Univ.of
Torovito
Llibrafy

Digitized by the Internet Archive in 2009 with funding from
 University of Toronto

-

PROCEEDINGS OF THE SECTION OF SCIENCES

VOLUME XV
($-2^{\text {ND }}$ PART -)

JOHANNES MÜLLER. - AMSTERDAM
$:=$: AUGUST $1913:=$

Translated from: Verslagen van de Gewone Vergaderingen der Wis- en Natuurkundige Afdeeling van 28 December 1912 tot 25 April 1913. Dl. XXI.)

22

CO NTENTS.

Proceedings of the Meeting of December 28, 1912 and January 25, 1913 . 789

$$
\begin{aligned}
& » \quad » \quad » \text { February 22, 1913 } 1039 \\
& » ~>~ » ~
\end{aligned}>\text { March 22 and April 25, 1913. } 1237
$$

K0NINKLJKE: MUDEME YAS WETENSCHAPPDE TE AMSTERDAM.

PROCEEI)INGS OF THE MEETING of Saturday December 28, 1912 and January 25, 1913.

P'rsidemt: Prof. H. A. Lorextz secopetary: Prof. P' ZREMAS

Translated from: Verslag van de gewone vergatering der Wis. en Natuurkundige Afdeeling van Zaterdag 28 December 1912 en 枵 Januari 1913, Dl. XXI).

COMTENTS.

 1. 990.
 Commanicated by l'rof. (\therefore. Prikhlitana), p. 799.
 part II, P. 824.
 l. vis Rosmblait), fo, s.39.
 anopsia of both the risht lower ficds of vision', P. 840 . With 3 pates
 ceand be l'rot. IV. Eistromex, 11.850.

 by P'of. A. F. Hold.kids), p. 88.
 a twisted bigumbatie elirve" III, I. 8:0.
 different substabees." 1). 903.

 twisted quatic curve. p. 98.
Jan de: Vages: .. Os at lime complex detemomed by two twisted cubics." p. 92.2.
 (2nd Commanication: On the dispmsion of air and wi anbon dinxide. (Commonicated by

 electrical resistance at low temperature" I dead. p. 94\%.
 their binary mixtures. XIV. ('alleulation of sme themal quantit es fir aryon p 952.
 argon". Continned), p. 960.
 low tempratures." (Continued), p. 965.

 resistance in a magnetic fiold at low tempratures. VI. 1. 981, w. V1I, !. 988, id V1II 1). 997.
T. 'Tammes: "Some comelationphemmenat in hybrids." (ommamicatcd by Prut. el. IV. Mobs., p. 1004.

Jon. II. vas Bathox: "On the connection betwern phyllutaxis and the distribution of the rate of growth in the stem." Communicated ly Prot. Wras?, 1. 1 (th5.
Ph. Konserims and J. 'Thmekmas: "Expermental investinations coneeming themiscibility of liguids at pressmes up to somo atmospheres." (commanicated by Poto.l. 1). vas afk W.s.s.s) p. 1021.

Physiology. - "/uplumer of the seasons om respivatory evelatage

The primary object of our inquiry has been to find out. whether mumblar exercise increases the metabolism in man as much in the rold as in the warm season.

We have taken the consumption of oxygen as the index of the metabolism.

Since it is still a matter of controversy, whether the seasons inHnence metabolism even during rest, we have thought fit to determine ako the absorption of oxygen during rest in the same two persons, who were subjected to the muscular test. Besides, the gasexchange has also been examined with two other subjects only during rest.

A. Respiratory Gas-exchange during rest.

In 1859 E. Smith ${ }^{2}$) presented to the Royal Society of London a series of observations upon the influence of different factors (i. a. the seasons) on the gas-exchange in man during rest. The amount of oxygen consumed was not determined, only that of carbon dioxide given off. If we are to take the latter as a quantitative index of the metabolism, Smitu's experiments would prove that it is more intense in the cold months and less so in the warm season.

Eлsman ${ }^{2}$) made similar experiments in 1897 with improved means, and moreover measured the quantities of oxygen. As known, the latter afford a more reliable index of the intensity of the pretabolism. He found no difference for the different seasons.

His opinion that the metabolism is the same in warm and in cold seasons is also corroborated by his previous investigations ${ }^{3}$) made in the East-Indics, from which it appeared that the amount of metabolism of man in the tropics agrees with that of people in our parts.

1) Philosophical Transactions of the Royal Society of London 1859 p. 681.
${ }^{\circ}$ C. Ergman. Over den invloed van het jaargetijde op de menschelijke stofwisseling. Verslagen van de Koninklijke Akademie van Wetenschappen te A'dam, 8 Dec. 1897.
${ }^{\text {3 }}$ C. Einkıax. Beitrag zur Kenntniss des Stoffwechsels der Tropenbewohner. Virchow's Archiv. Banl 133. 18:33, p. 105.

Idem. Leber den Gaswechel der 'Tropenbewohner, Pflüger's Archiv. Band 64, 1896, p. 57.

Shorty hefore we had hought our experiments to a rlose, laxnunab ${ }^{1}$) phoblished an antive, in which he reports the flochattons of respiratory exchange in the different seasoms, which acoording to him rom paratlel to the intensity of the sumbight.

It seents to us however, that his values of the oxygen intake do not differ sufficienty and are too incomstont to warrant such a conclusion.

For our determmations we used hav\% and (ixpremers ${ }^{2}$) method.
The subject, whose mose is shat ofil hy a springeclip, breathes through a mouth-piece, corresponding hy means of a T-shaped tube with two very mobile gut-valves, one of which transmits only the air faken in, the other only the air which is exhated. The latter passes, without encountering any resistance worth mentioning, through a slighty aspirating gasometer, a constant fraction of the expired air being continually separated for gas-analys.s by means of a special apparatus. Furthermore a suphle pig's hadder had been inserted between the valves and the gasometer. This highly facilitated expiration, as was apparent from the working-experiments to be discussed later on.

Outside arr was supplied through a short and wide india-rubber fube, connected with the valves. The room which faced the North, was constantly well sentiated throngh the open windows.

We experimented every time under similat circumstances, i.e. the experiments were made in the morning, always at the same hour, and with the same interval after breakfast.

The breakfast varied for the several sulyects, but for earh individually it was the same. For a guater of an hour hefore and durime the experiment, the subject reclined in an easy chair, resting quielly. The temperature of the room was taken, the readings of the harometer and the sort of weather (misty, sumy, frosty ete.) were noted down.

Likewise the respiration, the number of liters of air exhaled, and the time (in seconds) were recorded on a kymographion (Fig. 1).

The time the experiment took us, was also registered by a timekeeper. Futheron the relative moisture in the room was meatsured too as well as the temperature and the degree of moisture amter the clothes.

Our subjects were four adults, all of them employed every day

[^0]at the hyremie latmotatory at ltrecht. Their hody-weights were widely different and did mot change much with the same individual.

Trime beemids
Hospmiationt
Liters of ail exhaled.

Fip. 1.

The lowest temperature, at which we worked was 3°, the highest 30°.

The experiments were made in May, June, July, September, October, November 1911 and in danuary, Febrnary, and duly 1912.

There was only a small difference in the summer- and the winterattire. No overcoat was ever put on in cold weather nor was any article of attire taken ofl in the summer. As serious errors would originate in case the subject should shiver, this was a point of careful observation.

In looking over our results, in the tirst place with regard to the amount of oxyoen, we notice rather considerable tlactuations with the same subject under apparently similar circomstances, which is in accordance with the experience of other workers.

Bexpmet ${ }^{1}$), for instance, found in experiments with the same subject under equal ciremmstances the following oxycen-consumption: $194-21 \%-169$, showing as great a difference as 26° ".

We ako foum with K . on $1 \mathrm{~h}-\mathrm{T}-12$, at 30°, $765,5 \mathrm{~mm}$, hatometrie pressure, relative moisture of 52%, the value 256,8 , and on $16-7-{ }^{\circ} 12$, at 30° and $765,5 \mathrm{~F}$ mm. barometric pressure, relative moisture of $500^{\circ} /$, the value 292 . This yields a difference of rather more than 1:3

It is ohvions, therefore that it we wish to demonstrate seasonal inflneme, an extendent series of experiments is required, and furthermore, that only striking ditterences should be attended to. If we bake the arorage of the results at a temperature below 13° the months of Sow. Irex. dan. Feb.) and of those above la' (the other months we bote

[^1]| holow 1:0 | | | | | | | | ahowe 1:3 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| will | $1 / 1 /$ | S | exp. | 2sics | $1 \cdot 10$ | | Iilı. | (18) | esp. | 2139.2 |
| , | N'. | 8 | .. | 25゙2.4 | , | . | , | 21 | , | 2.) |
| " | | | ', | 290.8 | " | \cdots | , | 9 | " | 295.4 |
| , | 人. | | , | 208.7 | \cdots | , | \cdots | 12 | , | 197.7 |

The average of

In considering the resulls ohtained with each individnal separately we notice differences in one way or another, comparatively small though they may be.

In comnection with what has been said above we believe that no great value shoukd be set upon these diflerences.

Taking the averages of all the subjects, we tind fatily corresponding values, viz. 258.2 in the cold and 255.1 in the warm season, so that we may conclude, that the season has no inlluence upon the metabolism in a state of repose.

It appears then. that our results agree with those of Eiskia ${ }^{1}$) who got his averages in like manner, finding '253.8 in the winter and 253.3 in the summer.

Without tabulating our results at large we subjoin a somewhat more detailed report about them:

I V.H. Body-weight $87{ }^{\prime} 2$ Kilos (without clothing) Height 1.84 m.
Averages of results of all experiments (23): Amount of O_{2}-consumption and CO_{2}. production per minute expressed in c.c. reduced to 0 and 760 mm . barometric pressure.

CO_{2}	O_{2}	$\mathrm{CO}_{2} \mathrm{O}_{2}$
225,2	271,1	0,830

minimum 185 min. $239,5=110$ below the average.
maximum 264,6 max. $322,5=190.0$ above
The average O_{2} - consumption in 5 experiments at $4^{1}, 2-1^{1}, 2^{\circ} \mathrm{C}$. amounted to 281,8
min. '259,9
max. 322,5
The $\mathrm{O}_{2} \cdot$ consumption in 18 experiments at temperatures of from $144_{2}-30^{\circ} \mathrm{C}$. averaged 269,2
min. 239,5
max 294,2
At the lowest temperature ($4^{1} 2^{\circ} \mathrm{C}$.) we found 274,1 , at $7^{1} 2^{\circ} \mathrm{C} .322,5$.
, "hightst temperatures ($30{ }^{\circ} \mathrm{C}$.) ". " 291,7 and 294,2.
11. N. Body-weight $701 / 2$ Kilos (without clothing) Height $1,80 \mathrm{~m}$.

Averages of results of all experiments (29):

CO_{2}	O_{2}	$\mathrm{CO}_{2} \mathrm{U}_{2}$
230	255	0,900

min. 191,7 min. $222,2=130^{0}$ below the average.
max. 267
$\max .292=140_{0}$ above \quad, \quad,
${ }^{1}$) C. Eifkman Koninkl. Akademie v. Wetenschappen \& Dec. 1897.

The average O_{2}.consumption in 8 experiments at temperatures of $4-13^{3} \mathrm{C}$. amounted to

252,4
min. 230,5
max. 285,1
The 0_{2}-consumption in 21 experiments at temperatures of $14-30^{\circ} \mathrm{C}$. averaged 256
min. 222,2
max. 292
At the lowest temperatures $\left(4^{\circ}\right)$ we found 260,7 and 285,1 .
. " highest " $\left(30^{\circ}\right)$ " " 256,8292 and 277,7.
III E. Body-weight 83,3 Kilos (without clothing) Height $1,82 \mathrm{~m}$.
Averages of results of all experiments (15)

CO_{2}	O_{2}	$\mathrm{O}_{2} \mathrm{O}_{2}$
258,6	294,7	, 801

min. 219,6 min. $250,8=15$." "below the average
$\max \cdot 309,7 \quad \max \cdot 330,1=12 \%$ above . .
The average O_{2}-consumption in 6 experiments at temperatures of $8-13^{\circ} \mathrm{C}$. amounted to

290,8
min. 272,6
max. 330,1
The average O_{2}-consumption in 9 experiments at temperatures of $14-26^{\circ} \mathrm{C}$. amounted to

$$
\begin{aligned}
& \text { 297,4 } \\
& \text { min. 279,9 } \\
& \text { max. } 328.4
\end{aligned}
$$

IV. K. Body-weight 58 Kilos (without clothing) Height 1.75 m . Averages of results of all experiments (16)

CO_{2}	O_{2}	$\mathrm{CO}_{2} \mathrm{O}_{2}$
175,1	200,2	0,874

min. 152
min. $172=14{ }^{\prime \prime}{ }^{\prime}$ below the average
max. 205,9
max. $238,6=19$ ", above ",
The average O_{2} eronsumption in 4 experiments at temperatures of $3-122_{2}^{\circ} \mathrm{C}$. amounted to

207, 7
min. 177,7
max. 228,6
The O.consumption in 12 experiments at temperatures of $14-30^{\circ} \mathrm{C}$. averaged:
197,7
$\min .172,0$
max. 238,6
Our endeatours to detect any influence of the seasons on the carbon-dioxite elimination, the tidal air, and the number of respirathons per mimute proved as froitless as they had been in ascertaining such inthence on the oxygen-consumption.

Little has been witten as yet abont the inthenee of muscular work on the respiratory oxchange in the several seasons.

795

E．Smith reported in his publication，of which mention bats already been made，that equal muscular work has a greater intuence on the respiratory exchange in winter than in summer；his experimentation， however，does not，in our opinion，bouch for this eonclusion．

Our experiments were made in the months of March，April．May， June，and July 1912．

We proceeded as follows．The experimentation took place in the afternoon，at the same hour，shortly hefore dimer，in order to give scope to the presumable influence of close heat．We were sitting on a bicycle without wheels，placed on a stand．A rotatory disk had been fixed at the place of the large chain－wheel．Round it a steel brake－band could he tightened or slackened to render the work more severe or lighter（ F ig．＇2）．

ドが，こ．
The upper part of the hand was comnected with a spring－halance by means of a long wire．When the adjusting sorew was tightened the friction increased and the band was taken along by the disk， while the pedalling continned，wholl cansed the springthatance fo register a higher figure．The increase，howerer，was not such as to alter the static moment materially．Both the hracket－spindte of the bicycle and the rim of the disk were continmally being oiled during the experiment．

The perlalling rate was regulated by a metronome，ticking lasis times per minute．

Before the subjects，both skilled cyelists，started pedalling，a deter－ mination was made，while they were quictly seated on the bicyele； which involved only a very light statio muscular arotivity．In the subsequent period of the experiment the subject was pedalling for a quarter of an hour，while breathing freely and after this for five minutes，while breathing through the valves．Only then the estima－ tion was performed，while the sutrjert went on pedalling：we then could reasonatly presume that a condition of equilibrium between internal and external gas－exchange had been established．

The tmeathine thenash the valves for the space of fise minntes

 herathore forpiring throug the values. In the interval the temperather in the gatameter athaned it new equilibrimm.

Thrmehnm the whole experimem an assistant had to wath the - Hinubatame Which was 10 puint to the same mati. In case of a der batum. the hand was ath one stackened or tightened during the palatlims. whith did not amse any disturbance.

The work done was cobloblated by matiplying the eireomference of the di-k. i.e. tho distane rovered atter one rotation, by the weight indicated on the springhatace hy the number of rotations per timemit and by a conteding fadon' ${ }^{\text {. }}$. This showed an amont of labour of 2 2h(0) K. f . M. ber home.

The exertion required for the work, was not such as to exhanst the sutbects, still. at the finish of the experiment they felt tired as if they had been ayeling a long distance.

Our rexults are the following:

1. V. H. $\begin{aligned} & \text { sitting quietly (a): } \\ & \text { pedalling } \\ & \text { (b): }\end{aligned}$
A.onages of all the experiments (12) made in March, April, May; Junc, July 1912, lowest temperature 12 , highest temperature 30° :

CO_{2} per min.	O_{2}	CO_{2}
a $: 280,8$	min. $299 \max ^{293} 386,8$	O_{2}
$b: 568,4$	330,4	0.850
min. 781,2 max. 1448	0,8671	

The average of 8 experiments below $21_{2}{ }^{\circ}$:
CO_{2}
O_{2}
CO_{2}
O_{2}
$a^{2}: 273,3 \quad \min .299 \max _{323,5} 358,8$. 0,8448 b: 746,2 min. 781,2 max. 988,5

The average of 4 experiments above $211_{2}{ }^{\circ}$:

CO_{2}	O_{2}	$\begin{aligned} & \mathrm{CO}_{2} \\ & \mathrm{O}_{2} \end{aligned}$
a : 295,9	$\min .322 .1 \max _{344,5} 386.8$	0,8589
b: 1113,1	1277,7 min. 105? max. 1448	0,8712
Incr	set in after 11-6-'12	$21^{\circ} \mathrm{C}$)

[^2]11. $N . \begin{aligned} & \text { sitting quietly } a \text { : } \\ & \text { pedalling } \\ & b:\end{aligned}$

CO_{2}	O_{2}	CO_{3}	
a	212,5	min. $229 \max _{2} 314,9$	O_{2}
$b: 819,6$	min. 652,1 max. 1091	0,8346	
0,9152			

The average of 8 experiments below $201_{2}{ }^{\circ}$:

CO_{2}	O_{2}	CO_{2}
a	214,6	min. $229,6 \max \cdot 314,9$
b	268,8	O_{2}
$b, 717,9$	min. 652,1 max. 922,7	0,9076

The average of 6 experiments above $20_{2}{ }^{\circ}$:
$\mathrm{CO}_{2} \mathrm{O}_{2} \quad \mathrm{CO}_{2}$
O_{2}
$a: 209,6 \quad \min .229$ max. $280,8,9 \quad 0,5037$
b: $955,2 \begin{gathered}1034,9 \\ \text { min. } 977,2 \text { max. } 1091\end{gathered} 0,923$
Increase set ir above $201_{2}{ }^{\circ}$, after $13-5$ - '12
Also in this series of investigations the indivitual flumations were rather considerable.

We see that for either subject the average oxygen-intake is higher when sitting quictly on the bicyele than when lying in a chair. viz.

We also observe that the average value of the sitting-experiments at more than $21^{1} / 2^{\circ}$ with 1^{r}. H. is a little higher than that of the experiments below $21 \frac{1}{2}{ }^{\circ}$ vi\%.
the first value: 344.5 , the second 322.5 .
Again, that for X there is no such difference between the two periods. On the contrary with him rather the reverse takes plate, the first value being 260.8, the second 268.8. However. this difference is too small to be taken into atecount.

While pedalling $\mathrm{J}^{\text {r}}$. H. shows an essential increase of oxygenintake, when the temperature rises beyond 21°. at the beginning of June. With N the increase is not so great. tout it stants a month earlier, when the temperature rises beyond 20° viz.

$$
\text { with } I^{r} V \text {. from average } 863.4 \text { to } 1275.7 \text { nearly } 48 \%
$$

$I^{\top} . H$. (lying) average 0xygen-intake 2.1 .1 (
V. (lying) 255
(sitting) 265.4 ,

The lowe-t value of the warm periot in $I /$'s experiments (1052) is distimet! higher than the highest of the cold period (985.5).

Oll the dan- of the higher values either subject felt, as if the muscontar worls requared a ereater physical exertion than on other days. thmuth they were both in rood health and followed their daily rontine.
in moting the areare increase of the absorption of oxygen, result ins from the pedatling, we find:

$$
\begin{array}{rl}
\text { with } 1 \text {. } / 1 . \text { below } \quad 200^{\circ} \quad 86: 3-323.5 & =441.5 \\
\text { above } 21 & 12.5-244.5
\end{array}=933.2 .
$$

a difference of 491.7 (neady $112^{\circ}{ }^{\circ}$).

$$
\begin{aligned}
\text { With } 1 \text { below } 210791-268.8 & =522.2 \\
\text { above } 20 \frac{1}{2}^{\circ} 1034.9-260.8 & =774.1
\end{aligned}
$$

a difference of 251.9 (rather more than 48%).
The numbers expressing the carbon-dioxide output are running paraltel th those indicating the oxygen-intake. This tallies with the approximate accordance of the respiratory quotients of the experiments made at a temperature higher than $20^{1} / s^{\circ}$ and $21^{2} / s^{\circ}$, with those of the other experiments.

In the case of I^{\prime} the temperature under the clothes, on the cessation of the pedalling was $35-355^{1} / 2^{\circ} \mathrm{C}$, the relative moisture 65 - 60 . thronghout the whole period atove $20 \frac{1}{2}^{\circ}$. In the period below 200° the former variod from $30^{\circ}-34^{\circ}$, the latter from $30^{\circ}-47^{\circ}$

With V^{r}. IV. Howe values were:
in the period above $211^{\circ}: 34-30^{2} \%_{3}^{\circ}$ $10-100 \%$
helow $211_{2}^{\circ}: 30-34^{1,}$
$40-75 \%$
As regards the reppirations per minute ant the tidal air at the end of the pedalling experiments we find:
number
of respic. per min. Tidal air

We see, therefore, that the number of respirations per minute remains faily ronsamt, whereas in the warm season the tidal ar is romsinteably angmented, viz.

We have previonsly remarked, that the inoreased reapiratony exchange at a higher temperatme amon the attributed to this, seemg that the determination had not heen made. montil an equilibnimm had presumably heen established hemwen imemal and extermal gitsexchange. Indeed, the (O_{2}-comsmmption and the (O_{2}-elimimation increased more considerably than the thlal air.

Otr experimental evidence seems 10 show that mbsentar work at a hiyh temperature is less economion than at a how lemperature, and also that this difference is more marked with one suthject than with another.

The increase of gasexchange patallel to the rise of temperature was not gradual. but sudden at $21^{\circ}-22^{\circ}$.

Physiology. - "The inftuener uf the reaction upon the action of pityatim". By Dr. W. E. Ringer and H. v. Trigt.
(Communicated by Lrof. L. A. Perelimarag in the meeting of November 30, 1912).
One of us (v. Tr.) has for some time been studying the effect of diet on the atction of the diastatic enzyme of the saliva, to which the name ptyalin has been applied. The results of other researchers into this subject are to some extent confliting with each other ${ }^{2}$). Nor do van Trigt's experiments positively demonstrate an influence of diet. Though, taking one with another, they seemed to point to an influence, oceasionally there appeared striking deviations without our being able to tix upon the cause, so that we did not know what to make of the results.

This experimentation was conducted as follows: saliva was added to amylum solutions and after some time the reducing power of the solutions was determined. This method involves the risk of fluetuations in the reaction of the fluids. e.g. such as are brought about by the flask-wall or by carbon dioxide from the air, since in approximately neutral fluids without regulating-mixtures the reaction may be considerably shifted by a tritling disturbance. This would account for the striking deviations mentioned just now, recent researehes having shown that slight modifications of the reation markedly affect the activity of enzymes.

Now if, in prosectting our experiments. due care being taken all
${ }^{1}$) Cif. Hamarasten's Lelrbuch der physiologischen Chemie.

Hue bime tu whithe any noxious inlluence of the flask-wall or of the cathon-thasibe uphon the reaction, we should deteet unmistakable inthene of the dien. this might be owing to varions ceatuative factors. F゙an of all the comentration of the enzyme might have been attered by the diet. In the second place the organism might eflicopents after the eoncentration of the ions, which are so material (1) the ation of the enzyme, expeotally the H- and OH-ions, as well ar the ('form amd others.

We thomath propers. Wherefore, to cationsly wath the influence "I the H - and OH-ions in order to asecrtan by subsequent experiments. Whether variations in the atotivity of the enzyme are to be attributed to ehanges in the concentrations of the sad ions. Horenver, an acorate kmowledge of the inthence of these ions may lead to a clearer insight into the ation of the enzyme.

Previons impuiries into the effect of acids and afkalis on the action of plyalin yelded rather contradictory results ${ }^{1}$, from which it was supposed that either acids or allablis acted favourably.

As a rule we used in our investigations the methods employed by Sombexste in his remarkable experiments on enzymic actions. We adopted the following course:
filtered sativa, designated "enzyme" in the following tables, was made to ate at 37° upon 1% amylum solutions. After the action of the enzyme had heen arested by heating it was estmated by the determination of the redneing power of the digestion-llud, of the rotatory power and by reation with iodine. Varions reactions were given to amylum solmions. To ohtain them and to maintain them constant thee haftimg or regatation-mixtures were applied, vio

1. phophate-mistures.
2. collate-mixtmres.
3. anelate-mixtures.

The process of digesting lasted 20 mimutes for all series of experiments but one.

1. Erpmerimentes with phosphete mixtures.
all the erlam resseds had been exposed to stean for 1 b mimutes.)
Into ERLAMmar-llakin dena-mats, (apable of holding 300 coc. were plaved:

10 (., of a phosphome atcid solation 1.485 n . varying amounts of sodimm hydrate 0, athon n., and water up to 50 e.e. To this 200

[^3]e.e. of the amylum solution was added by means of a pipette. As a matter of course, all the tosts of the same series were made with the same freshly prepared solntion. Which was obtamed by mixing 25 gr . of dried amylum with one liter of water and heating it to the boiling point, white stiming the flat and mathating this remperature for about a minute. After cooling the misture was made u_{p} to 2 liters ${ }^{1}$) and filtered through irlass-wool or muslin.

The flasks holding the phosphate-mistures and the amylum, were first heated to 37° and then maintained at this temperature in the thermostat for at least 20 minutes previons to the addition of the enzyme. After the anzyme had been working on for 20 minutes, the flask was dipped into a boiling waterbath and was constantly and regularly moved, always in the same manner, till a temperature of 90° was reached, so that every time the action of the enzyme was arrested in the same way.

The reducing power of the cooled fluid was determined after Bertrand and was expressed in m . (ir. copper per 100 ce.c. of the fluid.

The determination of the reaction was performed electrometrically. The hydrogen-electrodes were treated after Hascibacu's ") shaking method, and measured by means of mercury-alomel-electrodes with normal and $1 / 10$ n potassium chloride The reaction is expressed in $P_{I I}$: the negative logarithm of the hydrogen-ions-concentration.

The following tables show the results of the most important serites of experiments.
rst Series of experiments. Enzyme v. T.

Nr .	Phosphoricacid solution - c.c.	NaOH c.c.	$\mathrm{H}_{2} \mathrm{O}$ c.c.	Amy- lum c.c.	$\begin{gathered} \text { En1- } \\ \text { zyme } \\ \text { c.c. } \end{gathered}$	Reduc- tion m.Gr. Cu	Rotation minutes	Iodine reaction	P_{H}
1	10	13.4	26.6	200	2	71.10	-	-	5.186
2	10	13.7	26.3	200	2	182.15	-	-	5.69
3	10	14	26	200	2	212.30	-	-	5.80
4	10	15	25	200	2	218.95		-	6.22
5	10	16	24	200	2	214.85	-		6.40
6	10	18	22	200	2	176.50	-	-	6.78

[^4]| $\therefore i$ | Ihusphericiald -nlution c.c. | $\begin{aligned} & \text { Na(1) } \\ & \text { coc. } \end{aligned}$ | $\begin{aligned} & 11,(1) \\ & c . c \end{aligned}$ | Amy !umi c.c. | En-
 zyme
 c.c. | Reduc. tion m,Gr. Cu | Rotation minutes | lodine reaction | P_{H} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 111 | 13 | 27 | 200 | 2 | Reduct on not Derceplibie | $+192$ | blue | 4.53 |
| 2 | 111 | 13.5 | 26.5 | 200 | 2 | 180.10 | 188 | blue, shade of violet | 5.33 |
| 3 | 111 | 14 | 26 | 200 | 2 | 234.81 | 186 | violet, shade of blue | 5.86 |
| 4 | 111 | 14.5 | 25.5 | 200 | 2 | 244.55 | 185 | violet | 6.05 |
| 5 | 10 | 15 | 25 | 200 | 2 | 235.10 | 186.5 | violet, shade of blue | 6.24 |
| 6 | 111 | 15.5 | 24.5 | 200 | 2 | 223.60 | 188 | violet-blue | 6.30 |
| 7 | 10 | 17 | 23 | 200 | 2 | 179.10 | 191.6 | blue, shade of violet | 6.61 |
| 8 | 10 | 20 | 20 | 200 | 2 | 105.40 | 195 | blue | 7.01 |

zd Series of experiments. Enzyme D.

	Phos- phorw and -nlıtion c.c.	NaO c.c.	Hén c.c.	Amy: lum c.c.	$\begin{aligned} & \text { En- } \\ & \text { zymu } \\ & \text { c.c. } \end{aligned}$	Reduc. t10n m. ir. Ci	Rotation minutes	Iodine reaction	f_{H}
1	10	13.2	26.8	200	2	106.45	194	blue	4.90
2	10	${ }^{1} 13.5$	26.5	200	2	194.50	190.3	blue, shade of violet	5.52
3	1)	14	26	200	2	251.25	190	violet-blue	5.83
4	10	14.5	25.5	200	2	270.10	189.7	violet, shade of blue	6.08
5	10	15	25	200	2	271.20	188	violet	6.19
6	10	15.5	24.5	200	2	265.55	191	violet, shade of blue	6.37
7	10	17	23	200	2	220.55	192	violet-blue	6.61
8	10	20	20	200	2	156.60	195	blue	7.03

From theae experiments it appears, that the concentration of the hydrogen-ions exprts a considerable influence upon the action of the enzyme: further that an increase of cot consequently a decrease of $1 / 1 /$ accelerates its atotivity, until a certain optimum is reached, after Which the atom stackens again. We also observe the same hehat viour with enzames from different soures, howner with a noticeable diftereme in their artivity. From another series of experiments we wathered that the optimal reatom ties at aboni the same point in much more dibule phoshate solutoms; we ako leamt, that all over the series the ation of the enzyme was mose vivid. It follows
 highly dilute than in the comentrated solutions.
2. Experiments with citratominheres. I ritsate solution was mathe
 (Marck's e matrio pro amalysil and water to 1 liter. 20 e.e. of this citrate solution diluted with water to 250 (0.0. yiehted $f^{\prime} I=4.915$.

4th Series of experiments. Enzyme R.

Nr .	Citrate solution c.c.	$\begin{gathered} \mathrm{NaOH} \\ \mathrm{H}_{2} \mathrm{O} \\ \text { c.c. } \end{gathered}$	Amy lum c.c.	$\begin{gathered} \text { En- } \\ \text { zyme } \\ \text { c.c. } \end{gathered}$	Reduction in Gir. Cu	Rotation minutes	Iodine reaction	P_{H}
1	10	14.725 .3	200	2	247.60	195	bluish-violet	5.99
2	10	19.5720 .43	200	2	357.15	189	reddish-violet	6.49
3	10	19.9420 .06	200	2	380.15	189	red, shade of violet	6.526
4	10	20.4019 .6	200	2	380.65	188	reddish-brown	6.62
5	10	21.318 .7	200	2	396.00	187	reddish-brown	6.73
6	10	22.117 .9	200	2	358.65	187	red, shade of violet	7.09
7	10	$23 \quad 17.0$	200	2	183.15	197	blue, shade of violet	7.425

sth Series of experiments. Enzyme R diluted with 1 vol. of water.

Nr .	Citrate solution c.c.	$\begin{gathered} \mathrm{NaOH} \\ \text { с.c. } \end{gathered}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { с.c. } \end{gathered}$	Amy. lum c.c.	$\begin{gathered} \text { En- } \\ \text { zyme } \\ \text { c.c. } \end{gathered}$		Rotation minutes	lodine reaction	p_{H}
1	5	5.0	, 40	200	2	81.35	202.7	blue	5.80
2	5	8.20	36.8	200	2	139.70	200	blue	6.26
3	5	9.78	35.22	200	2	158.10	197	blue, shade of viole	6.55
4	5	10.20	34.80	200	2	147.85	199.3	blue, shade of viole	t 6.74
5	5	10.65	34.35	200	2	128.45	201	blue	6.85
6	5	10.90	34.10	200	2	107.95	202.7	blue	7.046
7	5	11.05	33.95	200	2	90.05	204	blue	7.11
8	5	11.30	33.70	200	2	60.90	204.5	blue	7.41
9	5	11.60	33.40	200	2	reduction not perceotible	205	blue	7.497

Here again an optimal reaction is educed, which, however, has slightly shifted towards the neutral point. A decrease of eoncentration dimimishes this deviation.

 aboll. The fillomine whmoment were malle:
fish Simten of experiments. Enzyme R. diluted with 3 vol. of water

\therefore	scepate -ilutron c.c.	Acetco acid solution c.c.	$\mathrm{H.O}$ c.c.	Amylum c.c.	$\begin{gathered} \text { En- } \\ \text { zyme } \\ \text { c.c. } \end{gathered}$	Reduc. tion m.Gr. Cu	Rotation minutes	Iodine reaction	P_{H}
1	211	11	30	200	2	47.60	turbid	blue	7.297
2	211	1	29	200	2	137.65	202	blue, shade of violet	6.65
3	20	2	28	200	2	182.65	199	bluish-violet	6.55
4	211	4	26	200	2	221.05	198	bluish-violet	6.21
5	20	5.6	24.4	200	2	222.05	195	violet-blue	6.106
6	20	7	23	200	2	221.55	197	violet-blue	5.98
7	20	12	18	200	2	200.05	199	bluish-violet	5.78
s	211	30	0	200	2	118.20	200	blue	5.37

Atrain ath optimal reatom is evolved: it is equal to that of the phosphate ahtutoms. On either side of it the action of the enzeme diminishes, firs slowly, then rapidy. The optimsal reacton lies in phophate solutions al $\quad 1 / 1=6.0 .5$, as maty be seen from at graphice reprementation of the reduction ath fumotion of the ph. In atectate solutions we find fhat $=6.08$, whereas in citate-experments values vary acoorting to the concentration. In the 5th series we found an ophimat reation $/{ }^{\prime} H=654$.
 They are somewhat different at 37°, the temperature alt which the experiment were mate. The reations of the thads, that were optimat, have ator been determined by us. We found:
in the phonphate solutions pa: $=6.00$

in the acetate sulntions $\mu^{\prime \prime}=6.028$.
The sembal point lies all Bh $^{\circ}$ at $/ 1 /=6.796$.
For parpmes of comprame the action of the varions regubatingmixtures we catried ont the following experiment. (p.805).

It is evident from this leat that, the reaction being neutral, the influence of phonphate is inhbitory: when the reatetion is slighty

7th Series of experiments. Enzyme k diluted with 1 bol. of water.

	Regulating mixture	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { c.c. } \end{gathered}$	Amy = lum c.c.	$\begin{gathered} \text { Eu- } \\ \text { zyme } \\ \text { c.c. } \end{gathered}$	Redine. tion m. (il". Cli.	Reaction (determined at is 1 P_{H}
ล	none	50	200	2	318.24	efectrometrical determination not practicable on account of the lack of electrolytes. Neutral behaviour to litmus, so P11 + 7.07
	10 c.c.phosphoric acid 20.6 c.c. NaOH	19.4	200	2	245.0 .5	7.07
c	10 c.c.phosphoric acia 16.25 c.c. NaOH	23.75	200	2	425.15	6.50
d	$\begin{aligned} & 10 \text { c.c. citrate, } \\ & 19.55 \text { c.c. } \mathrm{NaOH} \end{aligned}$	20.45	200	2	221.55	6. 46 m

a comparison between ditrate and phosphate hows that inhibitom is much stronger with the former that with the latler.

From the removal of the aptimal reation towads the nentral point. as well at from the tests published in this paper, it is appatrent, that cilrate imhibits most strongly on the sithe of the mimon $p h ' s$, and that this impeding action weakens cowands the nentrad point.

The optimal reactions being identical in phosphate- and acetatemixtures, it was likely, that either of them shouk slacken the action of the ptyalin in the same way. The following test illnstrates the fract that, if the leactions are the same, both mixtures equally affect the enzymic action.

8th Series of experiments. Enzyme R diluted with one vol. water.

	Regulator	$\underset{\text { c.c. }}{\mathrm{H}_{2} \mathrm{O}}$	Amylum c.c.	Enzyme c.c.	Reduction mGr. Cu	p_{H}
a	10 c.c. of acetate 5 c.c. of acetic acid	35	2010	2	489.2	5.880
b	$10 \mathrm{c}, \mathrm{c}$ of phosphoric acid 14 c.c. NaOH	26	200	2	483.5	5.886

We now passed on to impuire how this influence of the reation upon the action of ptyalin is to the aceomented fer: It may inteat hes imagined, that H-ions favour the enzsmic actom, but how is it then that beyond the optimal car they larecly impede the aretivity. Is it perhaps to be attributed to an injury to the enzymes. In order to find this out we made the following experimenti:

Procecdings Royal Acad. Amsterdam. Vol. XV.

 the antivit! of thin mixure, in which the enosme hat been diluted finu fince. If was subsednent! wamed to and maintained at 35°, white at varim- intervald the actom was moted, every time by
 the uphomal. reatern.

	Time (minutes) during which the erzyme-mixture was maintained conct. at 37	Reduction m.(ir. Cu.	Rotation minutes	$\begin{aligned} & \mathrm{PH} \\ & \text { (if determined) } \end{aligned}$
1	11	177.55	194.3	6.06
2	8.75	179.10	-	-
3	16.75	179.10	193.0	6.00
4	41.75	179.10	-	-
5	88.75	179.10	193.01	6.075
1	178.75	181.60	-	-
7	268.75	179.10	193.0	5.975

 ture $4.6: \%$.

