — 32? 
are transformed into themselves. 

Out of the equation 

3 
sin 3@ = = ae Yi —?r 

on polar coordinates it is evident that the curve c* (with the excep- 

tion of its four isolated points) is included between the circles de- 
1 

scribed out of O' with the radii 1 and =e oe 

If we pass from the locus of the cusps to the parabolic curve of 
S* we must notice that the last curve has the node O of S* as 
threefold point, because c? has separated itself three times from the 
locus c’*, So this parabolic curve is an s* of order nine, a result 
which will presently be arrived at in an other way. 
We shall give — without wishing in the least to exhaust this 

case of the six basepoints situated on a conie — some degenerations 
of the remaining curve c* corresponding to some definite coincidences 
of the basepoints. 

a) The cases (2,2,2), (4,2), (6). If the six basepoints coincide 
two by two in three points of the conic, then c* consists of the sides 
of the triangle of the basepoints counted double, originating from 
compound cubics with ‘a double line; there is not a locus proper. 
In reality the case (2, 2,2) of a conie touching in three points cannot 
occur for a genuine cubic with a cusp. 
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The cases (4,2) and (6) are to be regarded as included in the 

preceding. By allowing two of the vertices or the three vertices of 

the triangle just considered to coincide we find for case (4, 2) the 

connecting line of the two basepoints counted four times and the 

tangent to the conic in the basepoint of highest multiplicity counted 

two times, for case (6) the tangent to the conic in the point counting 

for six basepoints counted six times. That there can be no locus proper in 

the last case ensues also from the fact, that a genuine cubic with 

cusp allows of no sextactic point. 

b) The case (3, 3). If the six basepoints coincide three by three in 

two points of the conic, then c* consists of a part improper, the 

connecting line of the two points counted four times, and a part 

proper, a conic touching the conic of the basepoints in these points. 

The new conic lies owtszde the conic of the basepoints. 

c) The case (1,5). This case agrees in many respects with the 

preceding. We find a part improper, the tangent in the point counting 

for five basepoints drawn to the conic of the basepoints, and a part 
proper, a conic touching the conic of the basepoints in these points. 
The new conic lies mside the conic of the basepoints. 

6. Of course it is possible to call forth by the curve c'? succes- 

sively all the different special cases which can put in an appearance 

by the parabolic curve s’* of the various surfaces S*. As this would 
lead us here too far, we limit ourselves to a single remark, which 

can eventually facilitate an analytic investigation of this idea. 

- According to the general results with respect to a linear system of 

curves c” obtained as early as 1879 by E. Caporanr the locus 

c#@n—3) of the cusps of this system has in each r-fold basepoint of 
the system a 4(27—1) fold point and besides 6(n—1)?—2>(3r?— 2r-+1) 

nodes C. Each of those points C' is characterized by the property 

that each curve of the system passing through this point is touched 

in this point by a definite line c. 

For the case under observation, 7 = 3 of the cubies, the number 

of points C is represented by 24—6p, when p is the number of 

basepoints. 

If we wish to investigate analytically what peculiarity the locus 
of the cusps shows in a basepoint of the system, or how a line 
through three basepoints separates from it, then the result — and 
this is the remark indicated — will be independent of the fact, 
whether the remaining basepoints occur or not, if in the former case, 
that some of these basepoints appear in a real or in an imaginary 
condition, we assume that these points both with respect to each 
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other and to the former basepoints have not a particular position. 

With the aid of this remark we can easily find the following 
theorems, with which we conclude: 

“Both cusps of which the fourfold point of the curve c,, coin- 
ciding with a basepoint A; seems to consist and the two cusps of 

the curves of the system showing in this point a cusp, coincide in 

cuspidal tangents, but they turn their points to opposite sides.” 

“If the three basepoints A’,, A’,, A’, lie on a right line /, the locus 
proper of the cusps reduces itself to a enrve c’ touching the line / 
in A’,, A’, A’; If the three remaining basepoints exist then the 

points of intersection of / with the sides of the triangle having those 
basepoints as vertices are points of c*”. 

The last case answers to that of a surface S* with a double point; 
the parabolic curve having in this doublepoint a threefold point, 

because / separates itself three times from c**, is as has been found 

above already a twisted curve of order nine. 

Physics. — “An investigation of some ultra-red metallic spectra.” 

By W. J. H. Moti. (Communicated by Prof. W. H. Juuivs). 

(Communicated in the meeting of December 29, 1906). 

Among the spectra of known elements those of the alkali-metals, 

by their relatively simple structure, lend themselves particularly well 
to an investigation of their ultra-red parts. Many observers have 

consequently sought for emission lines of these metals in this region. 

For the first part of the ultra-red spectrum the photographie plate 

may be sensitised; especially LeamMann*) measured in this way 
various lines with wave-lengths ranging to almost 1m. By means 

of the bolometer Syow *) could advance to 1.5m. 
For the further region, however, nothing was known about these 

spectra. CoBLeNtz*), to be sure, was led by a series of observations 
in this respect, to the conclusion that the alkali-metals emit no 

specific radiation beyond 1.54, but I had reason to doubt the 

validity of this conclusion. 

In what follows I will briefly describe the method by which some 
ultra-red spectra were investigated, and the lines thus found. In an 

1) H. Lenwann. D.’s Ann. 5, 633, 1901. 
2) B. W. Snow. W.’s Ann. 47, 208, 1892. 

3) W. W. Costentz. Investigations of Infra-red Spectra. Carnegie Inst. Washing- 

ton. 1905. 
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academical thesis, which will soon be published, further details 

will be given. 

For the investigation of the alkalies, the metallic salts were volatilised 

in the are in the ordinary way. The very complicated band-spectrum, 

emitted by the are when no metallic vapour is present, extends far 

into the ultra-red. But this interferes in no way with the investi- 

gation of the metals, since it is entirely superseded when the are con- 

tains a sufficient quantity of metal. On the other hand the continuous 

spectrum, emitted by the incandescent particles in the are, makes it 

somewhat difficult to observe some feebler lines: besides, the radiation 

of carbonic acid, the product of combustion of the carbons, (with a 

maximum near 4,444) persists with almost unchanged intensity. 

The image of the are is projected by a concave mirror on the 

slit of a reflecting-spectrometer; the rays are analysed by a rock- 

salt prism and part of the so formed spectrum falls on a linear 

thermopile. This thermopile, like that of Rusens, is built up of iron 

and constantan: all the dimensions were chosen smaller than in the 

original pattern and a great sensitiveness was obtained. As well the 

emitting slit as the thermopile are mounted in fixed positions; in 

order to throw on this latter different parts of the spectrum in 

succession, the prism can be rotated through small angles. A 

WapwortH combination of prism and plane mirror maintains minimum- 

deviation during rotation. 

In chosing and designing the instruments, the desirability,was kept 

in mind of replacing the very tiring reading of the galvanometer 

and the simultaneous noting of the corresponding position of the 

prism, by an automatical recording-device. [ had in mind _ the 

splendid arrangement by which Lanenry has for years recorded the 

intensity-curve of the ultra-red solar spectrum on a photographic 

plate. That this method has not been followed for recording heat- 
spectra instead of the time-absorbing visual observations, must be 

ascribed in the first place to a very complicated mechanism being 
required for obtaining complete correspondence between the linear 

displacement of the photographic plate and the rotation of the spectro- 

meter, and secondly to the difficulty of keeping the surrounding 
temperature perfectly equal during the observations. 

With very simple means I devised a method of recording, which 

avoids these two difficulties, while yet it warrants a sure “corres- 
pondence”, and yields accurate results also when changes in the 

surrounding temperature cannot be prevented. For this purpose the 

continuous recording has been replaced by the marking of a series 

37 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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of dots, while for the continuous rotation of the spectrometer an 

intermittent one has been substituted. In this way for any recorded 

radiation-intensity the corresponding position of the prism can be found, 

not by measuring abscissae, but by counting dots. Since moreover not 

only the deflections of the galvanometer but each time also the zero- 

positions are recorded, it is possible to determine on the spectograms 

the radiation-intensities also when during the observations the surround- 

ing temperature, and consequently the zero-position, was variable. 

The principal advantages of this method of observation over the 

usual one are: 

1. the absolute reliability of the observations, 

2. the very short time required for a set of observations, 

3. the accuracy with which interpolation is possible when the 

zero-position shifts, 

4. the non-existence of disturbances, caused by the proximity of 

the observer, 

5. the complete comparability of the different observations, 

6. the possibility of estimating the probable error from the shape 

of the zero-line. 

The short time in which a set of observations is made, is of 

importance when e.g. heat-sources are investigated which, like the 

arc, show slow changes in radiation-intensity. A spectrum, ranging 

from 0,7 to 6u was recorded with 200 displacements of the spectro- 

meter in two hours. 

In the spectrograms a spectral line is represented by 5 to 6 dots. 

With one displacement of the spectrometer namely the line is 

shifted over a distance amounting to */, of the breadth of the image 

of the slit, or of the equal breadth of the thermopile. Hence the 

same kind of radiation will strike the thermopile during five successive 

displacements. From the mutual position of the dots, the place where 

the radiation-intensity has its maximum may be accurately determined. 

In order to derive from this the place occupied by the line in the 

spectrum, it is sufficient to know one fixed point in the spectrum. 

This fixed point was as a rule taken from a comparison spectrum, 

for which the carbonic acid emission of a Bunsen flame was chosen, 

the maximum of which, according to very accurate measurements of 

Pascuen, lies at 4.403. Part of the flame spectrum was for this 

purpose recorded simultaneously with the spectrum to be studied. 

A simple caleulation then gives the refractive index for the 

unknown ray. In order to derive from this the wave-length of the 

line, a dispersion formula must be used. I became aware that the 

LS 

—_——--. - —es 
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well-known dispersion curves of Laneiry and of Rvcprns show 

considerable differences, and although at first sight LaNnGLry’s deter- 

minations seem to be much preferable, yet on closer examination | 

their excellence must be doubted, especially for the longer wave- 

lengths. To prefer one of the dispersion curves to the other seems 

to be at present a matter of arbitrary choice. So I have given 
in the tables besides the observed refractive indices, the wave- 

lengths, calculated from them as well by Laneiry’s as by Rusens’ 

formula. The refractive indices hold good for a temperature of 20°; 

their determination is based on the index 1.54429 for the D-line, 

a value, derived from very accurate determinations by LANGLEY. 

The tables given below contain the lines of Na, K, Rb and Cs 

(I have been unable to obtain reliable results with Li in the arc) 

and of Hg. The results were derived from a large number of, spec- 
trograms (10 to 12 for each metal). For the investigation of the 

mercury spectrum a mercury are-lamp was devised, furnished with 
a rock-salt window. The spectrum of mercury has been repeatedly 

investigated as far as 10”; no measurable emission has been found 

beyond 1.7m. 

In the tables the first column gives the refractive index n of 

rock-salt, the second and third the wave-length mw of the line, 

according to the formulae of Lanciey and Rvsens, and the fourth 

the approximate value / of the intensity. 

For the lines of which the exact position was difficult to ascer- 

tain, the refractive index is only given in four decimals. 

SODIUM. POTASSIUM. 

a |«(Langley)| 2 eee) | oe | n (Langley) + (Rubens) | Bea) 
a: | 

| 1.53529 | 0.819 o.sie | a0! | 4.53654 | 0.771 | 0.768 | 620 

53062 | 1.44 4.43 [480] | 5025 | 0.97 | 0.96 | 10) 
2 es ae te | 4 | | 5810 | 4.44 | 1.40 | 20 

5286 1.44 a a 53030 | 1.48 4.17 | 320 | 

5981 1.57 1.54 5 | | 59972! 1.95 | 1.2% | 200] 

59711 | 1.85 1.80 | 05 | | 59803 | 1.53 1.50 | 95 | 

| 59613 | 2.91 2.16 | | | bee | 2.28 | 2.48 5 

| 59589 | 2.34 9.95 | 35 | 586 | 2.76 | 2.70 | 20 

| 150455 | 2.90 2.84 20 | 52401 | 3.44 | 3.08 | 20 

| 5234 | 3.42 | 3.36 5 | | 52963 | 3.73 3.67 | 5 

4.52178 | 4.06 | 4.00 10 | 1 5284 | hos | 3.98 | 40 | 
= 4 ee eee ee 



RUBIDIUM. CAESIUM. 
Wen. a at ae > 2 I | - 

| n oan) (Rubens), J | | u v(Langley)|# (Rubens)) J | 

| 4.53733 | 0.744 0.742 | 412 | | 4.53566 | 0.803 0.801 40 

| 53624 | 0.782 0.779 | 450| | .53454 0.855 0.851 | 950 

| 5859 0.795 0.792 | 300! | .53375 0.895 0.891 | 200 

| 5332 | 0.93 0.92 10 5333 0.920 0.94 | 75 

| 53909 | 1.01 1.00 | 35 53202 | 1.04 1.00 | 90 

| 15309 | 444 4.40 10 52902 | 1.37 4.35 70 

59912 | 1.35 | 1.33 | 200 59846 | 41.48 4.45 80 

59830 | 41.49 4.54 180| | .5975 4.74 4.70 5 

59597 | 2.98 2.92 90| | .5964 2.08 2.03 5 

52477 | 2.80 2.73 95 | 5957 2.41 | 9.35 5 

| 4.52186 | 4.03 3.97 40| | .59433 | 3.00 2.93 50 
| 

| 59345 | 3.54 3.45 30 | - 

: 4.52203 | 397 3.91 40 

MERCURY. 

| a »(Langley)|# (Rubens)) /* — 

| 4.53198 | 4.01 4.00 | 28 

| .53076-| 4.43 144 8 

52907 | 1.36 1.34 | 44 

52828 | 1.52 | 1.49 5 

4.52759 | 1.70 | 1.66 | 5 | 

* The intensity of the green and yellow mercury lines has been put = 10. 

Mathematics. — “On the locus of the pairs of common points and 
the envelope of the common chords of the curves of three 
pencils.” 24 part.: Application to pencils of conics. By Dr. 
F. Scnuun. (Communicated by Prof. P. H. Scnovurr.) 

(Communicated in the meeting of December 29, 1906). 

9. If the pencils of curves are pencils of conics (r= s = t= 2) 

then in the case of there being no common base-points the locus is 
of order fifteen and the envelope of class six. In the following we | 
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wish to treat the case more closely, that one of the pencils has two 

points in common with each of the two others, where we shall 

attain at results in another way, which will prove to agree to the 

general ones and complete these in some parts. 

Let ABCD, ABEF and CDGH be the three pencils of conics. On 

one conic of the pencil ABCD the two other pencils describe two 

quadratic involutions of which the connecting lines of the pairs of 

points pass through a point A of HF, resp. a point 1 of GH. The 
pair of common points PP’ of these two involutions is thus deter- 

mined by the right line AL. If the conic ABCD describes the whole 

pencil, A and Z describe projective series of points on //' and GH. 

For, if we take A arbitrarily on EF’, the conic ACD is determined 

by it, as it must pass through the second point of intersection of 

CK with the conic ABEFC (as likewise through the second point 
of intersection of D&A and the conic ABEFD); by the conic ABCD 

the point / is unequivocally determined. Reversely to a point 4 
of GH now corresponds one point AK. The projective series of 

points are however in general not perspective; so the line KL or 

PP’ envelops a conic N touching EF and GH. 
Of that conic three other tangents are easy to construct, namely 

by taking for the conic ABCD in succession each of the three 

degenerations. If that conic is AB.CD then the movable points of 

intersection with conies of the pencil ABEF lie on CD so that A 
lies on CD, thus in the point of intersection A, of CD and EF; 
likewise does Z coincide with the point of intersection L, of AB 
and GH. The line A,Z, is thus tangent to N. The construction 

becomes a little less simple if we take one of the other degenerations 

eg. AC. BD. By cutting this by the degenerated conic AL. BF 

of pencil ABEHF it is evident that A coincides with the point of 
intersection of H/F with the line connecting the point of intersection 
of AF and BD with the point of intersection of BF and AC; in 
similar manner Z/ is found. 

To the locus of the points P and P’ belongs the locus of the 

points of intersection of the conics of the pencil ABCD with the 
projectively related series of tangents AZ of the conic NV. This locus 

(as is easily evident out of the points of intersection with an arbitrary 

right line or with an arbitrary conie of the pencil ABCD) is of 
order five with double points in A, B, C and D; further it passes 
through £, F,G and H, as K coincides with H when the conic 

ABCD passes through £, etc. If we take for the conic of the pencil 

ABCD the degeneration AB.CD, then KL passes into A,Z, which 

line cuts the conic AB. CD in the points A, and L,, which thus 
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lie on the locus of the points of intersection too. By taking the two 

other degenerations we find four more points of C;. Altogether there 

are 10 single and 4 double points by which C;, is determined. 

If we take the degeneration AL. CD, the particularity occurs, 

that the pair of points of the involution described by the pencil 

ABEF can become indefinite on AB, if namely the conic ABEF 

breaks up into AB. EF. By this the whole line AB (and of course 
the line CD too) will belong to the locus proper of P and P’’). 
To the part proper of the envelope of the lines PP’ the pairs of 

points PP’ lying on AB or CD contribute nothing but the lines 
AB and CD (which belong also to the part improper of the envelope, 

the points A, b, C and PD), which does not give rise to a higher class. 

So the locus proper of P and P’ consists of the lines AB and 
CD and the curve C, and is thus in accordance to the general 
results of order seven. The line 44(CD) intersects C, in the points 

A and B (C€ and JD) to be counted double and in ZL, (K,). The 

curve C, has three double points differing from the base-poimts (of which 
E, F, G and H are single and A, B, C and D threefold points 

of C,) namely K,, L, and the point of intersection T of AB and 

CD. These form a triplet of double points belonging together of which 
we spoke in §5. The conics of the three pencils passing through | 

one of those double points, also pass through the two others; these 

conies are AB. CD, AB. EF and CD.GH. To the branches 7A, 

and JTL, of C, passing through 7’ correspond respectively the 

branches A,7’ and L,7' passing through A, and L,, whilst the 
branches of C, passing through A, and /, correspond mutually. 

Summing up we find: 

For the conics ABCD, ABEF and CDGH the locus proper of 

the pairs of common points PP’ consists of the lines AB and CD 
and a curve of order five, having in A, B, C and D double points 

and in FE, F, G and H_ single points and further passing through 
the point of intersection K, of CD and EF and the point of mter- 
section L, of AB and GH. The envelope proper of the lines PP’ 

is a conic touching the lines HF, GH and K,L,. 

10. If the points A, B,C, D,H and F lie on ascomep ie 

latter then belongs to the locus, so that the C, breaks up into that 

conic and a C, passing through A, B, C, D, G, H, K, and L£,. To 
each conic of the pencil ABCD now belongs the same point A, 
namely ,, as is immediately evident when we make the conic of 

1) More generally: if two base-points of one pencil lie with two base-points of 

another pencil on a right line, that line belongs to the locus proper. 
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the pencil ABEF to pass through C and D. If we take ABCDEF 

for the conic of the pencil ABCD, then & is indefinite on LF, 

whilst point Z is to be found somewhere in 1, on GH. The corre- 

spondence between the points A and Z is of such a kind that to a 

point ZL differing from ZL, the same point A always corresponds, 

namely K,, whilst when Z coincides with L, point A’ is arbitrary 

on EF. So the conic N breaks up into the two points K, and L,. 
The relation between the conics of the pencil ABCD and the tangents 
KL or PP’ of N is of such a kind, that to the conic ABCDEF 

every line through JZ, corresponds and that, for the rest, between 

the conics ABCD and the lines through A, a projective relation 
exists, in which to the conics ABCDEF, ABCDG, ABCDH and 
the degenerated conic AB.CD respectively A,L,, A,G, K,H and 

K,L, correspond. From this is also evident, that the curve C, 
breaks up into the conic ABCDEF and a C, passing through 

A, B, C, D, G, H, K, and L, and farther that C, passes through the 

points of intersection of K,L, with the conic ABCDEF. 
The double points of C, = AB.CD.ABCDEF. C, differing from 

the base-points are K,, L,, 7 and the two points of intersection of 
KL, with ABCDEF. The latter two doublepoints do not furnish a 

triplet of points through which conics of the three pencils pass, but 

two coinciding pairs of points; the branches through one doublepoint 

correspond to the branches through the other and, it goes without 

saying, in such a way that the branches belonging to (, corre- 

spond mutually and likewise the branches belonging to the conic 

ABCDEF. 

11. If moreover the points A, B,C, D,G and H le on a conic, 

C, breaks up into that conie and the line A,LZ, (L, then coincides 

with Z,) so that the locus proper then consists of the conics ABCDEF 

and ABCDGH and the lines AB, CD and K,L,. When conic ABCD 
does not pass through /, and F neither through Gand H, the point 
K coincides with AK, and‘ “ with Z,; so that the pair of points PP’ 

lying on that conic is always determined by the same line A, /,. 
Hence A,Z, forms part of the locus. The C. has now seven double 

points differing from the base-points, namely one triplet Ay, L,, 7; 

and two pairs, the two points of intersection of AZ, with the conic 

ABCDEF and those with the conic ABCDGH. 
If the point A, coincides with Z, and therefore also with 7’, i.o.w. 

it the four lines AB, CD, EF and GH pass through one point, on 
each conie of the pencil! ABCD the two involutions coincide. 7he 

locus proper then becomes indefinite. If we bring through an arbi- 
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trary point P a conic of each of the pencils, then those conics have 
another second common point, namely the second point of intersection 
of the line TP with the conic ABCDP. The envelope proper is then 

still definite and consists of two coinciding points 7’. 

12. If the points EF and G corneide, then if the conic of the 

pencil ABCD passes through /7 the point A as well as the point 

coincides with /. The series of points A and JF are perspective, the 
lines AZ all pass through a selfsame point C’. 

The conic VV breaks up into two points # and Ul. As Fy belongs 

to the part improper of the envelope, the envelope proper now consists 

only of point U. By taking for the conic of the pencil ABCD the 
degeneration AL.CYD it is evident that U lies on the line K,Z,. 

Another line AZ and by that the point U itself can be constructed 
in the way indicated in § 9 by allowing the conic ABCD to break 
up into AC’. BD or AD. BC. 

Between the lines AZ or PP’ through U and the conies of the 

pencil ABCD exists a projective correspondence, where to the conics 

ABCDE, ABCDF, ABCDH and AB.CD respectively the lines 
Uk, UF, UH and K,L, correspond. The locus of the points of 
mlersection is a cubic through the points A,B, C, D, U, bh, F, H, K, 

and £,, which is determined by these 10 points; the third points 

of intersection of that curve with AC, AD, BC and BD are easy 

to construct. 

On the conic ABCDE the two involutions coincide, so that that 

conic has separated from the (, of § 9 and has become improper. 

The locus proper consists now of the lines AB and. CD and the 

above-named C,, so it ws of order five. Differing from the base- 

points the C, has three double points, A,, 2, and 7’ (the point of 

intersection of AL and CD) forming a triplet. 

If moreover the points A, B,C, D, i and F le on a conie, no 

other particularity appears than the pomt U coinciding with K,. Of 

the three points of intersection A,, 1, and U of A, 1, with the C, 

the points A, and U now coincide, so that the C, touches the line 
Kk, L, mm K,. In comparison with § 10 the particularity that appears 

is this that the point Z, coincides with # whilst the pencil of rays 

LL, has passed into the part improper of the envelope and the conic 

ABCDEF into the part improper of the locus. 

13. The case treated in the preceding paragraph is of course not 

the only one in which the series of points AK and / are perspective, 

the condition of that perspectivity being single, the condition of the 
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coincidence of H and G being double. The condition of perspectivity 

can be found out of the condition that the point of intersection | 

of LF and GH (as point A) corresponds to itself (as point L). 

Now the conic ABCD belonging to V (as point A’) passes through 
the second point of intersection W of CV with the conic ABLIU, 
whilst C,W is a pair of points of the involution described on 
the conic ABCDW by the pencil ALLF. If this pair of points 

also belongs to the involution described on that same conic by the 

pencil CDGH, the point ZL coincides evidently with V. So this 
is the case when the cone of the pencil CDGH touching the conic 

ABCDW in C passes through W. This condition for the perspec- 
tivity of the series of points A and ZL (where of course it must be 
possible to interchange C with D and likewise A’ resp. LF with 

UD resp. GH) is evidently satisfied when / and G coincide. 

If U is the centre of perspectivity, there exists between the rays 

of the pencil U and the conics of the pencil ALC'D a projective 

correspondence, where to the conics AACDL, ALCDF, ALCDG, 

ABCDH, ALCDW and AB.CD correspond respectively the rays 
UE, UF, UG, UH, UV and K, L,, whilst moreover to the conic 

ABCDW all the rays of the pencil V correspond. So the C; of $9 

breaks up into the conic ABCDW, still belonging to the part proper 
of the locus, and a C, passing through the points A, 5, C, D,U, £, 

F,G,H, kK, and JZ,, cutting the conic in A, 6, C and D and the 

two points of intersection of UV with that conic. 
The locus proper is thus a C. consisting of the lines A/ and CY, 

_ the conic ALCDW and the C, before mentioned. This C, has five 
double points differing from the base-points, namely, the triplet A,, L,, 7’ 

and the pair formed by the points of intersection of UV with the 
conic ABCD IW. 

The C, is determined by the ten points, A, B, C, D, E, F, G, H, K, 

and £, so these ten points will have to lie on a C, if the above 

condition for the perspectivity is satisfied, and reversely it is easy 

to prove that when those ten points lie on a C, the series of 

points are perspective. Suppose namely that the series of points were 

not perspective. Then it would be possible by keeping the points 

A, b, CU, D, HK, F and G to construct on the line GH (thus by 
keeping the points A,, 4,, Vand |W) by means of the former condition 

for perspectivity a point A/’ in such a manner that the series of 

points A and ZL are perspective; H’ is then the second point of 

intersection of VG with the conic through C, D, Gand W, touching the 

conic ABCDIW in C. So now the ten points A, B, C, D, EL, F, G, Ay, 
L, and H’ will lie on a C,, however already determined by the 
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nine former points‘) and thus the same as (C’, through the ten points 

A, B,C, DE, F,G,K,, Ll, and H. The line VG would then however 

have four points G, L,, H and H’ in common with this (,. 

So we arrive at the following simple result: 

If the ten points A, B,C, D, E, F,G, H, K, and L, lie on the 

same cubic, the series of points K and L are perspective, whilst the 

centre of perspectivity coincides with the third point of intersection U 
of KL, with C,. The envelope proper breaks up into the point U 

and the point of intersection V of EF and GH. The locus proper 
consists of the lines AB and CD, the cubie just mentioned and the 

conic through A, B,C, D and the two points, in which the right line 

UV intersects moreover the C, besides in U. 

If / and G coincide, we immediately see that the above condition 

is satisfied. The point V lies then in point / so that one point of 
intersection of UV with C, differing from UL’ becomes the point £; 
the indicated conic is thus the conic ABCDE, which now however 
belongs to the part improper of the locus. 

14. If G coincides with E and H with F, then the series of 

points A and ZL are connective with double points in Z and F. 
The pair of points PP’ on an arbitrary conic of the pencil ABCD 
is now continually described by the same line /F, thus belonging 
to the locus proper. If the conic passes through / or F the two 
involutions coincide, so that the conics ABCDE and ABCDF belong 
to the locus; but to the part improper of it. Moreover the lines AB 
and CD belong to the locus proper, so that the latter consists of the 
three lines AB, CD and EF. An envelope proper is no more at 
hand, the line connecting P and P’ coinciding with AB, CD or EF 
when P and P’ differ from the base-points. 

In comparison with § 12 the particularity appears that UV coincides 
with /’, that the pencil of rays U’ passes into the part improper of the 
envelope and that the C, breaks up into the conic ABCDF becoming 
improper and the right line HF. 

The case of the pencils of conics ABCD, ABEF and CDEF can 
be profitably used to define with the help of the principle of the 
permanency of the number the order of the locus of P and P”’ and 
the class of the envelope of PP’ for the case of pencils of conies 
lying arbitrarily with respect to each other. Starting from this simplest 

') The C; is only then not determined by these nine points if two of those 
points coincide in such a way that the connecting line is indefinite (e.g. G with 
E or K, with 1). Then the ten points lie on a Cy, whilst it is easy to prove that 
the correspondence between K and L is perspective. 

ee Tee 
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case, it is easy to reason that ?/” coincides with AB, CD or EF 
apd so the locus proper consists of these three lines and there is 

no envelope proper. The part improper of the locus however consists 

of six conics ABCDE, ABCDF, ABEFC, ABEFD, CDEFA 
and CDEFB, the part improper of the envelope of the six points 

A, B,C, D, E and F. The total locus is thus of order fifteen, the 

total envelope of class six, so that for arbitrary position of the pencils 

of conics this same holds for the locus proper and the envelope proper. 

Sneek, Nov. 1906. 

Mathematics. — “The locus of the pairs of common points of four 
pencils of surfaces.” By Dr. F. Scuun. (Communicated by 

Prof. P. H. Scnovure). 

(Communicated in the meeting of December 29, 1906). 

1. Given four pencils of surfaces (F;), (F;), (7) and (F,) respect- 

ively of order 7,s,¢ and w. The base-curves of those pencils can 

have common points or they can in part coincide, in consequence 

of which of three arbitrary surfaces of the pencils (/,), (4%) and (/",) 

the number of points of intersection differing from. the » base-curves 

can become less than sfw; we call this number a, calling it 4 for 

the pencils (/;), (/,) and (f,); ¢ for the pencils (/,) (7) and (F,) 

and d for the pencils (/,), (/) and (f,). We now put the question: 

What ts the order of the surface formed by the pairs of points 
P and P’, through which a surface of each of the four pencils is 
possible ? 

If the points P and /” do not lie on the base-curves we call the 

locus formed by those points the locus proper L on which of course 

still eurves of points ? may le for which the corresponding point 

P’ lies on one of the base-curves. If one triplet of pencils furnishes 

at least several points of intersection which are situated for all sur- 

faces of those pencils on one of the base-curves, then there is a 

surface that does satisfy the question but in such a manner that if 
we assume /? arbitrarily on this surface the point /” belonging to 

it is to be found on one of the base-curves; this surface we call the 

part improper of the loeus, whilst both surfaces together are called 

the total locus. 

2. To determine the order » of the locus proper Z we find the 

points of intersection with an arbitrary right line /. On / we take 



( 556 ) 

an arbitrary point Qy, and we bring through that poimt surfaces 

F,, F,and F, of the pencils (F;), (4/1) and (/,). Through each of 

the a—1 points of intersection of those surfaces not situated on the 

base-curves of those surfaces we bring a surface F/. These a —1 

surfaces F’. intersect the right line / together in (a —1)r points Q,, 

which we make to correspond to the point Qi. The coincidences 

of this correspondence are: 1st the points Q,.:, determining four 

surfaces which intersect one another once more in a point not lying 

on the base-curves, thus the 2 points of intersection with the surface 

1, 2°4 the points of intersection with the surface R,,, belonging to 

the pencils (/°), (4) and (/",), the locus of the points S determining 

three surfaces whose tangential planes in |S pass through one line. 

To find the number of coincidences we have to determine the 

number of points Q,,, corresponding to. an arbitrary point Q, of 1. 

To this end we take on / a point Q,, arbitrarily and bring through 

it an F, and an ¥#,. Through each of the 4 points of intersection 

of these surfaces with the surface / through Q, (not lying on the 

base-curves) we bring an /’,, which 6 surfaces /’, intersect together 

the line / in ds points Q, which we make to correspond to Q,,. 

To find the number of points Q,, corresponding to an arbitrary 

point Q, of 7 we take Q, arbitrarily on /, we bring through Q, an 
/’,and through @, an F, and through each of the ¢ points of inter- 

section of those surfaces with /. an /, which furnish ¢ surfaces 

F, cutting / in ct points Q,; reversely to Q, belong du points Q,, 
so that we find between the points Q, and Q, a (ct, dw)-correspond- 

ence, of which the cf+du coincidences give the points Q,, belong- 

ing to the point Qs. So between the points Q,, and Q, exists a 

(bs, ct+-du)-correspondence, of which the coincidences consist of 

the 7 points of intersection of / with the surface /’, through Q, and 

of the points Q., corresponding to Q,; the number of these thus 

amounts to bs + ct + du—~r. 

So between the points Q,,, and Q. there is an (ar—r, bs--ct-+-du—?)- 

correspondence with ar+-bs+ct-+du—-27 coincidences. To find out 

of this the number of points Qs: Wwe must first determine the order 

of the surface Py, . 

This surface may be regarded as the surface of contact of the 

surfaces of the pencil (/’,) with the movable curves of intersections 

(|, of the surfaces of the pencils (/’,) and (/,)'). So the question is: 

!) We shali call this surface the surface of contact of the three pencils meaning 

by this that in a point of this “surface of contact” the surfaces of the pencils, 

though not touching one another, admit of a common tangent. 



3. To determine the order of the surface of contact of a twofold 

infinite system of twisted curves and a singly infinite system of 
surfaces. 

- To this end we shall first suppose the two systems to be arbitrary. 

To determine the order of the surface of contact we count its 

points of intersection with an arbitrary right line /. To this end we 

consider the envelope #, of the o* tangential planes of the curves 

of the system in their points of intersection with / and the envelope 

FE, of the ow’ tangential planes of the surfaces of the system in their 
points of intersection with /. 

The common tangential planes not passing through / of both 

envelopes indicate by means of their points of intersection with / 

the points of intersection of 7 with the surface of contact. 

In order to find the class of the envelope £, (formed by the 

tangential planes of a regulus with / as directrix) we determine 

the class of the cone enveloped by the tangential planes passing 

through an arbitrary point Q of /. If the system of curves is such 

that g curves pass through an arbitrary point and w curves touch 

a given plane in a point of a given right line, the tangential planes 

of EL, through Q envelope the g tangents in Q of the curves of the 
system through Q, and the line / counting w times; for each plane 

through / is to be regarded y times as tangential plane, there being 

y curves of the system cutting / and having a tangent situated in 

this plane. The envelope EL, is thus of class g +w and has | as 

w-fold line’). 
To find the class of the envelope /, we determine the number of 

its tangential planes through an arbitrary point Q of /. If now the 

system has w surfaces through a given point and r surfaces touching 

a given right line, the tangential planes of the envelope passing 

through Q are the tangential planes in Q to the w surfaces passing 
through Q and the tangential planes of the » surfaces touching /. So 

the envelope E, is of class w+ yv with v tangential planes through 1. 
Hence both envelopes have (g +) (u +r) common tangential planes. 

Each of the » tangential planes of FE, passing through / is however 

a w-fold tangential plane of /, and so it counts for w common 

tangential planes. So for the number of common tangential planes 

not passing through /, thus the number of points of intersection of / 

with the surface of contact we find: 

(p + y) (w+ v) — yr = gv + Yu-+ gu, 
therefore : 

1) The regulus as locus of points has however line / as ¢-fold line. 
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The surface of contact of a system (g, W) of w* twisted curves *) 
and a system (u, v) of w' surfaces*) is of order gv + wu + gu*). 

4. To determine the order of the surface of contact *) of the systems 

“,,%,), (4,,v,) and (u,,¥,) each of oo’ surfaces, we regard the 

system (y,w) of the curves of intersection of the systems (tu, , v,) and 

(u,,1,). Of these curves of intersection 4,4, pass through a given point, 

so p=un,. The w points, where the curves of intersection touch a 

given plane in a point of a given right line, are the points of inter- 

section of that given line with the curve of contact of the systems 

(u,,¥,)°) and (u,,¥,) of plane curves, according to which the given 

plane intersects the systems of surfaces (u,-,7,) and (u,,7,). This 

curve of contact is of order u,v, + wir, + wu,, thus: 

w = —,", =f (,P, Fi HU, 

The surface of contact to be found is thus the surface of contact 

of a system (uu, ,,r, + 4,r, + u,u,) Of a7? twisted curves and a 

system (u,,97,) of a’ surfaces, so that we find: 

The surface of contact of three systems (u, , ,), (4, , ¥,) and (uy , P3) 

of w' surfaces is of order 

HP, -E H3Hy)P, = Har =k: 21, UH, « 

If the three systems are the pencils (F,), (Ff) and (/,) we have 

= fo ee 

Y, =Ae-1) °, vf =26=])). 2 es = 2e—2)t 

So we find: 

The surface of contact Fu, of the three pencils of surfaces (Fs), 
(F,) and (F,) is of order 

') System with curves through a given point and y curves cutting a given 

line and touching in the point of intersection a given plane through that line. 

2) System with w« surfaces through a given point and » surfaces touching a 

given right line. 
3) This result is also immediately deducible from the Scuusert formula 

ap? =p. G+ p'g'e. p'ge + p® . p°ge 
(Kalkiil der abziihlenden Geometrie, formula 13, page 292) for the number of 

common elements with a point lying on a given line of a system &! of o% and 

a system © of o*# right lines with a point on it. If we take for =’ the tangents 

with point of contact of the system of curves (?, ~) and for © the tangents with 

point of contact of the system of surfaces (u,v), then 

Ps=? , POs Oy ie — verre ais 
whilst ap? is the order of the surface of contact. 

4) Locus of the points, where the surfaces of the three systems have a common 

tangent. 

5) System of c! curves of which 4, pass through a given point and », touch 

a given right line. 

1 4 f 

=e 
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2(s +¢+ u— 2). 

5. To return to the question which gave rise to the preceding 

considerations we find for the number of points Q,.;, on the arbitrary 

line 7, which are the points of intersection of / with the locus 

proper L: 

ar + bs + ct + du — 2r —2(s+t+u—2)= 

= ar + bs tc + du—2(r+s+t+u)4 4. 

So we find: 

The locus L of the pairs consisting of tivo movable points common 

to a surface out of each of the pencils (FP), FS, Fi) and (Fw 

of orders 1, 8, t and u, and not lying on the base-curves, is a 

surface of order 

ar + bs + ct + du— 2(r+s+t+4+ u)4 4. 

flere a is the number of points of intersection not necessarily 
situated on the base-curves of the pencils (F), (F.) and (F,); 6 the 

analogous number for the pencils (F,), (F:) and (F,), ete. 
oa 

6. It the pencils have an arbitrary situation with respect to each 

other, then a—=sfu, ete., so that then the order of the locus becomes 

4(rstu + 1)—2(r+s+t+ nu). 

That order is lowered when three of the base-curves have a common 

point or two of the base-curves have a common part, which 
lowering of the order can be explained by separation as long as 

the total locus is definite, i.e. as long as the four base-curves have 

no common point and no triplet of base-curves have a common part. 

For, if A,s;, 1s a common point of four base-curves then the surfaces 

of the four pencils passing through an entirely arbitrary point P 
have another second point in common, namely 4A,.),; if By, is a 

curve forming part of the base-curves 5,, 2, and B, of the pencils 
(F.), (F.) and (Ff), then the surfaces of the pencils passing through 
an arbitrary point P have moreover the points of intersection in 
common of Bs, with the surface F, through P; so in both cases 

the arbitrary point P belongs to the total locus. 
If the basecurves B,, B, and B, have a common point A,,, then 

on account of that point the number a is diminished by unity without 
having any influence on /, c and d. The order of Z is thus lowered 
by 7 on account of it, which is immediately explained by the fact 
that the surface F, passing through Ag. separates itself from the 
locus. 
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which for convenience we suppose that it does not intersect the 

base-curves B, and B,, this B,, has no influence on ¢ and d, whilst 

a is lowered with sm and 6 with rm, where m represents the order 

of the curve B,,; for, when F,, /, and F, are three arbitrary 

surfaces always sm points of intersection he on &,,;. “The order 

L is thus lowered with 2rsm by 6,,. This can be explained by 

the fact, that the locus of the curves of intersection C,, of surfaces 

FE. and F, passing through a selfsame point of Bu") separates itself 
from the locus of P and P'. That the locus of those curves of inter- 
section is really of order 27sm is easily evident from the points of 

intersection with an arbitrary line 7. We can bring through an 

arbitrary point Q, of / an Ff, cutting 4, in rm points; through 

each of those points of intersection we bring an F,, which rm _ sur- 

faces F, cut the right line 7 in rsm points Q;. To @, correspond 

rsm points Q, and reversely. The 2rsm coincidences are the pomts 

of intersection of 7 with the locus of the curves of intersection C.. 

7 

7. The base-curves B,, B,, B: and 6, of the pencils are morefold. 

curves of the surface L. If A, is a point of 4, but not of the 

other base-curves, then A, is an (a — 1)-fold point of Z. For, the 

surfaces F's, /; and F, through A, intersect one another in a —1 

points, not lying on the base-curves, each of which points furnishes 

together with A, a pair of points satisfying the question. Each point 

of B, is thus an (a —1)-fold point, i.o. w. B, ts (a—1)-fold curve 

of the surface L. 
Let A,, be a point of intersection of the base-curves 4, and b,, 

but not a point of 5, and 5,. An arbitrary point P of the curve of 

intersection C}, of the surfaces /;, and F, through A,, furnishes now 

together with A,, a pair of points PP’ satisfying the question pro- 
perly, as A,, is for each triplet of pencils a movable point of inter- 

section not lying on the base-curves. If we let P describe the curve 

Ci,, then the tangent /,, in A,,; to the curve of intersection of the 

surfaces /’, and F, through P describes the cone of contact of Z in 

the conic point A,,. The tangents m, and m, in A,<s to B,.- ands 

are (a—l)- resp. (6—1)-fold edges of the cone. This cone is cut 

by the plane through m, and mg, only according to the line m, 

counting («@—-1)-times and the line m, counting (6— 1)-times, as 

another line /., lying in this plane would determine two surfaces 

1) If Bm cuts the curve Bs in a point Astu, then the surface /- passing through 
Asiu separates itself from the locus of the curves of intersection Crs . 
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F. and F, touching each other in A,;, whose curve of intersection, 

however, does not cut the curve Cy. The tangential cone of L 

in Ay, is thus of order a+ 6— 2"). 

Let At be a point of ‘a common part 5,; of the base-curves B, 

and B,; but nota point of B, and b,. We get a pair of points PP’ 

3 e ~ Se : 1) > = 
with a point 2” coinciding with A,, when the surfaces F. and F, 

have in A‘. a common tangential plane V,,; and pass through a 

selfsame point P of the curve of intersection (,,, of the surfaces /, and 

= Te. : Y “ 
F, through A”. If we let P describe the curve C;, , then on account 

£ a seca 
of that between the planes V, and V,, touching in A;, the surfaces 

F, and F, through P, a correspondence is arranged, where to JV’, 
correspond /—1 planes V, and to V. correspond @—1 planes 

V,. One of the a+4—2 planes of coincidences is the plane through 

: a ‘ : 
the tangents in A,, to B,; and C;,,; this plane furnishes no plane 

V,;. The remaining a+ 6 —3 planes of coincidence are planes V,. 

and indicate the tangential planes in AW to the surface L. So B,, 

is an (a+b—8)-fold curve of L. 

8. Let us then consider a common point A, of the base-curves 

B,, B; and B,. We get a pair of points PP’ with a point P” coin- 

ciding with A,s;, when the tangential planes in A,., to F,, Fy and F; 

pass through one line /,,, and these surfaces intersect one another 
again in a point P of the surface F, passing through A,.. There 
are oo’ such lines /,,,, forming the tangential cone of Z in point 

A,s The tangents m,,m, and m: in A,, to B,., B, and B; are 

(a — 1)-, (6 —1)- and (c —1)-fold edges of that cone. So the plane 

through m, and m; furnishes a + 4—2 lines of intersection with 

the cone coinciding with m, and m,. Moreover c —2 other 

lines /,.; lie in this plane. For, the surfaces /. and /, touching this 

plane intersect #, in ¢ — 2 points not lying on the base-curves; the 

surfaces /, through those points intersect the plane through mm, 
and m, according to curves whose tangents in A,,; are the mentioned 

1) The order of this cone can also be found out of the number of lines 

of intersection with an arbitrary plane < through A;,;. If J, and J, are the lines 

of intersection of < with the tangential planes in A;; to the surfaces F, and F; through 

P, then to 7, correspond b—1 lines 7; and to /; correspond a—1 lines /,, so that 

in the plane = lie a+ — 2 lines 1s. 

38 
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lines J... So the tangential cone of L in A,s: is of order a+ 6 4+- c— 4"). 

: tc : (1 ‘i E ; 
A point of intersection A;,, of 4B, with a common part By, of the 

base-curves B, and £, is a conic point of L, the tangential cone of 

which is formed as in the previous case by a’ lines /,.;. The tangents 

m, and mgs, in vie to B, and By are (a —1) and (6+ ¢ — 3)-fold 

edges of that cone. As no other lines /..; lie in the plane through 
3 : s . : ly}: . 

m, and mg, it is evident that the tangential cone of Lin AY is like- 

wise of order a+6-+c—4 "*). 

‘9 : . 

Let A, be a point of a common part B,.; of the base-curves 6,, 

B, and B,. The point P’ of the pair of points PP’ coincides with 
(y . i 7 7 > 2 ; 

A;., when the surfaces /,, /; and F; have in AS) the same tangen- 

tial plane Vs, and cut one another in another point P of the surface 

(2 5 ° 5 : 
F, through Ay. If we now consider an #7; and an F's having in 

(2) . ae . . 

Aj; the same tangential plane VV, and if we consider through each 

of the c—1 points of intersection of /,, Ff, and /, not lying on 

the base-curves an /, of which we indicate the tangential plane in 

(2) 

Ax by V; then to V,; correspond ¢—-1 planes V; and to V; cor- 

respond a+ 6—1 planes J’,; (as for given V; a (6, a)-correspondence 

exists between V, and V, of which JV; is one of the planes of coin- 

cidence). Among the a+ 4+ ¢—2 planes of coincidence V,; V; 
there are however three which give no plane V,.;, namely the planes 

V.., for which the corresponding surfaces /. and /, furnish with 

F, three points of intersection coinciding with A;,s;. For this is neces- 

7 A "9 - 2 - 
sary that /, touches in A;,, the movable intersection of /, and 

F.. Now the tangents of those intersections for all surfaces /, 

; (2) ich 
and /’, touching each other in A; form a cubic cone having for 

: 5 2) ; 
double edge the tangent mm, to 6s: im point AS *). This cone 

is cut by the tangential plane in Ae) to /, according to three lines, 

furnishing with #,s, planes V;,,; which are planes of coincidence 

') This order can also be determined out of the number of lines /,s¢ in a plane 

e passing through A,». In this plane we finda (¢ — 1, a+b — 2)-correspondence 

between lines /,, and lines J, of which however the line of intersection of « with 

the tangential plane in A, to Fy is a line of coincidence, but no line /,se. 

2) This is immediately evident if we take for (F',) a pencil of planes and for (F's) 

a pencil of quadratic surfaces all passing through the axis B, of the pencil of 

planes. The cone under consideration then becomes the cone of the generatrices 

of the quadratic surfaces passing through a given point of B,. We can easily 

convince ourselves that the same result holds for arbitrary pencils of surfaces. 
ee SS ee 
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of V,, and V,, but not planes J’,,.. So there are a+4-+-c—5 planes 
° > : : 4 ie 

V,., which are the tangential planes of Z in the point A;x, i. 0. w. 
Bras ts (a +b + ¢— 5)-fold curve of surface L. 

9 We then consider a common point A,,;, of the four base-curves. 

We get a pair of points PP’ with point /” coinciding with A,.,, when 

F., F,, F, and Ff, have in A, a common tangent /,,, and all 

pass once again through a selfsame point P. The o° lines /,,,, form 

the tangential cone of LZ in A,.. To determine the number of lines 

[sm in an arbitrary plane ¢ through A,.;, we take in this plane an 

arbitrary line J. through A,s, and we bring through the d— 1 

points of intersection (not lying on the base-curves) of the surfaces 

F,, Fs and F, touching J... the surfaces /,, whose tangential 

planes in A,s cut the plane ¢ according to lines, which we shall 

call /,. To /., now correspond d— 1 lines /, and to /, correspond 

a+b+e—2 lines /,.., as there exists between /,, and /, when /, 

is given a (c,a-+)-correspondence, of which /, and the line of 

intersection of ¢ with the plane through the tangents in Bi: ron (oa 3 

and #B; are lines of coincidence, but not lines /. So there are 

atbte+td— 83 lines of coincidence /,s, /, of which however three 

are not lines /,.;,. The common tangents in A,,;, of the surfaces F,, 

F, and F, possessing three points of intersection coinciding with 

A,, and where therefore the intersection of two of those surfaces shows 

a contact of order two to the third, form namely a cubic cone *) of 

which the lines of intersection with ¢ are lines of coincidence but 

not lines /,s4. So in ¢ lie a+6+ c+ d—6 lines (ys, i.o0. w. the 

tangential cone of L in Ay;sy is of order a+b+ce+d—6"). 

1) This is again evident when taking for (/.) and (F,) pencils of planes with 

coplanar axes B, and B; and for (F%) a pencil of quadratic surfaces passing through 

a line containing the point of intersection S of B, and B,. The line of intersection 
of the planes F. and F, shows only then a contact of order two to Fy when that 
line of intersection lies entirely on F,, so that the cone under consideration becomes 

again the cone of the generatrices of the quadratic surfaces passing through S. 

2) That order can also be found out of the lines of intersection with the plane 

V;s through the tangents m-, and m in A,su to B, and B;. Those lines of inter- 

section are: the line m,, counting (a — 1)-times, the line m, counting (b — 1)- 

times and c-+dW— 4 other lines. This last amount we find by drawing in plane 

V;s an arbitrary line ; through A,s.. The surface Fy touching /; cuts the surfaces 

F, and F, touching V;; in d—1 points (not lying on the base-curves) through 
which points we bring surfaces F,, whose tangential planes in A,s/« cut the plane 

V,s according to lines to be called 7,. Between the lines 7; and 7, we now have 

a (d — 1, ce — 1)-correspondence of which the nodal tangents in A,s‘u of the inter- 
section of the surfaces F, and F; touching V;s are lines of coincidence. The 

remaining ¢ 4-d — 4 lines of coincidence are lines /rstu. 

38* 
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The preceding considerations hold invariably for a_ point ACS 

lying on the base-curves 8, and £B, and the common part By, of 

the base-curves 4, and 6&,,'). 

In a point of intersection ee of 6,, and A, the tangential cone 

is likewise of order a+6-+c+d—BO as that cone has the tan- 

genis m,; and m, to B,; and By, as (a + 6 — 3) and (ce + d—3) 

fold edges, whilst in the plane through m,s and m,, no other right 

lines J,s1, are lying. 

A point of intersection A®) of B, and By is also a (a+b +c+d—6) 

fold point of Z as m, and ms are (a —1)- and (6 + ¢-+ d—5)- 

fold edges of the tangential cone and the only lines of intersection 

of that cone with the plane through m, and mix. 

If finally AM) is a point of a common part B,s,, of the four base- 

curves, then the point P’ of the pair of points PP’ coincides with 
4 (4 > 5 4) 

A.;, when the surfaces F., F, F; and F,, have in A;., the same 

tangential plane V7, and all pass through a same point P. Let us 

now assume an arbitrary plane V,,, passing through the tangent 

; (4) . 7 : : : 
Mrstu iN Apsin to B,si,. The surfaces F,, F’; and F; touching this plane in 

(4) ae ; BAG : ° 

A, eut one another in d—1 points P, through which we bring 

surfaces F',, of which we call the tangential planes in AQ, V 

Thus we obtain a correspondence, where to V;s: correspond d—1 

planes V7, and reversely to V, correspond a+ 6+ ¢—1 planes 
Vis; for when V, is given there is between V,, and V; a 

(c,a +) correspondence, of which V, is plane of coincidence, but 

not a plane V,.. So there are a+ 6+c¢c+d—2 planes of coin- 
cidence V,s:Vu, of which however jive are not planes V;s,. These 

are namely the tangential planes of the surfaces F,, /; and F; of 

which one more point of intersection coincides with AS which 

1) [t is also easy to see from the lines of intersection with the plane Vstu 

through the tangents ms and mm to B; and By, that the tangential cone in 

Ain is of order a+ b-+c-+-d—6. The line ms counts for 6 — 1 lines of inter- 

section, the line mu for ¢ +d — 3. Further, the surfaces Fs, F, and F, touching 

Vsm cat one another in @ — 2 points not lying on the base-curves; through those 

: 5 (1) 
points we bring surfaces F, whose tangential planes in A;stu cut the plane Voix 

along to lines which lie on the tangential cone. 
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occurs five times '). So there remain a + 6 + c+ d—7T planes Vio, 

: P : : ; (a 
which are the tangential planes of JZ in the point A,</,, so that 

Brsu is a (a +b+¢+d—7) fold curve of L. 

10. So we find: 

Of the locus proper L of the pairs of points P and P’ the 
base-curve B, of the pencil (f,) is (a—1)-fold curve, the common 
part B,, of the base-curves B, and Bs is (a + b — 3)-fold curve, 

the common part B,s: of the base-curves B,, Bs and B, is (a + 6 +-¢—5) 

fold curve and the common part Byrsu of the four base-curves is 

(at+b6+c+d—%)-fold curve. The points of intersection of the 
base-curves are cone points of L, namely a point of intersection of 
B, and B, is (a+ b—2)-fold pomt, a point of intersection of 
B,, Bs and B, or of B, and By is (a+b+c¢ —A4)-fold point 
and a point of intersection of By, B,, Bi and B, or of B,, Bs and 

Bu, or of B,s and By or of B, and Bsy is (a+ 6 + c+d—6)- 

foid point. *) 

11. The base-curves of the pencils are not the only singular 

curves of the surface ZL. There are namely o’ triplets of points 
lying on a surface of each of the pencils. These triplets of points 

form a double curve of L. If P, P', P" is such a triplet and if P41 

and P2 are the sheets through P of the surface, then the sheets 

P11 and P"2 correspond to them. Through P’ passes another sheet 
P’3 and through P" a sheet P"3 which sheets correspond mutually. 

The pair of points not lying on the base-curves is movable along the 

sheets P1, P’1, along the sheets P2, P"2 and along the sheets 

P’3, P"3; on the base-curve a third point then joins the pair. 
Further there is still a finite number of quadruples of points, 

1) The number five is found in the following way. The tangents of the movable 

; : : : A) ; 
intersections of surfaces Fs; and F; touching each other in ve form a cubic cone 

having the tangent mse. to Brs as double line. Such an intersection shows to 

the surface F a contact of order two when it touches the movable intersection 

of F, and Fi, so if its tangent in At. lies on the cubic cone belonging to the 

pencils (fF) and (fF). As this last cone has also mrstu as double edge, both cones 

have 9—4=5 lines of intersection differing from mrs which connected with 

Mrstu furnish the five planes under consideration. 
*) If the total locus is not indefinite, i.o.w. if there is no point common to 

the four base-curves then B, is a (stu — 1)-fold curve and B,; a (stu + rtu — 2) 

fold curve of the total locus whilst a point of intersection of By and Bs is a 
(stu + réu — 2)-fold point and a point of intersection of B,,B, and By or of 

B, and By a (stu + rlu-+ rsu — 3)-fold point of it. 
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through which passes a surface out of each of the pencils. Through 

the points P, 2”, P" and P" of such a quadruple pass three sheets 

of the surface Z and three branches of the double curve. The 12 

branches of the double curve through those four points we can call 

Fi, P2. P3. P11, P’2, P'4, P'1, P"3, PF" Ps eee 

a way that the triplet of points is movable along the branches 

Pi, P1,P"1, along P2, P’2, P"2, along P3, P"3, P"3 and along 

P’4, P"4, P'"4. If the sheet of ZL passing through P1 and P2 is 
called P12, then the corresponding sheets (i.e. sheets along which 

the pair of points not lying on the double curve is movable) are 

iz ana P12, P13 and*7' 13, ete 

Geophysics. — ‘‘Current-measurements at various depths im _ the 

North Sea.’ (First communication). By Prof. C. H. Wino, 

Ltt. A. F. H. Da.auisen and Dr. W. E. Rineer. 

In the year 1904 accurate measurements of the currents in the 
North Sea‘) were started by the naval lieutenant A.M. van Roosen- 
DAAL, at the time detached to the ‘“Rijksinstituut voor het Onderzoek 

der Zee’, having been proposed and guided by the Dutch delegates 

to the International Council for the Study of the Sea. 

By him four apparatus were put to the test, viz. 2 specimens of 

the current-meter of PrErTERssoN ’), one of that of Nansen *) and one 

of that of Exman ‘*), all destined to determine the direction and the 

velocity of the current at every depth. 

The experiments were partly made on the light-ship “Haaks’, 

where Dr. J. P. VAN DER Stok, the Marine Superintendent of the 

Kon. Nederl. Meteorologisch Instituut, also took part in them. Other — 

experiments were made in the harbour of Nieuwediep and further, 

from the research-steamer ‘“‘Wodan’, in the open North Sea at a 

station (H2) of the Dutch seasonal cruises ‘), situated at Lat. 53°44’ N. 

and Long. 4°28’ E. 

) Cons. Perm. Intern. p. l’expl. de la mer, Publications de circonstance No. 26 : 
A. M. van Roosenpaat und C. H. Winn, Priifung von Strommessern und Strom- 

messungsversuche in der Nordsee. Copenhague, 1905. 

*) Publ. de circ. No. 25, 

ee tread ia’ ANG. (O4. 

ae cease YANG. | sek 

®) Quarterly cruises of the countries taking part in the international study of 
the sea, along fixed routes, observations being made at definite points or “stations”. 
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The apparatus of NANseN appeared to be unfit for the measure- 
ments on the North Sea; it was not calculated for the strong tidal 

currents occurring there (e.g. 60—100 em/sec.), and also the putting 

out of the apparatus in unfavourable weather was hardly possible 

without doing harm to the instrument. In more quiet water, however, 
it seems to be very useful. 

The apparatuses of Perrersson and EkMAN appeared to be better 

fit for the observations in the North Sea. Some improvements in the 

construction were proposed, partly also put into practice, by Van Roo- 

SENDAAL and Winp, by which the instruments have gained in fitness. 

For a description of the construction cf the current-meters used, and 

the experience made in using them, we may refer to the publications 

mentioned. The following few words may be sufficient here. 

It appeared that pretty large oscillations, e.g. 15° to both sides 

round the longitudinal axis, did not yet render observation impossible. 

In 32 out of nearly 200 observations by Van RooseNDAAL as much 

as the figure 4 was noted for the motion of the sea, in 40 to 50 

cases the oscillations amounted to 10 a 20° to either side, and yet 
the accuracy and certainty of these measurements were ouly excep- 

tionally insufficient. 

In the parallel-observations with the apparatus of PerrErsson and 

EkMAN the agreement in indicating the velocity appeared satisfactory. 
In one series of 23 measurements e. g. the average difference amounted 

to 4.8 cm/sec, whilst the smallest was 3.1, the greatest 6.3. 

Nor did the indications of direction, as given by the two instru- 
ments, show great differences. The observations with EkMAN’s appa- 

ratus bear to some extent a check in themselves, as, by the construction 

of the instrument, every observation includes a series of consecutive 

readings at small intervals. In by far the greater part of the readings- 

observations these separate did not considerably vary. In 128 cases 
the direction of the current could be estimated from them : 

To less than 10° in 105 cases, 

10—20 15 

20—30 2 

30—40 0 

* 40—50 2 
more than 50° 4. 

Compared with the probable direction, as derived from the instru- 

ment of Ekman, that which was determined by means of Prerrerson’s 
instrument deviated : 
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in 65 cases less than 10 

37 1020 

15 20—30 

5 30—40 

| 40—50 : 

8 more than 50°. 

Van RoosenpaaL and Winp took from the whole of observations 

made at station H, the most probable values direction and velocity 

of current at the various depths and represented them graphically. They 

constructed for the different series of observations, each lasting 12 or 

24 hours, in the first place central vector-diagrams, by drawing from 
a fixed point the successively determined currents as radii-vectores and 

connecting the terminal points by means of straight lines or ofa curve, and 

in the second place progresswe vector-diagrams, by drawing the current- 

vectors, this time interpolated for the successive full hours, one after and 

attached to the other. In the first kind of diagrams the periodical 

currents, and in the second the residual currents make themselves 

most apparent. 

The measurements were continued at the station H2 during all 

the following seasonal cruises of the “Rijksinstituut”, first by Van 

RoosEeNDAAL and afterwards by the naval lieutenant DaLuuisen, who 
succeeded the former in his detachment. At the more recent measu- 

rements the current-meter of EkMAN was always made use of. 

The following table gives the dates of the series of observations 

and the number of measurements °). 

— SEES SaSES 

| | 
Number of) 

) Depth ale NO, Time. Measure- (M.) Observer. 
| ments. : | 

| | 

1, vm 16 05 4412 _ ‘head : 
from 16 Aug. ‘05 4.12 eee 56 5,20,35 EKMAN. | VAN ROOSENDAAL. 
fy Se oe ee { 

2. |from 7 Nov. 05 748 am.) 55 ete car : | Van RoosENDAAL 
Wl” G6 Cg AZ. poms a and DALHUISEN 

‘ 7 mA 79 | | 

3. |from 7 Febr.’06 7.20 p.m.| 4g »»» > |  DALHUISEN, | till Seta a O.0d case | 

4. |from 2 May ’06 6.35 am. KY pik : “ 
ee es GAT. > mite ia? 

1) A more detailed description of these observations forms the contents of the 

last issue of the “Publications de circonstance”’ No. 36, 
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At these researches wind and weather were on the whole favour- 

able; the wind was in a.few cases noted 7 at most, at which 

force, however, the observations had to be put a stop to in Feb- 

ruary 1906 *). 

On the plate added, the new measurements are again represented 

graphically in central and progressive vector-diagrams. Also the central 

diagrams, have been constructed this time with the aid of values 

interpolated for full hours, the directly measured values however, 

having still been indicated by dots. 

It is principally to give a full idea of the variability in direction 

and velocity of the currents, that these diagrams of the new series 

of observations have been reproduced fully here. 

Comparing the values of the velocity near the surface and in the 

depth, we see that in 3 out of the 4 cases they show a rather 

distinct decrease at an increase of depth. Also at the former series 

of observations at H2 (5—4 Aug., 8—9 Aug. and 2—3 Nov. 1905 °*), 

also 8—9 Febr. 1905*)) the same result was arrived at. 

Also differences of phase in the periodical currents are noticed in 
most cases between the surface and the depth, though a distinct law 

may not immediately be obvious here. 
The striking difference in amplitude of the tidal currents during 

the observations in August 1905 and February 1906 on the one 
side and that of November 1905 and May 1906 on the other, is 

certainly connected with the age of the tide, as it was with the first 

nearly spring-tide (15’/, and 14 days after N.M.), with the last 

nearer to dead neap (10 and O days after N.M.). 

The small number of series of observations that can be disposed 

of, does of course not allow at all to already think of a calculation 

of tidal constants, nor to give a correct description of the average 

variation of the currents. The unmistakable generai agreement, 
however, between the different current-diagrams justifies sufficiently 

an attempt to compose them. As no doubt moon-tide will have played 

1) The reliability of the new observations is no doubt greater than that of the 
former, if we take into consideration, that in August and November 1905 and in 
February and May 1906 the Wodan lay moored, so that her motion was conside- 

rably smaller than on the former occasions, when she had cast only one anchor. 

It may still be mentioned that an experimental and theoretical investigation 
was started about the influence of the movements of the ship upon the indications 

of the current-meter, which, however, has not yet led to a satisfactory result. 

2) Publ. de Cire. N°. 26. 

3 5 yp Saal eee 
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the principal part, we have thought best for this purpose to compose 

for the successive full moon-hours the current-values as they follow 

by interpolation from the different diagrams. The averages thus obtained 

have been combined in new diagrams, which are represented on the 

plate, in the last column of figures, and that by black curved lines. 

In order to complete the matter and to allow comparisons, in the 

same way average diagrams have been derived from the observations 

made in the past year at H2 (see above) and represented in the same 

figures on the plate by black-and-white curves. 

The arrows drawn in these figures indicate: in the central dia- 

grams the direction of the current at the moon’s transit, in the 

progressive diagrams the total residual current during a half moon-day. 

A comparison of the average current-diagrams for various depths 

or also of the newer with the older ones might give rise to all 

kinds of remarks. With a view to the small number of data, how- 

ever, on which the diagrams are based, it would perhaps be incon- 

siderate to mention all of them here. We therefore confine ourselves 

to what follows. 

Difference in Phase of the tide at different depths. 

| August 1905 —May 1906 August—November 1904 

IF “ain a iy = | ‘ 

20 M.—5 M. | 35 M.—20 M.| 20 M—70 M. | 30 M.—20 M. 
ES 

@ Transit 18° | ae | 0 | 3° 

ore hour after » 24 | — 6 —13 | 14 

2 29 ae uit | 5 

3 20 5 3 6 

4 25 —2 D 14 

5 | 26 0 18 —5 

6 25 | 8 | 3 22 

5 » before » 49 | 17 | 0 17 

4 25 | 15 —9 a 

3 8 6 —3 25 

2 M, 10 | — 6 24 

i] 6 41 — 6 141 

Average | 13°85' | doug), | = 4050' | 49045 
| 



The tidal curve shows not only at different depths, but also 

in the older and newer observations, generally the same shape. 

Its size, on the other hand, both in the older and more recent 

observations, appears to be smaller near the bottom than near the 

surface. Also its orientation and the situation of the point in it, 

which relates to the moment of the moon’s transit, or, more generally, 

the phase of the tidal current, seems to change in a definite sense 

as the depth increases. This last relation may be specially illustrated 

by the following table. 

It appears from the table, that the tide is on the whole accelerated 

in the depth, compared with higher layers: but the table also proves 

that the phenomenon underlies varying influences, besides constant 

causes, among which perhaps may be reckonned the shape of the 

bottom of the sea and ihe rotation of the earth. 

The residual current is by no means constant; at the new obser- 

vations it has been much stronger than at the old; it shows consid- 

erable fluctuations also, when the progressive diagrams of the different 

days of observation are compared. At the new observations this 

residual current was on an average stronger near the surface than 

in deeper layers. This particular may perhaps be principally attributed 

to the action of persisting winds, which at least on the observations of 

August 1905 and May 1906 had a very marked influence, rendered 

quite obvious by the special diagrams for these dates. 

The figures for the residual current as deduced from the newer 
observations are the following: 

Depth. | Direction. | Velocity. 

5 M. N 304° E | 1/4 mile p. hour 

20 | 317 1g 

35 | 309° My, 
as deduced from the older: 

71) M. N 319° E | yg mile p. hour 

, 20 : 295° | Log 

30 | 323° [tee 
These results are worth comparing with the following table of 

values for the year-average of the residual current at the Noord- 

Hinder (Lat. 51°35'5N., Long. 2°37,E.), calculated by van DER STOK ”) 

from current-estimations neai the surface during five consecutive years. 

1) Average of depths of 1, 4, 5, 6, 10 M.; at a depth of 35 M. measurements 
were made by Van Roosenpaat only in February 1905. 

2) J. P. van pveR Sox, Etudes des Phénoménes de Marée sur les cétes néer- 
landaises ; Kon. Ned. Met. Inst. No. 90, Il. p. 67, 1905. 
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Year. | Direction. | Velocity. 

a Ro ES SEE SS 

1890 N 16° E 0,024 miles p. hour. 

91 15 62 

92 16 25 

93 29 47 

94 27 4] 

Average | N 21° E Byrrmenre p. hour. 

Here it appears that the average residual current, which — as we 

mention in passing — has at this point quite another direction than 

at H2, even from year to year does not at all-remain constant in 

strength which may perhaps be an indication for differences in the 

quantity of Atlantic water, entering through the English Channel 

from year to year. 

The question may be put, whether and how far the results attained 
by the current-measurements described, deviate from what is known 

from the charts, in general use, about the currents near.the station H2, 

The subjoined table allows of a comparison with statements, bor- 

rowed from a chart, published by the British Admiralty *), and shows 

From the Charis. Observed. 

Hour. | Direction. | TEN Direction. | (alma 

5 before H.W.Dover| N 90° E 0,3—0.2 N Er | 0,3 

4 110 0,5—0,3 115 | 0,4 

3 135 | 09—0,6 | 147 0,4 

9 160 ; 0604 189 03 

| 180 0,3—0.2 297 O4 

H. W. Dover — O 266 0.5 

4 after H.W. Dover 260 0 °—0,2 | 280 05 

9 300 06—0,4 | 296 | 0,6 

3 300 | 4,0—0,7, «| 331 05 

4 315 | 06—0,4 | 342 0.4 

5 0 03—02 | 9 | 0,4 

6 50 | — | 40° 0,4 

1) Tidal Streams North Sea 1899. 
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that the deviations for a part considerably exceed the limits of aceu- 
rateness of the statements. 

It should be observed that the charts refer to currents near the 

surface, whereas the values of the table derived from our observations 

refer to a depth of 5 M. 

Finally we may mention that the observations at station H2 up 

till now have been continued in the same way, that is to say, they 

are still made every quarter of a year, as far as possible, during 

24 hours. Moreover, owing to the kind co-operation of His 

Excellency the Minister of Marine, a current-meter of PETTrrRsson has 

been placed on the lightship ‘Noord-Hinder’, with which since 
November 1906 daily, in so far as the state of the weather permits, 

with intervals of three hours, measurements at various depths are 

made by the ordinary staff of the lightship. The lists of observation 

are forwarded to the ‘Rijksinstituut’’ and promise to yield important 

material, especially for the inquiry into the way in which the tidal 

and residual currents differ in layers of different depth. 

Mathematics. — “The locus of the pairs of common points of 

n+1 pencils of (n—1)-dimensional varieties in a space of 
n dimensions.” By Dr. F. Scnvu. 

(Communicated by Prof. P. H. Scuoure). 

1. Let (V;)@=1,2,...,n+1) be n+ 1 pencils of (n — 1)- 

dimensional varieties in the space of operation Sp” of 7 dimensions and 

let 7; be the order of the varieties V;of the pencil ();). Let moreover 

a; be the number of points of intersection of the m varieties 

ee pe eee ee ee not of necessity lying.in 

the base-varieties. 

When considering the locus of pairs of points P,P’ through which 

a variety of each of the pencils passes we have exclusively such 

pairs in view of which neither of the two points lies of necessity 

on a base-variety of one of the pencils and we call the locus thus 

arrived at the /ocus proper L. 
We determine the order of Z out of its points of intersection with 

an arbitrary right line /. To this end we take on /an arbitrary point 

Qio...» and we bring though it varieties V,,V,,V,,..,V,, having 

a4+,—1 pomts of intersection not lying on Qjo.. , and the base- 

varieties. Through each of those points we bring a JV,,4; and arrive 

in this way at a,4;—1 varieties V,,41 intersecting together line / 

IN (n41—1) 7,41 points Q,41.S0 to Qis..., correspond (4,41—1)rn4i 

points Q,+1. 



To find reversely how many points Qre. _.n correspond to Qn41 

we take arbitrarily on / the points Q;41, Q42, Q4s,.-., Q,41 and 

we bring through those points respectively a V4.3, ] Fda ia heen 

+1. We now put the question how many points Qi23...; lie on 

/ in such a way that the varieties mentioned V;+.1, Vi+-9,.-,Vn41 

and the varieties J,,V,,..,Vi passing through Qjo3...; havea com- 

mon point not lying on the base-varieties. For ¢< the answer is: 

a,7, +a,r, f+... far. 

To prove this we begin by noticing that the correctness is imme- 

diately evident for ¢= L. If we now assume the correctness for ¢ = ), 

we have only to show that the formula also holds for ¢= 7 + 1. 

Given the points Q;+9, Qj+3 ania (Oa = To determine the number 

of points Qios3...;41 Wwe take on / an arbitrary point Qi23...;, we 

bring through it varieties V,,V,,...,Vj; and then through each of 

the aj41 points of inter sacha (not lying on the base-varieties) of these 

ey @,.<°, V3 and the varieties V;42, Vj+s,..., Vn+-1 resp. passing 

through Q,42,Q;13,.--,Qe+1 we bring a variety V;+ ; these ajay 

varieties V;4, cut / in a;4 1 rj41 points Q;11. So to Qios... ; corre- 

spond wj417);41 points Q;+, and (according to the supposition that the 

formula holds for ¢=)) reversely to Q;41 correspond a,r,--a,r,- 

+ ...+a,r; points Qias...;- So there are a,r,;—-+ a,r,-+..-=p 

+ ajrj+ aj4i7)41 coincidences Qios...; Qj41; these are the Aounte 

Qi2...; +1 belonging to the given aie Q;4-0; Qj2-3;-2- 5 ae 
ei 

in this way the correctness of the formula has been indicated for 

b= — iE . 

When asking after the number of points Qis..,, corresponding to 

Q,4, we have +=, so that the formula furnishes a,7,-+ a,r,-+ 
+ ....+a,r, for it. This number must however still be diminished 

by rnti, as each of the points of intersection of / with the V,z4; 

passing through Q,.1 is a point of coincidence Qio3....,—1 Q, but 

not one of the indicated points Qis...n. 

So on / there exists between the points Qio,.., and Q,41 an 

(Qn Tal — Tn 41, GP, + 4%, +... + ayn —7n+1) Correspondence. 

The ar, + a,r, +... Gn417+1— 27n+1 coincidences are the 

points of intersection of / with the locus Z to be found and the 

points of intersection of ¢/ with the oe ae variety of 

contact RVie..., of the pencils (V,), ( ,(V..); we understand 

by that variety of contact the locus of te ean) oie ne rarieties 

eb a ee Oe ee through them have a common tangent, so 

where she (7 —1)-dimensional tangential spaces of those varieties 

eut each other er {o a line. 
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2. To determine the order of PR Wy2..., we must observe that RVys___, 

is the locus of the points of contact of the varieties Vj, with the 

curves of intersection Cis.. ,—1 of the varieties V,, V,,...., Vin—y. 
So the question has been reduced to that of the order of the variety 

of contact of a system of o' (7% —1)-dimensional varieties and 

system of o”—! eurves. That order can be determined out of the 

points of intersection with an arbitrary line /. 

In a point of intersection of / with a variety of the system we 
bring the (2 — 1)-dimensional tangential space Sp"—! and in a point 
of intersection of / with a curve of the system the «#"—? tangential 

spaces Sp"—!'. If we act in the same way with all varieties and 

eurves of both systems, then the tangential spaces of the varieties 

furnish an 1-dimensional envelope FE, (i.e. a curve) of class w+ v (as 

is evident out of its osculating spaces Sp”—! through an arbitrary 

point of /) with v osculating spaces Sp"—' passing through 1; here 
mw is the number of varieties of the system passing through an 

arbitrary point, and py that of the varieties touching an arbitrary right 

line. The tangential spaces of the curves in the points of intersection 

with / have an (n —1)-dimensional envelope E, of class g + w with 

/ as w-fold line, where g is the number of curves of the system 

passing through an arbitrary point and wp that of the curves touching 
an arbitrary space Sp”—! in a point of a given right line of that 
space; for, if we bring through a point Q of / an arbitrary Sp"—2, 
then each of the g eurves of the system passing through Q furnishes 

a tangential space Sp"—' passing through this Sp"—? whilst the space 

Sp"—' determined by / and Sp"—? (just as every other Sp'—! passing 
through /) is wp times tangential space of the envelope. 

Both envelopes have thus (f + v) (g + w) common tangential spaces 

Sp'—'. Each of the » osculating spaces Sp"—! of /, passing through 
i is a y-fold tangential space of E,, so it counts for » common 
tangential spaces; so that ug + wap + ry common tangential spaces 
not passing through / are left; these indicate by their points of 
intersection with / the points of intersection of / with the variety of 
contact, so we find: 

The (n—\)-dimensional variety of contact of an o' system of 
(n—1)-dimensional varieties of which wu pass through a given point 
and v touch a given right line, and an x—1 system of curves of 
which p pass through a given pomt and w touch a given space 
Sp’! im a point of a given right line of that space, is of order 

ap + vp + my. 

3. With the aid of this result it is easy to determine the order 
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of the variety of contact (locus of the points with common tangent) 

of » simple infinite systems (@,, 1,), (Ug: Pads +++ +s (Uns Pn) of (n—1)- 

dimensional varieties. 

This order is 

Y YP Pn 1 a. hs ! 
ff, +. <> fin +—+...4 +n—l1}], 

Uy, i, Un 

as can be shown by complete induction. The formula holds for 7 = 2. 

We assume the correctness of the formula for n =z and out of 

this we must find the correctness for n=72-++ 1. 

The variety of contact for 7+ 1 systems in Sp'+! is the variety 

of contact of the system of varieties (4#,, »,) and the system of curves 

formed by the intersections of the 7 remaining systems of varieties. 

So we have: 

k=, » 2S? eee 

The points of contact of the curves of the system with a given 

space Sp’ form the (¢—1)-dimensional variety of contact of the sections 

of Sp’ with the systems (u,, »,), (Uz, 3), +--+ » (4i+1, Pi+1); these sections 

are likewise systems (u,,,),-- ++» (iti, Pi-1), but of (7—1)-dimen- 
sional varieties. The variety of contact mentioned is according to 

supposition of order 

tate tin ( PEt. EE ed), 
U, Hs Mil | 

The points of intersection of that variety of @ontact with a right 

line 7 of Sp' being the points of / in which Sp' is touched by 
curves of the system, we have: 

Y= tat wigs (22 bE a i 1) 

Cae (ip 
Thus according to the formula py + rg + py the order of the 

i-dimensional variety of contact of the 7-++1 systems of varieties 

becomes 

totes stot (2 Spr =...+4 rit 3) 
My Hi+i 

by which the correctness Sf the same formula for n =7-+ 1 has 

been demonstrated. So we find: 

For n a systems (Uys P1)> (las Padres +: 9 (ny Pn) of (n—1)-dimen- 

sional varieties the locus of the points where the varieties of the 

systems passing through it have a common tangent is an (n—1)-dimen- 

sional variety (variety of contact) of order 

a] Pe Py 

ft, pls te 2. $e +n—1). 
i; Bs Hn 
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If the systems are pencils, then 

me ey Mg 2 (r;—1); 

thus the order of the variety of contact RVy2_.., ts: 

2(r7,t+7+..-+7)—n—1. 

4. Returning to the correspondence between the points Qjs..,, and 

Q,+4: we find for the number of coincidences which are points of 

intersection of / with the demanded locus L/, i. e. for the order of L: 

a,?v, ar Oy Mo ee | On Tat 1 2 (, Se tae ects ots 1) a 

i=n+l 

+n+1=> 2 {(a; — 2)7; 4+ 1}. 
ei) 

It is easy to see that a base-variety 6; of the pencil (V;) 
is an (a; —1)-fold variety of LZ. The tangential spaces Sp"—! of L 

in a point P of 4; are the tangential spaces in P of the varieties 
V;, which are laid successively through one of the a@—1 points of 
intersection (not lying on P and the base-varieties) of the varieties 

eee Fy, Ve43,-.-; Vay passing through P. 

So we find: 

Given n-+1 pencils (V;)(¢=1,2,...,n +1) of (n —1)-dimen- 

slonal varieties in the space of operation Sp". Let 7; be the order 
of the varieties of the pencil (Vi) and a; the number of the points 

of intersection (not lying on the base-varieties) of arbitrary varieties 
mueereemee( .). (V.),:--,(Vi—i); (Vi+1),---,(Vn41)- The locus 

proper of the paws of points lying on varieties of each of the pencils 
is an (n — 1)-dimensional variety of order 

rar 

= {(a;— 2)7,4+1 
i=1 

having the (n — 2)-dimensional base-variety of pencil (Vj) as (a;—1)- 

fold variety. 
If n> 83, then also in the general case the base-varieties of the 

different pencils will intersect each other. In like manner as we 

have dealt with pencils of surfaces') we can also determine the 

multiplicity of common points, curves etc. of base-varieties. 

’ 
$> 

Sneek, Jan. 1907. 

1) See page 555. 
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Astromony. — “On the astronomical refractions corresponding to 
a distribution of the temperature in the atmosphere derived 
From balloon ascents.’ Preliminary paper by H. G. van DE 

SANDE BAKHUYZEN. 

1. The various theories of the astronomical refraction in our 

atmosphere consider the atmosphere as composed of an _ infinite 

number of concentric spherical strata, each of uniform density, whose 

centre is the centre of the earth and whose densities or temperatures 

and refractive powers vary in a definite way. 

The various relations between the temperature of the air and the 

height above the surface of the earth, assumed in the existing theories, 

are chosen so, that 1st they do not deviate too far from the suppo- 

sitions on the distribution of the temperature in our atmosphere, 

made at the time when the theory was established, 2™¢ that the 

formula derived from this relation for the refraction in an infini- 

tesimal thin layer at any altitude could be easily integrated. 

At the time when the various theories were developed, only little 

was known about the variations of the temperature for increasing 

heights, and this litthke was derived from the results of a small 

number of balloon ascents and from the observations at a few mountain- 

stations. In the last decade, however, ascents of manned as well as 

of unmanned balloons with self-registering instruments have greatly 

increased in number, and our knowledge of the distribution of the 

atmospheric temperature has widened considerably, and has become 

much more accurate. Now I wish to investigate, whether by means 

of the data obtained, we can derive a better theory of refraction, or 

if it will be possible to correct the results of the existing theories. 

2. The temperatures in our atmosphere at different heights have 
been derived from the following publications : 

I. Ergebnisse der Arbeiten am aéronautischen Observatorium Tegel 

1900—1902, Band I, II and III. 

II. Travaux de la station Franco-scandinave de sondages aériens a 

Halde par Teisserene de Bord. 1902—1903. 

ILI. Veréffentlichungen der internationalen Kommission fiir wissen- 

schaftliche Luftschifffahrt. 

From the last work I have only used the observations from 

December 1900 till the end of 1908. 

I wished to investigate the distribution of the temperature up to 

ihe greatest heights, and therefore 1 used for my researches only 

the balloon ascents which reached at least an elevation of 5000 meters; 



and, following HercEseLi’s advice, I have used only the temperatures 

observed during the ascents, as during the descents aqueous vapour 

may condense on the instruments. 

It is evident that for the determination of the refraction, as a cor- 

rection to the results of the astronomical observations, we must 

know the variations of the temperature at different heights with a 

clear sky. For the temperatures, especially of the layers nearest to 

the surface of the earth, will not be the same with cloudy and 

uncloudy weather, as in the first case the radiation of the earth will 
lower the temperature of those layers, and so cause an abnormal 

distribution of temperature. It is even possible that in the lower 

strata the temperature rises with increasing height, instead of lowering, 

as is usual. 

For this reason I have divided the balloon ascents into two groups, 

1st those with a cloudy sky, 2™¢ those with a clear or a partly 

clouded sky. 

In working out the observations, I have supposed that for each 
successive kilometer’s height the temperature varies proportionally 

to the height, and after the example of meteorologists, I have deter- 

mined the changes of temperature from kilometer to kilometer. For 

this purpose, I have selected from the observations, made during each 

ascent, the temperature-readings on those heights, which corresponded 

as nearly as possible with a round number of kilometers, and I 
have derived the variations of temperature per kilometer through 

division. 

The available differences of height were often less than a kilo- 
meter, especially at the greatest elevations; in those cases I adopted 

for the weight of the gradient a number proportional to the difference 
of heights. Sometimes on the same day, at short, intervals several 

ascents have been made at the same station, or at neighbouring 

stations, from which the variations of temperature at the same heights 

could be deduced. In these cases I have used the mean of the 

results obtained, but I assumed for that mean result the same weight 

as for a single observation, as the deviations of the daily results 

from the normal distribution of temperature are only for a small 

part due to the instrumental errors, and for the greater part to 
meteorological influences. 

3. The observations which I have used, were the following: 

_ from publication I, 31 ascents of which 12 had been made in pairs 

on the same day, so that 25 results were obtained ; from publication 

HI, 38 ascents all on different days; and from publication II, 170 

39* 
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ascents distributed over 119 different days; — I have disregarded the 

observations marked as uncertain in this work. On the whole I have 

obtained the results on 182 different days, of which 58 with unclouded 

and 124 with clouded sky. 
The temperature gradients for each month were derived from this 

material, and to obtain a greater precision, I have combined them in 

four groups, each of three successive months, December, January and 

February (winter), March, April and May, (spring), June, July and 

August, (summer), September, October, November, (autumn).. 

TA BA ae 

Variations of temperatures per kilometer. 

(V.T. Variation of temperature per kilometer; 'N. Number of observations). 

A. Clear sky. 

| Winter. | Spring. | Summer. | Autumn | Mean 

= | 

Kil V.T. N. VT. | 

o—-il4 fe] w | 3.6) 
42.9 124.9) 50 Ie 

2 3ll-s.2] 1 |-_ 49] as | 4a} as | ae) as = ah ss 
g- 41s i 10 |- 5.8] 15 | 5.4 18 a 15 ||— 5.5] 58 

4A— 5 |}— 5.3} 10 |I— 6.7] 14.3 |i— 5.9, 18 5.7) 14.9 ||— 5.9) 57.2 

5— 6 ||— 5.6] 89 | 7.4] 13.6 — 6.0) 18 7.3] 138 |- 6.5] 543 

af 5.8 Be 7.5 ap 6.6 17.3 6.7| 10.1 ||— 6.7| 48.1 

7— 8||- 6.8) 7 || 7.8 10.8 ||— 7.5) 146 8.0) 8 ||— 7.5) 404 

s—g|-_7.6 5 || 6.4 28 ||-- 7.4] 133 |- 8.4] 8s |t 7.3] 341 

910 ||— 5.9} 4 | 4.4) 57 |/- 7.2) 13 6.9} 7 ||— 6.4 297 

1011 ||— 3.81 29 ||- 2.8) 5 I-68] 104 6.4] 68 |I- 5.4] 25.1 

M—12 |i— 6 2] 2 — 2.4 26 |i— 5.9) 52 2.0)>59 |= 335) 154 

12-13 |i— 1.6 2 jH-2.0|; 1 —1.4) 2 1.0; 49 |i— 0.7) 99 

3-14 47.0) 7 feaoes 4.0| 16 ||—0.8| 46 

4415 | 2 0.7] 16 Bid) <a: i i 

10 | | | 10,8 8 + 0.8} 1 

APS 
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B. Cloudy sky. 

| Winter. | Spring. Summer. | Autumn. | Mean. 

Kil. | VT. | N. | vt.| N. |i vr] Nn |ivrl on. fl ver. | N. 
| | | 

o-ale tal a |e ssl a3 |_oa os — 3.9] 40 _ £sl to 

4— 21l— 3.0] 27 5.6] 325 |l— 5.4] 24 | 3 i 49 ||— 4.3) 1235 

ee eeneeee sels 54) 2¢ || 4.3] 40. | 4.5] 124 

s—3ie5.8\ 2 |l-5.5| 2 |l-5.4| 238 |-5.8) 905 | 5.6) 1233 

£— 5 6.8) 2) |= 6.7). 38 — 6.4 2), i= 6.4| 39 |-- 6.4) 122 

5— 6 |l— 6.9} 26 |i— 6.7) 30.7. | 6 7 215 ||— 6.2) 365 || - 6.6) 114.7 

6— 7 ||— 6.8 254 |} 6.7 2 |] 6.6) 177 |— 7.3 218 ||— 6.9) 95.9 

7— 8 || 6.9| 197 | 7.9) 203 | 7.9) 168 || 5.9| 216 | o6.8| 784 

s—9||_6.4| 142 | 6.01 162 | 7.9| 141 || 7.9| 13 || 6.9| 575 

910 ||-. 6.2) 123 ||— 3.9| 129 ||- 8.4] 121 ||— 7.5] 114 |- 6.5) 487 

40—14 |l- 5.4 94 |1-- 1.8] 96 || 5.9) 81 |l- 5.4] 85 ||— 4.5] 356 

14—12 ||J— 2.5 76 |}4 1.0) 83 AI 5.1 |i— 1.9 68 |i— 1.2) 278 

12-13 | 1.3] 5 |} 4.9 67 |1+0.2| 19 || 0.5] 41 JH 0.4) 177 

1344 |l-_ 0.91 27 |—3.9| 1 47) pa ||— 0:8) SA 

14—15 | 1.9) 19 |-- 3.2) 1 | 4+. 0.2} 29 

1516 |I— 0.6) 1 |- 3.2) 05 = 4.5} $5 

16—17 $04 0.8 | 4.0.4] 08 

We may derive from these tables that the mean variation of 

temperature with clear and with cloudy weather only differs in 

the lower strata, but is nearly the same in the higher ones. 
In order to deduce from the numbers in this table the temperatures 

themselves from kilometer to kilometer, I have also derived from 

the data the following mean temperatures at the surface of the earth: 

clouded sky clear sky 

Winter + 0°1 — 0°.9 

Spring + 64 + 51 

Summer +14 .4 + 14 .7 

Autumn + 9.0 + 79 

By means of these initial temperatures and the gradients of table I 
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C. Cloudy and uncloudy sky. 

Winter. | Spring. | Summer. | Autumn. | Mean. 

Kil. || V.T. | N. (Hann, V.T.| N. | Hann.| V.T. | N. 'Hann,|] v.7.| N. |Hann.| v.7.| N. | Hann. 
as | | 

o—al_Polsr | +8sl_Sslas | Sal Paleo | 24 55 |_Sull_ Psi ise |_Po 

5 31 | —2.9/| 5.6) 475) —5.5]| 4.7) 42 | 5.6 55 | —4.1]}-4.3] 1815|-4.4 

4.97/31 |-—5.0|—4.9} 48 5.44.8) 42 et 55 | —4.8-4.7| 182 |—5.0 

5.71/37 | —5.8ll-5.6148 | —5.sl|_5.9 418 25 545) —5.8||-5.5| 181.3|—5.7 

—6.4|37 | —6.7]|-6.7) 473| —6.7||6.0| 41 | —5.9|-6.0/539| —5.9l 6.9] 1792'6.3 

—6.7/349 | —6.7||-6.8) 443 —7.3|-6 4/395) —6 5, 50.3| —6.8—6.6| 169 ae 

—6.6| 33.4 | —6.7||-7.0| 37.7) —7.9||-6 635 | 7 1| 37.9) —7.4]|—6 9} 144 |—7.0 

—6.9| 26.7 | —7.9||-~7.4] 31.1 ).—6.3||-7.4| 31.4] —7 29.6| —7.3||--7.3] 1188 |—7.4 

—6.5) 19.2) —6.9//6.1/24  —6 |—7.6|27.4| —7 21 | —7.6|--7.4| 91.6 |—7.4 

—6.2| 163) —6.4||-4.0| 186) —4.8 meas —6.9|—7.4 184) —6.6) 6.5) 78.4|—6.3 

5.0) 123) —3.9}—2.0) 146 | —0.9} 6.4) 185, —5.0 | 15.3] —6.4||—4.9] 60.7|—4.0 

—2.6| 96, 0.0 ||—0.2) 10. | +0.5)|—4.0) 103) —9.4 | 12.7) —2.7||—2.4| 435/—1.2 

4.9] 7 4.3 7.1 0.5) 39 9 0.9, 276, 

—0.9 27) 1.6] 2 | LA.0 2 3 —0 8} 97] 

146-15)|41.9 19 3.9) 1 40.7] 1.6 1 | 06, 55 

15—16|0.6 1 ia 05 10.8] 1 —0.6| 25 

1617)-40.1 08. | | +o. 08 
| | 

which in a few cases have been slightly altered, I have derived the 

following list of temperatures for clear weather from kilometer to 

kilometer. 

Although the adopted values for the temperature of the air above 

13 kilometer are not very certain, yet the observations indicate that 

at these heights the temperature decreases slowly with increasing 

height. The refraction in those higher strata being only a small 

part of the computed refraction, nearly '/,,, an error in the adopted 

distribution of temperature will have only a slight influence on my 

results. 

1 must remark that almost all the observations have been made 

during the day, generally in the morning. It is evident that the varia- 

tion of temperature, especially near the surface of the earth, is not 

the same during the day and during the night, but the number of 
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Ay E be, i: 

Temperatures at heights from 0 to 16 kilometer for clear weather. 

| 

| Winter. — | Spring. | Summer. | Autumn. | Mean. 

| T | j Tr 

Height. Temp.; Diff. |/Temp.| Diff. age | Diff. |Temp.| Diff. ‘Temp. Diff. | | | 

° fe} ° O° ° 

Oe, sf ty A) 4414.7 + 7.9 4+ 6.4 
1.2 | —3.6 —2.8 +0.6 —1.1 

ees Sey | 2503 441.9 4+ 85) + 5.3 
—4.2 | —5.4 =A3 —3.2 || 4.3 

i490 — 3.9 7 6) 5.3 + 1.0 
sas. | —4.9 v —44 ie —4.6 Bee —4 8 

oa Se — 8.8] Pe ia.2 Oi ae 
—5 4 so | —5.4 =e sot 

& |—45.5 —14.6| See — 4.9 — aes 
—5.8 ECW, | —5.9 | 63 —6.1 

eS p=o4 3 aed —11.0| 45.4 
60 ey —6.0 —6.9 | —6 4 

6 |—27.3) —28.0) 144 —17.9 —21.8 
) —6.2 |_6 9 —6.6 Peay ear eel 
7 \—3355| —34.9} 2307 ~ 95.4 98.5 

| <3 yen ges aes = 77 | Bar 
8 |—40.3 ae —928 .0| —32.8 —35.8 

| 78 | 6.9 |: 7.6 | 7.6 baa a 
9 |—47.6| —49 4 —35.6 -40.4 | - 43.2 

| —6.4 [54 0: —6.9 || —6.4 
10° .|—54.0 —54.5 —49, 8 —A7 3 —49 6 

| 4.9 | 95 =26/8 peas | 54 
44 |—58.9] —57.0} —49.6 —53.4 —54.7 

| —2.4 _—e | —4.0 20 = 93 
42 |—61.0 —58.0) —53.6 —55.4 57.0 

Le iat ALO =) | —1.0 || =4.0 
13 | —62.0 —59.0 —54.6 —56 4| 58 0 

—0.6 =0.6 | —0.6 | —0.6 || —O0.6 
44 |—62.6 —59 6 55.2} —57.0 —58.6 

| —0.4 | —0.4 | —0.4 | —0.4 —0.4 
45 |—63.0 —60.0 55.6 —57.4| —59.0) 

| —0.2 —0.2 =. Pee ece 
46 |—63 2 —60.2 —55.8 |—57 6) 59.2 

| l 

observations was not great enough for a reliable determination of 
this difference. Lastly I remark that the various balloon ascents have 

been made from different stations, Halide (in Danemark), Berlin, Paris, 

Strasbourg and Vienna and conseyuently the given values do not 

hold for one definite place, but for the mean of the area enclosed 

by those stations. 
After I had derived the temperatures given in table II, I got notice 

of two papers, treating of about the same subject, namely: J. Hany, 

Ueber die Temperaturabnahme mit der Hohe bis zu 10 Km. nach 

den Ergebnissen der internationalen Ballonaufstiege. Sitzungsberichite 

der mathematisch-naturwissenschaftlichen Klasse der K. K. Akademie 

der Wissenschaften Wien. Band 93, Abth. Ila, 8. 571; and S. 
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GRENANDER. Les gradients verticaux de la température dans les mmima 
et les maxima barometriques. Arkiv for Matematik, Astronomi och 

Fysik. Band 2. Hefte 1—2 Upsala, Stockholm. 

Of the results which Hann has given, up to a height of 12 kil., 

I have taken the means of groups of 3 months, which are printed 

in table I by the side of the values I had obtained ; the agreement of 

the two results, which for the greater part have been deduced 

from different observations, is very satisfactory. 

GRENANDER in his paper chiefly considers the relation between the 

changes of temperature and the barometer readings; his results cannot 
therefore be compared with mine directly, but probably we are most 

justified in comparing the variations of temperature at barometer 

maxima, with those which I have computed for clear weather. For 

great elevations, till nearly 16 kil., GrenanpEr also obtains with 

increasing height a small decrease of temperature. 

It is difficult to state with what degree of precision the tempe- 

ratures of table II represent the mean values for the different seasons; 

the deviations, especially at great heights, may perhaps amount to 

some degrees, but certainly they represent the mean distribution of 

temperature better than the values adopted in the various theories 

of refraction, and we can therefore derive from them more accurate 

values for the refraction. 

4. It is hardly possible to represent the relation between the 

temperatures in table II and the heights by a simple formula, and 

to form a differential equation between the refraction, the zenith distance 

and the density of the atmosphere at a given height, which can be 

easily integrated. 

Therefore I have followed another method to determine the refrac- 

tion corresponding to the distribution of temperature I had assumed. 

According to Rapav’s notations (Essai sur les refractions astrono- 

miques. Annales de l’Observatoire de Paris. Mémoires Tome XIX), the 

differential equation of the refraction, neglecting small quantities, is : 

l 
| (: _ RY — 3 so) dw 

ds = a’ ——____—— 7 - i oes 

Here is: 

R radius of the earth for 45° latitude, 

yr, radius of the earth for a given point, 

h height above the surface of the earth, 
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rr, th, 

uw, index of refraction at the surface of the earth, 
| eee: # » » height A, 

0, density of the air at the surface of the earth, 
density at the height 4, 

» temperature at the surface of the earth, 

/, height of a column of air of uniform density at 45° latitude, 

of a temperature 7¢,, which will be in equilibrium with the pressure 
of one atmosphere, the gravity being the same at different heights. 

According to Rerenavuit’s constants, we have /, = 7993 (1 + at,) 

meter, if @ represents the coefficient of expansion of the air. 

Between these quantities exist the following relations: 

Q 
t 

Q 
uw? =1-+4 2co (ce being a constant), o — 1 — — 

Qo 

0, . a R Rh 
Clie ed a Sl ET eS = (2 = -——- 

1+ 2co, sin 1 l, (7, +A), 

To determine the value of ds at each height, we require a relation 

between w and y or between @ and /, which can be obtained when 

we assume that the temperature varies according to Ivory’s theory, 

or that the temperature varies as represented in table II. For the 

same given values of z and w, the two values of ds in formula (I) 

can be computed by means of the first and by means of the second 

supposition, and the differences of these two values of ds can be 

found. By means of mechanical quadrature, we can then determine 

the differences As of the refractions s according to Ivory’s theory 

and according to table IT. 

The relations between y and w may be found in the following 
manner. 

5. If in a given horizontal initial plane, at a distance 7, from the 
centre of the earth, the pressure is p,, the temperature f, and the 

density of the air 9,, and in another horizontal plane, 2 kil. above the 

former, the pressure is p, the temperature f, the distance from the 

centre of the earth 7, and the density of the air oe, then we have 

(see RApDAv) : 

) a) da ah R Ri 7 D Rh 
l,d (“) = (“) eS cae d ( ) or "0 d (4) == is d (=) ’ 

Po Qo\r Qo% Ar RK \Po eo or 
: fe) Rh 

or, putting ~ = yj and 
0, Gant” 

Ra(2 == nays Sarat see Meee? (EL) 
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further is : 

L 
Pict ieee a (& at, = y = (1—B) 9, See (II) 
Po aes 1l-+at 

a (¢ Neans ted 

ea ae 

When dividing equation oye by (III), we get: 

if we put 

ay 
Po dd dy 

At — 
p 1—vd 7 

Po 
From the two last equations follows: 

= 
=% ao + a—m) I. . @y) 

According to Ivory’s theory a where 7 is a constant value 

(RapAvu assumes 0,2); if we introduce this relation into the equation 

(111) we obtain after integration : 

yj = 0,4 w = 1,8420681 Br tog (1) ee 
: R moe 

By substituting (VY) in (1) we can therefore calculate for each 

value of w the value of ds according to Ivory’s theory. 

6. Now I proceed to determine the relation between @ and y 

according to the temperature table II. 

Of two horizontal planes, one above the other, the first is situated 

n kil. (2 a whole number), the second n’ kil. (n’ = or <n-+ 1) 

above the surface of the earth; their distances from the centre of 

the earth are 7, and 7,, their temperatures ¢, and ¢, and the values 

of y, y, and y,. The temperature between 2 and vn’ varies regularly 

with the height and, to simplify the formulae, I suppose ¢, — ty 

: * a (¢ —t, ye 
proportional to 7, — y,, 80 that, if 3, = — Se 

1+-at,, 

R . : 
= (Yt — Ue) SS Cn. SD eee ee 
n 

R 
Hence follows — dye, d% and after substitution of dy in (IV) 

Tn 



and integration 

Piast —9,) —Wg(l— ow). . ._. (VID 

in which 1—o represents the ratio of the densities in the two 

horizontal planes. 

If we substitute »-+ 1 for n', we can find in table II the tem- 

perature for the two planes and hence also %,; as y, and y,4) are 

also known, we can derive from (VI) the value of ¢, and we can 

deduce from (VII) the ratio of the densities in those planes. By put- 
ting for mn successively O, 1, 2, ete. we can consiruct a table con- 

taining the densities of the air, D,, D,, D, etc. at the height of 

1, 2, 3, ete. kil. above the surface of the earth, the density at the 

surface being unity. 

It is easy to derive from this table the height of a layer of a 
given density d. If d< D, and > D,+41, the layer must be situated 

between » and n+ 1 kil., and we oniy want to know in which 
manner, within this kil., the density varies with the height / above 

the lower plane. 

We may assume: 

a — |(0—a, 

n 

Peel eo — J), 4.\,. hence a = — lg —_—. 

a being known, we may determine for each value of d,/ and 

also y. By substitution in (1) we find then for each value of o the 

value of ds. 

7. Now we are able to form the differences of ds after the theory 

of Ivory and after the table of temperatures LI, for values of w which 
increase with equal amounts, and then determine the whole diffe- 

rence of the refraction for both cases. 

For great values of < and small values of y and o the coefficients 

of dw in (1) will become rather large, which derogates from the 

precision of the results. 

This will also be the case when the differences of the successive 

values of w are large; small differences are therefore to be preferred, 

but they render the computation longer. 
Both these difficulties can be partly avoided if, according to 

Rapav’s remark, we introduce [/w asa variable quantity instead of o ; 

the value of ds thus becomes: 
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" Ge tiga 

ame = Va ed — coz + y 

or approximately : 

(VID) 

| 

“w 

‘Ve Var | 
j 

ds 

It is evident that for small values of @ the coefficient of dV@ in 

(VIII) is smaller than that of dw in (I), and that also the refraction 

in the lower strata will be found more accurately by means of the 

formula (VIII) than by means of (I). For if we increase V@ in 

formula (VIII) and w in formula (1) with equal quantities, beginning 

with zero, we find, that, from wo =O to w= 0,2, the number of 

values in the first case is twice as great as in the second case, hence 

the integration by means of quadrature will give more accurate 

results in the first case. 

Therefore I bave used the formula (VIII) and computed the coef- 

ficient of dV w for values of Wo, 0, 0,05, 0,10, 0,15... to 0,95. 

The density of the air which corresponds to (/w = 0,95, occurs 

at the height of about 18 kil. From the observations at my disposal 
I could not deduce reliable values for the temperature at heights 

above 16 kil.; yet it is probable that the gradients at those heights 

are small and I have assumed the temperature at heights of 17 and 

18 kil. to be equal to that at a height of 16 kilometers. 

In this way I have determined by means of mechanic quadrature, 

and an approximate computation of the refraction between V @ = 0.925 

and w= 0.95, the differences As of the two values of the refraction 

corresponding to Ivory’s theory and corresponding to the table of 

temperature IL in the part of the atmosphere between the earth’s 
surface and a layer at a height of about 18 kil. where /’o@ is 0.95. 

I have worked out this comptuation for the zenith distances 85° 

86°, 87°, 88°, 88°30’, 89°, 89°20’, 89°40' and 90°. 

An investigation, made for the purpose, showed me that in for- 
lo 

mula (VIIT) the terms re (y — 3ew) in the numerator 

in the denominator may be neglected for all zenith distances except 
z= 90°; therefore | have taken them into account in the computation 

of the horizontal refraction only. 

The 
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The results which I have obtained for the differences - 

4 s = Ivory—table of temperatures 

are the following: 

ee Wa Be TAT. 

To test the computations, we may compare the mean of the values 
of As for the four seasons, and the values of As in column 6 
which have been computed, independently the former, for the mean 
yearly temperatures, which are almost equal to the mean of the 
temperatures in the four seasons. Only for z= 89°40' and z— 90° 
do these values show deviations exceeding 0.1. 

From table III follows, 1 that for a distribution of temperature, 
as derived by me from observations, the refraction deviates percep- 
tibly from that deduced from Ivory’s theory, 2 that the differences 
in the refraction in the different seasons are about of the same order 
as the deviations themselves. I want it to be distinctly understood, 
1 that the adopted distribution of temperature above 13 kil. and 
especially from 16 to 18 kil. is uncertain, and 2 that I have not 
taken into account the refraction in the layers which are lying more 
than 18 kil. above the surface of the earth, in other words those 
layers where the density, as compared to that of the surface of the 
earth, is less than 1 —0,95?, or less than 0.0975. 

Refraction after Ivory — Refractions after the table of temperatures IT. 
— ——$$_____ 

Pee | | | eee aan ae Bestance Winter | Spring Summer | Autumn aie ePx mes ot gs 

| Winter | Spring Summer Autumn 

85° + 021 | + 0"78 + 066] + 0731 | + 049 | + 028 | — 0799 | — 0117 | + O18 

86° + 0.13 | + 4.26) + 0.95) + 0.30 | + 0.66 | + 053 | — 0.60 | — 0.29 | + 0.36 

87° — 0.47 | + 2.08] + 1.31] — 0.20 | + 0.66 | +143 | — 1.42 | — 0.65 | + 0.86 
880 — 3 93 | + 3.10) + 0.95] — 3.29 | — 0.83 | +340] — 3.93 | — 4.78 | 4 2.48 

38°30' | — 9.64 | + 3.06| — 0.67| — 8.51 | — 3.95 | + 5.69 | — 7.01 | — 3.98} + 4.56 
9° | 7-93.69 | + 1.08) — 5.45] —91.45 | 12.31 | 444.38 | —13.39 | — 6.86 | + 8.84 

89°20’ | —43.80 | — 3.17) —12 68) —38.77 | —24.51 | +19.29 | —24 34 | —11.83 | +-14.26 

gg |4"94"97, 43.07) —95.95|—1' 4446) —97.74 | 434.93 | —34.67 | 99.49 | $23.42 
oO" |—2 32.4 | —33.4 | —52.9 |—2 9.6 —1'30"9) 1'1"5 | —57.8 | —38.0 | +38.7 
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Physiology. — “An investigation on the quantitative relation be- 
tween vagus stimulation and cardiac action, on account of 

an experimental investigation of Mr. P. Wo.rterson’’ ’). By 
Prof. H. ZwAARDEMAKER. 

(Communicated in the meeting of December 29, 1906). 

The experiments were performed on Emys orbicularis, whose right 

nervus vagus was stimulated by means of condensator charges and 

non-polarising electrodes of Donpers*), while auricle and ventricle 

were recorded by the suspension method. The mica-condensators had 

a capacity of 0,02, 0,2 and 1 microfarad, the voltage varied from 

a fraction of a volt to 12 volts, occasionally even more. From this 

the intensity of the stimulus was calculated in ergs (or in coulombs 
by Hoorwee’s method). Only a part of this energy, passing through 

the nerve, when it is charged, acts as a stimulus. What part this is 

remains unknown, but it is supposed not to vary too much in the 

same set of experiments. In the typical experiments a summation 

took place of ten stimuli, succeeding each other in tempos of 7/, 

second; in particular experiments single stimuli or other summations 

were investigated. Of fatigue little evidence is found with our mode 

of experimenting, rather a somewhat increased sensitiveness of the 

vagus system towards the end of a set of experiments. 

Stimulation of the right vagus produces in the tortoise in the first 

place lengthening of the duration of a cardiac period *), in such a 

way that in the second period, after a stimulus, starting during 

the cardiac pause, the diastolic half of the period is considerably 
retarded, while in some subsequent periods a decreasing retardation 
of the diastolic part of the period is noticed. 

Then stimulation of the vagus causes contraction to become feebler, 

this phenomenon becoming gradually more distinct and reaching its 

maximum some periods after stimulation. This decrease of contractile 

power is primary, since it may also occur when any change in the 

automatic action is absent (e.g. when the stimulus consists of one 

condensator charge and when the left vagus is stimulated). Finally 

vagus stimulation as a rule produces slackening of the tonus, rarely 

tonic heightening. Changes in conductivity were only observed once. 

1) For details we refer to the author’s academical thesis, which will be published 
ere long. 

*) Onderzoekingen Phys. Lab. Utrecht (3) Vol. I p. 4, Pl. I, fig. 1, 1872. 

5) The duration of a cardiac period is reckoned from the foot-point of a sinusal 

contraction or if this is not visible, of an auricular contraction, to the foot-point 
of the next following sinusal resp. auricular contraction. 
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The negative chronotropy holds good for sinus, auricle and ven- 

tricle to the same extent, the negative inotropy exists exclusively 

for the sinus and the auricle, is mostly positive for the ventricle, if 

it is found; the tonotropy is met with in auricle and ventricle. 

A latent stage of the phenomenon, measured by the time-difference 

between vagus stimulation and vagus action, was always observed. 
It is smallest for the inotropy; already the first period often shows 

an enfeeblement of the contraction, which in the subsequent periods 

increases still further. The latent stage of the chronotropy is greater, 

for only in the second, sometimes in the third period, a retardation 

is noticeable; on the other hand this phenomenon reaches its maximum 

at once. Inotropy and tonotropy do not coincide. On the contrary, 

the maxima of effect form the following series as to time: first 

maximum of chronotropy, then maximum of tonotropy, finally 

maximum of inotropy. 

In regard to the sensitiveness for vagus stimuli, we remark that 

for the ipotropy the “threshold value” lies below that for the chrono- 

tropy and for this latter lower again than for the tonotropy. So we have: 

Threshold value for inotropy < idem for chronotropy < idem 

for tonotropy. 

From the fact that dromotropy did not occur in our experiments, 

one would infer that the threshold value of the dromotropy lies 

higher still in the present case. _ 

Physiologists are generally convinced that the rhythmic processes 

at the bottom of the cardiac pulsations, are based on chemical actions 

in the cardiac muscle. Leaving apart the founder of the myogenic 

theory TH. W. ENGELMANN, we mention some authoritative writers, 

Fano and Borazzi in Ricuer’s Dictionnaire and Hormann in Nacet’s 

Handbuch, who embrace this point of view °*). 

Also experimental results may be adduced in support of this 

theory. SNypDER *) showed that the frequency of the contractions with 

respect to temperature follows exactly the law, formulated by van 

‘t Horr and Arruenius for chemical reactions *) and experiments, 

independently made by J. Guwin, entirely confirmed this. ‘) Whereas 
the influence of temperature is considerable, that of pressure is very 

small. This agrees with the small significance of external pressure 

for so-called condensed systems, i. e. systems in which no gaseous 
phases occur. 

') Fano and Borazz, Ricuet’s Dict. de physiologie t. IV. p. 316. 

*) Snyper, Univ. of California Publications I. p. 125. 1905. 
5) E. Couen, Voordrachten. Biz. 236 1901. 

‘) J. Gewin, Onderzoekingen Physiol. Lab. Utrecht (5). Dl. VII, p. 222. 
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For the automatism it seems to me to be settled, that it must be 

based on chemical processes. 

For the remaining cardiae properties: conductivity, local sensitiveness 

to stimuli, contractile power and tonicity the decision is more 

difficult. The law of van ’r Horr-ArrRHENIUs concerning the relation 

between reaction-velocity and temperature can only be applied if 

the duration of the reaction is known. Now the velocity of condue- 

tion, measured with this purpose, increases with temperature up to 

a certain optimum‘) whereas correspondingly the duration of the 

contractions is diminished’). The local excitability, however, has 

not been studied yet from this point of view, while also for the 

contractile power the time factor is still lacking. But the contraction 

of a muscle and also that of the cardiac muscle is so universally 

considered a truly chemical process, that the reader will not object 

to classing it among chemical phenomena without further arguments. 

As to the tonicity we are absolutely in the dark, although we know 

that rise of temperature chiefly brings about a change, in which 

the tonus is definitely abolished. 

In preparing his thesis Mr. Worrrrson had chiefly to deal with : 

1. changes in the automatism (chronotropy) ; 

2. changes in the contractile power (inotropy). 

Both these changes are purely chemical phenomena, as was shown 

above. 

For chemical processes the law of GuLDBERG and Waagu holds *), 
and we may apply this law to the processes here dealt with. For 

this purpose we shall have to give a nearer definition for our special 

case of the conception ‘times of equal change’. 

By “times of equal change” we mean the times in which a defi- 

nite reaction has taken place between two accurately fixed and in 

the corresponding cases analogous terminal points. The total duration 

of a cardiac period is such a characteristic time element, the begin- 

ning and end of which cannot be determined with the balance after 

chemical analysis, but still are determined by biological characteris- 

tics. The time between the beginning and the end of a cardiac 

period may be looked upon as a time of equal change provided no 

1) Tu. W. Eneetmann. Onderz. Physiol. Lab. Utrecht (3d series) III p. 98. Above 

the optimum the conductive velocity diminishes again. 

2) Hormann I. c. p. 247. Recently confirmed by V. E. Niersrrasz; vide acad. thesis, 
Utrecht 1907, p. 145, fig. 22: a fall in temperature of 9° gave an increase of 

the duration of the systole to the double value. 

5) E. Conen. Ned. Tijdschr. v. Geneesk. 1901, Vol. I, p. 58. Cf. also ZwAARDEMAKER, 
ibidem, 1906. Vol. IL. p. 868. 
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inotropic changes occur’) and the mechanical resistance which the 
heart has to overcome, has remained the same. 

These premisses made, we may at once apply the fundamental 
equation of GULDBERG and Waacr’s law ; 

== kCn 

Here & is a constant, the constant of the reactional velocity, C is 
the quantity of the substance, taking part in the reaction, 7 is the 
exponent, determining the so-called order of the reaction, while ¢ 

indicates the reactional velocity. About the exponent » nothing can 

be stated a priori for the heart. Toxicological experiments, in which 

the quantity of the reacting substance diminishes, might perhaps 

teach us something in this respect; perhaps also experiments on 

fatigue might give us some clue; at present, however, no data at 

all are available. Whether there are intermediate reactions and in 

what number, cannot be ascertained. Under these circumstances | 

assume, quite arbitrarily, that the present case is the simplest and 

that the exponent is unity. If later this assumption turns out to be 
wrong, our calculations will still apply, mutatis mutandis, without 

losing their meaning. In this simple case the formula runs: 

g=—kC. 

When the vagus is stimulated a very marked alteration of the 

times of equal change is noticed. The reactional velocity of the 
hypothetical chemical process, which les at the bottom of the auto- 

matism, must consequently undergo a very considerable change. 

Such a change cannot take place unless either / or C' are modified. 

In the literature on the subject both views are put forth, but only 

the conception that / changes, leads to a clear explanation without 

further auxiliary hypotheses. It also fits in best with a recent paper 

of Martin *), according to which vagus-inhibition is aseribed to the 

action of A-ions and is counter-acted by rise of temperature. The 

significance of the ions of the alkalies and alkaiine earths for the 

cardiac muscle is indeed by no means fully explained, even after 

the mumerous investigations of J. Lozs and his followers and critics 

— they are regarded by some as the cause of the continually 
excited condition of the cardiac muscle, as the stimulus for the 

automatism *), by others as the condition, necessary for keeping the 

') In the ventricle vagus-stimulation produces no inotropy. 

*) Martin. Amer. Journal of Physiol. Vol. XI, p. 370, 1904 (Martin himself seems 

to assume a compound of K-ions with C). 

3) Wencxesacu. Die Arythmie etc. Eine physiol.-klinische Studie. Leipzig. 1904. 

40 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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active substances in solution!) — they certainly do not enter into 

simple chemical combination with the cardiac substance, by which this 

latter would become unfit. If this latter were the case, the life- 

prolonging influence of Rrycxr’s solution and the remarkable anta- 

gonism of Na and X on one hand and Ca on the other, would be 

entirely unexplainable. 

By placing the principal weight on the hypothesis that the vagus 

alters the constant of velocity, of reaction we were led to the applica- 

tion of the formula for the catalytic acceleration of a chemical reac- 

tion. The catalytic acceleration is here negative. The explanation of 

the formula will be found in G. Brepie’s work. It runs: 

a7 Sp ee 
Wa 

By application to our experiments, the normal duration of the period 
being indicated by (¢,—7,) the altered one during the principal retardation 

by (t, —?,), a relation became evident which appears to be constantly 

found between the intensity of the vagus stimulus on one hand and 

the retardation, indicated by 6 on the other. (An examination of the 

curves, recorded by the heart would show that the retardation affects 

principally the diastolic part of the process, but since for this part, 

taken separately, the times of equal change cannot be sharply deter- 

mined, our calculations enclose the whole process). 

When the vagus stimulus increases the retardation increases also 

very gradually, until a definite degree is reached; from this moment 

the reactional velocity of the hypothetical process of the automatism 

remains the same, independent of any rise in the intensity of the 

stimulus. Only by increase of the duration of the vagus stimulus, a 

new retardation may be produced, which is pretty well proportional 

to the extension of the duration of the stimulus. For a warmed 

heart all this holds without any alteration. 

1) H. J, Hameurcer. Osmotischer Druck und Jonenlehre. Bd. III, p. 127. 
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Exp. 8, VI. 1906. Emys orbicularis. Right nervus vagus stimulated 
on non-poiarising electrodes with charging currents. Capac. of the 

condensator 1 microfarad. Number of stimuli LO (2 per second). Between 

the series of stimuli pauses of 4 minutes; external temperature 18° C. 

Initial § Total Micro- : : 
| Ergs 8 

coulomb | | retard. in °/, | retard. in °/, 

0.80 | 3.20 | 13 23 0.0392 

0.82 3.36 | 92 143 0.1662 

0.84 | 3.53 95 133 —0.1694 

0.86 | 3.69 | 282 347 0.2555 

Gee |r: 3.87- | 320) |} BB —0.2716 

0.9 | 405 | 32 | 364 0.2635 

0.92 | 4.23 329 360 —0.2648 

0.94 4.49 346 64 | —0.9765 

0.96 4.61 337 366 —0.9575 

0.98 4.80 337 398 —0.2667 

1.00 5.00 | 343 | 398 —0.2679 

1.04 5 AA 333 394 —0.2570 

1.08 5.83 346 40 —0.2765 

1.12 6.27 333 367 —0.2661 

1.20 7.20 | 330 322 —0.2480 

1.28 8.19 | 346 373 0.2592 

1.36 9.95 336 370 0.9575 

1.52 11.50 343 374 0.2679 

1.68 14.41 360 421 —0.2790 

1.84 16.93 340 377 0.2673 

3.68 67.74 S74 | 405 —0.2723 

5.52 | 159.35 a.0O| 8 —0.2798 
7.36 | 270.85 371 AMY —0 2723 

9.20 | 493.90 357 377 —0.2702 

41.04 | 609.40 333 347 —0.2661 

0.80 3.20 330 343 | —0.2654 
| 



( 596 ) 

Exp. 15, VI. 1906. Emys orbicularis, Right nervus vagus. Non- 

polarising electrodes. Charging currents. Capac. 0.2 microfarad. Number 

of stimuli 10; (2 per second). Resting pauses between the series of 

stimuli 2 minutes. Experimental animal in 0.6°/, NaCl solution, 

heated to 28° C. 

Micro- | pees oe. 42nd idem| Total 4 3 

cou Ergs jable in the second | “a bs _retar- | : 
Lassie | Fs ao period dation cols col. 4 

| 7 | 

0.48 | 5.76 | 13 | 139 | 294 | —0.0785 | —0.3889 

0.496 | 6.45 | 20) | 99 | S456, | 0: Sue 

0.504 | 6.35 | 20 439 | 905 | 0.4114 | —0.3889 

0.52 | 6.76 | 26 | 452 | 994 | —0.4404 | —0.4035 

0.552 | 7.61 | 26 | 152 | 994 | —0.1404 | —0.4035 

0.6146 | 9.48 | 26 | 152 | 218 | —9.1404 | —0.4035 

0.74% | 13.83 | 98 | 499 | 970 | —0.1587 | —0.4762 

1.446 | 31.43 24 157 | 270 | —0.1261 | —0.4579 

5.58 [455.65 | 28 ely) | 984 | —0.4587 | —0.4579 

Two particulars deserve notice: 

1. that the greatest retardation falls not in the second but in the 

third period. } 
2. With stimulation with 7,61, 9,48, 13,83 ergs turbulent motions 

occur in the ventricle, followed by the post-undulatory pause, namely 

in the first systole after the preliminary retardation. 

The relation brought to light in both these cases might be explained 

by assuming with Laneiny that the vagus fibres do not reach the 

heart directly, but first pass a station of the intra-cardial ganglia. 

If this be the case the stimulated condition of the prae-ganglionic 

fibres will only be communicated to the post-ganglionic by contact 

in the ganglion cells. But then the quantitative coercion of WEBER’s 

law holds for these ganglion cells and a relation as sketched above 

is not astonishing. To this conception may be objected that probably 

with stimulation of the post-ganglionic fibres (in the so-called n. 

coronarius ') the same relation will be found in its principal features. 

If on this point not only preliminary, but decisive experiments will 

have been made, it will be found that the just-mentioned explanation 

1) On the n. coronarius as a post-ganglionic nerve vide J. Gewin, |. c. 82. 
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is untenable. Mr. WoLtrrson accordingly gives an alternating expla- 

nation which, in my opinion possesses some probability, and which 

agrees with Martin’s hypothesis on the nature of the vagus action. 

Let us suppose that by the action of the vagus some catalytic 

substance — say Martin’s A-ions — is produced in the receptive 
substance of the cardiac muscle, then the above stated quantitative 

relation will be explained, if we may assume that the substance, 

produced by vagus action, is only to a limited extent soluble in the 

medium. For with a small production of the catalyser this latter 

will be dissolved and will increase the retardation, but when the 

medium has become saturated with the catalyser, further secretion 

is without effect. It must further be assumed that the newly formed 

catalyser is at once removed from the substance by diffusion or is 

deposited in the form of indifferent compound, for the vagus action 

is known to cease after a short time. Only when the duration of 

the stimulus is increased and catalytic substance is again and again 

produced, the disappearance of the catalyser may be compensated 

and the retardation may be lasting. 

The second chemical process we meet in Mr. Wotrtrrson’s thesis, 

that of the contractility, cannot be submitted to the above followed 

treatment, since the time-factor is wanting. We tried to introduce 

this latter by seeking the relation between the intensity of the vagus 

stimulation and the duration of the inotropic action, but this latter 

is not itself a chemical reaction, but only a modification of the 

conditions under which periodically recurring reactions take place. 
The negative inotropy may at the utmost be regarded as a diminution 

of the quantity C in the formula g=C, which amounts to the 

assumption that by vagus stimulation the quantity of the just men- 

tioned substance, undergoing chemical change, is diminished. but 

this also is uncertain, for in the chemical reaction of the automatism 

C represents part of Laneiny’s receptive substance, which is different 

from the contractile substance. So I prefer to keep the two chemism 

apart and to consider the inotropy entirely by itself. 

Placing ourselves on this point of view, we notice: 1. that with 

feeble and increasing vagus stimuli the inotropic effect on the 

sinus and auricle gradually increases with the intensity of the 

stimulus, until a certain degree of inotropy has been reached, 
after which it does not increase further for any intensity of the 

stimulus; 2. that aa analogous relation holds good for the duration 

of the inotropic effect; 3. that the pessimum of contractility is found 

about the end of the first third or fourth part of the total duration, 
for which the inotropy exists. 
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Summarising we arrive at the following conclusions: 

A. the chronotropy, produced by stimulation of the vagus, may 

be reduced to a negatively catalytic action on a chemical process 

which lies at the bottom of the pulsation. 

B. the inotropy admits by analogy of a similar interpretation, but 
it is impossible to prove this, since at present no times of equal 

change can be determined here. 

As secondary results we mention: 

a. the existence of twofold negatively chronotropic fibres in the 

right vagus of the tortoise. 
b. a particularly great sensitiveness of the heart of the tortoise for 

inotropy of the auricle by vagus stimulation, in such a degree that 

a single condensator discharge may produce the stated modification 

and that also with cumulative stimulation it appears sooner and 

lasts longer than the chronotropy. 

c. the occasional occurrence of spontaneous cardiac turbulence in 

a warmed tortoise heart, immediately after a principal retardation 
brought about by vagus stimulation. 

BH RURGAT a i 

In the Proceedings of the meeting of December 29, 1906. 

p. 504, line 13 from the bottom: for 2 read 4 

p. S11, line 5 from the top: for 0.052 read 0.104 

(February 21, 1907). 
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Chemistry. — “Contribution to the knowledye of the action of absolute 
nitric acid on heterocyclic compounds.” By Prof. A. P. N. 
FRANCHIMONT. 

(Communicated in the meeting of January 26, 1907). 

When searching about twenty years ago for the rules according 

io which nitric acid’) acts on hydrogen compounds, not only on 

those which contain the hydrogen in combination with carbon, but 

also on those which contain it in combination with nitrogen, I 

found that the hydrogen combined with nitrogen to the atomic group 

NH, does not act on nitric acid, when, in cyclic compounds, this 

group is placed between two groups of CO, but it does act if placed 

therein between the group CO and a saturated hydrocarbon residue °), 

and it may be added: not if placed therein between two saturated 

hydrocarbon residues, although I have not mentioned this previously. 
It is a peculiar fact that the hydrogen of the group NH does not 

act on nitric acid if this group is placed between two similar groups 

such as CQO, or saturated hydrocarbon residues, but it does act if 

placed between two dissimilar ones; so that it might be thought 
that a tautomeric form is essential for the reaction. 

There are, therefore, in reality three rules, which, when considered 

more closely, apply also to acyclic compounds and which, although 

the cycle also exerts an influence, appear to spring mainly from the 

nature of the substance in which the group NH is placed: viz. 

secondary amine, amide or imide. In acyclic amides it was found 
that not only the acyl group in particular, but also the alkyl group 

exerts an influence on the reaction; we may, therefore, expect 

something similar in the cyclic ones. 

The first of the above rules was mainly deduced from the behaviour 

of penita- and hexa-atomic cyclic urea derivatives, but was confirmed 
also in the case of other compounds. For instance 

CO—NH 
CO—N H a 

ie San Fe a bee an | 

CO—N H CO—NH 
parabanic acid alloxan 

') Namely the real (absolute) acid which may be obtained by distilling a mixture 
of nitric acid 1.42 with twice its weight of sulphuric acid at a gentle heat under 
reduced pressure (Recueil XVI. p. 386). 

*) Which, however, weed not be the group CH, as stated wrongly by Harries 
(Annalen 327. p. 358). The pages of the Recueil referred to by him contain 
exactly the proof of the contrary. | have also never spoken of ‘héchst concen- 
trirter Salpetersiiure’’ as he says, and of which he thinks he must ‘den Begriff 
festlegen”, and for which he then recommends something which in many cases 
cannot give a good result. 
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could be evaporated with nitric acid on a boiling waterbath without 

suffering any decomposition, 

CO—NH 
CH,—CO | 3 

and also \u The CH, CO 

bi Ae 
CH,—CO CO—NH 

succinimide malonureide 

gives a nitroderivative, but with the nitro-group attached to the 

carbon; the two NH-groups do not act. 

The second rule is also based mainly on the behaviour of penta- 

and hexa-atomic cyclic urea derivatives. For instance 

CH,—NH 

a \co 
Biee 
CH,—NH 
ethyleneureine 

gave a dinitroderivative, which on boiling with water yielded carbon 

dioxide and ethylenedinitramine. To this I may now add: 

CH,—NH 
| x 

CH. =--_60 
) ys 
CH,— NH 

Trimethyleneureine 

of which I have stated recently with Dr. FrimpMann that it gives 
directly a dinitroderwative, which on boiling with water yields carbon 

dioxide and trimethylenedinitramine. 

CH,—NH 

; | eo and its methyl derivatives 

CO—NH 

Hydantoin 

CH,—CH—NH (CH,), C —NH CH,—NH 

ecg 00 eee eo |. 00 
CO—NH CO—NH CO—N.CH, 

a lactylurea acetonylurea 1 Nimethylhydantoin 

gave mononitroderivatives, which on boiling with water were decom- 

posed with evolution of 1 mol. of carbon dioxide and formation of 

a nitramino-amide; for instance nitrohydantoin yields nitramino- 

acetamide. 

41* 
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CH,—NH 

| 
To this I may add the CH, CO recently investigated with Dr. 

eats 
CO —NH 

hydro-uracil 

(8 lactylurea) 

FriepMANn, which yields, equally readily, a mononitroderivatiwe’), 

which on boiling with water yields, in an analogous manner, carbon 

dioxide and 6 nitraminopropionamide, from which we have prepared 

8 nitraminopropionic acid, also its barium and silver salt. 

This decomposition proves the position of the nitrogroup, and at 

the same time these substances are all a confirmation of the first rule 

because the group NH, which is placed between the two CO-groups, 

has not taken part in the reaction. 

CH, 
CH,- CH, aa 
Eee hae 
CH, CO and Ge UC 

am, | | 
CH,—NH CH,.CH— NH 

a Piperidone a methylpyrrolidone 

gave with nitric acid N,O, presumably derived from a nitro-compound 

unstable towards nitric acid at the ordinary temperature ; for it has 

been shown that some nitramides are decomposed by nitric acid at 

the ordinary temperature with evolution of nitrous oxide; whilst 

others may be evaporated with this acid on a boiling waterbath 

with impunity. ; 

The rule was confirmed five years ago with cycles in which 

oxygen takes part, for instance 

vH 
NH—CH /NCH, 

Vg | | 
GO | and” <" COM> Mars 

. | i tee 
0——ons O—CH, 

u. célo tetrahydro-oxazole. wu. céto pentoxazolidine 

gave on evaporation with nitric acid, mononitroderivatives, which on 

\) Tare: stated about this substance (Ber. d. D. ch. G. 33 p. 3385) that it is 

not affected even by prolonged boiling with concentrated nitric acid; evidently he 

has not used absolute nitric acid 
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boiling with water were decomposed with formation of carbon 
dioxide and a nitramino-alcohol. 

CH,—CH, 

The third rule is derived from the behaviour of CH, CH, which 

CH,—NH 
piperidine 

yields with nitric acid a nitrate, but not directly a nitro-compound. 

This, however, may be prepared from a number of piperidides, to 

which we added recently the piperidides of suw/phuric and succinic acids, 
or from the nitrate with acetic anhydride as found by Bampercer. 

CH, —NH—CH, 
I have noticed recently that | | behaves in the same 

CH,—NH—CH, 
piperazine. 

manner. 
The above cited new investigations and those which follow origi- 

nated in a research by Mr. A. Donx. He had prepared for practice 

CH,—NH—CO 
| and we treated this with nitric acid. But even 
CO— NH—CH, 

_glycocol anhydride 

on evaporation on a boiling waterbath it gave no evolution of 

nitrous oxide, no nitroderivative, but a nitrate. I had expected this 

CH,—NH—CH, 
behaviour sooner from the unknown | | which is one of its 

CO— NH—CO 

iminodiacetic imide 

isomeres, and in which one NH-group is placed between two CO-groups 
and the other between two saturated hydrocarbon residues, but not 

from glycocol anhydride in which each NH-group is placed between 

CO and a hydrocarbon residue, and about whose structure no doubt 

could be entertained. At most, we might suspect here a tautomer 
which does not react with nitric acid, or in all other cases in which 

nitric acid does act we might assume a tautomer and not here. *) 

Mr. Donk’s nitrate, a very loose compound, appeared to be a mono- 

nitrate, and on applying BamBercer’s method for amines (treatment 

1) Harries l.c. suspects in 1 N methylhydantoin a tautomer CH;—N 

| COH 

CO —NCH, 
which, however, yields with nitric acid the same nitromethylhydantoin. 
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of the nitrate with acetic anhydride) he obtained a mononitroderwatie, 

of which he proved the structure by acting on it with methyl 

alcoholic potassium hydroxide, which yielded a properly crystallised 

acid, namely NO, NH CH, CO NH CH, CO, H. 
nitraminoacetylaminoacetic acid 

The reaction therefore took place as in all other cases where 

NO, and CO are both linked to a nitrogen atom; by absorbing the 

elements of water H and OH the group CO leaves the nitrogen 

whilst NO, remains attached to it. 

After the departure of Mr. Donk, who did not wish to prosecute 
this matter, Dr. FrrepMann took it ap and obtained the dinztro-compound 

from glycocol anhydride by treatment with excess of nitric acid and 

acetic anhydride. By the action of ammonia on dinitroglycocol anhydride 

nitroaminoacetamide was obtained, and by means of sodium hydroxide 

nitraminoacetie acid was formed in such a quantity that the formation 

of two molecules was no longer doubtful. The position of the two nitro- 

groups on the nitrogen atoms has, therefore been sufficiently proved. 

CH,-CH—NH—CO 
| | when evaporated with nitric acid also 
CO—NH—CH-CH, 
Alanine-anhydride 

gave a nitrate only, which on treatment with acetic anhydride 

yielded a dinitroalanine anhydride. 

These results, which formed a first deviation from the rule previously 

laid down, incited to further research. For it was shown plainly 

that besides the placing of the group NH between CO and a saturated 

hydrocarbon residue, the other part of the molecule may also influence 

the reaction in such a manner that a direct nitration is prevented, 

even on warming, although nitro-compounds actually exist. 

The question, therefore, arose as to the behaviour of those isomers 

of glycocol anhydride, which possess the same atom-groups, but 

arranged in another order. 

There may be eleven cyclic compounds which consist of two 

groups of NH, two groups of CO and two groups of CH,, of whom 

however three only are described in the literature, namely : 

CH,—NH—CO CH,—CH, CO CO—NH —CH, 
| | and =! 
CO —NH-—CH, NH— CO—NH CO—NH—CH, 

glycocol anhydride hydro-uracil ethyleneovamide 

The last one, however, only in an impure condition, as described 

by Horrmann in 1872, and which we have not yet succeeded in 

obtaining in a pure state. 

This substance had a special importance. It has the two grcups 
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NH, also between CO and CH,, and, according to the rule, it ought 

to yield readily a dinitro-derivative; either stable or unstable. Still 
it might be that it was not attacked at all by absolute nitric acid, 
for if we remember that diacetamide, although slowly, still evolves 

N,O with nitric acid and, therefore, presumably forms an unstable 

nitro-compound under those circumstances, and if we compare this 

with the cyclic sueccinimide, which is not attacked at all even on 

warming and which is connected with it in such a manner that if 

contains two hydrogen atoms less, and thus causes the cyclic combi- 

nation, one feels inclined to attribute to the cyclic combination the 

prevention of the action of the nitric acid. We might also compare 

ethyleneoxamide to dimethyloxamide which is readily nitrated, and 

is related to it in the same manner as diacetamide to succinimide, 

and if the cycle formation has the same effect here as it has in 

the other case, ethyleneoxamide should not be attacked. 

Preliminary experiments with the impure substance showed that 

no stable dinitro-derivate app2ars to be formed; at most, one which 
is at once decomposed by nitric acid, or it is not attacked at all. 

A very slow evolution of N,O and CO, takes place, but this may 

be due to the impurity. 

Of the eleven possible isomers there are only two urea derivatives 
namely hydro-uracil, which, as stated, conforms to the rule and gives 

CH,—CO—CH, 
a mononitroderivative. The second is | | . RiiGHEMeEr 

NH —CO—NH 
acetoneureme 

thought in 1892 that he had obtained this substance by the action 

of chloro-formic ester on diaminoacetone, but it was merely a surmise; 

no analysis was made and the properties were not investigated ; and 

from our investigations it is extremely doubtful whether he had this 
substance in hand, for although we made the experiments in various 

ways we could obtain nothing else but acetondiurethane, from which 
a dinitro-derivative was readily obtained. A number of other methods 
for preparing acetonureine from diaminoacetone were tried but always 

without good result. In the meanwhile we are continuing our experi- 

ments for, we attach great importance to this substance as a second 

urea derivative, seeing that the first one conforms to the rule. 

CO—CH,—CO 
A fifth isomer would be | | which we have tried in 

NH—CH,—NH 
methylenemalonamide 

vain to prepare from malonamide and formaldehyde. In this case 

it is the group CH, of the malonic acid which appears to react 
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principally; but even with the amide of dimethylmalonie acid and 

formaldehyde we have not arrived at the desired result. Methylene- 

malonamide is of importance for this reason, that the CH,-group of 

malonic acid might give a nitroderivative, whilst this may be equally 

expected from the two NH-groups. 
CH,—NH—CH, 

A sixth isomer is the already quoted | | of which one 
CO —NH—CO 
iminodiaceticimide 

might expect that it should yield with nitric acid only a nitrate, 
but not a nitro-derivative. 

On heating the diamide of iminodiacetie acid in vacuo, Mr. JONGKEES 

obtained a substance which sublimes and has the composition of 
the imide. This, however, does not behave as was expected, but 

when evaporated with nitric acid, seems to give a nitro-derivative, 

whose properties are, however, somewhat different from the usual 

ones of nitramines or nitramides. 

The last isomer of some significance for the problem under con- 

sideration, for the preparation of which no experiments have, as yet, 
CO—NH —CH, 

been made, would be | | , in Which one NH-group between 
CO—CH,—NH 

CO and CH, renders probable a nitro-compound, whereas the second, 

placed between two CH,, could only yield a nitrate. 

The other four are derivatives of hydrazine, and are of no importance 

for our problem, because the two NH-groups contained therein are 
CH,—CO—NH 

in a state of combination. One of those | | has been pre- 
CH,—CO—NH 

pared by Dr. FriepMann and, when it was brought in contact with 

nitric acid a violent evolution of red vapours was noticed, evidently 

caused by oxidation. 

The details of these researches which of course, are being continued 

will appear in the “Recueil des Travaux chimiques des Pays-Bas.” 

But it is evident that the second rule will have to be altered, 

namely in that sense that the direct nitration (if any) of the hetero- 

cyclic compounds, which contain NH placed between CO and C,H,, 

depends also on the manner in which the groups, between which 

the group NH is placed, are combined; therefore it is the same as 

has been noticed with acyclic compounds. In how far the eyele itself 

plays a role has not yet been satisfactorily made out but we may 

point, provisionally, to one peculiarity, namely, that the three com- 

pounds which do not seem to conform to the previously established 

rule contain the NH-groups in the para position in regard to each other, 

a 
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Chemistry. — “Ona telrucoueponent system with two liquid phases.” 

By Prof. F. A. H. ScHREINEMAKERs. 

(Communicated in the meeting of January 26, 1907). 

Although in the systems of three components with two and three 

liquid phases there may occur many cases which have been predicted 

by theory, but have not yet been realised by experiment, I have 

still thought it would be as well to investigate a few systems with 

four components to have a glance at this as yet quite unknown, 
region. 

I will now describe more fully a few of those systems built up 

from the substances: water, ethyl alcohol, lithium sulphate and 

ammonium sulphate. 

We may represent the equilibria with the aid of a regular tetra- 

hedron as in Fig. 1; the angular points represent the four components : 

Li 

Fig. 1. 

W = water, A = alcohol, Li = lithium sulphate, Am = Ammo- 
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nium sulphate. The side AW being invisible has been left out, also 

the side Li Am. 
Li,SO,.H,O and the double salt LiNH,SO, may also occur as 

solid phases besides Li,SO, and (NH,),SO,. The first is represented 

by a point Zon the side /iIV, the second by a point D, not 
indicated, on the side Li Am. 

The equilibria occurring at 6°5 are represented schematically 

by Fig. 1. The solubilities of the (NH,),SO, and of the Li,SO,. H,O 
in water are indicated by the points a and e; point c¢ indicates 

the solubility in water of the double salt and must, therefore, be 

situated on the line HD (the point D is on the side Li Am). As 
Li,SO,, (NH,),S0, and LiNH,SO, are practically insoluble in alcohol, 

their solubility may be represented practically by the point A. 
The curve @A is the saturation line of the (NH,),SO,; it indicates 

the aqueous-alcoholic solutions which are saturated with solid 
(NH,),50, - 

The aqueous-alcoholic solutions saturated with Li,SO, and Li,SO.H,O, 
are represented by the curve eA which, however, must show a 

discontinuity in the immediate vicinity of the point A, for the curve 

consists of two branches, of which the one to the right indicates the 

solutions saturated with Li,SO,.H,O and the one to the left those 

saturated with anhydrous Li,SO,. 

The equilibria in the ternary system: water, lithium sulphate and 

ammonium sulphate are represented by the curves ab, bcd and de, 
which are situated in the side plane of the tetrahedron. ad is the 

saturation line of the ammonium sulphate, dcd that of the double 

salt LINH,SO,, de that of Li,SO,.H,O. In my opinion, however, 

this latter is not quite correct, for, according to several analyses, 

Lithium sulphate seems to mix with the ammonium - sulphate, 

although only to the extent of a few per cent, so that branch de 
indicates solutions saturated with mixed crystals. As, however, I have 

not accurately investigated this mixing, ' will continue to speak in 

future of lithium sulphate monohydrate Li,SO, . H,O. 

Let us now look at the equilibria in the quaternary system. The 

surface Am or Aabb,h,b,A represents solutions saturated with solid 

ammonium sulphate; surface D or Ab,k,b,bcdA represents the solutions 

saturated with LiNH,SO,; the curve Ac of this surface has as pecial 

significance, because it indicates the solubility of LiNH,SO, in aqueous- 

alcoholic mixtures. The points of the surface D facing the curve Ac 
represent solutions which, in relation to the double salt, contain an 

excess of (NH,),5O,; the points behind this line show solutions 

containing an excess of Li,SO,. 
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The curve Ac must therefore, be situated in the plane passing 

through AW and the point D of the side Lz Am. The surface Li or 
Ade indicates the liquid saturated with Li,SO, or Li,SO,H,O, or 

with the above mentioned mixed crystals; it must, therefore, consist 

of different parts which however, are not further indicated”in the 
figure. At the temperature mentioned here (6°5) systems of two liquid 

phases may occur also; in the figure these are represented by the 
surface L,L, or 6,K,b,K, which we may call the binodal surface; this 

binodal surface is divided by the line A,X, into two parts LZ, and L, 
in such a manner that each point of L, is conjugated with a point 

of L,. Two conjugated points indicate two solutions in equilibrium 

with each other: with each solution of the surface L, a definite 

solution of the surface 1, may be in equilibrium. 

Instead of a critical point, such as occurs with ternary mixtures 

at a constant temperature and pressure, a critical line is formed here, 

represented by A,A,. Each point of this line represents, therefore, 

a solution which is formed because in the system of two liquid 
phases L, + ZL, the two liquid phases become identical. Let us now 

look at the sections of the different surfaces: Ad then represents the 
solutions saturated with LiNH,SO, as well as with Li,jSO,H,O; Ad, 

and 6,5 indicate the liquids saturated with LiNH,SO, and (NH,),SO,. 
The intersection of the binodal surface with the surface Am namely, 

the curve 4,K,b, indicates the system: L, + L, + (NH,),SO, namely, 

two liquid phases saturated with solid ammonium sulphate. With 

each point of the curve 6,K, a point of 6,K, is conjugated. Each 
liquid of 56,AK, may, therefore, be in equilibrium with a definite 
liquid of 6,4, while both are saturated with solid (NH,),SO,. 

The intersection of the binodal surface with the surface D, namely, 
the curve 6,4,5, represents the solutions of the system L, +L, + Li 

NH,SO,. With each liquid of 6,4, another one of 4,4, may, therefore, 
be in equilibrium while both are saturated with solid Li NH,SO.,. 

The points of intersection 6, and 6, of these two curves give the 
system: L, + L, + (NH,),SO, + Li NH,SO,, namely two liquids both 
saturated with ammonium sulphate and lithium ammonium sulphate 
which may be in equilibrium with each other. 

The points £, and &, have a special significance; both are critical 
hquids which, however, are distinguished from the other critical 
liquids of the critical curve £4, in that they are also saturated with 
a solid substance: £, is saturated with ammonium sulphate and /, 
with lithium ammonium sulphate. 

- 

It the temperature is raised the heterogeneous sphere is extended: 
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at about + 8° the point #, arrives on the side AWAm, so that 

above this temperature a separation of water-alcohol-ammonium 

sulphate may occur in the ternary system. 

I have further closely investigated at 30° the equilibria oceurring 

in this quaternary system; the results are represented by the schematic 

figure 2. 

The saturation surface Am which at 6°.5 still consists of a coherent 

whole, now consists (experimentally) of two parts separated from 

each other: this is because the binodal surface L,L, now terminates 

on the side plane AW Am in the curve a,k,a,. 
2 

Li 

hi vi 

ya 

WA 

Fig. 2. 
Of the critical line /,4, the terminal point 4, represents a ternary 

critical liquid; all other liquids of this line are quaternary critical 

ones, of which /, is saturated with solid lithium ammonium sulphate. 

The phenomenon of the existence of a second heterogeneous region 

at this temperature was quite unexpected; it is represented in the 
figure by the binodal surface L,'L,* or d,k,d,k, with the critical line 

kk, 1 have not further investigated at what temperature this is 
formed; it is sure to be present at about 18°, 
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The binodal surface L, ZL, intersects the saturation surfaces Am and D: 

we have, therefore, one series of two liquid phases, saturated with 

solid (NH,),SO,, and one series saturated with solid LiNH,SO,. The 

binodal surface L,'Z,' intersects the two saturation surfaces D and Ly. 

We have, therefore, one series of two liuid phases saturated with 
LiNH,SO, (curve k,d, and k,d,), and one series saturated with 

Li,SO,.H,O (curve £,d, and k,d,). By d, and d, are represented 

two liquid phases which are in equilibrium with each other and 

saturated with LiNH,SO, and Li,SO,.H,O. Of the series of the 

critical liquids represented by the curve 4,4, 4, is saturated with 
LiNH,SO, and &, with Li,SO, . H,O. 

The curve Ac which indicates the liquids saturated with LiNH,SO, 

without any excess of either of the components runs between the 

two heterogeneous regions. From this it follows that this double 

salt at 30° cannot give two liquid phases with water-aleohol mixtures. 

We, therefore, have at 30° the following equilibria in the quaternary 

system. 

liquids saturated with 

# (NH_),SO, , represented by the surface Am 

2. LiNH,SO, , $4 Ona ae D 

3. Li,SO,H,O, F ee Li 

4. (NH,),SO, and LiNH,SO, ,, ,, the curves: 66, and b,A 

5. Li,SO,H,O and LiNH,SO, ,, Me e dd, and d,A 

system of two liquid phases : 

6. in itself represented by the surface L,L, 
ee, a ae y See Oa 

8. saturated with (NH,),SO,, represented by the curves a,b, and a,b, 

9. " 3) LANEHSO, ; 2 cate aay 2 CO RG OTe. 

10. - 3; taNH,SO,, ¥ heme hy iin a ad ae RE Th 

fa os aol Ee Os) -~,,. ue case a ey BHO ee 

two liquid phases saturated with: 
12. (NH,),SO, and LiNH,SO,, represented by the points: 6, and 4, 
13. Li,SO,H,O and LiNH,SO,, is ete bh ~ te d, and d, 
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On raising the temperature over 30° the two heterogeneous 

regions gradually approach each other and finally unite; at what 

temperature this happens has not been determined, but from the 

experiments it is shown that this is already the case below 40°; 

I have also not been able to determine whether this point of con- 

fluence is situated in front or behind the curve Ac, or perhaps 

accidentally on the same. 

I have closely investigated the equilibria occurring at 50° and 
represented the same by figure 3; any further explanation is super- 

Le 

Fig. 3. 

fluous. I must, however, say something as to the points ¢, and c,, 

namely the intersecting points of the curve Ac with the saturating 

curve of the two liquid phases: 6,d, and 6,d,. At first sight we 

might think that these two liquids may be in equilibrium with each 

other. That possibility, of course, exists. Suppose we take a water- 
alcohol mixture of such composition that two liquid phases occur on 

saturating with LiNH,SO,. Both liquids will now contain Li,SO, 
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and (NH,),5O, and it is evident that two cases may occur. It may 

be that the two liquids contain the two components in the same propor- 
tion as they occur in the double salt; it is then as if the double 

salt dissolves in both liquids without decomposition. If this is the 

case the liquids c, and ec, will be in equilibrium with each other. 

The second possibility is that one of the liquids has in regard to 

the double salt an excess of Li,SO, and the other, therefore, an 

excess of (NH,),SO,; in this case, c, and c, cannot be in equilibrium 

with each other. The experiment now shows such to be the case. 

When I saturated a water-alcohol mixture with LiNH,SO, at 50°, 

the alcoholic layer contained a small excess of Li,SO, and the aqueous 

layer a small excess of (NH,),SO,. From this it follows that the 

conjugation line does not coincide with the surface DA JV but intersects 

it; the part to the right of the line must be situated in.front of the 

plane and the left part behind it. The alcoholic solution c, of the 
double salt cannot, therefore, be in equilibrium with the aqueous 

solution c, of this double salt, but may be so with a solution con- 

taining an excess of (NH,),SO,. 

Chemistry. “On catalytic reactions connected with the transformation 

of yellow phosphorus into the red modification.” By Dr. J. 

B6OESEKEN. (Communicated by Prof. A. F. HoLieman). 

(Communicated in the meeting of January 26, 1907). 

E 

From the researches of Hirrorr (Pogg. Ann. 126 pag. 193) - 

Lemos (Ann. Ch. Ph. [4] 24. 129) Troosr and Havrerevrnie (Ann. 
Ch. Ph. [5] 2 pag. 153), R. Scuenck (B. Ch. G. 1902 p. 351 and 
1903 p. 970) and the treatises of Naumann (B. Ch. G. 187 2p. 646), 
Scoaum (Lieb. Ann. 1898. 300 p. 221), Weescuemrr and Kavrier 
(Cent. Blatt 1901 I p. 1035) and Roozesoom (Das heterogene Gleich- 

gewicht I p. 171 and 177) it appears highly probable that red phos- 
phorus is a polymer of the yellow variety, which polymerism is, 
however, restricted exclusively to the liquid and the solid conditions: 
the vapour (below 1000°) always consists of the monomer P,,. 

From the above considerations it moreover follows that the yellow 
phosphorus is metastable at all temperatures below the melting point 
of the red phosphorus (630°); it may, therefore, be expected that 

it will endeavour to pass into the red variety below 630°. 
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Although there are many instances where a similar transformation, 

as with phosphorus at a low temperature, proceeds exceedingly slowly, 

the velocity in this case is certainly strikingly small. Even at 200°, 

when the metastable substance possesses a considerable vapour tension, 

it is still immeasurably small eveh though red phosphorus may be 
present. *) This extraordinary slowness, notwithstanding the considerable 

heat quantities liberated during the transformation, and the complete 

alteration of properties caused thereby, have a long time since esta- 

blished the conviction that the two modifications of phosphorus are 
each other’s polymers and that the red one has a much more com- 

plex molecule than the yellow one, but the real cause of that slowness 
is not elucidated thereby. 

As regards the question fow this condensation takes place, 
SCHENCK (I.c.) was the first to endeavour to answer this experimentally. 
On boiling yellow phosphorus with an excess of PBr,, he succeeded 

in changing it to the red modification at 172° with measurable 
velocity; and from his first investigations he concluded that the 

order of this reaction was a bimolecular one: 

2P,— P,. 

This was meant to represent the first phase, for ScHENcK pointed 

out that red phosphorus had no doubt a higher molecular weight 

than P,, which subsequent condensation should then take place with 
great velocity; in other words he arrived at the rather improbable 

result that the condensation of P, to P, would take place much 

more rapidly than that of the simple P, molecules to P,. 

At a repetition of these measurements with one of his pupils 

(E. Buck), they came indeed to the conclusion that the reaction is 

monomolecular (B. Ch. G. 1903 p. 5208). He remarks ‘Daraus 

geht mit Sicherheit hervor, dass die Reaction der Umwandlung des 

weissen Phosphors in rothen monomolekular verlauft.” 

He, however, adds ‘Daraus kénnte man den Schluss ziehen, dass die 

Molekular-gewichte des weissen und rothen Phosphors identisch sind.” 

It strikes me that ScneNck arrives here at a less happy conclusion. 

From the occurrence of a mono-molecular reaction we need not 

necessarily come to the conclusion that the entire process proceeds 

in this manner. 

1) Roozesoom (l.c.) compares this to the retardation of the crystallisation of 

strongly undercooled fusions as 200° is more than 400° below the melting point 

of red phosphorus: I am, however, of opinion that this view is untenable on 

account of the relatively high temperature, and particularly the very great mobility 

of the yellow phosphorus (Roozegoom l.c. p. 89). The cause of the phenomena 

must be looked for elsewhere. 
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On the contrary as in so many other chemical transformations, 

we must assume that the measurements executed only apply to a 

subdivision of the reaction, namely to that with the smallest velocity. 

In this case it is only natural to suppose that the velocity deter- 

minations of ScHEenck and Buck apply to the decomposition of the 

P, molecule’) into more simple fragments (P, of P), then at once 

condense to the red modification so that we may represent the 

whole process in this manner for instance: 

Paiyetowe = are. et. Oe OG, 

nP = be bee mae ¥.) 

in which the reaction velocity of (2) is very much larger than that of (1). 

(We might also suppose, as a primary reaction the transformation 

of the metastable phosphorus into a lJabile P,; this, however, I do 

not think so probable because, in the determination of the vapour 

density above 1000°, a splitting has been indeed observed). 
It cannot be a matter of surprise that this decomposition velocity 

at 200°, (without catalyst) will still be extremely small, Jooking at 

the great stability of P, in the state of vapour; and if this decom- 

position, as I suppose, must precede the condensation, the separation 

of the red pbophorus at that temperature will proceed at least equally 

slowly. 
There is also nothing very improbable in the very rapid transfor- 

mation of the dissociated P, or P into red phosphorus. 
The fact that the allotropic transformation takes place particularly 

under the influence of sunlight is certainly not in conflict with the 

idea of a primary splitting, as we know that the actinic rays accelerate 

the decompositions (such as of HJ, AgBr, C,J,, etc.). 
I wish also to point out that a primary splitting is also accepted 

in other monomolecular reactions, such as in the decomposition of 

AsH, (van “Tt Horr’s Vorlesungen), of CO (Scnenck B. Ch. G. 1903 

p. 1231 and Smits and Worrr. (These Proc. 1902 p. 417). *) 
The monomolecular splitting of C,J, into C and C,J, ScuEnk and 

1) Although the size of the molecule of the liquid yellow phosphorus is not 
known with certainty, the identity with that of the vapour is however very probable; 

for the rest it does not affect the argument. 

*) | omit purposely the beautiful researches of M. Bopvensrein, although for the 

union of S and H. he also arrives at the conclusion that a primary splitting of 

the S; molecule precedes the union with H,, because we are dealing here with 

heterogeneous systems in which solubility velocities play an important réle. It is not 

impossible, that in all cases in which amorphous substances separate we are 

dealing with such solubility velocities. 

42 
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SirzenporFr B. 1905, p. 3459, may be interpreted in the simplest 
manner by the succession of the reactions : 

CA OS ae a 

nC Gn and 2 CJ,—> CJ, °".. 2 2 2a 

Il. 

The measurements of ScHENcK and Buck have been made at the 

boiling point of PBr,. As this is situated at 172°, it appears that the 

solvent exerts a considerable accelerating influence on the transfor- 

mation, as pure yellow phosphorus at 200° remains practically 

unaltered. 

The solvent, therefore, acts catalytically ; a still more powerful 

influence has AICI,. If this is brought together with phosphorus in 

vacuum tubes, the transformation takes place even below 100°, 

The catalyst is at once covered with a layer of pale red phos- 
phorus, which it is rather difficult to remove by shaking, so that it 

is necessary to add now and then a fresh quantity of AICI, The 

action proceeds much more regularly if benzene (and particularly 

PCI,) is added as a solvent. At the boiling point of this, the trans- 

formation is completed after a few hours (respectively, minutes) ; 

the product is ScHENCK’s searlet-red phosphorus but much contaminated 

with benzene and condensation products, which are retained with 

great obstinacy. 

In connection with the explanation in part I. I believe that the 

observations of Scuenck and of myself throw some light on catalytic 

actions in general. 

For it is very probable that in this allotropie transformation a 
splitting occurs first; we notice that the transformation, consequently 

the splitting, is accelerated by PBr, or AICI,. Will this not occur generally 
in catalysis? As a dissociation precedes most reactions it is probable 
that this question must be answered in the affirmative. (I wish, 

however, to lay stress on the fact, that in answering this question 

we do not penetrate into the real nature of catalysis. The reason why 

the dissociation acceleration occurs, whether this is connected with 

a temporary combination of the catalyst with the active molecules, 
or whether the catalyst removes the cause which impedes the 
dissociation, remains unexplained and need not be discussed here 

any furtber.) 

As far as I have been able to ascertain, this conception is not 

antagonistic to the facts observed; in fact a number of cases are 

known where a catalyst causes directly a splitting or considerably 

accelerates the same. 
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Platinum, for instance, powerfully accelerates the decomposition of 

hydrogen peroxide, ozone, nitric acid, hydrazine ete. 

Aluminium chloride causes a direct splitting of the homologues of 

benzene, of the very stable polyhalogen derivatives, of aromatic 

ethers, of sulphuryl chloride, etc. The number of these decomposi- 

tions is so considerable that, in other cases where we cannot prove 

a direct dissociation by the catalyst, we may still argue that it takes 

place primarily, or rather that an already present but exceedingly 

small dissociation is accelerated in such a manner that a system 

attains the stable condition of equilibrium much sooner than without 
the catalyst. 

The great evolution of heat in the process 

HCCI, + 3 C,H, + (AICI,) = (C,H,), CH + 3 HCl + (AICI,) 

points to the fact that the system to the right is more stable than 

that to the left. I attribute its slow progress when no AICI, is used 

to the small dissociation velocity of chloroform : the catalyst accelerates 

this dissociation so that the stable condition of equilibrium is attained 

in a short time. This reaction gets continuously more violent (the 
temperature being kept constant). This phenomenon may be readily 

explained if we bear in mind that the reaction proceeds in different 

stages (C,H, CHCI,, CHC] (C,H,), and CH(C,H,), are formed in suc- 

cession) and that the chlorinated intermediate products are decomposed 
much more readily than CHCl,. 

If sulphur is boiled with benzene and aluminium chloride we obtain 
almost exclusively (C,H,), 5, (C,H,), 5, and H,S. Without the catalyst 

hardly any action takes place because the dissociation of S, in benzene 

solution at 80° is negliglible: (if sulphur is boiled with toluene H,S and 
condensation products are formed without AICI, being present) the alumi- 
nium chloride accelerates the reaction 5,—>4S,, and consequently 
the formation of the condensation products. This explanation is 
therefore quite the same as that given for the reaction of P, with 
benzene and aluminium chloride; the sole difference is that in the 
latter the second stage of the reaction consists exclusively in the 
condensation of P, to red phosphorus, a condensation to which 
sulphur does not seem to be liable to the same extent, so that the 

dissociated sulphur forms with benzene the above products. 
I consider the formation of a compound of the catalyst with one 

of the reacting substances of importance for the taking place of the 
reaction in so far only that one phase can be formed ; otherwise it 
rather obstructs the reaction, because the catalyst becomes to a 
certain extent paralysed. One of the most powerful catalysts, platinum, 
is actually characterised because it does nut (or at least with great 

42* 
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difficulty) unite with the reacting molecules, but forms a kind of 

solid solution. Carbon tetrachloride which forms no compound with 

aluminium chloride is certainly attacked by benzene in presence of 

that catalyst not less easily than benzoyl chloride which does form 

an additive product; whilst also the chlorine atom in the acid chloride 

is certainly not less “mobile” than that of CCl,. 
GusTavsoN imagines that the formation of compounds, such as 

C,H, (C,H,), Al,Cl, is necessary for the action of C,H,Cl on benzene ; 

these were separated from the bottom liquid layer which forms 

during the action of C,H,Cl on benzene and aluminium chloride ; 

if, however, the formation of this layer is prevented as much as 

possible, the yield of ethylated benzene improves. Therefore I do 

not call its formation necessary. That it may act favourably perhaps 

is because the catalyst and also the two reacting molecules are 

soluble in the same, thus allowing them to react on each other in 

concentrated solutions. 

As has been observed above, there is something unsatisfactory 

in assuming intermediate reactions in order to explain catalytic 

phenomena. I will try to explain this matter more clearly. 

As is known, we may express the reaction velocity of a condition 

impelling force 
change by the ratio: in which the impelling 

resistance 

force for that change in condition possesses a definite value which 

a catalyst cannot alter in the least; the resistance, however, is 

dependent on influences for the greater part unknown. Therefore, 

the resistance must be lessened by the catalyst and the question to 

be solved is: “On what does this decrease in resistance depend?” 

If we suppose that intermediate reactions take place we divide 

the process into a series of others of which each one considered by 
itself is propelled by a force less impelling than the total change; 
the resistance of each of those division processes must, therefore, 

be much less, and the question then becomes: How is it that those 

intermediate reactions proceed much more rapidly than the main 

reaction? which is in fact nothing else but a circumlocution of the 

first question: how is it that the catalyst decreases the original 

resistance? Therefore, by assuming intermediate products, we have 

not been much enlightened, on the contrary we have made the 

problem more intricate, because, instead of having to account for a 

single increase of velocity, we have to look for that of at least two. 

I call to mind the theory of OstwaLp who supposes each process 

to be a succession of condition changes, which will be all possible 
if they occur with potential diminution. If, however, the first of those 
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changes can commence only with absorption of free energy, the 

process will not take place unless a catalyst is added; this, therefore, 

Opens another road . . . Now, in my opinion too much attention is 

paid to the milestones on that road and too little to the opening itself. 

This is chiefly caused by the fact that we know so little of the 

so-called ,,passive resistances’, for instance we cannot give a satisfactory 

explanation of the fact that iodine acts much more rapidly at low tempe- 
ratures on metals than does oxygen, although the potential decline is much 

smaller. Still, 1 think that we must look for this mainly in the 

ready dissociation of the iodine molecuie, always supposing: that 

atoms react more rapidly than molecules, a supposition, moreover 

nearly a century old. 

If this should be so, the action of a catalyst must be sought for 

in the increase of this dissociation. 

Now, we know of a number of reactions where the catalyst forms 

undoubtedly a compound with one of the reacting molecules, 

which additive product then reacts with the second molecule to form 

the final product, with liberation of the catalyst, but even in. such 

a case, which is called by many “pseudo-catalysis” (Wacner, Z. Phys. 

Ch. 28 p. 48), I do not consider the formation of this compound as some- 
thing essential without which the acceleration would not take place. 

I certainly do not consider the formation of such an additive 

product as being without any significance, as it is an indication 

that the catalyst can exercise a particular influence on one of the 

molecules ; the real increase of velocity is, in my opinion, due more 
to that influence than to the formation of the additive product, and 
in view of what precedes this, that influence consists presumably 

of an increase of the dissociation (and through this of the active mass). 

It is, of course, obvious that a catalyst will act all the more 

energetically when the additive products are more labile. I have 

already mentioned platinum and now point also to the H-ions 
with which the formation of additive products, for instance when 

accelerating saponification, is far from probable. As a very lucid 

example, I mention the different catalytic influence which iodine 
and AICI, exert on the transformation of yellow into red phosphorus. 

From the researches of Brodie (Ann. de Ch. Ph. 1853 p- 592) 
which I have found fully confirmed, a small quantity of iodine 
can convert a large quantity of yellow phosphorus very rapidly 
into red phosphorus at 140°. (As in many other cases, there is a limit 
because the catalyst is precipitated by the colloidal phosphorus formed. 

The velocity at the ordinary temperature is very small but becomes 
plainly perceptible at 80°. We are undoubtedly dealing here with a 
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case where the catalyst combines with the phosphorus to P,I, ; 

this substance commences at 80° to dissociate measurably [so that 

its vapour density can only be determined at a low temperature 

(Troost CR 95 293)] with separation of red phosphorus. We may, 
therefore give here a fairly positive answer to the question: How is 

it that the second division process proceeds more rapidly than the 

original ? Because P,I, dissociates much more rapidly than P,. 

But this is after all but a lucky circumstance, the real cause must 

be sought in the fact that in order to obtain P,I, the P, molecule 

must be dissociated to begin with. With AICI, I have not been able 

to find an additive product, only some indications that, besides the 

allotropie transformation, a trace of PCI, is formed (even with per- 

fectly dry substances the manometer, after a few hours’ heating to 

100°, showed a slight increase of the vapour pressure). 

The fact that the red phosphorus formed has in a high degree 

ihe property of coprecipitating the catalyst might perhaps indicate the 

possibility of a compound being formed between yellow phosphorus 

and AICl,; from the above it follows that there is a possibility of 

a certain reciprocal influence*) but I attribute this coprecipitation to 
the colloid properties of the red phosphorus, which, when obtained 

from solvents and also under the influence of rays of light, carries 

with it a certain quantity. 

But even if an additive product is fc the existence of this substance 

is no more the cause of the acceleration than it is in the case of P,I,. 

On the contrary, I consider the formation of a compound of the 

catalyst to be a case of “poisoning’, caused by one of the reacting 

molecules, just as arsenic and prussic acid are poisons for platinum, 

because in combining with it, they prevent the entrance of O, and 

H, (respectively 5O,); just as ether is a poison for AICI,, because it 

unites with it to a firm compound, which does not decompose until 

over 100’, the temperature at which the catalyst again recovers itself. 

Now, I cannot deny that we have not advanced much further 

with this dissociation theory (which is also not absolutely novel) for 

the question is now: How is it that a catalyst accelerates the 

dissociation? But my object was to point out that the formation 

(and eventually the admitting of the formation) of intermediate pro- 

ducts can certainly never lead to an explanation of the catalytic 

phenomena. 

© Chem. Lab. University, Groningen. 

1) I have also found a similar reciprocal influence in the action of C,H; Br on 

AIC], in which C,H;Cl and AlBrs are formed; it undoubtedly points to a disso- 

ciation. 
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Physics. — “Contribution to the theory of binary mixtures.’ By 

Prof. J. D. vAN Der WAALS. 