	Time (minuten) during Which the ername-mixture Wa-manta ned connt. at . 37	Reduction m.sr. Cu.	Rotation minutes	p_{H}
1	11	155.00	201.0	5.98
2	18	147.85	201.7	6.04
3	47.5	139.70	199.0	6.02
tresh entyme-mixture made of the -ame Enzyme R and the same $\mathrm{N} H$				
4	11	162.25	199.3	6.03
5	135	113.10	201.5	6.05
6	373	56.30	203.0	6.03

Our results show that the enzyme is mot yet injured at pll $=$ ons, but is gradually imjured at $/ 1 /=4.09 \%$. However, in view ot the relatively short duration 20 min., of the digestion-experiments deseribed athove, the injury is, even in the case of $\mu^{\prime \prime}=4=4.09 \%$ only of small aceount. We conclude, therefore that the inhibitory intuence of the H-ions in coneentrations beyond the optimat is not attributable to injury to the emzyme.

In addition we have also tried to ascertain, whether the enzymic atotivity is weakened in fluds made slighty alkaline.
c 10 c.c. of phosphoric acid, 2^{7} (e.e. of sodinm hydrate, $1: 3$ c.e. of water. Addition: 25 (e.e of enzame $R+15$ (e.c. of water, all the amylum solutions as in the preceding test, fly of the enzymemixure 8.718.

	Time (minutes) during Nr. Which the enzyme-mixture was maintained const. at 370	Reduction m.Gr. Cir.	Rotation minutes	P_{H}
1	0	142.20	-	-
2	29.5	147.35	-	6.02
3	55.5	147.35	-	-
4	103.5	147.35	-	-
5	255.0	140.70	-	-
6	380.5	134.55	-	-

Consequently no injury in two hom's' time with a fainty atkaline reaction, $\quad \mu=8.718$.

It is obvious, therefore, that in our experiments injury to the enzyme cannot have had any influence worth mentioning; on this account we could not expect the optimal reaction to shift in a prolonged digestion-test. Researches, each lasting 100 minutes, 5 times longer than the other experiments, confimed our supposition.

Further experimentation will have to reveal the relation between the electric charge of ptyalin to its action, for which the iso-electric point has to be determined ${ }^{1}$).

Summary

For the action of ptralin the concentration of the hydrogen-ions is highly important. In fluds in which the reaction has been deter-

mined bit phophath- and acetate-mixtures, we found at f , $=6.00$ ath (ntimal reartion tor the ation of the enzome. On either side the
 and \quad an it is smped almost completely. At these fhes injury to the condme in ont of the furestion during the whole time of the test.
 time in tive times the ordinaty duration. The intluence of ditratemixames is mond more inhibitory han that of phosphate- and ate tateminumes. The inhibition is energetie especially on the side of the mimer fres 'This aroounts for the late that in cibratemixtures the putimal reaption has shitted towads the neutral point.

Astronomy. - "(Mn absorption of ifratations amel the moon's Compitude." By Prof. Dr. W. De sittra. Part I.
((onmmminaterl in the meeting of Sorember 30, 1912).
By ahsorption of gravitation we mean the hypothesis that the mumat gratitutomal athation of two bodies is diminished when a mind hody is traversed by the tine joining the first two. If this ahsorption exists, it will manifest itself by diminishing the attraction of the sun "pon the moon during a lumar eclipse. Therefore, in order to test the rablity of our hypothesis, we mast compute the perturbations in the longitude of the moon which are a consequence of this decteate of attraction, and compare these computed perturbations with the well known deviations of the observed longitude from that derived in acomatane with the rigorous law of Newton. Newcomb, in the lant paper from his hand (M. N. Jan. 1909) has put before the arientife world the great problem of these deviations or "fluctuations" in the moon's longitnde. They can be represented by a term of loner period, for which Newcomb finds an amplitude of $122^{\prime .} 95^{\circ}$ and a period of 275 years (great fluctuation), upon which are superposed irverular deviations (minor fluetuations), which amount
 Newnomis a-sistam, has afterwarls represented these minor fluetmations ly \quad wo empirival terms having periods of 56 and 23 years and amplitudes of $22^{\prime .} .9$ aml 0 ". 5 reppedively (M. N. Nos. 1911). The ont-tandine resednals are very small: after 1850 thes seldom reach J^{\prime}. In the yeats before fson the minor flatuations are not so well matreet, probably becomer owing to the smatler mumber and greater
 been eombined in eadh mean result.

The idea of explaining these flumbations by an absomption of the gravitational attration of the stm upent the moon by the eath during lomar ectipses, has for the tirst time been publicdy worked ont by Mr. Motthanger ${ }^{1}$), the investigation having been proposed at the subject of a prize essay by the philosophicat facully of the University of Munich. I had also towards the ent of 1909 ("ommenced a similar investigation, which wat however of a preliminary character and, as it did not lead to positive results, was discontinned and not published. The publication of Mr. Botridereres discertation led me to resume the investigation.

The decrease of the attration of the sum upon the moon can be taken into account by adding to the forces considered in the ordinary lonar theory a perturbing fore acting in the direction of the line joming the sun and the moon, in the direction away from the sma. If the sum and moon are treated as material points, this force is

$$
\begin{equation*}
H=x_{L^{3}}^{m^{\prime}}={ }_{r_{0}{ }^{2} m^{2} u^{\prime 3}}^{(1-n}(1) \% \tag{1}
\end{equation*}
$$

The meaning of the letters is:
$m^{\prime}=$ mass of the sum,
$n^{\prime}, a^{\prime}=$ mean motion and mean distance of the earth.
$n, a=$ the same elements of the moon (osculating values).
$n_{0}, a_{0}=$ the mean values of these elements,
$\Delta, r^{\prime}=$ distance of sun from moon and earth,
$\boldsymbol{a}=a_{0} / a^{\prime} \quad m=n^{\prime} / n_{0}$.
The effect on the elements of the moon's orbit can be computed by the ordinary formulas. The perturbing forces are:

radial	force	$H \cos \beta \cos \left(\zeta-\zeta^{\prime}\right)$
transversal	$"$	$H \cos \beta \sin \left(\zeta-\zeta^{\prime}\right)$,
orthogonal	,	$-H \sin \beta$,

where ζ and ζ^{\prime} are the selenocentric longitudes of the earth and sum, and β is the selenocentric latitude of the sum, the moon's orbital plane being taken as fundamental plane. For the instant of central eclipse we have $\boldsymbol{\xi}-\xi^{\prime}=0$. The transversal force therefore changes its sign during the eclipse, and its total effect is very nearly zero. The effect of the orthogonal force is entirely negligible. In the expression of the radial force, we can put $\cos \left(\zeta-\zeta^{\prime}\right)=1$. We have further with sufficient accuracy

$$
\beta=n, \quad \zeta \quad-\pi^{\prime}+180^{\circ}, \quad \xi=\pi^{\circ}
$$

[^5]where
\[

$$
\begin{aligned}
& \therefore=\text { the mom's latitude, } \\
& n . w^{\prime}=\text { true longitudes of moon and sum. }
\end{aligned}
$$
\]

The radial forme thas becomes $/ /$ coss. It is easily veritied that the mean motion whose pertmotion mast be trice integrated to give the pretuhtation in longitude is practically the only element which need the considered. We tind

$$
I_{u}=-\frac{3 u \sin v}{a V 1-e^{2}} H \cos s=-\frac{3 u_{0}^{2} m^{2}}{u}(1-2 a) \frac{u_{0}}{a}\left(\frac{a^{\prime}}{r^{2}}\right)^{2} \times \frac{e^{\prime} \sin t}{V 1-e^{2}} \cos s,(2)
$$

where x is the moon's mean anomaly. For the excentricity e we mat une the osculating value. The mean value will be denoted by f_{0}, as for the other elements.

During the eclipse we can for the coordinates and elements of the moon ue their values for the epoch of central eclipse. We then limt for the addition to n as the effect of one eclipse:

$$
\begin{equation*}
d n=\int_{-1}^{+} \frac{+\pi}{d t} d u=-3 u_{0}{ }^{2} m^{2} \frac{1-2 a}{a}\left(\frac{a^{\prime}}{u^{\prime}}\right)^{2} \frac{u_{0}}{u} \frac{e \sin c}{\sqrt{1-e^{2}}} \cos s \int_{-T}^{+1} \% d t \tag{3}
\end{equation*}
$$

where the time is counted from the middle of the eclipse, and T is the half duration.

Now assume the absorption of gravitation to be proportional to the mass of the absorbing borly. We have then $\%=\mu \cdot \%$, where γ is the coefficient of absorption and u the mass of that part of the carth that is waversed by the "ray of gravitation". This ray of gravitation, i. e. the intinitely thin cone
 enveloping the sun and moon, which are considered as points, by its motion during the eclipse cuts an infinitely thin dise out of the body of the earth. In the plane of this dise take two coordinate axes, of which the axis of .x is parallel to the line joining sum and moon at the instant of centrality. If then 0 is the density and x_{1} and x_{3} are the prints where the "ray" enters and leaves the earth, we have

$$
\because=\int_{i_{1}}^{x_{\mathbf{3}}} o d x
$$

Further we bave

$$
d_{n}=r^{\prime} \cdot r^{\prime \prime} d_{r} \cdot d^{\prime}
$$

Or°

$$
\prime \prime=\frac{(1+\pi) d!}{r^{\prime \prime} \cdot \prime} .
$$

Consequently:

$$
\int_{-T}^{+1} \operatorname{sedt}=\frac{(1+\pi) \gamma}{d x} \int_{0}^{d t} \rho d x d!
$$

The double integral must be taken over the entire surface of the above considered section of the earth, and ropresents the mass of the infinity thin dise, Its vatue therefore depends on the distribution of mass within the body of the earth. Like Botadnger I take the distribution aceording to Wiechert, i. e. a central core of density $\delta_{2}=8.25$ surrounded by a mantle of density $d_{1}=3 \cdot 30$. The radins of the core is $R_{1}=0.77 \mathrm{R}$. If we call D the radius of the above considered dise, we can take $D=R \cdot \frac{T_{0}}{112}$, where T_{0} is the half-luration of the eclipse computed with the mean elements of the moon's orbit, i.e. the value which is given in Oprodzer's Camon der linstemisse, expressed in minutes of time. The number 112 is the maximum of this half-duration.

We then find easily, in the case when the section is entirely in the outer mantle

$$
\iint 0 d x d y=x R^{2} \delta_{1}\left(\frac{T_{0}}{112}\right)^{2}
$$

and when it also traverses the inner core (i.e. for $T_{n}>71 . \bar{n}$):

$$
\iint 0 d x d y=x R^{2} \boldsymbol{\sigma}_{1}\left\{2.5\left(\frac{T_{0}}{112}\right)^{2}-11.62\right\}
$$

Now put, in the tirst case

$$
J_{0}=100\left(\frac{T_{0}}{112}\right)^{2}
$$

and in the second case

$$
J_{0}=100\left\{2.5\left(\frac{T_{0}}{112}\right)^{2}-0.62\right\}
$$

The function J_{0} which is thus defined, is tabulated in Dr. Botthingres dissertation, with the argument T_{0}. We have now

$$
\begin{equation*}
\int_{-T}^{+T}: x d t=(1+\pi) \cdot r^{2}+\boldsymbol{r}_{1} \because J_{0} . \tag{4}
\end{equation*}
$$

and this value mus be suhtituted in the formula (3). In doing this we "all milher expren the coordimates and velocities in the aratatime tements, of the later in the former, by the well known fiomman

$$
\begin{gathered}
r=\frac{1+r \cos r}{n\left(1-e^{2}\right)} \quad \frac{d r}{d t}=\frac{a m e \sin r}{1-e^{3}} \\
d \| x=r^{2} n \mid 1-p^{2} \\
d t
\end{gathered}
$$

Wo then tind

$$
\begin{equation*}
d_{n}=-\eta J_{0}\left(\frac{l^{\prime}}{r^{\prime}}\right)^{2} \cos s \frac{a_{0}{ }^{2} n_{0}}{a^{2} n} \frac{e \sin v}{(1+e \cos v)}, \tag{5}
\end{equation*}
$$

01

$$
\begin{equation*}
d_{n}=q J_{0}\binom{u^{\prime}}{r^{\prime}}^{2} \cdot u_{n}^{2} u_{0} \cdot \boldsymbol{r} \frac{d \boldsymbol{\tau}}{d t} \tag{6}
\end{equation*}
$$

where we have pul

$$
y=\frac{3 u_{0} m^{2}(1-\imath) \pi h^{2} \|_{1}}{100 a_{0} t} \gamma
$$

We can with sutficient ancuracy ${ }^{2}$) take in the formula (5) $n_{0}{ }^{2} n_{0}=a^{2} n$, and in the formula $61^{\prime} 1-e^{2}=1^{\prime} 1-e_{0}^{2}$. The formulas can, however, not he used for the computations, unless they are so developed as (1) comtain only such ynantities as can be easily derived from existing talles.

1) The formala (ib) is derived by Bortheatr from the ris cira integral. In this derisation he introduces it couple of approximations, which are unnecessary, and which ate the renom why the fator ! Fer docs not appear in his formula. On his pee I2 ho takes tem i lor sin i. If we retain sin i and replace it by its value 1 d 1°, the shate root itops ont of the formala, and consequently the approximation introlsed in pre $1: 3$ in tha Nerehpment of this same root is also umecessary. We then tim $\therefore n=-n^{2} n^{\prime} \frac{l^{2}}{d r}$. Now we have $1-e^{2}=r^{2} \frac{d y}{d t}$ and $r=\frac{c}{\pi}$. Botthes.
 (1) mage (18) then becomes inomical in our formula (6).
${ }^{2}$ see howerer the doutnote on pr sto.

The coordinates of the moon are developed in the lanar theory in series depenting on the fom arguments l, l^{\prime}, f and l, where I and l^{\prime} are the mean anomalies of the moon and sun, f the mean argment of the moon's latitude, and I) the difference of the mean longitudes of the moon and sun. For the mem opposition we have $I=0$. The other theee arguments are comtaned, unter the names of 1 , II and III, in Oppotark's "Tateln \%ur Berechmang der Mondfinstemisse". We have

$$
l_{1}=\frac{9}{10} I I, \quad l_{1}^{\prime}=\frac{9}{10} I, \quad 2 r_{1}=\frac{9}{10}(1 I I-37.66)
$$

Denoting the mean longitutes by 2 and λ^{\prime}, and the true longitudes by $\quad \prime$, w^{\prime}, we have.

$$
u=\lambda+\boldsymbol{l}+\Delta \lambda, \quad u^{\prime}=\lambda^{\prime}+\boldsymbol{v} l^{\prime}
$$

where

$$
d l=2 e \sin l+\frac{5}{4} e^{2} \sin 2 l-\gamma^{3} \sin 2 F
$$

represents the elliptic term $\left(\gamma^{2}=\sin ^{2} 2_{2}^{i}\right)$, and $\angle \lambda$. the sum of all perturbations in longitude. The perturbations in the motion of the earth can be neglected. Then, denoting the values for mean opposition by the suftix 1, we have

$$
\lambda_{1}-\lambda_{1}^{\prime}=180^{\circ}, \quad w_{1}-u_{1}^{\prime}=180^{\circ}+d l_{1}+\Delta \lambda_{1}-d l_{1}^{\prime}
$$

for the instant of central eclipse on the other hand we have

$$
u-u^{\prime}=180^{\circ}-\gamma^{3} \sin 2 F^{\prime}
$$

We now put

$$
\Delta=\left(u_{1}-u_{1}^{\prime}\right)-\left(u-u^{\prime}\right)=d l_{1}+L \lambda_{1}-d l_{1}^{\prime}+\gamma^{3} \cdot \sin 2 F,
$$

Then, $n(1-i)$ and $n(1-g)$ being the mean motions of the perigee and the node, we have, neglecting perturbations ${ }^{1}$):

$$
\begin{aligned}
& u=\frac{d u}{d t}=n\left(1+2 c \cos l+\frac{\vdots}{2} \operatorname{ce}^{2} \cos 2 l-2 g \gamma^{2} \cos 2 F\right), \\
& u^{\prime}=\frac{d n^{\prime}}{d t}=n m\left(1+2 e^{\prime} \cos l^{\prime}+\cdots\right),
\end{aligned}
$$

The time elapsed between the epochs of mean opposition and central eclipse is then

$$
L t=-{\underset{\mu-\mu}{ }}_{L}^{i}
$$

At the instant of central elipse we have thus

$$
l=l_{1}+n \Delta t, \quad v=l+\cdot \boldsymbol{l} l+\Delta l .
$$

i) See however the next footuote.
where $\angle l=\angle i-L o, L(0$ being the perturbation in the longitude of the previget. Fiurther we have, to the order of aceuracy here required, $d /=\| l_{2}-2, L \cos l$. Therefore, neylecting the difference between the pertmbations $L /$ and $L l_{2}$ at the two epochs, and putting $c^{\prime}=(1-m) \cdot{ }^{\circ}$, we tind

$$
\begin{equation*}
r=l_{1}+d l_{1}^{\prime}-\gamma^{2} \sin 2 F_{1}-L \omega-\left(c^{\prime}-1\right) L . \tag{7}
\end{equation*}
$$

Now we have approximately $l^{\prime}=l_{1}{ }^{\prime}-m L$, and also $c^{\prime}-1$ differs not much from m, therefore, if $L \omega$ is neglected, we lind from (7)

$$
r-r^{\prime}=l_{1}-l_{1}^{\prime}-\gamma^{2} \sin 2 F^{\prime}, \quad \text { or } \quad u-r^{\prime}=\lambda_{1}-\lambda_{1}{ }^{\prime}-\gamma^{\circ} \sin \supseteq F \text {. }
$$

The term $\gamma^{2} \sin 2 F$ is the reduction from true opposition to central eclipse. Consequently the meaning of these formulas is: The difference of the true longitudes of moon and sun at true opposition is equal to the difference of the mean longitudes at mean opposition.

In the expression for L, which only occurs multiplied by the small factor $c^{\prime}-1$, we can neglect all perturbations except the evection. This latter is very easily applied by replacing e_{0} in $d /$ by i) $7^{-} e^{\prime}$ (sce e.g. Tissimatio III p. 134). We have thus

$$
L=\frac{12}{7} e \sin l_{1}-2 e^{\prime} \sin l_{1}^{\prime}
$$

We must now develop the quantity

$$
K=\left(\frac{a^{\prime}}{r^{\prime}}\right)^{2} \cos s \frac{1 \sin r}{1+e \cos r} .
$$

where for r we must introduce the value (7j. We can take with sufticient accuracy

$$
\left(\frac{u^{\prime}}{r^{\prime}}\right)^{2}=1+2 e^{\prime} \cos l^{\prime}
$$

Forther we can take cos $s=1$, and we put

$$
\angle e=\Sigma x \cos x . \quad e_{0} L \omega=\Sigma x \sin x
$$

It appears, in fact, on investigation that all perturbations which need be considered, are of this form. We then find easily

The perturbations L_{e} and $\mathcal{L} 0$ are not as such contained in the existing lunar theories. I have therefore derived them, neglecting all perturbations that do not exceed $0.01{ }^{n}$. The only remaining term is again the evection. Those terms in the perturbing function, which in longitude give rise to the variation, produce a large perturbation in "and a, but its argument is $a=l \pm 2 D$, and conseguently the
corresponding term in \mathbb{A} is zero, sime $2 /)_{1}=0{ }^{2}$. The evection-term has the argument $n=2 l-2 /$. The resubing term in k therefore has the same argument as the principal tem. Finally I found in this way

$$
\begin{align*}
& k=e_{0}\left\{0.858 \sin l_{1}-0.031 \sin 2 l_{1}+0.038 \sin \left(l_{1}+l_{1}^{\prime}\right\}\right. \\
& =0.0 .471\left\{\sin l_{1}\left(1-0.072 \cos l_{1}\right)+0.039 \sin \left(l_{1}+l_{1}^{\prime}\right)\right\} \tag{8}
\end{align*}
$$

In order to verify this result, I have also computed the formula (6). The values of x and $w-\lambda$ expressed in the arguments $l, l, l)$ and I ' were taken from Brown's lnar theory. From these we easily derive $\frac{d x}{d t}$ and $\frac{d w}{d t}$.

We must then substitute for the argmments their values

$$
\begin{array}{ll}
l=l_{1}+c n \angle t & D=180^{\circ}+(1-m) n \angle t \\
l^{\prime}=l_{1}^{\prime}+m n \angle t & 2 F=2 F_{1}+2!n \angle t
\end{array}
$$

The value of $L t$ is given in Oppotzmers "syzygien-Tafeln fiar den Mond", page 4. The value there given is the interval of time hetween mean and true opposition. To get the value for the epoch of central eclipse it is sufticiently accurate to omit the term $+0.0104 \sin \left(2 y^{\prime}+2 \omega^{\prime}\right)$. The interval thus computed must then be reduced to our unit of time (see below). The developments, which are rather long, finally led to the following formula, where nothing is neglected that can affect the third decimal place:

$$
\begin{align*}
& a_{0}{ }^{2} n_{0} \frac{x \frac{d x}{d t}}{\left(\frac{d v}{d t}\right)^{2}} \cos s=0.05404\left\{0.8075 \sin l_{1}-0.0300 \sin 2 l_{1}\right. \\
&+0.0300 \sin \left(l_{1}+l_{1}^{\prime}\right)-0.0020 \sin \left(2 l_{1}+l_{1}{ }^{\prime}\right) \\
&-0.0033 \sin l_{1}^{\prime}-0.0050 \sin \left(l_{1}-l_{1}^{\prime}\right) \\
&+0.0016 \sin 2 F_{1}-0.0055 \sin 2 F_{1} \cos l_{1} \tag{9}\\
&\left.+0.0114 \cos 2 F_{1}^{\prime} \sin l_{1}\right\}
\end{align*} .
$$

Eclipses occur near the node. Consequently $\sin 2 F^{\circ}<\frac{1}{2}$. Thus, if we neglert all but the first three and the last term, none of the neglected terms exceeds $\frac{1}{200}$. Further co.s $2 F$ is alway included between the limits 1 and 0.866 . Therefore if we take $\cos 2 F_{1}=0.96$ throughout, we camnot make a larger error than about $\frac{1}{10}$ of the last term. This latter then becomes $0.0110 \sin l_{1}$ and can he added to the principal term. We thus finally get the formula

1) The influence of the variation on the osculating values of a and n, is consio derable, but it is the same in all oppositions, so that a゙n is a constant. The same thing is true of the error which is produced by our taking in μ, in the computation of Δt, the mean instead of the osculating value of n.

$$
\begin{equation*}
\left.d_{n}=-1_{1} l_{0} \sin l_{1}\left(1-0.074 \cos l_{2}\right)+0.037 \sin \left(l_{1}+l_{1}\right)\right)_{1} \tag{10}
\end{equation*}
$$

where

$$
y_{1}=0.818 .5 \times 0.05404 \times 111-e_{0}{ }^{2}=0.0447 .34
$$

The arreement with (8) is very satisfatory ${ }^{1}$)
We adopt as unit of time the mean interval between two successive eclipese, i. e. 6 syodic months or 177.18 days. Then taking as units of length and of density the earth's radius and the density δ_{1} of the outer mantle, we find

$$
1 / 1=1262^{\prime} \cdot \gamma
$$

('alling $)^{\text {. the coeflicient of absorption in the C. (r.S' system of units, }}$ we have $\gamma=R d_{1} \lambda$, and therefore

$$
\eta_{1}=2656 . " 10^{\prime} \cdot \lambda
$$

The formula 10 has been used to compute the value of \boldsymbol{d}_{n} for all eclipses oceuring in Oprorzer's Canon between 1703 and 1919. The coefticient η_{1} was omitted, the results are therefore expressed in $1 /$ as unit.

Eclipses orcar in groups of six. The interval of time between two surcessive eclipses of a group is 0 synodic months. In some groups there are only five or four eclipses: we can then still treat the group as consisting of 6 eclipses, if for the missing eclipses we assume $\boldsymbol{d}_{n}=0$)

Between each group and the next one or lwo echpses are missed out, the interval of time between the last eclipse of one group and the tirst of the next group being in those cases 11 or 17 synodie months insteal of 12 or 18.

Five groups make a Saros of 223 synodic months $=6585.2$ days $=18.03$ years.

The interval of if synodic months being the unit of time, the perturbation in n is derived by simply adding up the individual values of dh, i. e. forming the tirst series of sums. Then to get the perturbations in longitude we must again form the successive sums of these values of n, after having filled in so many times the final value of n of each group as there are empty places corresponding to the eclipses dropped out between that group and the next, rememhering however that for of of these missing eclipses we must only take $5 / 6$ of this fimal value.

[^6]In each of the fwo series of sums we can start with an atheitrary constant.

When the computations were carried ont it aprared that alway the values of ofl summed up over a complete batos gatye at vers small total, while the perdmotion in longitme showed a very manked periodicity, with the suros as period.

Accordingly I have livided the total perturbation into two parts: the periodie saros and the remaining non-periotic part. I call $L n_{p}$ and $L!$ the increase of the mean motion and the longitude drring the p th saros if the initial constants for both series of sums are taken zero. The purely periodic part of the perturtation during that Saros is then derived by taking for the initial ronstant of the first series of sums - i. e the initial value of the perturhation in $n-$ a value n_{0} determined from the condition $37_{6}^{1} \mu_{0}+L \lambda=0\left(37_{6}^{1}{ }_{6}^{1}\right.$ is the length of the saros in on units of time). The perturbation in longitude at the end of the $p^{\text {th }}$. suros is then:

$$
\lambda_{p}=\Delta \lambda_{0}+\sum_{k=1}^{p} \Delta \lambda_{k}+37_{6}^{1}\left\{p \Delta n_{0}+\sum_{k=1}^{p}(p-k) \Delta n_{k}\right\} \text {. }
$$

where Δn_{0} and Δ), are the initial constants of the two series of sums, i. e. the values of n and 2 . at the beginning of the tirst Saros. Putting now

$$
\begin{aligned}
\Delta \lambda_{k}= & \Delta_{0} \lambda+\left(\Delta_{1} \lambda_{2} k_{k}, \quad 37 \frac{1}{6} \Delta n_{k}=\Delta_{0} v+\left(\Delta_{1} v\right)_{k},\right. \\
& 37 \frac{1}{6} \Delta n_{0}=-\Delta_{0} \lambda+\frac{1}{2} \Delta_{0} v+v_{1}
\end{aligned}
$$

we have:

$$
\begin{equation*}
\lambda_{p}=\Delta \lambda_{0}+p v_{1}+\frac{1}{2} p^{2} \Delta_{0} v+\sum_{k=1}^{p}\left(\Delta_{1} \lambda_{1} k_{k}+\sum_{k=1}^{p}(p-k)\left(\Delta_{1} v\right)_{k},(\right. \tag{11}
\end{equation*}
$$

which formula still contains two arbitrary contants Δ^{i} ond \boldsymbol{r}_{1}. If for $\Delta_{0} \lambda$ and $\Delta_{0} r$ we choose the mean valnes of $\angle \lambda_{k}$ and $37 \frac{1}{6} \Delta n_{k}$, the terms under the signs $\underset{\sim}{-}$ are small and of varying sign. The term containing μ^{2} is of the nature of a sevolar acceleration. If we denote the time expressed in centuries by τ, then p is equivalent to $5 . ⿹ \check{5} 5 r$, or $\frac{1}{2} \nu^{2}$ 10 $15.4 r^{2}$.

The individual values of d n will the given in the seoond part of this paper. 'Iable 1 contans the value's of $\Delta n, \Delta \lambda, L_{1}$ rand L_{1}, for each Saros.

TABLEI.

We have $\angle_{0} v=-382, \angle_{0} \%=+2595$. If we neglect the term in γ^{2}, and choose the values of $\left.L\right\rangle_{0}$ and r_{2} so as to make $\lambda_{p}=0$ for 1721 and 1845 , the perturbation in longitude given under the heading λ_{1} resulis. If we add the term $\frac{1}{2} p^{2} \mathcal{L}_{0} r$, at the same time altering the initial constants so that the perturbation remains zero at the same two epochs, we get the values $\lambda_{2}{ }^{1}$).

The reliability of these results of conse depends on the reliability of the individual values of f. The values of l in two successive eclipses differ by 155°, consequently the values of d_{n} have opposite signs and nearly destroy each other. Therefore $t 0$ arme at a tolerable accuraty in the final perturbation in longitude, it is necessary to compute the individual s_{n} to a much higher accuracy. The sum of the neglected terms in the series (9) will generally not exceed 2/300, or in some cases perhaps ${ }^{1 / 200}$, of the whole. The maximum value of o_{n} is about 190 , we may thms expect on this account an error of one, or in extreme cases, 2 mits.

The chief source of uncertainty is the function J_{n}. This function contains the hypothegis regarding the distribution of mass in the

[^7]body of the earth. If a distrabution difiering from Wifonert's is adopted, the fumetion.$\%$ is comsiderathly attered. What is the effert of this on the final result can only the decided by adtatly cary out the comphation with a different hypothesis. This has heen done, as will be related in the serond parl of this paper. Here it masi suffice to state that, alhongh there are some dilferences, the general character of the results is remarkably simita to those of the first eompntation. It may be mentioned that ako my preliminary invesfigation of 1909 , thongh based on a totally diflerent and omly ronghly approximate formula, give results of the same charactore

The hypothesis that the sun and moon ean be treated as points, is also, of comse, only approximate, and it is very diffienth to ay in how far if affects the reliability of the result. It seemed however hettor, at the present sitate of the question, to rest content with this approximation.

The finction ./ howerer gives rise to errors in still another way. It is tabulated with the half-duration T, as argument. This is taken from the Canon, where it is given in minutes of time, and can thus be a half, or in some eases perhaps even a whole minute in error: The resulting error in don may oceasionally amount to 4 units. Thus, neglecting the uncertainty introduced by the hypothesis regarding the distribution of density, the purely numerical error in dn may reach an amount which can he taken to correspond to a mean crror of say ± 3 units. The mean error of the perturbation in n after p eclipses is then $\pm 3 V p$. For a Saros (30 eclipses) this gives ± 16. Also the m. e. of the second sum (i. e. the perturbation in longitude, if we neglect the fiat that sometimes the interval hefween successive eclipses differs from the normal value) is found to be $\pm \frac{1}{2} \vee 6 p(p+1)(2 p+1)$. For the suros this becomes ± 292.

It thus appears that all the values which have been found for ©n might very well he due to aredental accumulation of the inaccuracies of the computations. On the other hand the circumstance that they have the same sign throughout might lead us to consider them as at least partly real; by which I mean as necessary consequences of the adopted hypotheses. The values of $L_{1} 2$ also are not so large that their reality can be considered as certain, but here also the systematic change with the time may be an indication of their being not entirely due to accidental errors of computation. The only thing that can be asserted with confidence is that the values of Δ_{1} v and $\Delta \lambda_{1}$ are small, and consequently that the non-periodic part of the perturbations in longitude has a smooth-ruming course: no other irregularities with short periods rim exist in the longitude than those which are contained in the periodic parto

This periotic part is very nearly the same in all sarosperiods. It will he given in detail in the serond part of this paper. To show its tenerat charamer I wive here in 'lathle If the mean fin the lats tive periont V111 Xll In 29 1919\%, Which are the mont important for the comparison with the oheervations. The first coham contains the bime $/$ comated in synodie month from the beaiming of the

TABL.E II.

saros. This periodic perturhation can be represented with unexpected aceuracy by the formula

$$
\begin{equation*}
\lambda_{s}=-140-500 \sin \left[\frac{-x t}{223}-10^{\circ} 26\right] \tag{1:}
\end{equation*}
$$

The values computed by this formula are given in the tahle under the heading "Form". The constant term, of course, is unimportant, and cond be added to the arbitrary constant of integration $L i_{0}$. It would ahmost entirely disappear, if the Saros was begun at the end of the thind group, say at about $t=121$. If the time is expressed in years, the formula beromes

$$
\begin{equation*}
\lambda_{s}=-140+800 \sin \left[199^{\circ} .967(0-1900)+137.9\right] \tag{13}
\end{equation*}
$$

The comre of the perturbation in longitude is remarkably similar in the different periods, the irregulatites, i.e. the deviations from the sineformona, recorring in each period at the same values of t. The roefficient of the sine on the other hand varies from one period to amothor. For the dirst eight periods it oseillates hetween about Bat and 400 , in the later periods it increases up to about 600 for the suros Xll (1901-1919).

Comperison with the whervations. The excesses of the observed longitude of the moon over the longitude as computed by pure gravitational theory, which have been given by Nawcomb, must still be corrected by the differences between the new lumar theory of Brown and Hassex's theory which hat heen nsed by Newcomb. The corrections necessary on this account have heen coflected by Battermany ${ }^{1}$. Ont of the 43 terms given ly him we need only consider the terms of long periods (14)-222) and (43) For the discussion of the non-periodic part of the perturtation in longitude we must take account of the terms (16; to (19), which have periods between 128 and 1921 years 2). I have, however, not applied these terms, the reality of the non-periodic part heing too uncertain to warrant much labour to tre bestowed on it. For the diacussion of the periodic part, we have to consider the terms (14), (5), (20), (21), (22) and (43), which can he written as follows:

$$
\begin{array}{rlllll}
(14)+0^{\prime} .48 \sin 40^{\circ} .67(t-1894.3) & \text { period } & 8.84 & \text { years } \\
(22)+0.13 \sin 30.35(t-1894.6) & " & 11.87 & " \\
(20)+0.24 \sin 20.66(t-1890.7 & & 17.41 & " \\
(43)+0.56 \sin 19.35(t-1892.2) & " & 18.60 & " \\
(15)+0.13 \sin 10.34(t-1870.4) & " & 34.76 & " \\
(31)+0.28 \sin 9.69(t-1877.6) & , & 37.14 & "
\end{array}
$$

The therm (43) contains the correction given by Battermas in his "Zusatz". It is very similar to the term which was already applied by Ross, viz: - $0^{\prime \prime} .50 \sin \Omega=+0^{\prime \prime} .50 \sin 19^{\circ} .35(t-1894.8)$. These corrections must be added to the tabular longitudes, or sulttracted from the residuals.

Considering now first the non-periodic part, it is very remarkable that the values of λ_{2} as given in Table I are between the years 1703 and abont 1894 almost identical to Newcons's great fluctuation, if 160 of our units are taken equal to $1^{\prime \prime}$. This is at once apparent from the last two columns of table I, of which the last contains the great fluctuation according to Newconis. Therefore, if we assumed the absorption of gravitation to be the true explanation of the great fluctuation, we should have

$$
160 \times 1262^{\prime \prime} \cdot \gamma=1^{\prime \prime} \quad \gamma=5.10^{\circ} \quad \lambda=2510^{-}{ }^{\prime \prime}
$$

However, after 1894 the similarity ceases. The agreement before that date depends on the assumption of the reality of the values

[^8]Proceedings Royal Acad. Amsterdam. Vol. XV.

Which have been fomel for $\angle n$ and $L \lambda$, especially the negative value of the mean $L_{0} r$. This latter is equivalent to a secular aceeleration of which the coentegent would, with the athove value of q, become . . $30^{-\prime}$. This, of course, is entirely inadmissible and consequenty it is not possible to consider the value of $L_{0}{ }^{r}$ as real matess we take for of such a smatl value that the whole effect becomes entirely negligible ${ }^{2}$) The partial arreement of λ_{3} with the empirical terms of long period can therefore not be considered as a proof for the existence of an absorption of gravitation.

We now come to the comparison with the obsemations of the periotic part of our comphted perturbation. This comparison was only carred out for the time after 1829 . From 1847 to l912 I had the adrantage of being able to make nse of a new and carefnl reduction of the fireenwich meridian obsemations which Prof. E. F. ras de: Sadde Bathezes most kindty placed at my disposal. Prot. Bakncyzes applied to the meridian observations the corrertion for the difference of right ascension of the moon between the epochs of true and of tabuk meridian passage, for those years in which this correction had not ret been applied at Greemwich. Then the systematic corrections, which in his former reduction (These Proceedings, Jan. 1912), were tiken constant over the whole interval from 1847 to 1910 , were terived anew. The following are the systematic corrections finally adopted by Prof. Banhexaex for the observations of the limb:

$$
\begin{array}{cccccc}
1847-48 & 49-57 & 58-68 & 69-78 & 79-98 & 1899-1911 \\
0^{\prime \prime} .00 & --1^{\prime \prime} .61 & -0^{\prime \prime} .83 & -0^{\prime \prime} .93 & -00^{\prime \prime} .62 & +0^{\prime \prime} .39
\end{array}
$$

For the observations of the crater Mosting A the correction was derived in two different ways, which gave - $0^{\prime \prime} .22$ and $+0^{\prime \prime} .34$ respectively. The adopted correction is $0^{\prime \prime} 00$. Prof. Dasheraen then formed the means of the meridian observations of the limb, of the crater and the occultations, the latter being taken from Nawcombs paper, but comected by $+0^{\prime \prime} .18$, for reasons explaned in his paper of lhee. 1911. The corrected results of the meridian observations and the means than derived are miven in Table VII in the second part of this paper. From these means I then subtracted the theoretical corrections given by Battamasis and quoted above. The resulting corrected means which are thas the exserses of the longitude of the moon over the pure gravitational value, diminished by Newcombs great Ilnctuation, were ploted and a smooth curve wats drawn through

[^9]them．From this curve were read off the value erven bolow in Table［II under the hading＂（ths．＂If these are compras wiln the compured perturbation，of which the periodic patt is ator given in the table nader the heading in，there appeats at tirst sight to he

TAB1． E IH．

a certain similarity in the course of the two corves Mr．Botthager． whose results on the whole agree with mine，hat been led hy this similarity to consider the existence of an absorption of gravitation as heing estahlished＂mit guter Wahrscheinlichkeit＂．In fact．firom about 1840 to 1868 the observed devidions eath be very satisfatorily represented by about $\frac{1}{500} 2+a$ smoth comve，which latter then must either be ascribed to the non－periodice part，of remain mexplaned． After 1868，however，the agrement is lost．We have arain a partial parallelism between 1886 and 1891 ，and also the imereme after 1908 coincides with an increase of x_{2} ，hif it is impossible so to represent the observed values over the whole interval 1829 10 1912 by multiplied by a constant coeftherent，that the remaining differemes form a smooth curve sill I think we cammot comsider the probahility of the existence of an absomption of yratation as extahbished unless the residnals remaining atter applying the petmothon monduced by this absorption（and which then remain unexplatned，are small and form a smooth eurve，or at least are bes inegnlar than the original thuctuations．The values of（Ohs．－Kid howerer．whatever value we adopt for k ，alwas are considerably more irrequla than the observed values themselves．The sudden fall hetween 1808 and 1 sit mincides

With a horizontal streteh minimum of λ_{s}, the quick rise from 1897 101906 corresponts 10 a decrease of $\%_{5}$. The effect of absorption cannot have anomer protiod than 18.03 years, white in the observed Hnctuaions predods of different length are cemainly present.