The theory of binary mixtures, as developed in the ‘Théorie 

moléculaire’, has given rise to numerous experimental and theoretical 

investigations, which have undoubtedly greatly contributed to obtain 

a clearer insight into the phenomena which present themselves for 

the mixtures. Still, many questions have remained unanswered, and 

among them very important ones. Among these still unanswered 

questions I count that bearing on a classification of the different 

groups of w-surfaces. For some binary systems the plait of the 

y-surface has a simple shape. For others it is complex, or there 

exists a second plait. And nobody has as yet succeeded in pointing 

out the cause for those different forms, not even in bringing them in 

connection with other properties of the special groups of mixtures. 

It is true that in theory the equation of the spinodal curve which 

bounds the plait, has been given, and when this is known with perfect 

accuracy, it must be possible to analysis to make the classification. 

But the equation appears to be very complicated, and it is, especially 

for small volumes, only correct by approximation, on account of 

our imperfect knowledge of the equation of state. Led by this consi- 

deration I have tried to find a method of treatment of the theory 

which is easier to follow than the analytical one, and which, as the 

result proved, enables us to point out a cause for the different shape 

of the plaits, and which in general throws new light upon other 

already more or less known phenomena. 
Theory teaches that for coexisting phases at given temperature 

d dt d dw 
three quantities viz. — ie F ae and w—v a —xz| — 

dv },7 \ dz) 7 dv ) eT dz )yT 

must be equal. The first of these quantities is the pressure, which 
we represent by p; the second is tue difference of the molecular 
potentials or M,u,—M,u,, which we shall by analogy represent 

by gq. The third of these quantities is the molecular potential of the 

first component, which we shall represent by M, u,. Now the points 

for equal value of p lie on a curve which is continuously trans- 
formed with change of the value of p, so that, if we think all the 

p-curves to be drawn, the whole v,z-diagram is taken up by them. 

In the same way the points for given value of g lie on a curve 

which continuously changes its shape with change of the value of q; 

and again when all the g-lines have been drawn, the whole »v,.- 

diagram is taken up. Both the p-lines and the g-lines have the 

property, that through a given point only one p-line, or only one 
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g-line can be drawn. One single p-line, however, intersects an infinite 

number of jines of the g-system, and every q-line an infinite number 

of lines of the p-system. One and the same p-line intersects a given 

g-line even in several points. However, it will, of course, be neces- 

sary, that if two points indicate coexisting phases, both the p-line 

and the g-line which passes through the first point, passes also 

through the second point. If we choose a p-line for two coexisting 

phases, not every arbitrarily chosen value for a q-line will satisfy the 

condition of coexistence in its intersections with the p-line, because 

a third condition must be satisfied, viz. that M, u, must have the 

same value. The result comes to this: when all the p-lines and all 

the g-lines have been drawn and provided with their indices there 

is one more rule required to determine the points which belong 

together as indicating coexisting points. So in the following pages 

I shall have to show, when this method for the determination of 

coexisting phases is followed: 1. What the shape of the p-lines ts, 

and how this shape depends on the choice of the components. 

2. What the shape of the gq-lines is, and how this shape depends 
on the choice of the components. 3. What rule exists to find the 

pair or pairs of points representing coexisting phases from the infinite 

number of pairs of points which have the same value of g, when p 

has been given — or when on the other hand the value of q is 

chosen beforehand, to find the value of p required for coexistence. 
But for the determination of the shape of the spinodal curve the 

application of the rule in question is not necessary. For this the 

drawing of the p- and the g-lines suffices. There is viz. a point of 

the spinodal curve wherever a p-line touches a qg-line. We have viz. 

Py (dv d*y Gy (dv d*y dv 
fr = ——_— === OSandir =- = 0 for| — 
one dv? ( :) = dvudx ae dadv \ da /q + dx? ss: da}, 

ay aw 

dxdv dv da? 
the value — - and for | — the value —-—, and so we may 

d’y du Jy dy 

dv? dadv 

write the equation of the spinodal curve: 

dv dv 

da raee da * 

So if we are able to derive from the properties of the components 

of a mixture what the course of the p- and of the g-lines is, we 

can derive much, if not everything, about the shape of the spinodal 

curve. And even when the course of these lines can only be predicted 

qualitatively, and the quantitatively accurate knowledge is wanting, 
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the qnantitatively accurate shape of the spinodal eurve will, indeed, 

not be known, but yet in large traits the reasons may be stated, 

why in many cases the shape of the plait is so simple as we are 

used to consider as the normal course, whereas in other cases the 

plait is more complex, and there are even eases that there is a 

second plait. 

Particularly with regard to the p-lines, it is possible to forecast 

the course of these lines from the properties of the components. 

With regard to the g-lines this is not possible to the same extent, 

but if there is some uncertainty about them, we shall generally have 
to choose between but few possibilities. 

THE COURSE OF THE /p-LINES 

In fact the most eel Peres of the course of the p-lines 

were already published by me in “Ternary Systems” and only 

little need be added to enable us to determine this course in any 
; : E dw 

given case of two arbitrarily chosen components. As p= — a 
Uy 

, it is required for indicating the course of 

dp 
these p-lines to know the course of the curves 7 =O and 

rT av 

d 
() er 
dx). 

The former curve has a continuous liquid branch, and a continuous 

gas branch, at least when 7’ lies below every possible 7%, when we 

denote by 7, the critical temperature for every mixture taken as 

homogeneous that occurs in the diagram. If there should be a minimum 

value of 7), for certain value of 2, and 7 is higher than this mini- 
d 

mum 7%, the curve (2) = 0 has split up into two separate curves. 
Zhi dere & 

In either of them the gas and the liquid branch have joined at a 

value of v=v,. In this case a tangent may then be traced // to 

: d 
the v-axis to each of these two parts of the curve (=) ==, Gp. 

Ly fe 

(ap re 
The second curve {— ]} =O is one which has two asymptotes, Se 

and which may be roughly compared to one half of a hyperbola. 

The shape of this curve derived from the equation of state follows 
from the equation: 



( 624 ) 

_, db da 
MR1 ae =e 

Lv ; az ae 0 ‘ 

(v—b)? v* 

If we now always take as second component that with the greatest 

db . were 
is always positive, it appears from the given 

v 

value of 6, so that 

dp : 
=O cannot possess points for these equation that the curve ( 

Ce) yT 

da 
values of «, for which 7q, is negative. Only at that value of x for 

Av 

5 da ; Hee 4 : 
which SS) this possibility begins, but then only if 7 = 0. If 

av 

da : 
T has a definite value a must be positive, for points of this curve 

av 

to be possible. For v=o, = must be == MRT— And the value 

of wv which satisfies this equation, indicates one asymptote of the 

discussed curve by a line // to the v-axis. If this asymptote has 

been drawn, we may think the mixtures with decreasing critical 

temperature to be placed on its left side. And on the right the 

mixtures with increasing critical temperature do not yet immediately 
follow. For a separation between the mixtures with decreasing and 

ae only when MRT = = 
dx b 

7), would immediately ascend again on the right of this asymptote; 

but then 7’ would have to be chosen so high, that it was 7’/, 7}, 

and for the present at least we shall choose 7’ far below that limit. 

That the line ec, where ¢ has the value which follows from 

da el Sie ; : ; — = MRI az? 1S an asymptote, is seen when we think the equation 
wv 

; : da a 
those with increasing 77, a must be == 

a“ u 

av 

da 

d 3 dix 
of the curve :. = 0 written as follows: ed ae : > ie da) 7 (v —b)? db 

Mia = 
dx 

1 aa ; : v ; 
the value of = becomes larger from left to right, ; must increase 

av v— 

° v + . 

from left to right, or = decrease. For the value of 2, following 

da pe MM at ile 048) 5 ; ie 
from = MRI ry infinite; for larger values of 2, ms decreases 

AL av ) 



( 625 ) 

v da 

more and more, and as 3 can never become = 1, because ie 

cannot become infinite, the curve v=b is the second asymptote. 
So if « is made to increase more and more, also beyond the values 

which for a given pair of components are possible in order to 

examine the circumstances which may occur with all possible systems 

: db . ae 
for which with positive value of a increasing value of 7). is always 

ax § 

dp : 
found, a minimum volume must occur on the curve (Z) =O; So 

a) yT 

d'p 
for this point 3/=9 

dix? oT 

Now that we have described in general outlines the two curves 

which control the course of the p-lines, we shall have to show in 

what way they do so. 

From. 

dp 

5 dx 

dx )yT “@), 

follows that to a p-line a tangent may be drawn // 2-axis when it 

dp 
passes through the curve {| — }, and a tangent y-axis, when it 

&/yT 

dp 
passes through the curve (2) . But though these are important 

I] 2T 

properties they would be inadequate for a determination of the course 

of the isobars, if not in general outlines the shape of one of these 

dj : 
lines could be given. The line (z) = 0 viz. intersects the line 

Lv vT 

d ; 
(? ‘= = 0 in two points, and it is these two points which are of 

pee Y 

fundamental significance for the course of the p-lines. The point 
of intersection with the liquid branch is viz. for a definite p-line a 
double point, the second point of intersection being such an isolated 

point that it may be considered as a p-curve that has contracted to 

a single point. The surface p=/(#,v) is namely convex-concave 

in the neighhourhood of the first mentioned point. Seen from below 

a section // v-axis is convex, and a section // x-axis is concave. A 

plane, parallel to the v,«-plane touching the p-surface intersects, 

therefore, this surface in two real lines, according to which p has 
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the same value. But for the second point of intersection the two 

sections are concave seen from below — and there are no real lines 

of intersection. This second point isa real point of maximum pressure. 
With all these properties, and also with those mentioned before or 

; da ae 
still to be mentioned, —— is assumed to be positive. *) 

ag 

Now the curve p=constant passing through the first point of 
: ; ’ dp dp ; 
intersection which the curves =O and |—]=0 have in 

dv) oT U/l 

common, is the isobar whose shape we can give, which shape 
at the same time is decisive for all those following, either for 

larger or smaller value of p. In the adjoined figure 1 its course is 
represented. Coming from the left it retains its direction to the 

dp 
right also in the point of intersection with the curve i =e 

Ax vo 

the convex side all the time turned to the «-axis till it is directed 

straight downward in the point where it meets the vapour 

dp 
branch of the curve ($) =. There it has a tangent // v-axis, and 

Of 27 

from there it has turned its concave side to the v-axis. When it 

dp . Oe eae : ; 
meets the curve =) —0, | —) is equal to O for this as for all 

ae ]}yT pP dx 

dv de 

nitely large, and pursuing its course, it passes for the second time 

through the double point, and further moves to the right, always 

passing to smaller values of v, till it has again a tangent // to the 

dp dv 
isobars. Passing again through the curve (2 : is again infi- 

mye: p 

: - : ip : 
axis of 2, when it meets the curve (? = () once more, after which 

> v 

it proceeds to larger value of v. It is clear that in the path it describes 
from the double point till it passes through this point for the second 

time, it has passed round the point we have called the second point 

d. 
1) That the characters of the two points of intersection of the curve (Z)=0 

iv vT 

dp ; 
with the curve bel =O are different appears among others from this that when 

Gv ie «rT 

these points of intersection coincide as is the case when these curves touch each 

_ dp d'p d*p \* : 
other, the quantity —- —— — {| ——— ]=0. The character of the points of inter- 

dv* dz? da dv 

section depends on this quantity being positive or negative. 

af. 4 7 
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of intersection with the curve (2) = 0, and where maximum pres- 
Pe ON 

sure is found. In fig. 1 some more isobars have now been drawn 
besides this one. We obtain the course of the isobars for lower value 
of p by drawing a curve starting from the left at higher value of 
v, bearing in mind that two p-lines of different value of p can 
never intersect, because the p is univalent for given value of « 

dp 
and v. Such an isobar cuts the curve (7) =Q on the left of the 

av / rT 

lv 
isobar with the double point in two points, where a =o, then 

f 
a x ) 

passes through the curve (Z)=0 in a point where é a4 \) 
dz oT da pT 

and has then also on the right of the said isobar again two points 

of intersection with the curve (7) = 0, in which points of intersection 
ys 

j dv 
again = = 00. 

An isobar of somewhat higher value of p has split up into two 
isolated branches. One of them starts on the right at somewhat smaller 

value of v; further this branch follows the course of the isobar with 

the loop, but must not cut it. Arrived in the neighbourhood of the 

double point it is always obliged to remain at small volumes; there 
d dv 

it meets the curve (2) = 0, and it has ( 6 From this point 
j L v Pp ag 

it proceeds to smaller volumes, till anew meeting-point with the same 

curve causes this branch again to turn to larger volumes. but the 

second branch of this isobar of higher value of ; is entirely inclosed 
~ within the loop of the loop-isobar. Such a branch forms a closed 

curve surrounding the point which we have called the second point 

dp dp ee 
of intersection of the curves 7 = 0 and re =~ Sen a 

v ne Lv v 

d, 
closed branch passes twice through & ) = 0, and also twice through 

az}, 

dp dv : 2 
— |=0, and has again in the first cases { — ] = 0, in the second 
dv }, dx}, 

: : é dv 
points of intersection | — }= oa 

dz /, 

With ascending value of p the detached portion of the p-line 
contracts more and more, till it has contracted to a single point. So 

at still higher value of p only one single branch of the p-line remains. 
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A similar remark must be made for the curves of lower value of p. 

The smallest value of p for gas volumes is of course p=0O; but 
this limit does not exist for the minimum pressure of the mixtures 

with given value of z. For this we know that also values of p may 

occur which are strongly negative. For values of p which are negative, 

the p-line has again divided into two disjointed portions, viz. a 

portion lying on the left in the diagram, which is restricted to 

volumes somewhat larger and somewhat smaller than that of the 
P ¥ dp 

liquid branch of the curve (5 
av 

) = 0, and a similar portion lying 
x 

on the right in the diagram. 

Also on the locus of the points of inflection of the isobars the 

given diagram can throw light. So it is evident in the first place, 

) = 0 starting that between the two branches of the curve ( 
v 

from the double point, both on the left and on the right a connected 
ee d*v dp\. 

series of points is found where =. If the curve =i 
p un dx? dv 

itself should possess a double point, which is the case when 7’ has 

exactly the value of 7), minimum, this locus of the points of inflec- 

tion of the p-lines passes through this double point, and when the 
dp 

curve (2) =O has split up into two separate portions, as is the 
av /x 

case for still higher value of 7’, then those points of the two portions 
dv 

where —= belong to this locus. It is also apparent from the 
at 

diagram that two more series of points start from the double point, 

one on the right and one on the left, as locus of the points of 

inflection, and that these run to smaller volumes. 

An isobar with somewhat larger value of p than that of the loop- 

shaped isobar has a tangent // to the w-axis where it passes through 

at 

Ip : : Cake 
the curve (32) = 0. On the right and on the left of that point it 

v 

turns its concave side to the a-axis, whereas at larger distance it 

must again turn its convex side to it on both sides. So there start 

d*v 
from the double point four branches on which (=) == 0 tas 

Bie 
also easy to see that the branch which moves to the right towards 

dp 
smaller volumes, must pass through that point of the curve | — }] =0 

v v 

where the tangent is // z-axis. For an isobar which passes through 
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d ee : 
the curve (2) = 0 on the left of this point, turns its concave side 

a v 

to the z-axis, but when it passes for the second time through the 

said curve on the right of the point, its convex side. Hence an isobar 

where these two intersections have coincided, has its point of inflec- 

tion in the point itself. If we wish to divide all the v,7-diagram into 
d?v 

regions where (4 -) is either positive or negative, it must be 
& a : p 

eh dp 
borne in mind that also the two branches of line {— ) = 0 them- 

av yz 

selves form the boundaries for these regions, because on that line 
dv P. 
rie a. [e @) . 

In’ all. ‘this 

2 

is supposed to be positive. For on the contrary 
w 

y ; : E . 
the course of the line (2 = 0, to which we could now assign 

Ax v 

an existence on the right of the asymptote which is given by 
db da 

MRT ee would be directed to the left of this asymptote, 
& a 

Ma . 5 : g 
when = should be negative, so if 2a,, could be >a, + a,. Foras 

da 

VU 3 dx v da 

( ;) —= ———.,, the value of ; decreases only, when — increases. 
ae av ; MRT— 

dx 

d 
If we put a= A+ 2 Be + Cr’, and so —_ 2(B-+ Cz), it appears 

: ; , da 
that with C negative « must decrease in order to make P increase. 

L 

For the points of this line p would then possess a minimum for given 
2 d at x - 

value of v, and so = would be positive. From this follows then that 
ay 

v ny 

have interchanged réles. The point of intersection with the smallest 
volume represents then a real minimum of p, and will have the 
same significance for the course of the p-lines as the second point 

2 

. ' : a ae : d 
the two points of intersection of this line with the curve (3) = 0) 

of intersection has, when is positive. And the point of intersection 
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with the smallest volume has now become double point. I have, 

however, omitted the drawing of this case 1. because most likely 
the case does not really oceur, and 2. because the drawing may 

easily be found by reversing the preceding one. There are e.g. with 

the solution of salts in water cases which on a cursory examination 
2 

present some resemblance with the assumption negative, but 
Ak 

which yet are brought about by influences perfectly different from 
. aa 

the fact of a negative value for Fe 
i 

2 ; da 
Such a diagram for the case ee negative, though, would quite 

fall in with the right side of fig. 1. As in the given figure 7%, 

increases with « on the right side, and there is a maximum value 
2 

of 7; on the supposition > fig. 1 might be still extended to the right 

till such a maximum 7% was reached. But then we should also have 

to suppose that a value of zx could exist or rather a mixture for 

da 
which at a certain value of & the quantity qa? reverses its sign. 

Every region of fig. 1 of certain width which is taken parallel to 

the v-axis can now be cut out for a, + a, — 2a,, positive, to denote 

the course of the isobars. Regions on the left side indicate the course 

of the isobars for mixtures for which with increasing value of 6 the 

critical temperature decreases — regions on the right side for mixtures 

for which with increasing value of 6 the critical temperature increases — 

the middle region with the complicated course of the isobars when 
there is a minimum 7. The left region would be compressed to an 

: da 
exceedingly small one if we wished to exclude the case —— negative 

& 

da 
or — =0. We do so when putting a,, = Va,a,. On such a suppo- 

ax 

sition a minimum 7;¥ is still possible, but the left region must then 

have an exceedingly narrow width. There is, however, no reasonable 

ground for the supposition a,a, = a,,?. There would be, if the quantity 
a for the different substances depended only on the molecular weights, 
and so a= em* held for constant value of «. If the attraction, just 
as with Nrwron’s attraction, is made to depend on the mass of the 
molecules, and so if we put a, = &,m,*, and also a, = &,m,’, it appears 
that ¢, and & are not equal. If we now put a,, = Va,a,, we put 
a,, = m,m,/e,e,. What reasonable ground is there now for the sup- 
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position that if there is a specific factor ¢, for the mutual attraction 

of the molecules of the first kind of which we do not know with 

what property of these molecules it is in connection, and if there 

is also a perfectly different factor ¢, for the mutual attraction of the 

second substance, we must not represent the specific factor for the 

attraction of the different molecules inter se by é,,, but by a8. 

It is true that this supposition renders the calculations simpler ; I had 
already drawn attention to this in my Théorie Moléculaire (Cont. I, 
p. 45). But whether the calculations are somewhat more or some- 

what less easy does not seem a sufficient ground, after all, to intro- 

duce a supposition which involves that naturally a great number of 

possible cases, among others also for the course of the spinodal line, 

are excluded. If we put all possibilities for the value of a,,, then 
a = 2 & a, 7 ass = 

— can also be — 0, viz. for = ———.. We need not go so far 
dz l—x a,—a,, 

however, to give sufficient width also to the left region. 

THE COURSE OF THE q-LINES. 
d 

The value of a =q is found from the value of p: 
az v 

@ 

SS MRTE = +{(2) dv 
: ars —- Vira) ee 

3 

For z=O this expression is negatively infinite, for 2=1 it is 

positively infinite, so that we have g,=—o and q,=+o. 

But it follows also from the equation of state that for all values 
ao d . 

of x the value ot (2) dy is also positively infinite for the line v=6. 
& fy 

v 

It is true that for such small volumes the equation of state 

(a a . 
P= > ~ Gy 38 not accurate when 6 is not made to depend on 

= Vv 

v, and the quasi association in the liquid state is left out of account, 
a 

dp + ie 
and that the conclusion: = dv is infinitely large for v equal to the 

Lv)» : 

v 

limiting volume, calls for further consideration before we may accept 

this as an incontestable truth. But it seems to me that simple con- 

siderations lead to this conclusion. For the limiting volume p is 

infinitely great, and if 4 increases with x, (Z is infinitely large 
& v 

43 
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a 

of higher order, whereas f (=) dv can again diminish the order of 
a he 

v 

infinity by a unit, because the factor of dv has this higher order of 

infinity only for an infinitesimal value of dv. But still the thesis 

@o 

remains true that { (2) dv is infinitely great for v= 6. 
a 

So there is strong asymmetry in the shape of the qg-lines. Whereas 
qg==— holds for =O and every value of v > 6,, g= + @ holds 

all over the line of the limiting volumes, and for all volumes on the 

line z—1 which are larger than 6,. We derive immediately from 

this, that all the g-lines without exception start from the point « =0 

and v= 6,. In this point the value of q is indefinite, as also follows 

from the value of g as it is given by the approximate equation of 

state, viz.: 

db dv 

di dit 
oS ee OE ae 

1—az vo—b v 

It also follows from the approximate equation of state that at 

their starting point all the g-lines touch the line v= 6, of course 

with the exception of the line g=—o. For we derive from 

dw\ _ 

(3 — 

(25) (2) B= dedv) \dx),' da? 
or 

dy 
dv dx? 

(2 - Py 

dadv 

]? a, ee $ , 
For —— the approximate equation of state yields: 

lz? 

d*b ab\** MRT = UT | ee 
ay MRT dz* dx dx® 

dx* ~~ @(1—2) v—b (v—b)? Temas 

d? d d 
We already found the value of 74 =(2) bove. For (=) 

we find therefore: 

RN i 
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db\? da 

MAT) = Dee 
MRT MRT d?b a (=) da? 

dv a(1— a) v—b dx? | (v—b)? v 

dig MRT db dal 

; : . : d ll 
put v=b, we find for the starting point of the g-lines (Z) samp 

s Coe 
at least if we can prove that ———— is equal to zero for «=O and 

v 

! v=b,. To show this, we put =), + Pe + ye * and so: 0 — b= 

2 
v—b 

= (v — b,) — «8 — yx’, and then we find for (v — b) —— the value: 
L 

v—b, ‘ 
(v — b) Se Sal as : 

Vv — 

The term is indefinite, but nevertheless the given value 

multiplied by » —6 is really equal to zero. This result, too, is still 

to be subjected to further consideration, because it has been obtained 

by the aid of the equation of state, which is only known by approxi- 
mation. And then I must confess that I cannot give a conclusive 

proof for this thesis. But I have thought that I could accept it with 
great certainty, because in all such cases where a whole group 

of curves starts from one vertex of an angle, e.g. for the lines 

of distillation of a ternary system, I have found this thesis confirmed 

that then they all touch one side of the angle. Only in very 

exceptional cases the thesis is not valid. 

Moreover, the theses which I shall give for the further course of 
the g-lines, are independent of the initial direction of these lines. 

Only, the q-lines themselves present a more natural course when 

their initial direction is the indicated one than in the opposite case. 

dv 
From the value given above for (Z) follows that they have a 

av q 

d 
tangent // v-axis, when (2 = 0, and a tangent // z-axis, when 

v 

ay 

daz? 
= 0. Hence they have a very simple shape in a region where 

d d? : 
the lines (2) = 0 and—~=0 do not oceur. Starting from the 

de}; dx? 

point c=0O and v=), they always move to the right and towards 

43* 
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dvu\ . me dp 
larger volume, and 77m Pe always positive. Therefore ah and as In 

q v 

2 
. “W nn : : 

will presently appear, ga 00° always positive in such a region. As 
aX 

& 

v becomes greater the value of g approaches to MRT / , and 

for very large value of v the q-lines may be considered as lines 

parallel to the v-axis, for which the distribution over the region 
from «—0 to e=1 is symmetrical. The lines for which q is 

negative, extend therefore from «=O to x=3 and for =} the 

value of g=0. It will only appear later on that yet in their course 

probably two points of inflection always occur for small volumes, 

a fact to which my attention was first drawn by a remark of Dr. 

KounstamMM,. who had concluded to the presence of such points of 
inflection in the g-lines from perfectly different phenomena. 

dad. 

But as soon as the line S = 0 is present (the case that also 
av v 

dy : : 
aS may be =O will be discussed later on), a new particularity 
& 

makes its appearance in the course of the q-lines. A q-line, viz., 

which cuts this locus, has a tangent //v-axis in its point of inter- 

section, and reverses its course in so far that further it does not 

proceed to higher value of z, but runs back to smaller value — 

at 

dv eds ae 
so that (> , which is always positive in the beginning, is hence- 

q 
forth negative. From that point where they intersect the line 

daz Fy 
& = 0 and where (=) may be considered negatively infinite, 

v q ) 
this quantity becomes smaller negative. Still for v= 2, the g-line 

must again run parallel v-axis. So there must again be a point of 

inflection in the course of the q-line. In fig. 2 this course of the 

g-lines has been represented, both in the former case when they do 

: dp 
not intersect the curve (2), and when they do so. In the latter 

case they have already proceeded to a higher value of x in their 

course than that they end in. They end asymptotical to a line v=<2¢, 

and at much smaller volume they also pass through a point # = a. 

The point at which with smaller volume they have the same value 

of « as that with which they end, lies on a locus which has a 

_ (ap 
shape presenting great resemblance with the line (3) = 0. The value 

ty» 



( 635 ) 
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for the points of this locus may be derived in the following way. 

If we write p= MRT {(1—xa) log A—a) 4 « log x} +f pe 

d 
then (=). Sl iL), 

az }» 

At infinite volume the value of ¢= MRT 1 
—wWL 

as we saw above. 

The locus under consideration must therefore be determined by 
<2) 

d 
S@ dv = 0. Hence on the line «= the final value, a point must 
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Vd 
be found such that, proceeding along that same vine, {(%)de = 0 

e v 

v 

So from this follows immediately 1. that the points of the said locus 

é d : d 
restrict themselves to those values of z in which the curve —e 

AH v 

occurs, 2. that the points must be found with smaller volumes than 
d 

those of () =0(Q. For such points with smaller volume is viz. 
Lv Dv 

d aS : 
= positive, and for points with greater volume negative — 

us) y 

however when the volume may be considered as a gas volume this 

negative value has an exceedingly small amount. And even without 

fee , ) 
drawing up the equation () dv = O, we conclude that the said locus 

ax v 

dp ia 
has the same a-asymptote as ae = 0 itself, and is further to be 

dz}, 

found at smaller volumes. Hence it will also have a point where 
its tangent runs // a-axis. There is even a whole series of loci to be 

given of more or less importance for our theory, which have a 

{dp 7 
course analogous to that of (2 —( and Be dv — 0. 

dz r az), 

v ° 

; d : 
The latter is obtained from (1) by integration with respect to v; 

aay; 

all the differential quotients with respect to v of the same function 

dp 
a) put equal to O have an analogous course — thus 
dz}, 

2, 
Ph 

wdv 

which is a locus of great importance for our theory. That it has the same 
dp ; : ; : 

x asymptote as i. ) = 0 itself, and that all its other points are to 
oh ag) he 

be found at higher value of v, follows immediately from the follow- 

, : , . dp 
ing consideration. For a point of the line (=) = 0 the value of 

WU oT 

dp ; 
(2 =0. For points of the same w and smaller v this value is 
ax 

positive — but for points with larger v negative. For v = o this negative 

value has, however, again returned to 0. So there must have been 

a& maximum negative value for a certain volume larger than that 

A. 
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: 2 : ? ; d*p 
for which this value = 0. These are the points for which Penal 

aAtaAV 

For smaller value of the volume is therefore negative — on the 
adxvxav iy 

other hand positive for larger volumes. The approximate equation 

of state yields for the loci mentioned and for following loci these 
equations : 

db da 

d d: d 
enn for oP dv = 0 

v—b v dx 
v 

db da 

dix d. d; 
eee SS as for *) — 0 

(v —6b)? v? dz)» 

db da 

Saat dz d*p 
aE EE ope (eS 0 
(v—b)’ v* dadv 

And so forth. 

But let us now return after this digression to the description of 

the shape of the q-lines. Whenever a g-line passes through the locus 
2) 

dp Tie a eee 
iG dv =0, the asymptote to which it will draw near at infinite 

Xv 

v 

volume is known by the value of « for that point of intersection. For 

the present it does, indeed, pursue its course towards higher value of 2, 

but when its meets the locus (2) = 0, it has the highest value of 
uv) y 

x, and a tangent //v-axis. From there it runs back to smaller value 

or 

And this would conclude the discussion of the complications in 

the shape of the g-lines, if in many cases for values of 7’ at which 

the solid state has not yet made its appearance, there did not exist 
another locus, which can strongly modify the shape of the gq-lines, 

and as we shall see later on, so strongly that three-pbase-pressure 

may be the consequence of it. 
2 2 

The quantities and aa occur in the equation of the spinodal 
v av 

curve in the same way. It may be already derived from this that 

: d* dy 
the existence of the loci —~ —0 and = 0 will have the same 

dv* ait? 

significance for the determination of the course of the spinodal line. 
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That as yet our attention has almost exclusively been directed to 

ay 

dv* 

given binary mixture furnishes points for the latter locus for values 

of 7 below 7). for that mixture, whereas the conditions for the 
2 

—0 is due to the fact that we know with certainty that a 

: W : : 
existence of a locus —-=—0 are not known — and it might be 

x 

suspected that this remained confined to temperatures so low that 

the solid state would have set in, and so the complications which 

would be caused -by this, could not be observed. That such a sup- 

position is not quite unfounded may still be safely concluded from 

the behaviour of many mixtures, which quite answer to the consi- 
2 

: : : Ue 
derations in which the curve a is left out of account. But that 

Hi 

the behaviour of mixtures for which more complicated phenomena 

occur, cannot be accounted for but by taking into consideration that 

a 
=a can be =O, seems also beyond doubt to me. 
2 

The approximate equation of state gives for this quantity the 

following value: 
db? dh da 

MRT | — —— 
@y MRT ( ) ie ae 

dx? x(l1—x)° (v—b)? rae eee: 

which I shall still somewhat simplify by assuming that 6 depends 
3 

linearly on w, and so Tie 0. We can easily derive from this form 
& 

ee ee 
that if qr can be =O, this will be the case in a closed curve. At 

hs 

F : : aw . 

the boundaries of the v,7-diagram aaa 18 certainly positive. For «= 0 
Ax ; 

and «= 1 even infinitely great. Also for v6. And ‘for »=@ 
MRT 

z (1—2) 
ryy r ar lr. 2 . * 

4 MRT. That, if only 7 is taken low enough, it can be negative, 
2 d?a 

at least if oa is positive, is also obvious. At exceedingly low value 
dz : 

it reduces to , the minimum value of which is equal to 

of 7 it can take up a pretty large part of the v,7-diagram, which 
must especially be sought in the region of the small volumes. With 

rise of temperature this locus contracts, and at a certain maximum 

temperature for its existence, it reduces to a single point. So it is 

no longer found above a certain temperature. 

(To be continued). 
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Physics. “On the shape of the three-phase-line solid-liquid-vap Ab 

for a binary mixture.” By Dr. Pa. Kounstamm. (Communicated 

by Prof. J. D. van per Waats.) 

Already for a considerable time I have been engaged in arranging 

Prof. Van per Waats’ thermodynamic lectures, and having arrived 

at the discussion of the three phase line solid-liquid-vapour, and the 

metastable and unstable equilibria solid-fluid which are in connection 

with it, I have formed on some points a different opinion from that laid 

down in the literature known to me on this subject. It does not 

seem unprofitable to me to shortly discuss the points of deviation in 
this and the following communication. 

The first concerns the shape of the three phase line solid-liquid- 
vapour when the solid substance is one of the components, viz. the 

least volatile one. We find given for this that this line must always 

possess a pressure maximum’), and that it must also possess a 

temperature maximum’) when the solid substance, — as is usual, 

— melts with expansion of volume. The latter remark is the 

generalisation of a supposition, advanced by Van per Waats*) with 

respect to the line for ether and anthraquinone. These consider- 

ations, however, hold only for definite assumptions on the extent 

of the difference of volatility of the two components. This appears 

immediately from the differential equation of the three phase line 
given by VAN DER WAALS‘) : 

Ly 

# No—Ns — — (HI—7Ns) 
Pp Z| 
7 So a ae Pe ee ee ee ae 

Vy — Vs — —(ViI—?,) 
| 

in which 4, candy denote resp. entropy, concentration and volume 
of the coexisting phases, the index v, / and s denoting that resp. 

the vapour, liquid and solid phase is meant. .r, does not oceur, 
because we assume, that the solid phase is the first component itself 
so z, 0. The pressure maximum will now occur in the line when 
the numerator, the temperature maximum when the denominator can 
become zero. Now Nyv—Ys > hi—. and v,—v, > vi—v,; the two 
cases are therefore only possible when z, >.;, i.e. when the vapour 
is richer in the component which does not form the solid phase, 

') Baxnuis Roozesoom. Die heterogenen Gleichgewichte II. p. 331. 
*) Suits. These Proc. VIII, p. 196; Zeitsch. phys. Ch. LIV, p. 498. 
3) These Proc. VI, p. 243. 
*) Verslag Kon. Akademie V, p. 490. 
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(for in the equation is put 7,0) than the liquid. Or in other 

words, as we said above, the points sought can only present them- 

selves in the three phase line with the least volatile component as 

solid substance’). However, whether those points awi// occur, depends 

Ly ; 
on the value which lim (=) will get. If this value may be put 

Bi — 

= infinite, we get for <= 0: 

dp Nl — Ys 

AP De: 

so equal to the slope of the melting-point curve. So we must have 

both pressure and temperature maximum, at least when the solid 

substance expands on melting. ‘This was the purport of the above 

cited remark of vAN DER WAALS about ether and anthraquinone; if 

however ( ‘) may not be put infinite, this conclusion is no longer 
vl i) 

valid ; it then depends on the value which: 

Ly 
0): 0 5 (v) = Vs) 

el 

assumes for «=O whether there exists a temperature maximum 

or not; if the difference in volatility, so =, should not be so large, 
| 

that this expression becomes negative at the limit, the maximum 

does not occur, even when vs > 7. 

The question whether such a maximum will occur in many systems, 

cannot be answered with certainty for the present. For this many 

data would be required, which we have not at our disposal as yet ; 

it is, however, possible to show the probability that only in very 

extreme cases the volability of the components will be so diversified, 

that a temperature maximum is to be expected. For this maximum 

to be just present, viz. in the triple point of the solid component, it 

is evidently required that : 

Ly VI—Vs 
ae 

&] Vy—Vs 

Now the first datum we should want, would be the variation of 

volume during melting. It seems, however, that only a few data have 

been collected for this; I have found some in WINKELMANN’s *‘Hand- 

1) If has of course been tacitly assumed here, that there is no maximum vapour 

pressure; in that case the points in question could be found in both three phase 

lines, 
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buch” '), and in Baxknuts Roozesoom’?); LANDoLT’s and BérnsTEIN’s 

tables do not give anything on this subject. The values indicated at 
the places mentioned confirm that the percentage of these expansions 
is not very considerable, which was a priori to be expected ; they amount 
for the highest cases to little more than 10°/, and for most substances 
they are considerably lower. So if we take 10°/, as basis, we 

shall find for by far the majority of the cases a too great, so for 

our proof a too unfavourable value. If we introduce this value, we 

get as condition (neglecting v by the side of »,): 

&1 Vy 

So we must now try and get a rough estimation of the relation 
between liquid and vapour volume in the triple point. If at the 

triple point the vapour tension was of the order of an atmosphere, 
this ratio would be about of the order of magnitude 1000. Now, 

however, the vapour tension is always very considerably lower ; 

almost for every substance the melting point lies very considerably 

below the boiling point. If we now assume that the triple point 

lies at about */, 7%, we find the order of the vapour tension from 

the well known formula : 

Ti. 
— l, ae <i Bde. 1). 

Pk 1 

With -~=7 and .=—1'/, 7,. this gives og ===) OP ge aoa’ 

If we put p, at 100 atms.’), p, becomes of the order of 0.1 atm. 

So we may safely say that in general v,/v, will be smaller than 

0.0001. For a temperature maximum it is, therefore, necessary, that 

at least : 

Ly Ly ~ 

—=—10* or l. nat — = 11.5. 
L| 2 

Now according to a formula which has been repeatedly derived 
by VAN pbeR Waats‘), for low temperatures (a condition which in 
this case is certainly fulfilled) the equation : 

L| TSE 1) ad; 1 db 

Ty. dz b da’ 

4) Il p. 612 Qnd p. 775. 
Py Ae. a Bsteo: 
3) In the table of Lanpott and BérystEIN only two substances occur, ammoniac 

and water which have a higher p;; the majority by far is considerably lower, 
particularly that of the little volatile substances which we have in view. 

*) See e.g. These Proc. VII, p. 159. 
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Iz, 

holds, or for the limit, where ==: 
Shy 

FF aT, toa 
l SS a 1 RoI eer ae, . [ . . « 2 

“9 Ly m li dx b dex (2) 

It is clear that everything will depend on the first term here, 

because the second would not amount to more than —1 in the 

utmost case, i.e. when the 6 of the other component would be zero. 

Moreover it might even be possible that the second term was positive, 

it would hence decrease the value of the second member. 

The greatest difficulty for our calculation lies now in our igno- 

rance of with the variability of 7; with 2, or more strictly in 

this that for this variability not one fixed ruie is to be given, because 

in every special case it will depend on the special properties of the 

mixture in question, viz. on the quantity a@,,, a quantity which does 

not admit of being expressed’) in the characteristic quantities of the 

components, at least for the present. It is, therefore, certainly not 

permissible to try and derive results for all kinds of systems. But 
it is only our purpose to determine the course of 7}, for those cases, 

in which the components differ exceedingly much in volatility, and 
for those cases it is perhaps not too inaccurate a supposition to assume 

for the present that the line which represents 7; as function of a, 

does not deviate too much from a straight one.*) On this supposi- 
Ty,—Ty, f i aac 

tion then we may write —~——— for ———. As now —=1]4, as Tr, Te dex m 
Shy 

ke —TL x, 

ky 
we already supposed, must not descend considerably below 

1) The equation of GALITZINE-BERTHELOT d= dy, which I rejected as general 

rule already on a former occasion on account of the properties of the mixture 
ether-choroform (These Proc. IV, p. 159), can certainly not be accepted as such. 

Not only is it easy to mention other examples which are incompatible with this 

rule (see e.g. Quint, Thesis for the doctorate p. 44; Gerrits, Thesis for the 

doctorate, p. 68); but besides, — and perhaps this must be considered as a still more 

serious objection — by assuming this equation we wilfully break up the unity of 

the isopiestic figure (v. p. Waats, Proc. of this meeting p. 627) by pronouncing its 

middle region on the left of the asymptote to be impossible, whereas the left and right 

regions are considered as real. For if @,=Va,dq itis never possible that da/dx = 0 

for whatever system; and this takes exactly place in the middle region. 1 had 

overlooked this in the paper mentioned; Prof. vAN DER WAALS has since 

drawn my attention to it. The already mentioned system of Quint gives an 

a 
= 0; dg is there smaller than even the 

ax 

example of the occurrence of this case 

smallest of the two a’s. 

2) Cf. VAN DER .WAALS, These Proc. VIII, p. 272. 
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0.9, that log. = may not become smaller than the required value 

11.5, or in other words, for the maximum in temperature to be 

reached, the critical temperature of one component must be about 

ten times as high as that of the other. A system, in which hydrogen 

occurs, will most likely show the temperature maximum when the 

other component has its critical point above 0° C., but already when 

the more volatile component is nitrogen or oxygen, we shall be more 

restricted in the choice of the other component. For then the latter 

must have its critical point at about 1000° C. resp. 1250° ©. If 

ether were the more volatile component, this temperature would 
almost amount to 4500° C. 

This conclusion is hardly affected when we put the temperature 

of the melting point not at */,, but at '/, of the critical temperature, 

as it really is for a number of substances whose critical temperature 

and melting temperature are known. It is true that this consi- 
: cs ce 

derably increases the second member of equation (2), and so —, but 
; LI 

‘ sini Ue : : 
in the same ratio — increases too, so that the quotient remains about 

Vv! ; 

unchanged. This is most easily seen when the condition on whicha 
temperature Maximum occurs, is written : 

&l Vy v 

oe Usk or lag. ete + log. vy — log. vy < log. 0.1. 
e Xy 

Vy vl 

&| 
Now for Jog. — we may introduce the value from the equation’): 

Tes 

i Brel Fy 73 ah, 1 dpi. 
0d. a — — : 

I if T dz pe da Seas av] vy 

and write for /og. v, : 

MRT 
log. vy = log. 

Ey 
= log. MRT +15 — 1) — log. Pk 

c 

so that the condition becomes: 

dT}, 

ff T).dx 

So an increase of 7’ will only affect the first term and the term 

logy. MRT, and the logarithmic change of the latter will certainly 
amount to less than the change of the former. This now increases 

when 7 becomes smaller, hence when at 7’='/, 7), the inequality 

aes os — log. py — log. v1 — f + log. MRT < log. 0.1. 
Pk de 

1) These Proc. VII, p. 559. 
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is not satisfied, this will certainly not be the case for 7’= */, Ty. 

Still, it would be too hazardous to assert that it has now been 

incontestably proved that e.g. for the system ether-anthraquinone no 

temperature maximum can occur. For we have had to make use 

of the supposition that 77, depends linearly on 2, and though this 

supposition may possess some degree of probability for critical tem- 

peratures that differ much, it is just with substances which — as 

ether and anthraquinone-lie’ closer together, that there is some ground 

for expecting a deviation from the straight line. Only very few ex- 

perimental data are at our disposal. As such may e.g. be used 

the determinations on the increase of the plaitpoint temperature by 

addition of little volatile substances, made by Smits, CENTNERSZWER 

and bBicuner. For by means of the formula given by vAN DER WAALS’) 

dT dT; 49 ( dT), lap.) 

Tde, Tydze 45 (Tydz 7 pda 
(3) 

in which we need only pay regard to the principal terms (those 
ryy 

sae Nees . ale ; 
with 7;), we may calculate the value of from those directly 

v T pd: 

measured. If we now calculate by the aid of the thus found 

; dT; » vie § aa : a : 
value of and the supposition of rectilinearity, 7%; i.e. the 

Ty.dx 

value of 7; for the admixed substance, we find the data collected in 

the following table. (P. 645). 

From this appears that the values calculated in this way at least 

for some substances, and particularly for anthraquinone according to 

the determination by Smits, are not inconsiderably lower than double 

the melting point temperature. It may, therefore, be considered highly 

probable that these lines are convex seen from below, and so the 
ry. 

absolute value of a will be larger than might be expected from 

the supposition of rectilinearity. With our imperfect knowledge of 

the further course of the plaitpoint line, and hence a fortiori of the 

line for 7; an estimation as to this will, naturally, remain very 

uncertain; but yet it seems to me that something about this may 

be ascertained in the following way. We have on the side of the 

ether: 

dT}. ae da db 

Tyde)y=0  \ade  bdxJz—o 

1) These Proc. VII, p. 272 and 296. 
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| Second First | T. cal-| Double the 
Observer melting-point 

| component | component | | culated | temperature 

Anthraquinone |’ Ether | SMITs 932° 1120° 

= SO, | CenTNeRSZzWeR | 1032 1120 

Resorcin <s “ | 903 960 

| Camphor “ 5 790 900 

Naphthaline “jane _ | 770 700 

a CO. BucHNER 640 700 

| Paradichloro benzene | as 670 650 

| Paradibromo benzene | * ba 690 720 

| Bromoform | i s |= a) 560 

Orthochloronitro benz. 5 “ | 760 610 

BiicHNER’s values have been borrowed from his thesis for the doctorate | 

| (Amsterdam 1905); those of CENTNERSZWER from a table by vAN Laar 

(These Proc. VIII, p. 151); that of Smits has been calculated from his 

determination: plaitpoint at 203° and 2 —G.015, (These Proc. VII, p.179). 

and so when introducing for a the quadratic and for 4 the linear 
function: 

aT, _ 20,,— 20, b,— bp (i) 

Ty.dz/,—0 

Now it will not be too hazardous an estimation, when — keeping 

in view that the formula for ether is C,H,,O and for anthraquinone 

C,,H,O, —, we put the size of the anthraquinone molecule at about 

two or three times that of the ether molecule; so 6, = 2d, a 36,. 

AT}. 
If we introduce this value and the value of P - , calculated by the 

de 

aid of equation (3), into equation (4), we obtain a value for a,,. 
Assuming that the value of 7) for anthraquinone is 2 560°=1120°, 
we can find an a, from the ratio of the critical temperatures ot 
ether and anthraquinone, and the a for ether; and with these quan- 

on the anthraquinone side 
ae k tities we ean finall leulate tl y calculate the Tide 

(=) iba 2a, — 24,5 b, —6, 

Tydz ).—} iat a, b 

from: 
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OME ie ee aT 
Starting from 6, = 26, we find in this way ( ‘) == G65 

k Hi == || 

with 6, = 2.5: 0.65 and with 6,—306,: 0.64. The error which we 

committed in our choice of 4,, will, therefore, bring about no con- 

siderable modification in the result; it would, indeed, be considerably 

modified if the critical point of anthraquinone should prove to lie 

considerably higher than 1120°. This is not in contradiction with 
our former remark that it is of little importance whether the reduced 

temperature is ‘/, or '/, at the triple point; for this we started from 

the supposition of the linear dependence, whereas here we have 

abandoned this supposition, and calculate this dependence from the 

experimental data. So according to the course of reasoning followed 

here the a,, is given by the experiment, and the smaller value of 

m would now result in a higher value of a, at given 6,, 6, and a,,. 
If our estimation may be considered as not too inaccurate, we may 

conclude that the deviation from rectilinearity does increase the value of 

reach the critical value 0.9. (The value derived from the supposition 

of rectilinearity is 0,58). 

Though the foregoing calculations teach us hardly anything 

positive, they fix first of all our attention on the great desirability 

of more data concerning the values of the quantities a and 6 of very 

little volatile substances ; for it appears again that the whole behaviour 

of all the systems in which such substances appear, is controlled by 

these quantities, and it would exactly be of great importance for 

the theory of mixtures, if its results could be tested by such cases 

where the properties of the two components differ strongly. It is true 

that it will not be easy to determine the critical point of such sub- 

stances in the usual way, but we should have gained already much 

if we could obtain an estimation of the critical temperature by 

caleulation of the a and 6 from the deviations from the law of 

Boye in rarefied gas state, so still some hundreds of degrees below 

the critical point. 
And further I think that after the foregoing I may be allowed to 

draw this conclusion, that the appearance of a temperature maximum 

in the three phase -line, far from being the general case, will be 

confined to mixtures of very exceptional nature. 

dT, : : : 
( ) but by no means in the degree which would be required to 

ra 

Much more frequently than a temperature maximum will a pres- 

sure maximum occur. It appears from equation (1) that this will 

always be the case, when the expression: 
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x 

(ny — Ns) — — (qi — ms) 
2] 

may become negative. Now it is true that we cannot properly say 

that 7,— 7, is a heat of sublimation and 7; — 4; a latent heat of 

melting, because the 7’s do not refer to the same concentration, but 

we may say that 4,— 7s is of the order of magnitude of a heat of 

sublimation, 4; — 4, of the order of a latent heat of melting. Or in 

other words 4, — 4, will be about 7 or 8 times 4 — 7s. So in all 

By 
cases where & <7 the pressure maximum in the three phase 

®! }x—0 

line will also fail. Here too the necessary data are wanting to 

ascertain whether there are many systems for which the - at the 

triple point will descend to this amount. For, determinations of vapour 
tension or direct determinations of the required ratio have been 

nearly always carried out at considerably higher temperature’), and 

for the calculation by the aid of the just used formula the necessary 
data fail here too; besides, it would be doubtful whether the 

formula would be accurate enough, now that we have to deal with 

such small amounts. But — quite apart from the existence of mix- 

tures with minimum vapour pressure — the existence of a system 

like ether-chloroform’?) where on the chloroform side 2, becomes 

almost equal to «,, already proves, that such systems exist. 

In any case to the scheme for the possible course of the two three 

phase lines in a binary system plotted by Bakxuris Roozesoom in 
Fig. 108 of Vol. I of his “Heterogene Gleichgewichte”’, must be 
added types VII and VIII, characterized by a succession of sections, 

1) Particularly when we notice that the ratio of a» and xi would have to be 
calculated from the formula: 

il dp Vy—t]| 1 dp By— aX] 

= ———— or —- — = —_____ 
pdx, 2#,(1—2,) p da, x|{(1—a)) 

and the value obtained will, therefore, strongly vary in consequence of a change 
of temperature of some ten degrees, which have generally an enormous influence 
per cent on the pressure in the neighbourhood of the triple point. 

®) KoHNSTAMM and van Da.rsEn, These Proc. IV, p. 159. BAKHUIS RoozEBoom 
(lc. I p. 41) deems it probable that also systems of gases with water and of 
water with many salts will show a similar shape. However, for such systems 
whose three phase line for the least volatile substance shows a pressure maximum, 
at least at temperatures that do not lie too far from the triple point, the shape 
of the p,a-line will have to deviate considerably from the line drawn there in 
Figs. 15 and 19, because from that shape would follow x. =v. 

da 
Proceedings Royal Acad. Amsterdam. Vol. [X. 
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denoted by 1.7.4.5 and1.7.8.5 in Roozrsoom’s nomenclature ’). 

Type VII (see Fig. 1), is therefore distinguished from HI in this that 

Fig. 1. Fig. 2. 

Fig. 3: Fig. 4. 

section 3 disappears; our Fig. 3 (lacking with RoozmBoom) takes 

its place. Type VHI (see Fig. 2) is distinguished from type V in this 

that instead of section 6 the section indicated in Fig. 4 appears 

between 8 and 5. 

Physics. — “On metastable and unstable equilibria solid-fluid.” 

By Dr. Pu. Kouysramm. (Communicated by Prof. J. D. van 

DER WAALS.) 

In a preceding communication *) I discussed a point on which I 

could not agree with the existing literature on the equilibria solid- 

fluid. A second point which will prove to be allied to the preceding 

one, concerns the course of the curves which are to indicate the 

1) Loc. cit. p. 392. 
2) Proceeding of this meeting, p. 639. 
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metastable and unstable equilibria solid-fluid in the 7’, .x-figures drawn 

up by vaAN DER Waats’), and the v,2- and p, a-figures drawn up 

by Smits?). VAN DER WaaLs himself has already pointed out a defect 

in those figures *), viz. that the spinodal curve falls here within the 

connodal one, whereas in reality it falls far outside it at low tem- 

peratures; but it is not this that I have in view. 

Let us first take the p, x-figures. According to them the complica- 

tion which the binodal curve solid-fluid shows for temperatures below 

the triple-point, will disappear in this sense that at the triple point 

a new complication makes its appearance with three phase pressure, 
horizontal and vertical tangent, that then these two complications 

together give rise to the existence of a detached closed branch which 

contracts more and more, and at last disappears as isolated point. 
It is clear that in this way it is supposed that the complication can 

only disappear above the triple point, and not in the triple point 

itself, or in other words, that when the triple point is passed, always 

another three phase pressure is added to the existing one, and that 

these two more or less high, but always above the triple point 

pressure and the triple point temperature concur and disappear. Or 

expressed in another way still, it has been supposed in these figures 

that there is always found a temperature maximum in the three 

phase line. In the light of the considerations of our preceding com- 
munication this supposition is by no means legitimate. But apart 

from this there rise serious objections against these views. First of 

all, if these views are held, it is impossible to see what the shape of 

the binodal curve solid-fluid must be when the solid substance is the 

more volatile component. Moreover all through the succession of the 

p, #-figures the binodal curve solid-fluid has only one point in common 

with the axis 7 =O. Now it is, however, known, that for the com- 

ponents themselves, so for the concentrations 7—=0O and «= 1 the 

p,f-diagram of fig. 1 holds (see the plate), i.e. at the triple point 
temperature there’ exists by the side of the triple point pressure C 

a second pressure of equilibrium solid-fluid (viz. of an unstable 

phase) C’, and above and below the triple point temperature these 
exist even two such pressures, one of which indicates metastable 

equilibrium, the other unstable equilibrium. But then the binodal curve 

solid-fluid for the mixture will not have to cut the axis of the 

component which becomes solid, once, but three times. And _ finally 

the p,.«-figures of Smits and the 7, 2-figures of van pER WAALS 

1) These Proc. VIII p. 193. 

2) These Proc. VIII p. 196. 

S) loc; -cikerp: “95. 

44% 
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cannot be made to harmonize with the v, z-figures plotted by the 

former; for in these threefold intersection of the binodal with the 

rim does really occur before the detachment takes place (Compare 

in fig. 6 of the said paper by Smits the line fed with /,c,¢,¢,'ef1's 

between this a v,.a-line must necessarily be found intersecting the 

rim in three points). Now that attention has once been drawn to 

these unstable and metastable equilibria, it seems desirable to remove 

these discrepancies. 

For this purpose the best thing is to start from the », z-figure. 

The general equation of coexistence of phases in the variables », x 

and 7’ becomes in this case, if we now consider phase 2 as 

solid phase, 1 as fluid phase’): 

ab et Op O° d*y 
9 * Sige dz Vs — “aw 2a Ss x 

(vs vf) Ove? dvy | Ove Ou sh | nF (w af) laa dws Oar? das ain 

4+ (*%\arT=0 
T eS 

so that we get for constant temperature : 

2 

d°y d7y 
PME pds 
de Ow 0? Soy DD Pe ei 

PMA ies LE Ria Gale. 

In what follows we shall denote the numerator and the denomi- 

nator of this fraction by .V and D. The geometrical meaning of 

D has already been given by VAN DER WaAAts in his first paper 

on these subjects*): the locus D= 0 is the locus of the points of 

contact on the tangents drawn from the point for the solid substance 

to the isobars. It is easily shown that the locus NV = O is the locus 

obtained by putting the q-lines i.e. the lines ot Cin this instead 

of the p-lines. So a double point or an isolated point, as they are 
assumed by Smits, can only occur where the loci V = 0and D=O 
intersect. As in such a point, as appears from the geometric meaning, 

the p- and the q-lines have the same tangent, and accordingly touch, 

such a point must also lie on the spinodal line’). In perfect agreement 

1) Cont.. Il p. 104. 

2) These Proc. VI p. 233. 

5) For from the equation of the spinodal curve 

0? O?y 

0° yp 07» ee J 0 Ovdw Our? 
— —— — | —— } = 0 or = —— 
Ov? Ow? Oxdv 07yp 07 

\ 

Ov? Ovdx 
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with this we easily obtain for the case that , is not O or 1, the 
course of the loci mentioned indicated in fig.2. The dotted line 
denotes the concentration of the solid. phase P; the lines A Q Band 
CQ D are the two branches of the spinodal curve, the two other lines 

eee Op 
joining A with B and C with D the branches of eee When 

v x 

now 2z,—0 becomes, it is evident that at this rim the line D—O 
2H ie er 

must pass through the point where = 0, and this point coincides, 

as is known, with the spinodal curve at the rim. The conclusion seems 

obvious that the points Q and Q’, the points of intersection of the 
spinodal curve and D) =O have shifted towards the rim, and that, 

accordingly, the points of detachment and contraction from figs. 2—8 of 

Prof. Smits (loc. cit.) would have to lie at the rim. However, this 

conclusion would not be correct. For the inference that where the 

spinodal curve and ) = 0 intersect, on account of the geometrical 

meaning of D=0O and V=—0O, the latter must also intersect, does 
2 ay ¥ 

Ov? 
not hold good at the rim. This is in connection with becoming 

07» 
zero and becoming infinite. If we introduce the value MRT/z, 

0a? 

which the last quantity for «=O gets, then N assumes the value: 

O°y ' MRT _ (0p aaah 
FH 5) Sard. 1 = ther) |) Ov02 On (vs te di ae 4 (vf Us) 

and in general this expression will by no means be equal to zero 
) 

in the points where Ee = 0, as already appears from the simple 
U 

consideration that there can 
vf—Us 

quantity which depends exclusively on the properties of the pure 

Op . mh : oe 
component and 5, ) in the maximum and minimum points of its 

& v 

isotherm, because this latter quantity will also have to depend on 

the properties of the second component. So the points Q and Q’ 
will certainly not lie at the rim, and in the points where D=0O 

dp O7y ow 0g 

e Ovda = 0? @) dv 

aa ep oY (dg =-( ), 

follows: 
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cuts the rim the binodal curve will simply have a tangent parallel to 

the v-axis. 

The shape which the different figures will assume, will now depend 

entirely on the fact whether such points Q and Q will also exist 

when the solid substance is one of the components and if so, where 

they lie. The best and most general way of solving these questions 

would be a full consideration of the different forms which the g-lines 

may present. As however the solution of the special question we 

are dealing with does not call for such a discussion, I believed to 

be justified in preferring another briefer mode of reasoning. For this 

purpose I point out first of all that it is easy to see that at least 

in a special case such a point must exist also now. Let us imagine 

a plait, the plaitpoint of which has shifted so far to the side of the 

small volumes, that the tangent to the plait in the plaitpoint points 

towards the point indicating the solid state’). The plait touching the 

isobar in the plaitpoint, the plaitpoint lies evidently on the line 

D=O0 in this case?). But the plaitpoint lies also on the spinodal line, 

2 0?yp 
so the point @ lies here in the plaitpoint, as neither ) : = 0; TOF 

v 

07) f 
ag We may conclude from this that in such like cases, so 

Hi 

those cases where the plaitpoint has been displaced still somewhat 

further or somewhat less far to the side of the small volumes, and 

perhaps in general when the difference in volatility between the two 

components is great, a branch of NW =O will pass through the figure, 

and that it will most likely have a point of intersection with the line 

D=O0. A closer investigation of this supposition can, of course, only 

be given by the calculation. 

1) The above was written before Prof. ONNES’ remarkable experiment (These 

Proc. VII p 459) had called attention to “barotropic” plaitpoints. Now that the 
investigations started by this experiment have furnished the proof that plaitpoints 

can exist, in which the tangent runs // a-axis, the existence of plaitpoints as 

assumed in the text, in which the slope of the tangent need not even be so very 

smali, has, of course been a fortiori proved. 

2) We may cursorily remark that it is therefore not correct to say in general 

that the line D=O runs round the plait in the sense which vAN DER WAALS 

(These Proc. VIIL p. 361) evidently attaches to this expression, i.e. that the 
point of intersection of the line D=O with the binodal and spinodal curves would 

lie on either side of the plaitpoint. For if the plaitpoint should have moved still 

a little further to the side of the small volumes, the two points of intersection of 

D=O with binodal and spinodal curves lie evidently on the vapour branch of 

these lines (the part of these lines between the plaitpoint and the point with the 

largest volume on the 2-axis). 
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For this we shall start with the case that / increases and a decreases 

. . . ‘yy Op . os 

with increasing «, so that 7}, decreases strongly, and 7, ) 18 positive 
Ly v 

everywhere; and for the present we confine ourselves only to the 

solidification of the least volatile component, so 7,— 0. Let us write 

the value which V gets at the rim by the aid of the value derived for 

0 
Ss from the equation of state, in the form: 
eo 

MRT db “4/4, 
(us — vs) = 

; (v—b)? dx v? 

It is clear that this value will become negative for v =o, on 

the contrary positive for v=/"'); so there will always have to be 

a point on the axis «=O, where N—0O. The value which NV 

assumes for «—1, is: 

dp ' MRT 
Oz ), cin tie t— > 

and this expression will, accordingly, be negative for «= 1 for all 

possible liquid volumes, and even negative infinite. From this follows 

that from the point of intersection of WV —O with the axis «—0, 

the locus N= 0 will run to smaller volumes. Now whether V=0 

and DO will intersect in our figure depends on the place where 

N =O cuts the axis x= 0. In this we may distinguish three cases: 

1. The point of intersection of NV =O and the axis lies at smaller 
volume than the points where D—O cuts the axis. Then no inter- 

section of VN =0 and D=O will take place; the points Q and Q’ 

lie quite outside the axes e—1 and «—0O; 

2. The point of intersection VW =O with the axis lies between 

the points of intersection of DO with it. Then the point of 

detachment does fall inside the figure, but not the point of contraction ; 

3. The point of intersection of V —O and the axis lies at larger 

208, of ee Ae | 

') If we should object to putting »—b, yet assuming that v-> vs , we shall 

in any case have to grant that there is nothing incompatible in the assumption 
that at a certain high pressure the volume in the solid state can be smaller than 
that in the liquid state, and that yet a great increase of pressure may be required 

to keep the substance in the same volume after we have replaced some of the 

molecules by much larger ones (so & )=2. 
zy 

*) As said, in every point of the line N —O the q-line passing through it, is 
directed to the point indicating the solid substance. Every q-line for infinite yolume 

being // v-axis, and terminating in the point v = 8, it follows from the existence 
of the line N =O that every q-line cutting this locus, must at least possess one 

point of inflection. 
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volume. Then both the point of detachment and the point of contraction 

fall in the figure. 

The consequences for the change of the v,«-projection of the binodal 

curve with variation of temperature will probably be clear from the 

figures 3—5 without further elucidation in these three cases. With regard 

to the frequency with which the three cases occur, it is evident that 

the last case will occur only rarely, with exceptionally high values of 

i or in general of (32). This case would be altogether 

impossible, if we had to take the temperature of the triple point, 

and the volume which the saturated vapour then has, into account, 

for this amounts certainly to some thousands of times 6, and hence 

there will probably never be any question of an intersection of 

NO with the branch D=O holding for the large volumes at 

the triple point temperature. But for our case we have not to reckon 

with this temperature, but with the highest temperature at which the 

binodal curve solid-fluid has still three points in common with the axis 

x=0, and this is evidently the temperature of point A in fig. 1. 

This, now, can probably lie very considerably above the triple point, 

and moreover as we observed before — not the volume of the 

saturated vapour, but the much smaller one of the maximum of the 

isotherm must be introduced here. If we e.g. put the temperature 

of A so high that the maximum point of the isotherm lies at 

a volume 4), the expression will already become positive with 

= 3b,, or 6, = 4b, and v, near 6, (da/dz is negative). So, the 

case of 3 is, indeed, possible, but it also appears thai it will oceur 

only in exceptional cases *). 

With none of these three cases do the 7’, .x- and p, 2-figures construed 

by vAN perk WaaLs and Sits, agree. They agree in so far with that 

mentioned under 3, that the point of detachment and the point of 

contraction are assumed to fall within the figure. But it is at the 

same time clear from the ve-figures, that a complication must begin 

') It appears from what has been said here that the figures 6—9 are meant 

quite schematically, for though we have drawn several binodals solid-fluid which 

hold for different temperatures, we have left the loci NV =0 and D= 0 unchanged. 

This has, of course, been done to save space, for else we could not have repre- 

sented much more than one temperature in each figure without rendering the 

figures indistinct. But after what has been said it is clear that also the points 

Q@ and @' move, and that it might e.g. very well happen that at lower tempera- 

tures the point Q' is not yet present in the figure, and that it makes its appearance 

only at higher temperatures. The following figures, too, are meant schematically, 

and serve only to elucidate the properties mentioned in the text. 
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in the p,a- and 7, .-figures far below the triple point, viz. already 

at the temperature B of fig. 5, 1.e. the temperature, at which in 

fig. 9 the new branch of the binodal curve (on the left side) makes 

its appearance in the figure. Let us first consider the p, 2-lines. 

At the temperature mentioned (7) a new branch begins to form 

at the same height as the spinodal line, so far below the point of 

the stable coexistence. In the p, a-figure the point where this appears, 

is, in opposition with the v, x-figure, indeed a point where the tangent 

is indefinite ; for the equation: 

ay dy ap \? 
N . 1 — Ws ae aay, SSS SSS SS —_——- -—- Ia rs L ap (w vy) Oar? fe | € / 

holds for the former figure; the factor of dv, is zero on the spinodal 

line and the factor of dp on the line D=O, which both pass through 

the point considered ; oP is there indefinite. The new branch extends 

more and more (fig. 6); its maximum continues to lie on the spino- 

dal curve, and the point with the vertical tangent on the line D=0. 

When the temperature of detachment in the », x-figure (7',) has 

been reached, the old branch and the new one unite (fig. 7), and 

separate again as figure 8 represents. At the triple point temperature 

(7) the middle one and the topmost one of the three points of inter- 
section with the axis coincide (in the final point of the double line 

vapour-liquid) (fig. 9); afterwards they exchange places. At still 

higher temperature the downmost point of intersection with the axis 

and that which has now become the middle one coincide; at this 

place there is again a point with indefinite tangent (7’,, the tempe- 
rature A of fig. 1) (fig. 10); at still higher temperature the binodal curve 

solid-fluid has got quite detached from the axis, and its downmost 

branch forms a closed curve, which contracts more and more, and 

at last disappears at the temperature of the isolated point of fig. 5. 

Here it is evidently essential that 7, lies above 7,, and 7’, above 

T,, according to the significance which they have in fig. 1; also 

T,, the point at which the detached branch disappears from the figure, 
must lie above 7’, the triple point, because in the triple point the 

binodal curve solid-liquid must still have two points in common with 

the rim (a little above it even three). But it is not essential that 7, 

lies between 7’, and 7,; 7, might just as well lie above 7,. Then we 

get the succession: fig. 6, fig. 9a (triple point), fig. 10a. If now 7, lies 

below 7’, there is confluence and section, and we get after fig. 10a 

fig. 11, and then Smrrs’ figs. 4 and 5 (loc. cit); if 7, lies also above 

7’, first the two lowest points of intersection of the binodal curve so!id- 
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liquid with the rim join, then they are detached from the rim, and 

we get, therefore, in this case, but only above T',, so above tempe- 

rature A of fig. 1, the continuous line drawn by Smits fig. 3 (Loe. 

cit.), which then passes into figs 4 and 5 (loc. cit.). 

The case mentioned under 2 that the point of contraction falls 

outside the figure may after all, be derived from the foregoing by 

putting 7’,, the temperature at which the detached branch disappears 

from the figure, below ‘7’, the temperature at which it detaches 

itself from the rim. In our figures it has only this influence that the 

loop of figs. 9 and 10a cannot detach itself from the rim, as in 

fig. 10, and disappear as isolated point; but this loop contracts more 

and more at the rim and disappears there. In this case, too, 7’, can 

lie above 7’,, but of course, not above 7’. If 7, lies under 7), we 

have the succession 6, 7, 8, 9 and disappearance of the loop in the 

rim; if 7, lies above 7’, then: 6, 9a, 10a, 11, and disappearance 

of the loop in the rim. 

The above case mentioned under 1, when also the point of detach- 
ment falls outside the v, x-figure, may be considered as the case that 

T, lies below 7,, and 7’, above 7. We have then the succession, 

the upper portion of fig. 6 (viz. without the downmost loop), figs. 
12, 8, 9, after which the loop merges in the rim. Now in all the 

eases mentioned, except in the second subdivision of the case under 

3 (so 7’, above 7’,), we meet still with two possibilities. Up to now 
we have assumed for those cases, that the triple point témperature 

is the highest temperature at which the two binodal curves intersect in 

the stable region, and that they have got detached above it. It is now, 

however, possible, that also in these cases the two binodals intersect 
twice at the triple point and above it. Then fig. 96, is put every- 
where for fig. 9, and then this is changed into fig. 11. . 

We get then the following summary : 

Case under 1. 
Upper portion of 6, 12, 8, 9, disappearance of the loop in the rim 

%3 fF 5 Oy, 12,18 4 ood $4 ;, 

Case under 2. 

Os Oune, 49 13 99° ‘So 99 
G09d, 1Gg7at re 35°» 0, Sw gg ee 

62070, 98,296; ad a ya 52 

Case under 3. 

Gai ee oe e0, disappearance of the loop in the fig. 

6, 9a, 10a, 11, 4and5 Smits __,;, Pe ae a 

6, 9a, 10a, 3, 4 andSSmits _,, Nom er ae. 

6, 7, 8, 96, 11,4 and 5 Smits se, sd a-aeel bag: 5d, eee 
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The greatest chance to only one intersection with the binodal curve 

liquid-vapour presents, of course, as is best seen from the v, v-figure, 

the case under 1, more particularly when in this case the line V = 0 

cuts the axis at such small volumes, that it has no longer any point 

in commen not only with the spinodal curve, but even with the binodal 

curve of the transverse plait. Only » ith a very exceptional course 

of the binodal curve of the transverse plait double intersection could 

take place in this case. On the other hand it will be highly probable 

that always when the line V=—O cuts the binodal curve of the 

transverse plait (which will always have to take place in the cases under 

2 and 3), also double intersection of the two binodals will be found. 

This shows at the same time the connection of this investigation 

with that of the preceding communication. For it appears now that 

the shape of the p,c-lines holding for 1 with single intersection is, 

after all, by far the most frequently occurring, i.e. in almost all 

cases where no temperature maximum occurs in the three phase line; 

for in this case the triple point temperature is the highest tempera- 

ture for which a three phase coexistence exists. 

For a complete survey I have also indicated in figs 183—16, how 

the binodal curve for the other solid phase gets detached from the trans- 

verse plait. This is only possible in one way, because here there 

cannot be intersection of the lines D=0O and N=0O. For «=1 
for this binodal curve, and so the expression for 7’ at the rim becomes : 

Op MRT 
) OS Aaa Ox 

so always positive for both rims. The line N =O would therefore, 
have to become a closed curve, which on account of the shape of 
the g-lines may be considered as excluded '). 

In the 7)2-lines double intersection will, of course, always occur 

above the triple point when the three phase line has a maximum 
pressure. For the rest nothing of interest is to be said of the 7\z- 
lines ; they have the same general course as the p,a-lines given here, 
provided the figures are made to turn 180° round the z-axis, or in 

other words, provided a negative 7-axis is made of the p-axis. Then 
the points with vertical tangent lie here, of course, on the line 
W.=0, instead of on the locus D=0; only at the rim they coin- 

1) At least as long as the complications, which are in connection with the 
s 

2 

existence of a locus = 0, do not present themselves. (See v. p. wAats, Proc. 

of this meeting p. 637). I shall perhaps revert later on to the changes which are 

to be made in what precedes in consequence of this. 
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cide. If the pressure maximum of the three phase line should be 

found at higher pressure than the point A of fig. 1, we must, of 

course, have the case mentioned under 3, i.e. the point of contrac- 

tion must lie within the figure. 

Ra has been assumed in the above that throughout the region 

P 
(3°) = positive, and that a decreases with increasing 6. The case 

aL v 

that @ inereases with increasing 6 does not present any new points 

of view. If we have a system where a strongly increases, so that 
Op 

the critical temperature rises with 6 and (3 is negative, the ex- 
Ox 

pression 
Op\ | MRT 

ponds (ae) me 
is evidently always negative for #, = 0. And this is obvious, 

because this axis is now also that of the more volatile component ; 

on the other hand the reversal of sign may now take place with 

the other axis. What happened on the left just now, will now take 

place on the right, and vice versa. It is only worthy of notice that 

now the line N=—0O, if it exists, must intersect the axis 2—1 in 

two points. For the expression 
: MRT db da/dz 

2). aera 
where db/dv and da/dx are positive, becomes positive for v=6 and 

v=o. From this follows that besides the just mentioned cases, 

another possibility may be found, i.e. that the point of contraction 

does fall within the figure, but not the point of detachment. For 

the p,a- and 7’, x-figures it makes only this difference that a loop 
formed in the way of fig. 12, (which always disappeared in the 

rim in the other cases) may now also disappear like the loop of 

fig. 10 in a point within the figure. It is further clear, that in this 

case the point of contraction will much sooner fall within the figure 

+ MRT 

; s E 7 3 db 
than in the preceding case. For according to formula (1) — must 

dx 

have an excessively high value for the expression to be able 

still to become positive with a volume v=1006. If, however, 

da/dx = 2a, — 2a,,=1.8a,'), then: 

1) With the values for a and b of Lanpotr and Boérnstetn’s table 82 we find 
b; a: 

about 12 for the highest value of a about 250 for that of —; if hydrogen is 
b a l 1 

excluded, the values become resp. 8 and 40. So, whereas with exclusion of 

; Ogi dg—Q, 
hydrogen, pairs with a ratio ——— > 7 cannot oceur, can reach the 

1 Y 
value 39. 
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da/dx mai bool 18 (= od ?) 

2 2 v v a— 

da/da: 
vo? 

and so (v—vs) becomes of the order of magnitude 1.8 {J/R7' — 

— p(v—v;)}. With this volume and the low temperature holding 

here the latter term is certainly a small fraction of J/R7, also 
MRT db 
metip tg 3°50 that the expression becomes negative. 
C= x 

Ow 

region, call for a further discussion, for it does not present any new 
Op da. 

points of view. If = becomes zero in consequence of —- first being 
uv), da 

negative then positive (minimum critical temperature), we shall have 

on either side what in the first case took place on the left side 

(fig. 6—12); if da/dr is first positive then negative (minimum of 

vapour pressure) we have on either side what happens on the right 

side in figs. 13 —16. 

Op 
Nor does the case that ( may become zero in the examined 

Nor does, in view of the foregoing, the occurrence of cases in which 

the plaitpoint curve meets the three phase line, offer any difficulty. 

It is only clear, that the two points where this meeting takes place, 
must lie below the point of detachment (double point of the binodal 

curve solid-fluid) both in pressure and in temperature. For when detach- 

ment has taken place, and so the binodal curve has split up into two 

branches, it seems no longer possible, when the v,x-figure constantly 

contracts and hence (és/), has a negative value, that the three phase 

pressure coincides with a plaitpoint pressure’). But nothing indeed 

pleads against this conclusion. Only when we cling to the supposition 

that the point of detachment must always lie at the rim we are 

confronted by unsurmountable difficulties. For then the temperature 

and pressure of the point of detachment coincide with those of 
BG (fig. 1), and this point, lying considerably below the triple point, 
lies certainly, at least in pressure, far below any plaitpoint. 

In conclusion we may remark that the cases where 2, lies between 

1 and QO, i.e. where the solid substance is a compound entirely or 

partially dissociated in the fluid state, may be derived in all their details 

from the v,a-figure (fig. 2) without any further difficulty. We get 

then at low temperatures Smits’ diagrams in the figures 4—-7 in his 

1) Compare the figures referring to this in van perk Waats, (These Proc. VI, 

p. 237, VIII, p. 194 fig. (2) and Sarrs (These Proc. VI, p.491 and 495 and VIII, 

p. 200 (fig. 10). 
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paper: Contibution to the knowledge of the p, x- and the p, 7-lines*,, 
at least when we take the maxima of pressure very much higher 

and the minima very much lower, so that on the left side the figure 

intersects itself twice. The detachment of the two binodal curves then 

takes place in a very intricate way by means ofa series of modifications, 

which I shall, however, omit, with a view to the available space. 

So, for this I must refer to the lectures which I am arranging for 

publication as mentioned in the beginning of my preceding commu- 

nication, though certainly some time will elapse before they see 

the light. 

Physics. — “Contributions to the knowledge of the w-surface of 
Van per Waats. XIII. On the conditions for the sinking and 
again rising of a gas phase in the liquid phase for binary 
mixtures. (continued). By Dr. W. H. Kersom. Communication 
N°. 96° from the Physical Laboratory at Leiden. (Communi- 

cated by Prof. H. KamerLincn ONNESs). 

(Communicated in the meeiing of January 26, 1907). 

§ 6. Conditions for the occurrence of barotropic plaitpoints for 
mixtures with M,=2M,, v,, = 8 vz. Now that it had appeared in 
§ 5 (These Proc. p. 510), that there exists a barotropic plaitpoint ) 

on the assumptions mentioned there, first of all the occurrence of 
barotropic plaitpoints with M,/1/, = 2, Uk, = */, Was subjected to 

a closer investigation, partly also on account of the importance of 

these considerations for mixtures of He and H,*). The barotropic 

_plaitpoints given in table I respectively for the ratio of the critical 

') These Proc. VIII, p. 200. 

2) The proof that this barotropic plaitpoint really lies on the gas-liquid plait, is in 

connection with the discussion of the longitudinal plait. In a following Comm. 
by Prof. KamertincH Onnes and me on this latter subject, the treatment of 

which was postponed for the present as stated in Comm. N®. 962, the proof 

in question will be included. 

3) To enable us to judge in how far this last assumption is in accordance with 

what is known about mixtures of He and Hy, the followimg remark may follow 

here, in the name of Prof. KaMertincH Onnes too, (cf. Comm. N° 965 § 4, Dee. 

‘06 p. 506) on & (cf. van peR Waats, These Proc. Jan. ’07, p. 528) and a for 

helium: It proved in the preliminary experiment described in Comm. N°. 96a that 
on analysis the liquid phase contained at least (some He has evaporated from 

it during the drawing off of the liquid phase) about 3 °/) He, the gas phase at 

least (a very small quantity of liquid has been drawn along with the gas phase 

being blown off) about 21°/, Hy (estimations of the corrections which for the 

reasons mentioned ought to be applied to the results of the analysis make 
it probable that they will not considerably influence the results derived here [added 

in the English translation]), Let us put the density of liquid hydrogen boiling under 
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temperatures of the components given there are found in the way 

explained in § 5. 

atmospheric pressure according to Dewar (Roy. Institution Weekly Evening Meetings), 

25 March '04) at 0.070, and let us derive the coefficient of compressibility according 

to the principle of the corresponding states, e.g. from that of pentane at 20° G,, 
then the density at 40 atms. is 0,072. If we calculate the increase of densily in 
consequence of the solution of helium from van per WaAats’ equation of state for 

; : 1 
a binary mixture by putting 0./He = > 0./H2 for this correction term, we get 

for the density of the liquid phase at the p and 7 mentioned if it contained 

a 0} Her >. 0-077. 
The gas phase will have the same density at about the p and 7’ mentioned (cf. Comm. 

N°. 96a, Nov. 06, p. 460). The theoretical density (AvocapRo-Boy.e-Gay-Lussac) at 

T=20° and p= 40 atms. = 0.0885. If we assume Van per Waats’ equation of state 

with a, and } for constant x not dependent on v and 7, to hold for this gas phase, 

: : be dx 1 
it follows with the above given value of the density that er 

v—br RT Vv 
= 0.00042 (Kounstamm, LANDOLT-BORNsTEIN-MEYER- For Agg = A, — 0 with a uu 

HorreR’s Physik. Chem. Tabellen), and with v,,— 0.0021, putting x = 0.80 for the 

gas phase, we should obtain: be 0.21 v,,= 0.00044. We should then, if 

we may put B, 4p 2, | yy T Ogg gy) Bet Ono gg = 9.00083 = 8's Dy CO g¢= 0.00088, 12M 

Kounstamm |. c.). If we wish to assume positive values for a. and gq (cf. Gomm. 

N°. 96a, p. 460), we should have to put 6,,),>%/s5,14, for T= 20°; if we 

assumed that the gas phase contained 15°/) He we should derive from the above 

mentioned experiment for positive values of a, and a2: 5,,,,> 0.31 0,, 

These results harmonize very well with what may be derived about byyy. 

at O° C.; the ratio of the refracting powers (RAYLEIGH) gives: oso 0.31 Ow 

while the ratio of the coefficients of viscosity and also that of the coefficients of 
the conduction of heat lead to a greater value for D yyy, (about 1/2 4 y/4,)- 

If we take bg544/0), 44 = V2, we should obtain from the above given considerations 

(putting @oy—=Vayiy 42)? Mui = Vis, 80 that Typy_ = about 0.35°. 
This renders a value for the critical temperature of He <0.5° probable. 

This conclusion would not hold if bz3f fer «0.8 were considerably greater 

than follows from the hypothesis that bz@ varies linearly with x. This however 
is according io the experiments of Kuevey, Keesom and Brinkman on mixtures of 

CH;Cl — CO, and CO, — 03, not to be expected. The experiments of VeRSCHAFFELT 
on mixtures of CO,—H, would admit the possibility, but give no indication for 

the probability of it. [Added in the English translation]. 
So though probably 42/:,, for mixtures of He and H, is larger, yet we shall 

here retain the supposition made in § 5 on 22/s,,, with which the calculations 
were started, because the accurate amount is not yet known to us, and we only 

wish to give here an example for discussion; moreover the course of the y-sur- 

face will not be considerably modified by this difference in any essential respect. 
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TABLE I. | 

Barotropic plaitpoints at M,/M, = */,, ve, /vi, = */s- 

D/T Gene| Aa JA a tl sen es opt Pry 

0.002 06 0.3957 | 1.00 ! 4.805 | 

0.0210 | 0.65 0.3481 0.934 4.772 

4a | 9/8 1/3 444/484 | 576/124 

0.0604 | 0.7 0.9048 | 0.867 | 4.758 

0.1044 | 0.75 0 2636 0.300 | 4.780 

| 0.1472 | 08 0.2934 0.726 | 4.844 

| 0.1842 0.85 0.1833 | 0.638 4.800 

0.2106 0.9 | 0.4424 | 0.581 | 4.567 | 

0.2176 | 0.925 | 0.41212 0.444 | 4.202 | 

0.2199 | 0.94 | 0.4081 0.387 3.751 

0.82 | 0.95 0.0991 0.343 3.282 | 

0.2148 | 0.96 | 0.0854 0.266 2.107 | 

0.2106 | 097 | 0.072 | 0.204 |! 0687 

0 2040 0985 | 0.0644 0.130 =. OT oy 

| 0.1996 | 0.99 | 0.0585 | 0.078 — 5AM | 

| 0.1960 | 0.99 | 0.0518 | 0.033 | — 9.793 

| 0.1956 | 0.996 | 0.0495 | 0.028 | 10.86 | 
| 0.1964 | 0.9975 | 0.0478 0.019 —12.086 

| 4/4 | { | eae tat 0 | ay 

For so far as the assumed suppositions hold, the barotropic plait- 
points given in the table have only physical significance if 7;,, does 

not become so low that solid phases make their influence felt (ef. 

Comm. N°. 964, § 5 4), and if moreover the portion of the p-surface 

in the neighbourhood of the plait-point is not covered by a portion 

of the derived surface indicating more stable equilibria (as e.g. will 

be the case for negative pressures). In how far the indicated baro- 

tropic plaitpoints will belong to the gas-liquid-plait will be more 
fully treated in a following communication (cf. footnote 2, p. 660). 

In the first place it follows from table I that with the assumed 
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ratios of the molecular weights and of the critical volumes, baro- 

tropic plaitpoints prove only possible (quite apart from the question 

whether they are physically realisable, and whether they belong to 

1 
the gas-liquid plait) for 7;,/7%,, Son 

The barotropic plaitpoint for the ratio 7%,/7).,—= 0.0002 is a 

plaitpoint for a mixture, one component of which is a gas almost 

without cohesion (Comm. No. 964 § 1). A further consideration of 

it would lead us again to the region of the longitudinal plait. 

The conditions relating to barotropic plaitpoints for ,,; near 1 

furnish a contribution to the knowledge of van per WAALS’ w-surface 

for binary mixtures with a small proportion of one of the components '). 

We find for 7;,/7%, near */,, putting «,;—=1— §: 

my Haase 3h 
Ter, = 7 | 5 b+ Te a TE 

20 29 
== bg a ea 
are 16 

It is seen from the series of the ratios 7;,/7;, in table I, that 

in this a maximum and a minimum occur, respectively for about 

T/T, = 0.219 and 0.196. From the formulae derived for Lbpl 

near 1, a minimum and a maximum for uw is found, and hence for 

Ty.,/Ti,, respectively at x); = 0.9968 and 0.969. That the latter is 

in reality found at %,;=0.94 is due to following terms in the 
development. 

Bor 77/77, < 0.196. or. 0.219 < T,,/T;, < 0.25 one barotropic 

plaitpoint is found, for 0.196 < 7T;,/T,, << 0.219 three. In connec- 
tion with Comm. No. 966 § 2 (Dec. ’06 p. 502, ef. also this Comm. 
§ 1, Dee. ’06, p. 508) it follows also from this that for the mixtures 

considered here at lower temperature the longitudinal plait makes 
its influence felt. 

The experiment described in Comm. N°. 96a proved that for 
mixtures of He and H, at — 253°, ie. about 7= 0.65 Tin,, a 
barotropic tangent chord is found on the w-surface. If at that 
temperature only one barotropic tangent chord occurs, this will point 
to this (Comm. N°. 966 p. 504) that for the mixtures of these sub- 
stances 1'%,,); > 0.65 Tin, and therefore according to this table 
Tre <. 0.18 Tiy,, while the found considerable difference in con- 
centration between the gas and the liquid phase (see Footnote 3, 

1) Cf. Comm. N?. 75 (Dec. ’01), .N*. 79 (April ’02), N° 81 (Oct. ’02), Suppl. 

N°. 6 (May, June ’03). 

45 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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p. 660) indicates, that 7%,;, would have to lie still pretty much 

higher, and therefore 74, pretty much lower (probably < about 4°) ’). 

Of this result we availed ourselves in the treatment of the estimation 

of the critical temperature of He in Comm. N°. 960. 
(To be continued). 

Physics. — “Contributions to the knowledge of the w-surface of VAN 
peR Waals. XIV. Graphical deduction of the results of 
KUENEN’S experiments on miatures of ethane and nitrous ovde.” 
Supplement 14 to the Communications from the Physical 

Laboratory of Leiden. By Prof. H. KameriincH Onnes and 
Miss T. C. JoLuxzs. 

(Communicated in the meeting of Januari 26, 1907). 

§ 1. Introduction. In what follows we have endeavoured to 

derive quantitatively by first approximation the behaviour of the 

mixtures of N,O and C,H, (mixtures of the II type’)), which has 

become known through KvuENEN’s experiments *), by the aid of VAN DER 

Waa.s’ free-energy surface. The w-surfaces construed for this purpose 

(see plate I) are the counterparts of those construed in Comm. N°. 59 

(These Proc. Sept. 1900) and Comm. N°. 64*) for the derivation 

of the results of KugNEN’s and HartMan’s experiments on mixtures 

of CO, and CH,Cl (mixtures of the I type). In the graphical treat- 
ment’) of our problem we have chiefly followed the method given 
in Comm. N°. 59, where the critical temperature and pressure of 

some mixtures were borrowed from KurNEN’s determinations, and 

then the results of another group of experiments — those referring 

to the conditions of coexistence of two phases at a certain tempera- 

ture — were deduced by the aid of van DER WAALS’ theory. 

KUuENEN’S results for N,O and C,H, are principally laid down in 

1) If 4x/p,, is taken larger than 1/, (Cf. Feotnote 3 p. 660) this supposition too 

makes the upmost limit for 7’,,, on the said supposition smaller. This is seen 

when we compare with table I that we obtain | i =0.679 for %:2/4,, = 1/4 

with 2, /-p, = 0.15. 

*) Hartman, Leiden Comm. Suppl. no. 3, p. 11. 

3) Kuenen, Leiden Comm. no. 16, Phil. Mag. 40, p. 173, 1895, cf. also Kamer- 

LiNGH Onnes and Zaxrzewski, Leiden Comm. Suppl. no. 8. (These Proc. Sept. 1904). 

It is remarkable that the possibility of this case was foreseen by vAN DER WAALS, 

Contin. Il, p. 49 [added in the English translation]. 

4) Arch. Néerl. Serie II, Tome V, p. 636. 

®) Only graphical solutions for definite cases are here possible. (Cf. Suppl. 8, 

These Proc. Sept. 1904. § 1). 
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four figures '); one of them gives the critical quantities from which 
we shall start in our deduction, and the border curves for mixtures 
of different concentration; the three others, which represent the xv- 

projection of the connode with the connodal or tangent chords at 
the temperatures 20° C, 25°C, 26° C, show the contraction of the 

transverse plait with rise of temperature, and finally its splitting up 
into two plaits. 

We have thought that we could obtain a better comparison of 

observation and calculation, when representing the observations by 
the xv-figures for 5° C., 20°C. and 26°C., and the p7-figure, instead 

of by the wv-figures at the before mentioned temperatures and the 
pT-tigure. 

§ 2. Basis of the calculation. Law of the corresponding states 
and reduced equation of state. We start (cf. Supp]. N°. 8, These 
Proce. Sept. 1904 § 1) from the supposition that the law of the 

corresponding states — at least within the region of the observations 

— holds as well for C,H, and N,O as for their mixtures. As reduced 

equation of state we chose equation V.s.1 of Comm. N°. 74%) p. 12 

For a region of reduced temperature and pressure which incloses 

the region which corresponds to that of the observations under in- 
vestigation, this equation is as closely as possible adjusted to CQ,, 

which in thermical properties has much in common with N,O, and 

there is no reason to suppose that this will not be the case with C,H,. 

In the application we are, however, confronted by this difficulty, 

that V. s. 1 deviates most strongly from the observations on CO, 

exactly in the neighbourhood of the critical state. (Cf. Comm. N°. 74 
and later Kresom, Comm. N°. 88). If from V. s. 1°) the point is 
derived, for which 

oY 0? 
ae =—— (and — ths 

we find ¢ 1.010595, 4» = 1.0407.10-*, »—1,06566. Kexrsom’s 

observations, Comm. N°. 88, give for the critical volume, when it 

is sought by the application of the law of the rectilinear diameter, 
for CO, 

vy — 0.00418 and for 2 = = 1.0027.10-3. . . (1) 
k 

1) Where it was necessary, Kuenen’s figures have been rectified in accordance 

with the results of observation given by him. 

2) Arch. Néerl. Vol. Jubil. Bosscha. Serie II, tome 6, 1901. 

5) In the calculations 7 is put 273°,04 for the freezing point of water, because 
V. s. 1 was calculated with this value. 

45% 
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We find then: 

t, = 1.010595 instead of 4% =1 

b, = 1.0379 S. a) ea! 

pe = £.065606~ ~:.;, oes, 

The isotherms from which V. s. 1 has been derived by the com- 

putation of the virial coefficients 3, © ete. (See comm. N°. 71, These 

Proc. June 1901), indicate therefore, by means of interpolation 

according to this mode of calculation, a critical state, which, drawn 

in the pv-diagram, has shifted with respect to that which was found 
by immediate observation; the critical temperature according to V. 

s. 1 is namely t,7% when 7}, is the observed critical temperature. 

So are also the values found for Ymaz., Vig. ANd Yyap, at t by the 
application of Maxwe.u’s criterion, different from those which we 

should find when dividing Paz. by px, Viig. ANd Vyay. by vz. The 

deviations are of the same order as the deviations of the substances 

inter se, when they are compared by the law of the corresponding 

states. At t—0,9 they are about zero, but they increase as we 

approach the critical state, so that the deviations agree with a gradual 

transformation of the net of isotherms. The following table gives a 

survey of the deviations in the corresponding values. 

Column A refers to V.s.1 and implicitly to pz, 7% of CO, 

» BS > thesobseryatious » CQ 

” 6 ” ” ” ey) ”> N,0. 

4 | F | c 
| | 
| t p p t p 

{ 

1.0106 1.066 | | 

| 1 1. 1. 

| 9.0% 0.826 || 0.975 | 0.84 || 0.975 | 0.854 

| 0.950 | 0.695 | 0.950 | 0.709 |} 0.950 | 0.720 

| 0.925 | 0.589 || 0.925 | 0.599 | 

| 0.900 | 0.490 || 0.900 | 0.494 | 0.900 0.486 | 

In the neighbourhood of the critical temperature the phenomena 

are governed by the difference of the temperature of observation and 

the critical temperature, 7’— 7); for this reason we have chosen 

for the detailed model of 26° such a temperature 7” for the com- 
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parison of the observations at that temperature 7’ with the result of 
computation that 

~— 1 = tT, —- T’. 

At the general survey for 26° we have applied to t= T; a cor- 

rection = At, so that At—0.01066, when 6=10(t—0,9) for 

0<@4<1, whereas At—O for all other values of 6. The correction 

Attot was accompanied by a correction Av to v and Ap to yp, so 

that Ap —0.06576 and Av = 0.0379 6, which together represent a 

regular increase of the corrections from t= 0,9 to the critical state. 

For the detailed model of the y-surface for 26°, on which only the 

part from «=—0,35 to 2=0,65 was represented, we used every where 
the same correction viz. A t=0.0106, Ap = 0,0657, Av = 0,0379. 

§ 3. Critical quantities for the mixtures. Kunnen has determined 
the plaitpoints 7 plc» Pyle» Vple,» for some mixtures with the molecular 

concentration v Tix, Pix, Ure, the critical points of contact, and 

Tix, Pkx> Vix the eritical states of the mixtures taken as homogeneous 

differ so little’) from these values, that this difference may be dis- 

regarded for our purpose, and so they are also known for the 

mixtures investigated by KUENEN. 

‘yy 
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1) This has been fully treated by van per Waats, Cont. II, § 11. 
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The critical quantities for the other mixtures were found by gra- 
phical interpolation. Fig. 1 gives p,., fig. 2 Ti. as function of 2; in 

fig. 3 v,, has been calculated from pz, and 7%;, by the aid of 2 (see 

formula (1)); the vz, observed by KueENEN have been indicated there. 

By carrying out the construction for the connode by the aid of the 

P, and y — # ES —v se curves (see Comm. N°. 59a')), which the 
& & v 

models for those different temperatures yield, we may derive 742 — vpi.2, 
Pkx — Ppl.c in first approximation (see Comm. N°. 59a). Applying 
these corrections we should then have to repeat the calculation from 

the beginning, to obtain more accurate values for vr, Pez. We have 

confined ourselves to a first approximation in all our constructions, 

as also a further correction of the equation of state V.s. 1., which 

can cancel the deviations mentioned in § 2, has not been applied 

and we were the more justified in this, as these latter deviations 

are larger than those we have now in view. 

§ 4. Construction of the w-surfaces. 

From the equation of state V.s.1 we find immediately the reduced 

w,7 curves, from which are then deduced the ordinary w-curves accor- 

ding to Suppl. N°. 8,§ 4; or the ordinary virial coefficients, whic hare 

then used for the calculation of yw according to Comm. N°. 59. 

For the construction (cf. Comm. 59) use was made of: 

Bie SD. wy, =wt 0107+ 250 

ees ww, —~w+ 01024 36,50 

» 2°  w,,=—w+ 0,242 4+ 57,3 2, 

while a suitable constant was subtracted from every y. Here v is 

expressed in the theoretical normal volume, just as in the diagrams. 

From the ~,7 curves (ef. fig. 1, pl. II) the y,.7 curves (see fig. 2, 

pl. Il) and the pr curves were graphically derived. The models for 

w were construed on a scale 5 times larger than the diagrams on 

pl. Il, pl. II and pl. IV. 

§ 5. Determination of the coexisting phases. 

Applied was both the construction by rolling a glass plate on the 

1) In giving the figure 3 in Comm. N°. 59a for this consuuction it was stated 

that this figure was very imperfect. It appears now that the loop ought to contain 

two cusps. We found out the error by the aid of the general properties of the 

substitution-curves treated by van peR Waats (Comp. Proceedings of this meeting). 

This error shows the more how necessary it is that graphical solutions are 
controlled by such general properties as van per WaAats is now publishing, 

| Added in the English translation]. 
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model, which yields the connode and the tangent chords, and the 

simplified construction in the plane given in Suppl. N°. 8, § 7, to 

which a small correction was applied. After viz., a provisional 

connode, that of the mixtures taken as homogeneous, has been found 

by tracing curves of double contact to the y,7-curves, and by 

determining conjugate points 4 on the gas branch at some points a 

ae : Ow 
on the liquid branch of that connode, so that every time — is the 

Lv 

same for the two conjugate points, the lines which join every two 

of these points a and 4, are produced outside the provisional connode, 
till they cut the isobars which pass through a, in points ¢, 
which together represent the required gasbranch of the connode; ¢ 
and a are then considered as conjugate points. In the w-surface at 
5°C. the two constructions yielded fairly well corresponding results, 
both with regard to the chords and to the connode itself, as appears 

from pl. Il fig. 4, where — — —  — denotes the connode and the 

connodal tangent-chords found-by rolling a glass-plate on the model, 

.__ those found by means of the just mentioned construction. 

That the simplified construction, which was more particularly plotted 

for equilibria far below the critical temperature (see Suppl. N°. 8, § 7) 

still leads to our end, is probably due to the fact, that we have 

here to deal with a mixture of the II type. 

With the y-surface for 20° the slight depth of the plait rendered 

it necessary, to considerably diminish the longitudinal scale for the 

v-coordinate of the model. This compression (ef. pl. I, fig. 2) rendered 

the plait sufficiently clear to determine the connode and the place 
of the connodal tangent chords by rolling a glass plate. By means 

of the simplified construction the connode was still to be obtained, 

but the determination of the tangent-chords became uncertain. 

With the y-surface of 26° the depth of the plait (here split into 

two) becomes so exceedingly slight, that it does not appear but with 

a computation with 7 decimals, and even then it manifests itself 

almost quite in the two last decimals. Hence it is not possible to 
model a y-surface (we mean a surface derived from the w-surface, 

on which the coexisiing phases are still to be found by rolling a 

plane}, on which this plait is visible, nor is it of any avail to confine 
ourselves to a small part of the surface, because the curvature of the w,7- 

curves is very strong exactly there where something important might be 

shown. The determination of the connode and the connodal tangent 
chords by construction according to §8 of Comm. N°. 59a, which 

can always be carried out provided enough decimals are worked 

with, remained still uncertain up to 7 decimals, so that we have 
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not pursued it any further. Thus the represented part of the y-surface 

for 26° from 20.35 to 70,65 and from v—=0.0038 to v—0.0070, 

has been given by us chiefly to demonstrate how exceedingly small 

the influences must be on which a plait depends, and how much 

care is required to determine a plait experimentally which is not at 

all to be seen on the surface. The curves drawn on the surface, 

which relate to the plait, were found by indirect ways, partly by 

construction, partly by calculation. To facilitate a comparison of the 

models inter se the region of « and v, on which the model for 20° 

and that for 26° extends, has been indicated on the model for 5’, 

on the model for 20° that for 26°. 

§ 6. Further remarks on the different models and drawings obtained 

by construction. 

a. The w'-surface for 5°. The model, pl. I, fig. 1, and the drawings 

pl. I, figs. 1, 2 and 3 show curves of equal concentration, w',7, 

equal volume and equal pressure, the connode and the connodal 
Ow’ 

tangent chords. AB en Saat some pressures are represented 

by negative slopes on the stable part of the y'-surface, in consequence 

of which the character of this w'-surface does not in this respect imme- 

diately express that of the y-surface, where all the slopes are positive. 

A connodal tangent-chord, near the concentration with maximum 

pressure, almost touches the y-line. With the concentration of 

maximum pressure this would be just the case. Just as the connodal 

tangent chords the isobars are traced in the projection on the « v-plane 

(Pl. II, fig. 8) in full lines, the connode is denoted by —_.- se 

For the isobars') we may note several peculiarities, to which 

vAN peR Waats has drawn attention in his theory of ternary 

systems ”). The isobar which touches the connode on the liquid and 

vapour side, belongs to the pressure p = 36,6, which is found for 

the mixture which when behaving as a_ simple substance should 

have a maximum coexistence pressure. The pressure curve 2 

determines the transition between the continuous isobars (taking 

the region outside the drawing into consideration) and __ those 

split up into two branches. The parts of the continuous isobars 

which point to P, have each a point of inflection on either 
O*7y 0?yp 

side: of the top.. The shape of the curves —— = 0 and———=@ 
Ovda Ov? 

1) Cf. the sketch by Harrman, Leiden Comm., Suppl n°. 3, pl. Il, fig. 5. 

2) These Proc. March 1902, p. 540. 
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is as has been indicated by vay perk Waats'). The points of intersec- 

tion of these two curves are the centre Q of the isobars and the 

double point of the pressure curve 2, P. 

—b. The w'-surface for 20°. Fig. 1, pl. Ill denotes the y,7-curves 

and the connode. Fig 2, pl. Ili the w,7-curves and the connode. 

Fig. 3 gives the projection on the « v-plane of the connode, of 

ihe tangent chords and of some isobars. The connode is denoted by 

__.__._. Pl. I fig. 2 gives a representation of the model. 
c. The w-surface for 26°. Fig. 1 pl. IV gives the y,7-curves, fig. 2 

pl. IV gives the critical states, A, and A, the isobars and the con- 

nodes for the mixtures which are taken as homogeneous, and whose 

gas branch as well as whose liquid branch is almost a straight line. 

Though in the calculations (see § 2) the plaitpoint «7, and the criti- 

cal point of the homogeneous mixture 27;, have been considered 

as coinciding, a distance has now been given between these points 

which has been fixed by estimation®). The dotted parabola has been 

taken from VeERSCHAFFELT’s calculation, Suppl. N°. 7, p. 7, though 
properly speaking it holds only for the case that the maximum 

pressure falls in P, or P,; the produced connode denotes the probable 

course of this part by approximation. Pl. I, fig. 3 gives a repre- 

sentation of the model. All this refers to a small region of v and v; 

fig. 3 pl. IV, however, indicates by —_.__.__._. the connode according 

to the construction for the mixtures taken as homogeneous all over 

the width of the y'-surface. The square drawn denotes the extension 

of the just treated part of the y’-surface. 
d. The contraction and the subsequent splitting up of the plait 

appears from fig. 4 Pl. III, where the xv-projections of the connode 

and some connodal tangent chords of the three models have been 

drawn on the same scale after the wv-figures for 5°, 20° and 26° 

mentioned under abe. 

1) Prof. van peR Waats was so kind as to draw our attention to a property 

which might also have been represented in the figure, when also the curve for 

Ow 
ir had been drawn, viz. that the minimum volume in the vapour branch, 
v 0x 

3 

and the maximum volume in the liquid branch lie on the curve i a = 0 which 
v7 0a 

2 

has a course similar to that of the curve sg =o more particularly it has the 

same asymptotes, and it deviates from it only in this, that with greater density 

the curve passes over larger volumes. 
2) Here the representation of the plait must come into conflict with the theory 

or with the simplification introduced at the basis of the calculation. With a view 

to the illustration of the theory by figures the latter has been chosen. 
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§7 Comparison of the construction with the observation. On the 

whole this is very satisfactory, taking the degree of approximation 

into consideration. 

a. In pl. Il fig. 4 the diagram for the plait at 5° indicating 

KvENEN’s observations, has been drawn in full lines. The figure 

contains at the same time that obtained by construction. The single 

observations have been denoted by [-| (see § 6a). Besides the con- 

struction with the model indicated by — —— W— and by \.-/, also 

the simplified constructions in the plane indicated by —_.—.— and 
by ©, the outermost of which refers to the less simplified con- 

struction, represent the character and also the numerical values satis- 

factorily. 

b. In pl. Il, fig. 3 the figure representing KUENEN’s observations 

for the plait of 20°, has been indicated by —— ——. The figure 

contains at the same time the __._.., obtained by construction on 

the model (see $64). The correspondence at «= 0.3 is the worst, 

which is no doubt in connection with this, that here we have already 

vot very near the critical temperature, and that strictly speaking, 

different values should be assigned to 7” (see § 2) for all v, and 

corresponding Av and Ap should have been taken into consideration. 

c. In pl. IV fig. 3 the figure representing KUENEN’s observations, 

have been indicated by. full lines; the figure contains also the figure 

derived in § 6c denoted by —..— curves. 

d. Plate IV fig. 4 and 5 may serve for a comparison of KUENEN’Ss 

pT-figure (fig. 4) with that derived by construction (fig. 5). In 

accordance with the remark on 7” in §2, we have proceeded for 

26° as follows : 

For 5° and 20° the values of p and 7’ have simply been taken 

from the construction with the model, mentioned under a and /. 

Then we marked «) the p’s and 7”s, obtained by multiplying KuUENEN’s 

pi and Ti. by py, and t, (see § 2); @) for the different values ofa the 

values of 7” and of 6 for the temperature of 26° have been calculated, 

and then 4¢ and Ay determined by the aid of this 6 according to 

§2; the values of p and 7’ corrected in this way have been denoted 
by +--+ + and joined by .—.—-.— eurves with the points men- 

tioned under a). The full and the dotted curves give the corrected 

values. Between the parts where we started from the critical 

temperature, and the p7-lines derived fromthe models of 5° and 

20° a space has been left open. 
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Pathology. — “On the Origin of Pulmonary Anthracosis.’ By 

P. Niruwenuvse. (From the Pathological Institute in Utrecht). 

(Communicated by Prof. C. H. H. Spronck.) 

(Communicated in the meeting of January 26, 1907). 

As is known, von Breurine and CaLMerre oppose the doctrine accord- 

ing to which the pulmonary tuberculosis among mankind proceeds 

in most cases from inhalation or aspiration of tuberclebacilli. They 

presume the tractus intestinalis to be the porte d’entree of the virus. 

In connection with this new hypothesis VANSTEENBERGHE and GRiskz') 

have made some experiments at the end of 1905 in CaLmerrr’s 

laboratory about the origin of lung-anthracosis. 

They mixed the food of full-grown cavies with soot, Indian ink 

or carmine and made the animals eat a large quantity of this. After 

24 hours already they found resp. black and red spots in the lungs 

especially in the upperlobes and along the edge of the underlobes. 
VANSTEENBERGHE and Geisez concluded from these results that 

the fine parts, taken up in the intestines, pass through the mesenteric 
glands and thoracic duct and after having reached the blood in this 

way, they are caught by the lungs. 

According to their conclusion the carbon particles suspended in the 

atmosphere would not be inhaled, but swallowed, thus reaching the lungs 

via the intestines. The theory of the intestinal origin of the pulmo- 

nary anthracosis was propounded half a century ago by VILLARET*); 

it had however met with little success, and after the careful resear- 

ches made by Arnonp*) on the inhalation of fine particles it was 

totaliy forgotten. 

Whereas VANSTEENBERGHE and Griskz tried to defend the theory of 

ViLLaRET, after having made new experiments and no less a person 

than von Benrinc doubted the exactness of the generally assumed 

opinion, no one will be surprised that criticism soon followed. 

Whilst I was working in the laboratory of Prof. Spronck, to 

whom | offer my thanks for his continual interest in this research, 

repeating the experiments of VANSTEENBERGHE and GrisEz, several 

treatises appeared on this subject. First of all Ascnorr *) advanced 

1) Annales de I’Institut Pasteur, 1905, p. 787. 

2) Vitaret: Cas rare d’anthracosis, Paris, ~1862. ref. in Schmidt's med. Jahrb. 

1862, Bd. 116. 

3) Arnotp: Untersuchungen ueber Staubinhalation und Staubmetastase, Leipzig, 1885 

4) Sitzungsber. der Gesellschaft zur Bef. der Ges. Naturwissenschaft, Marburg, 

13 Juni, 1906. 



( 674 ) 

the opinion that there must have been technical mistakes in the 
experiments of VANSTEENBERGHE and Griskz; some time afterwards 

he was enabled to convince himself of the incorrectness of their 

opinion by his own experiments '). 

Mirongsco *) after bringing fine particles into the stomach of rabbits, 

was not able to recover them in the lungs. 

In August 1906 VANSTEENBERGHE and SONNEVILLE*) described a 

new series of experiments which confirmed the results of VANSTEEN- 

BERGHE and GRisbz. 

Fine particles which were brought into the mouth with a catheter 

were already to be recognised in the lungs after a lapse of 5 or 6 

hours. 

Soon afterwards the opinion of VANSTEENBERGHE and GRISEZ was 

opposed by two authors: ScHuLze*) in a temporary publication con- 

cluded that the pulmonary anthracosis could not proceed from the 

resorbing of fine particles from the intestines and Prof. SpRoNcK com- 

municated shortly afterwards at the 5 International Conference on 

Tuberculosis the results of some of the following experiments, which 

were adverse to the results, gained by VANSTRENBERGHE and GRiISEZ. 

In a more extensive treatise ScHuLzE*®) demonstrated further how 

substances are lightly aspirated into the lungs either by administering 

them with the catheter or by ordinary eating. A rabbit however, 
had received within two months the total quantity of 200 grams of 

vermillion through a gastrotomy, yet no trace of vermillion was to 

be found in the lungs. 

On the other hand some investigators took the part of VANSTEEN- 

BERGHE and Grisez: Petit’) brought carbon particles into the stomach 

of six children who were in an advanced state of tuberculosis or 

athrepsy and after a post-mortem examination he found pigment in 

the lungs in three of them and Hermann‘), on the authority of 

experiments, esteemed an intestinal origin of the lung-anthracosis 
possible, but compared with the inhalation-anthracosis of very inferior 

_ significance. 

Afterwards the results of VANSTEENBERGHE and Griskz were empha- 

1) Braver’s Beitriige zur Klinik der Tuberculose, 1906, Bd VI, Heft 2. 

2) Compt. rend. de la Soc. de Biol. 1906, T. 61, N°, 27. 

3) Presse médicale, 11 Aout 1906. 

4) Miinchener Med. Wochenschr. 1906, N° 35. 

5) Zeitschrift fiir Tuberculose, October 1906, 

6) Presse médicale, 13 Octobre 1906. 

7) Bulletin de ’ Académie royale de médecine de Belgique, Séance du 27 Octobre 1906. 
La Semaine médicale, 1906, N° 44. 
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tically contradicted from various sides. (Conn'), REMLINGER*), Basser’), 
Kiss et Losstrern‘), Brrrzkn®)). 

Some of the above mentioned considered the normal anthracosis 
in test-animals as a source of mistakes, which VansTeENBercup and 
Griskz had not taken into account whereas others described the 
aspiration also as a source, which might give rise to wrong con- 
clusions. : 

Meanwhile VANSTEENBERGHE and GRiskz, supported by CaLmetrr °) 
maintained their opinion. They explain the negative results of their 

opponents in the following manner: some allowed too much time to 

pass between the introducing of carbon particles into the stomach and 

the killing of the test-animals, because after 48 hours the pigment 

would have almost completely disappeared from the lungs; others 

used rabbits or too young cavies as test-animals, in which the fine 

particles are almost wholly retained by the mesenteric glands. 

With a view to this last remark I wish to publish the following 

experiments, because I have taken into account the age of test- 

animals as well as the time which passed between the introduction 

of the fine particles and the killing of the animals. 

To me it also appeared that the physiological anthracosis is a 
factor which must be considered, for among all my test-animals, 

cavies as well as rabbits, black pigment was found in the lungs. 

Among some animals this spontaneous anthracosis was rather 

decided, with others very minute. As a rule there was much less 

pigment in the lungs of my rabbits than in those of the cavies. 

The physiological anthracosis impedes as a matter of course the 

experimenting with black substances. Besides carmine, vermillion 
and ultramarine, I have also used Indian ink and soot, because after 

microscopic investigation it appeared that the first mentioned matter, 

even after being intensively rubbed in a mortar, was not as fine as 

the particles of carbon of the last mentioned. 

In order to control the experiments of VANSTEENBERGHE and GRISEZ 

1) Berliner Klin. Wochenschr. 1906, N° 44 und 45. 

*) La Semaine médicale, 1906, N° 45. 

5) La Semaine médicale, 1906, N? 47. 

4) Bulletin médical du 21 Novembre 1906. 

La Semaine médicale, 1906, N° 48. 

5) Virchow’s Archiv, Bd. 187, Heft 1. 

6) Compt. rend. des séances de l’Académie de Sciences, T. 143. p. 866. 

Compt. rend. de Ja Soc. de Biol. T. 61, p. 548. 
La Semaine médicale, 1906, N’. 50. 
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the test-animals were killed already 5—48 hours after administering 
the forementioned substances. 

Some cavies (experiment n°. 1—5) had eaten bread, mixed with 

soot, Indian ink or carmine. After the dissection of the animals, the 

lungs showed only the ordinary physiological anthracosis, but car- 

mine was to be seen neither in the lungs nor in the bronchial glands. 

One of these animals (experiment n°. 4) had evidently aspirated soot, 

for in many bronchi and corresponding alveolars, foodparticles and 

soot were distinctly seen in large quantities. 

Also after introducing various matters with the catheter into the 

stomach of rabbits (experiment n°. 6—10), aspiration was observed once 

(experiment n°. 10), whereas among other animals only the normal 
pigmentation was present. 

In order to prevent aspiration with certainty, tracheotomy was 

performed with three rabbits and after that a suspension of carmine 

was brought into the stomach with the catheter (experiment n°. 11 

-—13); for the same purpose among some cavies I injected coloured 

particles into the distal part of the cesophagus which was cut through 

and then bound up (experiment n°. 14—18). After dissecting no traces 

of coloured particles were to be found neither in the lungs nor in the 
bronchial glands. 

Further with different cavies the fine particles were directly brought 

into the intestines after laparotomy (experiment n°. 19—35). Neither 

was then any of the coloured matter to be found in the lung-tissue 

nor in the bronchial glands, whereas everywhere else nothing was 

to be seen except normal anthracosis in varying intensity. 

Among some experiments I noticed that coloured particles which 

were injected directly into the intestines, were later on to be found 

also in the stomach, in the oesophagus and in the pharynx, sometimes 

in large. quantities (experiment n°. 21, 22, 29 and 30). In the phlegm 

of the trachea the coloured particles could be distinctly seen some- 

times with the use of the microscope (experiment n°. 21 and 29), 

whilst once (experiment n°. 29) the easily recognisable ultramarin- 

grains were to be seen even in the phlegm of the chief bronchi. It 

is quite probable that the animals in agony had aspirated these sub- 

stances from the pharynx, for, according to NENNIGER*) e. g. bacteria 

too are often aspirated from the pharynx in agony. 

The question is now, how came the matter from the pharynx 

into the intestines. Was it by a motion of the fine particles in a 

1) Zeitschr. f. Hygiene u. Infectionskrankheiten, Bd. 38. 
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proximal direction, as e. g. GrirzNner') describes this for fine particles 

in the intestines and as Kast’) has also shown for the oesophagus, 

or, had the animals eaten their own faeces > *) 

In order to solve this question, -four cavies were carefully wrapped 

in a bandage, after ultramarine had been brought into the intestines 

so that eating the faeces was quite impossible (experiment n°. 32—35). 

It now appeared that the ultramarine had come some way proximal 
from the place of injection, but in the oesophagus, in the pharynx and 

in the chief bronchi no ultramarine was discernible. 

From this I suppose that the ultramarine had simply come into 

the pharynx owing to the eating of faeces and not through a proximal 
motion of the fine particles ‘*). 

From my experiments I conclude that the pulmonary anthracosis 

does not originate through taking up fine particles from the intestines. 

It may be acceptable a priori, that fine particles can be taken up 

in the intestinal mucous membrane and can get into the lungs along 

ductus thoracicus and right heart, but this phenomenon is with 

regard to the pulmonary anthracosis of not so much importance, as 

VANSTEENBERGHE and Grisez have supposed. Evidently these investi- 

eators have given sufficient attention neither to the physiological 

anthracosis of the test-animals, nor to the aspiration of the coloured 

particles which cannot be quite prevented, not even, as is mentioned 

above, by direct injecting the matters into the intestines. 

If the physiological antbracosis originated by taking up carbon 

particles from the intestines, not only the mesenterial glands but 

also the marrow and the milt had to contain much carbon pigment, 

because firstly it cannot be understood how carbon parts should 

pass the mesenterial glands without leaving distinct traces of their 

passing behind them and on the other hand there is no possible 
reason why the carbon particles to a great extent should not pass 

through the capillaries of the lungs and deposit in the marrow and 

the milt. 

*) Archiv. f. d. Ges. Physiol. (Pfliiger). Bd. 71. 

2) Berliner Klin. Wochenschr. 1906, N° 28. 

5) When starving cavies and rabbits usually eat their own faeces, it also often 
occurs when they have sufficient food. 

Swirskt: Archiv f. exper. Path. und Pharm. 1902, Bd. 48. 

4) UrFENHEIMER, after injecting a suspension of prodigiosusbacilli into the rectum 

of rabbits, ncticed a motion of the bacilli in a proximal direction; they ascended 

up to the pharynx and from thence they were sometimes aspirated into the lungs. 
Deutsche Med. Wochenschr. 1906, N°. 46, 
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Description of the Experiments. 

1. Cavy 650 grams. 
First 24 hours without food, then for 24 hours exclusively dough 

and soot, then killed. 

Results: Macroscop. intestines much soot, lungs grey with small 

black spots, especially in the upper lobes, bronchial glands distinctly 

pigmented. 

Microscop. In the interstitial spaces of the lung-tissue are many 

cells with black pigment especially under the pleura. A very small 

quantity of it is also found in the alveolars and in the bronchi. The 

bronchial glands contain a great many cells with black pigment. 

2. Cavy 200 grams. 

For 48 hours exclusively dough and soot, then killed. 

Results: Macroscop. intestines much soot, lungs and_ bronchial 

glands pale; microscop. lungs and bronchial glands few cells with 

black pigment. 

3. Cavy 760 grams. 

First 24 hours without food, then 5 cem. of Indian ink in dough, 

killed after 24 hours. 

Results: as in experiment 1. 

4. Cavy 350 grams. 

First 24 hours without food, then for 48 hours exclusively dough 

and soot, then killed. 

Results: Macroscop. intestines much soot, lungs many black spots 
and points, bronchial glands pale; microscop. there are foodparticles 

mixed with soot in many bronchi and alveolars. For a part the soot 

has already been enclosed in cells, many cells have already penetrated 
into the interstitial spaces. No pigment is to be seen in the bron- 

chial glands (so in this experiment the coal was aspirated during 
life; not in agony). 

5. Cavy 400 grams. 

First 24 hours without food, then 0,5 grams of carmine in dough; 
killed after 48 hours. 

Results: Except in the intestines no carmine can be found. 

6. Rabbit 1.75 K.G. 

For three days 100 mer. of soot is brought into the stomach by 

means of a catheter; killed after 24 hours. 

Results: Macroscop. lungs and bronchial glands pale; microscop. 

few cells with black pigment are to be seen in the interstitial spaces 
of the pulmonary tissue. 
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7, Rabbit 2 K.G. 

For three days totally 2,9 grams of soot is brought into the stomach 

with the catheter; killed after 24 hours. 

Results: as in experiment 6. 

8. Rabbit 2 K.G. 
A suspension of 2 grams of carmine in water is brought into the 

stomach with a catheter; killed after 48 hours. 

Results: Except in the intestines, carmine is not to be found. 

9. Rabbit 2.75 K.G. 
50 grams of charcoalpowder, suspended in water, is brought into 

the stomach with the catheter; killed after 24 hours. 

Results: as in experiment 6. 

10. Rabbit 3 K.G. 

A suspension of 40 grams of charcoalpowder is brought into the 

stomach with the eatheter; killed after 24 hours. 

Results: Macroscop. lungs show black spots especially after dissect- 

ing them; the bronchial glands are faintly pigmented; microscop. 

fine carbon particles and also coarser carbon pieces can be seen 

in many alveolars. Carbon can be shown neither in the larger 

bronchi, nor in the trachea; the bronchial glands show some 

pigment-cells. 

The presence of the coarser carbon parts in the alveolars made 

the diagnose “aspiration” very easy. 

11. Rabbit 5 K.G. 

After tracheotomy 9 grams of carmine is brought into the stomach 

with the catheter. About 18 hours afterwards the animal chokes, as 

phlegm has gathered in the canule. 

12. Rabbit 4.25 K.G. 

After tracheotomy 8 grams of carmine is brought into the stomach 

with the catheter; the animal is killed atter 24 hours. 

13. Rabbit 3.5 K.G. 

After tracheotomy 8 grams of carmine is brought into the stomach 
with the catheter. 

Killed after 48 hours. 

Results of the experiments 11, 12 and 13: Except in the intestines 
I could find nowhere carmine in the body at the microscopical inves- 

tigation; in the lungs and bronchial glands black pigment is present. 

14. Cavy 400 grams. 

The oesophagus was freeprepared and cut through. Through the 

lower part 5 gram of vermillion was brought into the stomach. 

Then the lower part of the oesophagus was bound up whereas the 
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upper part was fastened with its opening in the wound of the skin. 

Killed after 5 hours. 

15. Cavy 720 grams. 
10 grams of vermillion were injected as in experiment 14. 

Killed after 6 hours. 

16. Cavy 720 grams. 
7 cem. of a suspension of vermillion in gum arabic was injected 

as in experiment 14. 

Killed after 5 hours. 

17. Cavy 400 grams. 
2 grams of carmine were injected as in experiment 14. 

Killed after 5 hours. 

18. Cavy 860 grams. 

4+ grams of carmine were injected as in experiment 14; killed after 

6 hours. ; 
19. Cavy 790 grams. 

After laparotomy 4 grams of vermillion (in suspension) were 

brought into a twist of the intestines; killed after 18 hours. 

20. Cavy 620 grams. 
6 cem. suspension of vermillion in gum arabic was _ brought 

into the small intestin as in experiment 19; killed after 19 hours. 

21. Cavy 750 grams. 

10 ccm. suspension of vermilliion in gum arabic was brought 
into the small intestin as in exp. 19; killed with chloroform after 
18 hours. 

22. Cavy 610 grams. 

5 cem. suspension of vermillion in gum arabic was brought into 

the colon as in exp. 19; killed after 18 hours, by abruptly decapi- 
tating in order to prevent vomiting in agony. 

tesults of the experiments 14—22: In the lung-tissue and in 
the bronchial glands no vermillion resp. carmine was to be found. 

At experiment 21 the vermillion could also be shown in the 

stomach, in the oesophagus and in the pharynx while some grains 

could be shown in the phlegm of the trachea. At experiment 22 
vermillion could also be found in the stomach, oesophagus and 

pharynx whereas in the trachea no vermillion was to be seen. (At 

the experiment 19 and 20 stomach, pharynx etc. were not investigated). 
23. Cavy 700 grams. 

After laparotomy 5 ccm. of Indian ink is brought into the small 

intestines. 

Killed after-18 hours. 

tesults: as in experiment 1. 
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24. Cavy 880 grams. 

After laparotomy 5cem. of Indian ink is brought into the coecum. 
Killed after 18 hours. 

Results as in experiment 1 (the pigmentation is somewhat less 

intensive). 

25. Cavy 750 grams. 

After laparotomy 5ceem. of Indian ink is brought into the small 

intestines. 

Killed after 18 hours. 

Kesults: macroscop. Lungs and bronchial glands pale microscop. 

few pigmentcells. 

26. Cavy 700 grams. 

After laparotomy 5cem. of Indian ink is brought into the coecum. 

Killed after 18 hours. 

Results as in experiment 1. (here the pigmentation is more intensive.) 

27. Cavy 730 grams. 

After laparotomy 5cem. of Indian ink is brought into the small 

intestine. 

Killed after 18 hours. 

Results as in experiment 25; one of the mesenteric glands con- 

tains carbon parts which are also to be seen microscopically. 

28. Cavy 750 grams. 

After laparotomy 5 cem. of Indian ink is brought into the colon 

at 20 em. distance of the anus. 

Killed after 18 hours. 

Results as in experiment 1. 

29. Cavy 650 grams. 

After laparotomy 4 ccm. of a suspension of ultramarine in 0.9 °/, 

NaCl is brought into the small intestines. 
Killed with chloroform after 18 hours. 

Results: The ultramarine is in the intestines, in the stomach, in 

the oesophagus and in the pharynx, while some grains can be 
traced in the phlegm of the trachea, and in that of the chief broncii. 

The pulmonary tissue and the bronchial glands are free of ultra- 
marine. 

30. Cavy 850 grams. 

After laparotomy 4 ccm. of a suspension of ultramarine in 0.9 °/, 

NaCl is brought into the small intestine. 
Killed after 17 hours with chloroform. 

Results: as in experiment 29; in the phlegm of the trachea and 
in that of the bronchi however no ultramarine was to be found. 
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31. Cavy 820 grams. 
4 ccm. of ultramarine is administered as in experiment 30. 

Killed after 16*/, hours. 

Results: No ultramarine can be found, except in the intestines. 

32. Cavy 360 grams. 
+ ccm. of ultramarine is brought into the intestines as in expe- 

riment 30. 

After this the animal is carefully wrapped up so that it can get 

no faeces into its mouth and cannot lick itself. 

After 6 hours the animal is decapitated abruptly in order to pre- 

vent vomiting in agony. 

Results: the ultramarine is in the small and in the large intestines, 
also somewhat proximal from the place of injection. 

In the stomach, in the oesophagus, in the pharynx and in the 

phlegm of the chief bronchi no ultramarine can be traced. 

33. Cavy 750 grams. 

Treated as in experiment 32. 

Killed after 16 hours. 

vesults: as im experiment 32; here some grains of ultramarine 

are in the stomach. 

34. Cavy 475 grams. 

Treated as in experiment 32. 

Killed after 12 hours. 

Results: as in experiment 32. 
35. Cavy 540 grams. 

Treated as in experiment 32. 

Killed after 6 hours. 

results: as in experiment 32. 

(March 28, 1907). 
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Meteorology. — “The treatment of wind-observations.” By 

Dr. J. P. vAN DER STOK. 

(Communicated in the meeting of February 23, 1907). 

1. When working out wind-observations we directly meet with 
the difficulty that a method holding generally, in which the charac- 

teristics of a wind distribution come to the fore in condensed 
form, does not exist. The discussion held for many a year concerning 

the desirability or not of an application of Lampert’s formula, i. e. 

of the calculation of the vectorial mean of velocity or force has not 

led to a definite result and the consequence is that for regions where 

trade- and monsoon winds prevail the calculation of this mean can 

be applied, not for higher latitudes, so that here we have to judge 
by extensive tables of frequencies of direction and mean velocities, 

independent of direction. 
When working out the wind-observations made at Batavia | did not 

hesitate to make an extensive use of this formula; the same method has 

been followed in the atlas for the East Indian Archipelago; but in order 
to give at least a notion of the value of the velocities annulling each 

other here I have added to the resulting movement (called by Hann 
windpath) a so-called factor of stability. If namely the wind were 

perfectly stable, the vectorial mean would be equal to the mean 

independent of the direction and the stability would amount to 

100 °/,, which percentage becomes smaller and smaller according to 
the direction of the wind becoming more variable. So here attention 

is drawn to the fact, that a part of the observations is eliminated, 

but it is not indicated what character this vanishing part has which 
becomes chief in our regions. 

In the climatological atlas lately published of British India the 

same method is followed; in the “Klima Tabeller for Norge’ Monn 

gives but the above mentioned tables without calculation of the 
vectorial mean, which is, indeed, of slight importance for this climate. 

The same uncertainty is found in the graphical representation of 

a wind distribution by so-called windroses; almost everyone who 

has been occupied in arranging books of prints has projected wind- 

roses of his own; some of those roses, as e.g. in the “Vierteljahrs- 

karte fiir die Nordsee und Ostsee’’ published by the “Deutsche 

Seewarte”’, show only the frequencies of direction without velocities ; 
in others, as e.g. those shown in the above atlas of the Easi Indies, 
each direction is taken into account with the velocity belonging to it 

as weight, so that mean velocities are represented. All these roses 
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furnish discontinuous quantities and change their aspect according 

to their boundaries being taken differently. 

In Bucuan’s general meteorological atlas no roses are projected, 

only arrows indicating the most frequent direction without heeding 

the force, and in the ‘“Segelhandbuch fiir den Atlantischen Ozean” 

published by the “Deutsche Seewarte” for higher latitudes where the 
wind is variable the use of wind-observations is entirely done away 

with and arrows have been drawn in accordance with the course 

of the mean isobars on account of the law of Buys BaLtot, where 

a constant angle of 68° between gradient and direction of wind has 

been assumed. 

This short survey of the manner in which in the most recent 

standard works this problem has been treated may show that indeed 

there is as yet no question about a satisfactory solution, as has already 

been observed. 

The aim of this communication is to hit upon a general method 

of operation and representation of an arbitrary wind distribution 

in which to the variable part also justice is done, whilst the gra- 

phical representation has a continuous course and shows at a glance 
the five characteristic quantities which mark each wind distribution 

and which may be, therefore, called the wind-constants. 
The method proposed here is founded on the basis of the caleulus 

of probability, but it is important to notice that it is not at all bound 

to it; at the bottom it is the same which is generally applied in the 

treatment of directed quantities: distribution of masses and forces in 

mechanics, the theory of elasticity, the law of radiation and the 

theory of errors in a plane. 

2. A wind-observation can be represented by a point in a plane 

such that the distance to an assumed origin is a measure for the 

velocity of the wind (or force) and that the angle made by the 

radius vector with the Y (North) axis counted from N. to E. indicates 

the direction. If in this way all observations, V in number, are drawn 

and if we think that to each point an equal mass is connected, then 

in general the centre of gravity will not coincide with the origin 
selected ; its situation may be determined by the quantities R, and u. 

The distribution of the masses around the centre of gravity, is then 

characterized by the lengths M and JA/’ of the two principal axes of 

inertia and the angle 3 enclosed by the axes M and FY. 

As is known the five constants by which such a system is charac- 
terized can be calculated according to this purely mechanic notion 

by determining the moments J/, and J/, with respect to the axes 

47* 
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and the moments of inertia J/,? and M/,? and M,,, which furnish 

the five equations necessary for the calculation of the unknown 

quantities. 

We arrive at quite the same equations when the distribution of 

the winds according to direction and velocity is regarded as a system 

of accidental, directed quantities in a plane. The centre of gravity 

then represents according to size and direction the constant part of 

the wind which is supposed to be connected with all observations 
and of which, therefore, the probability is equal to unity; the axes of 

inertia become principal axes of probability and the lengths M/ and 

M’ are replaced by the reciprocal lengths h and h’, so that 

1 1 
pe Ce es 

2M? 2M" 

The sum of the masses is put equal to unity and for the proba- 
bility that an observation lies between the limits R and R+ dk 
of velocity and 6 and 6+ d6 as far as direction is concerned the 

expression holds 

| ie 
— ¢ \*) Rp aidd. =) ee 
ww 

where: 

F(R,A)=h? [RB cos (O@—B)—R, cos(a—B)]? + A? _Rsin(6 —B)—R, sin(a—8B)]?.(8) 

In the language of the theory of errors \(&,,a@) would be the 

so-called constant error, Jf and M' the greatest and smallest projections 
of the mean errors. As observations of wind agree still less than 

other meteorological quantities with the opinion held in the theory 
of errors, where the constant part is regarded as the end of the 

operation and the variable quantities as deviations, it is desirable 
when applying the calculus of probability to quantities of this kind 

to be entirely free of the terminology used in the theory of errors, 

but which would be here without meaning and which would give 

rise to misunderstanding. 

The treatment must also differ somewhat from that of erroneous 

quantities, it being if not impossible at least impractical to correct 

all the observations for the constant part. 

3. As examples of treatment two series of observations have been 

selected from the treated material. 

a. Observations of wind performed at Bergen (Norway) during 

20 years, 1885—1904, three times daily at 8 A.M, 2 P.M. and 8 P.M. 
The velocity (or force) of the wind is expressed in the so-called 
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half scale of Beavrorr \1—6) (Jahrbuch des Norwegischen Meteorol. 
Instituts, Christiania). 

6. Observations of wind performed at Falmouth (Channel) during 

17 years, 1874—1886 and 1900—-1903; the observations made in the 
years 1887—1899 are published in such a way as to be useless for 
this investigation. 

Observations have been used, made daily six times: at noon, + P.M., 

8 P.M., midnight, 4 A.M. and 8 A.M.; the velocity of wind is 

expressed in English (statute) miles an hour (Hourly readings obtained 

from the selfrecording instruments etc. London). 

With respect to the force of the wind estimated at Bergen is to 

be noticed that in this communication these scale-values are regarded 

not as forces but as velocities, although in reality they are neither 

one nor the other. According to a recent extensive investigation *) 

the ratio of the Beaufort values to corresponding velocities can be 

indicated by the following numbers 

Beaufort velocity ratio Beavurort velocity ratio 

meters a second meters a second 

0 1.34 — 6 10.95 1.83 

1 2.24 2.24 7 13.41 1.92 

2 3.58 1.79 8: 16.09 2.01 

3 4.92 1.64 9 19.67 2.19 

4 6.71 1.68 10 23.69 2.34 

5 8.72 1.74 

As the various velocities do not appear in an equal number the 

total mean out of these ratios would not give a fit factor of reduction 

for mean Beravurort-values; so a certain weight must be assigned 

to each separate ratio. For this the frequencies have been used of 

the 36000 wind-velocities observed at Falmouth calculated for a 
whole year; in this way has been found for the reduction-factor 1.83; 

the English measure, miles an hour, can be reduced to m.a.s. and 

Beaurort scale-values by means of multiplication respectively by 

0.447 and 0.244. 

1) The Beavrort scale of windforce. 
Report of the Director of the Meteor. Office upon an Inquiry into the Relation 

between the Estimates of Windforce according to Admiral Beaurort’s Seale and 

the velocities recorded by Anemometers. London, 1906. 
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4. The calculation of the five charateristic constants of a wind 
distribution amounts in one respect to the integration of (2), in 

another respect to the means applied in this integration to a given 

set of observations. 

The integration of (2) takes place by the introduction of rectangular 

coordinates : 

2 hsm 0” 3. eee 

where the element RdRdé is replaced by the element dzdy, whilst 

the limits which were o and O for &, 2% and O for 6, now become 

co and — o. 

Then the expression (2) under the sign of the integral is multiplied 

successively by 

2, y, 2, y? and zy. 

If we then put: 

R, cos (a—B) = a, zx=ex'snB+ y' cos B, 

R, sin (a—8) = 4, y =x cseB — y' sinB, 

the variables 2 and y' can be separated and the integration can be 
done; in this way we find for the determination of the five quantities 

to be obtained the five equations : 

M, =acosB—bsmB, M, =asinB+ beosB 

2 aa 

M,? ——— == + a’ cos? 8 + 6? sin? 8 — ab sin 2B 

“ au — + a® sin® B 4+ 6? cos? 8 + absin2B +8) 

1 ul 
2M,, = = -- sa) sin 2B + (a? — b*) sin 28 + abcos 28 

M,’ — 

out of which, on account of (1) 

M, =R,csa, M,=—R, sma \ 

M,? + My? — [\Wa)? + (My?) = M? + M” | 
M,? — My? — [(Mz)? — (M,)"] = (M2 — ered 

2Mry — 2M,M, = (M? — M") sin 28 

(4) 
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TABLE I. Frequencies of the wind. 

Bergen. June. 

In half BeAurort scale-values. 

5. In order to apply the formulae (4) to a given set of obser- 

vations we must compose for each period, e.g. each month, in the 

first place a table of frequency of direction and velocity, which can 

be easily done. In Table I such a composition has been given as 

an example. 

Further out of this table have been calculated the products of 

these frequencies / with the scale-values FR, the latter counted 

double, so that the products have been expressed in the ordinary 

Bravurort scale; finally these products have been once again multiplied 

by the corresponding scale-values (/A*); in this simple way we 

find the sums. 
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TABLE IT. 

SSE 162 524 NNW 4336 5296 

Som 4560 16888 

The sums fR, multiplied respectively by cos@ and sin@ and 

divided by 1800, immediately furnish the quantities J/, and M,; 
the sums fR? must be multiplied successively by cos? 6, sin?@ and 

sin @ cos 6. 

It is easier to multiply the latter sums by cos 26 and sin 26; if 
the total mean is S, we find: 

M,? — fR’ cos? 6 =} 8+ 3 FR? cos 26 

M,? = sR sin? 0 = 4S — 4 fR? cos 20 

2Myy = fR sin 26. 

So the whole operation greatly resembles the calculation of FourtEr 

terms; indeed, also by the way of operation indicated here an 
analysis of the movement of the air is obtained. 

In the Tables III and IV we find the values of the wind-constants 

calculated in this way; besides the five characteristic quantities we 
find still given as quantities practically serviceable for various ends: 

ad Me M* 

M 

M’ represent the half principal axes, 

(R,’ and «’) the resultants of the squares of the velocities giving 

an image of the mean flux of energy, 

, the excentricity of the ellipse of which J/ and 

V the mean velocity independent of the direction, 

V* the mean square of the velocity independent of the direction, 

i.€. a measure for the total energy; this quantity is according to (4) 

analogous to the square of the mean error, not corrected for the 

constant part, in the theory of errors, 

N the number of used observations. 
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TABLE IIl@ Constants of the wind. 

Bergen 1885—1904. 
In BEAUFORT scale-values. 

January 1.84 174° 0.873 

February {5 172 0.858 

March 1.16 174 0.872 

April 0.40 169 0.859 

May 0.68 169 0.879 

June 4.07 171 0.891 

July 0.93 168 0.885 

August 0.73 168 0.904 

September 0 97 174 0.876 

October 1.10 174 0.857 

November Te5t 474 0.880 

December 1.78 174 O 866 

Year 0.85 171 0.875 

TABLE [IIb Constants of the wind. 

Bergen 1885—1904. 
In BEAUFORT scale-values. 

January 

February 1695 

March 1860 

April 1800 

May 41860 

June 1800 

July 1860 

August 1860 

September 1800 

October 5.413 185 2.16 7 AD419 1860 

November ov ly 182 2.91 14.09 1800 

December 9.30 483 3.06 | 15.50 1860 

Year 4.42, 200 2.80 12.45 21915 
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TABLE [Va. Constants of the wind. 

Falmouth. 1874—1886, 1900—1903. 

In Eng. miles an hour. 

January 15.20 13:93" 3h 1 ae 

February 14.08 13.25 | 164 

March 15.02 13.26 67 | 

April 13.70 | 19.98 | 7 | 

May 1202 | 41.52 40 | 

June 11.39") 290-07" ioe 

July 10.39 8.92 | 155 

August 10.48 | 9.76 | 82 

September 11.05 | 10.67 | 164 
October 13.51 | = 13.08 | 81 

November AS ik S103 o3 

December 13.69 | 12.98 29 

Year 4.44 | 239 12.60 | 12.43 | 96 

TABLE IVb. 

Falmouth. 

Constants of the wind. 

January 

February 159.9 203 2675 

March 88.8 241 2930 

April 23.0 178 2879 

May 04.4 | 241 3110 

June 92.4 | 259 3015 

July 122.2 252 3060 

August 122.0 242 3154 

September 83.7 224 3047 

October 78.5 223 3154 

November 114.2 237 3053 

December 148.6 233 2888 

Year 98 .2 229 35816 
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A closer discussion of the results arrived at in this way may for 

shortness’ sake be left out; however, the observation is not super- 

fluous that the two examples represent two types, a reason why 

they were chosen. At Bergen the ellipse of the variable winds is 

very constant of shape and the excentricity is very great; at Falmouth 

the difference between JW and M’ is always very slight and the 

differences found there are evidently to be regarded rather as accidental 

arithmetical results than as facts, the angle § being subject to great 

and irregular oscillations; evidently the ellipse approaches a circle, so 

that in form (2) we may put h=/’. This leading to a considerable 

simplification of the formula, these observations at Falmouth are 

eminently fit for comparison of the results of calculation and obser- 

vation, whilst also the fact that here real velocities have been 

observed with well-verified instruments, makes this series very 

favourable. 

6. The expression (2) shows: the probability that an observation 

lies between the limits R and R+ dR, 6 and6é+dé6; the same 

expression without the element RdRdé indicates: the specific proba- 
bility of a wind (&,6) i.e. the probability with respect to the 

unity of surface when one imagines this surface to be small. If we 

put for simplification : 

h® +h? = 2p, h® —h* = 29, B* (p — qeos 2 (a — 8) =u 

(p—qeos2(9@—P)) =v, 8? = R,? (p* + g? — 2pq cos 2 (a —8)) 
: Sf 

s cos (6 —g)=Aa ees Fn (ee 

p cos a — g cos (a — 2 B) 
1 

then (2) takes the form : 

tes 0 
9 

pee ee ade. eB) 

If here we put: 

a a er (5) 

then it follows out of the above formulated definition that the specific 

probability of all observations lying on the circumference of the 
excentric ellipse (6) is the same and equal to: 

p?—q? 
yee Le. 

rs 4 

The probability that the velocity of the wind does not surpass the 

value #, expressed by (6) in function of 6, in other words the number 

of observations which are to lie within the area of the ellipse, is 
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found by integrating (5), first with respect ‘to R between the limits 
R, and O, then with respect to 6 between 2 and 0. 

For the simple case R, = 0, so also w=O and 2—0O, the 

first integration gives immediately 

VP Sta lee 
x j 2yv 

and as 

Qr 

V p?—q (2- ; 

2x Viste aac 
7) 

the probability to be found becomes simply : 

Lee SOUL te ne 

and the number of observations lying inside the circumference of 
the ellipse (6) : 

N(1—e- ), 

This amount remaining the same whether we regard the ellipse 

(6) from the excentric origin or from the centre, i.e. for ik. =, 

if with the integration the limits are changed correspondingly, the 

expression (7) must also be accurate when R&, is not equal to zero 

and must thus hold in general. 

Indeed, an other simplification, namely g = 0 (which is applicable 

to the results for Falmouth) leads to a set of definite integrals, which 

can be evaluated and which confirm this conclusion. 

Amongst the series of ellipses represented by (6) two are 

remarkable; if we assign to c the value 0.5, then on account of 

(1) the half axes of the ellipse become equal to the greatest and 

smallest projections J/ and M’ of the mean velocities, so that the 

ellipse (6) then represents what we might call the specific or typical 
windellipse, thus a kind of windrose, in which the characteristic 
qualities of the wind-distribution under consideration inmediately 

become conspicuous. 

The radius vector £#,, drawn to an arbitrary point in the cireum- 

ference is given in the direction determined by that choice by the 
equation : 

2R?nv—4RnA+2u—1=—0. 

The probability that a velocity does not surpass this value is: 

1 — e— 2 = 0.89847. 
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So among a_ thousand observations there will be 393 lying 
inside this typical ellipse whilst the specific probability of each of 

the velocities Ry» is: 

Vr 
M1 

0.6065 

In the given diagram such a typical 

windellipse is represented for Bergen in 

the month of June by the dotted line. 

the vector OC represents here the constant 
part (R,, a), the half axes are equal to M 

and M’, and the angle NOM=8; one 

millimeter corresponds to */,, BEAUFORT scale- 

value or to °*/,, x 1.83 = 0.275 meter a 

second. 

If necessary this diagram might be am- 
plified with two circles, one of a radius 

Vie Mm", 

representing the mean monthiy wind velocity corrected for the 

constant part, the other described with radius 

Vi? = M+ (iy + (,)’, | 
which is according to (4) a measure for the mean total velocity, 

corresponding to the square root of the quantity V? of the tables 
III and IV. 

An other remarkable ellipse which might be called the probable 

windellipse is obtained by requiring half of the observations to lie 
within its dominion; we have then to determine c in such a way that 

te, te 056932, 

so that the axes of this ellipse are 

26 2 0.6326 = 1.177 

times longer than those of the typical windellipse ; the number 0.8326 

is a quantity known in the theory of errors in the plane. 

7. The frequency of the windvelocities, setting aside the direction, 

cannot be represented in a finite form; we can arrive at a form 

serviceable for comparison with the observation by writing (5) thus: 

PT poe PRE Rp) 2B RdRd6,. . . (8) 
ww 



( 696 ) 

by developing the last exponential factor and then by expressing the 

powers and products of cosines in cosines of multiples. 

It is clear that when integrating (8) with respect to 6 from 22 to 

0 only those terms are left which are independent of @ and which 

appear with the common factor 2. 

The expression to be found for the probability that a velocity lies 

between the limits R and R-+ dR then becomes : 

2V p—q .e-*.¢ PP (lta +a hk...) Rdk, > ey 

where : 

Le 8, 

a, = q,/27 + 9487/2! cos 2(¢—B) + s*/(2!)’, 

a, = 978/27 4 ge*/B! cos 2 (p—B) + 8°/(3!)*. 
For Falmouth, where as was noticed above qg can be put equal 

to nought these coefficients become simply : 

g2n ni 2 

an — aa [(z) 
sph, , p=phs. PSPs. P]«, APR; oe 

and farther 

In practice it will frequently be only necessary to calculate a few 

of these coefficients; if we put: 

q/P — &, 

the integration of (9) between the limits m and O leads to the 

expression : 

yi Care ~ \ 

: fm Mer 417 Seat 5 fc 
(ee) ee eee 

p . x 

pmie—pm fa, . ala, ape (11) 
7 ae Aa? oe 

p?mie—pm* Ila 

as Se eee ee 
2! p 

As for m= o this expression must become equal to unity, we have: 

ba a, ua 2/a, 7 er 
5 eae ee 

or, for the case ¢ =O, (11) becomes : 
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1—e— pm? 

pmie—em | 
l—e-+ 

ae? Foo. age 

p?mse—pm* a, | 
ce a AT 1 — e—*# — —¢-* | ete. 

2! P 

from which is immediately evident that in many cases the three first 
terms are sufficient, so that then the calculation of the coefficients 

can be entirely avoided, or at most only a, must be taken into 

account; for generally mw is small, so that already 

Pee 

will be a small quantity. If g is not small the calculation becomes 

rather tedious. 

8. To find expressions for the quantities VY and V*, the mean 

velocity and the mean square of the velocity independent of the sign, 

we have to multiply (9) successively by R and FR? and to integrate 

between the limits «2 and O which, with the well known fundamental 

equation, leads to the expressions : 

a, 24a, 24.60 
=A(3 4 ee Spe 

= V5 by oc 11 Bay | 8.5.7.0, ) 
te Pp ears Gey | dS (13) 

=a fa 4 AGa, | 46.805 ) 

ve oa war Peay (apy 

= V1l—? e. 

9. For the calculation of the frequency of the directions independent 

of the velocity we have first to integrate (5) with respect to & between 

the limits «© and O and then with respect to 6 between the desired 

limits 6; the mean velocity as function of the direction is found by 

the application of the same operation to (5) after multiplication by 

FR. It is then easy to give to a frequency-formula found in this way 

the form of a Fourier series. For brevity we treat here only the 

case that g =O and the angle- limits are a to 0. 
By putting 
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we get (5) reduced to the form: 

a 

2 et daly —ve A Lat das ele “(e +2) a0 . eee 
es 4 Yv ‘ 

—A}y 

If g=0, so that the formulae (10) hold good, we then find for 

the desired frequencies in the two easterly quadrants 

RV p sina 

Be a 2 ee (15 Wn t SiR Seine ) 

From this formula it is evident in what way and in what degree 

the asymmetry of the distribution is dependent of &,, @ and p. 

4+ 

10. The application of the given criteria has been made for 

Falmouth and the four seasons: _ 

Winter: December, January, February, number 8384, 

p = 0.00258, q = 0.00004 

i= pee a@ = 222°8' 

Spring: March, April, May, number 8949, 

p = 0.00298, q = 0.00028 

R, = 2.21, a = 250°25' 

Summer; June, July, August, number 9229, 

p = 0.00485, gq = 0.00029 

R, = 5.60, a —= 251922! 

Autumn: September, October, November, number 9254, 

= 0.00313, q = 0.00004 

R, = 3.80, a = 239°16' 

For each series the number of observations is reduced to 10.000 

and everywhere we have put g=0O, the calculated values are 
accordingly accurate as far as the fourth decimal. 

In Table V we have compared the observed frequencies of wind- 
velocities independent of direction with those caleulated according 

to formula (12), from which it is evident that the differences havea 

clearly systematic course. Just as is the case with all series of errors 

the number of the observed small velocities is larger than would agree 

with the normal distribution. The differences together amount in summer 

to about 10°/,, in winter to 15°/,. 
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In the caleulation of the frequencies of the directions independent of 

the velocity, the observations regarded as calms — and to these are 
reckoned in the English records all velocities less than 4 miles an 

hcur — have been distributed proportionally to the frequencies of 

direction; furtheron the frequencies North and South are assigned 

for one half to the eastern and western quadrants. 

As is evident from the following table also in this comparison 

systematic differences appear; in all seasons the observed frequencies 

in the western quadrant are greater than the calculated ones, so that 

an increase of the constant part A, to which this uneven distribution 

can be attributed, would improve the correspondence. 

TABLE VI. 

Frequencies of winddirections at Falmouth 

for 10.900 observations. 

| | 

, | Observed. |Calculated | Difference 

E. quadr. || 3709 | 40c6 | — 297 
Winter 

$ 6291 | 5994 + 297 

E. quadr. 4037 | 4354 ~ 4 
Spring | 

- 5063 | 5649 4+ 214 

. E. quadr. || 2619 | 3009 | — 300 
Summer 

-. 7381 6991 + 390 

E. quadr 34353 3980 — 527 
Autumn 

F 6547 6020 | + 527 

45 

Proceedings Royal Acad. Amsterdam. Vol. LX. 



( 700 ) 

T
A
B
L
E
 

V. 
Frequencies 

of 
windvelocities 

at 
Falmouth. 

For 
10.000 

observations. 

S 
P
e
e
 
E
N
G
 

S
U
M
M
E
R
 

A
U
T
U
M
N
 

W
o
D
N
.
 

T
E
R
 

Observ. 
|Calculat.| 

Difference] 
Observ. 

|
 Calculat.| 

Difference} 
Observ. 

|Calculat.| 
Difference} 

Observ. 
|Calculat.| 

Difference 
M
i
l
e
s
 

a
n
 hour 

(
A
s
:
 

Ab— 
95 

95—145 

145—195 

495—245 

245-9015 

995—345 

345—395 395— 

4.45 

h45—495 4
9
5
—
5
A
5
 

700 
|
 

477-| 
+983 

|
 
756 

|
 

5e9 
|
 +497 

|
 
94 

|
 

s10 
|
 +495 

|
 
936 

|
 

588 
|
 + 

348 

1871 
|
 1482 

|
 +389 

|
 2073 

|
 1759 

|
 + 

314 
|
 2610 

|
 9336 

|
 + 

974 
|
 2196 

|
 1779 

|
 +377 

1853 
|
 2026 

|
 —173 

|
 2120 

|
 9979 

|
 — 

450 
|
 9538 

|
 9798 

|
 — 

190 
|
 2144 

|
 2804 

|
 — 

160 

1701 
|
 2030 

|
 —329 

|
 1875 

|
 2120 

|
 — 

245 
|
 1868 

|
 aisa 

|
 — 

965 
|
 1918 

|
 2110 

|
 — 

292 

1466 
|
 1650 

|
 — 

484 
|
 1355 

|
 4558 

|
 — 

203 
|
 4164 

|
 1995 

|
 

—- 
61 
|
 1984 

1564 
|
 — 

283 

967 
|
 119 

|
 —158 

|
 917 

|
 

939 
|
 — 

99 
|
 

sas 
|
 
5% 

|
 + 

40 
|
 

702 
|
 

920 
|
 — 

128 

B80 
jc 668 

ef ek 
a 

os 
|
 

as. 
|
 4 

20 
ond 

ame 
oe 

AB 
Paso 

|, ded) 
0G 

369 
|
 

331 
|
 + 

38 
|
 

250 
|
 

901 
|
 + 

4 
8) 

a 
|
 + 

3 
|
 
a8 

|
 

179 
| 
+ 

79 

199 
|
 

144 
|
 + 

55 
|
 

144 
72 

|
 + 

42 
20 

9° 
|
 + 

4 
|
 
16 

6 
|
 ++ 

50 

94 
BB 

|) et 
“80 

31 
Bea) 

Sale 
O 

6 
ro 

ee 
S
7
0
0
.
 

|" ely 

32 
AB 

tee 
4d 

15 
G
l
e
e
 

Or 
dedce 

ey 
93 
|
 

5 
|
 + 

48 

8 
Bey 

ate 
se 

S
h
e
r
a
,
 

a 
oe 

ae 
et 

ie 
|
 

Sa 
e
w
 

is 
ese 

| 
het 

i 
apt 

(Siang 
iets 

a 
Oe 

hee 



( 701 ) 

Chemistry. — “On the anisotropous liquid phases of the butyric 

ester of dihydrocholesterol, and on the question as to the 

necessary presence of an ethylene double bond for the occur- 

rence of these phenomena’. By Dr. F. M. Jarerr. (Communi- 

cated by Prof. A. P. N. Francuront). 

(Communicated in the meeting of February 23, 1907). 

§ 1. In order to explain the behaviour of substances which are 

wont to exhibit double-refracting liquid phases, some investigators 

have started the hypothesis that, in this kind of organic substances, 

it might be a question of systems formed of two components, and 

of equilibrium phenomena between tautomeric and isomeric modifica- 

tions, which would be converted into each other with finite velocity, 
Although it is difficult to understand how such a supposition, 

which is easy to propound, but very difficult to prove, could explain 

the numerous well ascertained facts of the regular optical anisotropism 

of these phases, it might explain, however, at least to some extent, 

the peculiar irreversible transitions of phases, which I found more 

particularly with the esters of cholesterol and a-phytosterol, and also 
the hindrance phenomena noticed on that occasion’). 

Such a supposition, however, is perhaps of some importance for 

the interpretation of the brilliant colour phenomena which accompany 

the phase-transitions in the cholesterol esters. For a mixture, or an 
emulsion of substances, whose indices of refraction differ very little, 

but whose dispersions differ much, might, like CHRIsTHIANSEN’s mono- 
chromes, cause a similar display of colours. 

§ 2. There is more than one cause for tautomerism (or isomerism) 

in the case of these cholesterol esters, for all the esters, as well as 

cholesterol itself, possess an asymmetric carbon atom, and in solution 
they all polarise to the left. 

Consequently, a racemisation during the esterification is by no 

means excluded, and we might, therefore, have a mixture of the 

optical antipodes. Cholesterol, moreover, possesses an ethylene double 
bond, so that we may also expect an isomerism in the sense of 
fumaric and maleic acids. 

§ 3. As many other compounds (in fact most organic substances 
which are wont to exhibit these phenomena of doubly refracting 

1) F. M. Jagger, These Proc. 1906 p. 472 and 483 (29 December). 

48* 
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liquid phases) possess such ethylene double bonds, one might indeed 

imagine that the presence thereof in the molecule is of great 

importance for the occurrence of the said phenomena, if not the 

conditio sine qua non, as the structure of the azoxy-compounds is 

not yet firmly established and because it may be assumed that they 

contain, perhaps, similar double bonds between NV and O. 

Moreover, the cholesterol esters all contain three liquid phases, so 
that this peculiar complication might perhaps also be connected with 

the possibility of very intricated isomerism-phenomena of those 

substances. 

§ 4. In order to answer these questions, I asked Prof. Dr. C. NruBErG 

of Berlin to furnish me with a specimen of his synthetic Dihydro- 
cholesterol, to which request this savant most willingly acceded. 

I wish to thank Prof. NeuBErG once more for his kindness. 

In this Dihydrocholesterol the ethylene double bond has disappeared 
owing to the addition of two atoms of hydrogen, and the malenoid 
and fumaroid isomerism is therefore, a priori excluded. 

§ 5. I have prepared from this alcohol the acetic and the normal 

butyric esters, by means of the pure acid-anhydrides, and have 

examined the same as to their phase transitions. The acetic ester 

will be described elsewhere later on; here the butyric ester only 

will be discussed. 

As a highly important result | may mention that the colour pheno- 
mena on melting and the occurrence of three liquid modifications in 

the normal butyrate remain unaltered as before, but that the irre- 

versibility of the phase-transitions is shown in a manner just the 

reverse as in the case of most of the cholesterol esters, e.g. the laurate. 

Whereas of the two doubly-refracting liquid phases of the last 
named substance, one is always passed over on cooling, whilst both 

are found on melting the solid substance, this is just the reverse 
in the ease of the dihydrocholesterol-n-butyrate. 

6. The solid phase S consists of an aggregate of very thin, 

colourless, and clear transparent laminae in which the plane of polari- 

sation makes an obtuse angle with the sides of demarcation and 

exhibit in convergent polarised light a hyperbole with very strong 
colour dispersion @ > v. 

On heating, this phase S passes into a doubly-refracting liquid 5, 
consisting of very small, feebly doubly-refracting individuals, which 

in turn passes at a higher temperature into the isotropous fusion L. 
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Of colour phenomena during one of these transitions, absolutely 
nothing is noticed. 

If, however, we start from the phase / and allow the same to 

cool, we first notice the doubly-refracting phase £, which on further 

cooling, amid violent sudden currents of the mass, passes into a 

much more strongly doubly-refracting liquid A, which on continued 

cooling crystallises suddenly, also amid very violent currents, to an 

aggregate of flat needles, glittering in vivid interference colours. These 

in turn, rapidly assume a spherolite structure so that the solid phase 

S itself appears to be also dimorphous und monotropous, as the flat 
needles are not reobtained on warming the spherolitic mass. The 

transformation of A into these needles, during cooling, is accompanied 

with the most vivid display of colours. Under the microscope these 

may be recognised by the dark-green colour of the background of 

the field of vision; with the naked eye, however, with incident 

light, that colour-display commences with a brilliant violet gradually 

turning into blue and finally into a radiating green when the 

mass crystallises. [| have never noticed red or yellow colours with 

incident light. These phenomena return in the same order when the 

experiment is repeated. 

That the phase A really exhibits the behaviour of a stable phase 

p 

Fig. 1. 

Schematic p-(-diagram for Dihydro-cholesterol-n-butyrate. 
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is also shown by the fact that, the colour having become blue 

or green on cooling, turns again violet on warming, sé long as 

the solid phase S has not yet been attained. The phase is, therefore, 
realisable at a change of temperature in fvo directions. 

§ 7. As I had but very little of the substance at my disposal, 
the thermometric determinations could only be studied in capillary 

tubes with the aid of a magnifying glass. 

At 82.°1 the phase S melts to a doubly-refracting phase B which 

becomes clear at 86.°4 and passes into Z. On cooling this isotropous 

fusion, it first passes properly into 4 at 86°.4, but at 84° into the 

more strongly doubly-refracting phase A, which may be undercooled 

many tens of degrees, and with retention of its violet colour, before 

passing into the solid phase S. 

Want of material prevented my determining the true solidifying 

point of S by inoculation; I estimate it at about 80°. 

Thus the positive proof has been given that the remarkable colour 

phenomena accompanying the melting the cholesterol esters cannot be 

attributed to the presence of an ethylene double bound; also that 
an eventual presence of fumaroid and maleinoid isomers cannot be 
considered as the cause of the occurrence of the three liquids. 

Zaandam, 15 Febr. 1907. 

Chemistry. — “On the action of bases, ammonia and amines on 

s. trinitrophenyl-methylnitramine.” By Prof. P. vax RomBurGH 

and Dr. A. D. MAURENBRECHER. 

(Communicated in the meeting of February 23, 1907). 

s.-Trinitrophenyl-methylnitramine, as has been known for a long 

time, is decomposed at the ordinary temperature by ammonia in 

alcoholic solution, or on warming, by an aqueous solution of potas- 

sium hydroxide, or carbonate, in the first case with formation of 

picramide, in the second (with evolution of monomethylamine) of 

picric acid. One of us who formerly studied the reaction with bases 

concluded, from the occurrence of the amine and the formation of 

nitric acid which was also observed, that the methyInitramine which 

might be expected according to the equation : 
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CaN O aN-CH, -— KOH = CH, (NO,), OK + HN CH, 

| 
VO: NO, 

might have become decomposed *). 
From the reaction of methylamine on tetranitropheny|l-methyInitra- 

mine and on trinitromethylamidomethyInitramidobenzene he after- 

wards concluded’) that, probably, there had been formed methyl- 

nitramine, meanwhile discovered by FRANcHIMONT and KLOBBIE *). 

The amount of amine formed by the decomposition of trinitro- 
phenyl-methylnitramine by alkalis is considerably smaller than might 

be expected from theory; the possibility, therefore, exists that the 

reaction proceeds indeed mainly in the above indicated sense. 

We have, therefore, taken up the problem again in the hope that 

by suitable modifications in the reaction, we might get at a process 

for the preparation of methylnitramine which would have the advan- 

tage of yielding this costly substance from a cheap, easily accessible 

material. We were not disappointed in our expectations. 

If trinitrophenyl-methyInitramine, which is the final product of the 

nitration of dimethylaniline and melts at 127°, is boiled with a 10°/, 

solution of potassium carbonate a brownish-red solution is obtained, 

which on cooling gives an abundant deposit of potassium picrate. 

If after filtration the liquid is acidified with sulphuric acid and again 

filtered off from the picric acid precipitated and then agitated with 

ether, the latter yields on evaporation crystals, which after purifica- 

tion, melt at 38°, and are identical with methylnitramine, as was 

proved by comparing the compound with a specimen kindly presented 

to us by Prof. Francuimont. The yield, however, was very small. 

If the finely powdered nitramine, m. p. 127°, is treated with 

20 °/, methylalcoholic ammonia this becomes intensely red, the mass 

geis warm and after a few hours the reaction is complete, and a 

large amount of picramide has formed which is removed by filtration. 

The alcoholic solution is distilled in vacuo, the residue treated with 

dilute sulphuric acid and, after removal -of a yellowish byeproduct by 

filtration, the liquid is agitated with ether. On evaporation of the 

ether, crystals of methylnitramine were obtained. In this reaction 

also, the yield was not large, amounting to only 15 °/, of the theoretical 

- quantity. With ethyl-aleoholic ammonia a similar result was obtained, 
whereas an experiment in which ammonia was passed into a solution 

1) Rec. d. Trav. chim. d. Pays-Bas, II. (1883) p. 115. 

2) Ib. VIII (1889) p. 281. 

3) Ib. VII (1888) p. 354. 
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of the nitramine in benzene gave results which were still less 

favourable. | 

One of us had noticed previously that among the aromatic amines 
which generally react on an alcoholic solution of the nitramine 

quite as readily as on picry! chloride, p-toluidine in particular gives 

a beautifully crystallised p-toluylpicramide m. p. 166°*) whilst the 

alcoholic solution contains only comparatively few, not very dark 

coloured byeproducts. In an experiment in which 35 grams of the 

nitramine were heated on the waterbath with an equal weight of 

p-toluidine and 100 c.c. of 96°/, alcohol, a fairly violent reaction set 

in after some time. The heating was continued for 5 hours and, 

after the picramide derivative had been removed by filtration, the 

alcohol was distilled off and the residue extracted with dilute sulphuric 

acid. The liquid filtered off from the toluidine sulphate was shaken 
with ether. On evaporation of the ether a still yellow coloured liquid 

product was left which on being inoculated with a crystal of methyl- 

nitramine became crystalline and after having stood for some 

time over sulphuric acid weighed 7 grams. On pressing between 

filter paper light yellow crystals were obtained which after being 

sublimed in vacuo (a treatment which methylnitramine stands very 

well) melted at 38°. On mixing the same with a preparation con- 

sisting of pure nitramine the melting point was not affected. 

p-Toluidine appears, therefore, to be a suitable means for readily 
procuring in a short time methylnitramine from s-trinitrophenyl- 

nitramine. 

We are continuing our investigations with different amines and 

also with other nitrated aromatic nitramines, and will state the 

results more elaborately in the “Recueil”. 

Org. Chem. Lab. of the University Utrecht. 

Physics. — “Wave-lengths of formerly observed emission and ab- 
sorption bands in the infra-red spectrum.” By Prof. W. H. 
JULIUS. 

If in the infra-red spectrum, as formed by means of a rock-salt 

prism, the positions of emission or absorption bands have been care- 

fully determined, the corresponding wave-lengths still are uncertain. 

by an amount which, in a considerable part of the spectrum, is 

greater than the probable error of those determinations, because the 

1) We now obtained this substance in two modifications, one coloured dark red 

and the other orange. 
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dispersion curve of rock-salt is not yet known with sufficient exactness. 

Mr. W. J. H. Moun') has lately compared with each other the 

dispersion curves that have been calculated according to Kerre.er’s 

formula with two sets of constants, one given by Rvusens’), the 

other by Lanenny*). Laneiry’s results held for a temperature 
of 20°; the numbers given by Ruspens were corrected by Mr. Mou. 

so as to apply to the same temperature. While coinciding in the 

visible spectrum, the two dispersion curves appeared to diverge very 

sensibly in the entire infra-red region, the wave-lengths correspond- 

ing to given indices of refraction being smaller with Rupes’ than with 

LANGLEY’s constants. At 2=1,54 e.g. the difference amounts to 

0,028 w; it increases unto 0,062 u (at 234) and then decreases to 

0.032 « (at 2— 8,54). If, on the other hand, the indices of refrac- 

tion, which according to LaneLey’s and according to Rugens’ formula 

belong to rays of given wave-lengths, be compared with each other, 

the difference appears to be rather constant between 2=44.4 and 
4=8,3u, namely 1,5 units of the 4% decimal of the index, and to 

increase from © to 1.5 similar units in the region between 0.6 u 

and 4 u. 

The apparatus, nowadays available for the investigation of the 
infra-red, admit of determining the position of sharp maxima or 

minima of radiation with an accuracy, going a good deal farther 

than 1,5 units of the 4 decimal of the index. 

When between 1887 and 1891 I investigated several infra-red 

emission and absorption spectra, our knowledge of the dispersion of 

rock-salt was restrained to the outcome of LANGLey’s first determi- 

nations *), which extended only as far as 5,3u. As a great part of 

my work bore upon longer waves, I published my results in the 

form given by direct observation, viz, as galvanometer deflections 

and corresponding angles of minimum deviation, reduced to the 

temperature 10°. The refracting angle of the prism being also recorded, 

the indices of refraction of rock-salt for waves, corresponding to the 
observed maxima, were thus implicitly given. 

In order to obtain a rough estimate of the wave-lengths, I had 

extended LanGLey’s dispersion curve in a straight line, though under 

strict reservation. The wave-lengths as read on this lengthened 

1) W.J.H. Mott, Onderzoek van ultra-roode spectra. Dissertation, Utrecht, 1907. 

*) H. Rupens, Wied. Ann. 60, 724; 61, 224; 1897. Cf. also Kayser, Handbuch 

der Spectroscopie I, 371, 1900. 

*) S. P. Lanetey, Ann. Astroph. Obs of the Smiths. Inst. I. 1900. 

+) S. P. Lanetry, Phil. Mag., Aug. 1886. 
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curve, to which I myself assigned little weight’), have found their 
way to some text-books *), where they unfortunately appear as the 

results of my investigation, with the incidental remark that they are 

incorrect, as founded on a false extrapolation. It is clear, however, 

that this incorrectness has nothing to do with the accuracy with 

which the position of the bands in the prismatic spectrum has been 
determined. Now I have reason to believe, that the spectrometric and 

heat-measuring apparatus used in that research were not less valid 

than those employed by many later observers of infra-red spectra 

(Donat, Pucctanti, Ik1L.E, CoBLENTZ, Nicuots, RuBENs and ASCHKINASS 

and others), so that the results still retain their value as a first 

contribution to our knowledge of the examined spectra. 