It appear: to me, therefore, that so far we have no reason to consider the existence of a sensible absorption of sravitation as proved, or eren at probable.

> (To be continued).

Astronomy. - "oln thsorpltion of firmilution and the moon's lempitudi". By Prof. Dr: W. be Sitter. Padt II.
(Gommmicated in the mecting of December 28, 1912).
The conclusions derived in the tirst part of this paper are entirely contirmed by the second computation, which was already referred to in that part. and which was hased on a different hypothesis regarding the distribution of mass in the body of the earth. I now assumed a core of density $d_{2}=20$ and radius $R_{3}^{\prime}=0.55 R$, surrounded by a mantle of density $\sigma_{1}=2.8^{\circ}$). In the same way as hefore. I put. for $T_{0}<93.5$

$$
J_{0}^{\prime}=84.7\left(\frac{T_{0}}{112}\right)^{2}
$$

and for $T_{0}>93.5$

$$
J_{0}^{\prime}=84.7\left\{\overline{1.1}\left(\frac{T_{0}}{112}\right)^{2}-4.27\right\}
$$

The multiplier 100 has been replaced by $84.7=100 \boldsymbol{\sigma}_{1} / \boldsymbol{\sigma}_{1}$ in order to get the same value of If for both computations. The result of the introdution of this new distribution of mass instead of the formerly assmed one is to increase the amount of absorption for loner ectipses and to diminish it for short eclipses. The ratio J_{0}^{\prime} / J_{0} varies from 0.51 to 1.25 . It is smallest for those eclipses in which with Whachert's hypothest the core also combloutes to the absorption, white in the new hypotheris the ray of gravitation is sitnated entirely in the mantle. Fior the purpore of computation this ratio $J_{0} \% \sigma_{0}$ was tabulated with the argument T_{0}. We have then

$$
d_{n}^{\prime}=\frac{J_{0}^{\prime}}{J_{0}} d_{n}
$$

1) This hypotheris has been suggested by recent investigations by Mr. Gutenberg, which were kindly communicated to me by Dr. I'ottantier Mr. Gutenberg finds that the real distribution of mas: is included between the limits given by : $2=20$, $\ddot{y}_{1}=2.8$ and $\Xi_{0}^{\prime}=8, d_{1}^{\prime}=4$, . It being my intention to investigate the effect of a clange in the function, / I I purposely took the upper limit, which differs most from W'iechert's assumption.

With this value of sn' the compmation was then carried ont in exactly the same way as with dn. Notwithotanding the ormsidurable difference between the functions .f and ./ vthe general dharater of the results of the two computations is the same.

The non-periodic part of the perturbation in longitude derived from the new computation is given in Table 11. which is entirely similar to 'Table I of Part I. We now find $\angle_{0} \mathrm{I}^{\prime}=230 . \angle_{0}{ }^{\prime}{ }^{\prime}=+2939$. Neglecting the term - $\frac{1}{2} 0^{2} L_{0} r^{\prime}$ and batimg the pertumbtion to vanish for 1721 and 1860° by an appropriate chote of the comstants of integration, we tind the valnes given umder the theating a_{1}. If the term containing $L_{0} r^{\prime}$ is added, we get the valne z_{2}. The general TABLEIV.

Year	Saros	$\triangle n^{\prime}$	$\Delta \lambda^{\prime}$	$\triangle_{1} r^{\prime}$	$L_{1} \lambda^{\prime}$	$\lambda_{1}{ }^{\prime}$	${ }^{\prime}$
1703.0	I	-15.2	+1727	334	-1212	$+747$	--288
1721.0						0	0
	II	-10.4	+2318	-156	- 621		
1739.1	III	-21	+2346	- 550	- 593	- 490	+315
1757.1						-1180	+ 272
1775.1	IV	+2.8	$+3300$	$+334$	$+361$	-1322	+ 403
1	V	-12.3	+ 3141	-227	+202		
	VI	-9.3	$+3380$	-115	+ 441		
1811.2						-1388	+ 337
1829.2	VII	-1.0	†3460	+193	$+527$	-1444	
1847.2	VIII	$+14.0$	- 3896	+751	+ 957	- 877	72
	IX	-1.9	+3452	$+160$	$+513$		
	X	-9.7	$+3120$	-130	+ 181		
1883.3		-19.6	$\underline{+2494}$			+ 699	- 336
1901.3	XI				- 445	$+645$	-1655
1919.4	XII	+9.2	2630	- 572	309	+ 229	-3566

character of the perturbation is tery similar io that of the first compuation. But the correspondence with the "great fluctuation", which was apparent in the tirst computation, does not exist here.

In the periodic part the agreement between the results of the two computations is even more complete.

With reference to the reliability of these results it most be remarked that the function $J_{0}{ }^{\prime}$ has a wider range of variation depending on T_{0}^{\prime} than of and consequently the possible error arising from the fact that T_{0} is only known to whole minutes is in the seoond computation much larger than in the tirst. According! we tind that the
valnes of $L r^{\prime}$ in the second computation are comsiderably larger than the conserpmoding values of $L_{n} x$ in the tirs computation. Also the value of \angle, A^{\prime} are lamer than those of L, We are thus led (0) the atne conelnaion an hefore viz: the reatity whe non-periodice pate of the pertmothon in mot a-whed. and the only thime that can the a-certed with eestambs is that the non-periondie part camot hase aty comberathle irregulatition and that mo wher periots are possible thath the satos af 1s.0.3 yeame

 firat collumn of the talde comatans the time f comnted in symodie months from the berimning of the sams. The time $t=223$ of any saron is of fomse, idemtial the time $t=0$ of the next saros. The arramement of the eolipses in gromp of six is very elearly shown. The several grours begin at

$$
1=0 . \quad 41, \quad 88, \quad 129 \quad \text { and } \quad 176
$$

and end at

$$
t=30 . \quad 75 \quad 118, \quad 165 \text { and } 21 \%
$$

Table VI comatins the purely periontio pat of the perturbation $\lambda_{\text {s }}$ and z^{\prime} arorodine the two fomputations. The similaty between the diferent sameperiok is very striking. In the mean motion this -imitarity in even more apparent than in the longitate. The mean motion is fon combathed in the tahle. but can easily be derived fiom
 or $\because \ldots$. We see from this bathe that in the first computation the amplitule of the periodie pat is fairly comstant for the first eight perions and hegins of increase atom the eighth sames The difference hedween the extreme sathes of haseblates between 700 and 830 in the periond I $60 \mathrm{~K} / \mathrm{I}$, and then gradnally increases m! to about 1200 for the satos Xil. In the aroond computation the difference hetween the extreme value of $\begin{aligned} & \text { as } \\ & \text { is mote constant and varies between }\end{aligned}$ about 9.50 and 1100 .

The remakable agreement hetween the results of the two computations funtifes the expectation that the weneral ehatader of the per-
 the sembity the same for any asombed diabimbion of denvity within the bouly of the cath. Which is at all withan the limits of probathilty.

 wher lowatme

TABLEV.

I A B L E V (Continued).

```
17.39.1 &2, &27.5 25 511.7 31.9 1757.1 80.214.6 35 + 43.2 : 27.6
    .3.0.103 12.4 200 27.8 20.4 57.6 98 9.0.5 211 17.2-12.7
    44.01112 167.3 14 45.1 56.4 58.1 112 164.4 25-54.1 - 67.6
    40.5 1117 322.2 189 (95.s 1114.4 58.6110 319.3 200 <111.0-132.1
    41.0 80117.1 4-64.6-47.7 59.0 80 114.3 14-65.7-42.0
```

1742.4 52 196.0139 $\rightarrow 6.8+5.81760 .431193 .2148+2.0+1.7$
$43.979350 .9313+11.5+7.5160 .977348 .1323 \sim 12.9+8.6$
$43.4110145 .8128 \quad 1029-122.5 \mid 61.4110143 .0139 \quad 110.7-131.7$
$43.8112300 .7302+165.3 \cdot 206.6101 .9112297 .9313+170.5+213.1$
$44.38895 .6117-93.2-51.3,62.49492 .8128-114.5-60.7$
$44.880250 .5292+65.7+42.0462 .882247 .7302+71.8+43.8$
$1741.291: 129.467+48.5: 25.71764 .288326 .5 \quad 76 \quad 147.0-25.8$
$40.7 \quad 76124.3211-45.4-33.9 \quad 64.7 \quad 70121.5251-35.7-30.0$
llw $47.2111279 .2 \quad 56+186.3-227.3 \| \quad 65.2112276 .466 \quad \cdots 191.4+239.2$
$100 \quad 47.6112 \quad 74.1230-175.3 \quad 219.11 \quad 65.7112 \quad 71.3240-172.5-215.6$
11)
118
124
$129 \quad 1749.5 \quad 26 \quad 307.9 \quad 180+4.7 \quad 4.0$
$1.35 \quad 50.0 \quad 71102.8355-42.1-34.9: 1768.0 \quad 70100.0 \quad 5-41.3-34.7$
$141511.5108 .257 .6169+108.9 \quad 189.2^{\prime} \quad 68.5105 \quad 254.9179+153.9+157.0$
$1.47 \quad 51.0112 \quad 52.5314-149.7-187.1 \mid 69.0112 .49 .8354-144.7-180.9$
$153151.496207 .4158 * 61.3+38.6 \quad 69.5101204 .7168+63.8+55.5$
$17951.9912 .3333-2.3-1.2 .70 .091359 .6343+1.8+1.0$
165
17i $1753.3 \quad 7381.2108 \quad 44.6-35.2{ }^{\prime} 1771.367 \quad 78.5118-34.4-29.2$
$1 \div 253.8 \quad 72236.1283 \cdots 37.3-30.2,71.867233 .4293+29.8+25.3$
lis $54.3112 \quad 31.0 \quad 97 \quad 98.2-122.8 \mid 72.3112 \quad 28.3107-90.1-112.6$
$19451.8112183 .9272+14.4$. $18.0 \mid 72.8111183 .22821 .4 .6 \quad 5.6$

212

Year $T_{1} \quad l_{1} \quad l_{1}$ in ìn Year $T_{11} \quad l_{1} \quad l_{1}$ in in
$45.1 \quad 11228.9 \quad 45 \quad 24.8-21.11 \quad 66.1 \quad 64226.2 \quad 56+26.2+22.3$
$48.6 \quad 73 \quad 23.8220 \quad 15.9-12.6 \quad 00.680 \quad 21.1230-20.5-13.1$
saros III sarosIV

TABED V (Continued).

$T A B L E V$（Continued）．
saros VII Saros VIII

1

Y＇，	T	l	l_{1}	$\therefore n$	$\therefore n^{\prime}$	Year	T_{1}	l	l_{1}^{\prime}	$\therefore 7$	en＇
以心，2	-2	206.1	67	23.2	－ 18.0	1829.2	$\begin{aligned} & 111 \\ & 67 \end{aligned}$	203.3	77	－ 16.5	－ 14.0
11.7	83	10	241	1.1	0.7	29.7	77	358.2	252	－3．7	$\therefore \quad 2.5$
12：？	112	155，9	50	Sll 2	-100.3	30.2	111	153．1	67	－S6．1	-105.0
12.10	112	310.8	230	1．356	17．3．2	30.7	112	308.0	241	145.7	$+182.2$
13．1	$: 6$	105.7	45	87.9	-51.1	31.2	87	102.9	56	92.3	-51.7
1： 6	（i）	26017	2311	．34． 6	＋29．6	31.6	75	257.8	230	150.1	1． 36.6

$471817.076339 .535 .719 .1+13.41833 .075336 .75+19.8+14.5$
 $54 \quad 10.11111 \quad 289.3 \quad 344 \quad 1501+219.7 \quad 34.0111 \quad 286.5355 \quad+183: 3 \quad+223.6$ $\begin{array}{llllllllllllllll}17 & 10.4 & 106 & 84.2 & 155 & 154.7 & 168.2 & 34.5 & 109 & 81.4 & 169 & 170.0 & -1955\end{array}$ $\begin{array}{llllllllllllll}71 & 11.9 & 87 & 239.2 & 333 & 8.7 & 46.9 & 35.0 & 87 & 236.2 & 344 & 1 . & 81.7 & 45.8\end{array}$ \because

3
 $\begin{array}{lllllllllllllllllllll}14 & 18.5 & 44 & 112.9 & 283 & 15.4 & 13.1 & 36.8 & 30 & 110.1 & 293 & 11.9 & -10.1\end{array}$

 $23.6 \quad 911246.3 \quad 211 \quad 9.3 .1 \quad 50.4 \quad 40.6 \quad 83 \quad 243.4221 \quad$－L $692 \quad 1.41 .5$ $\begin{array}{llllllllllll}23.1 & 112 & 41.2 & 25 & 120 & -1575 & 41.1 & 11 & 383 & 36 & -119.0 & -148.8\end{array}$
 $24.0 \quad 92.351 .014 \quad 1.7 .6+8.1 \quad 42.192348 .1 \quad 25 \quad 20.2+105$ $34.54514 .9 .9189-9.2-7.8 \quad 42.661143 .1200-18.7-15.9$.71
$176 \quad 18254$ 18 69．8 $149-1.9 \quad 1.6$
1 ぶ2 25．9 54 224． $2.24 \quad 17.9+15.21843 .951221 .9335+149+12.7$
$\begin{array}{llllllllllllllllllll}184 & 20.4 & 110 & 10.7 & 139 & - & 00.2 & -71.6 & 44.4 & 107 & 16.8 & 149 & -44.5 & -48.5\end{array}$
$194,24.9110174 .6313 \quad 23.7-28.2 \quad 44.9 \quad 109 \quad 171.73: 4-32.31-37.1$
$\begin{array}{lllllllllllllllll}3 & 37.4 & 94 & 329.5 & 128 & 60.4 & 47.7 & 454 & 114.3 & 326.6 & 139 & 74.3 & 70.6\end{array}$
 212

T A B I E V (Contimued).

saros $1 X \quad \operatorname{saros} X$

$1858265 \quad 85.8 \quad 58-34.5-29.3 \cdot 1876.2 \quad 62 \quad 82.9 \quad 68|-31.0|-26.4$ $\begin{array}{llllllllll}58.6 & 75 & 240.7 & 232-45.2-33.0 & 76.7 & 64 & 237.8 & 242 & -25.0 & -238\end{array}$
 $59.6112190 .5221-31.9-39.9 \mid 77.6111187 .6231+20.8-25.4$ $\begin{array}{lllllllllll}60.1 & 92 & 345.4 & 36-24.4+12.7 & 78.1 & 94 & 342.5 & 46 & -30.8 & +16.3\end{array}$ 60.6 it $140.3211-32.7|-24.9 \quad 78.6 \quad 83137.4220|-55.5-33.3$

| 18320 | 48 | 219.2 | 346 | -12.9 | -110 | 1880.0 | 45 | 216.2 | 356 | 111.4 | \ldots | 8.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

62.4	104	14.1	$160-36.5$	-35.8	80.5	112	11.2	$170-27.0$	-24.6

$200^{11} \quad 63.9 \quad 98118.7 \quad 324-125.4-928: 81.9$ 90 $115.93 .34-132.1-104.4$
212

T A B L E V (Concluded).

TABLE VI.

	Saros 1			Saros il			Saros 111			aras IV		
	Year	2.s		Year.	2.	i	Year	2	i_{s}	Year	2.	;
	,	0	0	1721.0	0		739.1	10	()	757.1	19	"
6	03.5	+ 91	-12	21.5	3	29	39.6	- 11	- 32	57.6	16	61
12	04.0	31	- 7911	22.0	43	96	40,0	- 50	- 91	58.1	- 49	-135
18	04.5	-98	-179		119	-208	40.5	134	-206	58.6	-136	-277
2	04.9	-94	-215	23.0	111	234	4.0	-122	-217	590	-112	256
30		-147	-288		-164	-300		-175	-275		-154	-3.37
41	1706.3	-244	-422	1724.4	-261	-421	1742.4	272	-381.	760.4	-231	4.31
47	06.8	-276	-479	24.8	-302	476	42.9	-318	433	60.9	-271	-481
53	07.3	-301	-532	25.3	-333	-525	43.4	353	-478	61.4	298	522
59		-417	-688	25.8	460	-69	43.8		-646	61.9	436	95
65	08.3	-380	-663	26.3	-418	-661	44.3	-463	-607	62.4	-403	-655
71	08.7	-398,	-677	26.8	-450	-674	44.8	-528	-619	62.8	485	675
		-373	-656		438	-649			-589		-495	-652
	1710.1	327	-617	1728.2	-416		1746.2	-52s	-534	764.2	-513	-611
	10.6	-258	-574	286	-357	-554		--479	-479	64.7	-476	-561
10		-274	5	29.1	369	-546	47	-47	-45	65.2	-475	-542
106	11.6	-107	-355	29.6	195	-311	47.6	-292	-208	65.7	- 282	234
	12.1	-113	339	30.1	195	-288	48.1	281	-178	1	-262	-241
118	12.5	-	-303		17	245	48.6	-245	-127	66.6	-216	176
		- 86	-274		59	-212		-225	89		-190	124
		- 78	-250	1731.5	149	-184	1749.5	208	57		-178	
			-	32.0	-134	-140	500	-183	- 15	1768.0	-152	29
1	14.4	- 59	-191	32.4	-150	-130	505	-2	- 8	. 5	-16	-12
147	14.9	+103	+ 44	32.9	12	91	510	- 48	$+189$	69.0	- 28	$+162$
	15.4	115	+80	33.4	- 19	+119	51.4	46	- 199	. 69.5	- 34	$+155$
159	15.9	$+171$	43	33.9	82	177	51.9	$+17$	$\div 247$	70.0	$+24$	214
5		+216	200		+138			+ 78	+294		+83	$+254$
	1717.2	+299	+304	1735.3	-241	+333	1753.3	+190	+380	1771.3	+193	- 346
182	17.7	+266	+314		-235	+347	53.8	+206	+392	71.8	+218	-367
188	18.2	$+303$	+365	36.2	$+281$	+395	54.3	+ 260	+434	72.3	-273	+413
4	18.7	$+225$	273	36.7	220	+310	54.8	+216	+353	72.8	+237	+346
200	19.2	$+182$	+225	37.2	+184	+255	55.2	$+18 i$	+290	73.3	+206	+ 205
206	19.7	+149	+184	37.7	$+163$	210	55.7	+178	$+240$	73.7	- 2015	241
${ }^{212}$		+ 92	123		$1+102$	+137		+11	+156		+129	+ 154
223		-12	+11		-10	$+3$		-3	$3+5$		- 11	4

T A BLEVI (Continuct)
saros V

1 Vear $i x$ Year $i \quad i$ Year i, i Year is $i s$

	1775.1	11		1793.1	1	${ }^{1}$	1811.2	1	0	1829.2	10	0
i	75	20	- 59	93.6	-10	- 70	11.7	46	- 75	297	- 54	-91
12	76.1	62	-113	94.1	84	- 142	12.2	-91	-150	30.2	-104	- 179
18	76.6	-169	255	94.6	139	-3113	126	-216	- 325	30.7	241	372
24	77.1	140	-256	95.1	123	-3109	13.1	203	-327	31.2	-232	-383
311	77.6	-194	312	95.6	-184	343	136	278	-379	31.6	-315	-446
41		-271	-368		-248	-382		-351.	- 419		- 376	-494
47	1778.9	-313	504	1797.0	-283	-413	1815.0	-391	-441	1833.0	409	-520
53	79.4	340	-430	97.4	-301	412	15.5	-412	-450	33.5	-422	-532
59	799	-476	5io	97.9	427	527	16.1	54	543	34.0	524	-591
65	80.4	437	-512	98.4	-377	-427	16.4	-476	-416	34.5	-443	-426
71	80.9	527	-524	95.9	472	459	169	-577	-458	35.0	-532	457
75		540	-500		-488	-445		-594	-453	35.4	-539	-442
83		-523	-477		-504	-431		-611	448		-551	-431
88	1782.2	-564	-459	1800.3	-517	-419	1818.3	-625	-44	1836.3	-561	-422
94	82.7	-532	409	008	-494	-350	158	-613	416	36.8	- 550	- 392
100	83.2	-525	-384	01.2	-494	-371	19.3	-616	-401	37.3	-551	-372
106	83.7	- 333	119	01.7	-302	-109	19.8	-427	-147	37.8	-365	-124
112	84.2	-317	- 65	02.2	-272	-- 48	20.2	-394	-- 78	38.3	-330	56
	84.7	251		02.7		+39	20.7			35.8		
129		-189	- 117		-136	$\cdots 177$		-216	$\square 179$		-121	201
135	786.0	-155	. 173	1804.1	-96	$+252$	1822.1	-160	+266	1840.1	53	88
141	S6. 5	-163	-194	04.6	- 96	+293	22.6	-143	+319	40.6	- 21	$+344$
147	87.0	- 34	$+334$	05.0	$+20$	$+407$	23.1	33	+423	41.1	+ 80	$+441$
153	s7.5	- 44	- 301	05.5	+ 4	. 355	23.6	49	-369	41.6	$+62$	$+389$
159	88.10	s	. 331	10.0	$+46$	$\therefore 369$	24.0	- 15	$+375$	42.1	$\div 84$	$+388$
165		66	. 364		98	- 368	24.5	$1-35$	+390	42.6	$+127$	+397
171		124	. 397		+151	$+407$		+ 76	$+397$		+151	$+390$
176	1789.4	172	$\therefore 425$	1807.4	+195	+423	1825.4	-110	$+403$		+169	+384
182	89.5	195	437	1179	- 233	4311	25.9	149	- 4118	1843.9	- 193	- 377
188	90.3	253	-470	1184	+292	455	26.4	$+206$	+428	44.4	+232	+383
19.	90.8	231	$\therefore 4116$	18.8	+282	- 398	26.9	203	+377	449	$+227$	+341
240	91.3	- 204	- 336	19.3	257	+323	37.4	$+176$	+298	45.4	+189	$+261$
206	91.8	215	286	19.8	$+234$	276	27.8	+209	-266	45.9	- 226	$+252$
212		9138	+159		$+157$	+176		$+133$	$+172$		+144	+161
223		- 3	+ 11		$+16$	-7		$+3$	- 0		- 6	- 6

T A B L E VI (Concluded).

11

	1847.2	0		1865.3	()	0	1883.3	0	\%		0	0
5	47.7	- 66	-83	65.8	- 78	78	838	- 81	- 65	1901.8	-- 88	71
12	48.2	-127	- 162	6.2	151	151	84.3	157	125	. 3	70	-1.37
18	\| 48.7	-280	361	667	324	-343	848	337	-295	128	358	-319
24	492	-280	-369	67.2	345	-354	852	360	-287	1933	-383	-306
(3)	49.7	-384	433	67.7	-476	422	85.7	-519	-359	113.8	544	1
41		-442!	470		-551	-455		-592	-392		-632	5
47	1851.0	-474	.- 490	18691	-592	473	1887.1	637	-410	1915.1	680	6
53	51.5	-486	-495	69.6	-610	-474	87.6	-661	-410	95.6	-707	498
59	52.0	-576	-542	70.0	-684	-511	88.1	720	-440	16.1	759	-531
65^{\prime}	' 52.5	- 480	- 362	70.5	570	-319	88.6	589	-238	06.6	-624	- 331
71	53.0	- 555	-386	71.0	629	\%	89.0	-631	252	17.1	-650	-342
77	. 53.5	-550	-365	71.5	-608	313	89.5	596	224	117.6	- 606	-313
83		-555	-352		-600	-298		-579	-20911		586	298
88	1854.4	559	- 341	18724	--593	-286	1890.4	- 565	-197		569	286
94	54.8	-546	- 313	72.9	575	-263	90.9	-547	181		- 549	-271
100	55.3	-540	-291	73.4	561	243 !	91.4	-530	-166	19019.4	-529	256
106	55.8	-352	-53	73.8	-371	-20	91.9	-348	29	199.9	-359	93
112	56.3	-312	$+5$	74.3	-321	+42	92.4	-301	$+69$	10.4	-316	73
11	56.8	-214	$+99$	74.8	210	+135	92.8	-189	$+157$	10.9	-206	1
129		53	+257		16	+298		+ 20	+322		+10	-189
135	1858.2	+ 35	+ 343	1876.2	+ 90	+387	1894.2	+134	+412	1912.3	+128	-272
141	58.6	+ 88	+398	76.7	+165	49	4.7	+222	$+480$	12,7	+227	: 347
147	59.1	+186	+487	77.2	$+268$	+535	95.2	+330	+565	13.2	+336	431
153	59.6	+174	$+443$	77.6	+ 269	496	95.7	$+344$	$+535$	13.7	+360	--414
159	60.1	+194	+438	78.1	+291	$+483$	96.2	+368	$+517$	14.2	$+385$	+397
165	60.6	+ 239	+446	78.6	+344	+486	96.6	+429	+520	14.7	$+454$	+411
17		- 261	+415		+338	+431		+39n	440		+412	$+347$
182	1862.0	$+273$	+398	1880.0	+335	. 401	1898.0	+381	+410	1916.1	- 388	-312
188	62.4	+298	+393	80.5	+343	+379	98.5	+374	+379	16.5	+372	-283
19	62.9	+290	+352	81.0	+323	+333	99.0	+ 350	$+337$	17.9	- 348	25
200	63.4	+238	+ 264	814	+255	$+233$	99.5	+2711	$+231$	17.5	-259	14
20	63.9	+270	+262	81.9	$\square 286$	+244	1900.0	+301	+258	18.0	- 291	197
2		+177	+167		+185	$+150$	00.5	+193	+170	18.5	-182	-122
2		$+$	72		+ 84	+ 50		+ 77	-831		- 85	0
223		$+6$	-7		0	- 22		-11	+ 11		-7	\div

Foinally we wive in Table Vll the new reduction of the meridian whemation- by Prof. Bathrax, which was refersed to above. The (ondam, $\mathrm{M}-\mathrm{N}$, comatan the exees of the otwerved correction to the
 The syematio corrections mentioned in Part I have aheady been applied. For the years 1905 to 1912 two results are given the upper onn is derised from the observations of the limb, the lower from the crater Mosting A. The thind column contains the means of the numbers of the second column and the results from the occultations, i. e. Newrombs minn fluctuations. The latter were however corrected hy $+0^{\prime \prime} .18$ for reasons stated in Prof. Bakherzex's paper these Proceedings, dan. 1912). For the years 1905.5 to 1908.5 the mean given depends on the observations of the limb and the crater alone. From these means I have subtracted the sum of the corrections for the difference between the theories of Hassas and Brows, which were given in lart I of this paper. This sum was computed by a graphical process, of which I estimate the maximum error at about ± 0 ".05. The thus corrected mean is given in the fourth column. The second decimal, which has no real value, has been dropped. The last column gives the residuals remaining after subtracting Ross's empirical formula, without its constant term - $0^{\prime \prime}$. 18 , viz. :

$$
+22^{\prime \prime} .9 \sin 6^{\circ} .316(t-1844.5)+0^{\prime \prime} .8 \sin 15^{\circ} .65(t-1880)
$$

It will be seen that these residnals, atthongh small, are as a mole somewhat larger than those found previously by Ross himself and by banheras. The explamation of this is as follows. The residuals L-Ross given by bak!crax in 1911 (hese Procedings Jan. 1912, p. 691) showed a marked period of nine years, which entirely disappears by the application of the perturbational corrections (14) and (22). The term (43) is nearly identical to the term which was already applied by Ross, and consequently does not affeet the residuals to any appreciable extent. The terms (20), (15), and (21) however, especially (21), produce a considerable increase of the residuals. No doubt it would be possible by a small adjustment of Ross's formula considerathy to improve the representation, but it is evident that a perfect agreement with the observations can never be reached by a fommat contaming only fwo terms. If a new empirical formula were to be derised it would, of course, be necessary dirst to correct the term of long period, and to apply the corresponding corrections to the theory. It seems opportune to defer such an investigation until the moon's longitude for the next few years will be

TABLEVM.

known, of at leas molil wo know how long the inmerane which hegan a lew years aga, will lata.

The aceompanying diagram shows for the yous 1845 to 1512 1 hu exeess of the otwered longitnde of the mom wer Nrwcombs greal thetuation, i , e. the momber eontamed in the fomm colnmon of Table Vil.
 The broken line is the smonth carve mentioneal in l'art from which the values wiven in Table $[1 /$ were read oft. The diagram also contans the purely periodice part is and $i=$ of the pertmbation in longitude produced ly the absomption of eratsitation on the fwo hypotheses regarding the distribution of density within the earlh.

Chemistry. - "The equilitrium Tetraqumal Tin \leftrightarrows Rhombic Tin." By. Prof. Eirsat Cohex. (Commmmicated by Prof. vas Rombrrah. (Communicated in the meeting of November :30), 1912).

If hos struck me, and from several quaters my attention has been coalled to it, that in a communication from Messts sums and dr Laer" ${ }^{1}$) "(On the system 'lin" there ocerr a number of mistakes which reguire rectification.

1. The relation between the existence of a transitionpoint tetragonal tin Ξ thombie lin at 200° and the method of preparation of the so-ealled corn-tin or fram-tin has been tirst pointed ont in the paper which I have published in 1904 with Dr. E. (Gordschmmo ${ }^{2}$). From the commmication of Mens sums and de Lebecw the reader might conclude that they (or Schaum) have first noticed this comection
2. In the paper which I probished in 1904 with Dr. E. (korat) schmidt, a conclusion was drawn, from the experiments of Weriglis, Lewhorefr, and Tammaxy ${ }^{3}$) as to the situation of the said fransition point, which proved to he erroneous. Dr. Degers has pointed this out ${ }^{4}$) and as in my opinion he was quite right. I have hastened to rectify my error in the section of Abegg's Handbuch der anorganischen Chemie [Vol.3, (2) 5032 (1909), spectial p. 5̌52] edited by myself, Fividently, the recent literatmre on this subject has not been known to Mess's sumts and de hafew, for they still base their commanication on my paper that appeared five years previonsty.
1) These Proc. XV, p. 676.
 50, 295 (1804), special p. 234.
${ }^{3}$) Drud Anm. 10, 6 亿7 (190:3).
t) Dissertation, Delft 190s, p. $3<$.

 physithel. Fhemie" is ynite macommahle." The dilliently disappears

 die gename bestmmang dieser Temperatur bond spater zurönkzakommen. In der l"igur stelt irrtimblich f85 ." s

1 will refer again to the trathition: retronal tim \Rightarrow rhombic tim as soon as the investigations amonned in my above paper shall le somehnded.
litherth. November $1912 . \quad$ vis `T Hort-Laboratory.

Physiology. - "On lopalised atroph! in the luterat gemiculate body
 "f cisimi". By Prot. (' Wishber.
(Communicated in the meeting of November 30, 191以).
In 1904 Bamon and Comber ') ohserved blimbers in the upper quadrants of both the left fieds of vision by an invatid, who after death proved to be the bearer of a focus in the right hemisphere, throush which the sumomdings of the calcatine tissure, from the occoipital pole to the conthene with the paricto-oceipital fissure were destroyed.

This observation is one of the few, in which quadrantic-hemianopsia responded to a forus, which chiethy destroged the cortex, although the optic radiadion, as shown in the drawings of Bemor and Consara, here too was not spared in the least: on the contrary it was destrosed to an important extent espectally the medio-sentral part).

Bemsor and Condur poimed out, that alreaty at that time in the liferature there was suffeient pround to supest, that foci in the dorso-taterad division of the strata sagittalia of the oecipital lobe can canse blindness in the lower quadrants of the crossed optic fields. On the other hand ford in the rempromedial division of these strata
${ }^{3}$) These Proc, XV', P. 677.

4) C. E. Benvor ano dames Liolaen, a comtribution to the study of the cortical localisation. A case of quatramtic hemianopsia with patholorical examination. Brain. [904. XXVI p . los.

Vos Mossow ${ }^{3}$) proceds still more in the here taken direction.
 incl. the dorsal part of the optio radiation is destroyed, then exclosively the domal layer of the lateral medallary capsule of the hateral geniculate hody dexencrates, and of his fody the fromo-medial patt.

On the eomtray after destruction of the vental comsolation of the ocejpital bhe ventral lip of the calcame finsure, the fyrus lingualis, the (iyrus oceipio-temporatis) it wives rise to a secondary deqencration of the ventar division of the genicoto-contical radiation and dequentabn of the ventro-tateral part canda) of the lateral weniculate body.

The projection of the relina on the cortex cond mo longer he imterpreted as simple as Hexochan had tanght his. It was mot limited only to the suroundings of the cakeame fissure and hat to be requaded from a different point of view.

It had to be borne in mind that in each lateral wenientate body there was already a first fied of projection for the two homonymons retinal halres. Another projection, secondary to this, took phater through the geniculo-cortical radiation, which mated this hody with the cortex. lat in a partichlar way.

As long as the dorsal division of the radiation and the eaput of this body did not show secondary change, the vision in the lower crosed quadiants of the fields of vision wats intact. (Bemor and ('OLliler).

As long as the rentral division of the radiation and the eauda of the boty lacked these changes, the vision in the upper crosed quadrants of the fields of vision conld rematn intad.

The radiation from this body spreads itself however to a greater area of the eortex than to the sumomdings of the eatcarine fissure only. Without donbt also the upper C'unens, () $)_{1}-()_{s}$, i. e. the whole
I) S. E. Hexschex. Pathologie des Gehims. Lpaata $1890-94$ and 1903 di Sur les centres optiques cerebranx. Liev. gén. dophth. Patis 1894. Revue critique de la doctrine sur le centre cortical de la vision Gongr. int. De Mederide Paris Igun, La projection de la rétine sar la partie corticale catcarine. Sema. med. 190:3.

Whbraxbr. Hemianopische (iesidhtefliomem. Wieshaten. 1890.
Wiluraxdr und Sïxier. Nemrologie des Auges. 3 Bile 19001904.
Förster. L'norientirtheit, Rindenblindtheit, Amdentung ron seclenblindheit. Areh. f. Oph. 1890 aml Wimbaxim. Doppetrersorgung der Matena lutea and der förster"she Fall ron doppelseitiger homonymer Hemianosie. Beitr. zur Augenhailkunde (F'estschr. fiü Förster.)
${ }^{\text {a }}$) Son Monakow. (iehimpathologie. 1905. S. 757.
wf the medpitat pele hate to he haken in acoomet as zox Moxamow GWares bur mox protatly even more.

The retimal projection on the cortex, secondary to that of the taterat ereniendate body is therefore withoul doubt much more rom. pliatmed than Hmandes had ligmed to himselt.

In 19001 mbedf ${ }^{2}$ a condil prose that the genicutu-cortical radiation and the gonimutate boly reaced difterently. if by dorsally stmated foe the domo-bateral division of the strata sumbalia was cot through, than they did, if ventrally sitmated food destroyed the ventro-medial division of these stata in the oropital pole. In the tirst case, with incomplete quadratife tremianopsia of the lower tieds of vision, the dorsal division of the dadiation and the medial part of the genicntate body was ereally, but not alowether degenemat.

In the seromil case the dereneration took plate in the ventat division of the radiation ath the canda of the body. Benh derenerations were incomphete. At present I can commmateate two new coases, this time of complete partial atrophy of the lateral genioulate body caula or caput, of which one with exquisite quadrantic hemianopsia, and through which I am obliged to extend wen more than Moxnow did, the arear of the cortex for the haterat seminate body.

1

Sephritis. Atturk of uncomestorennesis on Det !at 1910, followed by trunsi(in? sonsen:y uphusiu, uleciur ant permanent quandrantic bemianopsia in the lower right fields of vision. which in , hely $1: 111$ is tested through the ophthutmonogist. In Itmuary 191?s second insult, whirh cuuses death. Autopsies: Wh humburhagie cyst in the rigrus temporalis 11 and the (iymus angularis, wettoming completely the dorsel optic rudiutions. Fresh bleeding immediately ne:ct of this in the dorset! strete seggittelien.

Nis: C. P. S...... 37 years, is the eddest of 9 chitdren, of which 5 are still livines The mother of this lamily died $\overline{0}$ y years old of apoplexy, the tather 75 ?"at: chld of mephitis. Nemta? an mervons diseases did not exist in the family.

No abusus alcohulicus, no syphilis. Before this present illness she had nothing in complain of.

On the ! 9th of hecomber 1310 , she all at once fell moconscious, remained uncons-cion- fore 10 hays. Aher commer to, she spoke with much diffieulty, she could not find the worts, asked for "sistu" (\%unt when stie meant "butter milk" (karnemelk), ete.

Stue soon regamed at certain quantity of words, althourh she did not understand enerything allyigh, hut even now (July 1911) she names with difficulty the objects, which she dorogises wetl. Especially proper names and nouns she often uses in the whene way. Morenver after the atlack she could not read, partially, as she says, beraun sho soom gew tired, partially because she did not understand much of what the reme
 13anloun. 1! 110 131, 1-16。

Lastly alter the attack she hat been patalysed on the ripht side hut the bame. noss had passed off completely ather three weeks.
 150 of June: hut this always happened at the begimine of the monese, which were very irregnlar after the attack. She motiend that after the attack she did mot see bery well to the right: it semen as it white spots were there. The electric light on the markepplate sermed to hatig lower than formedy th her, and mow and then it was, ats if bown spiders lume in from of the risht ege. Sine the 9't of Decenber she soes worse throngh the right eye She alse often complains of headache, vomilting at the same time. Nowenver the urine combins it " albumen and many eylinders conered with equitholium of the kidneys.