I therefore thought it suitable to republish the principal results 

obtained at that time *), but now to mention the indices of refraction 

for the maxima of emission and absorption, as following directly 

from my observations, and to add the wave-lengths, as derived from 

the more recent dispersion curves of Rupens and of LANGLey. 

The positions in the infra-red were determined in my work with 

respect to the place of the D-lines of a Bunsrn flame coloured with 

chloride of sodium. But the latter were too faint to be observed with 

the bolometer; and the transition from the visual observation of the 

D-lines to the bolometric observation of infra-red radiations caused 

an uncertainty in the determination of the relative positions, which 
was still increased through the necessity of displacing the bolometer 

along the optical axis of the rock-salt lens according to its different 

focus for visible and invisible rays. It was chiefly in the part of 

1) Cf. ,,Bolometrisch onderzoek van absorptie-spectra”, Verhandelingen der Kon. 

Akad. v. W. te Amsterdam, Vol I, N°. 1, p. 8 (1892), or the German translation 

in: Verhandl. des Vereins zur Beférderung des Gewerbfleisses, 1893, p. 235, where 

[ have clearly stated that | considered the extrapolation of Lanetey’s dispersion 
curve as quite uncertain, and that in the tables the direct data of observation 

(angles of minimum deviation) were given, because | did not like to have my 

results inseparably connected with a possible incorrectness of the dispersion curve. 

The passage in question seems not to have been noticed by W. W. Costentz, for 

in his excellent work ‘Investigations of Infra-red Spectra”, published by the 

Carnegie Inst. of Washington, 1905, he says on p. 135, after alluding to LanGiey’s 

extrapolation of the dispersion curve in a straight line: ‘Jutrus, with apparently 
less hesitation, has applied this extrapolation to his work”. 

2) Winxetmann, Handbuch der Physik; Kayser, Handbuch der Spectroscopie ; 

Cuwotson, Lehrbuch der Physik. 

3) Recherches bolométriques dans le spectre infra-rouge. Arch. neérl. 22, p. 

310—383 (1888). 
Die Licht- und Warmestrahlung verbrannter Gase, Berlin, Simion. 1890. 

Bolometrisch onderzoek van absorptiespectra, 1. c. 
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the investigation, described on p. 69 of “Die Licht und Wiarme- 

strahlung verbrannter Gase” that many pains were taken to reduce 

this source of error. There the CO,-maximum of the Bunsen flame 

was found at minimum deviation 38°54'20", the refracting angle of 

the prism. being 59°53'20" and the temperature 10°. From this 

follows n = 1,52103. Had the temperature been 20°, then the devia- 

tion would have been found smaller by 1/50", giving for the index 

of refraction: 2 = 1.52069. 

If we suppose this value to be exact, then the angles of minimum 

deviation given in my first paper in Arch. neerl. 22, and on pages 

47—68 of “Die Licht- und Warmestrahlung” are too small by 

nearly 3', owing to an instrumental error. In “bBolometrisch onder- 

zoek van absorptiespectra” the deviation of the CO,-maximum has 

been found 388°52'40" instead of 38°54'20"; 1’ of this difference 

results from the fact that the refracting angle of the prism, then in 

use, was smaller than that of the other one by 1’; only the 

remaining 40" were owing to an instrumental error. 

I have now applied the corrections resulting from this re-exami- 

nation, and calculated the indices of refraction for 20°, the tempe- 

rature to which the dispersion curves as compared by Mr. Mou 

also refer. In finding the wave-lengths corresponding to the indices, 

advantage has been taken of elaborate tables, prepared by Dr. Moun 

for a research of his own, and which he was kind enough to put 

at my disposal. 
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Indices of refraction Wave-lengths according to 
Emission-spectrum : : 

for the maxima eS Se Intensity !) 

of: | (Temp. 20) of RUBENS | of LANGLEY 
| | aos | ; 

BuNSEN-flame ... .- - | 4.5268 £206 1.953 | 0.5 

| 4.5947 HO 2 769 2.831 | bee 

| 4.52069 CO, | 4.410 | 4.462 | 10 

Flame ofcarbon monoxyde 1.52445 CO, , 2.883 | 2.947 | | 

or of cyanogen | 1.52069 CO, | 4.40 | 4.462 | 10 

Hydrogen flame... . 1.5247 H,O | 2.77 2.83 | 10 

1.5176 | 544A | 5.46 2 

Luminous gasflame. . 1.5270 c | 1.84 4.89 2) 

1.52947 H.O | 2.77 | 2.83 2) 

1255907, COs | 4.41 4.46 2) 

| 
Hydrog. burning inchlor.) 1.5226 HCI | 3.68 3.74 

Flame of sulfur... . | 1.5093. - SO, 7.49 7.59 

Flame of carb. disulphide) 1.5247 2.77 2.83 1 

4 208 — Gs 4.44 4.46 10 

4.5125 COS(?) 6.76 6.80 3—0 2) 

1.5093 - ..SO, 7.49 7 52 2—3 ») 

Absorption-spectrum 

of: 

CC (giamond) 2 =... 2 4.5238 3.18 3.24 

1.5202 4.58 4.63 
10 

1.5183 5.20 5 25 

1.5088 ete. 3) 7.59 7.62 10 

PUES igen eta Se ao 1.5287 1.44 1.43 4 

4.5265 2.04 2.06 4 

4.5236 3.25 3.31 ie 

4.5194 4.85 4.90 

1.5146 6.24 6.28 

1) In each spectrum the intensity of the highest maximum is indicated by 10. 
The letter s following an intensity figure means, that the band is rather sharp. 

*) The relative intensity of these bands varies much with the place in the flame. 

*) The addition “ete.” behind an index of refraction indicates, that the band marks 

the beginning of an extensive region of strong absorption. 
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aay 
Indices ofrefraction Wave-lenghts according to 

the dispersion curve Absorption-spectrum 
for the maxima | Intensity 

2h | (Temp. 20°) | of RuBENS of LANGLEY | 
| 

aS ct: >t: +s eee | 4.5203 4.55 4.60 6 6s 

| 1.5129 HA G67 6.71 10 

2 5 si eee 1.5219 3.96 4.02 I 

| 1.5163 5.78 5.82 1 

1.5090 | 7.55 7.58 7 s 

4.5049 | 8.36 8.39 | 

4.5020 / 8.90 8.93 1 

1.4992 eae | «9 Ak 8 s 
1.4942 10.28 10.31 10 

Ee x ee , 1.5221 3.88 3.04 05 

1.5082 mie cy 775. | 10 s 

1.5030 8.73 Rae 4 0.5 

44944 10 25 10 28 10 

Bae 8 1.5172 5.53 5.57 6 s 

1.5154 6.03 6.07 { 

1.5058 8.19 99 10 s 

1.5014 9.02 05 | 10 

4.4974 3 9.16 "h” ~46 

2 16 Sa ere 1.5934 | 3.34 3.40 0.5 

1.5173 fess 50 5.54 | S 

1.5058 8.19 Boa | 2 

1.5014 9.02 | 9.05 | 10 

1.4974 9.73 9.76 3 

areliee y/.) sacl GRO e 4.5137 6.47 ZA 9s 

1.5058 8.19 2 | 10 

4.4942 10.28 10.34 | 5 Ss 

GAL... sige | 4.5234 3.34 3.40 3 

1.5131 6.62 | 6.66 | s 

1.5445 6.99 | 7.08 | 

1.5058 s19 | 8.02 | 40 
4.4980 9.62 9.65 7 
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| 
Indices of refraction Wave-lengths according to 

Absorption-spectrum | the dispersion curve 
_ for the maxima Intensity 

ole | (Temp. 20°) | of RUBENS | of LANGLEY 

ot: SG Re itis | 1 5935 | -g.a0 |. 336° [ssa 
| 4.5007. | 4.40 | 4.45 3s 
eromees. | = 5276 +1) - eae As 

1 5116 2 (0.01 > Vesna 3 
| i503 =—ti«d(L; 89 

4.5024 | ae | 8.86 10 
‘402 | 9. | a 

£5 5 ge Bee aoe P5259 |" 2.25 sae | 1 

1.5236 9°95. eee 4s 
| 1.5214 4.96 | ps 1 

| 1.5173 | 5.50 5.54 6 s 
1.5128 | - 660>< || Seige 10 s 
1.5107 Sele 7.21 3s 
4.5088 | ~ 7.5: |" Seg 

| 1.5060 8.45 8.18 2 
| 1.5039 8.56 8.59 | 7 

(och eh a a ei ae 1.5259 2.95 > aay een 
| 1.5230 3.51 3.57 s 

1.5154 6.03 6.07 1 

1.5118 | = 6.98 6.96 10 s') 

1.5097 7.40 7.43 6 

1 5068 7.99 8.02 4 
1 5032 8.69 8.72 6 s 

| 1.4980 9.63 9.66 5 

1.4942 40.298 |» 403) 5 

AL: ne ie | 1.5259 2.25 | 2.31 4 
| 1.5229 3.56 | 3.62 10 

1 5194 | 485 | 4.90 G45 
| 1.5145 ete. | 6.97 | 6.31 10 

CHO 2 eae. 1.5959 2.25 ce: aa | 
1 5229 3.56 3.62 | ° 40 
1.5183 5 20 5.25 | s 
4.5154 6.03 6.07 2 
1.5126 ete, 6.74 6.78 | 10 

') Sharply limited only toward the smaller wave-lengths. 
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Absorption-spectrum 

of: 

COT oa. 

C,H,OH (normal)... . 

CTOMs(iso) <>. + 

S20) | 

(C,H;),0 Ee oe ae 

(Cs 2S) 5 (CPi 

ties of refraction Wave-lengths according to 
: the di sion curve 

for the maxima dispersion 

(Temp. 20°) 

~_ = 

— 

— 

ee 

.5230 

.0152 

5126 

5230 

.0162 

9126 

.9230 

.5192 

D154 

.9126 

5230 

etc. 

etc. 

etc. 

etc. 

etc. 

Intensity 

| of RuBENS of LANGLEY | 

3.51 3.57 10 

6.09 | AB 3 

4 | 78 10 

iy 3.57 10 

5.81 Bete | 3 

6.74 Geleiee chal 40 

3.51 3.57 10 

4.92 4.97 1 

6.03 | 6.07 9 

Ga fh 1@.78 10 

3.51 3.57 10 

4.92 4.97 | 1 

6.08 6.07 | 3 

6.74 | 6.78 10 

0.953 | 0.958 | 1 
4.30 | 4.32 1 

2.25 2.34 2 

3.51 3.57 8 s 

5.20 ayer 3 a) 

5.76 5.80 1 

6.97 7.04 10 

Zeb) | ae 4 

TED hot Bas a1. Vwi 
8.44 8.47 10 

2.38 2.44 1 

3.54 251i 5 

3.88 3.94 3 

5.20 5.25 { 

5.84 5.85 4 

6.99 7.03 10 

7.88 7.91 40 

9.95 9.28 8 

410.39 10.42 9 



(712 ) 
bd Physics. — “A hypothesis relating to the origin of RONTGEN-rays.’ 

By Prof. C. H. Winn. 

W. Wirn') has measured the energy of RONTGEN-rays, converted 

into heat in a bolometer or in a thermo-element, and has compared it 

with that of the cathode-rays, likewise converted — with exception 

of the small fraction transformed in energy of R.-rays — into heat 

in the anti-cathode. He finds for the proportion of the total quantities 

of energy of the two kinds of rays 

Br 918. W28 2). 
Ey, 

Supposing that the R.-rays are the radiation of energy, emitted 

by cathode-ray electrons being brought to rest, and that this stoppage 
may be considered as a continually decreasing motion, he proceeds 
with the aid of the theory of M. ABranam to deduce the duration 

of the stoppage and from it the thickness of the R-waves. For the 
latter he finds 

A=: 11S) 0S em: 

Results of the same order of magnitude have afterwards been 

attained by Epna Carter*) in an investigation, also made at the 
laboratory directed by Wirn. 

These results do not very well agree with the values, derived by 
HaGa and myself for the wave-length of R.-rays from diffraction- 

experiments : 

A= 270:to 12 =, 19 em) 
and 

4= 160 , 120 , 50 . 10—%em. 5 E 
If the R.-rays have to be considered as disturbances in ether of the 

single pulse character assumed by Wren in accordance with the 

3.7 
current conception, the same numbers must be divided by ipo 

2 

2°) in order to represent the corresponding values of the thickness 

of the pulse-waves, which consequently become 

f= 110 .t6 5 i. 1O=) “om: 

8, = 64, 48, 20 .°10—10 em. 

1) W. Wien. Wittyers Festschrift, Leipzig, 1905; Ann. d. Ph. 18, p. 991, 1905. 
*) L. c. p. 996. The number is doubled here, on account of the remark made 

regarding it on page 1000. 

3) E. Carrer. Ann. d. Ph. 21, p. 955, 1906. 

*) H. Haga and C. H. Winn. These Proc. I. p. 426. 
6) Id. Ibid. V. p. 254. 

*) G. H. Winn. Physik. Zschr. 2, p. 96. Fussnote 2), 1901. 
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Wirn’s experiments would have led to results more in keeping 

with the diffraction experiments, if the values found for the energy 

of the R.-rays had been 20 to 100 times smaller. The difference is 

too great to ascribe it to errors of observation. We must rather 

think of fundamental errors in the method of observation or of a 

viciousness in our conceptions concerning the mechanism of the 
phenomena. 

As for the method of observation Wren himself pointed out?) 

the possibility that the quantity of heat, generated in the bolometer 

or in the thermo-element, should not be to its full amount converted 

energy of R.-rays, but partly also —. perhaps even for the greater 

part — converted atom-energy, liberated by a, say, catalytic action 
of the R.-rays. 

J. D. v. p. Waats Jr.?) suggests the additional idea that the 

electrons are not generally stopped at once by a simple uniform 

decrease of velocity, but will mostly, by their interacting with the 

particles of the anti-cathode, before being brought to rest move for 

some time amidst the latter in rapidly changing directions with great 

velocities, sending out a new R.-pulse at every change of motion. 

Starting from this idea we could, indeed, expect from each electron 

a much greater contribution to the energy of radiation than in 

the theory accepted by Wren and find the results of Wien’s energy- 

measurements in better agreement with those of the diffraction- 

experiments. 

Nevertheless it seems to me that by the side of this another idea 

deserves our attention, which might be more in keeping with the 

properties of cathode-rays as far as known. It would be this, that 

not simply the cathode-ray electrons, but in combination with these 
the atoms of the anti-cathode are the principal centres of emission 
of R.-rays. 

It should be imagined, that the electrons, arriving at the anticathode 

with their immense velocities, are not, generally, thrown into an other 

direction by the atoms, but will for the greater part pass straight through 

them, and even, in doing so, will mostly not suffer any persisting 

decrease of velocity. This idea is by no means a new one. It has 

been worked out by LrNnarp’*), who sees in it the best explanation 
for the laws of absorption of the cathode-rays. In very few cases only 

it will happen that an electron, when piercing an atom, gets imprisoned 

1) W. Wien. Drudes Ann. d. Ph. 18, p. 1005, 1905; cf. also E. Caper. Ann. 

d.-Ph. 21) p: 957, 1906. 

2) J. D. v. vp. Waats Jr. Ann. d. Ph. 22. p. 603. 1907. 

3) P. Lenanp. Drudes Ann. d. Ph. 12, p. 734, 1903. 
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or changes its direction considerably ') in a centre of exceedingly 

strong electromagnetic action; in the great majority of cases it will, 

by the abundance of vacant space in the interior of the atom’), fly 

across it without experiencing a considerable decrease of velocity. 

In this way the greater part of the electrons will pierce thousands 

or tens of thousands of atoms before being stopped, and we find 

easily explained the great penetrating power of the cathode-rays, 
which may still in appreciable quantity pass through a layer of 

aluminium 10°) thick or a layer of atmospheric air, some em thick *). 

If we consider the values given by the diffraction-experiments 

for the order of magnitude of the thickness of R.-waves as correc, 

it follows from Wuren’s experiments — apart from a_ possible 

catalytic action of the R.-rays — that the radiation of the cathode-ray 
corpuscles, by the simple fact of their stoppage, could account only for 

1 1 
something like ao ind of the whole energy of the R.-rays. Conse- 

quently for by far the greater part this energy must, if LENARD’s 

views may be accepted, have a different origin. What this can be, 

is obvious. The atoms namely will by no means remain undisturbed 

during the sudden passage of an electron. Themselves probably con- 

sisting of negative and positive corpuscles, they will see their electro- 

magnetic fields during the passage altogether altered and at the same 

time will no doubt send out a pulse or wave of disturbance *) into 

the surrounding ether. About the character or shape of these pulses, 

which moreover may vary from one case to an other, we can, 

without making any more definite assumptions as to the structnre 

of the atom, say little; but there is one important point, in which 

all these pulses will be to a certain degree similar, viz. their duration. 

1) Together with the expulsion of electrons originally belonging to the atom, 

which will often occur at the same time, these changes of direction could very 
well account for the diffusion of the cathode-rays according to LeNarp. 

2) Lenarp calculates (Drudes Ann. d. Ph. 12, p. 739, 1903) that only 10—9 of 

the volume of an atom is occupied by the “dynamids’”’, of which he considers it 
to consist. 

5) Lenarp. Wied. Ann. 51, p. 233, 1894. 
4) Id., Ibid., p. 252. 

5) Lenarp expresses himself (“Ueber Kathodenstrahlen”, Nobel-vorlesung, p. 37, 

Leipzig 1906) as follows: *Das durchquerende Strahlenquant’” — the electron — 

“wird vermége der abslossenden Kriifte, welche es auf die anderen, dem Atom 

eigenen, negativen Quanten ausiibt, eine gewaltige Stérung innerhalb des Atoms 

hervorbringen kénnen”, and then continues thus: ‘und als Folge dieser Stérung 

kann ein dem Atom gehdériges Quant aus ihm hinausgeschleudert werden (sekundire 

Kathodenstrahlung)”; but he does not speak of a radiation emitted by the atom. 
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The latter will be, if @ represents the diameter of an atom and 

v the velocity of the electron, which is piercing it, something like 

a . . . . 

(rather smaller than) —, causing the wave emitted to be of a thick- 
v 

a . 

ness of something like (rather smaller than) c —, ¢ being the velo- i 

city of light in ether. By putting a—10-° and v= 10", we get 
; . . 

by this way for ¢ — 3.10—-§, a number which only slightly exceeds _ 

the order of magnitude of the values of § (p. 714), derived from 

diffraction experiments. It might therefore be possible, that the 

waves of disturbance in question should be identical with the Rént- 
gen rays. 

As by this theory a single electron would disturb some thousands 

or tens of thousands of atoms, every atom, being traversed by an 

1 
electron, need only send out something like we of the quantity of 

energy emitted by an electron itself in its total stoppage, in order 

to account for the relatively large amount of energy found by Wien 

in the R-rays. That such proportions should exist, seems to me 

. not impossible at all. 

The views presented here as to. the origin of the R.-rays bestow 

anew and great importance on the ‘wave-length’ of these rays, 

as they intimately connect this measurable quantity with the 

dimensions of the atoms. Whether there really exists such a close 

connection, could perhaps be experimentally put to the test by 

diffraction experiments with anticathodes made from different materials. 

More generally it might be expected that experiments of this kind 

would throw some new light upon the structure of atoms, and also 

of molecules or molecule aggregates. In such experiments it would 

certainly have a peculiar interest to use crystals as anticathodes, as 

perhaps the regular structure of these bodies could manifest itself 

both in rather sharply defined wave-lengths of the R.-rays emitted 

by them as in a polarisation of these rays. 
The question, whether R.-rays should or should not be expected 

to show total or partial polarisation, may be treated on the basis 

of the above hypothesis, as soon as this be supplemented by definite 

suppositions about the structure of the atom. 

The relation that, according to our views, should have to exist 

between the wave-length of R.-rays and the velocity of the cathode- 

rays, is of course liable to rather direct experimental verification. 

49* 
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Two further questions connected with those views and perhaps 

liable also to be answered by way of experiment, are these: 

1. whether the air molecules on the outside of the aluminium 

window of Lenarp emit R.-rays in appreciable quantity ; 

2. whether the y-rays of a radio-active substance, except by the 

substance itself, are to a considerable extent emitted also by the 

atoms of air in its neighbourhood on their being pierced by the 
electrons constituting the §-rays. 

Physics. — “On the motion of a metal wire through a piece of ice.” 

By Dr. J. H. Mrersure. (Communicated by Prof. H. A. Lorentz). 

(Communicated in the meeting of January 26, 1907). 

During the last and the preceding winter I made some measurements 

with a purpose of testing the formulae, expressing the velocity 

of descent of a metal wire through a block of ice, which Mr. L. S. 
OrnsTEIN had derived from the theory of regelation '). 

') L. S. Ornsrei. These Proc. VIII, p. 653. 



( 719 ) 

the legs A and PD of an iron frame, which, in order to secure 

greater rigidity, had been cut from an iron plate. In the first measure- 

ments the downward displacements of the wire were observed by 

means of a small reading telescope, turning round a horizontal and 

a vertical axis, and were determined on a measuring rod, mounted 

at the side of the frame. The breadth of the ice-block was also read 

on a horizontal measuring rod. In the later experiments a catheto- 

meter was used, placed at my disposal by the professors of the 

Technical University. at Delft. | wish to express here my sincere 

thanks to these gentlemen, especially to Prof. pe Haas. The fall of 

the wire was always derived from the change in the difference of 

level between the top of the wire and the upper edge of a small 

bubble, existing somewhere in the interior of the ice. Every ten 

minutes or, when the descent was quicker, every five minutes, the 

difference of level was measured in order to ascertain whether the 

fall was regular. Each experiment lasted 20 to 40 minutes. 

The ice used was artificial commercial ice. From a larger block 

a clear smaller one was sawn out, in which some bubbles should be 

present to serve as marks. The faces were melted flat by pressing 

them against a metal plate, so that errors, caused by irregular 

refraction, were avoided. 

Heat conduction along the wire was prevented by hanging small 

pieces of ice on the wire on both sides of the block. Still small 

grooves were occasionally formed when the descent was slow. 

The experiments were made with wires of steel, german silver 
and silver. The thickness Of the wires was measured by means of 

caliber compasses, giving results accurate to 0.01 mm. The thickness 

was 0.5, 0.4 and 0.3 mm. Deviations from these numbers, amount- 

ing to some hundredths of a millimetre, were occasionally found. 

For the case, realised in my experiments, in which the two straight 

ends of the wire make a certain angle 2a with each other, formula 

(Illa) of Mr. Ornstern’s paper ') holds: 

2aCP 

d, sin a 

in which v represents the velocity of descent of the wire, P the 

total weight and d the breadth of the ice-block. C is a constant. 
The value of this constant I calculated by formula (1) from the 
values of v, found in my experiments. 

The results are summarised in the following table: 

a 
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Steel wire. Diameter 0.5 mM. 

PB. C' average of (. 
(in grammes). 

455 0.0162 

(a5 0.0151 

1255 0.0172 ta 

2160 0.0185 ee 
2205 0.0169 \ 

5160 0.019 

diameter 0.4 mM. 

455 0.030 

155 0.029 | 0.029 

1255 0.029 

diameter 0.3 mM. 

DD 0.043 

1255 0.042 | ri 
German. silver. diameter 0.5 mM. 

fers 0.0134 

1255 0.0119 

2150 0.0143 Dae 
5160 0.0172 

diameter 0.4 mM. 

TDD 0.0196 

$255 0.0204 

2150 0.0208 | OO 
5160 0.0255 

diameter 0.3 mM. 

355 0.0306 | 

oa 0.0348 0.035 

855 0.0393 

Silver wire. diameter 0.5 mM. 

ToS 0.0207 

1255 0.0255 | oO” 
diameter 0.4 mM. 

536 0.0367 

Bo 0.0384 

1036 0.0392 | a 
1255 0.0404 

diameter 0.38 mM. 

555 0.0347 | 

755 0.0467 
0.041 
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The quantity C is not expressed here in C.G.S. units, since the 

dimensions have been taken in millimetres, the velocities in milli- 

metres per minute and the forces in grammes. In order to reduce 

them to C.G.S. units, the value of Chas to be multiplied by 170 > 10—. 
The values given in the table are averages of several measurements. 

In order to show the deyiations of different measurements, made with 

the same weight, I give here an arbitrarily chosen set of separate 

measurements. 

German silver wire, diameter 0.4 mm. 

Number of the 

experiment e v d, 2a c averages. 

8 1036 1.017 39.0 42° 0.0368 
10 10386 141° 37.4 492° 0.0393 | a qaue 
14 fie 2.98 SR SP ee ee 
i 1036 1.73 29.3 30° 0.0393 
87 1255 0.99 52.3 50° 0.0401 | 

112 1255 1.09 51.27 53° 0.043 |' 0.0404 
115 1255 0.756 66.46 53° 0.0387 | 

The value of C is calculated by Mr. Ornstein in formula (I) of 
his paper. He finds 

pee aes Py ae) F 
(=) EB k, — “Rr (hk, — *,) fe | 

po dp}, ho ae ta) 

ae zx R? WS; 

Here &,, k, and &, are the coefficients of heat conductivity respec- 

(2) 

dt 
tively of the wire, of water and the ice, (=) is the rise of the 

P), 
melting temperature by pressure, measured at the melting tempera- 

ture, JV’ is the latent heat of melting ice, S,; the specific gravity of 

ice, A the radius of the wire and d the thickness of the layer of 
water. Now the value of C cannot be calculated by this formula, 

since the quantity @ is unknown. But besides the equation (I) 

Mr. OrnstEIN gives in his formula (II*) an expression, found by a 

hydrodynamical reasoning, in which the quantity d likewise occurs. 

This relation is‘): 

Sa 2aP aye 
v= — ———_— | — Le eee ry) 

S; 12a pd, sna\R 

ga ; Sw 
) In Mr. Ornstery’s paper this formula is given without the factor = since 

t 

this latter has no perceptible influence. 
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Here S,. is the specific gravity of water at 0°, « the viscosity 

coefficient. By equalising (1) and (3) we find: 

C Sw 1 ax x ae ee 

d 

and we should now have to eliminate p between (2) and (4). In order 

to perform this elimination we simplify (2). We consider the form 

d *. 
in (2) between the brackets | | and keep in mind that R is very 

small, that &, is very much greater than /, and that 4, may be 

neglected with respect to the first term (which amounts to neglecting 

the conduction of heat through the ice). 

We may then write: 

; k, Ex a/R (A, ia k,) aay ky k 

hgh in ky Ee eee ee ; eae 

(5 ) k, 

dp k 
P 0 1 == d/R ~ 

2 

ot R? WSS; 

1 

Then we have 

GS | 

If we put 
d 
(=) = — 74010 ss = 05101, Se ee, 
dp ; 

(’ becomes 

C=—=aa 10—!! : hy 
as . x me R? Sips 

oe ze 

In (4) we substitute 
Sp = 1, S=0 9167, 2D 

c= 1.600(4) 1 fae 

Equalising the two values of C we have: 

then 

or 

ee oY: 9.0 x 10501 BR) AR) a ae 
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d 
From this equation Rp om easily be found by a tentative method, 

L 

when &,, &, and FR are given. In the different cases we find (in 
CGS-units), 

1 
Steel wire k= 0.166 &,=0.0015 R=0.025 < — 0.10166 

L 

d k, = 0.166 k, = 0.0015 R—=0.020 “© — 0.00190 
R 
| 

k, = 0.166 k= 0.0015 R=0.015 = = 0.00229 

/ 
German silver wire k, = 0070 k, = 0.0015 R= 0.025 _ — 0.00128 

| 
k, = 0.070 &, = 0.0015 R—=0.020 “= 0.00149 

1 
k, = 0.070 k,— 0.0015 R—0.015 a= 0.00179 

d Silver wire b= 1.50 4, = 0.0015 R= 0.025 | = 0.00289 

d 
k= 150 &,= 0.0015 R=0.020 = = 0.00279 

1 
,=150 &=0.0015 R=0.015 s= 0.00818 

Cis then found by substitution in (5). These values are given 

below, together with the values found by experiment, but now 

expressed in CGS-units. 

Calculated Found 

Steel wire KL = 0.025 fo) 1010 29. 36 1Q=10 

fe == 0:020 POS 10-10 49 & 10—10 

R= 0.015 192° 10-10 fac A0—9 

German silver wire R= 0.025 34 & 10-10 24 X 10—20 

R= 0,020 53x 10-10 837 x 10-10 
R=0.015 9110-59 & 10-10 

Silver wire R=0.025 218 10-10 46 x 10-10 
Rk = 0.020 347 & 10—10 665< 10-10 

f= 0.086 aloo 10-10 hE SS LOS 

The agreement must be called bad for the silver wire, satisfactory 
for the german silver wire. It may be called satisfactory, since 
different circumstances may be mentioned which make us expect a 
too small value. Leaving aside the great uncertainty in the values of 
the heat conductivities of metals, to Which we cannot here ascribe 
the bad agreement, since we do not know in which direction this 
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will influence the result’), the following causes may be mentioned. 

1. The roughness of the wires. Already Mr. Ornstety pointed 

this out. If the wire is not entirely smooth, the hydrodynamical 

deductions are uncertain and hence also formula (3). In order to 

ascertain the influence of this roughness I made some experiments 

with a steel wire that had for a moment been scoured with fine 

sand-paper in the direction of its length. Macroseopiecally no result 

of this manipulation could be discovered on the wire. Yet the effect 
proved considerable, for the following results were found : 

5 & 

, 455 0,009 | 

steel wire, diameter 0,5 m.M. pe 0,0J1 » average 0.011 m.M. 

1 2205 0,014 

steel wire, diameter 0,3 m.M. 1255 0,028 

So we find a diminution of about 40°/, in the value of C. After 

having observed this influence I tried to obtain smooth wires, but 

unsuccessfully ; all the wires that were used in the experiments showed 

under the microscope numberless grooves in the direction of their 

length and of a breadth that might be estimated at somewhat less 

than 0.01 mm. 
d 

Since it is easily deduced from the calculated values of R that 

the thickness of the layer of water increases with the size of the 

radius of the wire and since the influence of the roughness of the 

wire will be smaller with a greater thickness of this layer of water, 
[ have still made some measurements with a thicker steel wire of 

0,87 mm. diameter and heavier weights. The result was : 

Yi GS C' (in C.G.S. units) 

25200 0,00803 | 
0,0081 13.8 Se 7O 

25200 0,00822 
5200 0 ,00667 13° x Ai 

while calculation gives 
l , 

k, —0,166, &,=0,0015, R=0,0435 = 0400120 C= 27.7 x 10-10 

The agreement is now better indeed; the value found is half the 

calculated one, while with the thinner steel wires it was slightly 

more than a third. 

') The values given by F. Kontrauscn (Lehrbuch der praktischen Physik 10 

Auflage 1905), steel A =0.06 to 0.12 and silver &4=1.01, would give a much 

better agreement. 
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2. In the deduction of formula (1) it was assumed that within 

the layer of water the relation 

holds. This relation, however, holds for a body at rest. Here, on 

the other hand, we have to deal with a streaming liquid, in which 

case the following formula holds: 

ee. OF Sw Ot Ot 
da?! dy? Es ("55 +°5)- 

Here og is the specific heat of the liquid, w and v the velocity 

components in the A- and Y-directions. If we use this formula we 

take into account that the heat, conducted through the wire, does 

not entirely serve for melting the ice, but that it is partly conveyed 

upwards again by the streaming liquid. This also must result in 

a diminution of the velocity of descent. Prof. Lorentz informed me, 

however, that it can be shown that this influence must be regarded 

as a quantity of the second order, so that the differences cannot be 

explained in this way. 

3. If the temperature in the interior of the block of ice is not 

exactly O°, but lower, the velocity of descent will also become 

smaller. But I observed no phenomena which point to a lower 

temperature in the interior. Blocks of ice that had been kept for 

24 hours in a space above 0° gave the same results as blocks that 

had just been received. Moreover the wires as a rule went down 

at a distance of only a few millimetres from one of the faces of 

the block, and in some experiments they even came out of the block 

by melting of that face. Yet in the last moment, before the wire 

came Out, no acceleration of the descent was observed. 

Nor does theory support such an explanation. Prof. Lorentz 

informed me that when the surface of a ball of ice of 3 centimeters 

diameter and at a temperature of — 2°, is raised to 0° and kept at 
this temperature, it may be shown that in less than an hour the 

temperature at the centre has risen to — 0.01°. 

4. Another important influence on the velocity of descent is found 

in the fact that it is possible that not all the ice, melting at the 

lower side of the wire, freezes again exactly at the upper side, but 

that this water perhaps flows off laterally. It is clear that this must 

have a great influence since then the heat, necessary for the melting, 

is furnished by conduction through the ice. Already J. THomson 
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BortomLEY ') showed that the lateral flow of water causes a great 

retardation. 

he experiments now showed that this lateral flow really exists. 

For even when the ice was perfectly clear, in the places where the 

wire had passed through it various small bubbles were observed. 

Consequently not all the ice had been re-formed which had been there. 
In this respect I also mention a curious change, found in the 

values of C: these values rise with the weight. This is very con- 

spicuous with the silver and german silver wires, but also with the 

steel wires it exists, especially with the thick one of 0.87 mm. 

Accordingly it was often seen that the bubbles on the path of 

the wire were more numerous with small than with heavy weights. 

This became particularly clear in experiments in which, during one 

descent, first a heavy and then a small weight was used, With the 

smaller weight more water flows off laterally. 

I still made several experiments in which the wire was pulled 

upwards through the ice, hoping to prevent this lateral flow. The 

result was not the expected one, for bubbles also appeared and the 

values, found for C, were even somewhat smaller than in the former 

case. In regard to this question it would be desirable to investigate 

the descent of a whole body, e.g. of an iron ball, through perfectly 

clear ice. 

In my opinion this lateral flow is the chief reason why theory 

and observation disagree. It also explains why with the silver wires 

larger differences were found than with the german silver and the 

steel wires. For if the heat is only partly furnished by the freezing 

process above the wire and if the rest has to be furnished by con- 

duction through the ice, it seems to be of little consequence whether 

the wire be a good conductor of heat. 

5. Ice is a erystalline substance. This also may have its effect. 

Perhaps the melting point is not the same at the different faces of 

the erystals which the wire touches. Though this influence may exist, 

we cannot say in which direction it would modify the result. 

In order to find out whether such an influence makes itself felt, 

I made the wire pass several times through the same block of ice 
in three mutually perpendicular directions. But no perceptible diffe- 

rence was found. 

As the general result of the experiments I think we may state, 
that they indicate that the regelation theory will be found capable 

of explaining the phenomena not only qualitatively but also quanti- 
tatively. 

1) Pogg. Ann. 148, p. 492, 1871. 
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Physics. — “Contribution to the theory of binary mixtures, [1’’, by 

Prof. J. D. van per Waats. (Continued, see p. 621). 

Not to suspend too long the description of the course of the qg-lines 
30s 

in the case that the locus = 0 exists, we shall postpone the deter- 
ak 

mination of the temperature at which this locus has disappeared, 

and the inquiry into the value of z and v for the point at which 

it disappears — and proceed to indicate the modification in the 

course of the qg-lines which is the consequence of its existence. 
dw 

dv i 
From the value of -—— = W—-W—— follows that when a gq-line 

dig ay 

dadv 
2 

passes through the curve ae it has a direction parallel to the 
& 

Fig. 3. 
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z-axis in such a point of intersection. So a q-line meeting pies 
aL 

will be twice directed parallel to the z-axis, and have a shape as 

Ed lig hes alilenst as, J i | ee ins Ole eel Td) thee ay I east aS lone as the curve 
P 2 = dedv dit : 

does not occur. Such a shape may, therefore, be found for the q-lines, 

in the case that the second component has a higher value of 6, and 

lower value of 7). —, and such a shape will certainly present itself 

in the case mentioned when the temperature is low enough. 

Then there is a group of g-lines, for which maximum volume, 

and minimum volume is found. The outmost line on one side of 

this group of q-lines, viz. that for which g possesses the highest 
value, is that for which maximum and minimum volume have coincided, 

2 

and which touches the curve a e O in the point, in which this curve 
v 

itself has the smallest volume. The other outmost line of this group 

of q-lines, viz. that for which q possesses the smallest value, is that 

for which again maximum and winimum volume have coincided, and 

dp 2 bee 
3 = 0, but in that point in which 

this curve itself has its largest volume. So for these two points of 
8 dy ’ 

contact the equation —— = 0 holds. These two points of contact are, 
Ak 

which also touches the curve 

L?w 3 ae d Dw 
therefore, found by examining where the curves eae 0 and = 0 

Ax ae 

intersect. This last locus appears to be independent of the temperature, 
Ba 

as we may put eS equal to 0. We find from the equation on p. 638 
Ax 

db\* db 

1—2ea dz da? | 
2 = sis ure | 1a i. 

da* x? (l—2)’? (v—b)* (v—6)? 

d?b a: 
If we neglect aa Oe find from "5 iaae 

dx 3 1-20 _ 

es “Yr 2 #2? (1— 
13 te au ‘ : Seyeke : 

rhe locus sai = 0 occurs, therefore, only in the left side of the 
Az 

figure or for values of « below 4. The line « =%/, is an asymptote 
for this curve, and only at infinite volume this value of wz is reached. 
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: Tha |b 
And as for =O also r—h must be = 0, the curve Ta = 0 starts 

ax 

; : : : ah 
from the same point from which all the q-lines start. If — should 

aL 

not be equal to 0, we have ground for putting this quantity positive 

(Cont. II, p. 24), and we arrive at the same result for the initial 

; d*p 
point and the final point of the curve —— = 0. 

Y 

: Mp 
So the points of the curve —~=0O, where tangents may be 

Av 

drawn to it parallel to the v-axis, 

lie certainly at values of x smal- 

ler than 4, and accordingly the 

two outer ones of the group of 

the g-lines with maximum and 

‘, minimum volume have their hori- 

on Ee zontal tangents also in the left 

side of the figure. The gq-line 

with the highest value of g at 

lower value of « than that with 

the lowest value. This is repre- 

sented in fig. 4. 

We notice at the same time 

that the points in which a g-line 
dw 
~= 0, are Fig. 4. touches the curve 

Az 

points of inflection for such a q-line, just as this is the case with 
2 

the p-lines when a p-line touches the curve os From 
(LU 

follows 

and 

3 3, 391, 3 Jw Py dv \ =) +2 (5 tee" 

dadv Fee = dz datdv \ dx da?* 

dw 
In the points mentioned (> 6 because eee QO, and at the 

ae Lk q 
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é d’y a) d 
same time —~ = 0. Hence ie = 0, which appears also immedia- 

av v q 
tely from the figure. 

mae _ ap 
Within the curve —— = 0 every q-line that intersects it, has also 

at 

a point of inflection, because the latter must pass from minimum 

volume to maximum volume in its course. So there is a continuous 

series of points in which q-lines possess points of inflection between 

the two points in which horizontal tangents may be drawn to 
dw 
da? 

qg-lines must possess points of inflection on the left of the curve 

Pw 

dx* 

side turned to the a-axis just afterit has left the starting point. If 

=(. But there is also a continuous series of points in which the 

= 0, so with smaller value of x. For every gq-line has its convex 

2 
d ; 

it is to enter the curve a = 0 in horizontal direction and to pass 
& 

then to smaller volume, it must turn its concave side to the z-axis 

in that point, and so it must have previously possessed a point of 

inflection. Most probably the last-mentioned branch is somewhere 

continuously joined to the first mentioned one. If so, there is a closed 
2, av 

curve in which —— = 0 — and then it may be expected that this 
Av q 

closed curve contracts with rise of 7’, and has disappeared above a 
certain temperature. But these and other particulars may be left to 

a later investigation. 

We have now described the shape of the q-lines, 1. in the case 
d? a 

that neither an nor = 
& 

is equal to O, 2. in the case that the 

3 2 d 
= 0 exists, 3. in the case that the curve Y Ode fonmee 

dadv dx? 

It remains to examine the course of the g-lines when both curves 
dw d*w 

= c d 

ae 

curve 

=( exist. 

2 
a 

oe 0 it is only required that — 
da? : da? 

For the occurrence of the 

be positive, as we shall always suppose, and that 7’ is below the 
2 

value of the temperature at which the curve Pring] 0 has contracted 

to a single point. It may, therefore, occur with every binary system, 

without our having to pay attention to the choice of the components. 
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2 ad? dp } 
But the occurrence of the curve =() = 0 is not always pos- 

dadv dx), 

sible, as we already showed in the discussion of the shape of the 

isobars. If we consult fig. 1 (These Proc. IX p. 630) it appears 
d : 

that the curve (Z)=0 does not exist throughout the whole width 
ae}, 

of the diagram of isobars. 

With mixtures for which the course of the isobars is, as is the case in 

f ; dp 
the left side of the figure, the line (Z) = 0 does not exist at all. 

aa] y 

Only with mixtures for which the course of the isobars is represented 
by the middle part of fig. 1 it exists and if the asymptote is found, 

it can occur with all kinds of volames. Also with mixtures for which 

the course of the isobars is represented by the right part of fig. 1, 

it exists, but then only at very small volumes, and it possesses only 

the branch which approaches the line v = 6 asymptotically. 
. dp 

Let us now consider a mixture such that the curve (3) =O is 
wt), 

d? 

really present at such a temperature that also the curve a 0 
v 

exists; then we have still to distinguish between two cases, i. e. 

1. when the two loci mentioned do not intersect, and 2. when they 
dp 

do intersect. If they do not intersect, and the curve (2) = 0 lies 
dx), 

2 

dz? 
on the right of = 0, then the q-line, after having had its maxi- 

mum and minimum volume, will intersect the line (2) == Ohi 
v 

that point of intersection will have a tangent // v-axis; it will 

further run back to smaller volume, just as this is the case with one 

of the q-lines drawn in fig. 2. This may e.g. occur for mixtures cor- 

responding to the left region of the diagram of isobars, when this 

region is so wide that also the asymptote and a further part of the 
dp at. * 

curve (2) = 0 is found. If with non-intersection the relative position 
v 

2 

of the two curves 
d 

_ O and (2) = 0 are reversed, this can 
B v 

probably not occur but for mixtures which correspond to a region 

of the diagram of isobars which has been chosen far on _ the 

right side. The course of the g-lines which then pass through 
2 

the curve —-=0, is represented in fig. 5. But when the two 
; a“ 

50 
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Fig, 5. 

dw du \? dv d*w 
eee Se oe ==i0. 

dadv? dx ]y dax*dv dx] q da*® 

ced ee and (Z)=0 
dx? dz), 

intersect, which then necessarily 

takes place in 2 points, the shape 

of the q-lines is much more intri- 

cate. Then numerator and deno- 

minator are equal to zero in 

curves 

Pw 

dv ez) da? q dv : 
ae 3 = an ae is not 

ae q 
dx). 

to be determined from this equa- 

dv 
tion. Then (3) must be deter- 

daz : 

mined from : 

In the discussion of the shape of the p-lines we came across an 
J2 2 dw d : 

analogous case when the curves == 0 and —— = 0 intersect ; 
av : dado 

and there we found that the two points of intersection had a different 

character. For one point of intersection the p-line has two different 

dv® dvdxz? 

dy d*w Pipe ye 
real directions, depending on the sign of : als (<4). If 

LAU 

this expression was negative, the 

loop-isobar passed through that 

point of intersection. In the 

same way, when from the above 
dv 

quadratic equation for i 

we write the condition on which 

the roots are real, we find the 

condition : | 

dy dw dy \? é 

da* dedv? \dadv Negative; 

which may be immediately found 

from the condition for the loop 
of the loop-isobar, as require- 
ment for the loop of the /oop- 
qg-line, when we interchange «x 

and v, 
Fig, 6. 
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The g-line which passes through the first point where the above 

condition is negative, has, therefore, a real double point, and runs round 

the other point of intersection before passing through this double point 
Baty d 

for the second time. In Fig. 6 the dotted closed curve ees O has 

; dp Py 
been traced, and also the dotted curve 2) hema iP la 0. The 

AL aAvadag 

point of intersection lying on the left, is the double point. According 

ay . : : : ; 
to what was stated before, a is negative in this point, and the 

¢ wv 

3 

quantity is positive, which is also to be deduced from what was 
dadv 

dp d*w 
= — ——.. So the eri- 

dadv dadv? 
mentioned previously about the sign of 

: Say dv . ’ 
terion by which the reality of the two directions of (Z) is tested is 

Ake q 
satisfied in that point of intersection. In the second point of inter- 

d® dw 
~ Is positive, and 

ae dxdv 
section ; 18 also positive. It is true that it 

dx’? dxdv’ dvdx* 

appears in the drawing of the loop-q-line that there is no other 

possibility but that it runs round the second point of intersection, 
and 2 it appears, that just as we have mentioned in the analogous 

case for the shape of the p-lines (Footnote p. 626), only when the 
wy 

== 0) 
22 

& 

dy d® i 4 
does not follow from this that Ue bed >(Z ") — but 1 it 

two points of intersection coincide, so when the two curves 

Cw Pw Bu ( Cw 
and = 

2 

= 0 touch, the quantity is equal to 
dadv | ’ ) | dx* dadv? dvda? 

2 

az? 

temperature, the loop-q-line will, of course, extend still much more 

to the right, and the higher q-lines must be strongly compressed at 

O. In the ease that = 0 has greater dimensions, so at lower 

d 
the point where the curve (Z) = 0 cuts the second axis (the line 

v ak 

== 8), 

This loop-q-line determines the course of all the other g-lines. 

: : ; a? 
Thus in fig. 6 a somewhat higher gq-line passes through = ee 0, 

av 

in vertical direction just above the double point, rises then till it 

50* 
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passes through this curve for the second time, reaches its highest 

dp 
! ) — (Qin vertical direction, 

Vv 

point, after which it meets the curve (2 
Ak 

and then pursues its course downward after having been directed 

horizontally twice more. 

It must then again approach asymptotically that value of a, at 

1 
which it intersected the line f = dv = 0 shortly after the beginning 

a 

of its course. This line has also been drawn in fig. 6. It is evident 
2 

= 0. In fig. 6 it has, accord- 
2 

that it may not intersect the curve 
F & 

ingly, remained restricted to smaller volumes than those of the curve 

Pw ; 

dx* 
—0(. For the assumption of intersection involves that a q-line 

& d 
could meet the locus {+ dv = 0 several times. As g= MRT a in 

ae SH) 

such a meeting point, it follows from this that only one value of 

a can belong to given g. It deserves notice that in this way without 

f dw 
any calculation we can state this thesis: “The curves = 0 and 

AX 

ap 2 . 
pee —( can never intersect.” According to the equation of state 
aL 

it would run like this: “The equations : 

db? Pa db da 
a tues ee eee 
dx xv _ da 1 

MRT \— 
zw(1—a)  (v—bd)? 

can have no solution in common. Indeed, if v from the second equation 

is expressed in « and 7’, and if this value is substituted in the first 

equation, we get the following quadratic equation in MRT: 

da 

ao 1 1 (db fp 1 db dx?| 

daz 

1 dbda 1 wa l (dar 
— 2 (MRT) Se es. — | 2") = 

( ie da dx b. 2 a z b? (=) 

A value of MRT, which must necessarily be positive to have 
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1 db da fe da 
significance, requires — — — >— —. 
0 Se b? dada~ 26 da? 

From the foregoing remarks it 

da Pr dp 
is sufficiently clear that = must be positive to render the locus | dv 

AX ; 

; Ma ae iw 
= 0 possible, and that —- must be positive to render 

3 da? dx? 

ble. The roots of the given quadratic equation, however, are then 

: . 1 db da La i ae ; 
imaginary, the square of eS 8E aa being necessarily smaller 

1 db da 

b? da da’ 

= 0 possi- 

than the square of and the square of this being smaller 

1 f/da\? 
than the product of rz) and the factor of (MRT). 

HH 

But let us return to the description of the course of the remaining 

g-lines. There is, of course, a highest qg-line, which only touches the 
2 d 

locus = = 0, directed horizontally in that point of contact, and 
ve 

a’ 

for which also — = 0 in that point. There is also a g-line which 
aL 

d* aS 
touches the locus <7 = 0 in its downmost point, and which as a 

ax 

rule will be another than that which touches it in its highest point. 

The q-lines of higher degree than the higher of these two have again 

the simple course which we have traced in fig. 2 (p. 635) for that 

mes dp 
q-line which intersects the locus ) = 0. Only through their con- 

dx} y 

siderable widening all of them will more or less evince the influence 

of the existence of the above described complication. The q-lines of 
lower degree than the loop-q-line have split up into two parts, one 

part lying on the left which shows the normal course of a q-line 

’ d : 
which cuts (4) = 0; and a detached ciosed part which remains 

VU }ov 

enclosed within the loop. Such a closed part runs round the second 

4 : , : d d* 
point of intersection which ( 4 — 0 and ; cs — 0 have in common, 

xv LB / y 

2 

nie 0, and 
dz 

passes in its lowest and highest point through 

d 
through (2) = 0 in the point lying most to the right and most to 

Ve v 

the left. With continued decrease of the degree of q this detached 
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part contracts, and disappears as isolated point. This takes place 

before g has descended to negative infinite, so that q-lines of very 

low degree have entirely resumed the simple course which such 
: dp é 

lines have when only the curve ()= 0 exists. 

Also in this general case for the course of the q-lines we can 

form an opinion about the locus of the points of inflection of these 
q2,. 

. . v . 

curves, so of the points in which (=) = 0. We already mentioned 
st q 

dp a) 
above that when the line (Z) = 0 exists at a certain distance from 

ays: 

it there must be points of inflection on the q-lines at larger volume. 

dp . ue . 

If also the asymptote of (7) =O should exist, also this series ot 
adr), 

points of inflection of the g-lines has evidently the same asymptote. 
In fig. 6 this asymptote lies outside the figure, and so it is not 

represented — but the remaining part is represented, modified, however, 

in its shape by the existence of the double point. The said series 

of points of inflection is now sooner to be considered as consisting 

of two series which meet in the double point, and which have, therefore, 

: ; : : dp 
got into the immediate neighbourhood of the line (3) = 0 there. 

B)y 

So there comes a series from the left, which as it approaches the 
dp 

double point, draws nearer to (2) = 0, and from the double point 
at} » 

there goes a series to the right, which first remains within the space 

dw 
in which aa 9 is found, and which passes through the lowest 

ak 

point of this curve, but then moves further to the side of the second 

dp component at larger volume than that of the curve {| — ]=0O. The 
; daJ, 

double point of the q-loop-line is, therefore, also double point for the 
locus of the points of inflection of the g-lines, and the continuation 
of the two branches which we mentioned above, must be found 

dp 
above the curve (7) — 0. Accordingly, we have there a right branch, 

aL 

LS. ; 
which rans within me —0, and passes through the highest point of 

av 

this curve, and a left braneh which from the double point runs to 
the left of the loop-g-line, and probably merges into the preceding 
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branch. If this is the ease the outmost q-lines on the two sides, both 
that lying very low and that lying very high, have no points of 

inflection. 

THE SPINODAL CURVE AND THE PLAITPOINTS. 

The spinodal curve is the locus of the points in which a p- and 

dy dry 
’ ; dv dv dudv dx? 

a g-line meet. In these -points — =— and so — =— 
dx» dig iw dw 

dv* dudv 
aw Pw dw 2 

= dv? dx? — \ dadx 

points of contact, we shall have to trace the p and the q lines 
together. As appears from fig. 1 p. 630 the shape of the p-lines 

is very different according as a region is chosen lying on the 

left side, or in the middle or on the right side; but the course of 

the g-lines in the different regions is in so far independent of the 

choice of the regions that g_. always represents the series of the 
possible volumes of the first component, and g4. the series of the 
possible volumes of the second component, and also the line of the 

limiting volumes. As the shape of the p-lines can be so very different 

we shall not be able to represent the shape of the spinodal line by 

a single figure. Besides the course of the p-lines depends on the 

. In order to judge about the existence of such 

; dp @y 
existence or non-existence of the curve ag = a8 = (, and the 

av ave 

course of the g-lines on the existence or non-existence of the curve 

dy 
rm = 0, and besides, and this holds for both, on the existence of 

2 

the curve = (. Hence if for all possible cases we would illustrate 
dxdv 

the course of the spinodal curve in details by figures, this examination 

would become too lengthy. We shall, therefore, have to restrict 

ourselves, and try to discuss at least the main points. 

Let us for this purpose choose in the first place a region from 

the left side of the general p-figure, and let us think the temperature 

so low, so below (7%),, that there are still two isolated branches for 

d 
P —0 all over the width of the region. 

av 
the curve 



("738") 

In fig. 7 VT is thought higher 
than the temperature at which 

Pw 

dz 

below this temperature. In fig. 7 

all the g-lines have the very simple 

course which we previously in- 

dicated for them, and the p-lines 
the well-known course, with which 

= 0 vanishes, and in fig. 8 

dv : See 
(=) is positive on the liquid side 

P 

dp of 2 = 0, and on the vapour side 
v ‘ 

dp : 
of a negative between the 

Uv 

two branches of this curve, the 

dv ; 
transition of from positive to 

dz}, 
Fig. 7. 

negative taking place through 
infinitely large. The isobars p,, p, and p, have been indicated 

in the figure, in which p, <p, < p,. Also a few gq-lines, 9g, < q, 

and the points of contact of p, to q, and of p, to q,. Also on 

the vapour side a point of contact of p, to g,. It is clear 1st 

that every q-line yields two points for the spinodal curve, and 

2nd that these points of contact lie outside the region in which 
dp 
a is positive. On the other hand we see that the distance from 

Vv 

dp 
? —0 ean be nowhere very large. 

av 

_ Only by drawing very accurately it can be made evident that on 

the vapour side the spinodal curve has always a somewhat larger 

the spinodal curve to the curve 

; dp 
volume than the vapour branch of the curve ro In the four 

av 

dp : 
points, in which eal intersects the sides, indeed, the spinodal 

av 

line coincides with this curve. 

Fig. 75 has been drawn to give an insight into the cireumstances 

at the plaitpoint. At 7’>(7;), the two branches of the curve 
dp 
--==0 have united at that value of 2, for which 7=(7;),. One 
dv 

of the p-lines, namely that of the value p=(przx, touches in the 
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point at which the two branches have joined at a volume v = (v)z, and 

has a point of inflection there. Two 

parts of q-lines have been drawn 

as touching the p-line. The two 

points of contact (1) and (2) 

are points of the spinodal curve, 

and lie again outside the curve 

dp , 
—=0. For a higher p-line these 
dv 

points will come closer together. 
And the place where they coin- 

cide is the plaitpomt. As in 

int (1 d?v d?v 
point (1) a ees im), 8 re- 

: A d?y d?v 

versely in point(2)( — ] >| — }, 
dx q dx? }y 

Bu\ dv h 1 12 

Fig. 7b. Ta Fe we laa (1) and (2) 

have coincided, and this may be considered as the criterion for the 
plaitpoint so that in such a point the two equations: 

(=) a (=) 

di), da Jq 

ey se (=) 

dx? p dx” }q 

hold. 

The following remark may not be superfluous. In point (2) 

and 

dv dv ; 
— ] is not only smaller than {| — ]}, but even negative. In order to 
dx* Jp dx* J q 

find the plaitpoint, the point in which 2 points of contact for the g and 
dv d*v 

the p-lines coincide, and so i and a have the same value, 
Lv av p q 

d*v es Nee , Soa 
(= must first reverse its sign in the point (2) with increase of 

av P 
dv 

the value of p for the isobar before the equality with =) can 
Ce gq 

be obtained. And that, at least in this case, this reversal of sign 

must take place with point (2) and not with point (1), appears from 
Se d*v 

the positive value of (5) So we arrive here at the already known 
av #4 q 

theses that in the plaitpoint the isobar surrounds the spinodal curve, 

and also the binodal one. 
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we find for a plaitpoint : 
d’v d®v 

mE fas ; da? ete. 
dz P dz q 

1 

£25 

So the p- and the g-lines meet and intersect in a plaitpoint, and 

this is not always changed when a point should be a double plait- 

point. We shall, namely, see later on that the criterion for a double 

plaitpoint is sometimes as follows: 

(i), =(@) dz) p dx )q 

(3) es dz? } py dx” }g 

Let us now proceed to the discussion of the case represented by 
fig. 8. Here it is assumed that 7’ lies below the temperature at 

Dy ahem: Beye 
which =. vanishes, so that this locus exists, it being moreover 

LL 

dvy — dvg — 

and 

d, 
supposed that it intersects the curve = 0. It appears from the 

v 

drawing that for the gq-lines for which maximum and minimum 

volume occurs, two new points of contact with the p-lines are 

necessarily found in the neighbourhood of the points of largest and 

smallest volumes at least for so far as these points lie on the liquid 
4 _ dp 

side of —=— 0. 
dv 

So there is a group of g-lines on which 4 points of the spinodal 

curve occur, and which will therefore intersect the spinodal curve 

in 4 points. The two new points of contact lie on either side of 
dw : : 
FI —(, and these two new points of contact do not move far away 
( L 

from this curve, the two old points of contact not being far removed 

ee 
from — = 0. 

av 

If we raise the value of g, the two new points of contact draw 
iw 

Lv 

in its nearer to each other. Thus e.g. the g-line which touches 

dv d*» 
highest point, and for which (=) =o and also ( ;) =0 in that 

dx }y dix* ]y 

ot 

ae 

ea  —— 

~~ T_T 
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point has also been drawn in the figure. Also this q-line may still 
be touched by two different p-lines, which, however, have not been 
represented in the drawing. For a still higher g-line these points 

would coincide, and in consequence of the coincidence of two points 
. , ee dv 
of the spinodal curve a plaitpoint would then be formed. a) always 

a2z~ v 

2 * 

. U ° bd . . 

being positive, (3); which has been negative for a long time in 
q 

the point lying on the left side, must first reverse its sign before it 

can coincide with the point lying on the right —— a remark analogous 

to that which we made for the plaitpoint that we discussed above. 

If on the other hand the value of g is made to descend, the point 
of contact lying most to the left will move further and further from 

Jats uw dp 
: = 0, and nearer and nearer to the curve ay till 

AH v 

the curve 

for q-lines of very low degree, for which as we shall presently see, 

the number of points of contact has again descended to two, the 

whole bears the character of a point of contact lying on the liquid side. 

But something special may be remarked about the two inner 

points of contact of the four found on the above q-line. When 
the g-line descends in degree, these points will approach each 

other, and they will coincide on a certain g-line. Then we have 
72, 2, 

again a plaitpoint. In this case neither (2) nor & need reverse 
eed ae 

its sign because these quantities have always the same sign for each 

of the two points of contact which have not yet coincided, i.e. in 

this case the positive sign. but in this case, too, there is again besides 

contact, also intersection of the p- and gq-lines. On the left of this 
plaitpoint the g-line les at larger volumes, on the right on the other 

hand at smaller volumes than the pz-line, the latter changing its 

course soon after again from one going to the right into one going 

to the left. 

This plaitpoint, however, is not to be realised. With the two 

plaitpoints discussed above all the p-line and all the g-line, at least in 

the neighbourhood of that point, lie outside the spinodal curve, and so 
in the stable region. In this case they lie within the unstable region. 

Summarizing what has been said about fig. 8, we see that there is a 

group of g-lines which cut the spinodal curve in four points. The 

outside lines of this group pass through plaitpoints. That with the 

highest value of g passes through the plaitpoint that is to be realised ; 

that with the lowest value of g passes through the plaitpoint that 

is not to be realised. All the g-lines lying outside this group intersect 
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the spinodal curve only in two points. If, however, the temperature 

chosen should lie above (7%), the g-lines of still higher degree than 

of that, passing through the vapour- i plaitpoint, will no longer 

cut the spinodal curve. 
And finally one more remark on the spinodal curve, which may 

: aby Pw 
occur in the case of fig. 8. By making the line —- = O and 

3 dv? da* 

; dy ay , 
= 0 intersect, we have a region, in which both and is ne- 

dv? dx? 

gative. In such a region the product of these quantities is again 

d*w \? 
. If this should be the 

dadv 

case, it takes again place in a locus which forms a closed curve. 
Within this region there is then again a portion of the spinodal 

curve which is quite isolated from the spinodal curve considered. 

With regard to the p- and g-lines this implies, that there both 
dv dv 
— al 
da Ms diy 

a portion of a spinodal curve encloses then a portion of the y- 

surface which is concave-concave seen from below. If we consider 

the points lying within the spinodal curve as representing unstable 

equilibria, the points within this isolated portion of the spinodal 

curve are a fortiori unstable. The presence of such a portion of a 

spinodal curve not being conducive to the insight of the states which 
are liable to realisation, we shall devote no more attention to them. 

It appears from this description 

and from the drawing (fig. 8) 

that in this case the spinodal curve 

has a more complicated course 

than it would have if the curve 

Pw 

dx? 

a portion on the liquid side 

in which it is foreed towards 

smaller volumes. There is, however, 

no reason to speak here of a 

longitudinal plait. We might speak 

of a more or less complicated 

plait here. But we shall only use 

the name of longitudinal plait, 

when we meet with a portion 

Fig. 8. that is quite detached from the 

positive, and it may become equal to ( 

is negative; and so that contact is not impossible. Such 

= 0 did not exist. It has 
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ordinary plait, which portion will then on the whole run in the 
direction of the v-axis. 

There remains an important question to be answered: “What 

happens to the spinodal curve and to the plaitpoints with increase 
of temperature ?” 

At the temperature somewhat higher than (7%), there exist 3 

plaitpoints in the diagram. 1. The realisable one on the side of the 

liquid volumes. 2. The hidden plaitpoint also on the side of the 

liquid volumes. 3. The realisable vapour-liquid plaitpoint. Let us 

call them successively P,, P, and P,. Now there are two possibilities, 

viz. 1. that with rise of the temperature P, and P, approach each 

other and coincide, and the plait has resumed its simple shape before 

P, disappears at Y7=(7},),; and 2. that with rise of 7 the points 
P, and P, coincide and disappear, and also in that case the plait 
has resumed a simple shape. In the latter case, however, the plait- 

point is to be expected at very small volumes, and so also at very 
high pressure. Then, too, all heterogeneous equilibria have disappeared 

at T=(T;),. Perhaps there may be still a third possibility, viz. 
2 

when the locus =0O would disappear at a temperature higher 
dz? 

than (7%), Besides the plaitpoint P, another new plaitpoint would 

then make its appearance at 7’—(7%,), on the side of the first com- 

ponent. This would transform the plait into an entirely closed one, 
2 

and only above the temperature, at which ; —0 vanishes, all he- 
ak 

terogeneous equilibria would have disappeared. 

Let us now briefly discuss these different possibilities. We shall 

restrict ourselves to the description of what happens in those cases, 

and at least for the present leave the question unsettled on what 

properties of the two components it depends whether one thing or 

another takes place. If P, and P, coincide, the portion of the locus 

dw 
da? 

= 0 which we have drawn in fig. 8 for smaller volumes than 

2 

that of ae must have got entirely or almost entirely within 

2 

the region where 
dv? 

is negative in consequence of the rise of tem- 

2 d 
perature, or the whole locus ae = 0 may have disappeared with 

rise of 7’. 

Now at P, in the previously given equation : 
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1 dv d*v le} 
I — dv, = ak 
dv, dr q 1.2.3 | dx Z dx’ : 

the factor of dz* is negative, but at P, this factor is positive. If 

the points P, and P, coincide, this factor —(). With coincidence of 

these plaitpoints, called heterogeneous plaitpoints by Kortewse, besides 

Iv lv Pe Pv hey) d®v 

ge — fs and sac ee =) , also (=) = (= 4 

dx }» dx) 4g dx? }» dx? } g dx* }»y dx* ]g 

a 

If P, and P, coincide, ing 0 has contracted with rise of tem- 
av 

aw : ay : 
perature. Also = —Q contracts with rise of the temperature and 

ae 

is displaced as a whole, as I hope to demonstrate further. But the 

wy 
contraction of ais 0, whose top moves to the left, happens rela- 

av 

tively quicker, so that e.g. the top falls within the region in which 

Pw ; : : dw 
is negative. The existence of the point P, requires that 

dz dx}, 

Ow "ap 
is positive. The point P, lies on the right of = 0 and above ==. 

dix? dv? 

iw PA: Py 
If the top of = —() lies within the curve —~ = 0, neither P, nor 

els, 2 

P, can exist any longer. Before this relative position of the two 

curves they have, therefore, already disappeared in consequence of 

their coinciding. Also in this case the coincidence of heterogeneous 

plaitpoints holds. At P, the factor 
of dzx*® was positive, and at P, 
this factor is negative. In case of 

d®v d®v 
coincidence ( = . With 

dx* p da*® q 

further rise of 7’, however, the 
2 _ vy ; 

top of i will have to get 
av 

again outside the region where 
ay . a? 
— is negative. The curve ——- =—0, 
dz? da 

namely, cannot extend to «= 0, 
d’?w 

and the curve = = Vat T=(hy, 
av 

has its top at «=O. We draw 

Fig. 9. from this the conclusion, that 
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2 

with continued increase of temperature the curves ~=0O and 
av 

ae =O will no longer intersect, but will assume the position indicated 
hv 

by fig. 9. 

The spinodal line runs round the two curves, and so in conse- 
2 

' Suhel ee 
quence of the presence of = 0 it is forced to remain at an 

ae” 

ay d 
exceedingly large distance from the curve a = 0. The question 

av~ 

may be vaised whether the spinodal curve cannot split up into two 
"yp 

- = 0, the other part separated parts, one part enclosing the curve : 
“Uv 

2 

passing round —— The answer must then be: probably not. 
av ‘ 

: d® Pw : ; 
In the points between the two curves = and qa are indeed, posi- 

av AL 

Pw 

dx dv 
tive, but still small, whereas does not at all occur in the figure, 

and will, therefore, in general, be large. Now if the temperature at which 
12 f2 

he = 0 disappears, should lie above (7%),, - , — 0 shifts to the left, 
av dx? 

till it leaves the figure, and the spinodal curve is closed at «= 0 
and 7’=(7;,),, and the new plaitpoint makes its appearance, which 

we mentioned above. From this moment we have a spinodal curve 

with two realisable plaitpoints. The graphical representation of the 

curvature of the p- and the g-lines is in this case very difficult, 
because both groups of lines have only a slight curvature. If, howe- 

ver, we keep to the rule, that the p- and the q-lines envelop the 

spinodal curve at realisable plaitpoints, we conclude that the value of 

dx? dx? 

dv Go\ . EP aga sna 
and is positive in P,, and negative in the other plait- 

P q 
point. When these points, called homogeneous plaitpoints by Kortnwse, 

te av d*v : é 
coincide, {| — }= = 0. Above the temperature at which this 

daz* }y du? Jy 

takes place, the p- and the g-lines have no longer any point of contact. In 
2 : ; d 

consequence of the disappearance of the locus se fy the course 
av 

of the p-lines has become chiefly from left to right, so in the direc- 
tion of the z-axis. On account of the disappearance of the locus 
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Pw 

dz? 

least with a volume which is somewhat above the limiting volume, 

they run chiefly in the direction of the v-axis. 

Many of the results obtained about the course of the spinodal 

curve, and about the place of the plaitpoints, at which we have 

arrived in the foregoing discussion by examining the way in which 

the p- and the g-lines may be brought into mutual contact, may 

be tested by the differential equation of the spinodal line. This 

will, of course, also be serviceable when we choose another region 

than that discussed as yet. 

From : 

Py dw ps (= i. ; 

"Boomutb hig dadv 

we derive: 

a fy dw dw Pw ay 

—(Q the course of the g-lines has also been simplified, and at 

a dv +- 
daz? dv? dv? da?dv dadv dadv? 

+\4 wp dy dy pete dw 

dx? dadv? dx? dx*dv 
dx + 

at ——§- 
+| d*7 yp dy dw iio ay dw 

dx* dv? dy? dx? |  dadv dadv 

We arrive at the shape of the factor of d7’ by considering that from: 

de = Tdy—pdv+qdz 

follows : 
dp = — 4 dT — pdv+ qdz 

dw dw dy 
so that| — |= — y and so ——~ => — { —— 5 

Gae Per: dT dv? & ) ete 

This very complicated differential equation may be reduced to a 

simple shape. 

Let us for this purpose first consider the factor of dv. By substi- 
Mwy Mwy 

dadv Py dv\ . dx dv 
: , and | — } for — 

dx), 
tuting in it the quantity fou 

Dy dw da? 

dv? dv? 

this factor becomes : 

Py \d*wp Py (dv ay 

ae (2 + : d dx + 
da dadv? \ dx p da?dv 

f dw ‘ 
From p = — — we derive: 

dv 
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ow (a), ew 
dv* \dzx/, dadv 

Cy (dv dw (dv \? d* By dv ay 
S| Fe 12 — 

dv* \dx? /, dv* \dz/, dv?du\ dx p dardv 

from which appears that we can write the factor of dv in the form of: 

wv (dv ~ Gar) Ge); 
We might proceed in a similar way with regard to the factor of 

dz, but we can immediately find the shape of this factor by substi- 

tuting the quantity « for v and gq for p in the factor of dv. We find then: 

ae) (ae) 
As long as we keep 7 constant, and this is necessary for the 

course of a spinodal curve, the differential equation, therefore, may 

be written : 

ad? 2 Pa 

aa! wa d« = 0. 
dx? dv? q 

d? 2 d? 

Gar) (a), dv? ) \dx*/), 

; : az dz \* (d?v ; 
By taking into account that s oon = oS ; we obtain 

after some reductions which do not call for any explanation, the 

simple equation : 

d?v 

dx: An, dz ==) ; 

Pp dz? 

and 

a a first fo we derive from this equation the thesis, that 
dv dv 

and must have the same sign, if{ — } and 
da spin jee dix? P da? 

have the same sign and vice versa. Thus on the vapour side in fig. 7 

dv ; 
(S a), 70 * have always reversed sign, and (Z) being 

ax 1) 

negative, (Z) is negative on the vapour branch of the spinodal 
d spin 

curve. Reversely the curvatures of the p and g-lines have the same 

Li di 
sign on the liquid side, and (2 ") = (Z) = positive. If, however, 

de} in dz), =q 

51 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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d*v ; : 
(= should have been indeed negative there, as was accidentally 

a“ q 
represented in point 2 of the spinodal curve, the spinodal curve runs 

towards smaller volumes with increasing value of. So if there occur 

points with maximum or minimum volume on the spinodal curve, 

dv dv rt : 
—— |= 0 in those points. If on the other hand is infinitely 
dx* }q da eee 

large, which occurs in the case under consideration when the spinodal 
2 d?v 

curve is closed on the right side for 7’> (7%), then (Ss) must be 
v p u 

= 0, and so the p-line must have a point of inflection in such a 

point, to which we had moreover already concluded before in another 
way. A great number of other results may be derived from this 

differential equation of the spinodal line. We shall, however, only 

Suge dv dv 
eall attention to what follows. In a plaitpoint = 

spin p= 

. 

Ee For a plaitpoint it follows from this that ( Nee (a ae 
da” py 

: dv 
If for a point of a spinodal curve ( ) is indefinite, both 

Ww / spin 

dv Pv 
(=) and (=) must be equal to O. This takes place in two cases : 

p q da” da 

1. in a case discussed above when the whole of the spinodal line is 

reduced to one single point. 2. when a spinodal line splits up into 

two branches, as is the case for mixtures for which also 7), minimum 

is found. In the former case the disappearing point has the properties 

of an isolated point, in the second case of a double point. 
In the differential equation of the spinodal line the factor of dT 

may be written: 

= a (= Ty dy 5 TH Pw oe ’Ty yp 

tf dz? Jy dv? dadv } 7 dadv dv* } Tz dx* \ 

and by putting e—y for 7 it may be reduced to: 

1 rt We > tw We awd 
eo I gia D) eae 

dv? dz? dadv dadv dx? dv? 

1 dy | de dv ae (dv dé Le +——(2) 45 
T dv? (dv? \ da p=q adv \ da p=9 da? 

ld’y . 
The factor by which — — \ y Lich Tap 

or to 

is to be multiplied, occurs for the 
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first time in formula (4) Verslag K. A. v. W. Mei 1895, and at the 
close of that communication I have written this factor in the form: 

/ 2 Ade Lda ae,~ay) 
v dxy 2a dz a? 

from which appears that in any case when a,a, >a,,?, this factor 
is negative. Here, too, I shall assume this factor to be always negative, 
but I may give a fuller discussion later on. 

In consequence of these reductions the differential equation of the 
spinodal curve may be written as follows: 

Py (Pv Pie oid d*v 0 

dv? da? ),, Tea Wiles: 

From this equation follows inter alia this rule concerning the 
displacement of the spinodal curve with increase of 7, that on the 

2y . . . . 

side where ( rd ee positive, the value of v with constant value of 
& P 

Vv 

x, increases, and the reverse. So the two branches of a spinodal 
curve approach each other with increase of the temperature. But I 

shall not enter into a discussion of the further particulars which 
might occur when this formula is applied. By elimination of dv I 

shall only derive the differential equation of the spinodal line when 

we think it given Dy a relation between p, z and 7. We find then: 

Gies)°= (wal (a ale nol ** [+ CG yet) 
for a plaitpoint the factor of dz disappears, and we find back the 

equation (4). Verslag K. A. v. W. Mei 1895, for the plaitpoint curve. 
At constant temperature we tind for the spinodal curve : 

=| & 

z) a (Z v 

¢ (S 

3 

=) 

:) 

(To be continued). 

oi 
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Physics. — “The shape of the empiric isotherm for the condensation 

of a bmary mixture’. By Prof. J. D. vAN DER WaAALs. 

Let us imagine a molecular quantity of a binary mixture with a 

mass equal to m, (l1—2) + m,z, at given temperature in a volume, 

so that part of it is in the liquid state, and the remaining part in 

the vapour state. Let us put the fraction which is found in the 

vapour state equal to y. The point that indicates the state of that 

mixture, lies then on a nodal curve which rests on the binodal 

curve. Let the end of the nodal line which rests on the liquid branch 

be denoted by the index 1, and the other end by the index 2. Let 
us represent the molecular volume of the end 1 by v,, and the 

molecular volume of the other end by v,, then when v represents 

the volume of the quantity which is in heterogeneous equilibrium: 

v=r,(l—y)+ry 
the constant quantity 2 being represented by : 

w= x, (l—y) + 4, y- 
From this we find: 

dv = (v,—v,) dy + (l—y) dv, + y d, 
and 

0 = (a,—2,) dy + (1—y) dz, + y dz,. 

By elimination of dy we obtain the equation: 

Ete es Jay de, ty te,)| — (1—y) dv,—y do,. 
&,—ek, 

; dv dv : 
Now in general dv =: ( — } dw + | — | dp. Let us apply this equa- 

du}, dp )y 

tion for the points 1 and 2 of the binodal curve, and let us take 

the course going from v, to v,-+ dv, and from v, to v, + dv, on 

the surface for the homogeneous phases. Then: 

dv, dv, 
dv, i di, +- =—=— dp, 

da 1/p dp hom 

and 

dv, _[{(ad, 
dv, =| — ] da, + | — } dp. 

dx, P dp hom 

a a ‘dv, dv, ; 
[he quantities | —— ] and {| —— } must then be taken along an isobar. 

dx, ), dx, /, 

If we substitute the values of dv, and dv, in the equation for dv, 
it becomes : 

he 



a lei 
Wie. aan z:), | ale ) ss 

Y aati — |< | 

aoe i= ae |e. ae \ 

dv v,—?, dz, dv, 
—()=a—-» a 

dp het & C1) p 5 bin dp hom 

+ ie 6 ‘Sr (9 | G— & o/ p dp bin dp hom 

as da 
Now the factor of = , and we find: 

= din &4—2, daz," ]»,T dp i 

xe (C8 ( aia) u dp het - pt dp bin dp hom 

Pao ass) @ = Yy 

¢ dx, 3 pst dp bin dp hom 

If we consider the beginning of the condensation, and so y= 1, 
the above equation becomes: 

le ats). () dp cae dx,” Dok dp bin dp hom 

or 

in which we must put v, =v and v,=—vw. It appears from this 

dv 
eon. that never Be =— =) , and that there must 

dp het dp hom 

dv d 
therefore be a leap in the value of ee of —— at the begin- 

Ip dy 

ning of the condensation, unless there should be cases in which 

ao dey F ple. : 
ae —} is equal to 0. The only case in which this is so, is 
da? dp] vin 

: ie : : dp da 
in the critical point of contact. There |] =o and so |—]=0 

aL } bin dp bin 

But then there is properly speaking no longer condensation, and the 

empiric isotherm has disappeared. We might think of a plaitpoint, 
2 

ag Pn: dp 
because a Ee in it, but on the other hand = == 0 ane 

da? aX / bin 

ae dz\? 
=o there. If the limiting value of ; _- or of 

bin dx pT dp] vin 

= 

dx? },,.T 

&) dx ] yin 

is sought, we find by differentiating numerator and deno- 
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minator twice with respect to a: 

as as ass 

dx” ) »T ig dx* pT se dx* ]»,T 

2 a? E T- en Ge ROE 
dx } vin dx) yin \ dx? / vin dx* ] yin 

ye ad? as dg 
In a plaitpoint, besides (S) also (=) = (0; but e 

dx* ],,T dx* )».T dx* )y,T 

will have a value differing from 0, and so there is a Jeap in the 

dv 
value of ite in a plaitpoint too. 

dv rh dv ; 
As —|{— must always be positive, also = 5 will always 

PF hom het 

dv dp dp 
be positive and larger than = =| or - >) (- Z) : 

: = dp hom dv | hom 2 dv J het 

At the beginning of the condensation the empiric curve will ascend 

less steeply with decrease of volume than that for homogeneous 

phases. | 
] dv dp F 

There are eases in which —(¢) == Gor Or (- zs —— re 
dp het 

2 
; as ie ae 

on the sides, so for z=0O and «—1. Then i is infinite, and 
wv fs 

Pp 

MRT 

z(1—z) 
is represented by the principal term ( ). 2. if on the binodal 

af. : dp . 
curve — is infinite or ——O; this takes place for those mixtures 

dp da 

which behave as a simple substance. 

If in equation (1) we put yO and v, =v and x, = « we could 

derive the same conclusions for the end of the condensation. 
: ; dp dp nee 
The relation between — {| — and — {| — at the beginning 

QU / het av Lhom 

and at the end of the condensation, could be immediately derived 

by applying the equation : 

; dv ain dv ; 
Co == — tp - = Ae 

dp an a dx p 

both for the surface of the homogeneous phases and for that of the 
; dv 

heterogeneous phases. If we then take into consideration that (= 
v p 

Us—— 0 
. : 2 1 . 

on the heterogeneous surface is equal to ———, we find: 
: ct, -~ & 

2 1 



i= 

s—?; dv dv dv 
—— d« + | — dp =| — |de#+ ([{— dp, 
&,— 2, dp het da p dp hom 

and from this the former relation. 

dv : 
From the form for (- — ]} in general, so not only at the begin- 

dp het 

ning or at the end of the condensation, we see that the empiric 

isotherin can have an element in which it has an horizontal direction 

only when a nodal curve is intersected, at one or the other of 

whose ends (=) is infinitely large. But as neither the sides nor 
dp bin 

the nodal curve which runs parallel to the v-axis can be intersected, 

it would follow that the empiric isotherm can never run horizontally 

in one of its elements. There are, however, cases which form 

exceptions to this rule. First of all if we widen the idea empiric 

isotherm, and understand by it the section of a surface // v-axis 
with the derived surface of the y-surface, also in the case of a 

complex plait. Then there are also nodal curves to points in which 

the binodal curve passes through the spinodal, and where therefore 
dx 
. is oo. But as such equilibria are hidden equilibria, they cannot 

PS bin 

be realised in spite of this. Instead of this we have rectilinear inter- 

section of the surface // v-axis with the three phase triangle, and in 

; du\ See 
this part | — } is, of course, again infinitely large. But secondly, 

yp het 

and this is a case which might, indeed, be realised, the binodal 

d. v 

curve has a point in which ( =o, when this point is a plait- 
\ dp bin 

point which with increasing or decreasing temperature will become 

a hidden plaitpoint. This is a limiting form of the first mentioned 

case, in which the three phase triangle was intersected. Then the 

three phase triangle has contracted to a single line, and the above 

mentioned straight dine has contracted to a single point. Then there 
is, of course, a point of inflection of the empiric isotherm in that 

point. With larger volumes it is curved negatively, with smaller 
volumes positively. 



Physics. — “Jsotherms of di-atomic gases and their binary miatures. 
VI. Lsotherms of hydrogen between —104° C. and — 217° C.” 

By Prof. H. Kamertincn Onnes and C. Braax. Comm. N°. 974 

from the Physical Laboratory at Leiden. 

(Communicated in the meeting of December 29th 1906). 

§ 1. Introduction. 

The investigation treated in this Communication forms part of the 

investigation on the equation of state of hydrogen, which has been 

in progress at Leiden for many years. *) 

With that part of our measurements *) which we now deem fit for 

publication, we have more directly carried on the work that H. H. 

Francis HynpMAN had already done with one of us (K. O.) before 
1904, so that, though all the observations, one for this, another for 

that reason, but always for the purpose of reaching the desired 

accuracy (which, we may add, was increased in the course of the 

investigation) have been repeated, an important share of the final 

success of the measurements is due to the said investigator. 

The results obtained by us furnish data for applying the correction 

of the readings of the hydrogen thermometer to the absolute scale 

experimentally (see the following communication), and for determining 

the deviation between the net of isotherms of hydrogen and that of 

the mean reduced equation of state (see Comm. N°. 71, June 1901 

and Comm. N°. 74, Arch. Néerl. 1901) *). The points determined in 

1) In Comm. N’. 69 (March 1901), where the apparatus have been described which 

were used in this investigation, the Communications referring to this subject, have 

been mentioned. Since then the isotherm for 20°C. to 60 atms. was given in 

Comm. N°. 70 (May and June 1901) with the accuracy of which the open standard- 

manometer (Comm. N'. 44 Oct. 1898) and the closed standard manometers (Comm. 

N°. 50 June 1899) admit, which investigation is carried on in Comm. N°, 78 

(March 1902) for the isotherms of hydrogen at 20° C. and 0°C., which have been 

determined with the apparatus that have also been used for this investigation. 
The suitability of these apparatus for accurate determinations of isotherms has 

been shown in Comm. N'. 78, and is confirmed by this Communication for low 

temperatures. Several communications e.g. Nos, 83, 84, 94 and 94/, further 85 

and 95%, finally Noes. 89, 93 and 95 are more or less in connection with this 

investigation, the great importance of which, if accurately carried out, is demon- 

strated in Suppl. N°. 9. 

2) We soon hope to publish the results of measurements at higher pressures 

and lower temperatures, and also those of supplementary determinations at lower 
pressures. ‘. 