On account of these complaints she was brobght into my ward of the I'nivero sity Hospital (Bimen-(Casthuis).

 Foud. Pulse sot 10

Her attitule is actise, she lakes interea in her surroundings, is well orientatent in time and in space. Steeps catmity, cats sulticienty. she can walk and makes every movement.

Nowhere ons the trunc or extemities any houble of molility of semsibility is to be found fixeept a loweded ablominal redtex at the right side, all the retlexes of the extremities are within normal limits. No sign of Babinski. There ate impertimerns in speach. she understands simple commands without an yexeption and follow: them out. Her abundance of words is unlimited but she oflen misspeaks inctselt. Host of the objeds are well named; they are always well recogrised. Sow ami then she has to think long over them and atter all uees the wrong word for them.

She recognises every leller of the alphabet and promounces them corrextls. Also short words. She can read tom, but she reads paraphatically and the fonem words are regularly bally reproduced. She does not comprelsend the reading or only insufticiently. T'o comprehend the reading she repeats it several times loudly and then as a rule she dues not understand it, she forgets many thinss. Yel she cam do light work. she manazes her little atfar in pottery.
The smell is not affected.
The pupils are cqually wide, the right one does not react on light as currect! as the left. She cannot converge and the reaction of the pupils by convergence is not to be seen.

The vision of the right ege is ${ }^{1}$ af of of the lett eve ${ }^{1} 2$
There is quadrantic hemianosia in both the jower quandauns of the riphat fields of rision (s. ligure).
Di. Smat, the ophathalmologist writes about the fumbus oruli: "There is un trace of papillitis on the right the berders of the papilat are eleaty limited, but there have been bledings amd there is still sume vedenat of the retina (retinitis albuminutica). On the left the papilla is aloo cleary limited. but here low are rems of haemorrhages.

There is expuisite hemianopia in the lower quadrats of the right fiedts of rision. That the macula vision is lost in the right anoptic sector is probahly due to the bat vision of that aye.

The eye-movements, especially by theit turning to the right and more so of the left eye, are limited. The left eye deviales to the temporal side. It is imposis. ble to direct both eyes to one point.

Field ut vision on July gra $^{2} 1$ 1911.

The diagnosis was mate of nephritis with retinitis alhuminurica and a focus in

July the $11^{\text {to }}$ she left the hoppital. On the $10^{\text {mh }}$ of Janary 1912 she was beongt in unconscions and died three days later.

The arcomb of the section shows: Hypertrophia condis with nephritis interstitialis chroniat and a foens in the left hemiepherer, in the diyrus temporalis It and the dibns angularis. The bown colomed focus spreads itself out in a straight direction atome the distal third of the tissura t_{1}, and follows this adong its ascendime tranch. The dusal bumder of the Giras temporals II and the ventral Gyrus anqularis are smaken in se fige 1 and 2. On the section the focus proves to he
 broubued if the ratrolembena: intemat caboule and sectioning them completely in more distal slides liys if and it. More distally, it seon retracts from the strata.

There is bumenor at second fresh forus in the thata sagittatia, an haemorhagy

In msuming the clinical data, it is not to be doubled that the second fresh finets cansed the betat ending insult on the $10^{\text {bh }}$ of daman 1912 and that the
 browht torth the unadramtic hemianopsia as well ats the secondary degenerations.

The importance of this obetration lies in the first place in the farct, that a quatrathtie hemianopsia of both the right lower tiedts of vision. noted with all possible precatution, is
 division of the trata sumbatia. Therefore too the seondary derenerations are of ervat importane They lasted for l:3 months and
made alterations proximatly in the bateral geniontate boty and distally in the occipital lobe.
 1 and es show, the two firei are Hows situated that Hoe odder conts How domat division uf the strata sagittaliat wred the whole width.

 Aretches, collting through the strata sagittalia, along the dorsal boumdary of He corms interins and pmsterins (fioge 7, pointed ont by the first following line
 proximally from the distal cond of the coma posterims. Nowhere the ventromedial division of the stratia is afteded directly by the focus. In lige is and in fig. 7 , hhis is intadt.

Acodding to the deatrotion by the fores, totally different tiberesylems are alfected and a massise derencration towards the orcipital polo takes place.

The degenerated mass of fibres has been drawn on a more distally situaten
 In this is visible, that the tapetumf fibres are very ooon restored after their transsection, showing nearly a normal tapetum and forceps posterior round the very wide ventrice. In a less degree this is also the case with the stratum sagittale internm. It has fewer fibres than normal, and between them are spread deogenerated fields in different spols. But the lose of tibres in the stratum sagittate externom is enormous. So normal theres ane to be fomet in it. This mighty back layer in Wegent-l'al preparations is here rephaced by a white band, as wedt in the dorsoluteral as in the ventru-medal division.

Smaller white stripes, coming from the degenerated band romed the ventricte penetate to far into the medullary cones of the convolutions, surrounding the calcume tissure, aliso to the praermens and to the cyrus angularis. The gyri ocei-pito-temporalis and fusiformis have suffered Jeast.

The massive degenerated ring romot the ventricle is always found distally from He veatricle ent till the occipital pole. About ${ }^{\prime} \mathrm{z}$ c.m. behind this end (s. lig. I, line 9 from fig. 1 and 2) the distal print of the restored stratum sagittale internum is slill touched and liets as a black island within the white degenerated mass of the stratum sayitale extermm, while nearly ath the medulary cones of the convolutions are degenerated and only fibrae arenalas seem to be left.

The practuncus has suffered least. In the seetion, which latls about 1 cm . from the occipital pole (s. tig. 10, last lime through tig. 1 and 2) it is likewise. Fiom the massive centre degenemeded stripes pendrate in ciery romodution.

All this proves that perception in the upper fieds of vision is still possible, motwithstanding the stratum sawithale externum in the occipital pole is missing. If therefore the fibres, used for visual perception are to be looked for in that layer, as seems prohably to me.
${ }^{1}$) Al these figmes have been drawn with the greatest care; they are entarged $21 / 2$ times and rednced to ${ }^{2} 12$ of their size at the reproduction. [hotos wouht have stown the same things, hat drawings are more instructive as combinalions of several sections are possible.
thone which are spared bere, to not at all belong to the ocoipital pole, hat they most issue from fal more proximal pats of the Gyrms oreipito-temporalis.

This conclusion is the more valuable, if we look at the influence which the focts hat had on the erenionderontical radiation and on the lateral genicmate hody:

To make this clear I have drawn in lig. 4 a nomal section of the surroundings of this body and in lig. 3 a cell-preparation') of the same, fo make comparisons pussible.

In these ligures one sees the lateral geniculate boty. Which shows on fromtal suctions the form of a shoe (s. liy. 3) and in which can be distingushed a dursomedial part: the caput, and a latero-ventral one: the catuda.

Within its own fibrecapsule covering the whole of it, (s. lige f) layers of libres - laminae modullares -- are alternately followed by bayers of cells. The rells in the rentral layers are large, those in the dorsal ones much smaller, athough, especially in the capital part large cells penctate in these dorsal layers. The size of the dorsal celis ditters a great deal between themselves. Many of them are very small.

In the normal fibre preparation the catida contrasts but litle against the caput, because the eadiation of the optic tract has already begun in this proximal section.

On the dorsolateral side the lateral geniculate body is covered by the triangular area of Wernicke through, which the ereniculo-cortical radiation penetrates. In the dorsal part of this area (s. fir. \& the tibre-direction is tutally different from the transerse sectioned fibres of its ventral part

A rather thick layer of very thin stopependyal tibres surrounds the area of Wersuene against the eprondym of the ventricle. As soon as the geniculocortical radiation has freed itself from this area, it upens its way in elegant curvings through the fronto occipital humble and the retro-tenticular division of the internal capsule to the stratum sagiltate externum. so it seems at least, although nobody will dare to make a decided condusion about the origin of these tibres, crossing here in all directions.

If we compare the above deseribed area of the normal brain with an identical of our quadrantic hemianopsia, it then follows, (not to mention the degenerations in the fronto-occipital bundle, in the mere proximally shated parts of the corona radiata, ete.) that the dorsal layers of the genicula-cortical radiation and more in particular of the area of Wersione, are totally thenerated. The ventral division of this tibrearea on the other hamd, is not moch ingured, neither is the neisbburing dorsal and ventral part of the proper medultary capsole of the lateral geniculate body (s. lig. 6n. In the canda of the body we lind intact laminate medullares. In the caput (in its dorso medial pare) the proper medallary capsule is dorsally and rentrally gone as well as the striae medultares. All the cells of this caput are (s. biy. 5) vanistred, the dorsal as well as the large sentral ones. The layers in which they were situated ate to be seell as thick bayers of glia. The whole boty

[^10]is reduced to almost hadf ils mumal size y, hat in its canda the small dorsal ant the lange ventrat cells (s. 1 lg . 6) are completely intact; there too the striac medulates as well as the proper capsule are on the whole intomethed.

The eomelusion is readily mate: the possibitity of sight in the upper quadrants is due to the conservation of the cells and fibres in the cama of the lateral penimate boty. Their projection on the cortex being preserved by the molral layer of the area of Wersicks. and of the genicolo-cortical radiation.

But where do these cells find their projedion on the cortex: Not in the ocopital pole which in my opinion was totally separated by the foons from the lateral geniculate boty, as is shown by the complete degencration of the stratum sagittade extemmm and all the medullary cones of the orcipital comvolutions conly librae armatare remained). Perhaps from the grous occipito-temporalis, its medulla being bui partly cout through by the focus (s. lig. T). Distally from it (s. fig. 9) the medullary cones of the temporal circomsohntions were normal, those of the occipital lobe (s. lig. 9) were degenerated. Proximally from it this convohtion with normal medullay come contributed to the forming of the intact ventral division of the strata sagittalia.

The answer to the question where the field of projection of the lateral cells of this body was simated, was bronght to me hy a very remarkable right hemisphere, wisen to me hy Profesor Bolk. He had found it by accident in the corpse of a woman of whose antecedents nothing was known.

This right hemisplere carries the rests of a very old patholurical process, which has reduced on the transition of the basal temporal and oecipital tohe all the convolutions with their medullary cones to a thim membrane. When the pia mater was removed it was torm near the cumens. (s. fig. 11). The oecipital pole is intact. On the middle of the cumens the defect begins with a sharp edge. Tho proximal end of the cuneus, of the gyrus linguatis and of the gyrus fusiformis, as wedl as the medial pat of the gyrus oceipitotemporalis (as far as near to the formical are replaced by a thin membrane (s, fig. 11, 13, 14, 15 and 16).

The series of sections show the following ${ }^{2}$). The tirst remarkable atteration is drawn in fig. If (pointed out by the line 16 on fie. 11 and comparable with lig. 9 of the tirst whatration). Thrice the distal end of the defect has been cut. Firstly in A in the depth of the fiss. calcarina. There the cortex is gone and the
${ }^{1}$) The enlargement is similar to that of the normal figure. (s. fir. 3) 0
") In order to give ath casy survey the section are reversed and drawn as if they came from a left hemisphere.
 sides thathy deainst the defect is not atrophed, even mightier than usual and fonmed th thicker fibn e: seconlly in B, where ventrally from the f. parieto-occipitalis tixe medulla of the cmens lies uncowed and in C . where the defect begins in He yevan fusiformi.
In the white matlew uppuste the fisoura calearina a triangulat degenemated fied i- th be seen. it is sitnated for the greater part sembrally, but also a bit lateratly bund the evetioned distal end of the strata sagittalia

In dixulue 15 (puriated out by line 15 of fiys. 11 and comparable to tige 8 of the tiret whedration, the deflet is found distally from the conthence of the fiss cat carina and f. pariato oceipitatio. Ill the basal convolutions are missing.

Linnets, linetadis, fusiformis, as well at the medial bonder of the rentricte atre conticely zone. The medial madallary cone of the ge occipito temporalis lies anco vered. The degenerated lieh is lareer, lies partly in the ventral, partly already in the laterodorsal division of : She stathm sagitale internum, but also in the stratum sagittale extermm, espectilly there where the ventral division of it passes into the lateral. For the rest the strallum sathate extermum is seen quite distinctly lure (in lige of tutally sumet), a proof that this area consists of more fibres than the geniculo cortical satiation only (all gone in tis. S).

In tie. It (pointed out by line- 1 t of tig. 11 and comparable to lig. 7) the aplenium corporis calloni is sectionet.

Ficept a rest of the Comm Ammonis no convolutions are to be found ventrally from the cornu inferins. The ereater part of the eyrus occipitu-temporatis is gone. The intact rentral strata sagittalia, as were tound in tig. \bar{i} are missing. The degenerated tied dow to the defedt lies laterally and dorsally from the ventricle in both the strala sagittalia.

A great part of the dorsal stratmon sagiltale extemm is intact. In lig. 7 exactly this large layer was bolally thestroved and therefore also the geniculo cortical radiation to the oecipital hobe.

In fig. 13 poimed out by the lines 13 of fig. 11, comparable to tige. (6) the retro-lenticular area is sectioned ${ }^{1}$)

As if this section were the nesative of that reprodnced in lig. 6, oue hardly finds here momal tibere in fiedts, which were there the best preserved In the rentral part of the sentendocomtaral radiation and of the area of Wersatere all the fibers are gone. The sembral and hateral part of the proper capsule of the lateral genculate bonly satrely consist of momal tibere, the striae medullares in the catuda are gone, and the body is retheed th half its normal size.

On the other hamd the donsal part of the genicuto cortical radiation and the area of WhRsicke, the dorsomedial proper capsale and the striae medullares in the eaput of the geniculate body are only relatively changed ${ }^{1}$)

The same reverse is shown in the cellopreparations of the body itself. Laterorentral, in the canda of the boty not whe cell is the be foumd.

Thick layers of nentorlia, where once the cells were alternate with less thick bayers of nemporlia (now repmenting the striae), but all celis. the dorsal as wed at the rentral, have diappeated. On the ohther hath, the dorso-medial part, the capul of this samotion motains well ranged cell layers, small dorsal ones as

1) Here, ats well as before parposely I do not piont out seven other degenemations. To make things still less complicated I do not even mention the influence upon the pulinar of both these foci.
 the ne crative of tig. $\operatorname{on}^{\circ}$

The result of this obsoration is clear cmongh: The important defeen
 ath attrophy of the domsomedial division of the bateral peniontate hods. The cameta on the other hame low ath the eeells and tibres. From ond first abomation we leamed that the datud remanted
 dorsab layer of the strata samitalia. There darmating to the spot of dexencration in one secont observation in fig. It the genientocortioal radiation from the ventral oceipital comonhtions is already silnated dorsally from the cormu inferins.

Moreover on the same rections in our first observation the ventral strata sagittalia tre intact, and exactly these are completely missing in the seeond (s. fig. 1:3). New was to me the exquisite total loss of all the ceells and fitmes, either in the lateral, either in the medial half of the geniculate borly as is found in both these observations, alhongh I possess many ohbor partial atrophies of it after oeci-pital-lesions.
(renerally spoken, lesions of the medio-ventral ocoipital convolutions cause atrophy of the hatero-ventral pat of the senionate body, but in my cases it has never been a total one.

As lome as the grrus occipito-temporalis proximatly from the calcarine dissure is mingured, not all the laterally sitnated fobes disappear, but cells often remain in the rentral, oceasmatly also in the dorsal layers. ') (Only after the knowledge of such extremes above desoribed, I have leanned to appreciate the incomplete atrophies. Wedges turning their base to the dorsal part of the genicolate body, fall ont. Their localisation differs by the phace of the focos, although they never tond the doreo-medial pat of it, as long as the foens only destroys the ventro-medial oceipital combolutions.

In this way e.g. must be considered the ventral ocopital foros with atrophy in the canda of the lateral geniontate hody, descrited by myself in 1910. At presemt a complete tinis olservation referm! to the same figures in order fo describe that geniculate body exacty.

III.

A basal delect in the left hemisphere (s. fiss. 17, also l'sych. and deurol. Blaten 1910, p. 16 more precisely the photos on phate IV and fise 12 gon phate Vh elimi-

[^11]

Thanoth lhas besion the ventrat division of the ereniculo-cotheal ratiation as Well ats that of the areat of Websuake is degentrated, but in less degree its most

The grombutat buly belonging to this is drawn in lig. 1s. It is smatler than normal, but not as far rembere as in both the former observalions. The proper (apsonte is mot changed dotso-mendiatly and the same coun be said of its cedts, dorsal as well ats the bentral ones. belonging to the eaput of the gatergon.

The camdas is for the ervater fart atmophed but not the most laterady situated
 mal capsule. Between caput amd cauda, not or only little changed, one fints in the midhe a part, where $t l$ is detroyed: the dorsal and ventral cells, the striate merlullares, the proper libnes and the proper capsule.

In this case an example is shown of an invompletp atrophy of the canda of the lateral geniculate borly, inecmplete beause the focus did destroy the ventral oceipital comolations, hut had not tonched the syrus orcipito-temporatis far enough proximally. Therefore the most rentral layers of the geniculo-cortical radiation and the most lateral parts of the camdat remaned free from derenerative atrophy.

Recapitutating I come to the following eomelusions:

1. Vision in the upper quadrants of the field of vision is possible, notwithstanding the fotal loss of all the eclls and fibres in the medial (caput) division of the erosed lateral geniculate body, ats long as the cells and fibres of the randar (origin of the rentral geniculo-cortical badiation are intate
2. It is not sufficient that the rentral oceopital convolutions are destroyed to make all the cells disappear out of the lateral (canda) division of the geniculate boly. This only occurs when more proximally situated parts of the gyrus occipito-temporalis are destroyed.
3. The cortical areae belonging to the lateral geniculate body are not only limited to the cortex of the oceipital lobe.

Chemistry. - "On the occurvence of motals in the liver". By Prof. I. vas Itadue and Dr. J. I. vas Eek. Commomicated by Prof. Eisthoven.
(Giommanicated in the meeting of 大ovember 30, 1918).
In the anatrsis of organs ats to the presence of metallie poisons, we fomed in the liguid ohtaned atter destruction of 170 grams of liver, kidnes and heart, in addition to traces of asenic and copper, as much aine as corresponds with 80 mgs of ane oxide per kilogram of organs. As there was no reasom to suppose that a poisoning
with a zine sall hat heon altompted the literature wat ermsulted to see whether abything wats kown at to the orebremere of zine in the homan boty. This investigation gave a positive result: ('ommon-
 Raout and brevos") from whioh it appeats that the homan liver may contain 10-76 mes of zince per kilogram. The quantity might the dependent on the age, the state of heath amt the mathre of the food of the persons from whid the liver is therived.

As the methool of investigation did not apperat to ns comed in every respect and as the mamber of livers fested was amparatively small and as, moreover, the results could not be baken as applying to Holland without further evidence, we have investigated at momber of human livers of Dutel orgin. We have also extemded the investigation to the ocenrence of arsente and coppers.

As regads the presence of arsenice the results of Brombenda, ${ }^{3}$) are opposed to those of the French investigators. Whereas the latter assume the presence of normally-ororring assenic, aceording to Boomanda the liver does not normally comain the same.

As to the distribution of copper in the anmal and vegetable organism, investigations have been carried onf by lammas '). There was reason to suppose that the "ehaming process" employed by him had caused the results to be too low ; moreover, figmes of Dutch origin, are also wanting here.

For the destruction of the orqanio matter we, with a few modifications, made use of the process devised by Krmosch in the pharmacentical laboratory at Leiden. This method has the great adrantage that the organic substance is complete!y destroyed, the only reagents used being sulphmrie and nitrice acids which can be obtained absolntely free from arsenic.

For this purpose, a current of hydrochloric acid is passed for some hours through sulphuric acid heated at $250-270^{\circ}$, whereas nitric: acid can be obtained free from arsenic by distillation. In a checkexperiment whare 25 ec. of sulphtaric acid and 250 ce. of nitric acid had been used and of which $5-6 \mathrm{ce}$. of liquid were left after distil. lation, no arsenical mirror could be obtamed in a moditied Marsh. apparatus. From previous investigations, it had already appeared ${ }^{5}$, that the limit of sensitiveness may he taken as 0.0001 mg , of arsenic.

[^12]A- In the exatel moullu: ophormeli of the quantitative delerminations. We refer th the more dedated eommantiation to he publiwhed ehewhere.

The reatte of onm invertigations are collected in the amexed tahle.

HUMAN 1.1VERS.

Age	苍	Occupation	Residence	Course of death	Number of mg s per kilo of liver, calculated as:	
					As	Cu Zn
Still-born					-	26.173 .9
Some hours					-	30.052 .2
5 weeks	m .		Leiden		0	8.055 .7
3 months	m .		"	Acute enteritis	0	18.955 .0
3's years	m.		Rijnsburg	Diphtheria	trace	10.667 .8
5 "	m.		Leiden	"	0.06	$2.9-$
21	f.	Servant	"	Morbus Basedowi	0	5.736 .1
24	f.		Woudrichem	Miliary tuberculosis	0	11.279 .6
28	m.	Greengrocer	Den Haag		${ }^{1}$	4.8 -
28	f.		Noordwijk	Preumonia	0	14.856 .2
32	m .	Nawr	Friesland	Septicaemia	0.113	6.050 .6
35	f.		Hazerswoude	Carcinoma	0	5.017 .7
36	f.	Housewife	Leiden	"	trace	17.760 .5
37	m.	Roadman	Dent Haag		2. $63{ }^{1}$)	3.854 .3
39	m .	Gardener	Voorhout	Kidney tuberculosis	trace	3.279 .4
43	m.	Dealer	Nienwkoop	Brain bleeding	trace	6.1544 .5
4(1)-50,	m.	Goldsmith	Leiden	Tumour in stomach	trace	10.062 .3
50 "	f.		Vlaardingen	Tumour in kidney	0	13.864 .6
70	f.		Leiden	Apoplexy	0	7.455 .9
70	m.	Casmallabourer	"	Hypertroph. prostat.	0.1	10.626 .7
74	f.		"	Apoplexy	'0.015	9.053 .0
76 "	f.	None	"	Rib fracture	0.5	9.186 .8
83	f.		"	Heart disease	trace	3.835 .0
96	m.		"	Arteriosclerosis	0	8.041 .1

[^13]In the investigation of the liver of a new-born calf were fomm per kilo, 31 mas. of copper aml sl. 1 mos. of zime

From the results ohtaned the following comelnsions mat le drawn:

1. Arsenice is not a normat constiment of the haman liver.
2. Copper and zine appear to oreme regularly in the hmman liver.
3. They are atheady deposited in the liser dume the foetal tage and, as reqards eopper, even in a larger quantity that in the following period.
4. Oherwise, there seems to exist no relation between the eoppor and zine content of the liver and the ate, sex, orophation and pare of residence.
5. The figures given by Lammas for the copper content are comparatively low. Llis maximum figure of a mg. per kilogram of liver is, as a rule, exceeded in Holland.

Pharmacentical Laboratory
I'miversity, Leiden.

Chemistry. - "Equilimite in termur" s"ystemes. //". By Prof. schrfinemakers.
(Communicated in the meeting of November 30,1912).
In the previous commmication we have observed the changes When at a constant temperature there is a change of pressure, and from this deduced the saturation lines of a solid substance F^{r} under their own vapour pressure. We will now briefly consiter the case that, at a constant presince, there is a change in temperature. At a constant temperature a reduction of pressure causes an expansion of the gas region and a contraction of the liquidum region; under a constant pressure the same happens on elevating the temperature.

A system that exhibits at a constant temperature a maximum vapour pressure (minimum), has at a constant pressure a minimum boiling point (maximum).

At a constant temperature, the influence of the pressure on the situation and form of the saturation line of F is generally small unless at temperatures close to the melting point of F; at a constant pressure the influence of the temperature is usually much greater and the movement of the line, therefore, much more rapid. Yet, as a rule, the liquidum line will move more rapidly than the saturation line unless indeed the latter is on the point of disappearing.

At a constant temperature, the saturation line of F may disappear on increasing or redueing the pressure; this depends on whether, on melting, an increase or a decrease of the volume taties phare. Uthder
a comstant presente it disappears at an elevation of temperature only.
From all this it follows that most of the diagrams descritied above Whidh wectu at a constant temperature on reduction of pressure will atso. as a bule, form at a constant pressure by an elevation of temperature. At a constant temperature, the liguid and the gas of the three-phase equilibritum $l^{\prime}+L+l$ each proceed along an isothermic-polybarie curve which we have called the saturation line of F^{\prime} under its own vapour pressure and the vapour line appertaining thereto.

L'nder a constant pressure, the liquid and the gas of the threephase equilibrimm $l+L+i$ each proceed along a polythermicisubaric corve. As these solutions saturated with F can, at a given pressure be in equilibrium with vapour and consequent? boil at that temperature we will call these lines the boiling point line of the solutions saturated with F and the vapour line appertaining thereto.

The saturation line of F under its own pressure may be circumphased [tig. 7 (I) and 11 (I) $]^{3}$) as well as exphased [lig. 12 (I) and 13 (I)]. The same applies to the boiling point line of the solutions saturated with F. with this difference, however, that lig. 13 (I) does not occur. The saturation line of F^{\prime} under its own vapour pressure exhibits a pressure maximum and minimum; the boiling point line of the solutions saturated with F a temperature maximum and minimum. These are, however, so sitnated that the arrows of the figs. 7 (1), 11 (I) and 12 (I) should point in the opposite direction.

We will refer later to these curves in various respects.
We can also unite these boiling point lines with their correlated vapour lines for different pressures, in a same plane. We then ohbain a diagram analogons to lig. It (I) in which the arows, howerer, must point in the opposite direction. If the pressure axis is taken perpendiculary to the plane of drawing, the spaceal representation gives two planes, namely the boiling point plane of the solutions saturated with if and the correlated vapour plane.

We will now consider still in anoher way the saturation lines under their own pressure and the hoiling point lines of the liguids saturated with a solid substance.

We assume that a solid substance f of the composition ℓ, b, and
${ }^{1}$) The number (1) placed bethind a tigure signifies that a figure from the first communication is intended.
1.at-as is in equilibriam with a liquid L of the componition .. ? and $1-x-y$ and with a vapour l of the eomposition r_{1}, y_{1} and $1-x_{1}-y_{1}$. We call the volmmes of thome phases c, l^{\prime}, and I', their entropies \quad of $/ /$, and $/ I_{1}$, their themodynamie potentials : $\%$ and $\%_{1}$.

As equilibrium conditions we find:

$$
\left.\begin{array}{c}
Z-(x-\imath) \frac{\partial Z}{\partial x}-(y-\beta) \frac{\partial Z}{\partial y}=\zeta \tag{1}\\
Z_{1}-\left(x x_{1}-\kappa\right) \frac{\partial Z_{1}}{\partial x_{1}}-\left(y_{1}-\beta\right) \frac{\partial Z_{1}}{\partial y_{1}}=\zeta \\
\frac{\partial Z}{\partial x}=\frac{\partial Z_{1}}{\partial x_{1}} \text { en } \frac{\partial Z}{\partial y}=\frac{\partial Z_{1}}{\partial y_{1}}
\end{array}\right\}
$$

From this we find:

$$
\begin{align*}
& {[(x-u) r+(y-B) s] d x+\left[(x-u) s+(y-B) t \mid d!=A d P-B d T^{\prime} \cdot(\underline{y})\right.} \\
& {\left[\left(x_{1}-(t) r_{1}+\left(l_{1} \quad B\right) n_{1}\right] d r_{1}+\left[\left(r_{2}-l()_{1}+\left(y_{1}-\beta\right) t_{1}\right\} d y_{2}=\Lambda_{1} d P-B_{1} d T\left(r_{3}\right)\right.\right.} \\
& r d x+s d y=r_{1} d_{1}+s_{1} d l_{2}+\left(\frac{\partial V_{1}}{\partial x_{1}}-\frac{\partial V^{\prime}}{d x}\right) d P-\left(\frac{\partial I_{1}}{\partial x_{1}}-\frac{\partial H}{\partial x}\right) d T(t) \tag{4}\\
& s d l_{1}+t d y=s_{1} d c_{1}+t_{1} d l_{1}+\left(\frac{\partial V_{1}}{\partial y_{1}}-\frac{\partial I}{\partial y}\right) d l^{\prime}-\left(\frac{\partial H_{3}}{\partial y_{1}}-\frac{\partial H}{\partial y}\right) d T \tag{5}
\end{align*}
$$

If we only want a relation between dir, dly, dl', and d'T then from the previous equations we deduce:

$$
\begin{align*}
& \left\lfloor(x-a) y+(!\quad, i) s\left|d x+|(y-v) x+(\eta-B) t| d y=A d P^{\prime}-B d T . \quad(0)\right.\right. \\
& \left\lfloor\left(x_{2}-x^{\prime}\right) x+\left(y_{1}-y\right)_{s} \mid d x+\left[\left(x_{1}-x\right) x+\left(y_{1}-y\right) t\right] d y=C \| P-D d T .(\right. \tag{7}
\end{align*}
$$

In this:

$$
\begin{aligned}
& A=V^{r}-v+(u-x) \frac{\partial V}{\partial x}+(\beta-y) \frac{\partial V}{\partial y} B=H-y_{1}+(a-x) \frac{\partial H}{\partial x}+(\beta-y) \frac{\partial H}{\partial y} \\
& C=V_{1}-V+\left(x-x_{1}\right) \frac{\partial V}{\partial x}+\left(y-y_{1}\right) \frac{\partial V}{\partial y} D=H_{1}-H=\left(x-r_{1}\right) \frac{\partial H}{\partial x^{2}}+\left(y-y_{1}\right) \frac{\partial H}{\partial y} .
\end{aligned}
$$

In order to obtain the saturation line of the solid substance f under its own rapour pressure we call in (6) and (7) d' ${ }^{\prime}=0$: we then obtain :

$$
\begin{align*}
& {\left[\left(x_{1}-x\right) x+\left(y_{1}-y\right) s\right] d x+\left[\left(x_{2}-x^{x}\right) x+\left(y_{1}-y\right)+\mid d y=C \| P\right.} \tag{9}
\end{align*}
$$

The correlated vapour line is obtained by interchanging in these relations the quantities relating to sapour and liquid. In order that the pressure in a point of the saturation line under its own pressure may become maximum or misimum $1 P$ in (8) and (9) must be $=0$. Hence :

$$
\begin{align*}
& \left|(1, r,-, r) r+\left(y_{2}-!\right) x\right| d x^{x}+\left|\left(x_{2}-x\right) x+\left(y_{2}-y\right)+\right| d y=0 . \tag{10}
\end{align*}
$$

This means that in this point the saturation line under its own vapurt presure comes into contact with the isothermic-isobarie saturation line of $F, 10$ and with the liquidum line of the heterogeneons region $/$ Ri 11.

We can satisfy 10 and (11) by:

$$
\begin{equation*}
\frac{n-3}{n-a}=\frac{n_{1}-n}{a_{1}-n} \tag{12}
\end{equation*}
$$

This means that the three points representing the solid substance r. the liquid and the vapour are situated on a straight line. Hence, we tind that on a saturation line of a solid substance l° under its own vapour pressure, the pressure is maximum or minimum when the three phases $(\vec{F}, /$, and (\dot{r}) are represented by points of a straight line, or in other words, when between the three phases a phase reaction is possible.

If we imagine before us the equation of the correlating vapour line we notice that when the pressure in a point of the saturation line under its own vapour pressure is at its maximum or minimum, this must also the the case in the corresponding point of the correlated vapour line. It then also follows that the correlated vapour line, the vapour saturation line of F and the vapour line of the heterogeneous region L /fi meet in this point.

The previous remarks apply, of eourse, also to the boiling point line of the solutions saturated with F^{\prime}; in (6) and (7) (ll must then he supposed $=0$.

Hence we conclude:
When solid matter, liquid and gas have such a composition that between them a phase reaction is possible the three figurating points then lie on a straght lime then, on the saturation line of the saturated solutions under its own pressure, the pressure is at its maximum or minimum: on the boiling point line this will be the case with the temperature . The same applies to the vapour lines appertaining to these cumes. In each of these maximum or minimum points the three roures come into contart with each other.

The properties found above have been already deduced by another way in the tirot commmationtion.

We will now insestigate the saturation line of F under its own vapour pressure in the vieinity of point F. First of all, it is evident that one line masy pass throngh point F.

For if in δ we call $r=a$ and $y=\beta$ it follows that $d P=0$; (9) is converted into:

$$
\left[\left(x_{1}-r\right) r+\left(y_{1}-\beta\right) s\left|d x+\left|\left(n_{2}-\pi\right) s+\left(y_{1}-\beta\right)\right| d, l n-0\right.\right.
$$

We thas find a detimite value for $\frac{d!y}{\text { dor }}$: at the same time it appearfrom (13) that in point f the saturation line under its own rapont pressure and the liquidum line of the heterogeneous region $/$. it $^{\prime}$ meet each other. It further appears from (13) that the tangent to the saturation line in l under its own vapour pressure and the line which connects the points $/$ with the vapour phase are conjugated diagonals of the indicatrix in point E. (The same applies, of course to the boiling point line of the saturated solutions).

If accidentally, not only the liquid but also the vapour still has the composition r^{\prime}, therefore, when not only $x=r$ and $!=\beta$, but also $x_{1}=u$ and $y_{1}=\beta$, then $\frac{d y}{d_{n}}$ becomes indefinite.

In this case, however a maximum or minimum rapour pressure appears in the ternary system $L(x$; we will refer to this later.

From (6) and (7) we deduce for $n=\ell$ and $y=\beta$:

$$
\begin{equation*}
\frac{\left(B C^{\prime}-A D\right) d T}{A}=\left\{\left(x_{1}-a\right) r+\left(y_{1}-B\right) s_{\}}^{\}} d x+\left\{\left(x_{1}-c\right) s+\left(y_{1}-B\right)\right\}\right\} \tag{1.4}
\end{equation*}
$$

This relation determines the change in temperature dT around point F; this is always differing from 0 unless one chooses de and dy in such a manner that the second member of (1t) becomes nit. According to (13) this signifies that, starting from F, one moves over the tangent to the liquidum line of the heterogeneous region $L_{\text {a }}(t$.

We now choose dix and d!y along the line which connects the point F with the rapour phase; for this we put:

$$
\begin{equation*}
d x=\left(c_{1}-u\right) d \lambda \quad \text { and } \quad d_{!}=\left(y_{1}-\beta\right) d \lambda \tag{15}
\end{equation*}
$$

We then obtain from (14)
$(B C-A D) d T=(V-v)\left\{\left(x_{1}-v\right)^{2} r+2\left(x_{1}-v\right)\left(y_{1}-\beta\right) s+\left(y_{1}-\beta\right)^{2}+d \lambda(1 \beta)\right.$
In this we have replaced A by the value $l^{\prime-} \sim$, which A obtains for $x=\pi$ and $y=\beta$.

Let us investigate the sign of:

$$
K=B C-A D=\left(I I-v_{i}\right) C^{\prime}-(V-v) I .
$$

Now, C is the increase in volume when a quantity of vapour is generated from an indefinitely large quantity of liquid; D) is the increase in entropy in this reaction. Hence so long we are mot too close to temperatures at which critical phenomena ocenr between liquid and vapour, C^{\prime} is as a rule large in regard to ($1^{-}-r$): $/ / \ldots r_{0}$ and D are quentities of about the same kind. If now $1=<r$, then K is for certain positive; if, however, $l^{\top}>r$, then k is, as a rule,
alo, - till po-itive on abeombt of the small value of $V-r$ in regard (1.) : Wre will, herefore in fiture alwars pht K positive; should it heome negative the nevesary alterations can readily be introduced. We mow distinguish two cases.
1). $1^{-}>{ }^{\prime}$, "I' and di. have the same sign :

1. $1^{\prime}<1$. "l'' and , the have the opposite sign.

Suw, it follows from (15) that a $10 .>0$ signifies that one is moving from point fowards the vapour phase. From this we conclude:

The part of a saturation line passing through the point F of the -ubstance F moder ins uwn vapour pressure and situated in the vicinity of l moves at an increase of temperature:
". if $l>r$, towards the vapour phase appertaining to point r.
b. als $1^{*}<r$, away from the vapour phase appertaining to point E.

From (6) and (7) instead of (16) we can deduce also:

$$
\left.\left.\kappa^{-} d l^{\prime}=(H-)_{1}\right)\left(x_{1}-\pi\right)^{2} r+\cdots\left(x_{1}-\ell\right)\left(y_{1}-\beta\right) s+\left(y_{1}-\beta\right)^{2} t\right\} d \lambda . \quad(17)
$$

From this we conclude:
The part of a boiling point line of the saturated solutions of F situated in the vicinity of F moves, on increase of pressure, always more towards the vapour phase appertaining to point F.

In orter to get a better knowledge of the saturation line of F under its own vapour pressure which passes throngh the point F and of the boiling point line of the saturated solutions of F we will also introduce in our formulae terms with che e^{2}, dx dy, and dys ${ }^{3}$. In order to simplify the calculations a little we will assume provisionally that the vapour comsists of one component only.