) Definitive values for the virial coefficients B and C (§12 contains only provi- 
sional values) from which the difference with those according to the reduced 

equation may follow, are given in the following communication, 
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the net of isotherms are only few in number, but these few points 

have been determined with particular care, so that, so to say, they 

form normal places in the examined region of the equation of state, 

with which without preliminary adjustment we may set about the 

calculation of individual virial coefficients. Characteristic of them 

is that every group of such normal places obtained by deter- 
minations with the piezometer and manometer (see Comm. N°. 69 

and 78) lies really on the same isotherm (that of about — 104°, 

— 136°, — 183°, —195°, —205°, -—213° and —217°), and that on 

these same isotherms every time a point has been obtained at small 

density by a determination with the hydrogen thermometer (see 

Comm. N°. 95¢ Oct. 1906). The great difficulty *) of this investigation 
lies in obtaining the required constancy and stability of the low 

temperatures. Accordingly the arrangement of reliable cryostats was 

made a separate subject of investigation at Leiden. (cf. Comm. 

Nes. 83 and 94). 

This investigation comprises three series of piezometer-determina- 

tions at densities respectively about 70, 160, and 300 times the 
normal.’) Several of the observations mentioned here lie in the 

neighbourhood of the curve of the minima of pv. They enable us 

to determine the shape of this curve pretty accurately (see § 13). 

We confine ourselves in this communication to our observations 

themselves. A discussion of them, also in connection with the results 

of other observers, will be given in a following communication. 

§ 2. Survey of the apparatus used. 

a. On Pl. I in fig. 1 we find a schematic *) representation of the 
system of the apparatus for measurements and auxiliary arrangements, 

excepted those which serve for keeping constant the temperature 

in the cryostat. The compression apparatus A is the same as that 

mentioned in Comm. N°. 84 (March ’03). For the meaning of the 

system of tubes, cocks and other parts we may refer to Comm. 

N°. 69 and N°. 84. The same figures have been used, except that 
in this communication c, is used for the cock which admits the 

1) Witkowski, whose important investigation on the expansion of hydrogen 

(Bulletin de l’Académie des Sciences de Cracovie 1905) had already appeared 
before the experiments mentioned in this communication had been completed, 

already mentions this as an explanation for the fact, that he has dropped the 
direct determination of isotherms at temperatures lower than — 147°. 

*) The limits are chiefly given by the pressure under which the gas stands ; 
they are about 20 and 60 atms. 

3) The individual apparatus are represented on the same scale, the connections 
schematically, 
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compressed air, and c, for the cock which shuts off the level glass. 

Of the compression tube, provided with the system of cocks, mercury- 
reservoir and level-glass belonging to it a front-view is given in 

fig. 3 of Pl. I. The piezometer with the connections g, and g, has 

been represented in detail in fig. 2 of Pl. I. 
The arrangement of the cryostat 6 which has served for the deter- 

minations mentioned in this communication, is described in Comm. 

N°. 944. 
For the description of the apparatus serving for keeping the tem- 

perature in the cryostat constant, we may also refer to this last 

communication. Fig. 4 of Pl. I may also serve for elucidating this 

description for the special case that our piezometer is placed in the 

cryostat. 

The pressure is conveyed (see fig. 1, Pl. I) from the compression- 

tube to the manometer along ¢,,, Cs, Cis. Cyy> Ci, and c,,. By closing 

and opening c,, the differential-manometer /') may be shunted in 

and out. By means of ihe cocks c, and c,, it may be shut off from 

the rest of the pressure-conduit, when great differences in pressure 
are brought about, or are to be feared. *)*). The apparatus are 

placed in two rooms as has been indicated in the figure by a 
dotted line. By closing one of the cocks c,, and c,, the two parts 

may be treated as independent systems. This was done when the 

manometer was compared with the open manometer connected at ¢,,. 

The manometer C is the same as served for the investigations of 

Comm. N°. 78. The reservoir D serves, if necessary, for eliminating 

the injurious influence of small leaks, for which purpose it is placed 

in ice. At c,, it can be coupled to the system. In the experiments 

of this communication there was no need to use it *). The pressure 

is exerted by compressed air, which enters through c, and c,, along 

the drying tubes /'and G; and is regulated by blowing off along c,,. 

The cocks ¢,,, ¢ sy, Cy, and c,, have analagous meaning to ? 

18? 

COR Gs Of, CF 6 ane -e 

Cc c 
20? 

i a 

1) This manometer, which was fcrmerly used with the open standard-mano- 

meter, (see C fig. 1 Comm. N°. 44) and had now been removed to the piezo- 

meter, was of great use for finding leaks. 

2) A couple of mercury-receptacles, which served for receiving the mercury 
that might overflow, have not been represented in the figure. 

5) The system which we have so far described and which belongs to the piezo- 
meter, is placed in one of the rooms of the laboratory, situated in the immediate 

neighbourhood of the cryogen department. The remaining apparatus which chiefly 

belong to the manometer are erected in the room with the standard-manometer. 

*) The adjustment of trays of oil for the different couplings rendered the search 
for leakages so easy, that an injurious leak needed never to remain, 
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All couplings of the conducting tubes in which air is to be kept 
at constant pressure, have been placed (ef. the plate to Comm. N°. 944) 

in trays filled with oil, according to what has been said in 

Comm. N°. 94°. 
6b. With regard to the means for keeping a constant temperature 

in the cryostat, the system of pumps and auxiliary arrangements 

for the regulation of the temperature, belonging to the circulation of 

oxygen, has been represented in fig. 4 of Pl. I. For a description 
we refer to Comm. N°. 94. 

Some particulars about the ethylene circulation used for the deter- 
minations of Series I, are to be found in Comm. N°. 94/ XIII § 1. 

§ 3. The manometer. 
The pressure measurements were performed by means of the closed 

auxiliary manometer described in Comm. N°. 78°. As a comparison 
of this manometer made in 1904 with the standard manometer A IV 

(of Comm. N°. 78 §17), yielded an unsatisfactory result, and led us 

to expect that the auxiliary manometer was no longer- reliable, it 

was compared at four points with the open standard manometer, to 

which the improvements mentioned in Comm. N°. 94° were applied °). 
The results of this comparison have been combined in the subjoined 

table. 

Column C like column C' of table XVII of Comm. N°. 78° repre- 
sents the reading of the pressure determined with the open mano- 

meter (Comm. N°. 44). Every value is the mean of two observations. 

Column F' gives the pressure read by means of our closed auxiliary 

manometer. Each of the values has been obtained as a mean from 

three observations. In the calculation the calibration derived in Comm. 

N°. 78° has been used. In column G the difference of the columns 

F and G is represented, column H contains this same difference 
expressed in the numbers of column C’ as unity. The pressure given 

by the auxiliary manometer appears to be too high for all pressures 

observed. It was obvious to ascribe this to a too high value assumed 

for the normal volume ”). 

If we take the mean of the values in column H, we find 0.00087. 

If we diminish the normal-volume and so also the pressures by 

this part of the original amount, the differences represented in 

1) In the investigations with this manometer of Comm. N’. 70 the total absence 

of leaks was rare; here, however, it was easily brought about. Also the improved 
coupling of the steel capillaries to the glass-capillaries of the open manometer by 
platinizing proved satisfactory. (See Comm. N°. 94%), 

”) In connection with this diminution of the normal volume see also Comin. 
N. 95¢, § 11. 
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column A remain between the indications of the auxiliary manometer 

and the open standard manometer. These differences, considerably 
smaller than those in table XVII of Comm. N°. 78’, remain within 

the limits of accuracy fixed for this investigation, and justify us to 
1 

estimate the mean error in the pressure measurements at = anil 

In the following the pressures have been calculated with this new 

value of the normal volume. 

TABLE I. Manometer. 

24,247 24.264 + 0.017 0.00070 — 0.09017 

36.290 36.333 + 0.043 0.00120 + 0.00033 

47 .960 48 .004 + 0.044 0.00092 + 0.00005 

| v.08 | o.cor | + 0.000 60.022 60.061 + 0.039 0.00065 — 0.00023 

§ 4. The piezometers and auxiliary apparatus. 
The piezometer used in the first series for the observations at a 

density 70 and the temperatures —104°, —136°, —183°, —195°, was 

of about the same dimensions as that used for the observations of 

Comm. N°. 78. In the subjoined table, just as in the corresponding 

table II of that communication, the dimensions are given to facilitate 

a survey of the amount and the influence of the many corrections. 

| TABLE II. Data H,, Series I. 

U, = 6-4110 em? B= sa 

U,=0.0530 » A = 4.0% 10 

¥,— 071 198: ~ > 

Vs~=6.0174 » 

U, has been determined from a calibration (able 

V,=576.077 cm’, 

vo ==) 0.722: > Mher.cm. 

1) The values of 6 given here have been determined for the ordinary temperature 

and those for lower temperatures have been put equal to them. We hope soon to 

determine @ also for lower temperatures. 

——wSTS — ~~ 7 Os 
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The stem 6, (see Pl. Il Comm. N°. 69), on which the volume 
U, is read, was 30 em. long in order to enable us to determine 

every time three points on the isotherm which did not lie too near 

each other‘). In others of our piezometers it was taken still longer. 
For the series II and III a piezometer of larger dimensions was used. 

The necessity of the use of a larger gas-volume for determinations 

at densities higher than 120 times the normal has already been men- 

tioned in § 19 of Comm. N°. 84. The volumenometer described there 

was not used, but just as in Series J the normal-volume was deter- 

mined in the piezometer itself. 

As in the preceding table the dimensions of the piezometer are 

given here. 

TABLE III. Data H,, Series III. 

U, = 5.1583 cm’. pease 7 400 

U,= 0.0382 » Bp 47° ..10 

¥.= 0, 1-4 «2 

V{= 10.9645 » 

U,= (see preceding table) 

= 2063. 30 cm». 

oy =) ot OL per cm: 

In Series II the piezometer-reservoir had a volume of 10.343 eM?, 
but for the rest it had the same dimensions as in Table III. 

To detect any escaping of gas during the measurements at high 

pressure in consequence of leakages at the connections gy, and gq, 

(see Pl. IT Comm. N°. 69), cylindric glass oil-trays were placed 
_ round these couplings (see Pl. I fig. 2) which enabled us to discover 

immediately even the slightest leakage; everywhere the oil-trays 

rendered excellent services, but here they were of the greatest 

importance for obtaining reliable results *). 

1) They may serve, inter alia, to give us information about the curvature and 

the inclination of the isotherms at the middle point. 

2) Once the oil-trays near the couplings g, and gy rendered good services, 

when before the determinations of Series II] gas escaped in consequence of the 

nut gy being imperfectly screwed on. From a determination of the normal-volume 

made immediately afterwards, it proved to have changed so much that the previous 
determinations had to be rejected. 
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§5. The hydrogen. 

The filling was accomplished for Series HI with all the improve- 

ments described in Comm. N°. 94¢ § 2. For the first series the 

purification by means of cooling in liquid air was not yet applied, 

in the second series it was, but without application of high pressure. 

§ 6. The temperatures. 

The temperatures ¢, and ¢, respectively of the divided stem 0, and 

the steel capillary g, (see Comm. N°. 69 Pl. Il) were determined 

in the same way as in Comm. N°. 78 § 18. In series I three ther- 

mometers were placed along the steel capillary, and one at the part 

of the glass capillary 7, that remained outside the cryostat. The 
refrigerating action of the cryostat proving to be very slight even 

in the immediate neighbourhood, only three thermometers were used 

in the following two series, two at the ends and one in the middle 

of the steel capillary. The influence of an error of 1° C. in the 

temperature of the capillary (comp. Comm. N°. 78 § 13) is only 

_—— Of the total compressed volume at — 100° land ee at —200°. 
4000 10000 
For the temperature of the glass capillary we assumed here that 

indicated by the thermometer at the end of the steel capillary. 

This simplification is the more admissible as the temperature in 
the cryostat is lower, and hence the volumes outside it contain less gas. 

The temperature of the glass capillary in the eryostat has been 

determined in the same way as was followed in the investigations 

with the hydrogen thermometer mentioned in Comm. N°. 95%. As the 

arrangement of the cryostat was the same in the two cases, and the 

measuring-apparatus placed in it had almost the same form, there 

was no objection to start from the previously found data for the 

determination of the temperature of the capillary. (see Comm. N°, 95¢ 

§ 4). This method gives sufficient accuracy, as, reasoning ina similar 

way to that followed in the said communication, we arrive at the 
result, that an error of 50° in the temperature of the part of the stem 

that is taken into consideration still gives a negligible error in the 
1 

final result, viz. less than : 
5000 

The temperature ¢, of the piezometer-reservoir was determined by 

means of the resistance-thermometer, which (cf. Comm. N°. 95°) had 
beforehand been compared with the hydrogen-thermometer. 

They differ little from those at which the calibration of the resistance- 

thermometer took place. Hence the reductions are simple and may 
be effected with great accuracy. 

The temperatures were not calculated directly from the resistance 

a 
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formula of comm. N°. 95 § 6, but they were based on the separate 
readings of the hydrogen-thermometer, because the latter must also 

serve as points of the isotherms. From the above mentioned formula 

— was determined, and by the aid of this factor the reduction was 
dw 2 

effected. 
The difference of temperature for which the reduction was made 

amounting to less than 0.°3, this method of calculation is perfectly 

sufficient ; only for the temperature of — 135’.71, where the difference 

amounts to 4°, another correction of 0.°O1 was required. 

In the subjoined table’) the method of calculation has been repre- 

sented for one determination of the temperature. The first column con- 

tains the observed resistance JV’, in the following column JV’, represents 

the resistance at which the resistance-thermometer has been compared 
with the hydrogen-thermometer (of comm. N°. 95° Table I § 6), and 

T represents the corresponding reading of the hydrogen-thermometer. 

From the value = and W— W, follows now the temperature-correct- 

ion At which is to be added to 7; in order to give f, on the hydrogen- 
thermometer-scale. 

! | > ae 

, dt | 
W | W, | 1 i | a | At | ty 

17.295 | 17.290 | — 212°839 1.750 + 0-009 | — 212.89 

§ 7. The measurements. 

At the beginning and the end of every series the norimal-volume 

was determined in the way described in Comm. No. 78 § 12, only 

with this difference that in the series mentioned here every deter- 

mination of the normal-volume was supplemented with a reading in 
the U-tube }, and one of the barometer. In this way two determi- 

nations were generally made before and after every series. The values 

found before and after every series, differ nowhere more than 000° 

The tables V and VI are analogous to the tables VII and VIII of 

Comm. N°. 78. In the former the results are represented referring to 

1) The difference of the numbers in this table with those of the Dutch text is 

due to an improved calculation. The influence of this improvement enters also in 
some numbers of the last part of this communication. 
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the determination of the normal-volume for series III, the latter com- 

prises the three series. 

TABLE V. Normal volume H,, Series III. 

| 

N°. Volume. | Pressure. | Prva | Mean. Mean. Difference. 
i 

1 | - 1955.78 75.546 | 1915.56 — 0.17 
1945.58 

2 | 1955.82 735.545 1945.60 1945 .73 — 0.13 

9 1961.39 75.342 1945.87 1945.87 + 0.14 

10 [1962.04 75.327 1946.13 4) + 0.40] 

1 [1962.31 75.317 | 1946.14 | + 0.41] 
1 

TABLE VI. Normal volumes H,. 

Determinations. Before. | After. | Mean. | Difference. 

N°. 4 — 0.05 

2 544.74 544.82 544.78 — 0.02 
Series I 

| 10 + 0.02 

441 + 0.07 

4 — 0.60 

2 | 1945.73 1946.10 — 0.46 

3 — 0.23 

11 1946.16 ?) + 0.05 
Series II( 

42 — 0.18 

1 | 1946.10 1946 .64 + 0.39 

22, + 0.58 | 
| 

93 + 0.47 

Series III 4945.58 4945.87 1945.73 see Table V 

1) The two last determinations have been left out of account, though they show 

but slight deviations, because on account of variations of temperature in the room 

a certain cause could be assigned for the apparent rise of the normal-volume. 

2) A determination of the normal volume was made in this series both before 

and after, and also belween the determinations at high pressure. The value given 

here is the mean from these three determinations. 
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As far as the pressure permitted, three points were chosen in 

every series on every isotherm for the determinations of the isotherms 

ascending with about equal differences of density, which offers 

advantages for the calculation of the virial coefficients (see § 12). 

The readings were adjusted at these points by bringing the mercury 

at the bottom, in the middle and at the top of the divided stem 4,. 

By way of control the two points in the middle and at the bottom 

of the stem were for some determinations determined once more 

with decreasing pressure. 
For every determination we waited till both the temperature and 

the pressure were constant, and we could assume that the equilibrium 

of temperature and pressure had been established. This will be the 

case when the meniscus in the divided stem is moving up and 

down within the same narrow limits. The stability of the tem- 

perature was ensured by a good regulation, and that of the pressure 

was easily obtained and preserved by paying attention to the oil- 

trays mentioned in § 2, which immediately betrayed the slightest 

leakage ‘). 
When the above mentioned constant state had set in, some readings 

of the piezometer and the manometer were alternately made. If they 

agreed, we proceeded to the next point. 

With regard to the regulation of the temperature the measure- 

ments took place under the same circumstances as the investigations 

with the hydrogen thermometer described in Comm. N°. 95¢ (Oct. 

1906). Besides the resistance-thermometer for regulation and deter- 

mination of the temperature the thermo-element was also used here 

by way of control for the determination of the temperature. The 

indications of the resistance-thermometer, however, proving more 

reliable than those of the thermo-element, only those of the latter 

apparatus were used for the calculations. All possible care was 

always taken that the temperatures at which determinations were 

made, lay as close as possible to those which have been used for 

the calibration of the resistance-thermometer to render the corrections 

small, and the accuracy of the determination of the temperature as 

great as possible. 

The regulation of the pressure took place according to the indication 

of the metal manometer J of Pl. I, fig. 1. If we passed but slowly 

from one pressure to the other the thermal process in the reservoir 

which attended it, was so slight, that the regulation and the measure- 

) Formerly this often required a long and sometimes fruitless search (cf. e.g. 

comm. N’. 70 p. 8). 

52 

Proceedings Royal Acad. Amsterdam. Vol. IX. 
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ment of the temperature did not experience any perceptible disturbance, 

on account of which the stability of the bath was the more ensured 

throughout a whole determination of an isotherm. 

§ 8. Calculation of the observations. 

The calculation is made in the same way as described in Comm. 

No, Os. 8: 

For the ealeulation of the variability of the volume of the piezo- 

meter-reservoir U7, at low temperatures we started from the qua- 

dratie formula for &£ found in Comm. N °.95°§ 1, so that 4, = 

Dare eam hs == 0.0272 << 10-6. No correction for glass- 

expansion was required for the volume of the glass capillary U, nor 

for that of the steel capillary U/,. For the reduction of the gasvolume 

in the glass capillary U, to 0° we proceeded as follows: the volume 

was divided into 5 parts Uoq, U2»), U2, Vog and U2,. Ura represents the 

part in the liquid bath increased by 2 em. of the capillary above 

the liquid, where the temperature may still be put equal to that 

of the bath. Us, Us, and Usg form together the remaining part of 

the capillary in the cryostat above the bath, Us, + Us. corresponds 

to the volume w', of § 5 of Comm. N°. 95¢ and Uog to u",. Use 

is the volume of the capillary that is outside the cryostat. For the 

reduetion of the volumes U,,, Us, and Usa we started from the 

same determinations of the temperature as in Comm. N°. 95¢. As on 

account of the greater density at lower temperatures the mean tem- 

perature found cannot directly be used for the reduction, each of the 

above mentioned volumes is divided into 3 parts, the temperature of 

each of these parts is derived, and from this the mean temperature 
t 

| a 

is determined according to the formula ¢= —jzin which T represents 
Soi 

a 

the absolute temperature. The coefficients of expansion, which are 

required for the reduction, were determined by means of the general 

development into series of Comm. N°. 71 with a_ slight modifi- 

cation of the coefficients mentioned there. The results obtained in 

this way do not give an appreciable difference with those which 
were found when the reductions are made with the approximate 

results for the determinations of the isotherms obtained in this way. 

With regard to the corrections of the temperature of the volumes 

(7, and U, we proceeded in a way similar to that of Comm. N°. 78. For 

that of the reservoir at low temperature a somewhat different way 
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was followed. As _ practically the temperature for every individual 

determination of the temperature might be considered as constant 

(see § 1), a number of parts of isotherms could be immediately 

obtained for every series separately. As they at the same time refer 

to about the same densities, an accurate value may be derived for 
| ae 

dt 
temperatures in the different series not differing more than 0.°2, the 

results could be reduced to one and the same standard-temperature 
in this way without the slightest difficulty. As standard-temperatures 

were assumed the temperatures —103°.57 and —135°.71 of series 

I, —182°.81 and --195°.27 of series II] and —204°.70, —212°.82 

r é 1 
| from the graphical representation of pv, on —. The 

VA VA 
1 

and —217°.41 of series III. In the subjoined table the values of 

Pra’ PvaAr : 
=n ) are given, which served for the reduction of the 

ae 1 { 

remaining determinations of the isotherms to these standard tem- 

peratures ¢;, which relate to the hydrogen-thermometer at constant 

volume and 1100 mM. pressure at 0°. 

ts, : TABLE VII. H, («) Series II. | 
5} 

| a eae 195° .97 —904°.83 | 7 \—219°.98 
Density. ay Gy ay 

| —182°.81 | —195°.97 —2049 .83 

150 0.004336 0.004406 0.004501 

160 0.004390 0.004458 0.004540 

| 170 0.004440 | 0.004513 0.004588 

| 184 0.004508 | 0.004599 | 0.004667 
} | 

; d(pva 
From these mean coefficients values for | could be derived 

"4 

for the different points of the respective isotherms, which for the 

isotherm of —212°.82 have been given in Table XI of § 10. 

§ 9. Survey of a determination. 

As an instance of determinations of isotherms at low temperatures - 

we give here one of the measurements from the 3"¢ series at a density 

326 times the normal, in oxygen boiling under strongly reduced 

pressure. 

52* 
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TABLE VIII. H, Series III N° 7. Determination in oxygen at 
about — 213° C. | 

| BE. 
Time 3.10—3.20 | A B | C | D | E F G | H K 

| | | 

Piézometer top | 5.8) 56.496 | — 213°/20°.76| 19°.5 

rim | 4.8] 56.360 | — 188° 19°. 4) 2156 

division n® 29 7.0} 56.864 | — 98° 49°:4 

— 41° 

Manometer | | 5.0 |] 93.97) 19.98 

| 20.04 

Piézometer top 5.9 56.493 |20°..76 19°. 4 | 

rim | 4.8} 56.360 21.6 
19223 

| Manometer 5.0 || 93.97} 20.00 

. 20.05 

| Float 1.3 

The columns of the table agree in the main with those of table 

1X of Comm. N° 782. A and B& have the same meaning, C’ denotes 

the temperature ¢, of the piezometer-reservoi in the bath, and the 

temperatures f2, 2, and fq in the order of the parts Uoq Us, and 

U2, (see § 8) of the glass stem in the cryostat above the bath. The 
temperatures given in this column are to be considered as constant 

throughout the determination, and have, therefore, been mentioned 

only once. D gives the temperature ¢, of the waterbath round the 

stem 6,, EH the temperatures ¢,', ¢,” and ¢,'" of the thermometers 

placed along the steel capillary. The temperature of the part Uo, 

that projects above the cryostat is put equal to ¢#,. The columns F, 

G and H have the same meaning as in the above mentioned table. 

In column K the indication of the float in the cryostat has been 

given. All lengths are in ems. 

These readings are corrected in the same way as was followed 
for table X of Comm. N°. 78°. These corrected values are given in 

the following table. The two readings of the piezometer have after- 
wards been united to a mean after reduction. 
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TABLE IX. H,, Series III. Determination at about —213° C. 

Corrected and recalculated data. 

A B | C D E F G H |. K 

re | 
Manometer mean 145 .5)/93.97|49.95 

Temperatures f¢,, t,, t, —213°/}20°.70)}18°.6 
| 

top —188° 

t2¢ = gs°e 

tod 1— 44° 

28 .634)0.135 82.3 
Piézometer 

28.631} 0.432 

1.9 Surface of the liquid | 

The columns from A to H (# included), have the same meaning 

as those of table X of Comm. N°. 78’. A denotes the position of 
the liquid level above the boundary of the piezometer-reservoir and 

the glass stem, derived from the indications of the float. 

From this the following table is obtained, which gives the ecor- 

rections of volume and pressure required for the calculation of pug . 
It corresponds to table XI of Comm. N°. 78. 

The volumes of the parts of the glass capillary with their correc- 

tions have been separately given. Moreover the corrections w', and 

h have been added, the former is a consequence of the packings 

being pressed down at g, and q,, the latter accounts for the weight 

of the compressed air in the connecting tube between the manometer 

and the piezometer. The vertical distance of the levels of the mercury 

is about 0.5 meters. Instead of the mean coefficient of expansion &, 

the double term: £,-++4,¢ has been assumed (cf. § 8) for the 

computation of the correction 7,. 

Here we must point out that as standard temperature ¢, for the 

reduction of the parts into which the glass capillary is divided, 
-++ 20° has been assumed, so that the differences ¢,—1+, are not very small 

here. The method of interpolation applied in Comm. N°. 78 for 

small values of ¢,—/f, will be used as soon as we have tables 

for dz», at our disposal. The values have been directly determined 
here by calculation. 
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TABLE X, H,. Series III. Corrections and 

final result. 

Ue = 4.4904 em*. pm = 61.004 atm. 

WL = 0.0003 » i = 0.434 » 

wy = 0.0014 » h =—0.004 » 

us = — 0.0104 » 

uw“ = 0.0018 » ws = — 0.0005 cm?. 

Uo, = 0.0018  » U2 = 0.0059» 

Ua = 0.0020 » Unb. == 0.0049» 

Uae 0.0025 » U2 = 0.0024 » 

Uo = 0.0129 » a 0.0015  » 

Use = 0.0190 » U2 = 0.0001 » 

wi = — 0.0239 » w1 = 0.0012 » 

(pva)t, = 0.18863 t, = — 212°.82 

(pv4)__9490 99 = 0.18863 for p = 61.434 atms. 

The total value of the correction of the stem appears to be very 

small, so that we might apply the law of Gay—Lussac down to— 217° 
without introducing appreciable errors. 

§ 10. Values of pra. 

The values of pv4 obtained in this way for the different determi- 

nations have been represented for the isotherm of —212°.82 in the 

following table. The values in the last columm refer to the redue- 

tion to the standard-temperature ¢, (ef. the conclusion of § 8). 

The values of this table have been obtained, as appears from 

table IX, by calculation with the mean values of the separate read- 

ings. The deviations in these separate readings which may be due 

both to oscillations of the pressure and the temperature and to errors 

in the readings themselves, amount nowhere to more than 5000" 

The result found for about the same point at the beginning and 

at the end of one determination of an isotherm are in very good 

accordance, as moreover is to be seen by comparing observation 
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TABLE XI. A. Results for the isotherm of —212°.82. 

j 
} . 

N°. fh P pra da di pra) 
dt An 

tvs 

| 
47 Sexes 30.591 0.19406 | 157.64 0.00458 

\ 1 35.426 0.19134 185.145 | 0.00473 
Series II ¢ 

Re 33.071 0.19264 | 171.68 0.00465 | 

\ 20 30.554 0.19405 | 457.46 | 0.00458 

— 242° 89 51.632 0.48767 975.12 
Series III 

61.434 | 0.18863 | 325.68 

N°’. 17 and N°. 20 of table XI. The results are reduced to the 

: _ | dpe. 
same standard-temperature by means of the values of | | 

a “U4 

given in the last column. 

In table XII the results obtained in this way are also given for 
the remaining isotherms. Those belonging to series | are less certain 

and will be repeated. 
The results obtained at the beginning and at the end of a determination 

of an isotherm at about the same density have been united to a mean. 
For every temperature we have added to the results of the deter- 

minations of isotherms those of the readings of the hydrogen-ther- 

mometer to which the former are in direct relation. 

The numbers do not agree with those of the preceding table, 

because some determinations have been united to a mean, for which 

reason they are indicated by { ). 
The points of the hydrogen-thermometer have been obtained in 

the following way. From ScHaLKwik’s determinations of isotherms 

follows for 20° C. 
pva = 1.07258 + 0.000667 d4 + 0.00000099 d 4’. 

If we suppose the mean pressure-coefficient from O° to 20° not 

to deviate appreciably from the value 0.0036627 between O° and 100°, 

which is permissible on account of the insignificant deviations of 

the indications of the hydrogen-thermometer of constant volume from 

the absolute scale, it follows from this that: 

(pv) 0°, 1100 mm. — 1.000275. 

The value given in Comm. N°. 60 having been taken for the 

pressure-coefficient of hydrogen for the calculation of the hydrogen 
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TABLE XII, 4. Values for (pva)t,- 

NW”: | ts | Pp | pva da 

Hy therm. (1) | — 103°.57 0.8°6 | 0.62082 1.444 

(2) 32.985 | 0 . 63467 51.971 

Series I (3) 39.659 | 0.63765 | 62.493 

(4) 49.897 | 0.64274 | 77.632 

H, therm. (1) | — 135°.74 0.727 | 0.50307 1.445 

| (2) | 98.592 | 0.51064 | 55.991 
Series I 

(3) 33.437 | 0.51258 | 65.234 

H, therm. (1) — 182°.8 | 0.479 0.23051 1.448 

| (2) 46.572 | 0.32700 |142.42 
Series II 

(3) 55.293 | 0.32892 [168.46 

H, therm. (1) | — 195°.27 0.443 | 0.2°486 1.449 

(2) 40.599 | 0.27367 {4148.35 

Series II { (2) | 45.484 | 0 27337 (166.36 

(4) | 49.998 | 0.27343 1182.85 

Hy therm. (1) | — 204°.70 | 0 363 | 0.25031 1.449 

(2) | 35.487 | 0.23189 /153.03 

Series II { (3) 38 640 0.23097 | 167.30 

(4) 42.438 | 0.23010 [184.43 

Series III (5) | 61.917 | 0.23009 |269.40 

H, therm. (1) | —- 2129.82 | 0 320 | 0.22056 1.450 

(2) | 30.689 | 0.19480 |157.64 

Series II { (3) | 33.200 | 0.19339 [174.68 

(4) 35.566 | 0.19210 /185.45 

(5) 51.632 | 0.48767 |275.42 
Series III | | 

(6) 61.434 | 0.18863 |325 68 

H, therm. (1) | — 2479.41 0.295 | 0 20375 1.450 

(2) 46.419 | 0.16381 /|283.84 

| Series III (3) 52.898 | 0.16336 |323 80 

| (4) 58.971 | 0.16424 |359.04 
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thermometer-temperatures, the value of pva at t, now follows from 

the formula 

(pva)r, = (pv), (1 + 0.0036627 ¢,). 

§ 11. Probable error of a determination. 
The mean error in the calibration of the large volume of the piezo- 

; 1 
meter may be estimated at + 4000° As to the volume into which the 

gas is compressed during the measurements, the greater density 
of the gas in the reservoir at low temperatures may be allowed 

ae! 
for by reckoning only with = of the amount of the volumes at the 

temperature of the room. The errors in these volumes being predo- 

minant with respect to those in the volume of the piezometer reser- 

voir, the mean error for measurements below —180° with piezo- 
1 

meters of 5 c.M* may be put equal to + Sieh of the compressed 

volume in accordance with the degree of accuracy as was calculated in 

Comm. N°. 69, where for measurements at the ordinary temperature 

the mean error is estimated at + for piezometers of 5 c.M’. 
1000 

1 
For —100° the mean error will be + ——. 

; 2000 

The mean error of the determinations of the normal volume is 

aa: that of the measurements of the pressure may also be 

1 
estimated at + ——. 

3000 

In the determination of the temperature there is no appreciable 

error. The observations made for one point show that the mean error 

due to variations of temperature and faulty readings of the position 

: : 1 
of the mercury in the stem, may be put smaller than + 5000" 

3) 

The mean error of the determination of temperature in the stem 
1 

remains below + ——_. 
6000 

The mean error caused by all these sources of errors together 
1 

amounts to = ae for piezometers of 5 ¢.M.* and not very low 

ih Sli ; 
temperature, to + 1700 for larger piezometers and very low tempe- 

( . 
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ure. The different points on one and the same isotherm must 

show smaller discrepancies inter se than corresponds with the 

said mean error. The mean error namely, for a determination, apart 

from the errors in the determination of the normal volume and the 

calibration of the large volume is + from ile Oh 5 
2000 2400 

All this does not apply to the isotherms of — 103°.57 and 
—135°.71. These belonging to series I are the earliest determina- 

tions and for different reasons less accurate than the later ones. 

§ 12. Provisional individual virial coefficients. 

If the temperatures had not been given as readings on the hydrogen- 

thermometer of constant volume at 1100 mm. pressure, but on the 

absolute scale, the coefficients A4, 4 etc. calculated from the equation 

Ba, Ca , DA se 
puaAa— Ag + —-+ Shes . 2) See 

vA vA VA VA vA 

with the values of pv, from table XII, could be immediately com- 

pared with those derived in Comm. N°. 71'). However, this is not 

the case, because the latter relate to the absolute scale of tem- 

perature. From the outset it has been our purpose to derive the 

correction of the hydrogen scale on the absolute scale experimentally 

from our measurements themselves. This might be attained by first 

neglecting the correction, and by calculating provisional values 

Al4, Bau, Ca ete. for each of the isotherms, which serve then for 

finding provisional corrections for the hydrogen-thermometer; after 

this the calculation is repeated with the corrected temperatures, etc., 

till further repetition would not bring about any change. A similar 

treatment has been applied for the determination of the corrections 

of the readings of the hydrogen-thermometer to the absolute scale, 

where we purposed to draw through the observations for every isotherm 

a curve, which does not only correspond as closely as possible to 

the observations, but also to the general equation of state. In this § 

1) We must call attention to the fact that in the calculations of Comm. N°. 71 

we began by taking 273°.04 by first approximation for the absolute zero-point ; 

we should find the correction to this from the results of the calculations of iso- 

therms, and then proceed to a second approximation. We have still retained 
273°.04 in VI. 1 Suppl. N®.8 and in VI. 2 Comm. N®. 92. Since then, however, 

a set of coefficients VII. 1, which will be published in the following communi- 
cation, have been calculated with the further approximation for the absolute tem- 
perature, viz. the more accurate value 273°.09, and corrections have, moreover, 

been applied in critical quantities ete. 
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the method of least squares has been applied directly to the indivi- 

dual isotherms, in order to obtain a formula which represents the 

observations as accurately as possible. 

The number of points on each isotherm not being large enough 

for all six coefficients to be determined at once, definite values were 

assumed for the last three values. #4 was put =O, and values 

were calculated for D4 and Hy, from the sets of coefficients VII.1 °), 

which was chosen instead of V of Comm. N°. 71. This assumption 

means, that a definite course was prescribed for the isotherms at 

higher densities, which corresponds as closely as possible to the 

law of the corresponding states. The results of these calculations are 

laid down in the subjoined table. D4 and /4 are the values assumed 

for the calculation according to the above. 

TABLE XIII. H,. Provisional virial coefficients. 

ts | A's | 103. Bla » COL OU 10? “Dia NOW Es 

— 103°.57 0.62048 0.24971 0.5584 | 0.9113 -— 0.648 

— 135°.71 [0.50303 0.03234 1.7974 0.7028 — 0.408] 

— 182°.81 0.33063 — 0.08384 0.4024 0.3809 — 0.088 

— 195°.27 0.28503 — 0.13051 0.3565 0.2892 — 0.016 | 

— 204°.70 0.25058 — 0.18030 0.3710 0.2166 | 0.034 | 

— 212°.82 0.22090 ie 0.22433 0.3668 0.1544 0.066 | 

— 217°.41 0.20410 — 0.25013 0.3715 | 0.1122 0.082 | 

It appears from the table, that the coefficients of the same column 

vary regularly with the temperature, except for — 135°.71, for which 

we may account by taking into consideration that the two piezo- 

meter-determinations which had to be used for the calculation, lie 

so close together, that a slight difference in their relative situation 

already produces a large difference in B’4 and C''4. 

By the aid of the coefficients the values of pv, were determined 

anew according to formula (1). The divergencies for every isotherm 

between the assumed values of pva, W; and the F,; calculated with 

A's, B'4 and C'4 (pv4=1 for 0’ and 760 mm.), where 7 indicates 

the number of that observation in table XII, have been represented 

in the subjoined table. 

') For the calculation of Dt and #4 the uncorrected reading of the hydrogen 

thermometer was used (see preceding note). 
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TABLE XIV H,. Deviation from formula (1). 

10° (Wi—Roi) in "/) of Roi 

ts i=tli—s Slee Ol j=afims jaslins 14 

—103°.57; —1 | 47 | —9 | +8 0.001 |0.011/0.015}0.005 

—435°.71 

—182°.31 

—195°.27/ +4 | +1 | —4} +42 %.004}0.C04/0.014!0.007 

—-204°.70} —1 | +9 0 —9 |} +1 0.004|0.036|0.000)|0.036/0.004 

—212°.82; —2 | +5 | +6 | —2 | —17| +-10//0.007|0.022/0.027|0.009|0.077/0.045 

—217°.41| 0 0 —3 |} +2 0.001 /0.000)0.014/0.010 

The isotherm of — 212.°82 is best adapted to give an idea of the 

accuracy of the mutual agreement on account of its larger number 

of points. The agreement proves very satisfactory. The upper limit 
1 

of the mean error may be put at +——_. 
) P 2000 

§ 138. Minima of pv. 

By means of the coefficients of table XIII the following minima 

of the pv-curves were derived from the data of table XII. 

TABLE XV. H,. Minima of pvg. 

ts Pv dA P w—R, 

— 182°.81 0.32630 102.24 63.36 — 0.08 

— 195° .27 0.27338 174.45 47.69 + 0.50 

— 204° .70 0.22935 227.17 52.10 — 0.75 

— 212°.82 0.18780 285 .55 53.63 + 0.26 

— 217° .41 0.16335 315.72 51.57 + 0.08 

By means of the method of least squares the coefficients of a 

parabola 

| i te ae BP. (pva) = i ae (pv ) 

have been calculated from these data’). They are; 

1) It is to be remarked that the less certain isotherms of — 104° and — 186° 

are not used in this deduction, 



P, = — 2.623 
P,= 552.610 
P, = — 1354.86 

The differences W—Af, between the given values of p and those 

calculated with these coefficients have been represented in the last 

column of tabie XV. They amount to little more than } atmosphere. 
The results given in the table have been reproduced in a diagram 

on Pl. If*); the curve traced there is the calculated parabola. 

It follows further from the values of the coefficients, that the 

parabola cuts the ordinate p= 0 in two points, where pv, is respec- 

tively 0.00480 and 0.40307, from which follows with the formula?) 

(pea) 7 = 0.99939 {1 + 0.0036618 (7 — 273°.09)} 
for the corresponding temperatures measured on the absolute scale, 

T,=1°.3 T .— 110°.2. | 
The top of the parabola lies at a pressure of 53.73 atms. the 

value of pv, is here 0.20394, from which follows, in connection with 

the value of (“x 
dt 

0.0053, for the absolute temperature of the isotherm which passes 
through the top that 

) determined from the isotherms, viz. 
p =53.73 

T = 63°.5. *) 

Physics. — “On the measurement of very low temperatures. XIV. 
Reduction of the readings of the hydrogen thermometer of 

constant volume to the absolute scale.” By Prof. H. KAMERLINGH 
Onnes and C. Braax. Communication N°. 97° from the Physical 
Laboratory at Leiden. 

(Communicated in the meeting of Jan. 26, 1907). 

§ 1. Introduction. 

As it is till now difficult to obtain pure helium, and_ very 

easy to obtain pure hydrogen (c.f. Comm. N°’. 947, June 1906), 

the scale of the normal hydrogen thermometer (that with constant 
volume under a pressure of 1000 m.M. of mercury at 0°) is for the 

1) The temperatures have been given in absolute degrees below zero. The 

temperatures noted down on the plate undergo slight alterations on account of a 

more accurate calculation of the corrections to the absolute scale. They become 

—103°.54, —135°.67, —182°.75, —195°.20, —204°.62, —212°.73 and —217°.32. 
2) This value of A ve has been calculated from ScHAtKwuk’s determinations of 

isotherms (cf. the conclusion of § 10). 

8) Im this the corrections to the absolute scale have been taken into account. 
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present, just as when it (1896) was first mentioned as the basis of 

the measurement of low temperatures at Leiden in the first com- 

munication (N°. 27) on this subject, still the most suitable temperature- 

scale to determine low temperatures down to —259° unequivocally 

with numerical values, which come nearer to the absolute scale than 

those on any other scale. It is therefore of great importance to 

know the corrections with which we pass from the normal hydrogen- 

scale to the absolute one. 

As is known they may be calculated for a certain range of tem- 

peratures, when the equation of state for this region of temperature 

has been determined at about normal density. Up to now we had 

to be satisfied for that calculation for the hydrogen thermometer 

below O° with equations of state of hydrogen obtained in a theore- 

tical way. BertHELotT') derives them by means of the law of the 

corresponding states from experimentally determined data of other 

substances in the same region of reduced temperature. CaLLENDAR *) 

modifies VAN DER WAAITS’ equation of state so as to render it adapted 

to represent the results of the experiments of JouLte—Ketvin for air 

and nitrogen as well as those for hydrogen between 0° and 100°, 

and supposes that a same form of equation holds also for hydrogen 

outside this region. Chiefly this comes to the same thing as the 

application of the Jaw of the corresponding states, aibeit to a limited 

group of substances. Though such theoretic corrections as have been 

given by BERTHELOT and CALLENDAR are a welcome expedient to help 
us in default of other data’), yet an experimental determination of 

these corrections remains necessary. 

We have obtained them in this research by using the isotherms 

of hydrogen between —104° C. and —217° C. given in Comm. N°. 97+. 

1) Sur les thermométres a gaz, Travaux et Mémoires du Bureau International, T. XIII. 

2) Phil. Mag. [6] 5, 1903. 

8) Wrostewski’s determinations of isotherms at the boiling point of ethylene 
and oxygen are not accurate enough for this purpose. In the results found for 

the last temperature this is immediately apparent from the irregular situation of 

the points on the isotherm. The values obtained at the boiling-point of ethylene 

give more harmonious results. And yet a correction on the absolute scale would 
follow from them which has the wrong sign, viz. — 0°.07. 

At the temperature of liquid air Travers has determined the difference of the 

hydrogen thermometer of constant volume and constant pressure, from which we 

may also derive the corrections to the absolute scale for these temperatures. It is 

obvious that this derivation cannot be very trustworthy. 

Further it is now possible (see § | of Comm, N° 972) to derive data on the 

expansion of hydrogen at low temperatures from the determinations of WirKowsk1; 

they will be discussed in a following communication. 

7) 

e~ 
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For the calculation of these corrections at a definite temperature 
we might start from the individual virial coefficients in the development 
into series of the equation of state (cf. Comm. N°. 71, 1901), which 
we have derived in § 12 of Communication N°. 97¢. The results 
obtained in this way show really a regular course‘), in spite of the 
small number of points on the isotherms. 

However, we wished first to adjust the results of the separate 
isotherms by general formulae of temperature. Both in this case and 
in general it is very difficult to succeed in this by application of 

one of the equations of state drawn up in a finite form. Very 

suitable for such a purpose is the general develo;ment inte series 

(or more strictly speaking, development into a polynomial), which 
has already been mentioned frequently. We chose for this the 
form VII. 1 (cf. the footnote to § 12 of Comm. N°. 972). The 
adjustment takes place by calculating for every isotherm modifications 
in B and (, AB and AC, which we eall individual AZ and ray 

with an approximate value of the correction to the absolute scale, 
by then representing the values of AC by a general formula of the 
temperature, and by computing new values for AB by successive 
approximation in such a way that the value for the correction on 
the absolute scale corresponds to the assumed value of 7. Finally 
also the values of 4 were represented by a general formula of 
the temperature. . 

If we put the new values of 6 and C’ obtained by the aid of 
these corrections, which special values we denote by VII. H,. 1 in 
the polynomial of state, then this represents at the same time the 
determinations of isotherms of Comm. N°. 70 at 20° very satisfactorily, 

and those of Comm. N°. 78 at 0° and 20° by approximation. 

By means of these general expressions the reductions on the absolute 
scale have been carried out. 

If 6 and C are known there is another way to derive the absolute 

temperature from the observations with the hydrogen thermometer, 
than by applying the corrections which lead from the hydrogen 
scale to the absolute temperature scale. In the calculation of the 

temperature from the observations we may namely take at once into 

account, that the gas in the thermometer does not follow the law of 
Boyie-Cuar.es, but that pressure and volume are connected in the 
way, as is indicated by the development into series with the corrected 
values of 6 and C. The formula which may serve for this purpose, 
is given in § 5. 

1) Only the isotherm of — 135°.71 gives a deviating result. (See the conclusion 
of § 12 of the preceding communication). 
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§ 2. Reduction of the readings of the hydrogen thermometer of 

constant volume to the absolute scale. 

If v is the volume of the gas in the thermometer, expressed in 

the theoretical normal volume, p the pressure in atmospheres, 7’the 

absolute temperature, the equation of state for the thermometer gas 

may be written in the form: 

pr=4r(1 o ics 
Vv 0) 

oe +) | (2) 
Further we put: 

¢ the temperature on the scaie of the hydrogen thermometer of 

constant volume 

and 
a T0 C. = A. 

¢ is determined by 

(Pvt (Pr) 
(pe), ep 

where @, represents the mean pressure-coefficient between 0° and 

400° for the thermometer with the specific volume v. This is given 

by (PY), 00 — (pr), 
Yo ane Ree 100 (pr), 

If we represent the correction on the absolute scale by: 

At=60—t, 

we may write for this: 

(T_T) ee Bhoo— ToB's ST, kod i ne i Ss a Le 
3 100 v 100 v? v v? 

SS es ee aa 
44 T0000 — TP’ Dy 100— Fo“ (8) 

100 v 100 v2 

In agreement with what may be derived from the mean equation 

of state VII. 1, it appears from our determinations, that the influence 

of C’r is very slight, and down to — 217° does not amount 

to more than 0°.0003, so that it has not to be taken into 

account. Therefore in what follows will be put C’7=0, as is also 

done by BrrtHEeLot but without proof. 

For the absolute zero point the value 273°.09') is assumed, from 

1) From Amaaat’s experiments with the development into series of Comm N®, 71 

(cf. the note to § 12 of Comm. N°. 972) 1.26> 10—5 was found for the difference 

between the pressure-coefficients of nitrogen at 1000 mm. pressure and 0 mm. pres- 
sure, from which follows with Cuapputs’ pressure-coefficient for 1000 mM., i.e. 

0.0036744 the value 0.0036618 for the limiting value at O mM. pressure, corresponding 
to the absolute zero point — 273°.09. In the same way hydrogen gives for the 
difference of the pressure-coetlicients at 1090 mM. and 0 mM. 2.1 &* 10—§, which 
with the pressure-coefficient 0.0036629 given in Comm. N°. 60 (see XV) gives 
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which follows 47—=0.0036618 7, Tyoc, =273°.09 and 7\o9°¢. =373°.09. 

For the rednetion of the data given in Comm. N°. 97¢ to the 

} vA 
theoretical normal volume the value — — 0.99939 was taken, borrowed Ei 

ATO 7 from the determinations of isotherms of Comm. N°. 70 (ScHALKWuJKk). 

The values of 5’, and 8B’,,, have been derived from the same 

determinations of isotherms’) by the aid of the pressure-coefficient 

0.0036629 (see XV at the end of this Communication), neglecting 
the correction to the absolute scale for 20°. These values are: *) 

B', = 9.000607 B49 = 0.000664 100 

The values of b'y were found from the VII. H,.1 already 
2 

more fully discussed in § 1, which gives in a reduced form *) 

] 1 1 
10° B= + 173.247 ¢ — 462.956 — Mgt AS + 384.2458 — — 4.2530— 

ts t 

whereas VII. 1 gives: 

| fume 
1 

10° 3} = 157.9500 t — 305.7713 — H2 22S — 97.5686 —— 4.2530 
t3 

7 
a 

From this the values of Bb’; have been calculated for the standard 

temperatures of the isotherms. 

The subjoined table contains in the first column these standard 

temperatures 7; measured on the scale of owr hydrogen thermometer,*) 

the limiting value 0.0036608. The same value as was found above from nitrogen, 
was derived by Berruetor (loc. cit.) from CHappuis’ results for nitrogen and those 

for hydrogen obtained with a thermometer-reservoir of hard glass. In the same 

paper he derives the value 273°.08 for the absolute zero-point for the case that 

also the less concordant results found by Cuappuis for hydrogen with a platinum- 

thermometer are taken into account. Afterwards (see Zeitschrift fiir Elektrochemie 

N°. 34, 1904) the first mentioned value 273°.09 is again found by taking the 

mean of the above values for nitrogen and hydrogen, and those which may be 

derived by means of the experiments of Ketvin and Joute. 

1) Compare the conclusion of §10 vf Comm. N°. 974, 
*) The values found by Cuappuis are resp. 0.000579 and 0.000606. 

Those of WirkowskI are 0.000616 and 0.000688. 

Those derived in Comm. N°. 71 from the 

observations of AMaGaT are 0.000669 and 0.000774. 

3) According to Dewar, pkK=15 atms. and T7K=29° are used for the calcula- 

tion, which also served for the derivation of VII. 1. 

Further have been put 440=0.99939 and 44= Aao (1 + .0.0036618 2). 

4) The slight differences with the value of table XII of Comm. N°. 97¢ are 

due to a correction (see XV) in consequence of the application of the improved 

pressure-coefficient 0.0036629 and the influence of the dead space on the deter- 

minations of the temperature, which will be more fully discussed in the last part 
of this communication. 

50 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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in the second column the same temperatures measured on the absolute 

scale. The two following columns contain the corresponding values 

of the special 5’; and of the corrections to the absolute scale A ¢, 

calculated according to formula (2) for a hydrogen-thermometer of 

constant volume with 1090 mm. zero-point-pressure. The last column 

gives the corrections for the normal hydrogen-thermometer. 

The values for — 103°.56 and — 135°.70 are less certain than the 

others (compare § 10 and § 11 of the preceding communication). 

we 
| 

| 

TABLE XVI. H,. Corrections to the absolute scale. 

faa z — 403°.56 | — 403°.54 | + 0.2892 | 0°.0214 | 0°.0196 

_ 1350.70 | — 195°.67 | 0.2368 0°.0316 0.0290 

_— 1920.80 | — 1899.75 | — 0.9327 09.0530 | 0°.0486 | 
| — 195°.96 | — 195°.20 | — 0.4734 | 0°.0611 | 0°.0561° | 

— 2049.69 | — 204°.62 | — 0.7244 | 0°.0683 0°.0697 | 

— 212°.811)) — 2129.73 | — 1.0112 | 0°.0752 | 0°.0690 | 

| — 217°.40 | — 2179.32 | — 1.2167 | 0°.0796 | 0° .0730 | 
| 
| 

With very close approximation the results of the last column may 

be represented by the formula: 

At arc b ye ay 1 ah ti = 4790 ~ “\i00)-* *\i00)  “"\i00) rn 

a = — 0.0143307 

b = + 0.0066906 
c= + 0.0049175 
d= + 0.0027197 

The greatest deviation is three units of the last decimal. 

The formula gives the value Af—=O, both for t=-+ 100° and for 

i= 0°, while At=-+0°.14 would follow from it for t= -— 273°. 

where: 

§ 3. Accuracy of the corrections. 

The influences which may cause errors in the corrections, are of 

two kinds. 

1. Errors in the values of B'r. 

2. Errors in the data which have been used in the further derivation. 

\) The difference with Comm. N°. 974 remaining after the correction of the 

preceding note is the consequence of an improvement applied in the calculation. 

a ——— 

ail, . 
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The latter may be reduced to the error in B’, and the difference 
of the pressure-coefficients used for the density =O and that at 

0° and 1090 mM. If for the mean error in B', we compare the 
valnes of 4', which may be derived from the data of Comm. Nes. 70 

and 78 and from those of CHAppuIs, a mean error of + 0.000034 

(about agreeing with the error per cent derived for the pv in § 411 

of Comm. N°. 977) follows from their deviations inter se, which 

corresponds with a mean error of + 0°.008 at — 100° and of 
+ 0°.003 at — 200° for At. 

We may further assume that the mean error in the pressure- 

coefficients 0.0036618 and 0.0036629 amounts to one unit of the 

last decimal for the first and to two units for the second, which 

corresponds with a mean error in Az¢ of + 07.003 and + 0°.006 at 
— 100° and of + 0°.005 and + 0°.011 at — 200°. 

If we further put the mean error in 4'p equal to that of B, a 

mean error in Af corresponds to this of + 0°.006 at — 100° and 

of + 0°.002 at — 200°. 

The total mean error in consequence of all these mean errors 

together will amount to +£0°.012 for —100° and £0°.013 for —200°. 

§ 4. Comparison of the results with those which have been theore- 
tical'y derived. 

Table XVII contains the corrections concerning the normal hydrogen 

TABLE XVII. H,. Corrections to the absolute scale. 

240° | | 02.0470 |} — 250° | 0°.1005 | | 

OE? 0° .0925 

At At 

: Gore. according : | coe creda ee 

values | Callendar | Berthelot | values 

— 108°.56 | 0°.0196 0°.0017 — 10° | 0°.00021 | 0°.0015 | 

== 135°.7) | 0°.0290 -]} 0°.0032 — 90° | 0°.00048 | | 0°.0034 | 

= 182°.80 | 0°.0486 0? .0082 — 50° 0° .OO164 0°. 082 | 

= 495° .96.| 0° 0561 0°.0108 — 100° 0? .0054 0° .008 : 0° .O187 

— 204°.69 | 0?.0627 | 0°.0136 — 150° | 0°.0132 0°.0337 | 

— 212°.81 0° .0690 0° .0168 — 200° 0°.0314 0°.96 | 0°.0593 

—27°.40 0°.0730 , 02.0192 | — 240° } 0°.48 | | 

l 
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thermometer. Besides the above mentioned values of A#, which were 

directly found from the observation it contains the corrections deter- 

mined according to the serial formula VII. 1 and those calculated 

by CatLenpar and Berruetot. Moreover in the last column the 

corrections, which may be calculated from the experimental values 

adjusted with VII. H, according to formula (4) are given for a 

comparison. 

Besides the corrections derived from this investigation for the zero- 

point-pressure of 1000 m.M., also the values found by BERTHELOT 
and CALLENDAR are represented on the plate. The three curves have 

been indicated by I, II and III in the above mentioned order. Also 

II and III refer to a zero-point-pressure of 1000 m.M. 

The values derived by CattenparR and Bertaenor by means of 

the law of the corresponding states appear to deviate systematically 

from the experimental ones. With regard to the corrections according 

to VII. 1., in the derivation of which formula agreement in the 

region of the equation of state (between O° and —217° for hydrogen) 

treated here, was not aimed at, we may observe that a modification 

is required for VII. 1 to give as good an agreement as possible also 

in this region. In the first place this agreement would require that 

for the calculation of VII. 1 those values were assumed for the 

critical quantities of H, which follow from the data of Comm. N°. 97¢. 

They are py=15 atms. and 7), = 48°. This value of 7; would 

considerably increase the corrections given in table XVII according 

to VEE ae 

§ 5. Formula to derive the temperature directly from the obser- 
vations with the gas thermometer of constant volume. 

We suppose that the correction for the difference in pressure at 

the mercury meniscus and the thermometer-reservoir in consequence 

of the weight of the thermometer-gas is applied to Hy, and that 

it is so small that it may be neglected for the small volumes. 

The fundamental formula for the reduction is '): 

B; C; 
py =A (+ 24 -) 

v v 

which may also be written in the form : 

( 
pv=—Apr (1 ose pt fed r*) i 4 3] corn 

We start from this latter formula. The equation for the gas-ther- 

mometer (cf. formula (1) of § 5 of Comm. N°. 95°) becomes now : 

1) Here v is expressed in the theoretical normal volume and hence AT= 
= 1 + 0.0036618 §. We call the value for 0° C., at which 6=0, AZ. It is 1. 
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Hr ees oh fess a sat oe 
A, (4B) Art OMH?) ' A (1+ BYP) | rh =i 2: 7 1 TT T ) te ( T : 1h ) 

u " 
{ i 

im 2 Us Ue. | et A,,,(14+-Be) Hy) A, +BeH,) © 4A) (1+ BPH) _ 
3 

Bir ie Baba t ult wu," u | 
A, (1 +By) H,+ CY) H) — A,,(14+Be) H,) 

This formula holds also for the carbonic acid thermometer up to 

the number of decimals given by Cnappuis. In XV we shall further 

discuss the deviation of the formula used by CHapputs. 

With a sufficient degree of approximation the formula for the 

determination of the temperature down to 0°.001 with a hydrogen 

thermometer of 1100 m.M. zero point pressure and a dead space 

ae! may be written in the simpler form: 
Oo 

- 

A, (1+ BY) H,,) 1+.0.00366 1, 
op Ee ae ae tl, 4 

ae Us Us * 

a 1-+. 0.00366 t,." ! 1-+.0.00366 ¢, | 1+0.00366 -|= 
V ‘ ! " rs aia ot Bot ut usu," +u, L : e (7) 

ar ds Bes HT.) 1+.0.00366 «15 

First an approximate value may be assumed for BY. With the 

approximate value of the temperature found in this way a better 

value of Br may be determined, and the correction term for the 

expansion of glass calculated. 

Thus we find Av, from which the value of @ follows through 

Ay — AT 

0.0036618 

XV. Influence of the deviation from the law of BoyLE—Cuar rs 
on the temperature, measured with the scale of the gas thermo- 

meter of constant volume according to the observations with 
this apparatus. 

§ 1. When the formulae are drawn for the calculation of the 

temperature on the scale of the gas thermometer of constant volume 

the variation of pressure of the gas both in the thermometer-reservoir 
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and in the dead space has as yet (see e.g. Cuapputs) been generally 

entered into the calculation. as if it took place at perfectly constant 

density. 

The error committed in this way, is so slight for the permanent 

gases for small values of the dead space, that it manifests itself 

only in the last of the decimals given by Cxappuis. For CHappurs’ 

carbonic acid thermometer, however, it attains an appreciable value 

(the influence extends here to the last decimal but one), so that it 

was of importance to examine in how far it is permissible to neglect 

it. This appears when Cuappvis’ formula is more closely compared 

with formula (6) of XIY. 

The density not being constant, either in the thermometer-reservoir 

nor in the dead space, on account of the fact that e.g. at low tem- 
peratures gas passes from the dead space to the reservoir, and pv 

as well as the pressure-coefficient varies with the density, four 

approximations are applied in this treatment (two for reservoir and 

two for dead space), all giving an error in the same direction. 

(Adsorption is left out of account). 

The errors caused by these approximations, are of the same order 

of magnitude for the reservoir and the dead space, the first applying 

to a large volume and a small difference of density, the second to 

a small volume and a large difference of density. The correction 

which is to be applied to the determination of temperature on 

account of these errors, only amounts to — 0°.001 at — 100° for a 

hydrogen-thermometer with 1000 mm. zero-point-pressure and a 

dead space of 0.01 V,, to somewhat less for lower temperatures, 

and so it may be neglected below O°. 

Formula (6) differs from the preceding formula by one correc- 

tion more, which is independent of the size of the dead space, and 

which is the result of the variation of density in the reservoir caused 

by the expansion of the glass. This error is of no importance for 

the determination of the temperature by the hydrogen-thermometer, 

but may exercise an appreciable influence in some cases. (ef. § 3). 

The approximations mentioned have also an influence on the deter- 

mination of the mean pressure-coefficient. The discussion, perfectly 
analogous to that for the influence on the determination of the tem- 

perature, gives -++ 0.QOOOO0O19 as correction for our thermometer, 

which remains below the limit of accuracy given in Comm. N°. 60. 

Hence the value 0.0036627 derived in Comm. N°. 60 for hydrogen 

at 1090 mm. changes into the corrected value 0.0036629. 

§ 2. We may pass from the temperatures derived in the way 
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mentioned in Comm. N°. 95° to those on the normal hydrogen-ther- 
mometer by availing ourselves of the subjoined table, in which the 

corrections required for this have been given. These corrections give 

an account of the variation in the assumed pressure-coefficient and 

(with regard to the number of decimals given) of the influence of 

the dead space. 

TABLE XVIII. Corrections for the temperatures 
calculated according to Comm. N®. 95¢ 

to those on the normal hydrogen scale. 

} 
er : = | 

t | At | t at 
iets ! | : 

— 50° | + 0°.003 | — 200° | +4 00.016 
| | 

— 100° | + 0°.006 | — 220° | + 0°.019 

— 150° | 402.010 | — 9500 | +4 0°.020 
| i 

By means of the fifth column of table XVI the corrections to the 

absolute scale are found. Thus the tables XVI and XVIII enable us 
to reduce the temperatures calculated according to Comm. N°. 95¢ 

and used in Comm. Nes 957, 95° and 95¢ both to the normal hydrogen 
scale and to the absolute scale. 

The temperatures ¢; occurring in Comm. N°. 97+, already corrected 

in the first column of table XVI for the application of the corrected 

pressure-coefficient 0.0036629 and the influence of the dead space, 
are adjusted to the absolute scale by the corrections in the fourth 
column of table XVI. 

§ 3. The values found by CHappuis and Travers for the pressure- 

coefficient of hydrogen (cf. the footnote to § 7 of Comm. N°. 95°) 

are corrected to 0.00366266 and 0.00366297 (number of decimals 

the same as given by thern). 

For the fression-coefficient of carbonic acid found by CHAappuis 

the correction is more considerable and amounts (because the dead 

space is small here, the correction on account of the variation of 
density caused by expansion of the glass is here about of the same 
value as that on account of the variation of density by the dead 

space) to — 0.25 >< 10-°, so that the value found by CHappuis *) 

0.00372624 is corrected to 0.00372599. 

1) Nouvelles Etudes, Travaux et Mémoires du Bureau International. T, XII, p. 48. 
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Physics. — “Contributions to the knowledge of the w-surface of 
van per Waats. XV. The case that one component is a gas 

without cohesion with molecules that have extension. Limited 

miscibility of two gases.’ By Prof. H. Kamertinco Onnes and 
Dr. W. H. Kezsom. Supplement N°. 15 to the communications 

from the Physical Laboratory at Leiden. 

(Communicated in the meeting of Februari 23, 1907). 

§ 1. Introduction. In the Proceedings of Dec. ’06; p. 502. 
(Comm. N°. 964) it was mentioned that the investigation of the 

w-surface of binary mixtures in which the molecules of one compo- 

nent have extension but do not exert any attraction, would be taken 

in hand as a simpler case for a comparison with what the observations 

yield concerning mixtures of He, whose molecules are almost without 

cohesion. Before long we hope to give a fuller discussion of such a 

w-surface '). In the meantime some results have already been obtained 

in this investigation, which we shall give here. 

Thus it has appeared, that at suitable temperatures, at least if the 

suppositions concerning the applicability of vAN DER Waats’ equation 

of state with a and 4 not depending on v and 7’ for constant 2, 

mentioned in § 2 hold for these mixtures,*) two different phases 

may be in equilibrium which must be both considered as gasphases. 
Then the two substances which are the components of these mixtures, 

are not miscible in all proportions even in the gas state. And if 

certain conditions are fulfilled this may continue to be the case when 

the one component is not perfectly without cohesion, but possesses 

still some degree of cohesion, which, however, must be very slight. 

From the considerations of van DER Waats, Contin. II p. 41 et sqq. 

and p. 104, follows that the mixing of two substances in the fluid 

state is brought about in consequence of the molecular motion 

depending on the temperature 7’, and promoted by the mutual 

attraction of the molecules of the two components determined by 

the quantity a@,,, Whereas the attractions of the molecules of each 

component inter se determined by a,, and a,,, Oppose the mixing. 

1) Van Laan, These Proc. May ‘05, p. 38, cf. p. 39 footnote 1, treated the 

projection of the plaitpoint curve on the v, x-plane for such a mixture, without, 

however, further investigating the shape of the spinodal curve and of the plait. 

2) The possibility of the occurrence of a longitudinal plait at temperatures above 

the critical ones of both components was supposed by van perk WaAats in his 

treatment of the influence of the longitudinal plait on critical phenomena. (Zittings- 

versl. Kon. Akad. vy. Wetensch. Amst. Nov. 1894, p. 133), [Added in the English 

translation |. 
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If the mutual attraction of the molecules of the two components a,, 

is small compared with the attraction of the molecules ‘of one of the 

components inter se, @,,, the appearance of complete miscibility will 

be determined solely by the molecular motion, and then the tempe- 

rature will have to be raised to an amount which, if some propor- 

tions of the 4’s can occur then, may greatly exceed the critical 

temperature of the least volatile component, 7’.,*'), and with it the 

critical temperatures of all mixtures of these components. Thus from 

the equation (a) of vAN DER Waars, Contin. II p. 43, follows 

Tru = 1.6875 T;, for the critical temperature of complete miscibility 
(vAN DER Waats l.c.) Tim, if a,,=a,,—=O0 and b,,=—b,, may be 

put. At a lower temperature the two substances considered are only 

partially miscible, whereas for such a temperature above 7’, there 

may be coexistence of two phases which, as will be further explained 
in § 3 and 4, are to be considered as gas phases. 

Now it seems to follow from the nature of most of the substances 

known to us, most likely from the structure of their atoms, that 

b,, is also small, when a,, becomes very small; hence for a gas 
without cohesion 6,, may not be put equal to 0,, of a gas with 

cohesion, and as according to the equation cited of van per WaAAaLs 

a small value of 4,, furthers the mixing greatly, the critical tem- 

perature of complete miscibility cannot rise as high as was derived 

just now. But though most likely the case mentioned just now as 

example does not occur in nature, yet it is certainly conducive to 

a better insight of what is to be expected for gases of exceedingly 

shght cohesion. 

§ 2. The shape of the spinodal curves and the form of the plait 

on the w-surfauce for binary mixtures of which one component is a 
gas with molecules with extension and without cohesion. In fig. 1 
P].I the spinodal curves are represented for such a case. The figure 

refers to the y-surface for the unity of weight of the mixtures, as 

we hope to give a further discussion of such a w-surface (comp. $ 1), 

also with a view to the treatment of the barotropic phenomena which 

may occur for these mixtures *) in case of a suitable proportion of 

the molecular volumes of the components, for which treatment the 

use of the y-surface for the unity of weight readily suggests itself. 

As was also mentioned in Comm. N°. 964, the conditions for 

1) van DER Waatzs, in the paper cited p. 786 footnote[1], brought this in connec- 

tion with the great amount of heat absorbed at the mixing of such substances. 

[Added in the English translation]. 

2) Cf. Comm. N°. 96a (Nov. ’06), 966 (Dec. ’06) and 96¢ (Dec. 06, Febr. ’07). 
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coexistence may be studied by the aid of the y-surface for the unity 

of weight in the same way as by the aid of that for the molecular 

quantity; moreover it is easy to pass from the former to the latter, 

which offers advantages for the treatment of many problems (ef. § 6) 

if this is desired. 

The equation of the spinodal curve on the y-surface for the unity 

of weight of mixtures, for which Van per Waats’ equation of state 

for binary mixtures with a and 4 not depending on v and 7’ for constant 

a may be applied, and for which a,,=—Wa,,q,,, 6,,="/,(0,,1+4,.™) 

(cf. Comm. No. 96c, Dec. 06, p. 510) may be put, *) runs: 

R, R, To = 2 R, (l—2) fv a,, —},, Va? +2, elo a,, —5,,.V af. 

Here R, and R, are the gas constants for the unity of weight of 

the components concerned. For a,, =O this equation passes into: 

hk, 22 4tw’* = (1—2z) [{3 w — (1-— 2)? 4+ : x(l — z)] 
R OF a: 

2 

2 

ry 

if we put Ty ==ti = =o. The roots of this equation in w have 
1 “Ry 

been determined by a graphical way for definite values of a and r. 

The figure has been construed for mixtures for which #,/R, = */,, 

b,,/b,, ='/, (ef. Comm. N°. 96c, Febr. ’07, p. 600, footnote 2). 

With reference to Fig. 1 we point out that for 7< Tn (= 1.299 Ty) 

and > 7, a spinodal curve closed on the side of the increasing v’s, 

and together with it a similar plait, extends on the y-surface from 

the side of the small v’s. At 7’— 7), this plait reaches the side or 

the least volatile component. At lower 7’ the spinodal curve has 

two distinct branches, and the plait runs in a slanting direction from 

the line v= 4% to the side of the least volatile component. 

Thus the investigation of mixtures with a gas without cohesion 

calls attention to a plait that starts from the side of the small volumes, 

and at lower temperature runs in an oblique direction to the side 

of the figure, which plait can be distinguished from the transverse 

and from the longitudinal plait. 

The spinodal curve for t= 1.040 has a barotropic plaitpoint LP. 

(see Fig. 1). For 1.299<1< 1.040 the angle with the v-axis of 

I 
the tangent to the plait in the plaitpoint*) 6,. >>, for 1.040<1r<1 

is Bt <= The barotropic phenomena for such a plait will be further 

1) The quantities @,, 22, G2, 01, Bo2, Pig, ete. relate to the unity of weight, 

,%, dggu etc. to the molecular quantity. 
*) Cf. Comm, N°. 960. . 
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discussed in a following communication ‘cf. N°. 96¢ Febr. 07, p. 660, 

footnote 1). 

In Fig. 2 the course of the plait has been schematically repre- 

sented for a temperature between the barotropic plaitpoint temperature 

and the critical temperature of the first component. The — - — - 

curves denote the pressure curves, the —— — — curve the spinodal 

curve, the continuous curve the connode. The straight line AP is 

the tangent chord joining the coexisting phases A and 4, CVD is the 

barotropic tangent chord (Comm. 964). 

§ 3. Limited miscibility of two gases. For mixtures where as in 
fig. 2 a plait giving rise to phases separated by a meniscus which 

coexist in pairs, represented in the figure e.g. by A and 4, while 

mixtures in intermediate concentrations are not stable, extends on 

the y-surface from the side of the small v's at temperatures above 

the critical temperature of the least volatile component, we shall 

call not only the phase 46 a gas phase, for which it is a matter of 

course, but also the other A; so the latter may be called a second 

gas phase, and we may speak of equilibria between two gaseous 
mictures at those temperatures. That there is every reason to do 

so in the case treated in § 2 appears already from this, that the 

reduced temperature of the phase A, calculated with the critical 

temperature of the unsplit mixture with the concentration of A, is 

so high that already through its whole character the phase must 

immediately make the impression of a gas phase (so a second one). 

The shape of the p-lines in fig. 2 shows further, how the two 

coexisting gas phases may be obtained by isopiestic and isothermic 

mixing, in which nothing would indicate a transition to the liquid 

state, from the gas phases J/ and JN of the simple substances’). 

We shall explain in the following § that it is really in accordance 

with the distinction between gas state and liquid state for binary 

mixtures in general, when we call A a second gas phase. 

§ 4. Distinction between gas and liquid state for binary mixtures. 

It is true that since the continuity of the gas and the liquid state 

of aggregation has been ascertained, it may be said with a certain 

degree of justice that it is no longer possible to draw the line between 

the two states, but when in the definition of what is to be under- 

stood by liquid and what by gas we wish properly to express 

the difference and the continuity in the character of the hetevo- 

geneous region and the homogeneous region and to preclude con- 

1) Cf. footnote 1 p. 792. 
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clusions') which are irreconcilable with the most obvious conception 

of phenomena, then the limits allowed for making this definition, 

are very narrow. 

Thus for a simple substance no other distinction will be possible 

than by means of the isotherm of the critical temperature, and the 

border curve (connodal curve on Gipss’ surface), which is divided 

into two branches by the eritical state (plaitpoint of the connodal 

curve), of which the branch with the larger volumes is to be defined 

as gas branch, that with the smaller volumes as liquid branch?). 

Liquid phases are only those which by isothermic expansion may 

pass into such as lie on the liquid branch of the connodal curve, 

and also the metastable*) phases lying between the connodal and the 

spinodal curves, which may be brought on the liquid: branch of the 

connodal curve by isothermic compression ‘). 

For binary mixtures the consideration of the w-surface of VAN DER 

Waats leads in many cases to definitions which are just as binding. 

1) So Turesen’s definition, Z.S. fiir compr. und fl. Gase 1 (1897) p. 86, 

according to which e.g. strongly compressed hydrogen at ordinary temperatures 

would have to be called a liquid. 

2) This is in harmony with the principle of continuity of phase along the 

border curve according to which a change of the character of the phases on a 

border curve can only occur in a critical point. For substances which at tempe- 

ratures near the critical one, in states represented by points on, or in the vicinity 

of that branch of the connodal curve on Grsss’s surface which connects the 
liquid states at low temperatures with the plaitpoint, should be associated to mul- 

tiple molecules of which the volume is greater than the volumes of the composing 
molecules together, this principle would admit the possibility that on the liquid 

branch of the border curve liquid phases should occur with greater volume than 

the coexisting gasphase. Such simple substances would then show the barotropic 

phenomenon, till now only found for binary mixtures. There is nothing known 

that points im the direction, of making the existence of such simple substances 

probable but there can be no more given a reason why it should be impossible. 
{Added in the translation]. 

3) The metastable states have not been included in Botrzmann’s definition 

Gastheorie Il, p. 45. 

4) We do not accept the principle of the distinction of Leaman, Ann. d. Phys. 
22 (1907) p. 474: “Erst die unterhalb der betrachteten Isotherme liegenden Kurven, 

welche in ihrem S-f6rmigen Teil unter die Abszissenachse hinunterreichen, ent- 

sprechen walrer (tropfbarer) Fliissigkeit, d. h. eimem Zustand, der negativen Druck 
zu ertragen im stande is’, as depending on the meaning that the existence of 

capillary surface tension in liquids which can form drops, would presuppose that 

these liquids can bear external tensile forces, i.e. negative pressures without split- 

ting up (cf. ibid p. 472 in the middle, and p. 475 at the top). [Added in the 

translation ]. 
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When discussing this we shall leave out of account the case of solid 

states of aggregation and three phase equilibria. 

In the first place gas states are ail the states on the y-surfaces 

on which tliere are no plaits. As eriterion to divide states which 

belong to the stable or metastable’) region of w-surfaces which show 

plaits, into gas states and liquid states, analogy with the simple 

substance indicates their relation with the connodal curves of those 

plaits while for the metastable states the help of spinodal curves is 
to be called in. 

For this first of all the distinction between the two branches of 

the connodal curve of a plait is required. For in the first place 

we shall have to give the same name to each of the two branches 

of a connodal curve separated by one or two plaitpoints throughout 
its length *). 

Now, on account of the existence of the barotropic phenomenon we 

cannot simply call gas branch of the connodal curve that at which 

one of the isopiestically connected states has the smallest density *). 
It is therefore the question to indicate if possible on each branch a state 

whose nature is already known through the definition holding for 

simple substances or for those which behave as such when splitting 
up into .two phases. In this different cases are to be distinguished. 

For the case that the considered plait *) extends from one of the 

side planes «=O or «=1 over the w-surface, follows from the 

definition of gas phase and liquid phase of a single substance that 

the branch of the connodal curve from the gas state of the pure 

substance to the plaitpoint is to be called gas branch, and also that 

the branch from the liquid phase of the simple substance to the 

plaitpoint is to be called liquid branch. The gas branch and the 
liquid branch of the spinodal curve may be distinguished in the 

same way as those of the connodal curve. 

Let us restrict ourselves for the present to the distinction of gas 

and liquid in this case. In the first place we make use for this 

purpose of the isomignic (Comm. N°. 96) compression and expansion. 

1) It follows from the nature of the case that unstable states have not to be 
considered here. 

2) Cf. p. 790 footnote [2]. 

8) Even it if we wish to leave gravity out of account, and pay only attention to the 

molecular volume of the phase, the barotropic phenomena have yet called attention 

to the possibility that we may find the gas volume first larger and then smaller 

than the liquid volume when passing along the same connodal curve. 

4) The case of the two plaits at minimum crilical temperature is comprised 

in this. 
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Every phase which cannot be brought on the connodal curve 

through this operation, or if it can, comes on the gas branch, will 

have to be called a gas phase, every phase which is made to lie on 

the liquid branch through isomignic expansion is a liquid phase. 

Besides the phases lying between the connodal and the spinodal 

curve which isomignically may be brought on the liquid branch of 

the connodal are metastable liquid phases. 

Besides the isothermic and isomignic compression without splitting 

there is another operation already mentioned in § 3, which may 

help us to form an opinion about the similarity of different phases, 

viz. the isopiestic and isothermic mixing.*) With regard to this 

phases which have been obtained by _ isopiestic admixing without 

splitting from phases of which it has been ascertained that they are 
to be called liquid phases, must be called liquid phases until in 

another way, (e.g. because no splitting takes place with isomigni¢ 

compression and expansion) they have been proved to have passed 
into gas phases. ”). 

Proceeding to the case that the plait from higher temperature 

appears as a closed plait on the w-surface, as long as the plaitpoint 
which first comes into contact with the side with decrease of tem- 

perature, has not yet come into contact, and with decrease of tem- 

perature the plait has not yet reached a mixture which on splitting 

behaves as a simple substance, and for which the distinction in 

liquid state and gas state is therefore fixed, we shall have to con- 

sider that branch of the connodal curve on the side of this plait- 

point, which passes into that of the gas phase at lower temperature, 

as belonging to the ordinary gas phase, whereas the branch which 

passes into the liquid branch at lower temperature may be looked 

upon as a second gas phase, and we are the more justified in doing 

so as the temperature should lie further above the critical tempera- 

1) With the continuous isothermic and isopiestic mixing of two similar phases 
a and b the case may present itself (divided plait in the case of minimum crit. 

temp.), that an intermediate phase c of the other kind is obtained. So in general 

we cannot conclude to the similarity of ¢ from the isothermic and isopiestic mixing 

of similar @ and b. 
2) This criterion is particularly of application to the retrograde condensation 

2nd kind. For then phases on the connodal curve between the plaitpoint and the 

critical point of contact are liquid phases, phases on the p-curve through the plait- 

point and phases with the same « as the critical point of contact just the transi- 

tions to gas phases. The phases within the triangle bounded by these two lines 

and the connodal curve are also to be considered as liquid phases. 

Here we abstract from the small uncertainties which would be caused in these 

delinitions when capillarity ought to be taken into account, [Added in the translation]. 



tures of the unsplit mixtures belonging to the phases lying on them. 

Whereas in the case, that at a temperature comparatively little 

lower also the other side of the y-surface is reached by the origin- 
ally closed plait, the difference of the second gas phase with a liquid 

phase is still not very conspicuous, this may become very clear for 

the case of § 2, to which we have now got at last, that viz. with 

decreasing temperature a plait comes from the side 7» = 4, on the 

w-surface, and the plait appears for the first time as longitudinal 

plait. Now we may again call PSDF the branch of the first gas 
phase, PACE the branch of the second gas phase. It will certainly 

be obvious to speak of gas phases when a// the parts of the plait are 

found above the critical temperatures of the unsplit mixtures, and 

we shall decidedly have to speak of two gas phases, when the 

second branch of the connodal curve is intersected all over its length 

by isomignic lines on which beyond this plait no splitting up occurs, 

or if it is at most touched by one of them in the point » = 4. For 

then it is beyond doubt that the final point of that branch must be 
called a gas phase. 

Possibly also phases between the isomignic line of the critical 

point of contact, the line v= 4, and the second gas branch belong 
to the second gas phase. 

§ 5. The surface of saturation for equilibria on the gas-qasplait. 

In fig. 3, 4 and 5 the sections 7’— const. of the p, 7, .x-surface of 
saturation for equilibria on the gas-gasplait have been schematically 

drawn for a mixture in which one component is a gas without, or 

almost without cohesion, in fig. 3 and + for temperatures higher 

than the critical temperature of the first component, in fig. 5 for 

this last temperature. 

In these figures too the division of a gas phase into two gas 

phases, and the transition of a part of the gas region into the liquid 

region at 7’— T;, is clearly set forth. The — — — — curve is the 
locus of the plaitpoints. 

In a following communication, in which the properties of the 

w-surface for such mixtures will be further discussed, 7’, z-sections 

ete. will be drawn of this surface of saturation. At the same time 

it will then have to appear in how far retrograde unmixing of a 

phase into two other phases is to be expected. 

That one of these phases may be called a second gas phase, 

appears in § 4. 

§ 6. On the conditions which must be fuljilled that limited mis- 
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cibility of two gases may be expected. Now that it has appeared that: 
on the suppositions mentioned in § 2 for mixtures in which one 

component is a gas without cohesion with molecules with extension, 

limited miscibility might be expected in the gas state, the question 

rises whether this phenomenon is also to be expected for mixtures 

with a gas of feeble cohesion. As on the said suppositions no maxi- 

mum critical temp. is to be expected, this will be the case when 

Trem > Ty, is found.*) We have treated this question by the aid of 

the w-surface for the molecular quantity (cf. § 2). We arrive then 

at the equations developed by van per Waats Contin. II p. 48. 

The condition that 7. > 7%, is: 

1 

vy (l—«y) 

in which 4y and «(1—vr,,) follow from the equations given by 

VAN DER Waats loc. cit. We find from this?) Tin > Ty, 

ee ae 
boo / bia — Vaam/ aim}? > 37 bo / 5? iat - 

for booy/bw 2 , He asoy/any< 0.98 

1 | 0.053 
a 0.0037 
V4 0.00023 
uy 0.000015 

It appears on investigation that only for few pairs of substances 

the ratios of the as and }’s*) will be able to satisfy this condition. 

The still unknown relations between a and / for a same substance, 

to which we alluded in § 1, and from which ensues that in general 

substances with small a also possess a small 4, and that as a rule 

large } goes together with large a, seem to prevent this. H e, which 

with a 4 which is still not very small compared with H, possesses a 

very small a, so feeble cohesion, and H,O, which taking the value _ 

of a into consideration, has a comparatively small 6, so a molecule 

of small volume, constitute exceptions to this general rule which are 

favourable for the phenomenon treated here. 

If for He — He boy /boum = iS and 92M / A\y\M ‘ee (Comm. 

N°. 96c, Febr. ’07. p. 660 footnote 2), Tm << 7, must be expected 
on the above suppositions. Also for helium-argon and helium-oxygen 

e.g. the same thing must be expected. Most likely the ratios are 

1) Whether limited miscibility in the gas state may also occur if Tim < Ty, 

in certain cases and at suitable temperatures, will be discussed in § 7. 

2) For baaar/ baw = Ys eg. we find also 7m > Ty, for 0.125 > azeu / Gum > 0.061. 

These cases will be further discussed. 

3) See e.g Konnstamm, LaAnpoLT-B6RNSTEIN-MEYERHOFFER’s Physik. Chem. 

Tabellen. ; 



more favourable for mixtures of helium and neon’) than for those o. 

helium and hydrogen. 

For mixtures of helium and water the ratios for the above assumed 

ay. and by. are such that for them limited miscibility in the gas 

state is to be expected, if the suppositions mentioned in § 2 are to 

be applied. 

The coefficients of viscosity and of conduction of heat (ef. Comm. 