We, therefore call in our previous formulae $x_{1}=0$ and $y_{1}=0$. Our equilibrium conditions (1) then are converted into:

$$
\begin{align*}
& Z-x \frac{\partial Z}{\partial x}-y \frac{\partial Z}{\partial y}=Z_{1} \tag{18}\\
& Z_{1}+\ell \frac{\partial Z}{\partial x}+\beta \frac{\partial Z}{\partial y}=\zeta \tag{19}
\end{align*}
$$

We now write for (18), 'T' being kept constant :

$$
\begin{align*}
& (x v+y s) d x+(x+y t) d y+\frac{1}{2}\left(r+x \frac{\partial r}{\partial x}+y \frac{\partial s}{\partial x}\right) d x^{y}+ \\
& +\left(x+x^{\prime} \frac{\partial s}{\partial x}+y \frac{\partial t}{\partial x}\right) d x d y+\frac{1}{2}\left(t+x \frac{\partial s}{\partial y}+!\frac{\partial t}{\partial y}\right) d y^{2} \ldots= \\
& =\left(r-V_{1}-r \frac{\partial V}{\partial x}-y \frac{\partial V}{\partial y}\right) d l^{\prime}+\cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot .(20 \tag{20}
\end{align*}
$$

From (19) follows:

$$
\begin{equation*}
+\left(\Omega \frac{\partial s}{\partial x}+\beta^{\partial t} \frac{\partial x}{\partial x}\right) d x d y+\frac{1}{2}\left(\ell^{\partial} \partial!+B^{\partial} \frac{\partial t}{\partial y}\right) d y z+\ldots \tag{21}
\end{equation*}
$$

$=\left(v-V_{1}-\alpha \frac{\partial V}{\partial x}-\beta \frac{\partial V}{\partial y}\right) d P+\cdots \cdot$
Let us now deduce (21) from (20) after having substituted in (20) $x=\ell$ and $y=\beta:$ we ind:

$$
\begin{equation*}
\frac{1}{2} r \cdot d x^{2}+x d x d y+\frac{1}{2} t d y^{2}+\ldots=\Lambda d l^{\prime}+\ldots \tag{22}
\end{equation*}
$$

in which the coefticients of $/ 1 D^{\prime}$. dex and dI'. d! are nil, whereas for the sake of brevity we write the cochlicient of als in (21) - $\left(A+C^{\prime}\right)$. A and C^{\prime} then have herein the same values as in our former equations. Then, however, we assume $x=\pi, \eta=\beta, n_{1}=0$, and $y_{1}=0$.

From (22) follows dl' of the order che x^{2} and dy', here from (21) at first approximation:

$$
\begin{equation*}
(e r+\beta \cdot r) d x+(e s+\sqrt{2}) d y=0 . \tag{23}
\end{equation*}
$$

In comnection with (13) it appears from this that the liquidum line passing throngh point F and the saturation line of F under its own vapour pressure come into contact with each other.

If we eliminate $d P$ from (21) and (22) we obtain:
$(c r+\beta s) d x+(c s+\beta t) d y+\frac{1}{2}\left(r \frac{\partial r}{\partial x}+\beta \frac{\partial x}{\partial x}+r+\beta x\right) d x x^{2}+$
$+\left(\boldsymbol{q} \frac{\partial s}{\partial x}+\beta \frac{\partial t}{\partial x}+s+\lambda s\right) d x d y+\frac{1}{2}\left(\ell^{\frac{\partial}{\partial y}}+\beta \frac{\partial t}{\partial y}+t+\lambda t\right) d y=0(24)$ in which $\lambda=\frac{\ell}{A}$.

For the liquidum line passing through point F we find:

$$
\begin{align*}
& (\alpha r+\beta s) d x+(\alpha s+\beta t) d y+\frac{1}{2}\left(\alpha \frac{\partial r}{\partial x}+\beta \frac{\partial s}{\partial x}++r\right) d x^{2} \\
& +\left(\pi \frac{\partial s}{\partial x}+\beta \frac{\partial t}{\partial x}+s\right) d x d y+\frac{1}{2}\left(\pi \frac{\partial s}{\partial y}+\beta \frac{\partial t}{\partial y}+t\right) d y^{2}=0 .
\end{align*}
$$

For the sake of brevity we write (24) and (25) as follows:

$$
\begin{array}{r}
a X+b Y+\frac{1}{2}\left(c+2 X^{2}\right) X^{2}+(d+2 S) X Y+\frac{1}{2}(e+\lambda t) Y^{2}=0 . \\
a X+b Y+\frac{1}{2} c X^{2}+d X Y+\frac{1}{2} e Y^{2}=0 . \tag{27}
\end{array}
$$

Equation (26) now relates to the saturation line, under its own pressure, passing through F^{\prime}, (27) on the liquidum line of the heterogeneous region $L G_{r}^{Y}$ passing through F.

Now the romvature of 27 is griven by:

$$
\begin{array}{r}
\text { Oubut- } u^{2} e^{-l^{2}} c^{c} \\
\left(u^{2}+b^{2}\right)^{3 / 2} \tag{28}
\end{array}
$$

Hat of corve (2ti) by:

$$
\begin{equation*}
\frac{2 a b d-a^{2} b-l^{2} c-2\left(a^{2} t+b^{2} r-2 a b x\right)}{\left(a^{2}+b^{2}\right)^{2 / 2}} . \tag{29}
\end{equation*}
$$

I: 28 and (29) have the same denominator we, in order in compare the curvatures of both curves, only want the mumerators. for the sake of brevity we write:

$$
\begin{equation*}
2 a d d-u^{2} e^{2}-i^{2} i=Q . \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\because a l_{d}-u^{2} p-l^{2} c-\lambda\left(a^{2} t+b^{2} r-2 a b x\right)=Q-\lambda S \tag{31}
\end{equation*}
$$

If, by means of the known values of $"$ and b we calculate the value of sc we find:

$$
s=\left(v t-s^{2}\right)\left(u^{2} r+2 u_{3} s+\beta^{2} t\right)
$$

hence, s is always positive.
In order 10 find the direction of the curvature we calculate the roordinates \bar{z} and η of the centre of the cursed circle and ascertain at which side of the tamgent this centre is sitmated. Therefore, we call the orimin of the comdinate system the point which in this case represents the vapour, 0 . We now tind the following: the liquidum line is curved in the point l towards 0 when $(l<0$; it is cursed in I' away from (if $Q>1$.

A consideration of (? shows that this can be positive as well as negative: hence, the liquidum lime can be curved in l, away from () as well as towards ().

In order to tind the satmation line under its own vapour pressure we will consider two cases.

Owing to the small value of $V^{\top}-r$, λ will generally have a large positive value. In Fig. 1, wherein for tho moment we disregard the curve d're, the liquidum line is represented by afe; the print () is supposed to be somewhere to the left of this curve Whe so that this is chrted fowads (); (? is consequently negative.

Fig. 1.

Fig. 2.

From this it follows at onee that $!$ - D, S is also nerative and that the saturation line under its own vapour pressure, namely the curve Fiab, must possess a comature stronger than that of the liguidum line. It further follows from our previous considerations that they must intersed also the line () F somewhere between () and F so that they must exhibit a form as indicated schematically in tig. 1. The change in pressure alomg this curve is detcrmined in $l=$ by (2 2), from which it follows, that, starting from r^{\prime}, /l l ' is positive whether towards a or towards b. The pressure in b is, therefore a minimum one and increases in the direction of the arrows. The solution with maximum vapour pressure is, of course, in this case situated on the intersecting point of this curve with the line off

We will now disregard the liquidum line $d F_{e} e$ of tig. 1 and suppose it to he replaced by d' F^{\prime} which is curved in another direction: Q is, therefore, positive so that $Q-\lambda S$ can be positive as well as negative. If the liquidum line is not rurved too strongly (2-AS will be negative and the saturation line under its own vapour pressure again exhibits a form like the curve afb of lig. 1. If however the lifuidum line is curved very strongly and i is not too large, then $Q-\lambda, 5$ can also become positive, so that both curves in F are bent in the same direction. This has been assumed in Fig. 2 wherein $d F_{b}$ represents the liquidum line and $a F b$ the saturation line under its own vapour pressure. As in this case, Q is larger than ($(-\lambda)$ it follows, as assumed in Fig. 2, that in the vicinity of F the curve die must be bent more strongly than the curve aFb.
$I^{\top}<x . \lambda$ has, therefore, generally a large neyative valne. In the same way at above we lind that Figs. 3 and 4 can now appear. The saturation line under its own vapour pressure is again represented by aFb, the liquidum line by dFe. In Fig. 3 are united two cases,

Fig. 3

Fig. 4.
namely a liquidum line dFe curved towards O and another $d^{\prime} F e^{\prime}$ cursed in the opposite direction. We must remember also that the line $O F$ must intersect the saturation line somewhere in a point simated at the other side of $I r$ than the point O. A now being negative, it further follows from (22) that the pressure of a must now decrease towards a as well as towards b; hence, the arrows
again inticate the direction in which the rapour pressure increases.
The previons comsiderations relate to the saturation line under its "wn bapour pressure: in atmilar manner we may likewise inves tigate the boiting point line of the saturated solutions. We must then in 26° rephace λ by μ in which $\mu=\frac{D}{B}=\frac{D}{H-v}$
 pusitise and as regats absolute value smaller than λ. Further we must replace AdP' in (22) by Bol'T. As, moreover, the line OF must intersed the boiling point line of the saturated solntions in a point between () and r^{\prime}, we re-find the cases represented in figs. 1 and 2 in which ald now represeats the boiling point line of the saturated solutions. If, however, the arrows mast indicate the direction of an increasing temperature one must imagine them to point in the opposite direction.

If we compare the valuts of $2--\lambda, S$ and ($2-8, S$ in regard to each other, we may search for the different situations of the saturation line under its own messure, and for the boiling point line of the saturated solutions in regard to each other, in the vicinity of point l^{r}. I will, however, not go in for his now; I will, however, refer to it when discussing the value of $\frac{d P}{d T}$ in the vicinity of the point l. Whether all conceivable combinations are actually possible is difficult to predict. Perhaps a solution might be found by introducing the condition of equilibrium of vas oer Wals and expressing the different quantities in the a and b of van der Waids, which must then be considered as functions of x and y.

We will now deduce the vapour saturation lines under their own pressure and the boiling point lines of the saturated solutions yet in another manner.

Fig. 5.

In order io find the satmation lime, undere its own pressure of a definte temperature T ' we take the vapour- and the lighidum surface of this temperature ' P ': we then ohtain lig. 5 in which the pressure axis is taken perpendicularly to the component triangle $A B C$. The liquidum surface is represented by the drawn, the vapour plane by the dotted lines. If the vapour contains only two of the eomponents the vapour side reduces itself to a curve situated in one of the border planes; if it contains but one single component it reduces itself to a single point. Like in our former considerations, we further assume, provisionally, that in the liquidum side orous neither a maximum. minimum, nor a stationary point.

We further take, at the assumed temperature T and an arbitrary pressute I, a saturation line of the solid substance r. If we alter the pressure. 'T' remaning constant, this saturation line changes its form. If, to the component triangle, we place perpendicularly the P-axis and if on this we place the different saturation lines we get an isothermicopolyaric saturation surface of F. This surface may lie as in fig. 6 or 7 ; the component trianglo has been omitted from both figures, the arrows point in the direction of increasing pressure. That both eases are possible is evident from what follows:
$I^{r}>r^{\prime}$. At the assumed temperature T the substance F will melt at a detinite pressure. Because the substance melts with increase of rolume the saturation line of F will appear on elevation of

Fig. 6.

Fig. 7.
pressure, so that we obtain a sufface like in fig. 6, namely with the convex side directed downwards.
$V<v$. At the assumed temperature T the solid substance F will also melt at a definite pressure. Because on melting there is now a decrease of volume, the saturation line of F will now appear on reduction of pressure. We thus obtain a surface like in fig. 7 , namely with the concave side directed downwards.

The surfaces of figs. 5, 6, and 7 are isothermic-polybaric; they. therefore, apply only to a definite temperature; if this is changed those surface alter their form and sifuation. On elevation of temperature the liquidum and vapour sutfices of fig. 5 shift upwards likewise the surface of fig. 6. On elevation of temperature, the surface of tig. 7
moves, however. downwards; as V is smaller than t the correlated meltiner pressure will fall on increase of the metting temperature of 1 .

As a small change in the meling point usually causes a very preat change in pressure both surfike of figs. 6 and 7 will generally move much more rapidly than the vapour and liquidum side of tig. 5.
$V^{r}>v$. We now suppose the saturation line of tig. if to be introduced also in tig. 5 ; to begin with we asstime the point i of the saturation surface to be far below the liguidum side. All points of the section of both surfaces now represent liguids saturated with solid F and in equilibrium with vapour, consequently the system $l+L+G$. As the points of the section all appertain to the same temperature, this section is therefore the previously recorded saturation line of the solid substance F^{F} under its own ripour pressure. If we project this section on the component triangle we obtain a curve surrounding point F like the drawn curves in fig. $7(\mathrm{I})$ or tig. 11 (1). It is also evident that the pressure must increase in the direction of the arrows of these figures. We now again imagine in fis. 5 the section of liquidum surface and saturation surface; with each point of this section corresponds a detinite point of the vapour sufface. On the vapour surface is sitmated, therefore a curve indicating the vapours in equilibrium with the solutions saturated with l^{\prime}; this curve is the vapom line appertaining to the saturaton lime under its own vapour pressure. If this curve is precected on the component triangle we obtain a curve surrounding point F such as the dotted curve of tigs. 7 (I) or 11 (I).

If the temperature is increased the liquidum. gas, and saturation surfaces of f move upwards; as the latter surface, however, moves more rapid!y than the first. there occurs a temperature where F falls on the liquidum surface so that the solid substance F is in equilibrim with a liquid of the same composition and with a vapour. Like van der Walis in the binary systems. we may call this temperature the minimum melting point of I.

As the plane of contact introduced in F at the saturation surface is horizontal, the saturation surface must intersect the liquidum surface. We notice that this section proceeds from fowards the direction of the vapour suface. If we project this curve on the component triangle we obtain the curve ath of ligs. 1 or 2 . The curves de or d'e' of these figures are the sections of the plane of contact in I at the saturation surface with the liquidum side; they are consequently the liquidum lines of the heterogeneous region L if at this minimum melting point of the substance F.

From a consideration of fig. a it immediately follows that the vapour lines appertaning to the corves athe of tips. 8 and 2 are exphased and may, or may not, intersed the saturation line.

If we still increate the temperature a little. the point F gets atrove the liquidum surfine and the saturation line of F under its own pressure becomes exphased. We then obtain fig. 12 (I) in which the vapour line may, or may not, intersect the saturation curve under its own vapour pressure.

If we incrase the temperature still a little more, the saturation and the liquidum surfare come into contact in a point: it is evident that on the satumation surface of l this point does not coincide wish I. but is shifted towards the gins surface. We now have the highest temperature at which the system $h+h+(t$ exists. In fig. $12(1)$ hoth lines confact to a point: both points lie with f on a straight line.
$V<v$. We now imagine the saturation surface of fig. 7 to have been introduced in fig. 5 and in such a manner that the point F is situated above the liquidum surface. The section is then again a saturation line of the substance r^{\prime} moder its own vapour pressure, which surrounds the point l. In projection we, therefore, again obtain fig. $7(\mathrm{I})$ or $11(\mathrm{I})$ with an exphased or circumphased correlated vapour line which has shifted towards the side of the vapour surface.

On increasing the temperature the liquidum and vapour surface shift in an upward direction but the saturation surface of l shifts, however, downwards. At a delinite temperature, the minimum melting point temperature of F^{\prime} (point F^{\prime}) arrives at the liquidum side and it is now evident that the saturation line under its own vapour pressure has shifted, starting from l, from the gas surface. In projection we thms obtain the mures a $l^{\prime} b$ of tig. 3 or 4 . The correlated vapour lire has, of course, shifted towards the side of the gas surface and may be either exphased or cireumphased.

What will happen at a further increase of temperature will now

F゙ig. S. he readily understood.

In order to find the boiling point line of the solutions saturated with l, for a definite pressure P, we take the vapour smface and the liquidum surface for this pressure P ' we then obtain fig. 8 in which the temperature axis is taken perpendicularly to the component triangle $A B C$. The liquidum surfore is represented by the drawn, the vapour surface by the dotted lines. In
order fo act in accordance with our determined assumption that \mathcal{C} is the component with the highest vapour pressure the boiling proint of 1 ' has been taken lower than that of A and B.

We mow also take a polythemic-isobaric saturation sulace of r. At the as-mmed pressure l ', there exists, for an entire series of temperatures, at each temperature a definite saturation line of F. If these are put on a temperature axis, the polythermic-isobaric saturation sufface is formed which we can represent by fig. 7 in which however, we must imagine l to be replaced by T; we will call this figure fig. To.

The figs. 7 and 8 apply only 10 one definite pressure; if this is altered they change heir situation and form. On increase of pressure both surfaces of fig. 8 move upwards; the saturation surface of the figure Th can move upwards as well as downwards. This depends on whetber on melting, there is an increase or decrease of volume. As however, a change in pressure canses, as a rule a comparatively small chanse in the melting point of a substance, the movement of the saturation surface of the subtance f will be slower than that of the wo surfaces in fig. 8.

We now imagine the saturation surface of the fig. Fa to be introduced in tig. 8 and in such a manner that the point F lies above the liquidum side. The section is then the hoiling point line of the solutions saturated with F; the correlated vapour line has, as seen from the tigure, shifted towards the rapour surface. A projection on the component triangle gives a circomphased boiling point line of the solutions saturated with F and a circomphased and an exphased vapour line. We thus again obtain the figures 7 (1) or 11 (1) in which however, the arows, indicating the direction of increasing temperatures, must be supposed to point in the opposite direction.

On further increase in pressure, the point F^{r} first arrives at the liquidum surface, then the liquidum surface comes into contact with the saturation surface of f from which follow the previously deseribed boiling point lines of the satmated solutions and their correlated vapom lines.

In place of the saturation surface of F we could also have considered the vapone saturation shrace of F and its movement in regard to the vapour surfare of the system L (\boldsymbol{r}^{\prime}. We will refer later to the vapour salluration surfaces of a solid substance, in comnection with another investigation.

We have already wated above that the vapour surface, when the vapour comains two components only, reduces itself to a vapour curve, and to a point when the vapour contains only one component.

This canses that many of the properties atready montioned may he deduced and expressed in a moch more simple manner. I will refer to this later when discussing the vapour pressures and boiling pointof aqueous solutions saturated with salls and double salts, which in some cases have been determined experimentally.

To be contimued.

Chemistry. - "Eifuilibrie in temary systems." III. By Prof. schreinemakirs.
(Communicated in the meeting of Dec. 28, 1912).
In the previous commmications ${ }^{1}$) we have assumed that in the system liquid-vapour occurs neither a maximum or minimum, nor a stationary point; we have also limited ourselves to the appearance of two three-phase triargles.

We will now discuss first the case that in the ternary system occurs a point with a minimum vapour pressure

Let us imagine that in fig. 1 (1) the liguidum line $d e$ and the vapour line $d_{1} e_{1}$ of the heterogeneous region $L_{f}(x$ surround the saturation line of r^{\prime}, so that we get a diagram as in fig. 1. The saturation line of l^{\prime} is here surrounded by the liquidum region $/$, this by the heterogeneous region $L(t$ and this in tum by the vapour region. All liguids saturated with F therefore occm at the stated P and T ' in a stable condition.

On reduction of pressure, the liquidum region contracts so as to disappear simultaneonsly with the heterogeneous region $L G^{\prime}$ in a point. This point represents for the stated temperature, the liquid and the vapour which, at the minimum pressure of the system liguid + gas can be in equilibrinm with each other.

Fig. 1. This point may ocror without as well as within the saturation line of F. As at lower temperatures the region F / l is generally large, but small at temperatures in the vicinity of the melting point of F. the said point will appear. at high temperatures, usually without, and at lower temperatures as well within as without the saturation line of r.
We now first consider the case where the point with a minimum vapour pressure falls ontside the saturation line of f°, or in ofber words that the liquidum and the heterogeneous region disappear in a point outside the saturation line of f.

[^14]If starting from tige 1 we now redure the presime. the lignidum line of the heterogencous region approaches the sathration curve of l^{\prime} and meet- hais at a detinite temperature. The diagram now formed may be dellued from tire ? (1) if we suppose the saturation curve of F therein to be surounded by the corves l e and $d_{1} "_{1}$. The diagrams appearing on further reduction of the pressure can be represented by figs. $3(1), 4(1), 5(1), 10(1,018)(1), 8(1,9(1)$ and $10(1)$. In each of these figures, however, the comes ap and $d_{1}{ }^{2}{ }_{2}$ must be imagined to be bent in such a mamer that they entirely survond the liquidum region; the! linally dirappear in the proint will the minimum pressure.

From this it now follows that the liguid as well as the rapous of the three-phase equilibrimm $l+L+(i$ proceeds along at closed curve like in fig. 7 (1) or 11 (1) ; the saturation line under its own pressure is, therefore, again circumphased and the correlated vapour line circumphased or exphased.

If we consider temperatures very close to the melting point of F^{\prime}, we find as in the first communication, that the saturation line under its own rapour pressure becomes exphased and that we obtain diagrams such as in figs. 12 (1) and 13 (1).

We now consider the ease where the point with minmum vapour pressure falls within the saturation line of l, or in other words, that the liquidum and the heterogeneous region disappear in apoint within the saturation -urface of F.

We again start from tig. 1 and reduce the pressure first of all until the liquidum and saturation curve come into contact, then until both curves intersect. We now ohtain a diagram as in tig. $3(\mathbf{1})$ in which, however, the saturation curve of F is supposed to be surrounded by the heterogeneous region $/ \mathrm{f}$ (r.

On finther reduction of pressure, the liquidum line of the heterogeneous region and the saturation line of l may once more come into contact, so that on further reduction of pressure two new three-phase triangles are formed: we then obtain a diagram such as fig. 2 with fous three-phase triangles. The liguidum region now consists of the two isolated pieces apyy and biths, the heterogeneous region likewise of two isolated parts, namely of $a, y_{2} g p^{a}$

Fig. ${ }^{2}$.
and blthest, whereas the vapont region lorms a coherent whole
In lig. 2 we tind the following equilibria:
Cimve aty represcuts vapouts in equilibrimm with liquids of Ho corve apla:

Curve b² ${ }^{2}$ represents sapours in equilibrium with liquids of the eurve bath:

Corve abb and ath represents vapours in equilibrinm with the solid sulstance $/$! :

Curve ap!, represents liquide in equibibrimm with the rapours of the curve $a^{1}!1^{1}$:

Curve bsh represents liguids in equilibuim with rapouts of the curve $b^{11 b^{1}}$:

Curve upy (and both represents liguids saturated with the solise substance r.

If, at the temperature and the pressure applying to fig. 2, we join the components, then, acoording to the situation of the fignmting point, there is formed within:

On further reduction of pressure, the liquidum line apy and has which surounds the liquidum region contracts still more so that on the one side the proints a and ! coincide at a pressure l, this will be likewise the case with their comjugated points at and ! 1_{1} : the two triangles $F t_{1} a$ and $F y y^{\prime} y$ then coimede along a straight line and the pressure l^{\prime} for the system $l+L+l$ is a minimmm pressure. The same applies when the two triangles Fhbl and Fhh coincide.

After the fou three-phase triangles have disappeared from tig. '2 owing to reduction of pressure the vapour saturation line of F composed in Fig. 2 of the two hrancles $\pi_{1} h_{1}$ and $y_{1} h_{1}$ forms a rlosed curve which sumounds the heterogeneons region $/$ to as well

 - tathle condition.

From a consideration of the equilibrinm $r+L+G$ it appears that the stlmation comve of F° under its own vapour pressure is a duve -umomaling the point f, on which lowever, now orear two print with a maximum vapour perntre. The same applies to the contelated vapur carve surounding the former corve. Eith maximum on minimum pmint of the one curve lies with the correlated maxmam or minmmm print of the other corve and the point F oll at maight line.

We have assumed above that when the liguidum and the heteroseneons region disappear in a point within the saturation line of I two threr-phase triangles, as in fig. 2. appear. We may, however, also imagine that the liguidum line of the heterogeneons region $L G$ in fig. 1 contracts in such a manner that it intersects the saturation line of f in two points only: only two three-phase triangles are then formed.

The saturation line of l mader its own vapour pressure and the correlated liquidum line are then both circmmphased and exhibit one point with a maximum and one with a minimum vapour pressure. When the lignidum reqion disappears at one remperature within and at another temperature without the saturation point of l, it will, at a definte temperature disappear in a point of the satmration line. Among all solutions saturated at this temperature with f and in equilibrium with vapour there will be one which is in equilibrium with a bapour of the same composition. The saturation line of \mathcal{F}^{0} under its own vapour pressure and the correlating vapour line then meet in the point with the minimmm sapour pressure.

We have noticed ahose that there exist saturation lines of l ender their own bapour pressure which exhibit two vapour pressure maxima and two mimima. Such conves must of course, be capable of conversion into dures with me maximum and one minimum: this take phare by the coincidence of a maximum and a minimum of the firs chmo camsing the part of the curve sitnated befween these two mints to disappear. The two other parts then agam mere in eachother.

We have deduced above the satmation line mader its own vapour pressure with two maxima and two minima in the assmption that the liguidum rexion disappears somewhere within the saturation line of F. We may atso howerer. image smilar cases if this disappearance batken place in a point outsite the sathration line of F . We hate only to suppre that in lig. 1 the liguidum line of the hetero-
gencous trgion Lef eombtacts so ats for disappear in a print omtoide the saturation line of f.

After the contact of the ligudum and saturation lines two points of intersection appear: if now no further rontart takes plare, these points timally comeide in a point of contact so that the saturation line under its own vapour pressure exhibits but one maximmon or minimum.

If, however, after the appratance of the first lwo points of intersection a second point of contat occurs we obtain four points of intersection of which, at lirst two, and atterwards the other two coincide in a point of contant, so that in all fom of these points are formed. The saturation line under its own vapour pressure then exhibits two maxima and two minima.

By way of a transition case it might happen that the second point of contad, which appears after the formation of the two lirst points of intersedion, coincided with one of these points so that a point of the recond order was formed. On further change of pressure two points of intersertion then again ocourred, which finally coincided in a new point of contact. The saturation line under its own vapom' pressure then represents the tramition form between that with one maximum and one minimum and that with two maxima and fwo minima.

After what has been stated it will surely be umnecessary to eonsider the case where, in the system liquid-vapour, a vapour pressure maximum or a stationary point ocours; we will refer to this and to a few pectaliar boiling point lines perhaps later.

We will now just consider what happens if we take the compound F only and apply heat. If we imagine F placed in a racumm at a low temperature a portion of this compound F will evaporate and there is formed the equilibrium: solid $F+$ vapour F. On increase of temperature the vapour pressure of F^{\prime} is raised: in a l^{\prime} '. T'-diagram we thms obtain a curve such as aK of fig. 3 , namely the sublimation curve of the substance l. At a definite temperature T_{k} and a pressure P_{k} an intinitely small quantity of liquid is now formed; this, of course, has not the composition F but another composition K. As only an infinitely small amount of liquid has formed as yet. the vapour still has the composition l. The point K is, therefore the terminal point of the sublimation line, called by vas der Wans in his binary systems the upper sublimation point of the compound.

If we increase the temperature, say, $10 \mathrm{I}^{\prime \prime}$, more of the compound melts; there is then formed the three-phase equilibrium $E^{2}+L+G$ in which neither L nor G have the composition f. L and of have
 f. The thee tignatimg point- are, therefore, situated on a straight

line. Besides. 1 , and d are always present in quantities equivalent
 in such amombls that from both we can form F without any L or fir remaining

As a pule, the threephase equibibum $F^{\prime}+L+G$ can exist, at the temperature $T^{\prime \prime}$ with a whole series of pressures namely, with the pressures occurring on the saturation lime under its own vapour pressure of the solid substance F at the temperature $l^{\prime \prime}$. As in this particular case a phase reaction is possible between the three phases or in other words, as the points k^{*}, L, and i^{\prime} lie on a straight line, the threephase equilibrium exists here only at a definite pressure, namely, the maximum or minimum pressure which occur at the temperature $T^{\prime \prime}$ on the saturation line of F^{\prime} under its own vapour pressure. In this particular case it is the minimum pressure, as will appear later.

At a further increase of temperature more of the substance F keeps (in melting and V, and (r alter their composition; we will regulate the volume in such a manner that there is but an infinitely small amon of sapour which, of combe, does not affect the prese sure If we represent the pressure and temperature graphically, a corse is formed such as come $i f f$ of fig. 3.

Finally we now arrive at a temperature and correlated pressure at which all solid f has fined; as particularly at the last moments, we have taken care that hat infinitely little vapor is present, the liquid now has the composition l^{\prime} : the sapour has quite a different composition D.

As the solid substance f and the liquil now have for mame composition we have attand the metting point of f. If now we regutate the temperature and pressure in such a mamer that the solidmatter If remains in equilibrium with its melt the syem proveds atoner the melting point line Fil of fig. '3. Here, it has been assmed that the rolume v of the solid substance is much smatler thath the rolmme V^{\prime} of its melt. If this is mot the ease, the mehting pome line fot sarts firom It towards lower temperatures. In hinary systems, Iis ben Waths has called the intial point f of the metting point line, the minimum melting point of the solid sulstance F.

Hence, we have fored the subsance F to proceed atong:
tr. The sublimation line ali
b. the three phave line K / F
c. the melting point line fod we can, however, consider still other lines.

In the apper sublimation poim K^{\prime} we have onlid $r^{\prime}+$ vapour $r^{\prime}+$ intinitely little liquid. We now increase the volume umt the endid substance f has been converted totally into vapour. or elan we remove the solid substance. We then hase the system: rapone f ' + infinitely little liquid or we may also say, a vapour f which can be in equilibrium with a liquid. It the emperatmre is increated the yapour if will contmue to exist; it is then, however, no longer in equilibrimm with liquid. In order, to again form an infintely smatl quantity of diquid, or in other words 10 again loring the vapour in equilibrium wiht a liquid, it will generally be necessary to increase the pressure.

Hence, at an increase in temperature, one can alway regnate the pressure in such a manner that a vapour of the comporition F is in equilibrium with an infintely small quantity of liquid which, of course, changen its composition with the temperature. If presum and temperature are represented in his. 2, the colve $k f$ of this figure is formed.

In the minimum melting point F we can starl from the system solid $F^{2}+$ liquid $k+$ infinitely litte vapour after we have dirsi eliminated the solid substance F thereot. If now, we elevate the temperature, the pressure may be always rexulated in sucha manne that this liduid of the composition F is in equilibrium with an infinitely small quantity of vapour which, of course, changes its composition with the temperature. The corresponding P'l-line is represented in tig. 3 by the conve $f \%$.

As, on the line e P, a liquid of the composition f ' is in equilibrium with vapour we will eall this line the evaporation line of l. On

Whe line $K f$ a $\begin{aligned} & \text { apmur of the composition } F \text { is in equilibrium with }\end{aligned}$ lignid: we will, herefore, call Kft he condensation line of f. The motatiable podongations of F^{\prime} and $k f^{\prime \prime}$ are represented in the tignre hy P^{\prime} and $K f^{\prime}$. Hence, in point F thee eorves coincide namely, the melting point line $(F d)$, the evaporation line $(F e)$ and the threephase line $(K \mathscr{K})$: in point K three curves also meet, namely, the sublimation line $(n K)$, the three-phase line $\left(K^{\prime} F\right)$ and the condensation line (Kf$)$.

The metastable prolongations of the sublimation line ah and the melting point line $d F$ intersect in a point S; at this temperature T's and pressure P now occurs, in a metastable condition, the equilibrium : solid $F+$ liquid $F+$ vapour F. If now the substance F bohaved as a simple substance which can only yield a liquid and a vapour of the same composition, is would represent the triple point of the substance r; owing to the occurrence of the three-phase equilibrimm $F+L+(i$ this triple point is, however, metastable here. Through this metastable triple point s' now also passes, besides the sublimation and the melting point curve of F, the evaporation line f^{\prime} S of F. This represents the equilibrium liquid $F+$ vapour r ocenrring in the metastable condition; on this curve !f and vapon, therefore, have the composition F and not, as on $f^{\prime \prime} K f$, only the vapour, and as in e'fe only the liquid. We will call the curve y^{\prime} Sy the theoretical evaporation line.

In order to find what conditions of the substance F are represented by the points of the different regions we take this substance in a condition answering to a point of the sublimation line ak. We then have solid $F^{\prime}+$ rapour F^{\prime}. lrom a consideration of what takes place on supply or al withdeaw of heat, or on increase or decrease in volume we now deduce: to the right and below the line ak oceurs the vapour region, to the left and above the line $a k$ is found the solid regrion of F.

Acting in a similar mamer with the points of the other lines, wo limd that four regions may be distinguished. namely, a gas region indicated in the figuse hy an encireled G, a solid region indicated by an encircled F, a liquidum region indicated by an encircled L and a liquidum-gas region indicated by an encireled $L+\left(\begin{array}{l} \\ \hline\end{array}\right.$. Hence if the substance f is hronght to a temperature and under a pressure correspending with a point of the solid aerion, the substance F is solid; if brought to a temperature and mader a pressure corresponding with a point of the liquidum-gas region. f is resolved into liquid and gas etc.

We will also consider fig. 3 just once more in connection with the
previonsly mentioned saturation lines of f and llo lignidnm and

 a very high pressure so that we dind murselves in the collid pegiom. On the pressure being reduced we arrive from the solid region into the liguidum region, then into the liguidum-gas rewion and dinally into the gat region. If we choose a temperature T_{1} fomesponding with point l^{3} of tig. is, the sulstance F on rethedion of pressure first traverses the solid remion, then the lipuidum-gra rexion and finally the gas region. Reduction of presente at the tempeathre T_{f}^{\prime} Itamsfers the substance from the solld region to the gas region.

We now stat from the temperature T_{d} and a very high pressure: the corresponding diagram then comsists of tig 1 1) wherein, however, is still wanted the gats region and the heterogenesn- region $L+\frac{1}{2}$ of this figure. It is mow evident that the compmomet fan only exist in the solid condition: it can, of eomec, he in erpuilitrimm with a liguid, but this liguid cammot form maless to the eomponmed is added a little of at least one of its eomponents. The pure eompound f which we have still mader consideration can maly oerou' in the solid comdition.

On reduction of pressure, the saturation line of for eontracts on at to coincide finally with point fr of tig. 1 (1). At this pressure merors. therefore, the equilibrinm solid $F^{\prime}+$ liquid F^{\prime}, wo that in fig. '3 we proceed from the solid region to a point of the melting point line Fil. The heterogeneons region $L+f^{\prime}$ of tis. 1 may, on may not, have appeared at this pressure: in any case, however, it han not yet extended to the proint f of this tisure.

As, on further reduction of pressure. the saturation line of F disappears from fig. 1 (1) in order to keep in with fig. B we bake $I^{\prime}>{ }^{\prime} F^{\prime}$ is now situated in the liquidum region of fig. 1 . Hence, in fig. 3 we must also arrive in the liquidum region. As on futher reduction of pressure the gats region of tig. $1(1)$ is further extended, the liguidum line ed of the heterogeneous region passer. at a definte pressure, through the point F^{7}. This means that the liquid I^{\prime} can be in equilibrium with rapour. This is in agretment with tig. 3; therein we proceed from the liquidum region to the line $F e$.

On further reduction of pressure, the heterogeneous region $i_{A}+6$ shifts over the point F; the compomen F is now resolved into a liquid of the liquidum line and into a vapour of the vapour line which on further decrease in pressure always change their comporsition. Hence the compound F traverses the liquitum gats region
whind is in aremement with lis. :3. This will continne until on further

 equilibutum with a liquid: this agam is in harmony with fir. B: therein we proced from the liguidum gats region to the curve Ki. Wn still further reduction of pressure the gas region of fig. 1 (1) move over the point F so that, in harmony with lig. 3 the comprond F^{\prime} can occur only in the state of vapour.

Between the liquidum line $d e$ and the vapone line $d_{1} e_{1}$ of the
 of the line of intersection of the liquidtum and the vapour side of the e-surliuce. This lime indicates a series of solutions which eachean be in equilibrium with a vapour of the same composition; all these liguids and vapours, however, are metastable and break up into a liguid of the liguidam line and a vapour of the vapour line of the hoterogeneous region $L+(\dot{r}$. We will call this line of intersection the theoretieal liquidum-rapour line.

As this theoretical line passes, at a detinite pressure, throngh the point F, there exists at this pressure the equilibrium: liquid $F+$ vapour f ' in a metastable condition; hence, we have a point of the theoretical eraporation line S_{y} of fis. is and it is, moreover, evident that this must be situated in the liquidum-gats region of fig. 3 .

We now choose a temperature T_{l} b lower than T_{A}; this will cause the saturation line of f to disappear at T_{B} at a lower pressure than at T_{1}. We now choove T_{B} so low that, on lowering the pressure the saturation line of f has not yet disappeared when the liquidum line of the heterogeneous region passes through the point $F: T_{B}$ is, therefore lower than the mimimum melting point of r. If we now choose a very high pressure, the corresponding diagram will then consist of lig. 1 (I) wherem, however, the gas region and the heterogeneous region $1+A^{\prime}$ are still wanting. On reducing the pressure fig. 1 (I) is formed dirst, then fig. 2 (I) and further fig. 3 (I); at these pressures the compound F still occurs in the solid condition so that it finds itself in the solid region of tig. B. At a definite pressure the metastahle patt of the liquidum line dabe situated between the points "t and b in dig. 3 (I) will pass throngh the point I : his means that a liguid of the composition $f \cdot$ may be in equilibrimm with vapour: this is only possible in the metastable condition for in the stable condition F only orours as a solid. Hence, in fig. 3 we find onselves in the solid region on a point of the metastable curve ef F.

On further reduction of pressure there is now formed from fig.