N°’. 96c, Febr. ’07 p. 660 footnote 2) admit a value of bg. which 

is still somewhat though only little higher; this might render 

it possible to realise the said phenomenon perhaps also for the other 

pairs of substances mentioned, especially when we bear in mind 

that its appearance is not excluded for 7’... < Ty, (ef. p. 794 footnote 1). 
The experimental investigation of these mixtures has been taken 

in hand in the Leiden Laboratory. 

(Communicated in the meeting of March 30). 

§ 7. The shape of the spinodal curves and of the plaits for the 
case that the molecules of one component exert some, though still 

feeble attraction. With very small value of the mutual attraction 
a,, of the molecules of the two components, in connection with the 

feeble attraction a,, of the molecuies of one component inter se, the 

spinodal curve will with decreasing temperature extend more and 

“more on the y-surface as in Pl. I fig. 1 from the side of the small 

v's, come into contact with the line 2=O at 7’= 7;,,, and then 

cross from the line vO to the side e—0O in two isolated branches ”). 

We leave here out of account what takes place at lower temperatures 

when the spinodal curve approaches and reaches the side «=1 too. 

To examine what shape the spinodal curve can have with greater 

attraction of the most volatile component, we shall avail ourselves 
of the suppositions introduced in § 2 and also applied in § 6 con- 

1) Cf. Ramsay and TRAVERS, Phil. Trans. A. 197 (1901) p. 47 for data con- 

cerning refractive power and critical temperature of neon. 

aT xpl : 
2) Here = >0O fori x=0. We see here that VerscHAFFELT’s conclusion 

(These Proc. March 1906 p. 751) concerning the maximum temperature in the 

plaitpoint curve for mixtures, for which the component is indicated by a point 
from the region OHK (see fig. 2) must be supplemented by the possibility that 

he branch of the plaitpoint curve starting from the first component, goes to infinite 

pressures. 
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cerning the equation of state and the quantities a,, Vrand: 6,5. 10 

the net of spinodal curves for a given pair of substances 2 singular 

points may then occur, belonging to the spinodal curves for different 

temperatures. The values of « for these are determined by the 

equation : 

am 3b MV aaam 261MM aumasy — 522M V am 
— — a == 

l-wM bi; Varo =F 2boom  aiyimasem + 3622mMV aim 
For very small a,,. we find from this two singular points with 

x >1, so not belonging to that part of the w-surface which can 

denote phases of mixtures. Of these two singular points that for 

which the lowest signs hold, passes through infinity for increasing 

@,,, and then approaches the line =O on the other side of the 

u-surface. This line is reached for: 

Wanulaimn =—|—1+V148bsubinj=m - @ 
With increasing a,,/a,, the singular point, which appears to be a 

double point for this region, approaches the line v= 6, which line 

is reached for: 

Y avu/aiim = — (1—bsom By im) + W1—b6soy/biim-+ (b22m/b11m)?=m, (8) 

In this we assume bsoy < bi)y”). 

So if the mutual attraction of the molecules of the most volatile 

component and those of the other in connection with the attractions 

inter se attains a certain value — on the assumptions made for the 

calculations for m=V asm/aiim—=m, — the spinodal curve for 

T = T;, will no longer touch the side in A, (ef. fig. 1 Pl. 1), but it 

}) In this first invesugation of what may be expected for mixtures of helium, 

with a view of forming some opinion as to the conditions under which the ex- 

periments for this purpose are to be made, we put (§ 2), biom= + (bum-+ 620m ) 

diem = V dima (ef. Comm. Suppl. No. 8, These Proc. Sept. ’04 p. 227) in 

the calculations, no data concerning a@,, and 0b,, for those mixtures bein» available 

as yet. Also Van per Waats (These Proc. Febr. ’07, p. 630) assumes that as a 

rule diam < (dim d22.). It will be necessary for a complete survey concerning 

the different possibilities to make also other suppositions about dom (cf. VAN DER 

Waats l.c., Kounstamm ibid p. 642), at the same time taking care that @ and b 

are not put independent of v and 7. at least not both (cf. Van per Waats, These 

Proc. Sept. ’05 p. 289) and that they may only be put quadratic functions of x 
by approximation. 

If also for mixtures with very small a2, diem might be < V dum ow (ef. 

Kounstamm |c.). the phenomena of limited miscibility under discussion might still 
be sooner expected. 

*) For bom > bum the other singular point comes from side «=1 on the 

v-surface for a smaller value of @22m/diim. As probably this case does not present 

itself for the pairs of substances with smal] @2/a,, known to us, we shall not discuss it. 
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will have a double point there, in which the two branches of the 
spinodal curve intersect each other and the line =O at an angle. 

In this case the critical temperature of the least volatile component 

is not changed in first approximation by small quantities of admixtures. 

With greater attraction of the most volatile component — on the 

suppositions mentioned for m,< m<C m, — a spinodal curve on 

the w-surface will have a double point. This will lie the nearer to 

the side of the small ws, the more the attraction of the most volatile 

component increases. With a certain value of the attraction — m=m, — 

the spinodal curve reaches the line v = 4 with a double point, with 
greater attraction the spinodal curve will proceed from 2 — 0 on the 

w-surface with decreasing 7’, and touch the line vx=4 at T= 7;,,,. 

On the suppositions mentioned for 22m/biia < *°/,, the contact with 
the line »>=6 will here take place at temperatures > 7), , for 

bam /biim >**/,, at 7’< 7;,, so that in the latter case the spinodal 

curve comes first into contact with the line «— 1. 

In the first ease (422y/biim<c''/,,) a plait will come from «= 0 

and at lower 7, whereas for larger m a branch plait directed to the 

side «1 may develop: if m< m, it will be united through an 

homogeneous double plaitpoint (Kortewre, Archiv. Neer/. 24 (1891)), 
with a plait coming from v= 6 to a plait that crosses from one side 
to the other, if m—>>m, it wili pass into such a plait by contact 

with v= b. 

In the second case the plait which becomes from «=O will 

again united with on2 coming from v = 4 for smaller mm; for larger im 

a branch plait will have developed before this union takes place 

or before the spinodal curve touches the line v = #. . 

The shape of the spinodal curve for these cases with always 

greater attraction of the most volatile component, where we shall 

have to consider three phase equilibria, need not be discussed for 

the present, as they do not belong to the case of a component with 

feeble attraction *). 

For some values of b22\1/4::y table I gives the values dzay/a);iq = 1", 

calculated from the equations (2) and (3). If we compare with this 

the values of @2y/aiim for which Ti, = Ty: (§ 6) we see that they 

really lie between those calculated here. 

The shape of the spinodal curves for a case, in which m,<m<m,, 

has been represented on plate II, for the w-surface of the unity of 
weight (cf. § 2), with the relations and data assumed in § 2, 

except that a,, @,, = 0.00049 (or as2y/@i141 = 0.00196). 

1) Cf. moreover Van Laan, Arch. Tevter (2) 10 (1906), These Proc. Sept. "06 
p. 226. 
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TABLE I. 

bso /O1uM ni | ise 

Vo | 0.0014 | 0.0179 

a | 000134 0.000527 
| 

ig | 0.000011 0.000022 

The plait extending on the w-surface from v = 6 for a temperature 

> Ti, will have to be considered as a gas-gasplait according to 

§4 (ef. § 6). Also a similar plait for 7’< 77, if the connodal curve 
is not touched by an isomignie line, and is nowhere cut by an 

isomignie line which intersects the connodal curve of the plait coming 

from z=0',. According to § 4 we shal! be justified in considering 

also the plait lying on the side of the small v’s for 7;, >T7 >Ta,1 

(temperature for which the double plaitpoint considered occurs) as 

gas-gasplait, if the temperature is above the critical temperatures of 

the unsplit mixtures for all parts of that plait. That there can be 

some reason for doing so, appears when we calculate the reduced 

temperature for the double plaitpoint for some cases, e.g. for the 

ratios boom/biim and the m, belonging to it, mentioned in Table I. 

Putting bs/bum =n the double plaitpoint temperature is cdleter- 

mined by : 

a 27 (n—m*)* 
Pay ee re aR) as =m 

and 
2 m (n+ m)? 

Dy = : ¢ dpl ky 3 (1-+-m)? m (2—m) — n (1—2m) 

So for the case represented on Plate II we find : 

dy = 0.587, Tayt/Te, = 9.966, Tayt/Tee = 2-17. 

(To be continued). 

1) Here it appears that a gas-gasplait can occur also if Tkm< Tk,, and for 

temperatures T’< Tk, with Thm > Tk,, (cf. p. 794 note 1 and p. 794). 

(April 25, 1907). 

ET 
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Zoology. -— “On gastrulation and the covering of the yolk in the 

teleostean egg.” By Dr. J. Bouxs. (Communicated by Prof. 

A. A. W. Husrecar). 

(Communicated in the meeiing of January 26, 1907). 

1. Generally the process of gastrulation in teleosts is described 

by the greater part of the embryologists as a folding in of the margin 

of the blastoderm and the forming, partly by this process of folding 

and partly by delamination, of a mass of cells that contains the 

elements both of the chorda and mesoderm and of the entoderm. 
Only Waciaw Berent, M. v. Kowatewskr (in his paper of 1885), 

F. B. Sumner and myself have described a more or less independent 

origin of mesoderm and chorda on one side and the entoderm on 

the other side. Sumyrr called the mass of cells lying at the posterior 

end of the embryo, from which the entoderm originates, prostomal 

thickening; I kept the same name for them and regarded these cells 

as being derived from the periblast. 

The large pelagic eggs of Muraenoids, which I could collect in 

large quantities at Naples, offer an extraordinarily good object for 

the study of these processes, much better than the eggs of Salmonides, 

studied chiefly by French and German authors’). The formation of 

chorda and mesodermic plates out of the folded portion of the blas- 

toderm, and of the entoderm out of the “prostomal thickening’, the 

mass of cells that lie at the hind-end of the embryo and are connected 

with the superficial layer and with the periblast, is clearly to be 

seen from the beginning of the formation of the embryo until the 

closure of the yolk-blastopore (confirmed by Sumner in his paper of 

1904) and after a renewed careful study of these eggs *) I can only 

confirm entirely and in full the conclusions arrived at in my former 

paper *) and the observations described there at some length. 

But in accordance with the new and better definition of gastrula- 

1) Neither Henxecuy, nor Kopscu or JasLtonowski, to take a few examples, did 

see anything of these differentiations. Sumner gives however of Salvelinus very 

clear figures and descriptions. (Arch. f. Entwickelungsmech. Bd 17. 1903). 

2) During the last 2 or 3 years Muraenoid-eggs seemed to have disappeared 

entirely from the Gulf of Naples. Now (summer 1906) I found them again in 

sufficient quantities. When comparing the different eggs with each other, it seemed 

to me that they belong to a still larger number of different species than I 

concluded in my former paper (9), and that there must be distinguished at least 

10 different species of Muraenoid eggs in the Gulf of Naples. Dr. Sanzo at Messina 

came to the same conclusion. 

5) Perrus Camper, Vol. 2, page 185—210 1902, 
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tion in vertebrates, given by Husrecur and Keiser and confirmed by 

a number of other embryologists, this process in the teleostean egg 

too must be revised and more sharply defined. 

In my former paper I was led to divide the process of gas- 

trulation into two “phases”, one by which the gut-entoderm is formed 

and one by which chorda and mesoderm are differentiated. But now 

I think the line must be drawn still sharper and the second phase must 

be separated entirely from the process of gastrulation sensu strictiori. 

According to the definition given by Husprecut gastrulation is a 

process by which a gut-entoderm is differentiated from an ectodermic 

layer, and thus the germ consists of two distinct layers. The process 

of formation of chorda and mesodermic plates, which follows directly 

on the process of gastrulation proper (notogenese Husrecur) is a 

secondary complication of the process, characteristic of the vertebrate 

embryo. 

The most primitive mode of formation of the entoderm, according 

to Husrncnt, is by delamination and not by invagination. But after 

all it is chiefly the outcome, the formation of the two germ-layers, 

that is of interest. As soon as these two layers are formed and may 

be distinctly separated from each other, the process of gastrulation 

is finished. 

This is for example in amphioxus already the case at that stage 

of development, in which the gastrula is cap-shaped, the two layers 

(ectoderm and entoderm) are lying close against each other, the 

segmentation-cavity has disappeared, but the blastopore still extends 

over the entire breadth of the original blastula-vesicle. All the following 

processes until the closure of the blastopore (‘Riickenmund” of Huprecut) 

are notogenesis and lead to the formation of the back (chorda) and 

of the mesodermic plates and to the closure of the gastrula-mouth. 

When we study again the teleostean gastrulation-process from this 

point of view, we come to the conclusion, that in this case the 

process of gastrulation is ended as soon as the prostomal thickening 

has been formed, viz. at the beginning of the covering of the yolk. 

At that moment the “Anlage”’ of the entoderm is clearly differentiated, 

and the ectodermal cells begin to invaginate to form the chorda and 

mesodermic plates ; the concentration of the cells towards the median line 

begins, the long and slender embryo is formed out of the broad and 

short embryonic shield. The blastula-cavity, in the cases in which it is 

developed, has disappeared as such ; all the following processes, the 

longitudinal growth of the embryo, the covering of the yolk by the 

blastoderm ring, the closure of the yolk blastopore, belong to the 

notogenesis and we are no more entitled to reckon these processes 
55% 
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to gastrulation proper as we are to do that of the covering of the 

yolk by the entoderm in sauropsids. During this longitudinal growth 

of the embryo new cells are produced by the prostomal thickening 

and pushed inwards to form the entoderm, but this may not be 

called gastrulation any more. The period of development, during which 

the yolk is being covered by the blastodermring, differs much in 

different embryos. In muraenoids at the time the yolk-blastopore is 

closed the embryo possesses from 5 to 10 pairs of primitive segments; 

the issuing larvae possess 58 to 75 segments. In salmonidae at the 

closure of the yolk-blastopore of the 57 to 60 segments 18 to 28 

are differentiated. The other organs too are developed to a greater 

or lesser degree. To use the term gastrulation for the processes 

during this whole period of development leads us into difficulties. 

Tue first question we have to answer, when we study closer the 

process of gastrulation in teleosts, is: at what time does the process 

of gastrulation begin in the large meroblastic eggs? 

Recently Bracnret') has called attention to a process, which he 

ealls “clivage gastruléen’’, and which he describes for the eggs of 
Rana fusca as the formation of a circular groove at the base of the 

segmentation-cavity around the yolk-mass, before there is to be seen 

a trace of a blastopore (Rusconic groove) at the outside of the egg: 

“immédiatement?) avant que la gastrulation ne commence, la cavité 

-de segmentation, sphérique ou a peu pres, occupe Vhémisphere 

supérieur de l’oeuf (de Rana fusca).... Bient6t, sur tout le pourtour 

du plancher de la cavité de segmentation, une fente se produit par 
clivage; cette fente ’s enfonce entre les cellules de la zone marginale 
et les divise en deux couches: l'une, superficielle, prolonge directement 

la votite de la cavité de segmentation, mais est forme par des 
cellules plus volumineuses et plus elaires qu’ au pole supérieur; 

autre, profonde, fait corps avee les éléments du plancher. Cest ce 

clivage, que j’ai appelé “clivage gastruleen’”’, c’est lui, qui caractérise 

la premiere phase de la gastrulation, parce qu’il amene, en dessous 

de Véquateur de Voeuf, la formation dun feuillet enveloppant et 

d’une masse cellulaire enveloppée, d’un ectoblaste et d’un endoblaste.” 

And farther on: ‘lorsque ce clivage est achevé, il est clair, qu’a 

sa limite inférieure, lVectoblaste et Vendoblaste se continuent lun 

dans l'autre, comme le faisaient antérieurement la voiite et le plancher 

de la cavité de segmentation.” 

This line of continuity Bracuer calls “blastopore virtuel”; after 

a short time this virtual blastopore is converted into a real blastopore 

1) Archives de Biologie Tome 19 1902 and Anatom. Anzeiger. Bd. 27 1905, 
*) Anat. Anzeiger Bd. 27, p. 215, 
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by the formation of the groove that leads to the formation of the 

archenteric cavity. This groove is formed by delamination; until 

now there is no trace of invagination. This begins in what Bracuer 

calls the second phase of the gastrulation process, which leads to the 

formation of the archenteric cavity in its entire width, and is 

synchronic with the process of notogenesis, of the formation of the 

back of the embryo; “quand les levres blastoporales se soulévent, 

quand de virtuelles elles deviennent réelles, c’est que le blastopore 

va commencer a se fermer, c’est que le dos de lembryon va 
commencer a se former” (I.c. 1902, p. 225). 

Bracuet is right here. Also there, where be draws a sharp line 

between the entirely embryogenic blastoporus of the holoblastic eggs 
and the blastoporus of the meroblastic eggs with a large amount of 

yolk, which is divided into two parts, an embryogenic blastoporus 
and a yolk-blastoporus. 

But when he reckons these processes, which occur in the selachian 

and teleostean egg during the covering of the large mass of yolk 

and the closure of the blastopore, still to gastrulation, when he ealls 

the entire process of covering of the yolk ‘“clivage gastruléen’’, and 

calls the whole blastoderm ring “blastopore virtuel’, he goes too far, 

and forgets the significance of the phenomena, occurring at the end 

of segmentation and during the formation of the periblast. 

For the answer to the question, at what time does the gastru- 

lation in the teleostean egg begin, bis analysis of the phenomena 

of this process in the amphibian egg is extremely interesting. 

The segmentation of the teleostean eggs is not regular during all 

its phases. When we combine the very accurate observations of 

KopscH on this account, we see, that in the segmenting blastoderm 

at a definite moment, about that of the 10" division of the embryonic 

cells, there occurs an important alteration. 

Until the end of the 10 ¢ell-division (in Belone) the different 

cells divide wholly synchronic; in Torpedo Rickert found synchro- 

nism until the 9" division. By the tenth division the yolk-sac ento- 
blast is formed (in Gobius, Crenilabrus, Belone), the two nuclei of 

the marginal segments, resulting from this division, remaining in the 

undivided protoplasm; where this does not occur at the tenth division 

the deviation is very small (in Cristiceps argentatus it partly begins 

at the 9 division, in Trutta fario at the eleventh division). Syn- 

chronically with the differentiation of yolk-sac entoblast the super- 

ficial layer (‘‘Deckschicht’’) is differentiated. At the end of the 10% 

division all at once the blastoderm alters its form: it gets higher, 

more hill-shaped and the diameter is lessened; the mass of cells 
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concentrates, the superficial layer is still more clearly visible as a 

definite enveloping layer of cells. It is just the synchronic differen- 

tiation of the superficial layer, which shuts off the blastoderm from the 

surrounding medium and is the only way by which the developing 

cells may get the oxygenium from the perivitelline fluid, on one side, 

and of the periblast, by means of which the blastoderm is nourished 

by the yolk, on the other side, which seems to me to be important ; 

by this synchronic differentiation a new phase in the developmental 

process is initiated, and the series of changes have begun that lead 
to gastrulation. 

Very soon the blastoderm-dise flattens, at first only because the 

superficial layer contracts a little, and the blastoderm sinks a little 

into the yolk-sphere (fig. 8) but after that because the blastodise 

itself spreads out, flattens (fig. 9). The cells come closer together, 

and soon the unilateral thickening that forms the first outwardly 

recognisable beginning of the building of the embryo, becomes visible. 

During these changes it is of no account whether a blastula-cavity 

is formed, or not. As I have described elsewhere, in different murae- 

noids during this stage a distinct blastula-cavity is formed, which may 
be seen in the living egg. Afterwards follows the flattening of the 

blastodise and the disappearance of the cavity as such. The closer 

study of young stages of the eggs of muraena N°. 7’) showed me 

however, that in these eggs no blastula-cavity is formed, and that 
in this case the blastoderm, that takes just the same conical shape 

as the hollow blastoderm in the other muraenoid eggs, remains solid 

and is built up of a mass of loosely arranged cells. The further 

development is the same as in the other series (c.f. fig. 1—3 on 

plate 1). 

This flattening of the blastodisc, following on the stage just described, 

coinciding with the concentration of the cells of the blastoderm 

towards the side where in later stages the embryo is formed, and 

coming before the invagination (and partial delamination) of the 

blastoderm cells, that leads to the formation of the chorda and the 

mesodermic plates, is already a part of the gastrulation process and . 

must be compared with the ‘“clivage gastruléen”’ of the amphibian ege. 

Immediately on this “clivage gastruleen’”’ follows the formation of 

the prostomal thickening (that is the ‘‘vlastopore réel” of BracHer), 

there where the superficial layer or pavement layer is connected 

with the periblast, out of the surperticial cells of the periblast *) (e-f. 

1) Comp. Perrus Camper, Vol. Il p. 150. 

2) Sumner (1. c. page 145) saw evidences for this mode of origin in the egg of 

Salvelinus, but not in that of Noturus or Schilbeodes. On these two forms I| can- 
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fig. 4 5 and 6 on plate 1). It seems probable, that at least in some 

cases entodermcells are formed by delamination from the periblast at 
some distance from the surface in front of the prostomal thickening 

(fig. 5e). So here, as in many vertebrates, the entoderm is formed 

by delamination. At the moment of the differentiation of the pros- 
tomal thickening (figs. 2, 4), there is still no trace of the invagination 

of the mesodermeells, only a thickening of the mass of cells lying 

just overhead of the cells of the prostomal thickening. Immediately 

afterwards however a distinct differentiation of the mesoderm becomes 

visible. At that stage the notogenesis begins and the gastrulation 

process is finished. The prostomal thickening is the ventral lip of 

the “blastopore réel” of the Amphibian egg. For the developmental 

processes following on this stage I can contain myself with referring 

to my former paper. That here only a small, not very prominent 

tail-knob is formed and no far-reaching projecting tail-folds appear, 

as in the selachean embryo, is caused by the relation of the pave- 

ment-layer to the blastoderm and the periblast, which inflaence the 

development of teleostean egg (‘‘développement massif” of HENNEGUY). 

2. To determine the direction of growth of the blastodermring 

during the covering of the yolk, I used in my former paper the 

oil-drops in the yolk of the muraenoid eggs as a point of orientation, 

on the contention that these oildrops maintain (in the muraenoid 

egg) a constant position in the yolk. On this basis I constructed a 

seheme of the mode of growth of the blastoderm in the yolk. *) 
Both Sumner and Kopscu rejected this contention and the scheme, 

SuMNER because of the fact, that by inverting the egg of Kundulus 

heteroclitus in a compress, the oil-drops may be caused to rise 

through the yolk and assume a position antipodal to their original 

one, which shows, that here the oil-drop may not be regarded 

as a constant point of orientation in the egg. In this SuMN»ER is 

perfectly right. Not only in Fundulus, but in several marine pelagic 

eggs too the oil-drops may be seen travelling through the yolk by 

converting the egg or bringing the young larva (in some _ species) 

in an abnormal position. In the muraenoid egg however the case 

is entirely different. Here the structure of the periblast and of the 

not judge, but I will only mention here, that the figures, drawn by the author, are 

taken of much too late stages of development, to be convincing. And after all, 

where the blastodermcells are so much alike, as is the case in most teleostean 

eggs, one positive result im a favourable case as is offered in the muraenoid egg, 

is more convincing than several negative results in less favourable eggs. 

1) 1. ce. page 142. 
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yolk-mass, which I described at full length in my former paper, 

completely checks the displacement of the oil-drops. This is to be 

concluded already from the behaviour of the normal egg. 5o0 in the 

egos of Muraena No. + a large number of rather large oil-drops are 

lying at about equal distances from each other at the surface of the 

yolk-mass. During the entire process of covering of the yolk, the 

distance of these oil-drops remains the same, they maintain their 

relative position absolutely, and only during the slight disfigurement 

of the yolk-sphere, caused by the contraction of the blastodermring 

during the circumgrowth of the yolk (fig. 4 on plate 2) the position 

of the oil-drops is changed a little, only to become the same as 

before, after the yolk has regained its spberical form. When these 

oil-drops were lying loose in the yolk or in the periblast, they would 

have crowded together at the upper pole of the egg, or at least their 

relative position would have undergone a change during the covering 

of the yolk. Only when the yolk-mass in the developing embryo 

becomes pear-shaped and very much elongated (l.c. plate 2, fig. 6, 7), 

the oildrops of course change their position. Even then, however, 

they remain scattered through the yolk. 

Experiments also show the constant fixed position of the oil-drops 
in the muraenoid eggs. When we transfix the egg-capsule carefully 

with a fine needle, it is possible to lift one of the oil-drops or a 

small portion of the peripheral yolk out of the egg. The other oil- 

drops retain their normal position, and in most cases such eggs 
develop normally and give rise to normal embryos. When we operate 

very carefully under a low-power dissecting-microscope, it is possible 

to leave the oil-drop connected with the periblast by means of a thin 

protoplasmatic thread. When we do this in a very early stage of 

development, at the beginning of the gastrulation-process, we see 

that this oil-drop, which surely may be regarded as a fixed point on 

the surface of the egg, retains its position in relation to the other 

oil-drops, until it is cut off from the periblast by the growing  blas- 

todermring. In fig. 2a, 26, 2c and 2d on plate 2 I have drawn 

from life several stages of this process in an egg of Muraena No. 1. 

During my stay at the Stazione Zoologica at Naples, in August and 

September 1906, I performed several of these experiments with 

different muraenoid eggs. They all led to the same result, and con- 
firmed my former statements. And so I believe that my contention 

was right and that the scheme I figured is a true representation of 

the facts. Of course only in a general sense, for there are many 

individual variations (so for example the case figured in fig. 3 on 

plate 2). And after all, when we compare this scheme with that 
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given by Kopscu for the trout, we see that they do not differ so 
very much, and that the displacement of the hinder end of the 

embryo is almost the same. In the text of my former paper however 

I expressed myself rather ambiguously, and brought my view into 

a too close contact with that expressed by OxLiacurr. The tigures 

however show that my scheme differs rather much from that of 

OELLACHER. 
But I differ from Kopscu in his supposition that the hea d-end 

of the developing embryo is a fixed point on the periphery of the 

egg. I find myself here quite in harmony with ScmNner, who draws 

from the large series of his extremely careful and exact experiments 

the conclusion, that ‘“‘the head end also grows, or at least moves, 

forward, though to a much smaller extent” (1. ¢. page 115), and 

says: “I regard it as highly probable (see Exp. 1, 3, 34, 35, 36 
and Fig. 32) that the primary head end grows — or is pushed — 

forward from an original position on the margin” (1. c. page 139). 

From different experiments of the author we may draw _ the 

conclusion, that in many cases this forward growth of the head-end 

is rather extensive (exp. No. 6, 10, 11 (partly), 26, 35, fig. 10), and 

experiment N°. 6 (table VIII) among others shows, that under circum- 

stances the direction of growth may be entirely reversed, so that 

the tail-knob of the embryo remains at the same place, and the 
head-end bends round the surface of the yolk. 

Kopscn too, in his paper: “Ueber die morphologische Bedeutung 

des Keimhautrandes und die Embryobildung bei der Forelle’’, describes 
an experiment with simular results in the trout. 

So it is not unreasonable to suppose, that in the spherical egg of 

the Muraenoids during the covering of the yolk the head end of 

the embryo is moving forward, and to a certain extent follows the 

growing blastodermring, which is the case chiefly during the later 
stages of the covering of the yolkmass, as | showed in my scheme. 

During the first stages of development it is chiefly the tail-end of 

the embryo which travels backwards, (see the scheme in my former 

paper and fig. 1—-5 or plate 2), and Kopscn is right to locate here 

the centre of growth of the embryo. 

The conclusion of Sumner, that for some time prior to the closure 

of the blastopore, the ventral lip of the latter (former anterior 

margin of the blastoderm) travels much faster than the dorsal lip 
(l. e. p. 115) is quite in harmony with my results for the murae- 

noid egg described in my former paper. *) 

1) Petrus Camper, I. c. p. 196. 
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3. At the end of the covering of the yolk, at the closure of 

the blastopore, Kuprrer’s vesicle is formed after the manner described 

at length in my former paper. By Swarn and Bracuut?) and by 

SUMNER the narrow passage connecting this vesicle with the exterior, 

through the closing blastopore, is regarded as representing the neuren- 

teric canal. I do not think they are in the right here. Kuprrer’s vesicle 

is a ventral formation. Dorsally it is separated from the cells of the 

medulla by the cells of the prostomal thickening and the pavement 

layer. An open canalis neurentericus is not found even in these forms. 

Kuprrer himself called the vesicle allantois. Husrecat followed him 

in this. In my former paper I compared the vesicle with the allan- 

tois of amniota on physiological grounds, and | think it is a very 

good thought of Husrecut to take up the old name of Kuprrer and 

compare the vesicle with the allantois on morphological grounds. 

DESCRIPTION OF FIGURES ON PLATE 1 AND 2. 

Plate 1. 

Figg. 1—4. Median sections through eggs of Muraena N°. 1 on different stages 

of gastrulation. In fig. 3 gastrulation is finished and notogenesis is begun. In fig. 2 

the structure of the yolk is drawn. Enlargement 40 times. Fig. 4a, 5 and 6 give 

median sections through the developing prostomal thickening and adjoining parts, 

seen under a higher power. 

Figg. 7—9. The flattening of the blastodise at the beginning of gastrulation in 
— 

eggs of Muraena N°. 7. Enlargement 4’) times. 

Plate 2. 

All the figures on this plate are drawn from life as accurately as possible. 

Fig. la—le. Covering of the yolk in an egg of Muraena N.. 1. 

Fig. 2a—2d. Covering of the yolk and closure of the blastopore in an egg of 

Muraena N°. 1. By means of a fine needle one of the oil-drops is nearly severed 

from the surface of the yolk, remaining connected with the periblast only by means 

of a thin protoplasmatic thread. In fig. 2¢ this oil-drop is cut off from the surface 

of the egg by the travelling blastodermring and is lying close against the egg- 

capsule EK. In fig. 2d (closure of the blastopore) this oil-drop is no more drawn 

in the figure. 

Fig. 3. Unusually fargoing dislocation of the hinder end of an embryo during 

the covering of the yoik. The head end lies approximately at the former centre 

of the blastodise. 

Fig. 4. Compression of the yolk-sphere by the growing blastodermring in an 

egg of Muraena N’. 4. The oil-drops only temporarily changed their relative dis- 

tances a little. 

OD = oildrop. 
pv = prostomal thickening 

per = periblast. 

bl = blastoderm. 

D = pavement layer 

e = entoderm 

Leiden, 17 January 1907. 

2) Archives de Biologie T. 20. 1904. page 601. 
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Physics. — “On the influence which irradiation exerts on the electrical 

conductivity of Artimonite from Japan”. By Dr. F. M. Janerr. 
(Communicated by Prof. P. Zeeman). 

(Communicated in the meeting of February 235, 1907). 

§ 1. Having been occupied for a considerable time with the 

determination of the specific electrical resistance in the three crys- 

_tallographic main directions of the antemonite from Shikoku (Japan), 

I had already found that with this substance, which belongs to the 

very bad conductors, inexplicable irregularities presented themselves, 

when the resistance was determined several times anew during a 

long time, with identical electromotive force. 

Generally the obtained deflection of the galvanometer first became 

larger and larger, and decreased again in course of time, after which, 

as I found, periodical increase and decrease sometimes followed. It 

was impossible to detect any connection between tension, intensity 

of current, and time. 

As for rods of a length of some centimeters and a section of about 

a quarter of a square centimeter, resistances were found in the different 

directions lying between 500 and 20000 millions of Ohms, I first 

thought of an impregnation of the electrical charge in the ill-con- 

ducting material. On account of its opposed direction, however, an 

eventual polarisation current would have to cause an apparent ‘crease 

of the resistance, whereas experience generaliy showed a decrease of 

the initial resistance. 

§ 2. While I was trying to ascertain the cause of these deviations, 

a sunbeam fell through an aperture of the curtain on the piece of 

mirror-glass which closed the THomson-galvanometer, and was partially 
reflected to the apparatus containing the piece of antimonite, cut 

with its longitudinal direction parallel to the crystallographic J-axis, 

The needle of the galvanometer deflected immediately towards that 

side in which the total deflection was imcreased. At first I thought 

that the heat of the sun penetrating the galvanometer on one side 

had changed the cocoon thread so much as to cause a torsion. Some 
moments later, however, when I happened to light a match in the 

neighbourhood of the preparation, the mcrease of the already existing 

deflection was repeated, and now in the same sense as before, and 
at the same time stronger. 

§ 3. So we have met here with a new phenomenon. Either the 
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radiation of light, or the heat must be the cause of the phenomenon. 

1 then undertook the following set of experiments. 

A rod of antimonite quite covered by paraffin, and cut parallel 

to the J-axis, was shunted into the circuit of a dynamo, the tension 

being kept at exactly 35 Volts by means of a resistance of incan- 

descent lamps. When shunting in the THomsoy-galvanometer '), which 

had been hung up in an antivibration apparatus of JuLius, and 

which was so sensitive, that at a distance of mirror of two meters, 

it still gave a deflection (double) of 26,5 mm. for a current of 

0,000000006 Amperes, -— we obtained a constant, single deflection 

of 10,7 cm. on the left of the zero point. 

An incandescent lamp (of 110 Volts), placed at about 2 meters’ 

distance from the preparation, gave an icrease of this deflection of 

+ m.m., i.e. 3,7 °), — agreeing in this case with a decrease of 

resistance of about 53 millions of Ohms. 

When the same lamp was placed at 1 meter’s distance it brought 

about an increase of the deflection of 11 m.m.; at ‘/, meter’s distance 

of about 20 m.m., and held near the rod for a short moment, of 

more than 220 m.m., i.e. an increase of the conductivity of resp. 

= 10°) a FST emt 206 >! *) 

Then the lamp was removed, and after the deflection had resumed 

about its original value, one of the curtains at the window was 

drawn aside, so that the diffuse daylight (overcast sky) fell on the 

apparatus. Instantly the deflection was increased by more than 4 m.m. 

i.e. about 3,7°/,. Then a wooden box was placed over the apparatus, 

and then removed. Every time the experiment was repeated the 

constant deflections in the light were found from 3 to 8 m.m. larger 

than those in the dark. 

§ +. In the foregoing experiments only exceedingly little light 

fell on the rod of antimonite, as it was quite covered by a coat of 

paraffin *) about O,f em. thick, and so only the light penetrating 

the half transparent coating could have any effect. 

Then the experiment was repeated as follows. 

A lamella‘) of antimonite was clasped between two much larger 

copper plates, which two plates were well insulated. The condensator 

(fig. 1) obtained in this way was suspended on silk threads. *) 

1) The internal resistance of this instrument amounted to 6681 Ohms. 

2) The resistance of the rod was diminished by an amount of more than 950 

millions of Ohms in the latter case. 

5) The purpose of these precautions will be explained later on in a paper 

written in conjunction with Mr. Vas Nunes. 

*) The antimonite splits perfectly // (010), so g b-axis. 
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The antimonite plate had a thickness of about 1 m.m. and a 

section which may have amounted to about '/, ¢.m’. 

Now if a source of light was placed at I, the remaining deflection 

of about 1,8¢.m. obtained at a 10,5 Volts’ tension was only increased 

by 2 m.m., i.e. by about 11°/,. If, however, the light was placed 

at the same distance in I, the increase amounted to about 11,5 m.m., 

ie. 64°/.. 
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In the former case the plate A is viz. in the shadow of A,, and 

so receives but very little light reflected by the walls; in the latter 

case, however, the radiation is direct. 

§5. Ifa thick plate of colourless plate-glass is placed between 

the source of light in If and the apparatus, the remarkable fact 

presents itself that the deflection is considerably increased. The 
explanation of this phenomenon was obvious. For a copper bar, 

heated to some hundreds of degrees, and brought near the apparatus, 

immediately diminished the obtained deflection greatly. Hence — 
and this is a most remarkable result — rise of temperature has an 
influence directly opposed to that of radiation of light: it enlarges 
the resistance instead of diminishing it, as rays of light do, 
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If the plate is again removed, the deflection decreases again to 

the value it had before the plate was placed between ete. So this 

fully proves that it is the radiation of light which influences the 
conductivity of antimonite in so high a degree, and not the heat; 

for the latter diminishes the conductivity, in contrast with the former. 

§ 6. Finally glass plates of different colours were interposed between 

the source of light and the rod. 

It then appeared that the influence of the differently coloured 

light was very different. The antimonite namely proved to be subjected 

to hardly any change by green light; for red light the increase was 

pretty large, for yellow light a little more, for green very small, 
for violet light again stronger. In each of these cases the deflection 

-appeared to have resumed its original value after removal of the 

source of light’). With violet radiation | obtained an increase ot 

conductivity which amounted to about 150 °/, of the original value ; 

with white light with interposed glass plate one of about 250 °/,. 

To get some insight into the guantitative action for a special case, 

the following experiments were made. An ordinary electrical incan- 

descent lamp was adjusted at 16 cms’. distance from an antimonite rod 

covered with a coat of paraffin 1 cm. thick. First of all it was 

ascertained that action of light by itself did not excite an electrical 

current. It then appeared that the deflection of the galvanometer 

was increased just as much irrespective of the direction of the 

current. So the decrease of resistance is independent of the direction 

of the current. By interposition of coloured glass plates I got a 

rough estimation of the relative influence of the different colours — 

of the spectrum. Thus I found: 

White light, placed at 16ems’. distance, makes the conductivity rise to 200%, of its original value 

Red ” ” 39.) a3 3039 ” ” ” ” 939 194% 5 45 ” ” 

Orange ” ” shits 39 ” ” ” ” 999 153% 4, 45 ” . 

Green ,, ” a | Oe | 7 ” ” ST 9 99 116% 4, 45 ” ” 

Blue ,, ete Ss: oes 8 S55 a = + “ 95 5g A TOU Gee at ~ 

1) Not quite the original value. The substance shows hysteresis to a certain 

amount, which, however, is smaller than for selenium. Already 20 a 40 
minutes after the source of light had been removed, the original deflection was 

sometimes found back. The mineral seems to be quite free from any admixture 

of selenium, as a qualitative investigation taught me. Remarkable in a high degree 

is the fact, that on melting the natural mineral, it obtains, when solidified as a 

conglomerate of little crystals, a specific resistance, which is many thousand 

times less than before, while at the same time it has lost its sensibility to light- 

radiation quite. On heating the antimonite however, without melting, it conserves 

. this property. Analysis has taught me, that there are present the elements: Sb, 5, 
Ca, Ba, Sr, Si and, as Prof. Kury found, traces of Zn and Co; also SiQ,-crystals 

are included. (Added in the English translation), 

7 
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As heat-rays have only an exceedingly slight effect, and, as I 

ascertained later on in conjunction with Mr. Vas Newnzs, also the 

ultraviolet light emitted by cadmium poles causes only a small 

increase of the conductivity, the dependence of wave-length and 

decrease of resistance is evidently represented by a curve whose 

minima lie in the ultrared, in the green and in the ultraviolet, and 

whose maxima are situated in the red and in the blue part of the 

spectrum *). 

Later on when the determinations of the resistance of this sub- 

stance will have led to favourable results, we shall make some closer 

communication on the relation between thermal and electric motion 

in this conductor. 

§ 7. The phenomenon discovered here reminds strongly of that 

observed for selenium’). It is, however, noteworthy, that though the 

dependence of the increase of the conductivity on the radiation of 

light, and even on the wave-length of the light manifests itself in a 

perfectly analogous way to that for antimonite, yet the two differ in 
some respects. First of all for the selenium polymorphous changes, 

and the displacement of equilibrium attending them play an im- 

portant part; then, however, the resistance always decreases here 

with rise of temperature, so exactly the reverse of what happens in 

my investigations, in which moreover there is no question whatever 

of polymorphous changes, as far as is known. An analogy between 
the two cases is to be found in the fact already discovered by 
Apams*), that the resistance decreases with rising electromotive force, 

also after continued action of it; such a deviation from the law of 

Onm is also found for the antimonite. 
On the other hand the behaviour of antimonite from Japan seems 

to present a closer analogy with that of the crystallised te//urium ; 

1) Though it is not intended as an explanation, I will yet call to mind that it 

follows from Mi.ter’s investigation (N. Jahrb. f. Miner. u. s. w. Beil. Bd. 17, 187— 251) 

on the optical constants of the antimonite from Japan, that the indices of refraction 

nm, and wm, have their maximum values exactly for the green rays (between the 

lines E and F) (viz. n) =5,47—5,53 and n, = 4,52—4,49), while also the double 

refraction reaches its maximum value for these rays. The polarisation of the 

reflected rays is right-elliptic (negative). However, on using polarized light, we could 

not find any influence of the direction of vibration: the variation of the electric 
resistance was in the two cases the same. (Added in the English translation). 

*) G. Wiepemann, Die Lehre vy. d. Elektricitaét. (1882). I. p. 544—553). 

3) Sate, Phil. Mag. [4]. 47. 216. (1874); Pogg. Ann. 150. 333; Chem. News. . 
33. 1. (1876). 

*) Apams, Phil. Trans. 157.; Pogg, Ann. 159. 621. (1876), Phil. Mag. [5]. 1.115 
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here, too, the resistance increases with heating, decreases with 

exposure to. light ’). 

In conjunction with Mr. Vas Noyes I hope shortly to publish also 

some quantitative data on the phenomenon discovered by me, and 

also on the behaviour of the melted and again solidified antimonite 

and the analogous selenium compound. This investigation has been 
made in the Physical Laboratory at Amsterdam. 

Anatomy. — “On the influence of the fins upon the form of the 
trunk-myotome”’. By B. van Tricnt. (Communicated by Prof. 

G. C. J. Vosmanr). (From the Anatomical Institute at Leyden). 

(Communicated in the meeting of March 30, 1907). 

This research forms a direct sequel to Professor LANGELAAN’s work 

“On the Form of the Trunk-myotome’, and is intended to show the 

influence of the fins upon the form of the myotome. The method 

which I followed, was based upon the chief result of the foregoing 

research viz. that the differentiation of the myotome takes place in 

a continuous manner by means of folding, and that it is possible to 
follow the process of folding in dissecting the intermyotomal tissue. 

Now the method of direct dissection proved to be restricted in its 

application, so that it was necessary partly to apply a more indirect 

one. This latter method rests upon the relation, which exists between 

the form of the myotome and the structure of the transverse sections 

of the animal. 

Differentiation of the dorsal musculature. 

From a rather large sample of Mustelus vulgaris the skin with 

the underlying connective tissue was removed, so that the external 
surface of the myotoms was laid bare (figure I). Then in the region 

before the first dorsal fin the parts constituting one and the same 

myotome were determined; the form of this myotome exhibited 

about the same form as in Acanthias, only the lateral part of 
the myotome proved to be displaced caudally; the breadth of 

this displacement amounted to about half the breadth of the myo- 

tome. This myotome was arbitrarily indicated by the number 

1) | have made an arrangement with Mr. J. W. Gittay at Delft with regard to 

the mounting of antimonite preparations, and the preparation of antimonite cells 
for practical use. 
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1 and the following myotoms by subsequent numbers. After that, 

transverse sections of the animal were made, of 1—2 em. thickness, 

and the numbering transferred to these sections, so that the lamellae 

belonging to one and the same myotome received the same number. 

For the sake of an easy description, figure II gives a hemischematic 

representation of the myotome, in which the peaks are indicated by 

numbers, the lamellae by letters. In figure III which is the trans- 

verse section, (indicated in figure I with an A) the peaks appear 

as systems of concentric lamellae marked in accordance with the 

marking in figure II]. If we now pass to the region of the first 

dorsal fin (figure IV, section B of figure I and fig. V, section C of fig. I) 

the image of the transverse section is changed, instead of being com- 

posed by four peaks, the dorsal musculature only shows three peaks. 
The peak, indicated as number 1, has disappeared and instead 

of this peak we find the first lamellae of the dorsal fin. Now in all 

subsequent sections this first peak does not reappear any more. By 

the method of successsive numbering it was possible to determine 

the first myotome losing its most dorsal peak (number 1). The 

external surface of this myotome is blackened in figure I. From the 

principle laid down in the beginning of this notice ensues, that the 

myotome apparently losing its first peak, gives a muscular element 

to the dorsal fin; this element is therefore also blackened in figure I. 

It may be seen in figure I that the first myotome giving an element 

to the fin lies a little caudally in respect to the front edge of this 

fin. The number of myotomes giving a part to the first dorsal fin 

may easily be determined, because these composing parts of the fin 

are separated by intersegmental tissue; that we have really to deal 

with intersegmental tissue follows from the fact that through these 

lamellae bloodvessels and extremely fine nerve fibres reach the skin 

(vid. v. Bisselick “On the Innervation of the Trunk-myotome’’). The 

total number of muscular elements composing the fin, amounted to 

34, so that the last myotome still giving an element to the first 

dorsal fin already lies in the region of the second dorsal fin. From 

the fact that the most dorsal peak (number 1) does not reappear 

any more in the transverse sections, it follows that the next myotome 

gives the first element to the second dorsal fin. The surface of this 

myotome is also blackened in figure I to show its position in relation 
to the front edge of the second dorsal fin. It is evident, that this 

myotome occupies the same position in respect to the second dorsal 

fin as the first myotome does in respect to the first dorsal fin. The 

number of myotomes composing the second dorsal fin amounts to 30. 

Upon the second dorsal fin follows the dorsal part of the caudal 

56 
Proceedings Royal Acad. Amsterdam. Vol. IX. 
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fin. In this fin the myotomes are pressed together so closely that a 

direct counting of the number composing the fin is no more possible ; 

by comparing the total number of vertebrae to the number of 

myotomes composing the first and second dorsal fins, we find that 

about 70 myotomes give an element to the dorsal part of the 

caudal fin. 

The results obtained by this indirect method are corroborated by 
the result of the direct dissection. If we take a myotome giving a 

muscular element upon the more anterior part of the dorsal fin and 

begin the dissection with lamella 6 in the neighbourhood of the 

second peak and proceed preparing caudally, we find lamella 6 being 

rolled in, towards the mesial plane of the body, in the shallow 

excavation in which the base of the fin rests, (tig. VI‘. Along this way 

the muscular tissue becomes gradually atrophic and only a thin band 

remains, consisting of the connective tissue which forms the frame- 

work for the muscle fibres. In the neighbourhood of the sagittal 

plane of the body this lamella is folded, in such a manner, that the 
line of folding (figure VI L’ L") runs parallel to the sagittal axis of 

the body. By this process of infolding the direction of the lamella } 
is reversed, the infolded part proceeding cranially; this part of 

lamella 6 passes into the dense sheath of connective tissue, which 
is interposed between the dorsal musculature and the base of the 
fin. As far as I can see this sheath of connective tissue is chiefly 

built up by a large number of these lamellae, but they are so inextri- 

eably united that I have not been able to follow lamella 6 in this 

sheath. If starting from the fin, we prepare free one muscular ele- 

ment of the fin, and this element is lifted up with enough precau- 
tion, it may be seen, that from the base of such a fin-element as well 

a thin lamella of connective tissue passes into that sheath of tissue in 

which we could follow the reversed part of lamella 6. The direct 

continuity however of both lamellae in the sheath of dense connec- 
tive tissue, I have not been able to establish. 

The muscular elements composing the fin (figure VI) are trian- 

gular laminae; one side of the triangle is contiguous to the fin-rays 

and the connective tissue which unites these rays in the mesial plane 

of the body, the lateral side forms part of the lateral surface of 

the fin, while the base is excavated and moulded upon the shallow 

depression in the dorsal musculature. From the outside a septum of 

intermyotomal tissue (s.i. figure VI) penetrates into the muscular 

substance of the fin dividing this substance into a lateral (6) and a 

mesial part (a). This septum inserts a little above the muscular 

substance upon the fin-rays, and becomes thinner and thinner without 
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reaching the base of the fin. At the base therefore the lateral 

and mesial parts of the musctlar substance are continuous and form 

a peak (figure VI p. 1), lying quite near the mesial septum of the 

body. This peak must therefore represent the peak which is lost in 

the transverse section (figure IV) made at the level of the first dorsal 

fin. The septum penetrating into the muscular substance of the 

fin is therefore the intermyotomal septum stretched out between 

lamellae a and / of figure II. 

It ensues therefore from the combined observations, that the first 

dorsal fin (and the same applies to the other dorsal fins) is differen- 

tiated by a process of infolding similar to the differentiation between the 

dorsal and the lateral and between-the lateral and the ventral mus- 

culature. The line of infolding crosses lamella 6. In that part of the 

lamella, which lies in the depth of the fold the muscular tissue is 

atrophic. Proceeding from peak 2 caudally along lamella 4 the atrophy 

of the musclefibres gradually increases, whilst on the other hand 

proceeding from peak 1 caudally along lamella @ (as far as it lies upon 

the fin) the atrophy of the muscular tissue is abrupt. The position of 

peak 1 has not changed in respect to the mesial plane of the body, 

only the lamellae have changed their direction. The superior cornu 

(i. e. lamella a) is no longer directed cranially but turned upwards 

and this is also the case with that part of lamella 4 that has passed 

into the fin. In connection with this representation of the facts, I deter- 

mined the direction of the muscle fibres in the fin; here they slope 

downwards from the intermyotomal septum. Now if we imagine the 

lamellae composing the fin restored to their original position, the 

course of the fibres in lamella @ would be from mesial to lateral 

and from caudal to cranial and this was actually the direction of 

the muscle fibres in lamella @ in the region cranially of the first 

dorsal fin. 

Differentiation of the latero-ventral musculature. 

The lateral musculature, as described by van Bissenick, shows a 

peak directed caudally (peak 5, figure II and fig. VII) situated near the 

second line of infoldmg L’'L’. Proceeding along the body a second 

peak appears directed cranially. The first myotome showing this peak 

(peak 6, fig. II and fig. VII), is the eleventh myotome following the first 

myotome giving a muscular element to the first dorsal fin. The two 

peaks lie near to each other in the neighbourhood of the second 

fold. In consequence of the infolding of the myotome at that place, 

they do not reach the surface of the body, being covered from the 
outside by the ventral musculature. Meanwhile the ventral part of 

the myotome undergoes a change in form, the first lamella belonging 

56* 
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to the ventral musculature (lam. / figure II and fig. VII) becomes 

shorter and the first peak of the ventral musculature directed crani- 

ally (peak 7, figure II), more and more develops into a true peak. 

Now by the disappearence of lamella 7 peak 6 and 7 approach each 
other, remaining divided, however, by a thin lamella of connective 

tissue penetrating into the second fold along the line L'L’ (fig. VIII 

and IX). In consequence of the process of infolding peak 6 lies mesially 

in respect to peak 7 which covers peak 6 from the outside. At the 

level of myotome 15 (reckoned from the first myotome, giving an 

muscular element to the first dorsal fin) the second: fold vanishes. 

Together with the disappearence of the fold we notice. the vanishing 

of the displacement of the lateral musculature in respect to the 

ventral musculature, which was only a consequence of the process 

of infolding, so that the two peaks (6 and 7) lie side by side in the 

same transversal level of the body. At the place of disappearance 

of the second fold the two peaks unite to a single peak directed 

cranially. Together with the disappearance of lamella 7 we notice 
the further development of lamella g. 

At the same level where the second lateral fold disappears, we 
find the appearance of the cartilagineous plate, uniting the two 

basipterygii of the pelvic fins. With its front border, this plate folds 
in lamella g (figure II and X) from the inside so that this lamella 

covers the front edge of this plate; in this way the pelvie fin is 
formed. The details of the formation of the pelvic fins I have not 

yet investigated. By the formation of the pelvic fin peak 8 (fig. ID 

and Jamellae g and / pass into the musculature of the fin, so that 

in a transverse section through the animal, at the level of the pelvic 

fin, the trunkmusculature is only composed by five peaks (viz. 2. 

3. 4. 5. (6+ 7) of figure II). This structure of the transverse 

sections does not change any more proceeding along the body 

caudally (figure XI and XII). 

The disappearance of the first fold, dividing the dorsal from the 

lateral musculature, takes place in the same way as described for 

the second fold, at the level of myotome 45 (reckoned from the 

first myotome giving an element to the first dorsal fin); only the 

case is more simple not being complicated by the presence of two peaks. 

Finally I paid attention to the influence of the abdominal cavity 

upon the form of the myotome. I found this influence to be very 

restricted, as it only determines to some extent the dimensions of the 

myotome, without producing any particular differentiation in its form, 

In fine I wish to express my thank to Prof. LANGELAAN for his 

aid and assistance in these researches, 
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Anatomy. — “Anatomical Research about cerebellar connections.” 

(Third communication). By Dr. L. J. J. Muskens (Communi- 
cated by Prof. C. Wrinxuer). 

(Communicated in the meeting of March 30, 1907). 

The ventral cerebello-thalamic bundle. 

Whereas it is nowadays generally accepted, that the direction of 

conduction in the superior crus cerebelli is cerebellofugal, there is 

no uniformity of opinion attained yet by the authors regarding the 

bundle, which is found degenerated in the predorsal region in the 

pons after cerebellar Jesions. After PenLiizzi and vAN GEHUCHTEN, 

Tuomas, OrEsTANO, CayaL and Lewanpowsky this bundle is built up 

by fibres, which take them origin from the superior crus after it 
has crossed the raphe in WERNEKINCK’s commissure, the direction of 

conduction being rubro-fugal. Prosst however, describes this bundle 

as the ventral cerebello-thalamic bundle, conducting nervous impulses 
from the cerebellar basal nuclei upward towards the red nucleus. 

The problem of this bundle really has to deal with two questions ; 

1st. which are the two nerve centres, which are connected by means 

of this bundle and 2°¢. what is the direction of conduction of impulses 
in the same. 

Cats appear to be more suitable for these experiments. In two 
animals different parts of the cerebellar cortex, with the adjacent 

part of the basal nuclei, were removed, except the flocculus. In these 
animals there was hardly any degeneration at all in the ventral 

cerebello-thalamic bundle, whereas in 3. other cats in which with 

other parts also the flocculus was removed there was very extensive 

degeneration of this bundle. That these fibres do not take their origin 
from the cortical gray matter of the flocculus is proved by the fact, 

that in another cat in which the cortex of the formatio vermicu- 

lavis cerebelli was injured, no degeneration of the said bundle was 

found. 

In two cats (XXIII and LXI) a lesion was effected in the mid- 

brain, by passing a curved knife in front of the lobus simplex 

cerebelli in such a way, that the predorsal region on the right side 

was cut, distally from the red nucleus. In none of these animals 

any degeneration was found in the ventral bundle. If Caya’s sup- 
position were correct, certainly a great many of the descending col- 
laterals of the superior crus ought to have been found degenerated. 

In one cat (LVIIJ) a longitudinal lesion- was effected in the teg- 
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mentum, the instrument (Prosst’s covered hook) passing through the 

middle crus cerebelli. In this cat were found a certain number of fibres 

degenerated, which passed through the regio reticularis of the side of the 

lesion and then, crossing the raphe and running upward in the 

predorsal region of the other side, took their way towards the red 

nucleus. This experiment tends to show, that there are direct fibres, 

coming from the basal cerebellar nuclei, which do not join the 

superior crus, but follow the ventral course to arrive at the red 
nucleus. Lrwanpowsky,s fibres O. P. (in fig. 66 and 37) are not to 
be identified with these fibres on account of their entirely different 

course. 
In cat J.XII the anterior crus cerebelli was partially cut, and at 

the same time an incision made into the middle crus. Also in this 

animal there was found no degeneration on the distal side of the 

lesion except the bundle of Monakow. Were the ventral bundle to 
be regarded as being formed by descending collaterals of the anterior 

crus this result could hardly be explained. A simular result was 

obtained in cat LX VIL, where hemisection of the pons was effected. 

Also here there was no degeneration on the distal side of the lesion. 

Mathematics. — ‘“‘Lquilibrium of systems of forces and rotations 
in Sp,.” By Dr. 5. L. van Oss. (Communicated by Prof. P. H. 

SCHOUTE). 

(Communicated in the meeting of March 30, 1907). 

Referring to the following well-known properties : 

a. The coordinates py and aj of a line p anda plane a satisfy the 

five relations : 

P; = pki Pim + Plj Pkm + PjkPim=9 » MEZA Ajm=0, ~. (I) 

of which relations three are mutually imdependent. 

4. The condition that a line p and a plane a intersect each 

other is expressed by 

2 py gO Oh Soe 

c. The coordinates of the point of intersection X of two planes 
x, a and that of Sp,3 through two lines p, p’ are: 

ae = IL Tim tj Wem + jk Wn + Aim Wht + Ahm Wy + Wim 2 jE; 

(= > pr p'jms ole be 
t 

we wish to draw the attention to the following properties : 

If (7/) are ten arbitrary quantities: i.e. not satisfying the relations 

sn 
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S (jk) (lm) = 0, we shall continually be able to break up each of these 

quantities into two parts (7)' and (7), so that =(A/)' (jm)'= (kl)" (jm)"=0. 
i i 

It is easy to see that this decomposition can be done in a@* ways. 

For each decomposition holds good : 
Sea tn) — — (I) (ym), . sw Sk. A) 

for : 

= (kl)! (jm)" = & (Kl) (jm) — (jm)'} = & (Kl) (jm), 
t : 1 

likewise : 

> (kl) (jm) = & (i) (jm), 
from which by addition : 

= (Wy (jm)" = & (Hl) (jm). 
Giving a geometrical interpretation we regard a homogeneous 

system of 10 arbitrary quantities aj and aj as the coordinates of 

a system a of c* lines, in pairs a system @ of w* planes, in pairs 
' «, a conjugated by the relations: a’, a" conjugated by the relations: 

be Rig Gg ss (5) ag + «'g = ag... - (5) 

All these lines le in one Sp, = All these planes pass through 

having as coordinates: one point X, having as coordinates: 

Si = 2 agi ajm. - - - (6) Z, = Zaki Aim... - (6) 
c c 

We now annul the homogeneousness of the p-, 2-, a- and a-co- 

ordinates. 

This causes those elements to assume vector-nature and makes 

them interpretable respectively as force, as rotation, as dynam and 

as double-rotation. The equations (5), (5’) determine the reduction 

of the vectors a and e@ on the conjugate pairs of lines and of planes 

of the systems a and @ under consideration and not yet partaking 

vector-nature, whose structure now becomes revealed. 

Il. In connection with the meaning given in 6 of the equation 
= pi Xi; = 9 we interpret 

2 ag pg... -  te) ae gg ee Ot 

as the condition that a line peuts as the condition that a plane x 
a pair of conjugated planes of cuts a pair of conjugated lines 
system @. of system a. 

This gives us a very fair survey of the structure of the linear 

complex of lines and planes. The reduction of the equation of the 

complex of planes to its diametral space is now easy to do; likewise 
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the further reduction to the simplest form (4:7) =o (jm), assumed by 

the equation when the edges £/ and jm, the planes ¢jym and cA of 

the simplex of coordinates are conjugated elements of the systems 

a or @. 

Ill. If we assign to the elements p, a, a,a vector-nature, expres- 

sions Say pj, Saya become of importance as virtual coefficients 
(in Baxw’s theory of screws) and the disappearing of these coefficients 

then gives the condition that the force p performs no work at a 
displacement im consequence of a double rotation a, resp. that the 

dynam «a performs no work at a rotation x. 
So in Batu’s notation the equations (7), (7)’ give the condition of 

reciprocity between force and double rotation, resp. between dynam 
and rotation. 

In like manner the equation 

Sa eg = Oils Se (8) 

which includes (7) and (7)’ and likewise (2), gives the condition of 

reciprocity between the dynam a and the double rotation a. 

IV. We shall now pass to the general equilibrium of forces and 

rotations. It will be convenient to understand by p, 2, a, a vectors 

unity and to indicate the intensity of these vectors by a factor. 

It will be sufficient to limit ourselves to the equilibrium of forces, 

leaving the treatment of the dual case to the reader. 

In the first place we regard the case of n forces, n > 10 working 

along lines given arbitrarily. 

It goes without saying that for the equilibrium it is necessary and 

sufficient that the intensities 4” satisfy the ten conditions: 

Shp) 0) 5. Sn «ee 
We can therefore in general bring arbitrary intensities along 2 — 10 

vectors, those on the other ten then being determined by the above 

equation (9). 

In particular for n= 11 the theorem holds: 

To vectors along eleven lines given arbitrarily belongs in general only 
one distribution of ratios of intensity, so that the system on those 
lines is in equilibrium. 

The generality of the case is circumscribed by the requirement 

that no ten lines can satisfy one and the same linear condition in 
the form — 0, where the coefficients ¢, do not depend on Ss oe. 1H? — ij Pe 

vy, in consequence of a well-known property of determinants tending 

to zero, 



( 823 ) 

So if there are among 7 lines at most 10 belonging to a linear 

complex we can satisfy the equations (9) by choosing all intensities 

except those belonging to these 10 equal to O and then (if not all 

subdeterminants of order 9 tend to O) we shall be able to bring along 

these last only one distribution of intensity differing from O in such 

a way that the system of forces obtained in this manner is in 

equilibrium. 

We have thus at the same time arrived at the following theorems: 

For the equilibrium of ten forces it is necessary that these belong 
to one and at most to one linear complex. In this case always one 

and not more than one distribution of intensity is possible. 
If we continue the investigation of the equations (9) we then 

obtain successively the conditions of equilibrium of 9, 8, 7, 6, 5 

forces. We can express the result as follows: 

In order to let n forces, 11 >n>4, admit only of one distri- 
bution of intensity in equilibrium, it is necessary and sufficient for 

them to be the common elements of exactly 21—n linear complexes. 

In particular for n= 5 we find the condition that the forces must 

belong to a system of associated lines of Sucre. 

This has given us a connection with a former paper in which we 

treated this case synthetically. 

V. The condition that ten forces in equilibrium belong to one 

complex follows almost immediately out of tbe interpretation of the 

equation Yas pz = 0 as condition of reciprocity of force and double 
rotation. 

Let eg. ten forces be given in equilibrium; nine of these forces 

chosen arbitrarily determine a complex, so also the double rotation 
for which none of them can perform labour. The united system of ten 

forces, as being in equilibrium doing no labour for no motion 

whatever, it is necessary for the tenth force to be likewise reciprocal 

with respect to the double rotation a, ie. this force belongs with the 
former nine to the selfsame complex. 

Equally simple is the deduction of the conditions of equilibrium 
for nine forces. 

For eight forces determine a simply-infinite pencil of complexes 

whose conjugate double rotations @ + 4a’ are all reciprocal with 

respect to these eight forces. So they must also be reciprocal with 

respect to the ninth force in equilibrium with these, i. o. w. the 

latter must belong to ali linear complexes to which the eight others 
belong. 

And so on. 
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VI. We shall now denote still, by means of a few words, in which 

way we can arrive at an extension of the screw-theory of BaLL by 

the application of the principle of exchange of space-element to the 
10 

equations = a;§;== 0. 
l 

By interpreting this equation either 

1st. as condition of united position of a point X and an Sp, Zin Sp,, 

2d. as condition of reciprocity (BaLL) of a dynam X and a double 
rotation &, 

we make a connection between the point- and Sp,-geometry in 

Sp, on one hand and the geometry of dynams and double rotations 
on the other hand. 

To each theorem of the former corresponds a theorem of the 

latter geometry. Nov the remarkable fact makes its appearance that 

the fundamental theorems of the geometry of Sp, correspond to the 
fundamental theorems of the theory of screws of Bat in Sps. 

With this as basis we shall show, though it be but by means of 

some few examples of a fundamental nature, that the principles of 
a generalisation of the theory of screws are very easy to be arrived 

at by transcription of the simplest properties of the point- and 

Sp,-geometry in Sp, which examples can at the same time be of 

service to explain the above observations on the theory of Bau in Sp,. 

To avoid prolixity we introduce the following notation. We call: 

dynamoid the system of lines whose conjugate pairs can serve 

as bearers of a dynam. . 

rotoid the system of planes whose conjugate pairs can serve as 
bearers of a double rotation: So dynamoid and rotoid correspond 

to dynam and double rotation as in the notation of BaLL “screw” 

to dynam and helicoidal movement. 

Let the following transcriptions be sufficient to explain the appli- 

cation of the above principle. 

oX: Point X bearing a mass Dynamoid X bearing a dynam 

6. of intensity X. 

o5: Sp, = with a density of Rotoid 3 bearing a_ double 

mass 0. rotation of intensity o. 

(X'X"): Right line, locus of the Pencil of dynamoids, locus of 

centres of gravity of the bearers of the resultants of 

variable masses in the two variable dynams on the dyna- 

points Y' and X". moids X' and X". 

(4'5"):  Sp,-pencil. Pencil of Rotoids. 

A right line has always A pencil of dynamoids always 
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a point in common with 

an Sp. 

An Sp, is determined by 

nine points. 

p spaces Sp, cut each 
other according to Spo_p. 

Ete. ete. 

contains a dynamoid reciprocal to 

a given rotoid. 

A rotoid can always be deter- 

mined lying reciprocal with re- 

spect to nine dynamoids. 

The dynamoids reciprocal to 

the movements of a body with 

p degrees of freedom form a 
(9-p)-fold infinite pencil. 

We shall now apply the above to the problem: “To decompose a 

dynam according to fen given dynamoids’’, this problem being a tran- 
scription of the following: 

“To apply to ten given points a distribution of mass so that the 

centre of gravity finds its place in a given point.” 

We again put side by side the results. 

To be defined successively : 
a. An Sp, through nine of the 

given points. 

6b. The right line through the 

remaining point and the centre of 

gravity. 

c. The point of intersection of 

this right line with the Sp, found 
in a. 

d. The decomposition of the mass 
in the centre of gravity according 

to this point of intersection and 

the 10% point named in 4, which is 
possible, these three points being 

collinear; gives at once the mass 

to be applied in the last named 

point. 

The other must necessarily be- 

come the centre of gravity of 

the remaining nine points. 

e. These treatments to be repeated 

for the determination of mass in 

the other points. 

Zalt-Bommel, March 28, 1907. 

The rotoid reciprocal to nine 

of the given dynamoids. 

The pencil of dynamoids through 

the remaining dynamoid and the 

bearer of the given dynam. 

The dynamoid on_ this pencil 

reciprocal with respect to the 

rotoid found in a. 

The decomposition of the given 

dynam according to the dyna- 

moid found in ¢ and the 10% 

dynamoid named in 4, which is 
possible, these three dynamoids 
belonging to one pencil, gives 

at once the intensity of the 

dynam on the last mentioned 

dynamoid. 

The other must necessarily bear 
the resultant of the dynam to 

be applied to the remaining nine 
dynamoids. 

These treatments to be repeated 

for the determination of intensity 

on the other dynamoids. 
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Physics. — “Contribution to the theory of binary mixtures,’ ITT, 

by Prof. J. D. vAN DER Waats. 

Continued, see page 727. 

We shall now proceed to describe the course of the spinodal 

curve and the place of the plaitpoints when choosing regions of 

fig. 1 which lie more to the right. But it has appeared from what 

precedes that to decide what different cases may occur, we must 
[2 2 : a | 

know the relative position of the curves —_ = 0 and —~ = 0, to 
da? dv 

Pw 
which now the curve = 0 is added; so the relative position at 

avavu 

different temperatures of the three curves which occur in the equation 

of the spinodal curve. 
Sats 2 

The curves === O and 
dv avtav 

= 0 may be considered as sufficiently 

known, and the knowledge of the relative position of these curves 

with regard to each other enabled us already before to elucidate 

sufficiently the critical phenomena of mixtures with minimum critical 

temperature and though with regard to the relative position of 

these lines some particularities are met with, which have not expressly 

been set forth, I shall assume the properties of these lines to be 
32 dw ; : 

known. But the curve qa = is less known — and it has appeared 
Av 

from the foregoing remarks, that if we wish to understand the occur- 

rence of complex plaits, the relative position of this curve with 
2 

respect to the curve = 0 must be known. If this line hes alto- 
v 

dw 

av 

to speak of on the course of the spinodal line, but if it hes either 

partially or entirely outside this region, the influence on the course 

of the spinodal curve is great, and the existence of this curve accounts 
for the complexity of the plait and gives rise to the phenomena of 

non-miscibility. I have, therefore, thought it advisable to investigate 
2 

gether within the region where is negative, it has no influence 

the properties of the curve 
ee vee 
~ = 9, before proceeding to the deserip- 

AX 

tion of the course of the spinodal curve also in other regions of 

fig. 1. A perfectly exact investigation of this line would, of course, 

require a perfectly accurate knowledge of the equation of state. But 



( 827 ) 

the value assumed already before as an approximate equation of 

this line: 

(=) Pa 

2 1 da la? 
Ee a RT x | Ee steer 
dx” u(l—v) — (v—by 

will prove adapted to give an insight into the different possible 

he Ae : Py dy 
positions of this line with respect to —-=0O and —— = 0, 

dv? dadv 

yp 
THE CURVE —— = 

dx? 

The differential equation of this curve: 

as can Pw ’ 
gf ve — 

aa dattien eo da*dT 

may also be written in the following forms: 

dw dy aly al 
dx + —— dv — — = 0 

da* da?dv dz*,7 T 

or ; 

dy Pap d? e—) aT 
u dx +- = 4 dv — ( —=0 

da? da? dv de7,7 I 

or 

d* Pw jk as A 
eae ee ee aan ea 

da* div? dv az* 7 I 

or 
ay dy iidaa dr 

a+ dv — —_ = 
dx* da*dv o dz? T 

2al 

F=0 can only be found for positive value of 7 The curve 

2 

when ms is positive. So we derive from the latter form that 
ax 

dx \ . = : : ; ; dy : 
ap) 38 positive for the points for which eo negative, and the 

= Ax he 

other way about. 
dv 
) is positive for the points for which In the same way, that ( — 

; ri 

dw 

dvda? 
is negative and vice versa. The transition of the points for 



( 828 ) 

‘eNO ; oe : 
which ma 8 negative or positive, takes place in the points of the 

ar 

dp . . 
curve —— =O with maximum or minimum volume or for which 

ae 

ly dw d*p 
—0Q: and the transition of the points for which ——~ = — 

dx* P dvdx? dx*», T 

is negative or positive, takes place in the points with maximum or 

or minimum value of 2. From all this follows that the curve 

Py 

da? 

point for certain value of 7’= 7). It is now necessary for our 

purpose to determine the value of 7/, and also the value «, and v, 

of the point at which this locus vanishes. This means analytically 

that we have to determine the values of 7, « and v, which satisfy: 

Pw a dw See a Za a DR 52) ay 

dx? da?* dvd? dx? 

db\? da 

dx oe da? 
Saas 

=O contracts with rise of 7, and has contracted to a single 

or the equations: 

ne 

db\? 

1 
MRT 

| x(1—2) a (v—by? 

LSTA AS —S——. 3 . *. e . (2) 

227(1—2) (v—)) 

db \? aa 

unr S@ ? 2 (3 anc MIe (ob) pa ) 

If (1) is divided by (8), we get a relation between 2 and 2, 

which in connection with (2) may lead to the knowledge of 2, 

and vg. 

Then we get: 

(o—b)>_ -=v}b=(—b) 428 
aa 1 . db u( —«(Z) 

and as (v—b)? = db * 207(1—a)’ 

| :  \de 1—2-2 

b = a(1—2) eee ’ 

we find: 

(4) 
dh Te Ain oo ae 

du 
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db 
and putting b=b,+ 2 fa 

we 

ae 1 ( 2.n? 1—.r)? 1/. b, ie n ey 17( r) (5) 

db 1—27 a 1—2e | 

dic 

The Ist member of this last equation representing the ratio between 

the size of the molecules of the first component and the difference of 

the sizes of the two kinds of molecules, we see that x, depends 

only on the ratio between the sizes of the molecules of the two 
components. 

If we take the two extreme cases 1*t that 6, may be put equal 

to 0, 24 that 6, is equal to 6,, we find the two extreme values of 2,. 
Bie \ ear ks)" en  (1—22)* or 2a? — (1 ) (1-22) 

— — ——— ies SY —# lh Lac), = —f& —awr 

19.0 [ge a ) 
db 

or «= '/, for 6,0. For the other extreme case Se we find 
& 

For some arbitrarily chosen values of 2, I have calculated the 

1 
corresponding values of 

b,—), 

: v—b 
Ly wary 5 Yo (see p. 832) 

7 hens Wir le 5) a See Os 

0,4 i eo eel fA: AUN IS Sars Sd od 5 i, | ts. 

A a he Sees ene ees." OLE 

4G) oe + POS i: 0,457 . . . 0,186 

O40 le x S06 ee tee S|. O54 

(AS) us 2 3 SiO4 eee OO 2+. ies) OAVF 

Ca in. 28 owe See re se . OORT 

0,5 eae - ae a heey as | Far tt ee 

If on the other hand the value of a, has been calculated by the 
b 

aid of the given value of re v, is determined by the aid of the Ae: 

dx 

equation : 

db (3 /2a(1—a)? 
v— b= — Se 

dx 1—2z 

, ab ; 
If —=0O, in which ease &g = '/,, this equation gives an indefinite 

da 
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value for »v— 6. So it is better to express v— 6 in a value in 
db 

which 7A does not occur. We write by the aid of formula (4): 
x 

po 
1-—2a 

vai—wz) 1 ie 

aor 12 1—2« 

v—b 2 

b <7 aS =) ) 

(1—22)? 
v—b P ; 

In the above table we find the values of aie calculated for arbi- 

(ve —b)=b 

or 

trarily chosen values of a,. For values of x, differing very little 
(Ui b | 

from '/, the value of approaches 2B~ (1 — 2a,)’. 

The value of MRT, may be brought under the following form : 

aa (1 oF 2a’)? Es 1 — | ——— _]3 Sener 4.v(1— «) 
MRT, =-—« (1 — 2)- Say ir ys b 1 it eae by 

ER he 
4x(1—.w) 

2 é dw ; 
So the temperature at which the locus ~ = ( vanishes depends 

AX 

in the first place on the value of ” at which it vanishes, and in 

a ; k z 
the second place on the quantity a As according to form. 5 & 

We 

Ma 

ene + 
, the factor of We may vary between 31 

— : 1 
may lie between 7 and - 

bo 

1 
and . The value of that factor is therefore only determined by the 

, 
ratio between 6, and 6,. For 0, =O the value is 81° for.'b, =="; 

this value is —. So the greater the difference in the size of the 

molecules, the lower this factor, and the lower the temperature at 

gp ee ; : 
which oe = 0 has disappeared. And because the non-miscibility in 

Ak 

2 

the liquid state is to a great extent due to the existence Of a 0, 
Lv 
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d* . 
molecules of the same size & being always thought equa will 

ae 

not so readily mix as those for which the size of one kind greatly 

exceeds the size of the other kind, a property to which we might 

have concluded without caleulations. But in the second place the 
42 

a : F . 

quantity — = 2 (a, +4, — 2a,,) has great influence on the height of 

;2 
va 

this temperature, and indeed, in so high a degree that if = should 
GAL 

2 ) 

be = 0, the locus = 0 would already have disappeared at the 
& 

absolute zero point. Indeed, we might have seen from the very 
Ma 

beginning that this locus could never exist for ane negative. Every- 
Lv 

thing, on the other hand that diminishes a,,, makes 7% rise, and so 

furthers non-mixing. In some limiting cases we may compare the 

value of 7, with that of 7%, 1st in the case that into a given sub- 

stance we should press a gas as 2"¢ component following the laws 

of Boytr and Gay-Lussac perfectly. For such a gas we should have 

to put 6, and a, equal to zero, and so probably also a,,. The value 
1 

of # of the formula for 7, is then equal to 3" The a for the mixtures 

da 
containing only one term then, and being equal to a,x*, —~ = 2a,. 

av 

The value of 6, for the mixture is then equal to 4,7. On these 

suppositions MART, = and so 7, is equal to the critical tem- a, 

2b, 
perature of the 2°¢ component. The value of 7). for every mixture 
taken as homogeneous, is then equal to «(7%,),. Consequently 

T, = 3(7T;),. For a value of T somewhat below (7%), the locus 

dw 
dv* 

=O is restricted to a very narrow region on the side of the 

2 ome 
2d component, while - = 0 still exists, and may be compared to 

Lv 

a small circular figure whose centre is a point with the coordinates 
«='/, and v=4,. The spinodal curve has then an equation which 

may be written as follows : 

MRT 

ay 
Proceedings Royal Acad. Amsterdam. Vol. 1X. 



( 832 ) 

which equation shows that it consists of two straight lines, which 

join the point =O and v =O with the points for which —? =0 

for the second component. At temperatures which are not too far 
dw 

below (7%),, the locus = 0 lies, therefore, entirely outside the 
le 

Pw 
curve = 0, and is then restricted to the left side of the figure. 

av 

2.4. As second limiting case we take 6, = d,, but a, differing from a,. 
@aa(l—e« 1 2 A a ist 

Then MRT, = fh Zh and because a = = MRT = ne 

8 a,+a,-+2a,, 

da? b 

27 4h 
whereas MRT, is equal to for a=='/,. Thenaleaee: 

© 27 
T, may be larger than 7, viz. when a (a, +a,—2a,,) >(a, +a, +2a,,) 

23 
or if 2a,,< 31 (a, + a,). But even if 7, should be < 7%, this implies 

2 Py 
by no means that shortly before its disappearance the locus SS = 0 

v 

2a 

lies in the region in which is negative. The previously calculated 
dv? 

v—b 
values of gis show that this disappearance takes place at a very small 

volume, which may be smaller, and in the limiting case will certainly 
2 cee d 

be smaller than the liquid volumes of the curve + =0. To ascer- 
wv 

{ oy ; 
tain whether the disappearance of | ~ — 0 takes place in the region 

& 

; po EAB 
in which a © negative, we may substitute the value of 7), 2 and 

v ; j 

dw ae 
vy in the form for a and examine the conditions on which this 

v 

aw ; ; “ak, Aes 
value of becomes negative. If we write for ——_—*— = y,°, then: 

dv? 4x,l—a) ~ 

VRT, = Pax (1l1—ax) 1—yg wy—bg 24% %y 144g 

wee ae eee ee See et a eh 

and 

(=) | MRT; 20 

g de Jy (vg—by)* ag os dv? 
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tii 2a (v,—5,)? 6, 
*) depends on MRT, —— (9 sl ” or on 

9 dv 4 Vg Uq 

d'a x (1 —zq) 1—y, 2a 4y,’ l—y, 

dix by = =(l+y9)? by (L+- Yq)? 1+ 

4y9° 
Lb yq— 

For the discussion of this last quantity we first put the first 
mentioned limiting case, in which a, and a,, may be neglected with 

So the sign of ( 

or on (a, + a, — 2a,,) z, (14 — 2,) —a 

respect to a,, and a=a,z* may be put; the value of 7, being = 
3 2 A Yi o 

pol 

according to the table of p. 829. With this value this quantity becomes : 

2 
asa 3 -2—Fe| 

3 

so positive. 
For the other limiting case for which y, = 0, it is also positive. 

But for the intermediate cases, specially those for which a, + a,—da,, 

is small with respect to a, and 4, and 4, are not equal, it will be 
rp 
dle an negative, and shortly before its disappearance the locus a 
ax 

3 

will le in the region in which is negative, and the existence of 
v 

this locus will have little influence on the course of the spinodal 

curve, and accordingly it will not give rise to a complex plait ’) 

or rather to a spinodal curve which diverges greatly from the curve 
d? 

0. 
dv? 

er ee EAD 
Let us now also examine where the point in which ==) 

az 

= : Py d 

disappears, lies with respect to the curve = 0 or to | |= 
adv da}, 

Let us substitute the value of MRT(,, x, and vy, in the expression for 

(2) If this expression becomes positive, the point lies outside 
& 

the curve or rather at smaller volumes than those of the curve 

d 
(2 = 0 and the other way about. Then we find for: 

w)y 

1) I need hardly state expressly, that in this communication I no longer attribute 
the cause of the complexity of the plaits exclusively to the abnormal behaviour 

of the components, to which at one time | thought I had to ascribe it, in com 

pliance with Lexretp. On the other hand it would be going too far to deny the 
abnormality of the components any influence. 

57* 
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db da 

MRT, Bente 2 
4 (uv, —b)? v? 

da 

d@ax(1—a,) 1—y, db 1 dx 
dz? bs (1+-yq)*dx(vg—b)? v4? 

b vg—b 
and after the substitution of — = oa Ee ly and of (2 = 

ap~ t=2 vy 

da 

ans the sign proves to depend on the expression: 
(1-+y,)’ 

@a la eae 
7 (1—2z,) — Pn 499 : 

In the first limiting case in which gs ='26 = ee ee 
; az? >” dx ad ee 2 

1 : Bate 
and & = = this expression = 0. Also in the second limiting case, 

1 Sa 
in which cs and y,=0. So in the limiting cases the curve 

d?w a 
4 = 0 intersects the curve - 

v 

up to the last moment in which 
dadv 

the latter disappears. Also in an intermediate case this quantity may 

be zero, but the value of 2,, at which this takes place, depends on 

d’a 

da? (a,—a,,) — (4,,—4,) 
— or on — 
da (4,,—4) (1—2,) al kg (a,—a 13) 

da 

Pa 

a,—a dix? A 
If we write ~——" =1+4+A, then — = ————_ = 

A,,—4, 2 da 1—a,+a,(1+A) 

dx 

4 ae ; 
= ant We then derive the value of «, for this intermediate 

—+— Ly . 

case from the equation: 

(1 — 2ag)'/s 

[4a4(1—ay)]" 

A _yf 1% =} 
1+Ac, |. 162,7(1—a,)* | 

A 
——— (1 — 2x) = 4 

or 
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For values of x, differing little from } we find approximately : 

1 ea iy ia a 
a 2 > TS\ 114A) 

If for A we take the value 4, which must be considered large for 

1 i | 
molecules of about the same size, then 5 a would be = ae The 

2 5 

conclusion which we draw from all this as to the situation of the 
2 d 

point in which zs 
da? 

iw 

dxdv 

= 0 disappears, with respect to the curve 

= 0, is the following. In most cases this point disappears within 

dp d 
the curve = = 0, and so in the region where js) is negative, 

dz}, x v 

LZ 

d 

but this can also take place on the other side of (z) = 0, so at 

a volume which is smaller than that of this curve. 

a,+a,— 2a 
That at positive value of A, so at positive value of Es ea 

Ria t 
A 5 (1—2z)!/s : : 

= 4° ——,_ has always a root, appears immediately when 
1+cA x*/3(1—a)"/ 7 

we represent the two members of this equation graphically. The 

first member, namely, represents then a branch of a hyperbola which 

at x=O has a height above the axis of « equal to that of A, and 

at «=1 a height equal to and which, therefore, proceeds 
A 

1+)’ 
continuously at a certain positive though decreasing height above the 

x-axis. The second member represents a line which for c=0O has 
a point infinitely far above, and for «1 a point infinitely far 

ee: 1 
below the z-axis. This line passes through the point t= 5: and on 

the left and the right of this point the ordinates are equal, but with 

reversed sign. So intersection will certainly take place, and for 

: 1 L ; 
positive 4 at a value of 2 For the case that —=0 disappears 

wv 

d 
at smaller volume than that of the curve = = 0, the first member 

Fr 

must be larger than the second. As A is larger, the point of inter- 

: ; : 1 
section will be further removed from 2 = = and so the series of the 

values of z for which the condition is that the first member be larger 
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than the second member, has increased. From this we conelude that 

au 

ae Q may disappear also for very different size of the molecules 
( L 

Pie ee eves ae 
in the region for == positive, if A has a considerable size. But for 

0 a 

1 A 
perfectly unequal size of the molecules (« =I rea would be 

A 
8 ’ Sid 408 34 > 1, which is not yet satisfied even at A =o. 