3(I) the figure $4(\mathrm{I})$ or $8(\mathrm{I})$: we tirst choose T^{\prime}, in such a manner that on lowering the pressure, the vapour saturation line has mot yet disappeared when the vapour line of the heterogeneous region passes through the point f. So as to be in harmony with fig. : 3 , $T_{1 ;}$ has been chosen lower than the minimum molting point and higher than the upper sublimation point of the compound f. In consequence of this, fige $3(\mathbf{I})$ is converted into dig. $+(1)$ on reduction of pressure, and afterwards at a definite pressure into fig. 5 (I). At this pressure the as yet solid compound ir melts with formation of the vapour m_{1} and the liquid m; hence in lig. : we proceed from the solid region to a point of the three-phase line $K F$.

On further decrease of pressure I is resolved into liguid and gas; in fig. 3 we, therefore, proceed from the line $K i$ gas region. On further reduction of pressure the vapour curve $e_{1} \ell_{1}$ of tig. 5 (l) passes, at a definite pressure through the point l^{\prime}; this means that a vapour of the composition l can be in equilibrium with a liduid. The compound F then passes, in fig. 3 , from the liquidum-gas region to the line $K f$. On further decrease of pressure is now formed fig. $6(1)$, the point F lies now in the vapour region so that the compound F^{\prime} can only still oceur in the state of vapour.

In fig. 3 we, therefore, proceed from the line Kf to the gas regrion.
Between fig. : (l), in which we assume the metastable part ab of the liquidum line dabe to pass through the point l, and fig. $5(\mathbf{I})$, in which we assume the vapour line $d_{1} e_{1}$ to pass through F. there must, of course, lie another one where the theoretical liquidmm vapour line passen through point F. This means that, in fig. 3 , we must find, at the temperature T_{B}, between the curves $\rho^{\prime} F$ ' and K a point of the conve y by. If this theoretical vapour curve already pases through the point f betore tig. $5(1)$ is formed through reduction of pressure, the point of intersection of y^{\prime} ay with the vertical line then lies in the point B of fig. 3 above the three-phase line; if, however, this theoretical line passes through the point F when, though reduction of pressure, fig. 5 has formed, the above point of intersection in fig. 3 lies below the three-phase line. These results, as follows from fig. 3 , are in hamony with this figure.

The situation of the metastable sublimation line K s' and of the metastable melting point line FS may he found in this manner. Here, we will just determine the sitnation of the triple point S. In this print there exists an equilibrimm between solid $l+$ liquid $F+$ vapour F.

The equilibrium liquid $l \prime+$ vapour F requires that the theore-
sical liquidum :apnor lise pares through print F : if his equilibrimm werne - in the dathle condition, the lignidum and the vaporm line of the heterngenems reaion must then also pase through the point r^{\prime}; this is the case when, incilentally, a ternary maximum, mimimnm on -hationary point occurs in l°. If, however, this equilibrimm appers in the metastable condition, the liquidum and sapore line of the heterotreneous region do not pans through fr which is then sitmated between these two. As, from the equilibria solid $F^{\circ}+$ liguid $r^{\prime}+$ vapour F^{\prime} and solid $F+$ rapmur F, it follows that the saturation and the bapour saturation line of F eoincide to one print in F, the metastable friple print is mast be situated in the liguidum gas region of fig. 3.

We now choove a temperature T ' (tig. B) lower than the upper -nblimation point T_{k} of tige si: the vapour saturation line of f has, therefore, not yet disappeared when the vapou line of the heterogenenus $L+G$ passes throngh the puint l. Stating from high pressures and then reducing the same there is first formed fig. 1 (I) wherein, at first, the gats and heterogencous regions are still wanting, then tigs. $1(1), 2(I)$ and 3 (I) which is now converted into $8(1)$: then are formed ligs. $9(\mathrm{l})$ and $10(\mathrm{I})$ and dinally a digure which we will call 10 a and which is formed from lig. 10 when the sapour saturation line of l conneides with the point l.

During this lowering of the presure, as shown from the tigures, the substance f only orcurs solid in the stable condition: the substance f^{\prime}, therefore, traverses the solid region of fig. 3. Not until the pressure has been so reduced as to form dig. 10a ean solid F be in equilibrium with vapour f. We then proceed in tig. 3 from the solid region to a print of the sublimation line " k.

On continued reduction of pressure the vapour saturation line of I' disappeats from tife 10 at, so that f lies within the gats region: hence, F can ocem only in the form of vapon', so that in fig. 3 we proceed to the sapour region.

In the comerion of tig. © (1) into tig. $S(1)$ the substance F passes throngh difterent metastable conditions. On reduction of pressure the metastable piece "f of the liguidum lime passes through the point A lirst, then the theoretical liqnidnm-vapour lime and then the metastable piece $a_{2} b_{1}$ of the vapour line of the heterogencons region $L+(x$. This also agrees with tig. 3 ; on lowering the pressure at the temperature ' l ' we meet in the solid region, successively, the

When in atsstem liguid-gats a liquid and a vapour of the same composition are in equilibrinm, we will call this a singular point of
the system $L+6$. The appoatane of sumb a point has no influ-
 one of the previonsly examined figuren. such a singnlar point, that all each T^{\prime} occurs only at a detinite P ', proceeds in He eomponent triangle along a curve which may happen to pass through f. If this should take place, and if this point is a statomary point, then, in the case of the corvelated P ' and ' P ', the vapone and liquidum line of the heterogeneous region $L_{\alpha}+V_{i}$ and the theoretical liguidum vapour line pass throngh r^{\prime}; if this point is a maximum or minimum one these three limes coincide in $f=$. From this it follows that in fig. 3 the singula point must always lie simultanconsly on the lines $y^{\prime} S!$, $e^{\prime} f^{\prime} e$ and $f^{\prime \prime} K^{\prime} f^{\prime}$. The coincidence of a singular point with the point f therefore causes the ahove three curves of tig. 2 to have one point in common; from other considerations it follows that they get into contan with each other.

This point of contact may lie in the solid as well as in the liqui-dum-gras region; in the first ease, the system liguid $f^{\prime}+$ vipour F^{\prime} is metastable, in the second case it is stable.

This point of contact may - but this is not very likely - also comeide with point S of tig. 3 . The system solid $\ell^{\prime}+$ liguid $F^{\prime}+$ vapour I woukd then occur in the stable condition and the subtimation and meltimg point curves would then contimue up to the point S

Mathematics. - "(on complexes which cen be built up of lineor congruences". By l'rol. Jan de Vris.
(Communicated in the Meeting of December 2s, 1912).
§ 1. We will suppose that the generatriees af of a seroll of order It are in (1,1) -rorespondence with the generatices b of a seroh of order n, and consider the complex containing all the linear congruences admitting any pair of corresponding generatrices a, b as director lines. The two scrolls admit the same genus p; as the edges of a complex cone are in (1,1)-correspondence with the generatrices at, b on which they rest, p is also the genus of all the complex cones ${ }^{1}$). The rays of a pencil are arranged in a correspondence (m, n) by the generatrices of the serolls $(1),(b)$; so in general the complex is of order $m+m$.

[^15]The domblo edere of a complex eone are rays resting on two pairs 4. 1 : they belong to a comprache contained in the complex, of which congeneme both meder and chess are equal to the nomber of double adees of the cone.

Evident! athy point common to two corresponding generatrice a, b is a primipul point, the plane containing these lines a principal plome of the complex. If one of the scrolls is plane, the bearing plane is a principul phane too: if one of them is a cone, the vertex is a principal point ${ }^{2}$:

Any point l of a principal plane is singulur, the pencil with rertex l' lying in that plane forming a part of the complex cone of P'. The same degeneration presents itself for any point of each of the given scrolls; so these sutaces we loci of singular poimts. Likewise any plane through a generatrix or or and any plane through a principal point is simetular.

By means of one scroll only can also be obtaine complexes consisting of linear congruences. So we cin arrange the generatrices of a scroll in groups of an involution I and consider any pair of any group as director lines of a linear congruence ${ }^{2}$).

In the following limes we treat the biguadratic compler which can be derised in the manner described athove from two propection reguli. After that we will investigate the particular coses of phane serolls or cones.
\$ 2. We use the general line coordinates x_{k}, introtuced hy Kimin, which are linear functions of the coontinates f of Proxeker and salisfy the itentity $\left(x^{2}\right)=\frac{\Sigma}{6} \cdot x^{2}=0$, while $\frac{\Sigma}{6}, x_{k} y_{k}=0$ or $\left(x^{2} y\right)=0$ indicates that x and y intersect each other.

Then a regulas is characterized by the six relations

$$
u_{k}=p_{k} \hat{\lambda}^{3}+\ddot{q}_{k} \lambda+r_{k}
$$

natisfying the conditions:

$$
\left(p^{2}\right)=0,\left(r^{2}\right)=0,(p q)=0,(q r)=0,2\left(q^{2}\right)+(p r)=0_{0}^{\circ}
$$

Likewise we represent the second regulus by

1) In our paper "Sur quelques compleces rectilignes du troisieme degre" (Archives Teyler, 2nd scries, vol. 1 $1, p, 553-573$) we have considered among others the case that one of the serolls is a pencil whilst the other is formed by the tangents of a conic.
${ }^{9}$) This has been applied to a developable in our paper "On compleces of ruys in relation to "retionul skew cherce" (Proccedings of Amsterdam, vol. V1, p, 12) and on a rational scroll in "A group of complectes of reys whose singuter surfaces consist of ascroll and "member of plemes". (Proceedings of Ainsterdam, vol. VIII, p. 662).

$$
b_{k}=p^{\prime} k \lambda^{3}+2 y^{\prime} k \lambda+r_{k}^{\prime} .
$$

 lines a, b

$$
\begin{aligned}
& \left(p, x^{2}+2\left(\eta, \lambda^{2}\right) \lambda+(x)=0\right. \\
& \left(p^{\prime}, x^{\prime}\right) \lambda^{2}+2\left(q^{\prime}\right) \lambda+\left(r^{\prime}\right)=0
\end{aligned}
$$

which we abridge into

$$
m^{2}+20 \lambda+n-1 \quad, \quad n^{2}+20 \lambda \cdot k=1 .
$$

By elimination of 2 . We get the equation of the biguatratic compled amder disconssion. It is

$$
\left(P^{\prime} k^{\prime}-P^{\prime} R\right)^{3}=4\left(P^{\prime} Q-P^{\prime}(2)\left(Q R^{\prime}-Q^{\prime} R^{\prime}\right)\right.
$$

or, what comes to the same,

$$
\left(P R^{\prime}-2 Q Q^{\prime}+P^{\prime} R\right)^{2}=4\left(P R-Q^{2}\right)\left(I^{\prime} R^{\prime}-Q^{3}\right)
$$

From this ensnes that the complex can be senerated in two different wass by too projectioe pencils of quadratic complexes. This is shown by the equations

$$
\begin{aligned}
P R^{\prime}-P^{\prime} R & =2 \mu\left(P Q^{\prime}-P^{\prime} Q\right) \\
\mu\left(P R^{\prime}-P^{\nu} R\right) & =2\left(Q R^{\prime}-Q^{\prime} R\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
P R^{\prime}-2 Q Q^{\prime}+P^{\prime} h=\because \because\left(F^{\prime}-Q^{2}\right) \\
u\left(P R^{\prime}-2 Q Q^{\prime}+P^{\prime} R\right)=-\left(P^{\prime} R^{\prime}-Q^{\prime 2}\right)
\end{array}
$$

The equation (uh) $=0$ expressing the rondition that two comersponding generatrices a, b have a point in common, gives rise to a biguadratic equation in i so there are four principul point.s and fouer principal plemes.
§ 3. We now occupy ourselves with the congruence of the rays x each of which rests on two pairs of homologons generatriees (\%). For such a ray ie the two equations

$$
P \lambda^{2}+2 Q \lambda+R=0 \quad, \quad P \lambda^{2}+2 Q^{\prime} \lambda+R^{\prime}=0
$$

must be satisfied for the same values of λ; so we have the condition

$$
\begin{array}{lll}
l^{\prime} Q & R \quad= \\
l^{\prime} & U^{\prime} & R^{\prime}
\end{array}
$$

I'his equation leads to a compruence $\left(\begin{array}{c}3,3,3) \text {. For the quadratic }\end{array}\right.$ complexes $P^{\prime}\left(Q^{\prime}=P^{\prime}\left(l\right.\right.$ and $P^{\prime} R^{\prime}=P^{\prime} R$ have the congruence $P^{\prime}=0$, $P^{\prime}=0 \mathrm{in}$ common and the latter congruence does not helong to the complex $\quad Q R=(X R$.

This result is in aceordance with the fat that the eomplex comes (and conves) most be rational and have to admit therefore there domble adyes (and thepe domble temegents).

Both the characteristic numbers of the congruence can also be
fomme ar follows. A plane through any point A_{0} of the eroneratrix a_{0}
 a romice e^{3} and atine $\vec{\beta}_{1}$. (th these sertions the other patis of corre--punding lines a, detemine two projective ramges of points (A), (B). As these arrange the rays of a pemeil in the plane $\left(A_{0} /{ }_{0}\right)$ in a comerpondence $(1,2)$, the lines $A B$ enselop a rational murre of chases there with β_{0} as domble temgent. Each of the three lines $A B$ passing though i, rent on two pairs" ab, and helongs therefore to the congracnee.

The curve of clasis three just found and the pencil with A_{0} as vertex form together the complea curar of plane ($A_{1} /_{0}$). Likewise the romplex come of A breaks up into this peneil and a rational conbie eone.

Any point and any tangential phane of the quadratic serolls (a), (ii) is simgular. Moreover the points of the principal planes and the planes through the prineipal points are simgular.
§ 4 . If we add the relation $\left(y^{\prime} r^{\prime}\right)=0$ to the conditions enmmerated in \$2, it follows from $2\left(q^{3}\right)+\left(\mu^{\prime} r^{\prime}=0\right.$ that the coordinates $\eta^{\prime} k$ also determine a line, which is to cut p^{\prime} and r^{\prime} on areount of $\left(p^{\prime} f^{\prime}\right)=0, \quad\left(q^{\prime} r^{\prime}\right)=0$ whout helonging to the regulus. So it lies either in the plane r through p^{\prime} and r^{\prime} or on a quadratic cone with the point of intersection ' T ' of f^{\prime} and r ' as vertex.

In the lins cane each line of τ helongs to the complex and even furier as it cuts two qencratrice of the regulus (a). In other words: r is a douhbe pmincipul plemp.

In the second ease an analogons reanoming shows that T is a double principul primt.
§\%. In the two later partiontar cases the complex has lost the property of corresponding dually with itself. On the contraty this property is will preserved by the complex generated by fwo projective reguli the tiost of which eomsists of the tangents of a conic ae (in plane ef and the second is fommed by the edges of a quatratic cone β^{2} (with. vertex $/ 3$)

The range of points B_{n} on the rection $\vec{B}^{2}{ }^{2}$ of β^{3} and n is in $(1,1)$ conespondence with the system (n) So the points B, are in $(2,2)$. correspondence with the points of interscerion A_{0} of the generatices " and the conic $B_{n}{ }^{2}$. So the comples admits four frincipal points, each of which beas a primcipal plame.

Fiurthermore os is a double primeipal plame, 1 s a double principal point.

The complex cone of poin P has $P / 3$ for double edge; for $l^{\prime} /$ ' cots two generatrices a and at the same time the conresponding lines b. So the congrmente (3 . B) of the genemal (atse must break up here into a $(1,0)$, a $(0), 1)$ and a $(2,2)$.
lat orter to check this we consider the eorrespundenor between the points $A=11_{1} b_{2}$ and the corresponding planes $B=b_{1} b_{0}$. If A describes a line, a_{1} and a_{2} gencrate an involntion; as b_{1} and b_{s} do then likewise, β will motate athot a lixat axis. So the correspondence (A, B) is a comelation. Therefore plane a contains a conice $u_{0}{ }^{2}$, each point A_{n} of which is incident with the trace $b_{\text {" }}$ of the homologons plane β_{n}. So each point A_{0} is the vertex of a pencil belonging to the complex and lying in phame B_{0}. These penoils gencrate a comgruenep $(2,2)$. For their planes envelop a quadratic cone with vertex B, wo tangential planes of which pass through the arbitrarily chosen point I '; so the lines connecting I ' with the homologons points A_{0} belong to the congruence in (question, which evidently is dual in itself.
$\$ 6$. We will now suppose that the tangents af the eomice a ${ }^{2}$ in plane \because and the tangents of the conic on plane are in $(1,1)$-correspondence. Then the eongrane with any pair of corresponding tangents a, l as director lines generates once more a complex of order four, evidently not dual in itself.

By the correspondence (α, , b) the points of the line common to π and β are arranged in a 2,2 -correspondence. The four coincidencies are princijul points of the complex and the lines n, b concomring in any of these points determine a principal plane So we have indicated four sheaves of rays and fom fiekls of rays belonging to the complex.

The planes a and β are also fields of rays of the complex; for any lines of e is cut on e by two lines b but also by the corresponding lines a; so s helongs fwice to the complex.

We account for this by saying that ond B are double principal planes.

The complex cone of any point l 'meets c in four points, i. e. in the four principal points; so we deal with a biquadratic complex.

The complex cone is rational, its edges corresponding one to one to the langents of a^{2}; therefore it has to admit three double palyes. Likewise the comples curve of any plane has to admit three double temyents.
§ 7. In order to investigate this more closely we consider the
 landents n_{1}, d_{2}, and the point B common to the corresponding tatherme- b_{1}, b_{2}.

If A descrilnes a line Is its polar line with reepect on er will rotate about a fixed point. Whist the pair a_{1}, a_{2} generates an involation. Gut then h_{1}, h_{2} must also qenerate an involution, so that B deseribas it line $/ g$. So the point tichls (1 , B) are in projective correspondence foollinear. homographie.

By projecting the field (A) out of any point P wnto Be whtain in a two projective colloral dieds, almitting three comedencies. So the rongruence of the lines $A B$ is of shoft degper (order) theres. Its dield defree $\left\{\begin{array}{c}\text { alass } \\ \text { dowever is one; for if } A \text { deseribes the section }\end{array}\right.$ of a with any plane H, $/$; will arme once in $/ 1$, i.e. $/ /$ contains only one lime $A B$.

The congruence (3,1) found here is gentrated, as we know, by the reres $=$ biplana lines of a thisted contice γ^{3}, i. c. any line $A B$ lies in two osentating planes of γ^{*}.

Evidently any line $A B$ is donble edge of the complex cone of any of its points P. However the complex ras through iform the pencil $A($ es) counted wice and the pencils determined by the lines b_{1}, b_{3} : for B the analogons property holds.
8. Evidently the threre clouhle sdiges of the rompler come of P are the mutual intersections of the there osculatind plames of γ^{8} passing through P.

Likewise the compler curee in II has for double tangent the axis of γ^{3} lying in that plane, the other two double toments coinciding with the intersections of $I I$ with ${ }^{\prime}$ and B. For, each of the lines $b^{\prime}, b^{\prime \prime}$ which concur in the point $\boldsymbol{n} \boldsymbol{\Pi}$ determines a complex ray lying in Π, which lines coincide both with $\approx \Pi$.

An osculatiny plane Ω of γ^{3} contains x^{1} axes, enveloping a conic ω^{*}. Any plane Ω is simqular for the congruence ($1 / 3$). So the complex curve in Ω is the conic ω^{2} counted twice.

As the congruence (3,1) camot admit singlar points, no point bearing more than three planes \boldsymbol{S}, no complex cono can degenerate but those corresponding to the principal ponts and the points of the principal plane. We already remarked thiv for a and B; for any point of a single principal plane the complex cone breaks up into a pencil and a rational cubic cone.

The complex cone of any point of the decelopable with γ^{3} as cuspidal edge admits an edge along which two sheets touch each other (the plane section has two branches tonching each other). For any
 late each other (the :chion has two brambes with a rommon point of intlexion fouching each other).

A cuspidal edye commedts any proint A, of a^{2} with the correpponding point β_{0} of β^{2}. Ther locus of the tine $A_{0} B_{0}$ is a bipundratie seroll, of which a and is contain hwo gencratrices. Any point of this scoll admits a complex cone with a cuspuidel delige.

Evidently the biquadratic seroll is rotiomul, at it las a toristed cubic as notul creme: For any point I' of this chrse the complex rone has two enspidal edyes.

By replacing the two conies a^{2}, b^{2} (as hearers of flattened reguli by two quadratic eones we ohtain a complex evidenty dually related to that treated ahove.

If π^{2} and b^{2} touch the line $c=\pi B$ whilst c corresponds to itself in the relationship between a and b, the complex degenerates into the special linear complex with axis a and a cubic complex. Evidently the same holds for the general biquadratic complex (\$2) if the reguli admit a common generatrix corresponding to itself.

Chemistry. -.."(the the system phosphurus". By Prof. A. Suits. J. W. Terwen and Dr. H. L. de Leetw. Commmicated hy Prof. A. F. Holdeman).
(Communicated in the meeting of November 30), 1912).
In a previous communication on the application of the theory of allotropy to the system phosphorus') it was pointed out that the possibility existed that the line for the internal equilibrium of molten white phosphorns is not the prolongation of the line for the internal equilibrium of molten red phosphorus, in consequence of the appearance of critical phenomena below the melting-point of the red modification. The latter could namely be the case if the system " P —_rl' belonged to the type ether-anthratninone, which did not seem improbable to us.

This supposition was founded on the following consideration. In the first place it follows from the determinations of the surfaretension carried out by Astos and Rassiy ${ }^{2}$, that the white phosphorus would possess a critical point at 422°. Hence the critical point of

[^16]Proceedings Royal Acad. Ansterdan. Vol. XV.
the peendo-component ul will probably lie below 422°. The mething-point of the peendocomponent al lies certainly above the meltingrpoint of the red modification, hence above 610 so that we arrive at the conclusion that the meltimerpint of the second peudo-component is prohahly situated more than 200° above the critical point of the first peedo-component.

In the serond phare the liquid white phosphorns, which must be considered as a supersaturate solution, contains no appreciable quantity of the phosphorns insoluble in carbon disulphide even at higher temperatures from which it may be infered that the solnbility of BP, or of mixed cryfals containing , $^{\prime \prime}$, in liquid al is exceedingly slight.

In these considerations we arrive atcordingly at the conclusion that in the system phosphorns exactly those conditions are satisfied which a system mast satisfy if there is to be a chance for the appearance of artical phenomena by the side of the solid substance.

Experiment has really tanght us that the psendo system of the phosphorus belongs to the trpe ether-anthrapuinone.

It is true that in a pretty extensive investigation in which pure white phosphorns in capiltaries of infusible glass was suddenly immersed in a bath of high temperature, a critical phenomenon could not be observed, because the observation is very much hampered by the deposition of a red solid phase, which always precedes, but yet phenomena appeared which pointed to the existence of a critical point helow the meltingoint temperature of the red phosphorus.

Though the observed phenomena will be more fully discussed in a following communication, we may already mention here that among others it was found that on sudden immersion of a capillary with white phosphoms in a hath of 4 to 0°, at first solid red phosphorus deposited, and that then the liquid suddenly totally disappeared, in which a shock was felt in the hand in which the iron bar was held, on which the copillay was suspended by means of a copper wire. At the moment of the shock the whole capillary filled with solid red substance, which, howerer did not consist of the well-known red phosphorns, for if the capillary was removed from the bath of 4500°, and sudden! immered in a bath of 510°, it appeared that already at this temperature melting took place, so 100° below the mary melting-point of the red phosphorus. The perfectly colourless liquid, however, which originated at 510°, was strongly metastable, and the velocity of cerallisation being rather great at this temperature, the formed liguid became soon solid again.

It now appoared that this phenomenon must be explained as follous. At high temperature, i. e. at about 300°, the velocity of
erystallisation of the real phosphmen is on enveat that it hequins to be deposited. This relocily of comverson, however, is mot on wheat as is generatly thonght for even at 330° the vapour lemsion of the rapid! heated white phophorns, which comained pretty moth red solid sithstance, appeared to be still the same as that of the liguid,
 tension. How long this will contime of comene depents on the relative volumes ocenpied by the satid and the liynd phomporms and by the rapour.

In the experiment will the capillary the velocity of heatmy is so great that even at considerably higher temperatures liguid white phosphoms still contimes to exist by the side of the solid red mass. If, however, the temperature rises atove the temperature of the first eritical endpoint f of the prendo-binaty sysem, the liquid hecomes so strongly metarable that it suddenty disappears, and then the red solid substance deposits from the fluid phase formed, through the whole of the capillary

If the capillary is immersed in a hath of 1 bo 0°, a colourles liquid is obtamed, which exhibits something particular when cooled exposed to the air, which was already observed by sock and fomones ${ }^{1}$. They say mamely: "kiohlt man die schmelze rech hansam ab, so fangt sie hei etwa 580° an feste, tote Teilehen amszuseheiden: der Vorgang mathat den Eindruck einer Kristallisation. Bei etwa 570° äberziehen sich dam plizzlichez die Wände des (ilaspohres autihrer gainzen Länge (anch oberhalh der Flaissigkeit) mit rotem Phosphor, welcher in der Hize seln dankel, hei Zimmertemperatur lenchtend puphrot anssieht. Beim Omnen des abwekiahten lohnes merkt man, dass es auch firblosen Phosphor enthatt".

Stock and Coyotsa cooled down showly, but we found that the phenomenon hecame more distinct, when the capillary is cooled by exposure to the air. It is then seen that red sotid subtance deposits in the liguid, the vapour space and aloo the glase wall remaining perfectly colomless there on aroom of the fact that the liquid which deposits from the vapour, is perfectly colourless. At a wivenmoment a violent phenomenon is olserved in the capillary, while at the same moment very elearly a shock is felt. The liguid has disappeared, and the imncr wall of the capillay is covered everywhere, also at the place where before the sapour was fond with a sold, red substance, containing tather great quantities of a P.

This phenomenon is explained by means of the following comsi-

[^17]deration. The second critical end-point q of the pseudo-system lies helow the melting-point of the red phosphorus: If now the temperature of the capillary has fallen below this critical endpoint, the diguid has hecome strongly metastable, and hence at a piven moment it will suddenly he converted to a fluid phase. from which solid red substance will be deposited, also there where before the colourless vapour was found.

That the solid substance formed in this way is not in internal equilibrium follows most clearly from this that on being rapidly heated it does not show the melting-point of red phosphorus, but melts at a lower temperature, e.g. at 583°. As will be shown in a following communcation, this hehaviour also admits of an easy interpretation, just as the phenomena observed by Stock ${ }^{8}$) on sudden cooling of phosphorus vapour heated to different temperatures. These phenomena are not strange, on the contrary. they were to be expected in virtue of these considerations, and thus afford a not inconsiderable support to the theory.

An important question which remained to be answered, was this: "eam it be experimentally demonstrated thet in contradiction to what was assmmed up to now the ropour pressure line of molten white phosphorus and that of molten red phosphomes do not belong to the some curce" If the sistem phosphorus really helongs to the type ether-anthraquinone, the vapour pressure line of molten white phosphorus is not the prolongation of the vapour pressure line of molten red phosphorus.

To find this out the vapour tension of molten white phosphorus was determined up to the temperature of 338° by means of the manometer of Jacksos ${ }^{2}$, as has aheady been described by Messrs. Schefrer and Trectb ${ }^{3}$).

Further by the aid of a new apparatus, which will be described later, the vapour pressure line of molten red phosphorus was determined, in which it appeared that the triple point pressure of red phosporus amounts to almost 50 atmospheres. To answer the question proposed above the vapour tension, which the liquid white phosphorus would possess at the triple point temperature of the red phosphoms $\left(610^{\circ}\right)$, wat caleulated from the observations by the aid of the integrated relation:

$$
\ln p=-\frac{a}{R T}+\frac{b}{R} \log T+C
$$

[^18]by putting $Q=a+b \neq$ in the formula

If we had to do with one and the same vapour pressure line, about 50 atm . would have to he found for that pressure.

If on the other hand the pseudo system exhibits the type etheranthraquinome, and the vapour pressure line of the lipuid white phosphorus possesses a critical point below 610°, the prolongation of that line above this critical temperature will of course have no physical significance, but if this prolongation points to a pressure higher than 50 atmospheres at 610° the question put above will he answered by this. The result of the extrapolation was that at 610° the pressure would amount to about 350 atmospheres. This result is so convincing that it shows the erroneousness of the earlier view with perfect certainty, so that it may be considered indisputable already now that the view about the type of the prendo-system has been correct ${ }^{1}$).

[^19]Whe will romblade this commmanation with the solnematice P' ligure of the phosphorus: the comnertion between the matry and the perado-hinary system will be treated in a following pmblication.

When the catentated artical temperature $+22^{2}$ for lignid white phosporos is comed about is atmosheres follows from the vapour presobre line for the critical preande. The critheal point is indicated In hi, in the drawing. The vapone persure line of molten red phose phorns exhabio motably a peraliamity that has never bee! met with as ret, viz. tworertionl points i_{2} and k_{3}, the former of which is metastable.

It is of comse alon posible even probable that mmixing takes place in the promb-system between f and η, so in the metastable region. The point k omight, theretore, lie at exen lower temperature and presure than the point h_{1}. Powihty the contmued invertigation may grive an indication with regated to this 100 .

It may dinally be pointed ont that when weapply Vas der Whadses equation,

$$
\operatorname{linf}_{p}^{L_{k} k}=j\left(\frac{T_{k}}{T}-1\right)
$$

and write

$$
l_{n} p=-\frac{l_{1} T_{k}}{T}+i
$$

3,94 is fommer for value of f.
This equation does mot represent the observed vapour pressure lime at well as the former, the canse of this may he that f^{\prime} is not con-latht ath ha been fomed indeed with several substances.

Anomg. Kom. Laboratory of the limensity. Amverthom, Nor: 29, 1912.

Mathematics. - "Ol" lorie compthences cenl fineol systom. deduced
 By Prof. Hexdrik de Vries.
(Gommanicated in the meeting of November 30, 1912)
17. If we assmme that the line / itself is a bity of the complex

 The suftue an" has no towering of onder: insteal of the regulus, 2
 I we mow have a quatratio come (passimg likewise lhrough the cone
vertices) whose vertex I_{I} is the formsof / becanse the wo conjugated lines of l, which cross each other in gencral and exactly therefore generate a regulas, now both pass throngh l '; but P^{\prime}, does mot lie on sen, because l is a ray of the complex, but not of the congrnenee A generatrix of the cone therefore interseds S", as formeny a line of the regulus, in six points, from which ensues that / now again is a sixfold tine of the surfates. And to a phane z through / corresponds as former! a lwisted coble through the cone vertices ant which now passes moreoser through P^{\prime} ? hecause / is a tangent of the complex conic lying in λ. but which now again intersects Ω^{7}. except in the cone vertices, in fourteen points: thas in h. Lie 14 generatrices of the surface, so that this is inded of order $\mathfrak{i}+14=20$. The curve k^{12}, the section of the cone with $2^{\prime \prime}$. hat also 6 nodal points lying on h^{3}, so that $\Omega^{3 \prime \prime}$ contains 6 nodal generatrices.

The nodal corve of $\boldsymbol{\Omega}^{2 \prime}$ undergoes a very considerathle modification as regards the points it has in common with I. Through such a point namely must go 2 generatrices of the surface lyiug with l in one plane; but now l is itself a ray of the complex and three rays of the complex can then only pass through one point when the complex cone of that point breaks up into two pencils; so the only points which the nodal curve can have in common with / are the points of intersection of l with the form tetrahedron faces.

These points which in $\$ 15$ we have called S_{i} coincile with the points which were called T_{i} in the same f. Let us assume the plane $l T_{3}$. As now again and for the same reason as hefore nine of the fourteen generatrices of $\Omega^{2 n}$ lying in this plane pass through T_{1} $(\$ 13)$ the five remaining ones most pas through another point T_{2} lying in τ_{1} and whose complex conice breaks upinto τ_{1} and the plane $T_{1}{ }^{*} l$; now however this point coincides with S_{1}. For the complex cone of S_{1} likewise breaks up into two pencils, of whick one lies in τ_{1}, the second in a plane through T_{1}, and T_{1}; now however, to this second pencil evidently belongs our ray l and so indeed the complex cone of S_{1} degenerates in this way into r_{1} and a plane thronoh l; so S_{1} and T_{1}^{*} are identical. To S_{1}, regarded as a foens, a ray is throngh T_{1}^{\prime} is conjugated which lies at the same time on the quadratic cone, thus in other words the ray $I_{l} T_{1}$; the latter intersects Q ${ }^{6}$ besides in T_{1}^{\prime} in 5 more points and the rays s conjugated to these are the 5 generatrices of Ω^{20} through $S_{1}=T_{2}{ }^{*}$ lying in the plane $/ T_{1}$; the sixth generatrix through this point conjugated to T_{1} lies in \mathbf{r}_{8}, but not in the plane $l T_{1}^{\prime}$.

So we see that through S_{1} pass five generatrices of sio lying in the same plane; so the four points S_{i} are $\frac{1}{2}, 5.4=10$-fold points

 lefore have changed into fom tentold ones some so it is agmin of (ardor $40+91=131$.

Also the surface -2 undergoes considerable modifications as the conic lying in a plane λ mus now always touch the line 1 . The complex cone for a point l ' of 1 contains the ray l; the two tangential phanes through I to the cone coincide therefore; from which ensues that for each point P of l the iwo conies passing through it, moncide. The most intuitive representation of this fact is obtained by imagining instead of the point of contact of a k^{2} with / two points of intersection lying at infinitesimal distance; if then on l we assume three of sulh like points, then through 1 and 2 passes a conic and through 2 and 3 an other differing but slightly from it, so that really thoogh point 2 pass two conies. The loci of the
 become" "uspidal vely, i. e. whereas formerly an arbitrary plane intersected S' along a plane curve with a nodal point on / and only the planes through the four points sic (\$15) furnished curves with cusps now every abitrary plame of intersection contains a curve with a cusp on l (and with a cospodal tangent in the plane of the comie thromgh that (rusp). Finthermone we mast notice that as the points T_{i}^{*} comeide with s_{i}, the four nodal points T_{i} will be found on the nodal line itseli, thus forming in reality no more a tetrahedron proper; nevertheless the property of the simultaneous circumsuiption round about and in each other remains if one likes.
18. The couve of intersection of order eighty of \underline{Q}^{4} and \mathscr{Q}^{20} is again eaty to indicate; it consists of the line $/$ comnted twelve times for a conpidal edge rematins a nodal edge), and of a curve of contact of oder $3 t$ to be combed domble $(\$ 15$) which has with a plane λ hrough I fonticen points !ying outhile l in common and therefore fwenty lying on l : these last however can be no others than the four points s, for otherwise a generatrix of \mathscr{S}^{20} would have to touth a k^{2} of Ω on l, which could only be possible as l itself touches k^{2}) if a generatrix of S^{20} could comeide with l which is as we know not possible. The come of contant of $S 4$ and \underline{Q}^{20} passes thus five times through each of the four points sion wher corrends to the fate that five genematrices of $\Omega^{0 \prime}$ tonch in s_{i}, the degenerated ronice (viz. the pair of points si, T_{i}) lying in the plane $/ T_{i}$.

The method indicated in $\$ 1 \pm 10$ determine the number of tonsal lines of the tirst kind undergoes no moditication whatever; we can
however control his method hom hoonse we have to deal here with a cone insteal of a regulus. The first polar surface of I ' namely with resped to Ω^{2} is a 2^{5} emtaming h^{3} one time, and there-
 $2 t$, so that the circumseribed cone at the vertex $I /$ is of order $2 t$. Now this cone cuts the quadratic cone $/ /^{\prime}$, in 48 edres, wo 48 edges of $\left[I_{l}\right]$ touch $\mathfrak{2}^{\prime \prime}$ and therefore h^{12}. The number of torsal lines of the first kind is thms indeed 4 s. and that this same number must now be found in general follows from the law of the permanency of the number.

These numbers 6 and 48 , as well as the mumber of points namel? 40) which the nodal curve of \mathbf{g}^{20} has in common with I (an be controlled with the aid of the symmetrical correspondence of order 70 existing between the planes λ throngh / ($\$ 16$). To the 140 double planes of belong, as we saw before the planes through l and the nodal lines and those through $/$ and the torsal lines of the first kind, together appearing there at a mumber of 54 , but representing 60 double planes. The nodal curve of $\underline{\Omega}^{20}$ has with $/$ only the 4 points S_{i} in common which however count for 10 each and which have the property that five of the six generatrices through each of those points lie in one plane; such a plane is thus undoubtedly a manyfold plane of the correspondence, the question is only how many single double planes it contains. Now there lie in the phame $/ T_{1}$, e.g. 9 generatrices through l_{1} cutting l in different points: through each of the last pass five other generatrices, and so we tind so far 45 planes conjugated to the plane $/ T_{1}$

Now we have moreover the plane through l and the $6^{\text {th }}$ generatrix through S_{1} (lying in r_{1}); however by regrarding, just as we have done at the beginning of $\$ 16$, a plane 2 in the immediate vicinity of $l T_{2}$ and in which thus five generatrices cot each other nearly in one point of l we can easily convince ourselves that this plane counts for 5 comeiding planes conjugated to $/ T T_{1}$. To $/ T$, are conjugated $45+5=50$ planes not coinciding with $l i_{2}$ and thas 20 planes coinciding with $/ T_{1}$; i. e. just as in the general case a plano λ through two generatrices catting each other on l counts for two double planes, so here each plane IT: containing five such generatrices combts for 5×4 donble planes; so the four planes IT represent 80 double planes, and they furnish with the 60 already found the 140 double planes as they onght to.

As by the transition to a ray of the complex all numbers have remained unchanged, the surface Ω^{20} contains now arain on torsal lines of the 2 nd kind; the $4 \times 1: 31=524$ points of intersection
of Ω with the nodal curve of \boldsymbol{S}^{30} lie now however a litfle differently. The points T ' remain 3 b-fold for the nodal curve and they Herefore famish $+<72=\mathbf{2 8 8}$ points of intersection, the 58 torsal line of the 2 nt kime give 58 , the if notal elges give $3 \times 6=\mathbf{1 8}$ wher ones: the 4 points $\dot{s}=\%$ however absom each of them 40 proints of intersection. Let us namely imagine our figure variable and in particular l contimonsly passing into a complex ray, we then see how the t points T_{1}, lend more and more to s_{i}, but at the situe time how the 40 points of intersection of / with the nodal curve troup themstres more and more into t groups of 10 in such a way that earh group is ats it were attrated by one of the points S_{i} now each of those 40 points rounts for 2 , each point T, wor 20 points of those we looked for : so on the moment that T_{i}^{*} as well ath the 10 points of the corresponding group coincide with S_{i} this point combts for 40, so the four together for 160 and the sum of the four numbers printed in heary type is again 524 .
19. More considerathle are the moditioations if tinally we now assume that $/$ beromes a ray of the congruence; nothing is to be noticed at \leq, as $/$ remains a ray of the complex, but the other locus beromes a surface $\underline{Z}^{1 s}$, for which l is only a fivefold line. The rexulus of belore is namely now again replaced by a cone P^{\prime}. Lom the vertex itself P^{\prime} now lies on Ω^{6}, becanse l is a ray of the eomgrume thus itself a genematix. It even appears twice as a dencratrix: for the cone cuts atreording to a hat which has now a. 0 . also a nodal point in P and to this nodad point the line I correxponds wice A gencratix of the cone $\left[P_{i}\right]$ couts Ω^{6} in P_{i} and in five other promts: so throngh the corresponding focus on / pass fire generaldices not coinciding with l, i. e. I is a fiev fold lime.

To a plant λ dhrough / a twinted coubic is conjugated containing the form rettices of the cones and P^{\prime} and enting Q^{6} in 13 points more: so in a plane λ lio besiden / $1: 3$ greneratrices, i. e. our surface is a Sl" uf order Is with at ficefold line l.

Among the generatrices of the cone $\left|P^{\prime}\right|$ there are two tonching k_{i}^{12} in I_{i} and likewise among the twisted enbies; the foci of the former are the points of intersection propre of / with two generatrices eoinciding with $/$, the planes conjugated to the latter being the connecting planes; thas two particolar torsal planes and pinch points see § 20).

The lime $P_{l} l_{i}$ is a generatrix of the cone $\left[P_{i}\right]$ and it cuts $\boldsymbol{\Omega}^{6}$ besides in these wo point: in fom more: the corresponding four

 ean evidently not have in common with $/$. So it hat 24 points mated in 4 sixfold proms in common with l and an here are in
 the mentel comere none amomuls to $2 t+38=102$. The mumber of
 $102+6+10=118$, and liom this emates for the elats 18.1%
 fore $\varepsilon \sigma=2.70-2.18=104$ tomal lines of boht kinds.

The formula

$$
\varepsilon=p+q-!
$$

now again applied to determine the number of generatrices of the sone [$\left.l^{\prime}\right]$ touching $h^{2 x}$ and thas of the mumber of torsal limes of the first kind gives the following results. The phane of the condition p cuts h^{13} in 12 points: through each of these passes a generatrix of the cone cutting Q_{2} besides in l^{\prime} in four points more; so the number p is equal to 48 , and likewise $~!$. The line of the condition!/ 'uts the cone in two points and through eath of these pares a generatrix of that cone, on which lie besides $I_{\text {' }}$ tive points of K^{13} : - 0 ! is $=2.20$, and thns $\varepsilon=2.48-2.20=56$. Among these howerer are included the six nodal lines comoted twice: the mumber of torsal lines af the finst kiond ammunts thens (1) $56-2,10=44$.

To control this we again consider the tirst polat surface of I ' with respect to $\underline{\Omega}^{\mathbf{n}}$, a $\underline{\Omega}^{5}$ tombling $\mathbf{O}^{\mathbf{2}}$ in P_{2} and passing throngh
 a residual corve of order $30-2.3=2 \pm$ which howerer is projected out of I^{\prime} by a cone of onder 22 only, hecanse I^{\prime}, itself is a nodal
 cone has with the cone $\left[l_{l} \mid\right.$ it generatrices in common, and these touch k^{12}.

The number of torsind lines of the $2^{n 1}$ limed of $\underline{Q}^{2 n}$ amoments to $104-6-44=54$.

The correspondence of the planes λ. through $/$ is now of order 52 with 104 double planes. For, in a plane 2 . lie besides / thirteen generatrices of 2^{18} and through eath of the 13 points in which these Cut l form others pass; so to each plane $i .4 \times 13=52$ others are conjugated. The donble planes are 1 . the planes throngh the $4 t$ torsal limes of the first kind; 2. the planes through the b nodal edges, each counted lwise: 3 . the 4 phathes $T T_{i}$ eath commed twelre times,
 \therefore (tomp. \& 18 ; so we ind $44+2.15+4.12=104$ dontale phanes.

Ind an reqards fimally the mumber of $4 \times 102=408$ points of intermenton of the nodal curve with 2^{4}, in the four points T_{i} lie atain 258 (ommp. \& 18), in the pinch points of the torsallines of the anond kind int. in those of the six modal edges 18 and in the four mint s. which are sixfold for the nodal curve, 48 , together $250+54+18+48=405$.
20. The two particolat pinch points on / which we have found in the proveding \& were the two low oi the rat of the congruence l and the fwo lomal planes the fwo focal planes; for, in these points t was doll by a ray of the conmruence at infinitesimal distance. If henceforth with a slight moditiation in the notation the line / is vithed so, the forns P_{0}, then P_{0} lies on Ω^{6} and it is in general an ordinary point of this surface. Let us assume the tangential phane in this point and in it an arhinary line t throngh P_{0}; then this has two conjugated lines cossing each other, and if therefore a print I describes the line the ray so the complex conjugated to l ' will generate a regulus to which atso belongs our ray s_{0}, a ray of the congruence. As however t is a langent of $\boldsymbol{\Omega}^{\bullet}$, a second groneratrix of the regulus lying at infinitesimal distance from s_{0} will betong to the congruence, however without catting s. If however, We now imagine the complex cone at point P_{0} and if we intersect it by the tangential plane, we find two lines t which are at the same time lines s, viz rats of the complex, and whose two conjugated lines crat each other. Now the lines seonjugated to the points I^{\prime} of t will describe two cones containing also s_{0}, and having their vertices on \therefore whilst we know out of our former considerations that these vertices are nothing but the fori of the two rays t; and now x_{0} will be cut in each of these foci by a ray of the congraence at infinitesimal distance: the wo cone vertices are thas the foci of s_{0}. So: we fimt the foce of a raly. x_{n} of the compruence by determinime the foches P_{0} (lying on Ω) of s_{0}, by intersecting the complex come of this point by the tangential plane in P_{0} to Ω^{*}, and by laking the fore of the two lines of intersection t. And the two focal planes ares the tangential planes through ${ }^{\circ}$ "to the complex cones of the foci.

If I_{n}^{\prime} is a point of the nodal couve k^{3} of \underline{Q}^{n} then s_{0} is a double ray of the congruence $(\$ 12)$; the complex cone of P_{0} intersects the t wo tangential planes of P^{\prime}, in lwice two rays t, so that we now have ons two pairs of foci and through stwo pairs of focal planes; and as the foral sumbere of the commence is tombed by each ray of the congrnence in the two foci, so each donble ray will touch the
focal surface four times. The fon bangential planes are the foral planes, however in such a way that it one prair of fore is called F_{1}, F_{3} the focal plane of F_{1} is lammontial pane in F_{y} and reversely.

Let P_{0} be a point of $k^{\prime \prime}$, lying an a single curve on \mathscr{S}^{n}; then x_{0} is the tangent to k^{4} in I_{0}^{\prime} and it belongs to the congruence. 'The complex cone of P_{0} intersects the tangential plane in this point to $\underline{U n}^{n}$ according to s_{0} itself and an other generatrix : so of the two foci of s_{0} point l_{0}^{\prime} is one whilst the other is the forns of the second generatrix of the complex cone of l^{\prime} 。lying in the tangential plane: and of the two focal planes the osculation plane of k^{4} in l^{\prime} is one, because this really contains two rays of the congruence intersecting each other in P_{0} and lying at infintesimal distance (viz twotangents of k^{4}) ; so it touches the foral surface in the other focus, i. e. the surface of tangents of h^{4} which is of order 8 envelops the focal surface, and the curse k^{s} itself lies on the focal surface.

The question how the cone vertices T_{i}^{\prime} bear themselves with respect to the congruence, is already answered in \& 11 : Ω^{*} intersects the plane τ_{i} acoording to a plane k^{8} and the rays soniugated to these form a cone of order 9 with the vertex T_{i}^{\prime} and with three nodal edges and three fourfold edges, the latter of which coincide with the three tetrahedron edges through ' $?_{i}$.

Let us assume an arbitrary point P of k^{6}, then to this a ray s through T_{i} is conjugated; now the complex cone of l^{\prime} degenerates into a pair of planes, of which r_{i} is one component, whilst the other passes through T_{i}, and this degenerated cone cuts the tangential plane in P to Ω^{β} along the tangent f in P^{\prime} to k^{k} and according to an other line t^{*} through P^{\prime}. To that tangent the point T_{i} is conjugated as focus, so that for each ray of the congruence through T_{i} this point itself is one of the fori, the other being the forus of the line f^{*}.

In order to find the focal plane of the considered may is in the point T_{i} we should have to know according to the preceding the complex cone of T_{i} which is in first instance entirely indefinte: let us however bear in mind that in the general case that complex cone is at the same time the locus of the ray s conjugated to the points of the tangent t, then in this case also we can have a definite cone, viz. the cone which replaces the regulus if the line/pases into a complex ray s, and which contains in general the four cone vertices and which will contain here, where ' T_{i}^{\prime} itself is the cone vertex, the three tetrahedron edges through this point. (On this cone lie the two rays s conjugated to the two points of k " lying at infinitesimal distance from each other on t, and the plane through these is the focal plane of our ray s in T_{i}; hut those edges of the yua-

Hratie comples cone lying at infinitesimal distance lie of couse also on the rone of order a see above : so we can say more brietly that for each raty of this cone T ', is one of the foci and the tangential plane to the cone is ome of the focal planes.

Eatch ray of the rongruence throngh ' T_{i}, so each generatrix of the come of order nine with this point as vertex, must have in P_{i} lwo coinciding points in common with the focal surface; so T_{i} is for the focal surfare a manfold point, however without the cone of onder 9 being the cone of contate : for the tangential planes of this cone tomb the focial surface in the foci of its generamees not coincilling with T_{i}; the cone of contact in T_{i} is enveloped by the focal phanes of this last category of toci.
21. Oree against the question which eomplex bay through ' T_{i} belong to the congruence, is the other one which romplex rass out of r_{i} belong to the congruence. In the preceding we have repeatedly come across these rays. Indeed, any surface \boldsymbol{s}^{2} formed by the congrnence rays which (ant a line / or a complex ray \therefore and any surface Ω^{28} formed by the congruence bats which cut a congruence ray sontaned shch a ray as we prowed above: we shall now show that all these rays form a pencil. To that end we imagine the tangential plane 0 in T_{i} to Ω^{n} and we cut it aroording to the line r by r_{i}. We now saw in the preceding that the rays s conjugated to the points of r, form a quadratic cone with T_{i} as vertex and containing the three tetrathedron edges throngh ' T_{i}^{\prime}; if the base curve of this cone lying in r_{i} is h^{2}, then reversely the points of k^{2} are the foci of the rays of lying in and passing throngh l_{i}^{\prime}, for the rays sonjugated to the points of a line pass through the focus of that line and the raty sconjogated to a point of \boldsymbol{r}_{i} pases moreover through T_{i}.

If a proint P describes one of the rays of the pencil $\left[T_{i}\right]$ lying in o, say s. ${ }^{\prime}$, then the rats s conguated to the points P form the complex cone of the focus L_{0} of s_{0}, which point lies on k^{2}; this complex cone braks up however into a pair of planes, viz r_{i} and a phane hrongh l_{n} and T_{i}, and the line of intersection t_{i} of these two planes is the ray of the congrnence conjogated to T_{i}, in as far as this point is regarded as a point of the ray x_{0}; so the question is how the rays t_{i} bear themselves when su describes the pencil $\left\lceil T_{i} \mid\right.$ or, what comes to the same, how the planes $T_{i} t_{i}$ bear themselves in those diremmstances. We shall try to find how many of those planes through an arhitrary ray x_{1} pass through T_{i}. In each arbitary plate through s_{2} the complex conic breaks up into two pensils; one has the vertex T_{i}, the other a point $T_{i}{ }^{*}$ lying in \boldsymbol{r}_{i}.

In each plane throment x_{1} lies however one sum point V_{2} : hat if S_{1} is the point of intersection of z_{1} with r_{1}, then alson the fomptex cone of S_{1} breaks up into a pair of pathen of which one compornent is of course again \boldsymbol{r}_{i}, the other lnempe a plane through $\mathrm{S}_{i} \boldsymbol{T}_{i}^{\prime}:=0$ S_{2} is itself a point $T_{i}{ }^{*}$, ard the consequence of this is that T, describes a conice $h^{* 2}$ which pasen in the first phace through s^{2}, and in the second place, as is easy to see. through the three cone verticen lying in r_{i}; for if a plane through sa pasese also throngh a secomt vertex, then the complex conic breaks up into the two pencils at T_{i} and at that second cone vertex.

All rays through a point l_{2}^{*} of $h^{* 2}$ cutting s^{2} are areording to the preceding rays of the complex; from this ensucs reversely Hot the complex cones of all points of s_{i} in x_{i} have the same base courve, namely $h^{\text {米2 }}$. If now the degencrated complex cone of a point of h^{2} is to pass through ont then that point must evidently lie also on $h h^{*}$ and of such points there exists apart from the three conc vertices lying in r_{i}, only one: in the pencil $\left[l_{i}^{\prime}\right]$ there is thus only one ray for which the (degenerated) complex cone of its focms pases throngh an indicated ray s_{1}, i, e. the second components of the complex cones of the foci of the rays of the pencil $\left[T_{i}\right]$ form a pencil of planes, or the mogs of \boldsymbol{r}_{i} belonging to the comgrucmer form a pencil.

The axis a of the pencil of planes mast of necessity cut the curve k^{3}; for, if this were not so. then an arbitrary plane throngh " wonld cut k^{2} in two points, and then the complex curve in that plane wonld break up into three pencils (among which one at ' T_{i} is always included) instead of into two. This objection does not exist when a cuts the curve k^{2} in a point A; for then each plane through 1 cuts k^{2} besides in A in only one point T_{2} * more, and A itsell is a point $T_{i}{ }^{*}$ for the plane through ${ }^{\prime}$ which tomehes k^{*}. The axis "s is simply that line which lues the property thet the complese comess of its puints have as common bese cume the comid i^{3} itself: for, for eath plane through a the point ' T_{i} lying on k^{2} mast lie at the same time on $k^{* 2}$, so k^{2} and $k^{* 3}$ coincide.

For each ray of the pencil $[A]$ lying in r_{i} point A is evidently one focus and \boldsymbol{r}_{i} the corresponding focal plane, for each ray is col in A by an adjacent one of the pencil; the other focus is the recond point of intersection T_{i}^{*} with h^{*} and here the second foral plane
 the conic h^{2}; the promt A itself is homever "e simguler puint, forb hore any plome through a is a tomgential plene.
for the tangent in a to k^{2} the two lori coincide evidently with

A: the foral phanes. however, do not coincide, for one is τ_{1} and the ontere connect- the tangent to T_{i}.
2.2. Order and chass of the foral surface can be immediately determined hy means of two dhatistically opposite equations of shalbirt. viz.

$$
\varepsilon \sigma p^{2}=\sigma p_{0} y_{e}+\sigma h_{c}-\sigma h_{c}
$$

and

$$
\left.\sigma \sigma e^{3}=\sigma e a_{p}+\sigma e h_{p^{\prime}}-\sigma \overline{p e}^{2}\right)
$$

We conjugate to each ray g of the congruence all other rays as rays h, we then ohtain a set of x^{4} pairs of rays and we can apply (1) these the two equations just quoted. The symbol of indicates that the two rays of a pail most interse each other, ε that they lie at infinitesimal distance and f^{2} that the point of intersection p mmst lie in fwo planes at a time, thas on an indicaled line; so sop $)^{2}$ is evidently the order of the focal surface. The condition $\sigma p g_{e}$ indicates the number of pairs which cut each other, whilst the point of intersection p lies in a given plane and the ray g likewise in a wiven plane; now there lie in a given plane 14 rays of our congruence, thas 14 rays g; each of these intersects the plane of the condition p in one point and thromgh each of these pass 5 more rays of the congruence: σg_{e} is therefore $14 \times 5=70$, and ophe means the same and is thus likewise $=70$.

With ope we must pay more attention to the point of intersection of the two rays and to the connecting plane than to the rays themselves; ofe indicates namely the number of pairs of rays which cut each other and where the point of intersection lies on a given line and at the same time the connecting plane passes through that line; this number is evidently the third of the three characteristics of the congruence, thus the rank, however muttiplied by 2 because each pair of rass of the congruence represents 2 pairs gh; so ope is $=80$, so that the oreder of the focal surpiace is equal to $70+70-80=60$.
sote ${ }^{2}$ indicates the number of pairs of rays at intinitesimal distance whose connecting plane passes through 2 given points, so through a given line, i. e. the class of the focal surface. Now oeg, indicates the number of pairs of rays whose connecting plane passes through a given point, whilst also the ray g passes throngh a given point. So there are 6 rays g and in the phane throngh one of those rays and the point of the condition e lie besides ! still 13 others; oegp,

[^20]and ofl, are thus each $-6 \cdot 13=78$, and oppe was 8 , 6 , wh the clater of the focal surface $=78+78 \quad 80=76$.

I may he permitted to point ont in pasimy at shgt inarontars? committed by schebert on page of of his "Kalkial" where he gives formulat for order and class of the boal surfare of a congruence laking the number ofpe, calted by him co, only onee into areount: in Pancat-S'Chepr's well known "Repertorim" vol. II, page 40" wh find indieated the exact formulae, with the rank number r counted twice.

In a congruence of rays appear in general x^{2} rays whose two foci coincide; these too are easy to trace in our eongruence. For, according to $\$ 20$ in order to find the fori of an athitary ray s. we must apply in the focus P_{n} the complex cone and the tangential plane to $\underline{s e n}^{8}$ and intersect these by each other: the foci of the lines of intersection are the foci of $x_{\text {" }}$ and the tangential planes through x_{0} to the complex cones of the for the foral planes. Wo as som as the complex cone of P_{0} tonches the tangential plane \underline{g}^{\prime} " along a line t, the two foci of s will coincode in the focus of t and the focal planes will concide in the tangential plane through s. to the complex cone of the only focus.

The points P_{0} whose complex cones touch Ω^{*} are to be found again with the aid of Achebrart's "Kalkill". We conjugate the two rays is, along which the complex cone of a point P_{0} of $\Omega^{\prime \prime}$ euts the tangential plane in that point, to each other ; so we obtain in that manner a set of so pairs of rays and we apply to it the formula:

$$
\left.\varepsilon \sigma p=\sigma y_{e}+\sigma h_{e}+\sigma p^{2}-\sigma p e^{1}\right)
$$

The left member namely indicates the number of coincidences whose points of intersection lie in a given plane, that is thus evidently the order of the curve which is the locus of the points l_{n} to he found. oye indicates the number of pairs of rays whose component g lies in a given plane; this plane suts out of Ω^{n} a plane curve k " which possesses no other singularities than three nodes and which is so of class $6.5-2.3=24$, and all the complex rays in this plane envelop a conic; so there lie 48 complex rays g in this plane touching Ω^{6}. If we apply in one of the points of contact the tangential plane $10 \mathscr{S}^{\prime \prime}$, then there lies in it one ray k so gye is 48 and likewise of course σh_{c}.

With σp^{2} we must trace the number of patis of rays whose points of intersection lie in two given planes at the same time, thus on a given line; this lime interseds $\Omega^{\prime \prime}$ in six points and in the tangential

[^21]Proceclings hoyal Acad. Amsterdam. Vol. XV.
plane he wo bat - wi the complex cone and thus also two pairs gh.
 "fo. finaly the puint of contam mant lie in a given plane, the tantential pane must pate through a given point: so we can either
 amb dememine the dass of the developathe enveloped by it, or we
 chate of combact. The latter is the simplest fin the curve of contact in the imtersection of with the first polar suriace of the vertex of the rome and therefore of order $6,5-2.3=24$, beranse the tiot polar sultace comtains the notal corve h^{s} and the latier counted twire reparates itself from it. But the lwo complex rays through the point of comare and in the tangential plane come again for two pains and
 so these lies on \leq a certuin curve $h^{n o}$ "forder 60 having the property that the ralss : compuruted to its points hore coinciding foci und final plomes.

Wh can ask how the coure $k^{n o}$ will bear itself with respect (1) the fom come vernes $T_{\text {th }}$ where the complex cone becomes indefinite. We now know however ont of \$ 21 that in the plane \boldsymbol{r}_{i} only ont ray with coinciding foci lies, viz. the tangent in A to k": so her will puns omere throngh the fomer ceme revtices. That for that bandent in 1 to k the wo focal planes do not coincide, is an abedental circumstance whieh is further of no more inportance; His: reanlt wats hased mamely on the supposition that through an edge of the cone passes only one tangential phate of that cone:bowever, for the point the complex cone breaks up into a pair of planes Whose line of intersection is just the tangent in A to k^{-2}, the tangential Wane through that line on the cone is thas infirstinstance indefinite.

The rats "the rongruence with coinciding foed determine a seroll of which we will tinally determine the order. To that end the seroll must he intereated by an arbitrary line and we now know that all tays of the congromene meeting a line / form a regnlus \leq^{20} and What the fori of thome rays are situated on a coure hit lying on se and pas-ing singly throngh the 4 cone vertices. It is clear that to a print of interseotion of $h^{2 z}$ and $h^{\text {inn }}$ at ray corvesponds with coinciding low and cotting l. With the exception of the cone vertices; for, to T_{i}^{\prime} is compugated as rearets $h^{n 0}$ the tangent in A to k^{2}, on the other hatm at regards he the comerting line of the poim of intersection of 1 and r_{6} with d. an we now know. Now h^{12} is, as we know.
 prints of intersedion of $h^{1 \%}$ and $h^{* n}$ amomets to 120 . If we set apart
from these the foum cone vertices. We then find as pentl that the
 The couve $h^{\text {an }}$ imersects τ_{i} bemides in the three comb vertion lying in this plane in 5 be points more fyime of course on the rection h^{n} of $\boldsymbol{\Omega}^{6}$ and r_{i} to eath of these points at my throngh T_{i} is conjugated
 57 foll proms.
 mative, for difterent substamers." By Prof. d. I). Vis obr Watis.
(C ommunicated in the meeting of November 30, 1912.
In a previous commmitration (Jume 1910 'These l'roe. NIX p. 113 I pointed out the perfectly acourate on approximative eqnality of the ratio of the limiting liquid density to the ratiedal density, and the ratio of the critical density to that which would be present for ' T_{1}, for and $z_{\text {cr }}$, if $\frac{P^{\prime \prime}}{R T}$ shonk always be equal to 1 . With the symbols used there

$$
\because(1+\gamma)=1
$$

I have added the factor of, which must then be equal in 1 or mint differ little from 1.

The rute given there has attracted some attention. For first of all De. Jras Thmermas has informed me that he has found this rule entirely confimed for six substances, for which the observations made were perfectly trustworthy For a seventh substance there was a great difference, but he thought that for this real association might pertaps ocemr, as is the case for aretic acid ${ }^{2}$). Resides this rule has abso been adopled by Kimpronsin (oxafs and kepan in their recemt work for the Encyklopadie: Die Zustandsgleichung. The rule is indeed apt to rouse some astonishment, hecause it pronomees the equatity batween two quantities, which, at least at the first glance. have nothing in common.

It is to be expected that this approximative equality will have to be explained by the way in which the quantity b varies with e: but it is seen at the same lime that perfect equality camot be put

1) The numerical values have been communicated in the "scientifie Proceedings of the Royal Dublin Society", October 191%.
erenerally: There is indeed, a remakable difference for invariable mablecules, i.e. for such for which the quantity of does not change.
 1. but If there exins a redilinear diameter for sulstances with - Hioh molecules. $\gamma=\begin{aligned} & 1 \\ & 2\end{aligned}$

Perfect equality or almost perfect equality can therefore, only he (xpected for subtances for which b greatly varies with the volume Thus for suhstances for which s is about equal to 3.7. the value of γ is about equal to 0.8 or 0.9 . The following remarks are the reath of my investigation to get more certainty about this question.

According to the formala:

$$
\because(1+\gamma)=\frac{r_{k}}{r_{i m}}=r s
$$

is

$$
r_{b_{l m}}^{b_{q}}=q
$$

101

$$
\frac{b_{g}}{b_{l i m}}=y_{r}^{s}=e^{s^{2}} \frac{s^{2}}{s r}=4 \frac{64(f-1)}{2 r}
$$

(1)

$$
\frac{b_{1}}{b_{\text {lim }}}={ }_{3}^{j-1}\left(\begin{array}{lll}
8 & 8 & \\
! & 8 r
\end{array}\right)
$$

Nuw the thonght has fored itself upon me to pht $\frac{8}{9} \frac{8}{9}=1$ and hence alon

$$
b_{1 / i m}^{b_{1}}=\begin{gathered}
t-1 \\
3
\end{gathered}
$$

 which \quad is comstant. Then $i=8$, and as we saw above $i f=\frac{9}{8}$. Fon substames with varable value of 8, m <8 and of decreases,
 and for substances for which sis has this value, the rule

$$
\because(1+\gamma)=\varepsilon
$$

woud the perfectly acourate. If $s>F^{1}, 2,2(1+i)>x$ and not before $m<7 \underset{!}{1}, 21+\gamma<\cdots$

The rule all which we armive when we put $t=\frac{4}{=}$, wiz

$$
\begin{gathered}
b_{1} \\
\text { Ilime }^{j-1}
\end{gathered}=\begin{gathered}
j-1 \\
3
\end{gathered}
$$

is satisfied for substances for which 1 is invariable. Then of course $\frac{b_{n}}{b_{\text {lim }}}=1$ and $f=4$ or $\frac{i-1}{3}=1$. For all other substances $i>4$, and ${ }_{3}{ }_{3}-1>1$; the firsi member of the equation, viz bey is then, of course, ako always greater than 1. Later on we shall set ouselven the task to impure into the theoretical reason for this relation. Bua for the present we shall accopt it as perfectly acourate, and see to what conclusions it leads. If we write $\frac{27}{64} x^{2}$ for $j-1$, we get:

$$
\frac{b_{11}}{b_{\text {lim }}}=\frac{9}{64}=\binom{3}{8}^{*}
$$

The value of os can, therefore, not be smaller than", For $\frac{b_{n}}{b_{n}}=2$, and so for $f^{\prime}=7, s={ }_{3}^{8},^{\prime} 2=3,75:$ a value which moreover already
 which $f^{\prime}=10$ would helong, ${ }^{\circ}$ would be $=3_{3}^{8} 3$, or $s=4,62$. But so high a value of f on os has only seldom been found. If before in the absence of a leading idea, 1 assumed a still greater ration for $\frac{b_{g}}{b \text { blim }}$, this was a mistake.

From :

$$
\frac{b_{11}}{b_{\text {lim }}}=\frac{y_{s}^{2}}{64}
$$

follows

$$
r \frac{b_{g}}{b_{\text {lim }}}=\frac{c_{k}}{c_{l i m}}=\frac{9}{8}\binom{s r}{8} s-\frac{v_{l i m}}{a_{k}}=2(1+\gamma)
$$

Of coure we find batk the rule from which we have started but with a determinel value for the factor If. As I showed before

- - S hat fin ly far the majomity of the closely investigated
 - Whitity of ${ }^{2(1+}<1$ is not excluded even fon mommal substances. Sed we should mot lowe sigh of the fate that it ha- not yet been invertigated in how far the existence of quasi-asonciation has intluence an the pale of the rectilinear diameter. A clone invertigation about the value of as fon different substances, and comparison of the value of \because following from this with the experimental data is, thereforre very desimble

If from the knowledge of the value of ${ }^{\text {b/n }}$ we want to determine the value of f, the given retations ate not sumbient for an recurate determination. The relation

$$
\frac{b_{1!}}{f_{l i m}}=\frac{9}{r^{2}}\left(\frac{8 r}{8}\right)^{2}
$$

or

$$
b_{4}^{b_{i(i n}}={ }_{r^{2}}^{9}\left[\begin{array}{c}
(j-1) r^{*} \\
27
\end{array}\right] .
$$

indeed, holds. As- however, the value of the factor of $\frac{9}{r^{2}}$ is not acenately known, and as we only know that this factor is smatler than 1 , and the -maller as bom is mreater, we com only give a value for f below which it mus remain. Thus for blan $=2$ the value of r is below $\frac{3}{V 2}=2,12$. Ahead! with the fommalat $\frac{8}{8 s}<1$, or $r<\frac{8}{8}$, or $r<\frac{8}{8}$ We arrive at the qiven value forr \boldsymbol{r}. If we, namely, puts $=\frac{8}{3} / \overline{b_{g}}$

Only in the case that b is imsurable, the sign $<$ must be replaced hy the sign $=$. But even for such a great variability of b that the valloe of is womld have decreased to $\quad \frac{1}{9}$, 1 would still aumount to
 It is. inded, very remarkable that atready with such bight varian

 decreases to about 0.95 or 0.96 , as 1 calcolated before.

Let us now proceed to inmaire whether a theoreticat paton can be given for the above mentioned relations. That thongh they mats possibly not be quite rigomously acernate, they will hold with a high degree of approximation, cammot be denied.

That b varies with 1 I have had to admit immediately when 1 tested the equation of state given be me by the observations of Avorats, in which even volumes oerur which are smatler than ho. And I have long heen of opinion that this diminntion of b with smaller volume does not mean a real dimimution of the molecule, but that this dimimution of b would only be an "pmeront dimimnion. I have tried to subject the hypothesis of an apparent dimimution to the calcuation by what I have called the overlapping of the distance spheres. Then the factor 4 in the expression $b=+$ times the rolume of the molecules diminishes. The value of "has then the form of a series according to ascending powers of ${ }^{\prime \prime \prime}$, and. I have at least brought the factor of the $1=t$ power, and also that of the 2 mporer in a formula, which, however, reguired such laborions and lengthy calculations for the serond power that I abandoned them hopeles. Vis Lair has carried out the computations, and calembated the value of the coefficient belonging to the ent power, and expressed the opinion that the series would consist of at many as some 20 terms. Afterwards Boomansix has supplemented the calculations, and shown that the value of $\frac{b}{b_{q}}$ would have the form of at cuotient with series of terms with ascending powers of $\frac{l^{\prime \prime}}{\prime \prime}$. Wore and more the conviotion took lold of me that this apparent dimimution does not exist. Ihave not yet ohtained perfert certainty that it does not exist. lhut aheady betore by the application of the form of " with not too great a dearee of density, in which some three terms will suffice, I have repeatedly
fimmet that the calentated cootheients are much too great. To this comes that the coneliticients thas caloulated mast be of the same valme for all substances, at least if a spherical shape is assigned to at of them. Aftempts to determine them when the shape deviates firm the sherical form have not yet heen tried by anybody, but it may be experted that they will not differ much from those that have been catonbated for the sherical shape. A contribution of importance for the decision of the fuestion whether or no apparentdiminution exists will be furnshed by the experimental detemination of the equation of state of a monatomic substance. If we should have to conclude to diminution of b with decreasing value of 1 also for these subtances, this dimimation of b will certanly lave 10 be called a quasi-diminution, maless one would assign a constitution for which real diminution is possible also to ath atom.

A second view of the canse of the dimimution of b with r wond of course the whatned if one should have to ascribe compressibility to a molecole, and if one did not explain this compressibility by a diminution in size of the atoms, but by their coming closer together. If this is to be the canse, the diminution of 16 must not be found for a monatomic molecule. To decide this it would be desirable to give so considerable and judicious an catension to the investigations for such substances as those of Anorews for carbonic acid.

That a molecule consisting of atoms might be compressible in consequence of the approach of the atoms seemed a hypothesis to me worlh investigating. And I carred this ont in my communications in 1901 published in hese proceedings. I amived at a formmat there, which may be comsidered ath the eqnation of state of a molecule consisting of two or three separate parts which are in thermal motion. These separate parts may be separate atoms or separate atom groups, which are in close relation at the temperature considered, and of which the component atoms are perhaps in vibration will ahmost vanishing amplitude and small period.

This formula has the following forms:

$$
\left\{p+\frac{\prime \prime}{r^{2}}+a\left(b-b_{n}\right)\right\}\left(b-b_{n}\right)=k \cdot R T
$$

In this formala h is the rolume of the molecules, b_{n} the volume of the atoms or atom groups, and the latter would be the volume of the atoms or atom groups when the molecule was compressed ats much at possible. The quantity h is equal to $2 / 2$ for a molecule composed of two separate parts, and equal to 1 or <1 according to the nature of the motion for a molecule consisting of three parts.

 than a chame of a formal nature, required to make a' retain the charater of a pressure on the unity of surfare. Just ass $\mu+_{R^{2}}^{n^{*}}$ is a pressure directed inward on the unity of area, this is the case with ef ${ }^{b-b_{0}} b_{0}$ and the latter represents the increase of that pressure in consequence of the matual athation of the sepatate atoms or atom groups. It was only after a long hesitation that I dared conclude to this value of the attraction, and when I concluded to it it was only, to quote l'rot. Rumariss, "with some cometction"

It follows from this form for the autraction that it is equal to 0 when the atoms touch, and becomes preater when the space allowed to the motion of the atoms, increases. Noreover \& put a' proportional to the temperature. I must acknowledge that these suppositionare not founded on a true insight in the constitution of a complex molecule. But I hoped that the study of the consequences of these bypotheses which seemed prohable to me, and the comparison of these consequences with experience might contribute to the knowledge of the properties of such a complex molecule. And so far as I could then compare with what was known on other gronnds, the impression 1 obtained, was not entirely mifarourable. And now 1 have been indured to reconsider the romelusion at which I had arrived, to see if it leads to the relations which I have drawn up in the begmming of this commmatation. But in this respect I have not obtained perfect certainty yet. I have repeatedy discussed some difficulties which confronted me, with my son-but these discussions have not yet led 10 an undoubted result. At the moment I shall confine myself to commmicoting the proposed relations. Later we hope to be able to derive a rule from the state of motion of the atoms in a molecule, which will perhaps lead to the form:

$$
b_{l i n}=i_{3}^{i-1}=1+V
$$

when h represents the number of degrees of freedom for the motion of the parts of the molecules divided by the number of degrees of frecdom for the progressive motion of the molecule as a whole, viz. 3. From this would follow $f=6,448$ for 2 -atomic substances, and $f=7$ for triatomic substances, or perhaps this onght to be exaressed as follows: for molecoles with an axis of symmetry
$i=6,44 \mathrm{~s}$. In the athene of sum an axis $i=7$ or $i>7$. But his is still entirel! uncertain.

If the given relations are assumed to the perfectly corred, the redured eymation of state assumes the following form :
 the same form an oxcurs in Continnteit p. 127. This form is found from:

$$
\binom{i-1}{r^{2}}\left(r-\begin{array}{cc}
1 & b \\
r_{c r} & b_{y}
\end{array}\right)=T_{s}
$$

If in this equaton we put x, r and $l^{\prime}=1$, we find:

$$
b_{n}=\operatorname{l}_{c r}(1-\cdots,
$$

a relation, which hat already been found before.

Mathematics. - "Oh metric properties uf hiquedralic furisted cumes".
Byy Prof. Jis de Irien.
(Communicated in the meeting of December 28, 1912).
8) 1. The phadratif surfaces of of a pencil coll the imacinary cibele \ddot{y}° e common to all phere in the groups of an involution of order four. The lines r_{∞} joming two points of the same troup envelop a curve of chase three. Any of these limes t_{α} is the axis of a penoil of parallel phanes cotting a determinate surface of of the pencil acoording to eireles.
such a plane cat- the bane \boldsymbol{g}^{\prime} of the pencil ($\boldsymbol{\mu}^{2}$) in four concovelic points. So we tind: ther plomess colling a biquadrotic lmisted cured
 there lyimes at imfinity.
\$ 2. Lee $/$ he the axis of a pencil of planes. Iny plane I ents "' in forar proints which will he denoted by $1,2,3,4$, whilst $1 / 6$ will indicate the centre of the eirele / Im n. We consider the loces of the quadroplen of centren $1 /$ and bake first the partioular case where 1,2 are fixed points and line $/$ is a bisecant of a^{\prime}.
A. the ventres $1 /$ and $1 I_{4}$ (of the cireles 124,123) lie in the

 comsists of two different curver, as the pmints $/ /_{1}, I_{2}$ never conneide during the rotation of 1 about 1 . Fior a coincidenete of $1 /$, $1 /$, reguires that the eircles 234 and 1034 comodes ats 1 and 2 are lixed points, this only happens when $1,2, \therefore, 4$ are concyolice, but then the four points J / k belong to differem branchen of the locus.
\$3. The locus of the points $1 / 3,1 / 4$ sitmated in L passes side timen through the midpoint $\quad I_{0}$ of 1,2 , for the sphere (oll 1,2 as diameter cuts "4 elsewhere in six points. So this locus is of order right inn will be indicated by μ^{*}.

The plane $I_{\text {os }}$ at intinity contains the centres of four cirelen determined by the points of ρ^{\prime} at infinity. The remaining four points common to $\boldsymbol{\Gamma}_{\infty}$ and \boldsymbol{u}_{8} originate from two nodes generated as follows. If 1 touches $\gamma^{2}{ }_{\sigma}$ the point of contact is the pole of the lime at infinity of I with respect to all the "cireles" lying in that plane: so M_{8} and U_{4} comeide then in that point of contact, but belong in different branches.