Sere f . if ap ay 
Fig. 6, in which the intersection of {— ]=0O and ;—=0 has 

dx / da , 

been drawn in both points on the left of the point in which 

dp “ie ad (=) —() has the minimum volume, holds for this latter case. The Taal 

42 ae ea L. ae a ee 
point in which oe OQ disappears, must viz., lie on the line 

& 

d*p : ‘ ae 
re —Q(. As has already been mentioned before, this line passes 
aL” 

dp 
through the point where (2) = 0 has its smallest volume, and as 

v v 

dv , af : <p in 
is easy to calculate — is then always positive. If now in fig. 6 

aL 

Pap *P 
the line —— = 0 contracts, and it must vanish on = = 0, then the 

ave av 

point in which it disappears, lies at smaller volume than that of 

dp < 
(=) =(. For the opposite case the two points of intersection must 

td Lv » 

therefore be drawn right of the point with minimum volume. Also 

the intermediate case has now become clear. In this respect there 
2 

is an inaccuracy in the drawing of fig. 5. The line ee which 
ax 

has already almost quite contracted, must be expected there on the 

right of the point in which (Z)=0 has the smallest volume. So 
bys. 

dp ; ae 
ihe line (Z)=0 would have its minimum volume more to the 

da 

left in fig. 5. In fact, with rise of temperature all these lines are 

subjected to displacements — however, not to such a degree that 

the relative position is much changed by it. 
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All these remarks seem essential to me for the following reason: 

we shall, namely, soon have to draw the relative position of the 

d*p d*w : : ; : curves —— — 0 and —— — 0, also in regions lying more to the right 
da* dv? wets * 

of fig. 1, in order to decide about the more or less complexity of 
the plaits at the different temperatures. Then we shall have to make 

assumptions as to this relative position, which otherwise might seem 

quite unjustifiable. A great many more similar questions would even 

have to be put and solved, before alle doubt as to the validity of 

the assumptions would have been removed. And it remains the 

question if for the present the imperfect knowledge of the equation 

of state for small volumes does not prevent our ascertaining with 

perfect certainty whether a phenomenon of mixing or non-mixing 

is either normal or abnormal. So, before proceeding to the appli- 

cations I shall subject only one more point to a closer investigation, 

viz. the question whether in the critical point of a mixture taken 
aw ae oie ; 

as homogeneous, the quantity det 1S positive or negative, so the 
ax 

sign of the quantity: 

db\? d*a 

8a aI daz da? 

27b |a(1—a) | 48? 
or of 

xv (1—2) Ab? Be a 

dx 

da da\? ; : 
As 2a age ae + 4 (a,a,—a,,"), we may also write for the 

wv 

last form: 

db~? da’? 

1 da: 9 \ dz 9 ast a a? 

a(1—a)' 406? 16 a? 4 a 

As a first special case we consider a substance mixed with a 

perfect gas; then 6,=0, a4,=0 and a,,—0. Hence a=a, 2’, 

b—b,«. With these values the above form becomes: 

1 A ota 

#(1—2) 2? a* (1—a) 
is negative in the critical point for values of «< ?/,; for 

; d 
“== */, the curve 2 ss = 0 wil! pass through the critical point. But 

L 
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for «> ?/, the two curves will lie 

outside each other, as has been 

drawn in fig. 10, and already 

observed above. For all other cases in 

which a and 4 cannot be equal to 

zero, the value of the expression for 
©=Q0 and «=1 will be positive 

infinite. If it can become negative, 

this will, accordingly, have to be 

the case for two values of 2. Now 

very different relations may exist 
Aas ee 1 db 

between ——-—} and — — Thus 
a dz b dz 

ida 4S See a 
— — ="/, = > Jor the plane 
a dz > 6 dx 

circumstances of a mixture taken as 

homogeneous. ') With these values the form reduces to a quantity 

which will certainly be positive, as even if a, a, > a,,?, the value of 
a, a, — te 4 1 

can probably never be larger than — ———.,, the mini- a . 9 «2 (1—2) 

mum value of which is ah 

= 1 db 1 db 

‘ bdx a dx 
da 1db_.1db 1B -teleal 

value of = OF gage If 5 ney [Ys ire a negative value of the 

form is possible. So for mixtures, 
in which the components differ 

greatly in the size of the mole- 
cules, the case of fig. 11 occurs for 

minimum 7%, and this minimum 

value of 7). could not be rea- 

lised. For mixtures, for which 

1 da 1 db Laon; b 
ops ; as may be ne- 

, the sign of the form under discussion, depends on the 

a dx 

9 /1 da’! 
glected with respect to ee ; 

which is even perfectly allowable 

in the limiting case, for which 
2 

b= 0, and 
rig. 11. da 

_~ Will be negative, 

1, In all the above calculations the equation of state has been applied with 
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3 (1 da = a 1 

4 \a du a(1 - 2) : 

As minimum value for which this is the ease, we should then have: 

when we put: 

adzx,” 38 

In all such cases, in which the critical circumstances of a mixture 
2 Tos se ., ap 

taken as homogeneous, fall in the region in which —— < 0, these 
az 

circumstances are not to be realised. Nor are they to be realised when 
aw 

da? 
> 0, but then the spinodal curve passes at least at a small 

distance round this point, and the plaitpoint circumstances are not 

very different from these which would be the critical circumstances 
21s ; tp Neh 

with an homogeneous substance. If a < U0, a considerable difference 
at 

may be expected. 

ry 

k 
THE SPINODAL CURVE AND THE PLAITPOINTS WHEN tk IS POSITIVE. 

( Lv 

Let us now again proceed to the discussion of the course of the spinodal 

eurve and the plaitpoints; but now in the case that with increasing 

value of 6 the quantity 7% rises. Let 7%, be much higher than 77, , 
a, a Pw 

and ee Now two eases are possible. The value of a. a AY be 
) & 

2 1 

positive or negative in the critical points of every arbitrary mixture. 

For «=O, and in general for very small value of «, iene a 
av Se 

2p 

is very large, —— is certainly positive, however large the value of 
P = da 

Ma fonace ae ee 
eo may be, and also for values of «x differing little from 1. 
av 

da 

dz” . Pw - Pi : By . ; 
If — is small, rig positive in the critical points of all mixtures. 

a ax 

2 = 
a 

But for large values of —~: a there are two values of x, between 
Wt 

value of not depending on v. Hence in this equation we get the factor 2/. for 

5 
which, as we have already repeatedly observed, we should really substitute —. 

6 



( 840 ) 

d’w 

Akt 

which is negative in the critical points. If in this case we draw 

42 
C ' . ; 

the line 7 =0 with a top, either at «=O, or at a small value 
av 

Py 
of w, the curve = 0, which is chiefly restricted to the left side 

dx 

4 ; ; dw 
of the v,z-figure, lies partly outside the curve = = 0, and on the ‘ 

small volumes. If we now apply the reasoning of p. 737 etc. also 
ay 

in this case, when we had the reversed state as far as =—(0 i 
dv’ 

concerned, we couclude that for large values of a the spinodal curve 
a EP 

does not move for away from —— =O, but that it is forced back 
av 

: Py . : 
to smaller volumes for those values of «2, where a is negative, 

ax 

Pw 
and draws again very near to = 

u 

— 0 with very small values of z. 

Naturally the course of the g-lines in connection with the course of 

the p-lines must indicate this. 
The course of the p-lines for 

this case must be derived from 

the right side of fig. 1, from which 

appears at the same time that the 
aw 

curve = 0 occurs, but with 
Lav 

sensibly smaller volumes than 
=u 

those of ———0O. And the course 
av 

of the g-lines is then indicated by 
fig. 5 or perhaps sometimes by 

fig. 6. In fig. 12 a couple of p- 

lines have been drawn and a q- 

line which touches these p-lines, 
which lines yield, therefore, points 

for the spinodal curve. Here again 

three plaitpoints are to be expected: 1s'. a realisable plaitpoint P, 

a wey 
above the curve — =0, 24, a hidden plaitpoint P, on the left of 

at 

dy dw : 2 : : E : 
ae 0 and above a 0, and 3". the ordinary gas-liquid plait- 

aL v 

be. 
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point P,; on the left of = 0, but shifted to the side of the small 2 

dv- 

volumes. Now it is to be expected that the value of p in the first 

mentioned plaitpoint is smaller than in the last mentioned. For 7% 

strongly rising, the pressure strongly decreases when we pass along 
ups : i,t 

to the right and only if agree should strongly 
x 5 

the curve 
dy? 

43 

project above —— = 0 we should enter the region of high pressures. 
av 

The hidden plaitpoit has, of course, far lower pressure than the 

two others. The value of a for the first mentioned plaitpoint is larger 

than that for the hidden plaitpoint. The gas-liquid plaitpoint has the 

smallest value of «. Proceeding along the spinodal curve we get a 

course of p, as has been previously drawn by me. (See These Proc. 
dw 

March 1905 p. 626). If 7’ is made to increase, + =0 contracts. 
av 

2 

The top moves to the right, and reaches a position, in which a 
Mv 

is negative for the critical circumstances. But this means that the 

gas-liquid plaitpoint and the hidden plaitpoint have coincided already 

before. When they coincide we have again, as we observed p. 744 
dv dv d*v dv a By +e i r 

es — - s ‘J o.2 = Lae a cae — isis . : Md - 

iZ p \da)q \da*}, \dx* ]q . dx}, \da*), =eY COE 

ciding we have again a simple plait with a simple plaitpoint. But 

the plaitpoint lies far more to the left than would be the case if the 
2aTs u ; 

~ = 0 did not exist any longer, and it also has a much 
ax 

larger pressure. With further rise of 7’ nothing of importance is to 
2 d 

be expected. For neither the fact that — =0 lies quite outside 
Lv 

dw dw , 
ss, ==; nor that aay = 0 vanishes, gives rise to new phenomena, 
Uv av 

because this takes entirely place in the unstable region. If we now 

draw either the value of the plaitpoint temperature or of the plait- 

point pressure as function of z, and if we restrict ourselves to the 
realisable quantities, so excluding the hidden ones, this line separates 

into two detached parts. The right part begins at that value of z, 

in which the plaitpoint P, possesses a pressure large enough to show 

itself on the binodal curve of the plait whose plaitpoint is P,, and 

passes then to «= 1. The left part begins at «= 0, and disappears 

before P, and P, coincide, namely, when P, lies on the binodal 

line, of which /P, is then the plaitpoint. 

curve 
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That what we have called hidden plaitpoints, can never exhibit 

themselves, requires no explanation. That what in general we have 

called realisable plaitpoints, need not always show themselves, may 

indeed be assumed as known from the former thermodynamic con- 
siderations about the properties of the w-surface — but yet it calls 

for further elucidation now that we examine the properties of stability 

and of realisability by considering the relative position of the p- and 

the q-lines. We shall, however, only be able to give this elucidation, 

when by treating the rule to which I alluded in the beginning of 

this communication, we have also indicated the construction of the 

binodal curve. 

To get a clear insight into the critical phenomena for the case 

that for mixtures between two definite values of « the critical point 
d*w 

falls in the region in which is negative, we must again distinguish 
At 

two cases; viz.: 1. the case that already at 7 = 7%, the curve 
d*wp ; dy , ; 
aa partly projects above oa = 0, in which case already at 7= 7, 
ak Uv 

the two plaijpoints P, and P, are found, and 2. the case that at 

al) as a aap 
f= 7, the curve = == (0), lies quite enclosed within = ©. in 

daz v 

fig. 13 the second case is 

represented. Now if for values 
1 

of 7 >7;,, the top of =a) 
v 

- . . . a? 

=Odoes fall within = O 
t a 

there must have been contact 

of the two curves at a lower 

7’, and intersection at a higher 

T. As long as the two 

curves do not yet touch, the 

spinodal curve is little or 

not transformed, and no other 

plaitpoint is to be expected 

as yet than the ordinary 

gas-liquid plaitpoint which 
dp 

lies at smaller value of 2 than the top of = = 0. If the two curves 
v 

intersect, the plaitpvints P, and P, have appeared first as coinciding 

heterogeneous plaitpoints, later as two separate ones. Naturally the 
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value of w for the two coinciding heterogeneous plaitpoints is larger 

than the value of x for the plaitpoint ?,. With further rise of the 
ys dw re Py 

temperature, when ae 0 rises further above rite Q, the plait- 

points P, and P, move further apart. /, moves towards larger 

values of wz, and P, (the hidden plaitpoints) to smaller value of x. 

And the two heterogeneous plaitpoints ?, and P, coinciding at still 

higher value of 7’, there is a continuous series of values of ‘x from 
«=O up to x=1, for which plaitpoints occur. For every value of 

only one. I have drawn (These Proc. VII, p. 626) the transformation 

of what I called there a principal plait and a branch plait. But 

this transformation refers, properly speaking, more to the binodal 

curve of such a complex plait than to the spinodal curve. If we 
then draw aT as function of z, such a line has a maximum and 

a minimum value, both lying above 7;,. The minimum value at 

the origin of the double plaitpoint P, and P,, and the maximum 
value at the disappearance of , and P, in consequence of their 

coinciding. Also when /,; is drawn as function of «, we get a 
- gl ; dp dp dp\ af dT, 

similar curve. As in general — = — — : 
de dri dT}, da da: 

will be 

dP yi 

Ax 

the value of P,; as function of 7); exhibits a more intricate form. 

pl mn ( op =) dP, 3 : ae , —— 1s determined by the proper- 
c (Hh) + dv dT i Pee 

dx? ] oT 
a dr 

ties of the substance in the plaitpoint, e.g. by as 
ax pl 

d 
ey if = 0, because (2) is equal to 0 in a plaitpoint. But 

Lu) T 

This quantity is 

the same for double plaitpoint, and so = has two equal values 

in such a double plaitpoint. The plaitpoint curve has therefore two 

cusps in the case treated. The left branch extends from 7;, to the 
temperature at which P, and P, coincide. The right branch begins 
at 7).,, and runs then back to the temperature at which the double 
plaitpoint P, and P, originates. The middle branch gives the hidden 

plaitpoints. But here, too, we must again notice that not the whole 

outside branches can actually be realised, the splitting up into three 
phases when we draw near the cusps having a greater stability 
then the homogeneous plaitpoint phase. These are the phenomena 

observed by Kuenen for the mixtures of ethane and alcohols with 
greater values of 6 than that of ethane. Perhaps the change of 
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db 
(=) may already account for the fact that the peculiar feature of 
Ae 

this phenomenon disappears more and more when, retaining ethane, 
we choose an alcohol with larger value of 6; so that the phenomena 
point to the fact that a normal plaitpoint line might be expected if 

; ae d? 
we proceed in the series of the alcohols. As condition for au 

av 

being negative in the critical circumstances, we had: 

db\? da 

1 dix 9 dx? 0 937 
Sepia see p. 

x(1—~2) 4b? 8 a “< ( I ) 

For in general it is to be expected that this value cannot so 
. db 

easily be realised for large value of an than e.g. for almost equal 
Ax 

value of 6, and 6,. That the mixture of ethane with methy! alcohol 

displayed quite different phenomena might already be expected on 

account of the fact that we have then a case for which with in- 

creasing value of 4 the value of 7). decreases. It is viz. almost sure 

that 5 is smaller for methyl alcohol than for ethane. 
2 d 

i. for: 7 = 7, the curve E us =O should already partially project 
& 

d u 

above 
dv? 

=(), this will bring about but little change in the pheno- 

menon. Only the minimum value of 7), will descend below 

T;, in the (7,,,«)-figure. In the same way the left cusp will have 
to be drawn at lower value of 7’ than 7%, . 

It is, therefore, required for the course of the plaitpoint pheno- 

mena, that 7’, >> 7), and so according to the value of 7, (p. 830). 

Ma 

ee a (1—2) eda oie ay 
b (1 ain yy)” 27 b, 

b 
In this inequality «, dependent on the value of es, lies between 

1 1 

1 1 1 
Fr and re and y, between 7 and 0. Let us write: 

ay 4- a, — Th 2a,4 NM (124) O= Ys) 

a, (1+ 49) 

4 & 

ae ay 
b,—b, 

3 1 
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1 1 
By successively increasing « from a oe , and deriving the cor- 

b 
responding values 7, and as from the table of p. 829, we can 

2 1 

a, + a, — 2a,, 

a 
calculate the value which must have at the least in 

1 

— 1 b 
order to satisfy this inequality. If we put 2 = ee to which —— = 0 

. )— 
2 1 

corresponds, we see that only a, =O might be put. If x is made 

to increase, which implies that the ratio of the size of the molecules 

at aah Sa 2a,, 
approaches 1, the value of ——————-—— required to satisfy the in- 

a, 

. = . . . 1 

equality, decreases. For the limiting case = >, 6,=6, and y,=0, 

a, + a, — 2a,, 16 
= must be > = to enable us to put 7, >7%,. 

; 2 

But this value must be larger for 6, smaller than 4,, and the 

larger as the difference between 4, and /, increases. If this equality 
is not satisfied, so if 7, < 7%,, we have a plaitpoint line of a per- 
fectly normal shape. This is inter alia the case when for a low ratio 

between 6, and 6,, also a not very high ratio between the critical 

temperatures is found. First, however, we should have to know how 

a,, depends on a, and a,, before for given ratio of 4, and 4, we 

could indicate how large the ratio of - and “? would have to be to 
1 2 

justify us in expecting either the complicated or the simple shape of 

the plaitpoint line. Moreover, I repeat that it should be considered 
in how far numerical values occurring in the given equations, would 

have to be replaced by others on account of the only approximate 

validity of the equation of state. 

From all this appears in how high a degree the properties of the 
3 

function influence the shape of the plait, and so also the miscibility 
ce 

or non-miscibility in the liquid state, and that the influence of the 

properties of this function may be put on a level with that of the 
3 

function We shall further demonstrate this by also examining 
v 

2 

the case that the curve eM exists, and intersects the curve 
Ai 

dp 

dadv = 
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Let us now take a region of fig. 1 such that the line ze = 0 

occurs on it, and that this line has the position as drawn si fig. 6. 

Then the liquid branch of = =0 lies on the right side of the region 

dy 

wv 

=(. These two curves might at larger volumes than those of 

d? : ; dy 
intersect on the left side. If now also the curve = = 0 “cecum 

Lv 

which will be the case if the temperature is low enough, and if 
2 ; 

= 0 and — = 0, we have the shape 
av 

Gy 
this curve intersects both 

At v 

of the g-lines as drawn in fig. 6, and there will again be formed a 

complex plait, whose shape and properties we shall have to examine. 

Strik-p-lijn = loop-p-line. 
Fig. 14. 
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iw wp 
That intersection may: take place of s =O with id ==" (>) ae 

da dadv 

been proved on pages 854 and 835. 

We saw before that one gq-line may possess 2 or 4 points of 

contact with p-lines, but now we have a case in which the number of 

points of contact can rise to 6. In fig. 14 has beeu drawn: 1. the curve 
d, dp ; 
—=0 and = 0, 2. the loop-p-line, 3. a q-line to which horizontal 
v v : i 

tangents may be drawn in 4 points, and a vertical tangent in 1 point 

and 4 portions of 6 p-lines touching the gq-line. The pressure in 
point1 is much larger than in 2, rises then, has a maximum in 3, descends 

again and reaches in 4 its lowest value. The gréatest pressure is 
found in point 5, and in 6 the pressure has been drawn lower than 

in 5, but it may be higher than in point 1. Consult fig. 1 for the 

direction of the p-lines in the points of contact. These 6 points of 

contact are again points of the spinodal curve. So on the right there 

is again a portion of the spinodal curve which follows closely the 

' yp : : ; : 
line Fath in its course, also on the left a portion that does not 

av 

move far away from this line. But between these two portions the 

spinodal curve must have been strongly forced back towards smaller 
-]2 
€ 

volumes to avoid the line Sas — 0. 
dx 

dp . lw 
In the points where — =O intersects the curve fae 0 the 

aL awe 

dy 2 

dy =) 
spmodal curve touches this curve, because 72 must be == 

dx dw 

: dv? 

for the points of the spinodal curve, and so it must remain in the 
2 2 

region where dat is positive, except when =Q. It may then 
a ; AvavU 

even be doubted if v > is found for all the points of the spinodal 
curve. 

Values of » <6 would mean that the left part and the right part 

of the liquid branch of the spinodal line would remain separated 
from each other; and this would imply for the miscibility or non- 
miscibility of the components that at the temperatures for which this 
is the case, even infinitely large pressure would: be insufficient to 
bring about mixing. Already in my Théorie Moléculaire | raised this 
problem, and I showed, that if 4 is a linear function of «, cases 

58 
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are conceivable in which the spinodal line could intersect the line 

.- ab vt 
v = 4 twice, but that if = has positive value, as is really to be 

a 

expected, intersection will never take place. But if we acknowledge 
again that the knowledge of the equation of state is insufficient for 

very small volumes it follows that we had better not pronounce the 
solution of this question too decisively. 

If the spinodal line is closed on the side of the small volumes, 

then a realisable plaitpoint will be found there, while there must 

be a hidden plaitpoint in the neighbourhood of the points 2 
2 

=), as it now 
d 

and 3. If the temperature is raised, the line - 
v 

BP : ey = 0, can contract to above pe : 
dadv dv? 

d? 

before disappearing. If it has sufficiently ascended above > =e 
v 

also intersects the line 

the spinodal line will get a point where it splits') up, at which 2 

new plaitpoints (homogeneous ones) are formed. So at this splitting 
dv dv ae! 

= 0 and —— = 0. This furnishes an indication as to the 
da?p da*, 

place where this splitting point will lie. That the g-line below 

point 

dy f2 ; 
aaa O must have a point of inflection, has been shown before 
aALav 

(p. 736), where we derived a series of points of inflection of the 
2 d 

q-lines passing through the point in which <r =0 has the greatest 

volume. We have also previously (p. 628) derived a series of points 
d, 

of inflection of the p-lines starting from the point where —— 0 
Ak 

dp 
j Z and ae A =O intersect, and passing through the point where — =0 

i (Db) 

has the minimum volume. From this we conclude that the double 

d, Tech 
plaitpoint can only occur when the line — = 0 is intersected by 

v 

dw 
ae 0 pretty far to the left of the point with minimum volume, 
ax 

d. 
and so not far to the right of the asymptote of the line - ==), 

& 

!) This splitting point I had already in view in my Théorie Moléculaire (Cont. II 
p. 42 and 43) where I indicate the temperature at which the detached plait (longi- 

tudinal plait) leaves the v,z-diagram, when it has not contracted to a single point. 
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I may remark in passing that Van per Ler’s observations for water 

and phenol illustrate the case discussed here, and that through the 

existence of a maximum pressure the properties of the vapour-liquid 

binodal line give evidence either of the occurrence of the asymptote 

of the line = = 0 in the v,#-diagram, or of its lying not far to the 

left. So there are 4 plaitpoints after the appearance of this double 

plaitpoint. So two serve as plaitpoints of the plait which is detaching 

itself and they are both realisable according to our nomenclature 

and when detachment has taken place, both can actually be realised. 

They serve then as plaitpoints of what must properly be called a 
longitudinal plait. The two other plaitpoints, viz. the hidden plaitpoint 
which we placed in the neighbourhood of the points 2 and 3 above, 

and the lowest of the newly formed plaitpoints then form a couple 

of heterogeneous plaitpoints, which do not show themselves on the 

binodal curve of the vapour-liquid plait and will soon coincide and 

then disappear. From this moment the binodal lines of the two plaits 

are quite separated and behave independently of each other. The 
vapour-liquid plait is then simple and perfectly normal. But also the 

longitudinal plait may then be considered as a normal one. 

(To be continued.) 

Waterstaat. — “Velocities of the current in an open Panama cana.” 

By Dr. C. Lety. 

(Communicated in the meeting of March 30, 1907). 

§4. After an elaborate investigation the American Government has 

resolved on the execution of a project of a Panamacanal at high 

level, viz. at a height of 85 feet (25.9 M.) above the mean sea level. 

It will have three flights of locks. 

Against this project of the minority of the Board of Consulting 

Engineers of 1905 there was a counterproject of the majority which 

favoured a canal at sea-level or rather a canal with one pair of locks. 

This canal would have been provided with one pair of locks in order 

to separate the Atlantic Ocean from the Pacific, but for the rest it 
would have been in open communication with these seas on both 

sides of the locks. 
As a matter of fact this canal would not have been an open canal, 

therefore, like the Suez Canal, but a canal in which in most eases, 

58* 
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if not in all, lockage would be necessary. A canal, therefore, which 

probably would have resembled more closely to the lockcanal pro- 

posed for Suez but not executed and strongly opposed, than to the 

present open Suez-Canal. 
The question therefore presents itself whether the Panama-Canal, 

like the Suez-Canal might not have been made open and without 

sluices. 
The technical commission of the International Congress of Paris 

in 1879 deemed a lock near the Panama-terminal an absolute neces- 

sity, because it was supposed that, without it the tidal motion of the 

Pacific would cause currents in the canal of a velocity of 2 to 

2.50 M. per second ’). 
On the other hand the Board of Consulting Engineers of 1905 

rightly judged that the necessity of such a lock was not established 

but, owing to lack of time, it was not able to investigate the matter *). 

On page 56 of the report we find as follows: 
“The question of the necessity of a tidal lock at the Panama end 

“of the canal has been raised by engineers of repute, but the limited 

“time available to the Board has not permitted the full consideration 

“of this question which is desirable. It is probable that in the 
“absence of a tidal lock the tidal currents during extreme spring 
“oscillations would reach five miles per hour. ‘(2.24 M. per second)” 

“While it might be possible to devise facilities which would permit 
“ships of large size to enter or leave the canal during the existence 

‘) This opinion clashed with that of the original projectors Messrs Wuse and 

Recius. In a statement made by the latter at the meeting of the Technical 

Commission of May 19, 1879 he explains that the inclination of the high and low 
waterlines in the Panama-Canal will be about the same as on the Suez-Canal, as 

a consequence whereof velocities of the current might be expected in the Panama- 
Canal which would not exceed very appreciably those of the Suez-Canal. The latter, 

as far as they are due solely to the tides, usually do not exceed 0.90 M. per 
second; under the influence of wind they may increase to 1.30 or 1.35 M. 

2) At the time of the meeting of the Consulting Board competent experts were 
still of opinion that a lock at the Pacific-terminal would be necessary. Such appears 
clearly from the letter of Mr. T. P. Saonts Chairman of the Isthmian Canal Commission 

received by the Board at the beginning of its labours. In this letter occur the 

following lines: 

“A disadvantage which the two plans have in common is that the rapid develop- 

“ments of naval architecture make it difficult to determine the proper dimensions 

“of the lock chambers. It is to be considered, however, that up to the present 

“time such developments has not been greatly hampered by deficient depth in the 

“harbors of the world, and that development here after will have that obstruction 

“to contend with. Moreover, it is not possible to dispense with locks entirely. Even 

“with the sea-level canal a tide lock will be required at the Panama end”. 
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“of such currents, the Board has considered it advisable to contem- 

“plate and estimate for twin tidal locks located near Sosa Hill 

‘even though the period during which they would be needed would 

“probably be confined to a part of each spring tide.” 

It would require a special investigation, however, to know whether 

in a canal provided with locks, those locks would have to be used 
only during part of the spring tides. 

For, the oscillations of the sea above and below the mean level 

executed in a period of three hours are on an average + 1.23 M. 

at neap tide and + 2.53 M. at spring time. This being so it seems 

probable enough that, both in the interest of navigation and to 

prevent eventual damages which might be caused by the closing of 

the lockgates against a strong current, lockage of the ships would 

be preferred to passing the lock with gates open. For, assuming the 
total profile of the locks to be equal to the profile of the canal, 

observations made in the Suez-Canal justify us in evaluating the 

velocity of the current at 0.70 to 0.90 M. at mean neap tide and 

at 1.00 to 1.50 M. at mean spring tide. 
At all events, each time after the gates having been closed the 

passing of the lock with gates open would not be possible before 

the sea had again reached its mean level. As a consequence, at 

each tide requiring the closing of the gates, the period during which 

passing of the lock with open gates would be possible, would be 

less than three of the six hours included between two returns of 

the sea to its mean level. 
Howsoever this be and leaving out of consideration the question 

to what degree a lock in a sea level canal will be an obstacle to 

navigation, it appears at all events that the necessity af such a lock 

has remained an unsolved question when in 1905 the projects of a 

Panamacanal were examined. The cause thereof lies in the uncer- 

tainty about the velocity of the currents which will occur in an 

open canal, particularly as a consequence of the tidal motion of the 

Pacific. 

In addition to the motion caused by the tides, great velocities of 

the current may occur in a sea level-canal, with or without tidal 

lock, at the time of high floods of the Chagres and other rivers, if 
the water of these rivers must be carried off by the canal. In 

contradistinction to the project of 1879 such would have been the 

case in the sea-level canal according to the project of the Board of 

Consulting Engineers. 

The Board comes to the conclusion that in a sea level canal 

with tidal lock currents will thus be caused reaching a maximum 
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velocity of 1.148 M. per second. (2.64 miles per hour). The Board 

is of opinion that such a velocity will be no hindrance to navigation. 

These same velocities will occur in an open canal as well as in 

a sea-level canal with tidal lock, at least if in both cases the water 

of the rivers must be carried off by the canal. They occur very 
rarely however and need not necessarily lead to an increase of 
the maximum velocities caused by the tidal motion. 

§ 2. The reasons which led the technical commission of the 

Congress of Paris in 1879 to expect currents with a velocity of 

2—2,50 M. per second in an open canal, are twofold. In the: first 

place, the commission gave some examples of currents with a velo- 

city of 2—38,50 M. per second observed on the lower course of 
rivers where similar differences exist between high and low-water 

as on the Panama canal on the Side of the Pacific.*) 
In the second place the commission published a memorandum of 

Mr. Kurtz, one of its members, containing some summary calcula- 

tions in regard to the velocities which must be expected in an open 
canal.*) 

It is evident that on the lower end of a river with a great 

amplitude of the tide very considerable velocities of the current 
may occur; but it does not follow that equal velocities w7// occur 
in an open Panama-canal. This will be the case only if the remaining 

circumstances which have a decisive influence on the velocity are 

about the same in the two cases. Now it is evident that the velocity 
of the current caused by the tidal motion of the water will be no 
less dependent on the depth and in particular on the mean depth 

for the whole of the width, than on the amplitude of the tide and 

this irrespective of the question whether we have to do with a river or 

with an open canal of relatively great length. In other words the 

velocity of the current will depend as well on the proportion of 

the amplitude to the mean depth as on each of these quantities 
separately. Furthermore it is easily seen that in a river these velo- 
cities will depend in a great measure not only on the discharge 
but also on the changes of width and depth and on the inclination 
of the bottom near its mouth. In fact, the examples communi- 
cated by the commission show clearly that the velocity must be 
dependent in a high measure on other causes besides the amplitude 
of the tides. For among the examples of the commission we find 
the Riviere de lOdet with an amplitude of the tides of 5 M. and 

') See: Congrés international d’études du canal interocéanique. Compte rendu 
des séances. Paris 1879 page 362. 

*) Ib. p. 384 and Pl. IV fig. 6. 
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velocity of the high water flow of 3.50 M. and furthermore La 
Charente with an amplitude of the tides of 6.85 M. and a velocity 
of the high-water flow of 2 M. 

As regards the calculation of Mr. Kuezrrz, it is as follows: 

ATLANTIC oe oe PACIFIC, 

B. High-tide level. 

d= 385M* 

Mean sea-level. 

J= 277 M+ 

Sia Ye al Low-tide level. 

d= 195M4 

a as ee aa ak RioCG th |) | hte 

According to the above figure the area of the wet section of the 

canal on the side of the Pacific was adopted to be 385 M.? at high- 

water and 195 M.? at low water. 

The difference between the mass of water in the canal at high 

and low tide is then taken for the volume of the prism ABC. 

; : aod) ——= 895 
therefore = 73000 « ae or M? = 6.935.000 M?. 

As the interval between high and low tide is about six hours, 

the change of the mass of water per second is found to be 321 M® 

on an average. The mean wet section of the canal on the side of 

the Pacific being */, (885 -+ 195) M’, that is 290 M?, Mr. Kuerrz 

derives for the velocity of the inflow during the whole period of 
high tide or for the outflow during the whole period of low tide 

321 

290 

Furthermore, assuming that the most rapid change of the mass of 

the water will occur about at the time at which the sea-level is 

= 12TM. 
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equal to the mean level and besides, that this most rapid change is 

equal to double the mean change, the maximum inflow is put at 

2 < 321 = 642 M*. 
As the wet section of the canal at the mean level is about 277 M?, 

ae 

we find = 2.32 M. per second for the maximum velocity. 
272 

It is easily seen that these calculations are valueless. For the fact 
has been wholly overlooked that a certain time must elapse before 

some rise or fall at the mouth of the canal on the Pacific will make 

itself felt over the whole length of the canal. If therefore, shortly 

after ebb, the level in the canal near its mouth begins to rise and, 

shortly afterwards, the first inflow takes place, the level of the canal 

further inland will still be fallmg and the water will there be 

flowing out asa consequence. Similarly when shortly after the moment 

of high tide on the sea, the level of the canal near its mouth begins 

to fall and shortly afterwards outflow sets in, the level further 

inland will still be rising and there the inflow will not yet have ceased. 

Moreover the in- and outflow of the canal on the side of the 

Atlantic has been left wholly out of consideration. They will certainly 

not be small but will not take place at the same moments as the 

in- and outflow on the side of the Pacific. We may see that the 

difference in time, before mentioned, will not be insignificant but 

will have a great importance, by considering that, on the Suez-canal, 

ihe propagation of the high tide takes place with a velocity of about 

10 M. p. second. Assuming the same velocity for the Panama-canal 

the propagation of the tidal motion over the whole of the length 

of the canal will require about 2 hours. As a consequence the 

currents near the two terminals of the canal will have different 

directions during a great part of the tide. 

The incorrectness of the reasons for the conclusion of the congress 
of 1879, according to which a lock is to be considered an absolute 

necessity seems to have attracted little attention at that time, and 
consequently the canal was originally executed with the intention 

of building a sluice on the side of the Pacific. 

FERDINAND DE Lesseps, who always considered it a great advantage 

that the Suez-canal was executed without locks, probably never 
favoured this lock in tbe project of the Panama-canal. This led 

him in May 1886 to address himself to the French Academy of 
Sciences, requesting it to institute an investigation about the influence 

of the tidal motion of the Pacific and the Atlantic on the motion 

of the water in an open Panama-canal. 

The commission charged with this investigation reported on the 
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matter in the meeting of 51 May 1887. This commission consisted 

of the members of the section of Geography and Navigation and 

besides of the members Daupréz, Fave LALANNE, DE JONQUIERES and 

BoussinesQ and the reporter Bouquet DE LA GRE. 

This report, though short, contains the results of extensive com- 

putations, which led the commission to the following highly remar- 

kable and important conclusion. 

“que, dans aucun cas, les courants dus a la dénivellation ne pour- 

“ront depasser 24 noeud” (+1.29 M. par seconde, ‘et que cette vitesse, 

“qui ne peut étre attemte tous les ans que pendant quelques heures, 

“ne parait pas de nature a géner la navigation des bateaua a vapeur 

“dans le canal que Con creuse actuellement « Panama’. 
This conclusion was accepted by the Academy and the question 

concerning the possibility of an open Panama-canal without Jocks 

was placed in quite another light than that in which it appeared after 

the congress of 1879. 

Owing to particular circumstances, this conclusion of the French 

Academy of Sciences has attracted comparatively little attention. 

For in the same year that this conclusion was reached, the original 

project of a sea-level canal with lock had to be given up and to 

be replaced by a canal with several locks. It was the beginning of 

the sufferings of the Panama-canal. 

Since then the principal consideration has always been to limit 

the excavations to the utmost. For this purpose the hilly country 

required a canal at high level, consequently several locks. 

§ 3. Therefore, if we wish to answer the question whether an 

open Panama-canal without sluices is possible, we have to inquire 

in the first place, whether the report of the French Academy of 

Sciences, of 1887 is based on sound foundations. 

What were these foundations ? 

In accordance with observations at the tide-gauge at Panama the 

differences between high and low water, in other words, the ampli- 

tudes of the tides at the mouth of the Panama-canal were adopted 

to amount to: 

at neap tide, on an average 2.46 M. 

2 spring 2 +) +) ” 5.06 M. 

= » », Maximum in March or Sept. 6.76 M. 

The commission now calculates the velocity of the current for this 
maximum difference in height of the tides on the Pacific of 6.76 M., 
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neglecting the usually small tidal oscillation in the Atlantic and 

further starting from the following suppositions : 

1. that experience shows that on a canal communicating on the 

one side with a sea of variable level, on the other side with a sea 

of constant level, the amplitude of the tidal curve diminishes uni- 

formly from one sea to the other and further that the retardation 

of the tide is proportional to the distance, that therefore : 

if Y = half the amplitude of the tides of the Pacific, 

/= length of the canal, 3 

w = velocity of propagation of the tides, 

the level y, with respect to the mean canal- or sea-level, at a 

distance x from the Pacific, will be: 

y= — v(a -+) con. (26 ) 
z l a) 

2. that, in accordance with what has been observed on similar 

canals, particularly on the Suez-canal between Suez and the Bitter- 
Lakes, the velocity of propagation of the tide can be represented by 

the well known formula : 

ow ae 3 
oes g @ aaa ) + Kv 

where : 

H= depth of the canal below mean sea-level, 

v = velocity of the current, 

kK = constant (0.4 at flood-time, 1.2 at ebb); 

3. that, from the levels which have been derived by means of the 

suppositions 1. and 2. for any moment and for two mutually not 

too distant places, the velocity of the current for that moment may 

be computed by applying the formula : 

v = 56,86 YRi — 0.07. 

By means of these suppositions the velocity of the currents have 

been computed for places at 9, 27, 45 and 63 K.M. from the Pacific, 

assuming a tide of the amplitude of 6.76 M. The results are as 

follows *): 

‘) The length of the canal which according to the project made at that time, 

would amount to 72 K.M. has been put at 76 K.M. in the calculations to allow 

for the curves. The bottomwidth was put at 21 M, the depth at 11.50 M. below 

mean sea-level at Panama, and 9 M. at Colon, the slopes at 1 horizontal on 

1 vertical. 



Time elapsed | Distances from the Pacific. 
since low tide ——— ——— a is ee 

on the Pacific; 9 K.M. | 27 K.M. | 45 K.M. | 63 K.M. 

Moon-hours. | Velocities of the current in M. per second. 

0 eimestiescsn.00 | = 0.77 |-~0.60 

3 —o.si| —0.90| —0.93| —0.79 

1 — 0.60) — 0.8% | — 0.87) — 0.83 

42 04s 2) | — 0.82: |, — 0.85 

2 gusa =059| = 0.75 | =: 0.86 

4 + 0.67) — 0.34) — 0.63 | — 0.81 

3 + 0.84) + 0.35 | —0.42| —0.73 

31 + 0.93} + 0.63] + 0.08| — 0.61 

4 fe0r0S Weer 0s7e 8 0.43 | —.0.44 

43 H402-- 420:-93 h -=0'80'| 0 

5 4+.4.47|} +141.06| + 0.82 | + 0.51 

54 + 4.16 | +41.41| + 0.86] + 0.66 

6 Ef 09). 4.061 + 0.98:| +E 0.76 

64 = 0,07. 4.01 | + 0.97 | + 0:85 

current from the Pacific towards the Atlantic 
5 P » Atlantic " » Pacific ll ll 

From these computations follows that the maximum velocity in 

the canal on the side of the Pacific, due exclusively to the tidal 

motion, will amount to 1.17 M. Supposing that there might be 

some difference between the mean sea level of the Atlantic and the 

Pacific and that this difference might amount to 0.50 M., the com- 

mission concludes that the maximum velocity might then increase to 

1.26 M. The commission thus finally arrives at the conclusion referred 

to above. 

§ 4. The two first suppositions on which the computations are 

based will probably not seriously deviate from the truth. For they 
are, at least partially, confirmed by what is observed on the Suez-canal. 

The commission further points out, that the formula for the 

velocity of propagation of the tidal wave, which has been derived 

in the supposition that the amplitude of the tide is relatively small 

as compared with the depth of the water, leads to results which, for 

the Suez-canal, agree closely with the observations. For the formula 
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leads to a velocity of propagation of 10.06 M., whereas we find 

9.54 M. by observation. 

Matters stand somewhat differently for the third supposition. The 

formula by which the velocities of the currents are computed is the 

well known formula for permanent uniform motion. It is in the 

nature of the thing that such a motion cannot occur in a canal where 

a strong tidal motion takes place. But the question on which every 

thing depends is not so much this, whether the use of this formula 

leads to sufficiently correct velocities for any moment, as the following, 

whether the computed maximum velocities are not too small. 

In reference to this question we may remark that in general the 

formula will lead to too small a value of the velocity during the 

period that change in level is accompanied by decrease of inclination ; 

to too great a value where the change is accompanied by an increase 

of inclination. 

If, taking this into consideration, we examine the parts of the 

canal K.M. O—9 and K.M. 9—27, during the period of 4'/, to 6 

hours after low tide on the Pacific, we get as follows: 

Time elapsed Mean inclination 

sincelowtide K.M. 0—9 | K.M. 9—27 

4$ hours 0.000044 0.000040 

ae 0.000048 | 0.000046 | me 
5} =|: 0.000048 | 0.000047 

6 , | 0.000044 0, 000045 

From these data it appears that, during the half hour preceding 

the epochs at which the velocities reach their maximum value at 

k.M. 9 and 27 the mean inclination for the part O—9 as well as 

for the part 9—27 has been little variable but increasing. 

From this it follows that by the application of the formula at these 

epochs we probably cannot have made any important error. 

Meanwhile, in order to test the validity of the computations, we 

have still to inquire whether the computed velocities, taken in con- 

junction with the computed levels, satisfy the equation of continuity, 
di _ dv dl 

—— soe Se 4 

Pe du 2 

where / represents the area, v the mean velocity of the wet section 
at the distance z from the Pacific, at the epoch ¢. 
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We can make out, approximately, in how far the computed levels 
and the velocities satisfy this condition by availing ourselves of the 

levels and velocities computed for each half hour and for the different 

distances from the Pacific. We thus find as follows : 

A. For the differences in the discharge at 9 and 27 K.M. 
distance from the Pacijic. 

Moon-hours | Area Velocity sae Per half hour in Excess of 
fol 

elapsed since I ee fo dD part 9—27 inflow over 

low tide onthe — ; — -——)| outflow in 
| | | hed . 

Pacific. | 9 | 27 | 9 | 27) 9/27] m flow out flow __ half an hour 
i 

| M?.| M?.| M.| M. | es M°. M®. M®. M’. 
ene 

4A 450) 388/1 .02,0.93) 459) 361 
° | Steal 914000 715000 +201000 

5 | 475| 407/14 .47\4 .06| 556} 431 
1.013000 807000 | = —-++206000 

5s | 491) 4201.161.44] 570} 466 
| 4.002000 | 828000 174000 

6 | 498) 4281 .09/1.06) 543) 454 

B. For the change of the mass of water contained in part 9—27. 

Moon-hours Area Change of area Mean Change of mass 
. during half 

elapsed since | I an hour. change _ per half hour 

low tide on the | for part for part 

Pacific. 9 | 27 9 | 27 9-97, | 9—97, 
| | 

Me | M2 M2. M*. | M. | M*. 

At 450 | 388 | 
| +9} +19|/ +22 | + 396000 

5 | 475 407 
+16) 413) +14 | + 261000 

5} | 491 | 420 | | 
| +7) + 8); + 7} + 185000 

6 4935 | 428 

\ 

Comparing the last columns of the tables A and Bb we get the 

following differences for part 9—27: 

from 4'/, to5 hours + 195000 M°, or on an average per sec. + 108 M?. 

mearelh Of 55 S5000 3 355 53 4 3 ap =e 

Bonfy-,, 6 SET ROMNON LEE oe 3th 5 Jo. shh et eg 

It appears from this comparison, that by the computed velocities, 

taken in ‘conjunction with the computed levels, the condition of 

continuity is not fully satisfied. 

Therefore, assuming the levels to be correct, the velocities need 

some correction. 
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Suppose these corrections for the consecutive half hours to be 

for’ KeM vi 9 eee; cs; oy 

for KM 27 = 630), 657 9,; 

we find for the values of the corrections: 

J, == + 0.1 pe: d,' = —.0,18 iM. 

d= 440.12 5, ie eee 

J, = — 0.04 ,, J, =+ 0,04 ,, 

J,= — O08... J, 2 S0L <,, 

Therefore, applying the corrections, for the velocities themselves: 

at. KIM, -9 =. at KM. 27 

at 4'/, hours 1,17 M. 0,80 M. 

Age a 29. ie 0,965 

5s tO) seme b> TAS 1 Ae 
Bea i 108s. SMO mee 

From these numbers it appears that we can satisfy the condition 

of continuity at least for the part 9—27, during the period between 

4'’, and 6 hours after low tide, by relatively speaking slight modi- 

fications of the computed velocities. 

It cannot be denied, however, that the circumstance of the condition 

of continuity not being necessarily satisfied in applying this method 

of computing the velocities, indicates that this method is uncertain 

to some extent; though it appears that the uncertainty, at least as 

regards the calculation of the maximum velocities, will be small. 

Another reason of uncertainty in the computation of the velocities 

lies in the value assumed for the coefficient of the formula for 

uniform motion. 

This value, 56,86, is not the result of a great number of obser- 

vations made on rivers and canals of about the same inclination 

and depth as the Panama-canal, but of observations for rivers of 

considerably smaller depth. 
We may of course test the validity of this coefficient, as well as, 

more generally, the validity of the formula itself, by comparing the 

velocities it yields for the Suez-canal with those really observed there. 

Of the observations which have been made about the velocities in 

that part of the canal which lies between the Bitter Lakes and 

Port-Thewtik, those of 23 July, and 8 en 22 August and 6 September 

1892 have been published ’). 

These observations, however, are insufficient for a fair comparison. 

1) See: The Suez-canal according to the posthumous papers of I. F. W. Conran 

arranged by R. A. van Sanpick. Tijdschrift Kon. Instituut van Ingenieurs 1902—1903, 

p. 89 and 90, 
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They have been made for two parts of the canal each 200 M. in 

length and separated by only 4.9 K.M. One part was included in 

that division of the canal which at that time had been widened to 

a bottomwidth of 37 M. while the other, having a bottomwidth of 

only 22 M., was situated a little beyond the point of transition to 

the not yet widened canal. As a consequence the motion of the 

water on the whole of this part of the canal, 4.9 K.M. in length, 
cannot have been uniform *). 

Moreover these observations are only relative to the velocities in 

the middle of the current, observed by means of floats down to a 

depth of 6 M. below the surface, whereas the velocity given by 

the formula represents the average velocity for the whole of the 

wet section. Meanwhile a comparison of these observations with the 

results obtained by the formula might still give some idea about the 
reliability of the formula. 

The comparison of the observations referred to above with the 
results yielded by the formula, putting the coefficient at 56.86, lead 
to the following results: 

OBSERVATIONS ON THE SUEZ-CANAL IN 1892. 

| hein dif- | ee a as : Computed . Distance Observed velocities. 
D BPS Direc- Ibetween erence of Averages during an | mean velo- 

ay and hour o i Z aa ; ; ¥ tion of Si ‘tween the| hour in the city for the 

the observation the CUI-| observa-| Places of ; widened 

rent. | tion. | ODS€f- | widened | unwide- | : 
__ vation. part | ned part) Part.*) 

K.M. M. M. | M, M. 

93 July 11—12a.m. | flood HO) 2 0.424) 4- 0.75 |) 4--0.97.| 4- 0.68 
| 

1. ae 5—6 p.m. | ebb 4.9 —0.14/ —0.84|-—1.14 | — 0.58 

8 Aug. 11—12am.| flood | 4.9 | + 0.09] + 0.69; + 0.87| + 0.47 

a 5—6 p.m. ebb | 4.9 — 0.41 | — 0.80; — 0.93 | — 0.57 

pee am | ebb. | 49 |- == 046) — 0.98 | — 1.05 | — 0168 

he,  t2—1 p.m.| flood | 4.9 + 0.07 | + 0.66) + 0.82 | + 0.46 

6 Sept. 11—12a.m.| flood 4.9 + 0.07 | + 066 | + 089| + 0.47 

—S 5—6 p.m. ebb | 4.9 — 0.10 | — 0.8 | — 9.98 | — 0.53 

1) The first part was the widened part of the canal between K.M. 149 and 

149.2; the other the not widened part between K.M. 144.1 and 144.3. The tran- 

sition of the widened to the not widened part was situated at K.M. 144.4. 

2) As the part of the canal from K.M. 149 to 144.4 had been widened the 
observed difference of level is relative to the widened part. 



( 862 ) 

From this table we derive for the proportion between the computed 

average velocity for the whole of the wet section to the velocities 

observed down to 6 M. in the middle of the widened part of the 

canal, the following values: 

at high water flow at ebb flow 

(from the Red Sea) (towards the Red Sea) 

1 isi WG 1.45 

1.47 1.40 

1.45 1.50 

1.40 1.61 

Mean 1.37 1.44 

The true value of this proportion for the case in which observation 

and computation agree, is unknown. But if we consider that the floats 

went down to only 6M. below the surface, whereas the depth of the 

water at flood tide was over 8.50 M. and at ebb time over 7.50 M. 

and furthermore, that the canal had side slopes of 1 vertical on 2°/, 
horizontal, we conclude that at all events the velocity in the middle 

must have considerably exceeded the average velocity for the whole 

of the section. As far as can be ascertained therefore, the formula 

applied to the Suez-Canal leads to results which do not clash with 

the observation. 

More conclusive information cannot be derived from a comparison 

of the computed velocities to the observed values. As long therefore 

as complete observations, made for the widened Suez canal, concerning 

the relation between the velocity of the current, the tidal motion and 

the dimentions of the section, have not furnished us with more reliable 

information about the value of the coefficient and about the question 

whether the formula applies fully to the case, we cannot avoid a 

relatively considerable uncertainty in the calculation of the maximum 

velocity. 

§ 5. <A closer examination is therefore required to decide in how 

far the velocity of the current in an open canal may cause a hin- 

drance to navigation and whether this hindrance cannot be overcome. 

In discussing this question we must consider, on the one hand that 

the computed velocities represent average velocities for the whole of 

the wet section and that therefore the absolute velocities in the 

middle of the canal will be more considerable; on the other hand, 

however, that the computed velocities are relative to the greatest 

possible differences in the height of the tide, The computed maximum 

a a 
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velocities may occur therefore only on a couple of days every year. 

And on these days only during a few hours. 
In how far a relatively rare velocity of the current offers diffi- 

culties to navigation is of course ascertained in the best way by a 

comparison to canals on which under similar conditions similar 

velocities occur. For such a comparison the Suez-canal offers the 

best conditions. For this canal several observations about the velocity 

of the current are known. Published observations, however, cannot 

lay claim to completeness, at least not for the present purpose. In 

the first place because they have not been frequent enough to justify 

the belief that among them will have occurred these rare cases which 

by an unfavourable coincidence of circumstances, must have given rise 

to exceptionally great velocities. In the second place because the 
Measurements are, aS a rule, relative to absolute velocities in the 

middle of the canal and not to the average velocity for the whole 

of the wet section. 

Moreover, in comparing the Panama-canal to the Suez-canal we 
have to consider that the dimensions of the former will be much 

more considerable than those of the latter as originally executed. 

Consequently such velocities as have caused no difficulties for the 

Suez-canal will cause them still less for the Panama-canal. 

For the Suez-canal between the Bitter Lakes and Suez originally 

had a bottomwidth of 22 M. and a depth of 8 M. below mean 

springtide low water, with which dimensions corresponds a cross 

-section of 330 M?. On the other hand the sea level Panama-canal 

would get a bottomwidth of about 45.7 M. (150 feet) and a depth 

of about 12.2 M. (40 feet) corresponding with a cross section of 

855 M?’. 

Observations, made during the period 1871—1876, have brought to 

light the following facts about the velocities of the current in the 

-Suez-canal between the Bitter Lakes and Suez. *) 

“The maximum velocity of the high water flow, running North- 

“ward, amounts to 0.80 to 0.90 M. at the springtides of the months 

“of May and November, to 1.45—1.35 M. p. s. in the months of 

“January and February. 

“The maximum velocity of the ebb flow running Southward amounts 

“to 0.75—0.80 M. at the springtides of the months of May and Novem- 

“ber, to 1.20—1.25 M. p. s. in the months of July and August. 

“Along Port-Thewfik in the canal south of the main channel 

1) Vide the paper of Mr. J. F. W. Conrap pp. 89 and 90. 

59 

Proceedings Royal Acad. Amsterdam. Vol. [X. 
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“towards Suez, bottomwidth 80 M., the velocity of the high water 

“flow at springtide is 0.60 to 0.70 M., at neaptide 0.45 to 0.50 M., 
“in the winter-season with strong South wind 1.00 to 1.20 M. p.s. 

“The velocity of the ebb flow at springtide is 0.55 to 0.60 M. In 

“the summer with strong North wind 0.90 M. p. s. 

“Outside the mouth of the canal at Port-Thewfik no velocity of 

“the current has been observed.” 

The observations of 23 July 1892 made under circumstances 

which, as regards the flow, were certainly not unfavourable, led already 

to velocities which, at flood tide, ranged from 0.95—1.03 M. and 

were in the mean 0.97 M. at flood tide and’ 1.11 M. at ebb. 

Mr. Davzats, chief engineer of the Suez-canal, speaking at the 

meetings of the Technical subcommission of the International Con- 

gress for the Panama canal in 1879, stated in regard to the sidings 

of the Suez-canal, as follows °*): 

“Dans les canaux ou le courant est faible, et la ot n’existe aucun 

courant, il suffit de faire les gares d’un seul c6té; mais des que la 

vitesse atteint 0.75 ou 1.50 M, il faut les établir des deux ecédtés et 

en face Pune de l’autre’. 

By this statement we are certainly justified in concluding that the 

said engineer, founding his opinion on his experience of the Suez- 

canal, deemed allowable velocities of the current of 1.50 M. The 

small original bottomwidth of the Suez-canal of 22 M., however, 

caused difficulties for the simultaneous navigation in both directions. 

The following communications of Mr. E. QuELLENNEC, consulting. 

engineer of the Suez-canal company, proves that these velocities of 

the current offer no difficulties even for the big ships which at present 

navigate the Suez-canal. These communications to the Board of Con- 

sulting Engineers of 1905 are as follows : 

“In the Suez section the velocity of the current very often exceeds 

0.60 meter per second, and reaches at times 1.35 Meters per second. 

“In the latter case the ships do not steer very well with the 

“current running in; however the navigation is never interrupted 

“on account of the current. In the Port Said section ships can 

“moor with a current running in either direction; in the Suez 

“section they always moor with the current running out’. ?) 

The canal between the Bitter Lakes and the Red Sea has at 

present a width of about 37 M., but a widening of the cross section 

') See: Congrés international ete 1879, p. 361. 

*) See: Report of the Board of Consulting Engineers for the Panama-canal, Was- 

hington 1906, p. 176. 
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to 45 M. width and 10.5 M. depth is being executed. After this 

widening, navigation will certainly experience still less difficulty 

than at present. Meanwhile, and this point deserves attention, the 

velocity of the current after the completion of the widening for the 
whole of the canal between Suez and the bitter Lakes, will not be 

lessened but increased. For, owing to the surface of the two Bitter 

Lakes, which is about 23800 H.A., the widening will only cause 

insignificant modifications in the level of these Lakes. Consequently 
the fall of the water between the Red Sea and the Bitter Lakes 

will be nearly unaltered after the widening both at high — and low 

water. Under these circumstances the enlargement of the cross 

section will necessarily cause increased velocity of the current. 

The mere consideration of the maximum velocity which may 

oceur during a few hours every year, and even then only on the 

side of the Pacific, is evidently inadequate for reaching a true 

estimate about the question whether the velocities of the current in an 

open Panama-canal without lock will offer difficulties of any impor- 
tance for navigation. We have to pay regard in the first place to 

the velocities which will regularly occur on the whole length of the 

canal at mean spring-tide and mean neaptide. 

These velocities may be derived with some approximation from 

those found by the French Academy for a maximum difference in 

tide of 6.76 M.*), at least if we suppose that these velocities will 

not considerably deviate from the truth. 

We thus find for the maximum velocities 

at K.M. 9 27 45 63 

at mean neap tide: 0.70 M. 0.67 M. 0.59 M. 0.51 M. 

eee epee) OL. = 8.96 . - 0.85 _,, 0.74 ,, 

The following diagrams show the velocities of the current, for the 

interval of from 9 to 63 K.M. distance to the Pacific, at mean spring 

tide and mean neap tide, 0 to 6 Moon-hours after ebb on the Pacific. 
They were derived from the calculations of the French Academy 

of Sciences. 

1) The approximation neglects the differences of the velocities of propagation of 

the tide for different amplitudes. We thus obtain for the velocity 7, at an arbitrary 

place, the amplitude being y’, the following value, which is expressed in terms 

of the velocity v for an amplitude y: 

fy! 4 0.07) = (v + 0.07) Va 
y 

ik 
or e 
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§ 6. From the preceding considerations we may conclude that, as 

far as we can judge by direct computation of the velocities, to be 

expected in an open Panama canal, there is reason to think that 

these velocities will indeed be somewhat, but not considerably greater 

than those on the Suez-canal between the Bitter Lakes and the 

Red Sea. 

Meanwhile we ought not to forget, that both in these computations 

and in our knowledge about the velocities which occur on the Suez- 

canal there remains some or rather considerable uncertainty. This 

uncertainty might only be diminished by more complete observations 

than have been published as yet concerning the relation between 

velocity of the current, tidal motion and dimensions of the eross- 

section of the Suez-canal. . 

We shall be enabled to get at a just estimate therefore about the 

question whether an open Panama-canal without lock is possible, only 

by following a way different from that of a comparison of the computed 

velocities with those observed on the Suez-canal. This way may 

consist in trying to get at a direct knowledge of the differences of 

the velocities on the two canals by a comparison of the circum- 
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stances which will occur on the two. Afterwards the cireumstance 

that, on the Suez-canal the velocity of the current offers no difficulty, 

in conjunction with the probable value of the velocity of this canal, 
will help us in deciding whether these differences are of such a 

nature as to produce undoubted difficulties on the Panama-canal. 

In making this comparison it will be permissible to assume that 

the violent winds occurring in the Suez-canal, which cause velocities 

of the current 0.30 to 0.50 M. in excess of those due to the tidal 

motions, are not to be expected on the Panama-canal near the Pacific. 

First, however, we have to inquire whether an open canal cannot 

be executed in such a way that for that part where the current 

will be greatest the difficulties caused by such great velocities can 

be removed. It is evident that this would be possible only by giving 

a very great width to the canal. This is practically impossible for 

that part of the canal which intersects mountainous country, but it 

is well feasible for that part of the canal which extends from the 

Pacific to the Culebra mountain, that is to near Pedro-Miguel, a 
part which for the greater part intersects low country. 

If to this part of the canal, where just the greatest velocities will 

occur, a bottomwidth is given of for instance 500 feet (about 150 M.) 

instead of 150 feet (45.7 M.) no difficulties will be experienced from 

any presumable velocity of the current. 

Such a widening of the canal on the side of the Pacifie would 

however increase the inclination and the velocity of the current in 

the remaining part, at least if no particular measures are taken to 
prevent such increase. 

These measures would necessarily consist in making a reservoir 

or lake in open communication with the widened part of the canal. 
This reservoir or lake would have to be of such an area that it would 

be capable of retaining the water which, during the rise of the level, 

it would receive from the widened part in excess of what would 

be discharged by the unwidened part. During the fall of the level 

it would restore this surplus to the widened part. 

From the nature of the thing this arrangement is theoretically 

possible. Whether it be practically possible depends on the surface 
which a determinate widening would entail. 

A lake of somewhat over 800 H.A., such as is represented on 

Plate I, is feasible in the low country bordering on the canal near 

its mouth on the Pacific. 

Starting from this area it is possible to determine the degree of 
widening which may be given to the part near the Pacific in such 

a way that, under given circumstances, for instance at spring tide, 
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no change will oceur in the gradient of the high and low water lines, 

nor in the velocity of the current in the remaining part of the canal. 

As soon as the amplitude of the tides exceeds that of springtide 

the inclination and the velocity of the current will be somewhat in- 

creased for the wider part, somewhat diminished for the remaining 

part, as compared with what they would be without the widening 

of the first part and without the addition of a lake. In the case of 

a smaller amplitude of the tides the reverse will occur. 

Owing to the situation of the ground the junction of the widened 

canal with the lake must be made at a distance of about 12 K.M. 

from the Pacific terminal of the canal. Not before 3 K.M. farther 

however, that is not before 15 K.M. from ‘the sea, the surface of 

the lake reaches a considerable breadth. Therefore if the inclination 

of the high and low water lines remains nearly unchanged and if, 

according to the most recent project, the length of the canal is 

fixed at about 80 K.M., the amplitude of the tide in the lake may 

reach (5.06 — 15 « 0.0632) M. = + 4.10 M. 
With such an amplitude a mass of water may be received, in 

the interval between high and low water, of 800 x 10.000 4.10 M*. 

= 32,800,000 M?. 

Assuming, as an approximation, that this mass is received within 

a period of six hours, we find that on an average 1500 M?®. will be 

received per second. 

The surplus width of the part of the canal near the Pacific must 

be determined in such a way, therefore, that on an average 1500 M*. 

may be displaced — without increase of the velocity of the current — 

in excess of what might be displaced if the width remained normal. 

It is not well possible, without elaborate computation, to fix accu- 

rately the surplus width necessary for the purpose. But it is easily 

seen that this surplus width must be about 100 M. so that a bottom- 

width of 150 M. might be given to the widened part extending 

from the entrance of the canal to the junction with the lake. Corre- 

sponding therewith the width at the spring tide level would be 

about 250 M. At K.M. 64 this width might gradually be reduced 

to the normal width. 

It will be possible therefore to remove eventual difficulties offered 

by considerable velocity of the current on the part of the canal 

nearest the Pacific, by increasing the bottomwidth of this part. 

(16 K.M. in length). | 

Now let us consider how the case stands for the remaining part 

of the canal, 64K. M. in length. 
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On this part the inclination of the high and low water lines 
will amount to 3.16 cM. at mean springtide and to 1.52 eM. at 

mean heaptide. 
On the Suez-canal the inclination of the high and low water lines 

between the Bitter Lakes and the Red Sea amounts to 2.52 eM. 

per. K. M. at mean spring tide and to 1.48 cM. at mean neaptide. 

Under the influence of the direction and force of the wind, the 

height of the tides on the Suez-canal may be increased or diminished 

by about 0.25—0,33 M. 

As a consequence the inclination of the high and low water lines 

may be increased by about 1 cM. per K. M. 

As the distance of the Bitter Lakes to the Red Sea is about 28 K.M., 

this already enables us to conclude that the velocities of the current 

in an open Panama-canal, for the first 28 k.M. on the side of the 

Atlantic, cannot greatly differ from those which occur on the Suez- 

canal (See Plate II). 
If therefore — leaving out of consideration the absolute value of 

the velocities — we may assume that the velocity of the current 

will offer no difficulties on the Suez-canal even when it will have 

been widened, then it follows that on an open Panama-canal, for 

about the distance of 28 K.M. from the Atlantic, no difficulties will 

be met with on account of the velocity of the current. 

Finally as to the middle part of the canal extending for about 

36 K.M. between K.M. 28 and K. M. 64 from the Atlantic. 

For this part the dijerences between the velocities of the current, 

occurring therein, with those occurring in the preceding 28 Kk. M., 

may be computed with sufficient accuracy by means of the equation 

of continuity. 

For, let ab be the canal’s surface for this part, at the epoch 7, a little 

before low water, at the distance of 64 Kk. M. from the Atlantic. 

Similarly let a’b’ be the canal’s surface a second later, then necessarily 

B A 3 % a2 ee usd Yr 
= lv — Iv, 

from which : 

36000 (B 4- By (Ay 4+ 4y,) [—1 1 
Vv, —v)= See ga 
( 1 ) 4 i. sy 3 

Now the quantities /,/,, b, 6,, Ay and Ay,, are known for the 
epoch ¢, at least if we admit that — as is the case on the Suez- 

canal — the high- and lowwaterlines for the part 28—64 K.M. are 
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nearly straight lines, and further that the velocity of propagation of 

the tides is known with sufficient accuracy, likewise owing to obser- 

vations made on the Suez-canal. Therefore we will be able to 

determine the difference of the velocities at 64 and 28 K.M. distance 

tei) Rie eee ae 
from the Atlantic, for the epochs at which —— isa small quantity. 

f, 

This will be the ease near the moment of low water. 

For the difference of the velocities v, and v, during the half hour 

preceding the moment of lowwater at K.M. 64, during which half 

hour the velocity of the current will be maximum at that point, we 

find as follows for spring-tide. We assume that between the distances 

28 Wk.M. and 64 K.M. (from the Atlantic) there is a retardation of 
the tides of just one hour : 

at */, hour before lowwater: (v,—v) = 0.32 M. + 0.02 v 

,, lowwater : (v,—v) = 0.12 M. + 0.015 ». 

From these figures it appears, that during the half hour before 

lowwater at K.M. 64 the digferences of the velocities of the current 

are only to a small extent dependent on the value of the velocity v. 
These differences, therefore, may be determined with sufficient pre- 

cision, even if the velocity v is only approximatively known. 

By observations made on the Suez-canal during the period 1871— 

, 
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1876 the velocity-curve for a place near the Red Sea is known 
both for springtide and for neaptide. It has been represented in 
the following figures. ‘) . 

Mean velocity-curves at the entrance of the Suez-canal. 
Springtide. Velocity. Neaptide. 

Loom 

0.g0oMm 

0.60M - 

0.40M 

0.20Nn 
Highwater flow. Highwater flow. 

0.00 M 

O.20M 

O40oN 

O.GoM 

Ebb flow. Ebb flow. 
0.80M 

UST Fs FR nO Ee 
LooM 

of 3 Gc : 5 (yas 
ise Moon-hours after lowwater. tore S 

The above velocity curves probably do not represent the mean 
velocities but the velocities in the middle of the canal. They have 

been derived from measurements made every hour partly by means 

of floats partly by means of the current meter of WourTMann. 

It deserves attention, however, that at the time of these observations 

the Suez-canal had still only a depth of 8 M. below low water and 

a bottomwidth of 22 M. The section of the canal is now being 
increased to a bottomwidth of 45 M. and a depth of 10,5 M. below 
low water. The velocities in the widened canal may perhaps exceed by 
20 percent those observed on the canal during the period 1871—1876.°) 

1) These curves are borrowed from the Etude du régime de la Marée dans le 

canal du Suez par M. Bourpettes, in the Annales des Ponts et Chaussées of 1898. 
They occur originally in a Note sur le régime des eaux dans le canal maritime 

de Suez et & ses embouchures in 188! by Lemasson Chief Engineer of the canal- 
works. 

2) For the original cross section of 8 M. depth below low water, 22 M. bottom- 
width and slopes of 1 vertical on 2 horizontal we have: 

Area I= 304 M?; wet circumference O=57.9 M., consequently R= 5.25 M. 

For the future cross section of 10.5 M. depth, 45 M. bottomwidth and slopes of 
1 vertical on 21/, horizontal, we will have: J=749 M?., O=101.5 M. tberefore 

‘ 7.37 von 
RK =7.37 M. Now Dia rae 
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If, in consideration of this faet, we substitute in the second member 

of the formula, for v the values observed in the period 1871—1876 

increased by 20 percent, we finally find 

‘/, hour before low water (v, — v) = 0.33 M. 

at - » (v, —v)=013 M. 

The differences 0.33 and 0.13 M. represent the differences of the 

simultaneous velocities, not those of the maximum velocities at the 

distances of 64 and 28 K.M. from the Atlantic. 

At the moment that the velocity reaches its maximum at K.M. 64, 

the velocity at K.M. 28, where the tides set in about an hour later, 

will still be below the maximum at that place. According to the 

observations on the Suez-canal we may assume that, at the epochs 

mentioned, the velocities of the current at K.M. 28 will at least be 

about 0.15 M. and 0.05 M. below the maximum of that place. Hence 
we may conclude that the maximum velocities at K.M. 64 and 28 

will certainly uot differ 0.18 M, and probably not much over 0.08 M. 

We are sufficiently justified therefore in assuming that the velocity 

at K.M. 64 may be about 0.145 M. in excess of that of K.M. 28. 

As appears from what has been stated before the difference is 

inferior to the increase of the velocity of the current on the Suez- 

canal under the influence of the wind, which may amount to 

0.380-——0.50 M. It cannot, therefore, cause any serious difficulty. 

§ 7. For an open Panama-canal executed as follows: 

From the Atlantic to K.M. 64 having the same normal cross section 

as that of the project for the sea-level canal ; 

from K.M. 64 to K.M. 68, which is the place where the canal 

will be connected with a lake gradually widening ; 

from K.M. 68 to the Pacific at K.M. 80 having bottomwidth 

of 400 to 500 feet; 

the following conclusions in regard to the velocities of the current 

at springtide may be accepted : 

On the first 28 K. M. of such an open canal, velocities of. the 

current will oeeur at springtide which, on an average, will be about 

equal to those, which will take place at spring tide and with a moderate 

wind on the Suez-canal between the Bitter Lakes and the Red Sea 
as soon as the widening of this canal will be complete. 

On the subsequent 36 Kk. M. of such an open canal the maximum 

velocities at springtide will exceed those on the preceding part by 

—— 
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about 0.15 M. They will not exceed however those on the Suez- 

canal with a strong wind. 

For the last 16 K. M. of such an open canal the maximum 

velocities at springtide may be somewhat more considerable. On 

account however of the great width, which may be given to this 

part they will cause no serious difficulty. 

Therefore, if we assume, as we have good reason to do, that even 

at spring tide and with wind the velocities of the current on the 

Suez-canal offer no serious difficulty to navigation we may conclude 
that on a Panama-canal of the above description also navigation will 

experience no difficulties on account of the velocities of the current. 

Therefore, if we leave out of consideration the question whether 

an open Panama-canal without tidal lock is to be preferred either 

to a sea-level canal with such a lock, as proposed by the Board of 

Consulting Engineers, or to a summit level canal with three locks, 

as is now in course of execution, we may conclude, in the main 

in conformity with the conclusion of the French Academy of Sciences 

of 1887, but for different reasons: 

That the velocities of the current due to tidal motion in an open 

Panama-canal without tidal lock will be no obstruction to navigation. 

Zoology. — “On the formation of red blood-corpuscles in the placenta 

of the jlying maki (Galeopithecus). By Prot. A. A. W. Huprecat. 

(Communicated in the meeting of March 30, 1907). 

At the meeting of November 26, 1898, 1 made a communication 

on the formation of blood in the placenta of Tarsius and other 

mammals, which was later completed by a more extensive paper, 

containing many illustrations (Ueber die Entwicklung der Placenta 

von Tarsius und Tupaja, nebst Bemerkungen iiber deren Bedeutung 

als hi&matopoietische Organe; Report 4 Intern. Congress of Zoology, 

Cambridge 1898). The facts observed by me and the interpretation 

founded on them, have not until now been generally accepted, and 

in a recent very extensive discussion of the position of the problem 

concerning the origin of the red blood-corpuscles in the 14 volume 

of the “Ergebnisse der Anatomie und Entwicklungsgeschichte” (Wies- 

baden 1905), by F. Werpenreicn, the author, when mentioning my 

views, emits the supposition that 1 mixed up phagocytic and haemato- 

poietic processes. 
This conclusion was not based on a renewed and critical exami- 

nation of the material, studied by me. I have regretted this, since 

I have pointed out clearly and repeatedly that the numerous prepara- 
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tions at Utrecht concerning this and other embryological problems are 

always available for comparative and critical work, also for those 

who do not share my views. Moreover it appears from the literature, 

mentioned in WRIDENREICH’s paper, that the more extensive and illu- 

strated article, quoted above, has remained unknown to him. 

All this would not have induced me to return to this subject once 

more, were it not for the fact that during the last months I have 

become acquainted with the placentation-phenomena of a_ totally 

different mammal in which these phenomena have never yet been 

studied, namely Galeopithecus volans, which, like Tarsius, Nyeti- 

cebus, Tupaja and Manis, was collected by me in the Indian Archipelago 

in 1890—1891 as extensively as possible for embryological purposes. 

During the first origin of the placenta of this rare and in many respects 

primitive mammal’), phenomena are observed which elucidate the 

process of blood-formation in the placenta in such ai uncommonly 
clear manner that in this case it will be difficult to deny the evidence. 

The formation of blood in the placenta of Galeopithecus may be 

said to take place according to a much simpler plan than in Tarsius, 

although the principal outlines remain the same and here also the 

non-nucleate haemoglobine-carrying blood-corpuscles must be regarded 

not as modified cells but as nuclear derivatives. Likewise the placenta 

of Galeopithecus bears testimony that not only the maternal mucosa 

but also the embryonic trophoblast takes part in the blood-formation, 

while the thus formed blood-corpuscles — also those that are furnished 

by embryonic tissue — circulate in the maternal blood-vessels only. 

In Galeopithecus the process is simpler especially in this respect 

that here no megalokaryocytes play a part in the formation of blood, 

so that it is less easy — as WerpEnreicH did — to regard blood- 

corpuscles that are set free (such as we notice it in Tarsius, when 

the big lobed nuclei of these megalokaryocytes disintegrate) as being 

on the contrary devoured in that moment by phagocytosis! *) 

The haematopoiesis is started in Galeopithecus in the following 

manner. At about the same time that the young germinal vesicle, 

which has just gone through the two-layered gastrulation stage (gastru- 

lation by delamination *)), has attached itself to the surface of the 

strongly folded and swollen maternal mucous membrane, this mucous 

1) W. Lecue is inclined (Ueber die Siugethiergattung Galeopithecus, Svenska 

Akad. Handl. Bd. 21, N°. 11, 1886) to see in Galeopithecus a form which mast 

be placed in the neighbourhood of the ancestral form of the bat. 
*) Sectional series of Tarsius of a later date give a still clearer image than those 

which served for my figures of 1898. 

3) See on this point Anatomischer Anzeiger Bd. 26, 353. 

| 



membrane reacts in the manner, well-known in other mammals 

(Tarsius, hedgehog, rabbit, bat,. ete.) by perceptible changes in 

the uterine glands in the vicinity of this place of attachment and by 

the formation of so-called trophospongia-tissue, consisting of a modi- 

fication of the interglandular connective tissue, to which are added 

proliferations of uterine and glandular epithelium. 

As the final product of these preliminary phenomena we now see 

that a part of the maternal mucosa where the germinal vesicle 

has coalesced with the mucosa, presents a more compact proli- 

feration, while nearer the periphery the uterine glands, by strong 

dilatation of their lumen, differ clearly from the other uterine 

glands, as this is also the case in Tarsius, Lepus and other mam- 
mals during early pregnancy. The dilated glands may be followed 
up to their mouth; this mouth, however, no longer connects the 

glandular lumen with the uterine iumen, since in this place the 

embryonic trophoblast has disturbed the connection and covers the 

mouths of the glands. 

This trophoblast now also shows unmistakable signs of cell-prolifer- 

ation, although it does not at once attack and destroy the maternal 

epithelium, as in the hedgehog, Tarsius, Tupaja, ete. but rather finds 

itself facing this maternal epithelium in full proliferation, in the 

manner stated by me also for Sorex'). Instead of being closely 

adjacent, however, spaces are left open from the beginning between 

trophoblast and trophospongia, which spaces are partly mutually 

connected and partly are subdivided into smaller compartments by 

trophoblastic villi, attaching themselves to the trophospongia-tissue. 

In this manner the free surface of the trophoblast, facing the 

embryo, obtains a knobbed appearance. *) 

Already in early developmental stages, when there is as yet no 

question of the folding off of the embryo and long before blood- 

carrying allantoic villi have become interlocked with these tropho- 

blastic villi for the further completion of the placenta, we find in 

the spaces between trophoblast and trophospongia numerous blood- 

corpuscles of which we can not say that they have been carried 

thither by maternal vessels exclusively, although there can be no 

doubt that a connection between these spaces and the maternal 

vascular system is established at an early date. In the manner, 

indicated above, these spaces communicate also with the uterine 

glands which are here dilated. And in these glands as well as in 

1) Quarterly Journal of Microscopical Science, vol. 35. 

2) Certain modifications which I chserved when the germinal vesicle develops 

in a uterus which is still in the puerperal stage, may be left out of account here, 
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the interglandular tissue and in the cells, lining the just mentioned 

spaces, phenomena take place which force us to the conclusion that 
a great number of these blood-corpuscles originate in loco. When we 
follow these phenomena up to their earliest appearance, we find 

that in the dilated glands in many places compact cell-heaps are 

formed, which sometimes lie quite loose in the gland, but in other 

eases are still found in direct connection with the cell-lining of the 

gland. We must assume that this latter condition represents the 

original one and that consequently we have here an epithelial proli- 

feration by which new cell-material is carried into the region of 

the future placenta. 

The final product of these lumps of tissue, which in early stages 

appear so distinctly as cell-heaps, is an agglomerate of non-nucleated 

blood-corpuscles. The gradual transition of the nucleate cells into the 

blood-dises may be followed step by step by successively comparing 

preparations of the youngest and subsequent stages: often in one 

preparation all transitions are found together. It then appears that 

the conclusions I drew for Tarsius and Tupaja in 1898 are confirmed 

here, viz. that the blood-discs are produced by gradual transitions 

from the modified nuclei of the above-mentioned cell-heaps and that 

in this process transitional stages are generally found, comparable to 

what I called ‘“shaematogonia” in the above-quoted paper. They re- 

semble polynuclear leucocytes from which they may be distinguished, 

however (also according to Maximow and SIkGENBEEK VAN HEUKELOM ; 

see report of the meeting of the Amsterdam Academy of Nov. 26, 

1898), by certain characteristics. This phenomenon has been more 

fully investigated by PornsaKxorr, who also regards the non-nucleate 

corpuscles as nuclear derivatives and not as cells, deprived of, their 

nuclei. In his paper‘) numerous illustrations are given of stages 

corresponding to my haematogonia. It appears from the literature, 

mentioned by Potsakorr that my paper of 1898, preceding his 

publication, was unknown to him: the concordant results which we 

have obtained at an earlier date, are confirmed in a striking manner 

by the phenomena seen in Galeopithecus. 

But blood-corpuscles are also produced by other sources. besides 

these epithelial glandular proliferations. Between the dilated glands 

we find in Galeopithecus in the trophospongia-tissue very conspicuous 

eroups of large cells with a big, but circular nucleus. They show a 

tendency to lie together in nests, which nests are more or less kept 

together by elongated cells, forming a spurious wall which distantly 

remind us of an endothelium. 

1) Biologie der Zelle. In Arch. f. Anat. u. Phys. Abth. 1901, Pl. I and I. 
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These cells also are gradually dissolved into blood-corpuscles: as 

the uterus grows and the trophospongia passes through its successive 

developmental stages, they disappear: the blood-corpuseles which owe 

their existence to them, fall into the above-mentioned spaces, from 

whence they are taken up in the further circulation. The intermediate 

stages that can be observed in this way of blood-formation, are in 

fact an increase of nuclei by amitosis, as was also described by 

Po.JAkorr and later a gradual formation from these nuclear derivates 

of non-nucleated blood-dises. 

To these two processes of blood-formation in the placenta of 
Galeopithecus a third must be added in which not the mother is 
the active agent, as in the two former cases, but the embryonic 

trophoblast. Of this trophoblast we described above how it forms 
the bottom of the cavities into which the newly-formed blood-corpus- 
cles are discharged, and how it coalesces with the maternal trophos- 

pongia to such an extent that for many cells, which here are closely 
adjacent, it is impossible to determine whether they take their origin 

in the mother or in the trophoblast of the germinal vesicle. 

Yet in regard to the wall of the cavities, which separates them 
from the lumen of the uterus, there can be no doubt that we have 
here trophoblastic tissue only. About the active proliferation of this 

trophoblast tissue there is no doubt, no more than about the question 

whether the numerous parts of this trophoblast that project into the 

cavities, partake in the haematopoiesis. As soon as these parts are 

examined with strong powers it is quite evident that here the nuclei 

of the trophoblast cells undergo similar modifications as were deseribed 

above and that the final product of these modifications are again red 

non-nucleated blood-corpuscles which are added to those already present 
and originating from the mother. Now these corpuscles are, in the 

same way as I observed ten years ago in Tarsius and Tupaja, 

set free into the maternal circulation and carried along by it. 
On the theoretical significance of the fact that the germinal vesicle 

takes an active and important part in increasing the number of 

units for the transport of oxygen in the maternal blood, I will not 

expatiate here. 

And for the histological details of the formation of the bloodplates, 

resp. non-nucleated blood-corpuscles from an originally normal cell- 
nucleus, I refer to the coloured figures of pl. I and II of PotsaKorr’s 

paper in the 1901 volume of the Arch. f. Anat. u. Phys. (Anat. 

Abth.). With his illustrations I can identify everything I have ob- 

served in Galeopithecus. While in a very few cases there seems 

to be a_ possibility that the blood-corpuscle owes its existence to a 
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change of the nucleus in its entirety, in the vast majority of cases a: 
distinct amitotic disintegration is observed, the number of fragments 

varying, but generally lying between three and five. As the already 

modified nucleus dissolves into these fragments the eemparability 

with polynuclear leucocytes seems more obvious, and the colour as 

a rule approaches more and more to that which the blood-corpuseles 

themselves assume in the artificially fixed preparation. The same fact 

was stated by me also for Tarsius in 1898 and figured on Pl. 14 

figs. 91—96. 

Finally I point out, since my results and those of PoLJAkorr agree 

in sO many respects, that also Rerrerer in the volume for 1901 of the 
Journal de Anatomie et de la Physiologie (Structure, développement 

et fonction des ganglions lymphatiques, p. 700) has obtained similar 

results and is inclined to assume a still closer genetic relationship 

between polynuclear leucocytes and haematogonia when he declares 

that the leucocytes, liberated from lymphatic glands “‘finissent par 

se convertir, dans la lymphe ou le sang, en hematies grace a la 
transformation hémoglobique de leur noyau...” 

Thus my observations on Galeopitheous form a link in the chain, 

which begins with Heinrich MtLier in 1845 (Zeitsehrift fiir rationelle 

Medicin vol. 3. p. 260) was then continued and upheld by Wuarton 

Jones (Phil. Trans. 1846, p. 65 and 71) and Huxiry (Lessons in 

Elementary Physiology, 1866, p. 63) and which, since in 1898 

Tarsius added another link, has with increasing weight bound up 
the question of the origin of the non-nucleated blood-corpnseles in 

mammals to the conception that these elements in the mammalian 

body are not equivalent with cells, but must be regarded as nuclear 
derivatives. 

(May 24, 1907). 
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