Through l pass three planes containing four concyelic points ; in the centre of each of the three corresponding circles 1234 the corve u^{s} has a node.

By assigning to I_{3} and I_{4} respectively the points 4 and $i s$ we establish a correpondence $(1,1)$ between the curves μ^{*} and 0^{4}; so these curves have the same genus. As the singular points of a corve of genus one are equivalent to 20 nodes, the sixfold point $I \%$ and the tive nodes already obtained form the singular points of u^{*}. so this curve is of mate sideten; its four tangents through W_{0} originate from the four tangential planes of 0^{\prime} through $/ \mathrm{in}$ which planes $I_{\text {s }}$ and I_{4} coincide.
§ 4. The locus of M_{1} (and likewise that of $/ I_{2}$) is atwisted sextic ℓ^{n} : its points at infinity are the points of 0^{\prime} at infinty and the points of contact of $\gamma^{3} x_{x}$ with phanes through i.

Evidently it has tive points in common with l : so it is rational and of renk ten.

The three curves $u^{*}, u_{3}{ }^{0}, a_{2}{ }^{6}$ concour in the centres of the circles lying in the three cyclic planes through l. Furhnermore each curve u^{6} has still one point in common with u^{\prime}. For in the plane 1 touchinge 0^{4} in 1 (or in 2), $M_{2}\left(. I_{2}\right)$ is at the same time one of

5. In the catse of ath abbitary line / the locus of the promis. It
 finmishes three points of Γ_{s}, lying in different directions and on
 fonerfolds moints is the evelie planes through l.

As any phane I bears four points $1 /$ none of which generally lies 011 , ℓ^{20} has with $/$ siutecte points in common. Eatch of the eight lamgential phanes of 0^{\prime} fumbises a langential phame of μ^{20}; so this chave is af romk forty.

It is of ymes one, for one can assign the point M_{k} to eath pront k of a^{4}. So the gencrally known formulas

$$
\begin{aligned}
& r=m(m-1)-2(h+l)-3 \beta \\
& r=\frac{1}{2}(m-1)(m-2)-(h+D+\beta) .
\end{aligned}
$$

Where we have $r=40, \quad m=20, \quad D=30, \quad n=1$, give $\quad A=0$, $h=140$.

So the curve has no cusps, but 140 apparmet double points (bise(ants through any point).
\$ 6. Il the points $1,2,3,4$ of 9^{4} form an urthocentric ifroup, their plane 1 cuts all the \boldsymbol{p}^{2} according to orthogonal hyperbolas: then all the phanes parallel to I fumish orthorentrice groups.

The planes conting a director cone of \boldsymbol{p}^{2} in two ellges normal to each-other envelop a cone of the second class. so two concentric director cones determine form planes cutting the two corresponding
 From this chsues: there are four systems of parallel plomes metting a' in arflecerntrice sponeps.

5 7. We comsider in any phane Ithrongh / the urthocentres U_{k} of the triangles lam, which four points lie with the points $1,2,3,4$ on an orthogonal hyperbola v^{2}.

Lividently ω^{2} is the section of t with a \boldsymbol{T}^{2} through $\boldsymbol{\theta}^{4}$; now we ('an bring throngh $/$ a secomd phate cutting that \boldsymbol{p}^{2} in an orthogonal hyperbolat $(\$)$. So athy point of / lien on two courves ω^{2}, i. e. 1 is domble line of the locus of the courven $\omega^{\prime \prime}$. Therefore: The locus (1) of the withocentre ()$_{0}$ lies's on a surface se' with double point l.

In order to determine the degree of (1) we remark that in a plane ithrough a point at infinty of 0^{\prime} three poims 0 lie at infinity in the same direction, which proves that Γ_{∞} contains fomer threefuld points of ((1) . If I tonches the circle $\gamma_{\infty}{ }^{2}$, the point of contad I is separated harmonically by γ^{2} from any point of the
tangent, i. e. of the line at intinily of 1 . So all the perpendionlarof the triangles $/$ mon concur in $/$ and $/$ is a fomerfold point of (1). But then the eurve is of ordep 'memtly.

If two points 1 conineide in a pane t the same hatplens with two points 0_{k}. So through $/$ pass dight bangential plathes of 0^{30} and as

It is of genus one on areomm of the (1,1)-porespondence between the point k of o^{4} and θ_{h}.

From $p=1, \quad r=40, m=20$ and $\eta=24$ (as there are two fourfold and font threefold points) we tind (s) 5 , $\beta=0, h=146$. So the eurve has 146 appuremt domble points.
\$8. If l joins the points 1 and 2 of ${ }^{4}$ the locus of the points 1 , - comsists of three corves. Fior the points (), and () alwats remain separated, if A rotates abont l. But ont the montrary ()3 and (ρ^{\prime} belong to. the same comve: for the difference between the points 3 and 4 disapmears as soon as A is langential plane.

We now ean determine the order of the erore (1), as follows. We look, 0 , n in the first place for triangles $23+$ rectangular in 2. To that end we comsider the cabie curve 0^{3} which is the projeco tion of "* out of on the plane at infinity. On each line through the trace 1_{∞} of 21 we determine the points H_{∞} separating harmo. nically the projections of 3 and t from the circle γ_{∞}^{2}. As 0_{∞}^{3} cuts the polar of 1_{∞} in three points, 1_{∞} is threefold point of (H) and this curve a quintic. Its points of intersection with 0^{3} are 1_{∞} counted thrice, six points on γ^{2}, and an other sextuple forming three pairs of traces of mutually rectangular lines 23,24 . So through 1,2 pass three planes for which the angle 324 is a right one: therefore 1 is a therefold point of curve ((1).

If line 34 is normal to 12 , the point () lien on 1,2 , so line 34 generates a hyperbolod if 1 rotates round $/$; so by means of a section normal to 1,2 it is immediately clear that there are two choods 34 at right angles $10 \quad 12$.

So five points t_{2} lie on $/$; therefore $\left.(1)_{2}\right)$ is a matiomel comere $\left(\omega_{1}{ }^{\text {a }}\right.$ of order side with it therefold peimt. The line 1 is the bisecant of e $e_{1}{ }^{*}$ passing through the threefold point. Moreover we find $r=10$. $h=7 . \beta=0$.

Evidenty there are three positions of f for which 312 is a right angle; so the points 1 and 2 are therefind on the locus of the points O_{s}, O_{4}. From this ensues that this locus is a mome (es with tho therefold points.

As 34 happens to be tangent four times, 10^{*} is of ronk sixteen.
 wo donlle points on $\gamma^{2}{ }_{\alpha}{ }^{i} h=12, \beta=0$.
 threefold points in 1 and 2. For, all orthogonal hyperbolas pass through these points. Two of these hyperthotas beak uf into the fine $l=1.2$ and at chond 3,4 at righa angles 10 it .
9. If / hat only promi 1 with 0^{4} in common the locus of the points () consists of an a^{5} contatning the points () and an wontating the three other points (1) this follows immertiately if we consider the points at intinity.

We determine the order 14 of the lather corve imbependently-by means of the number of times that one of the points () lies on \% The planes containing two ehords at right angles in 1 entelop a come of chess sher: for the chond 12 is imerseded at right angles by three chords and bears fhree plames in which the chorels 18 and it are
 for sid postatons of t and in eatels of these eases at point () coinpolles with 1.

The chords of ot intersedime / form a seroll of oreder fixe with l ats double director line. So there are five chords normally cutting l. eatch ease of which furnishes a point () on $/$. So we lime an $\omega^{\prime \prime}$ with sixfold peint 1, through which point passes still a fiepfold secont. It is of gernes one as we can assign the point () to the point k of 0^{4}. From $m=14, D=25$. $\quad \prime=28$ (on $/$ six tangents rest) we then derive $\beta=0, h=52$.

The curve (on has / as fivefold secant, is therefore matiomel and of remk lon $(h=10, \quad,=0)$.

Now the surface s^{4} has a thepefolel point in 1 .
810. We still consider the seroll, locus of the lines of Eituph, $p_{k}=1 / l_{h}$ Ok, lying in the planes \mathbf{I}.

Between the points of the comes $6^{2 n}$ and 0^{20} exists a corvespond enve 1,1). By projecting the corresponting points $1 /$ and (ont of an arbitray line of wenerate a correspondence (20.20) between the planes of pencil (1). Of the 40 erombilencies t lie in each of the planes through "f and one of the two points $/$, each of these points being fourfoll point of \boldsymbol{r}^{20} and of $9^{* \prime \prime}$. In ead of the other coindidencies lites a lince resting on 11 . So the seroll (p^{2}) is of order 32.

We com verify this by means of the locus of the centres of gravity (ik of the trianglen $l \mathrm{~mm}$. It passes thee times through each of the four points of "n at intinity and is therefore of order twelve. As
 happens that Goz and H_{h} comoder, the reanonime given above peads here anew to the order 32 of 10
§11. A lwisted biquadratic come or of the sereond speredes dies on one quadratie surface \boldsymbol{Y} onty. It can he considered as partial intersection of $\quad \|^{-2}$ with the cubie stroll \mathcal{Z}^{2} generated by the biseconts b of a' colting a given biserant b. Wath point of h beans two bisecants b, b^{\prime} and the phane (h, h^{\prime}) pasien through the singlo director line of of Σ^{3}.

The pairs b. \boldsymbol{f}^{\prime} determine an imwolation (m) the domble points of which lie in fwo double tangential phanes of o'

Reversely the line common to an! two domble langential planes of ρ^{\prime} is single director line of a $\Sigma^{\prime 3}$; for the hiserants lying these planes are cut by one hiseant bo only and this lime is the double director line ${ }^{1}$) of Σ^{3}.

We now determine the number of orthogomal pairs b, b^{\prime}.
Any edge of a director cone L^{3} of Σ^{3} is at right angles 10 three wher edges; so the planes of the orthoonal pairs envelop a come of class three. On L^{3} the pairs b, b^{\prime} determine ann insolution and the planes of the pairs of edges pass through an edge paralled to ! $/$. From this it follows that of hears three ${ }^{2}$) wrthogonal pains h, h^{\prime}.

As the lines g form a conpruence. there are ∞^{2} planes 2 containing orthogonal bisecants; so these planes envelop a surface $\underbrace{3}$ of class three. The planes intersecting \boldsymbol{U}^{-2} in orthomonal hyperthotas are parallel to the tangential planes of a cone of the second class and envelop therefore a conic ${ }^{2}$ at infinity. Evidently a common tangential plane of ${ }^{3} \Omega$ and ${ }^{2} \Omega$ euts 0^{4} in an orthocentric wroup. so: the plomes of the orthogonal quadrangles inscribed in 0^{4} preplop " developable ot class sies.
\$12. We consider once more the locus of the quadruples of orthocentres in the phanes I through a line $/$. If I contains at point

```
1) The lines of form a congrutence ( 6,3 ).
\({ }^{2}\) ) \(11 \leq^{3}\) is represented by the equation
\[
(c x+b y+c z+d) x^{2}=\left(a^{\prime} \cdot x^{2}+n^{\prime} y+r^{\prime}=1 d\right) y^{\prime}
\]
```

we lime for any pair b, b the equations

$$
y= \pm 2 n, a r+b, n+r^{\prime} z+1=i^{2}\left(e^{\prime}, r \mid l^{\prime} n+r^{\prime} \approx: d^{\prime}\right)
$$

So the urthogonal position of the lines (λ) and,\ldots, requires evidently

$$
\left(c^{\prime} \lambda^{2}-c\right)^{2}\left(1-i^{2}\right)+\left(1-i^{\prime} \lambda^{2}\right)^{2}-\lambda^{2}\left(b-b^{\prime} \lambda^{2}\right)^{2}=0 .
$$

So there are three orthogonal pairs.
of os at intinisy, the centres $1 H_{1} .1_{2}$, (), lie in the same direction at infinity and gise rise to a therefold point at intinty. As we have
 (). Lunt I_{x} beats two points () more, origimating from the two
 are conlinear, the three perpendiculars of the llattened triangle 124 are parallel. Then the fon orthocentra lie on the normal of though 4 on the prisecant: so q is gumbrispormt of the coure (ot) and the (voler of (1) is 22.

There are six tangents of σ^{\prime} meeting $/$ and therefore as many bangents of $\sigma^{* 2}$ domg likewise: as to thas evidenly 18 points in common with /, this coure is of momi 42. As it corvesponds in gemas 10 0^{4} and its singular points ate equivalem 10 24 double points, we tind by means of the formulas siven above $s=0, h=186$.
\$13. If / contains the poims 1,2 of σ^{-1}, the bocus ((1) breaks up into thee different conves. As in \& 8 we find here through 1,2 three planes bearing chords 23,24 normal to each other, so 2 is threetoled proint of (l_{1}).

But now the lime 34 describes a cubic soroll (with double line) if ifotates about l; so 12 is cut orthogonally by there chords.

So we find for $\left(O_{1}\right)$ and $\left(O_{2}\right)$ two matimal enves of arder seven.
The locus of O_{s} and O_{4} is once more an ω^{*} with two threp fold points.
The three coures are situated on a surface Ω^{s} forming the locus of the orthogonal hyperbolas 1234 . For: in the three planes 1 heaw Ing a chord 34 normal of $l=12$, the hyperbola degenerates into Hese fwo chords and l so l is threptold line from which ensues moreover that 1 and 2 are foupfold points.
so we may conclude that for an arbitray position of / the corne sponding orthogonal hyperbolas form a surface of order five whith / iss threefold line.

Let us still consider the case that $/$ is a triseremt, contaming the points $1,2,3$ of $\bar{\sigma}^{\prime}$. Then (1, is always at infinity and each of the temaining three points () deseribes its own curve.
$1 f+$ comedes with $1,{ }^{1}$, is at infinity, which also happens if A contains a point of \boldsymbol{o}^{4} at indinily and if A tonches y^{*}. From this we conclude that eath of the points ()$_{1},()_{2},()$, deseribes a rational couse of arder spem, with threp fold points in two of the points $1,2,3$.

In fact each of the poims $1,2,3$ is vertex of a rectangular triangle for three pusitions of \boldsymbol{f}, or more exatly of two suchlike triangles: for, if 14 is normal to the triseram, 1 is orthocentre of 124 and of 134 .

Fathermore there are $3 \times(8$ positions of 1 for which () minembes with 4. leading to a paint common to a' and (l).

From this we may still conclate that the planes in which the quadrangle 1285 admits one right angle envelop a surface of cleses 36 . As to this we have to hear in mimh that ant plane through a trisecant of os haviog the vertex of the righ angle on that trisecant must be counted wioe ats tangential phane.

Likewise we find that the planes for which the quadrangle 1204 admits two equal adjacent silen envelop a surface of ploses 3.33.
\$14. Let us limally consider the locus of the centres I/k of the circles eireumseribed to the triangles $/ \mathrm{mm}$ in the phanes 1 through $/$.

Each of the two trisecants cutting / furnishes again a point at intinity : each of the planes throngh a point of ot at infinity determines three points of I_{∞} and each of the tangential phanes of $\gamma^{*}=$ through / contains a fourfold point at intinty. So we fint a curve u^{22}, cotting / in 18 points, with the menh 42.

If l is the biscout 12 , the poins I_{3} and M_{4} generate a phome curve $u^{\text {in }}$ with the midpoint J_{0} of 12 as sirfold point: for the sphere with 12 as diameter determines on of the vertioes of sis rectangular triangles with 12 as hypothenuse. As we can once more assign U_{3} and U_{4} to the points $\frac{t}{}$ and $3, u^{4}$ is like is of poms zero. So its singular points are equivalent 1026 double points. So it must possess besides the double points on γ^{2} s and the sixfold point M_{0} still four double points more. These can only originate from concerclic groups $1,2,3,4$. So we conclade: the phomes metting 5^{3} in

So the curve \boldsymbol{u}^{23} corresponding to an arbitrary line l has finm fourfold points in the centres of the circles each of which contains a quadruple of points of 0^{4}.

As it cuts I_{∞} in tro fourfold pornts more, we get $l=$ =ith. $B y$ means of $r=42$ and $\beta=0$ we find $\beta=0, h=174$.

If l is trisecant 123 , each of the points $, I_{1}, \quad I_{2}, ~ I I_{3}$ describer a plane curve of order spep with a sidefold point.

1) This is in accordance with the results obtained by Mr. M. SctryabikT in his intugural dissertetion (Élude de qualques surfaces abrebriphes encembees par des courbes du second et du troisiome ordre, (iand, lale: sme Chap, I, sum les plans coupant un systeme de lignes en six poinls doune coniune).

Mathematics. "(me the corvespondenes of the puiss of points sepmonted hummonically big a taristed quatic comere" By Prod. JiN de: Vries.

(Communicated in the meeling of November 30, 1912).

§ 1. We indicate by P and Q two points, lying on a chord of a twisted quatic come of the first kimb, separated hamonieally by this coure ρ^{4}. As any point P^{\prime} lies generally on two chords, in the correspondence $(P$, (Q) to any poim I ' wo points I? are conguated.

If I moves along a line l, () describes a curve i^{6} of order shia For inn plane I through $/$ cuts g^{4} in four points sk and contains therefore six points $Q_{k l}$, where $Q_{k i}$ lies on a chord , sks and is harmonically conjugated to the points i'k common to that chord and 1. If l is an arbitrary line, Q never lies on / when I rolates about l.

The line $Q_{15} Q_{28}$ is separated hamonically from $/$ by $P_{22} S_{3}$ and $心_{1} \mathscr{S}_{3}$. By assuming a position for $/ t$ in which s_{1} and S_{2} comede with Q_{12} we find for $Q_{13} Q_{23}$ a tangent of λ^{5} separated harmonically from / by $P_{1-2} S_{1}$ and $P_{12} S_{3}$, whilst an other tangent of i^{6} takes the place of $Q_{24}\left(Q_{24}\right.$. So each of the eight tangential plames of 0^{4} contans two tangents of i^{6}; so the rank of this curve is sixteen.

Moreover we find that i^{6} has eight points in common with 0^{4}.
\$2. The line p commecting the wo proints Q, Q' conjugated to I ' doncribes a regulus f^{2} if I^{\prime} moves along $/$. For p is the polar line of l ' with respeet to \mathbf{o}^{\prime}, i. e. the intersection of the polar planes of l ' with respert to any two quadratio sumferes through ${ }^{\prime}$, and these polar planes denerite two projective pencils.

Let ns now consider one of the two limes prating $/$. The corresponding point P hears two chords $\mathscr{S}_{2} \mathscr{S}_{2}$ and $S_{8} \mathscr{S}^{\prime}$ lying in the plane $I=1 /$. The points Q_{12} and U_{34} lie on f, the points Q_{13}, Q_{23}, Q_{1}, ' $_{24}$ lie on a line m though $/$ ' hammomically separated from l
 line of $\mathbf{I V}^{*}$. Any langential plane of \mathbf{I}^{2} combans therefore a quadriserant of x^{6} and loth the reguli of f^{2} are armanged by λ^{6} in a correspondence $(2,4)$. Evidenty the quadrisecants y are the polar lines of / with respect to the quadratic surfaces through os.
§ 3. If we assume for l a chord of \otimes^{4}, the locus of Q breaks up into four parts, i. e. the chord l itself, the tangents r and r^{\prime} in the points R, R^{\prime} common $10 /$ and ξ^{\prime}, and a twisted cubic i^{3}. The polar line p now comects a point Q of $/$ with the point Q^{\prime} of the second chord h passing through P. This line describes a regulus
having with ithe line / in commone so the locus of re' $=$ hit is
 with it and f^{\prime} and f^{\prime} convepond ammenes ohber points with thent selves; the comes $\lambda^{\prime \prime}$ and ${ }^{\prime}$ have fome move point in common.

 h^{\prime} there proints (e: of these two must be cemthened withe lif the plane combans the tangent r. The gmadriswemts of of I heotme here trisecants: for r rests on eath of the polar lines y of $/$ s 2 . The
 in l. In relation with the pesults obtained we embelnte firom this that by the correspondener (la! 10 a masceant of as a twisted coure of ofele gien is congugated having a node in the prome common to the masecamt and a^{2}. the nodal bangents lyine in the phane le
so the curve is of ramber thengh / pasasix common temerntial planes of 0^{1} and x^{3}.

 chords and the correspondine points (ℓ lie oh the eonice τ^{2}, common to the pelar plane $r_{1} \quad T_{2} T_{3} T_{4}$ of T_{1} and the quadratice cone with T as revtex.

To the lime $T_{1}^{\prime} T_{2}$ as locus of points I ' correspond in the diest place
 For the points sk in any plane through $\mathfrak{S}_{1} \stackrel{s}{2}_{2}$ form a complete quadrangle of which T_{2}, and T_{2} 'aro diagomal points; in the that diagonal point \boldsymbol{f}_{2} and (ℓ_{2}, combinde, whilst of the remaming four points (! two lie in r_{1} and lwo in r_{3}. No to an! pront of $T_{1} T_{z}$ correspond two prints of $T_{3} T_{s}$ and invernely

If $/$ contains the point T_{1} only, the six points (? lying in a plane D. through / comsist of two points in r_{3} and on $r_{1}{ }^{*}$ and of four prome lying on the line common to 1 . and the polare phane of / with respere to the cone projecting 0^{4} out of T_{1}. Then the comore (!) hrakin "p
 of the cone passing thongh / the two points !! ! ing ch $\boldsymbol{r}_{2}{ }^{*}$ conineide with two of the remaining fone in a point of interaction of r_{1} and $)^{4}$ where the latter is fombed ly the edge of contand.
 sponding to the points l^{\prime} of a plane If. If sk are the points common to $I I$ and 9^{4}. the six lines , か̌, form the intersection of $I I$ with the

Gom- mater disemsion. So it is of order six. As it contains at the same time the limes tomehing od in sk. these points are nodal points. To the wo points of $\tau_{1}{ }^{2}$ lying in $I I$ correspon! lwo points Q connciding with T 'k, whilst to the point of II lying os ' $T_{k}^{\prime} T_{l}$ two points on ' $T_{m} T_{"}^{\prime}$ correspond. From this ensues that the four points ' I have to be also modes of $/ I^{6}$.

So to a plane correponds a surface of order six with eight nodes. and ten lines.
$\$$. Leet ns now consider the correspondence between two points I'. (Q separated hamonically by a twisted quartic curve of the second find 0^{1}. As l bears three chords of σ^{4}, it is comjugated to three points (l. To the points l ' of a line $/$ correspond the points a of it twisted curve A; for each plane through $/$ contains six points Q.

The three points (ℓ corresponding to P ' lie in the polar plane of l ' with respect to the quadratie surface H^{3} through σ^{4}. The plane II rotates about the polar line l^{\prime} of l. if $I \prime$ moves alongr l. So l^{\prime} is a frisecant of λ^{n}.

The scroll of the chords of ot cutting $/$ is of order nine: so nine of these chords also intersect l^{\prime}. T'o these nine belong the two trisecants of or chtting l. each of which represents three chords; they have to meet l^{\prime}, as they lie on the hyperboloid H^{2} and are at the same time trisecants of λ°. The remaining three chords cutting l and l ' $\begin{aligned} & \text { etermine the three points } Q \text { on } l\end{aligned}$ '.
§8. Each of the six tamential planes of σ^{4} bassing through / contains a point and two tangents of ℓ^{n}; so this curve is of ramk theplep and rests in sir points on ob By se we represent the points of ${ }^{-1}$ lying in a plane drawn through l; the chord $b=S_{1} S_{3}$ is paired to the chord $b^{\prime}=S_{3} S_{\text {, }}$ and now we consider the correspondence between the points l^{\prime} and $P^{\prime \prime}$ in which b and b^{\prime} intersect l. As l ' bears three chords we find a $(3,3)$. If b and b^{\prime} intersect l in the same point l^{\prime} ' only the hird chord through l ' furnishes a point $l^{\prime \prime}$ not coinciding with P; from this ensues that the coincidencies of the $(3,3)$ comoide by fwo in a double comeidency. So through / three planes pass for which b and b^{\prime} intersect in l; the line h separating / harmonically from b and b^{\prime} then contains four but of the six points (2. the remaining two lying on b and b^{\prime}.
so the curve λ^{n} adwits three quadrisecants.
\$ 9. Let / he a chord of σ^{4} and S_{1} and S_{3} the points it has in common with 3^{4}. 'Through any point l ' of I pass two more chords
$b . b^{\prime}$ of σ^{\prime} ．So the locus of the pointa 2 lies on a eubice soroll 1^{2} with double line l ．

In the plane bl two points ！（enincide in ぶ，two other ones in S_{2} ，whilst Q_{12} lies in l and $\left(Q_{34}\right.$ in h ．If $/$＇moves alomy $l, y=?_{12}\left(l_{21}\right.$
 two lines $q \cdot q^{\prime}$ to the points（ $b_{2 s}$ of the chmols b, h^{\prime} concomring in the point P^{P} corresponding to（ L_{12} ．

The serolls t^{3} ，whave the trinecemts t_{1}, t_{2} of of passing throush S_{3} and s_{3} in common．For if $/$＇coincides with s_{1}, t_{2} hecomes a chord b and，as Q_{12} comoders then with N_{1} ，at the same lime a line $\%$

As I is nodal line for both scrolls，these surfaces have still a twisted cubic i^{3} containing the points（ ℓ_{34} in common．In the planes touching ob in S_{1} and S_{2} the point Q_{3} comendes with the point of contact；so $S_{1} S_{2}$ is a chord of λ^{3} ．This courve intersects of in the two points the tangents of which intersect $s_{1} x_{2}$ ：it has for chords the single director lines of the scrolls $1^{3}, x^{3}$ ．

So by the transformation（ P^{\prime}, Q ）the chord／passes into the system consisting of l itself，the tangents s_{1}, s_{3} and a twister cubic．

Evidently a trispecht t is transformed into that line to be counted thrice and the langents in the three points it has in common with of ${ }^{4}$ ．

If l touches σ^{-4} in S_{12} ，the soroll \boldsymbol{s}^{3} becomes a cone with modal
 plane is common tangential plane of t^{3} and p^{3} ．having still in common the triserant through \boldsymbol{s}_{22} ．The residual intersection i^{3} tomeho in S_{12} the tangent of 0^{1} ．
§ 10．If l is unisecant of σ^{4} in S the couve i° breaks up intu the tangent s of o^{+}in s and a curve \wedge^{5} ．The polar line $/$＇of 1 becomes chord of h^{5} ，s being one of the three chords couting l and l^{\prime} ．The plane $l^{\prime} s$ touches H^{2} in S^{\prime} and is therefore polar plane of $P=S$ ；it contains the tangent s and the trisecant of o＇on which s）lies．Of the three variable points（？common to x^{5} and a plane through l^{\prime} ，two coincide with S and only one lies outside s ．

Any plane through l contains besides s＇three puints（l and has therefore in S two points with λ^{5} in common．Also the plane l＇s not passing through $/$ has in s＇wo pmints in common with $i^{5}:=0$ S is a node of λ^{5} ．The plane l contains beside $\underset{\text { con one point }}{ }$ Q；so it passes throngh the nodal tangents of the mode．so io a unisecant corresponds a twisted quintic with a node．

The curve is of romh eight，through $/$ passing four common tangential planes of σ^{-1} and $八^{5}$ ．
 cultion. biy Prof. Jos be Vras.

```
":ummmicated in the meeting of November 30, 1912).
```

$\$ 1$. We will indicate the chomb of the given fwisted robies

Any phane a comtains three chords 1 and three chordses, theretore
 general one foral pane, eath phane mine fooi e $=1, \beta=9$.

If x rotater about the line / the points determined on / by two
 :3, 3 . As eath point of coincideme farnishes a point $1 \mathrm{l}=1 \mathrm{~s}, \mathrm{l}$ combans she points l ', the foreal planes of which pass through l; so

Let h represent one of the ten common chords of 0^{3} and 0^{3}. Any
 Any phane atmits fom fore not lying on h, whilst at the same time any point l of h is foros. so the linesbare loci of simpuler foed and simpulaer focell platers.
 bre any libe commeromg I' with an other point of \mathbf{o}^{*} : then ans phane

 the foral fystem (', a).
$\$ 2$ The polat phanes of P with respeet to the x^{2} quadratio

 of the ne not belongine to the same pencil rotate about three delinite lines amb dearite therefore there progertive pencils. so the locus

 exery time the proint of comtad h_{0} :

${ }^{1}$ This wombally known imwhtory cubic tram formation has been investixated
 vul. 18. 1!001, 1. ! ! 11.
 moves along $/$ in nine points, the entenpondence (k, s) is of order mine.

 pairs (I^{\prime}, h^{\prime}) and (I^{\prime}, s^{\prime}) gencrate lwo imsolutioms, of which H_{1}, H_{2} may represent the common pair. liy assuming f_{k} in H_{k}, we find

 pairs on the tom eommon chorels lo.

As a point l_{0} of \ddot{v}^{3} corvespond to eath print l of the tangent
 into which r_{0} passes by the transtormation $P^{\prime}, S_{\text {B }}$: evidently $\bar{\sigma}_{0}{ }^{3}$ hats four promts in common with 0^{3}.

Consequently the comes 0^{3} and σ^{3} are simplan combes of the correspondence ($\boldsymbol{R}, \mathbf{S}$).

If l^{\prime} desseribes the tangent r_{0} of a^{3}, l 'rematin in the pmint of
 sponds 10 ath the perints of r_{0}. Evidently the locos of S * is the tational twisted $\sigma^{\prime \prime}$ imto which $:^{3}$ passen by the transformation (P^{\prime}, si,
so the correspondence (h, S) admits tero simpulur tristed combes ot order nime, 0^{0} and 0^{\prime}.

As the developable with 0^{3} as conpidal coure couts 0^{3} in 12 ponints 0^{3} and σ^{9} have twelve points in common: likewise 0^{9} rests in 12 points on $\stackrel{y}{3}^{3}$.
\$3. We now ronsider the lines $p=R S$. If P deseribes the line l, p generates a seroll of order six; for we fomb above that the phane $x-P_{p}$ passes though $/$ in six positions (\$ 1).

The line p generates a compler. We determine the number of lines p belonging to a pencil with vertex L and plane λ

If R desmbes a lay $/$ of pencil (L, i), s generales a curve intersecting λ in nine points ($\$ 2$); we conjugate to $/$ the nine lines I^{\prime} connecting these points with L. In this mammer we get in the pencil a correopondence $(9,9)$ each coincidence of which furnishes a line p comnecting two points R and t corresponding to each other. So:

The complex (p) is of corler eighteen.
Evidently the 20 points H are principul points of the complex; each complex cone passes through these 20 points.
§ 4. Any point R_{0} of o^{3} is singular, for it bears the lines p eonnecting it with the points of of the corresponding curve $\sigma_{0}{ }^{3}$ (\$ 2) and so its
 the simpular surfore of the comples.
 ronvepunding puint h_{0} as vertices fom a compromere of which we will determine order and chass.

The bunds of the mures of is the surfare \mathbf{z}^{3} imto which the

The enhige conce wibl an arbitraty point it as vertex and 0^{3} and or as divector comes, intersed in at edes, each of whoh connects a pmint x of $\bar{\sigma}_{0}{ }^{*}$ with a point R^{\prime} of 9^{*} : if R^{\prime} coincides with the point R_{0} to which $\sigma_{0}{ }^{*}$ corresponds we have to deal with a ray of the congrucnce passing through W. We witl conjugate these 9 points R^{\prime} to $l_{0} R_{0}$. The lime $W h^{\prime}$ couts the surfare \mathbf{v}^{18} mentioned above in 12 points \dot{x} lying in general on different curves $\sigma_{0}{ }^{3}:$ so to R^{\prime} correspond 12 points $~ R i$. The correspondence (R_{0}, R^{\prime}) has therefore 21 comedencies, i.e. the arder of the congrume is 21 .

Any plane n contains 3 point i_{0} ami each of the comesponding

so the lines $x_{0} R$ form a congruence (21,9 and an other congruence of the same type is formed by the lines $S_{0} R$. The two congruences admit sucersively 0^{3} and,3 as simolntion more.
5). Any point b* of the rational on $(\$ 2)$ is the vertex of a pencil of complex rays p the plane of which contains the corresponding ragent $r_{\text {". }}$ so the conves "and " lie also on the singuler sumpace.

The x^{1} pencils with vertices , (** form a compmence which we will study more closely

In inn phane : lie 9 points \boldsymbol{S}^{*} : the tangents r_{0} eorresponding to these points determine ! rays ρ !ying in $1 t$: so the congruence is of" chess minu.

To any point s; we make to correspond the 9 points $s^{\prime \prime}$ of σ^{3} which van be projected out of the abthatry point $/ /$ in a point of
 comporated to 4 point x^{*}. As any eomotideney $s^{\prime} S^{*}$ is due to a
 congramene is of onder thitern.

So the eomplex eontains ino compromers $(1: 3,9$ each of which is

5 6. To the complex if helongs the strem at gencratrices of the developable detemmen by g^{3} and a^{3}. Any tamgent r_{0} ents four tangent- x_{0} and reversely: so the points of contact R_{0} and S_{0} of the
tangents rompugated to each ohbor in this way are in conerepondence $(4,4)$. By projecting the patss of this rontrespondeme out of at line

 fourfold cmopes.

Any chond of 0^{3} meeting io belonge to the complex, for in
 chords of of os colting a line / wenerate a seroll of onder fom with U^{3} as modal emres so the locus of the chomet- is a momoll of order 12. On the latter surmee w^{3} is a siagold comere, for through any of itpoints pass the common edges of the lwo cone projectimg os and \boldsymbol{o}^{3}.
so the comprex (1) contams two surolls of ordor thelee the generatriges of which are chords of one of the curven $0^{3}, 0^{3}$ and secants of the other.

Lee p^{*} 放 a chord of 0^{3} not meeting σ^{3}; then the tangent r_{0} in one of the points l_{0} common 100^{3} and that chord must contain the point l^{\prime}. If I ' moves along that tangent, Sdescriber a curve $\boldsymbol{r}_{0}{ }^{3}$: the cone projecting the latter curve out of h_{n} has ${ }^{\text {b }}$ edes in common with that of which s^{3} is director curve. so any point of s^{3} bears 6 rays p^{*}. As an arbitrary chord ${ }^{6}$ (ann he cut by chood- p^{*} in its points common to 9^{3} only, so all in all by 12 , the lexens of the chords mader discussion is of order 12.

So the complex contains two sorollis of order theler, imill up out of chords of one of the curver σ^{3}, σ^{2}.

Physics. - "Determintions of the reftredtier indicps "f stases under high pressures." second commmolication. "(the the dispersion
 (Communicated by Prot. H. Kimerisail (Dxes).
(Communicated in the meeting of November $30,181 \%$).
4. The dispersion of air.

This has already been repeatedy determined both for the visible spectrum and for the ultra-red and ultra-siolet ratys. The result, however, diverge considerably, and, morenver, the dispersion hats never been measured under high pressure.

Through the kindness of Prof. Kambananin (oxams compressed air was plared at my disposal with which dispersion determinations were made in exactly the same way at those for hydrogen described in a former paper.

In dhe following Table are given the results of three series of Whatatma. Fon the meaning of the symbols employed reference mat te mathe the corresponding Table for hydrogen published in the paper ju-t mentioned.

		k_{b}	$\begin{aligned} & { }^{\prime} b=0.546 \\ & { }^{2}=0.644 \end{aligned}$	$c=0.509$	$d=0.47$	$e=0.436$	$f=0.405$
in atm.	perature.	(mean)	$\begin{aligned} & k_{a} \\ & k_{b} \end{aligned}$	$\begin{aligned} & k_{c} \\ & k_{b} \end{aligned}$	$\begin{aligned} & k_{d} \\ & k_{b} \end{aligned}$	$\begin{aligned} & k_{e} \\ & k_{b} \end{aligned}$	$\begin{aligned} & k_{f} \\ & k_{b} \end{aligned}$
71.4	$12.75{ }^{\circ} \mathrm{C}$	823.52	0.54350	1.07697	1.16423	1.26722	1.37179
71.4	12.90	821.23	0.84346	1.07702	1.16418	1.26724	1.37176
20.6	13.19	810.84	0.84352	1.17697	1.16421	1.26718	1.37175
86.4	13.42	759.81	11.84350	1.07697	1.16419	1.26727	1.37183
48.7	13.58	559.27	0.84352	1.07698	1.16421	1.26716	1.37177
31.9	13.67	359.50	0.84339	1.07701	1.16417	1.26725	1.37171
67.7	9.25	790.70	0.84345	1.17697	1.16415	1.26723	1.37187
67.6	10.15	7×7.92	0.84349	1.07698	1.16419	1.26735	1.37191
66.2	10.35	766.84	10.84353	1.07695	1.16414	1.26724	1.37184
49.2	11.55	567.32	0.84351	1.07698	1.16411	1.26723	1.37178
32.2	10.95	367.70	0.84350	1.07695	1.16414	1.26721	1.37175
101.9	12.75	1170.71	0.84343	1.17698	1.16418	1.26729	1.37203
101.8	12.80	1168.50	0.84340	1.07699	1.16412	1.26732	1.37204
100.0	13.03	1147.43	11.84338	1.07700	1.16419	1.26732	1.37204
82.8	13.39	947.50	0.84337	1.07699	1. 16415	1.26729	1.37207
65.5	13.89	745.71	0.84339	1.07704	1. 16427	1.26728	1.37206
39.6	13.96	446.50	0.84325	1.07697	1.16415	1.26725	1.37199

The ralues obtaned for the various gas densities are pretly well comstant, just as was found to he the case with hydrogen. The deviations are not any more one way than the other, and we can therefore eomelode that the dispersion of air is eomstant up to pressures of aboul 100 atm.

The mean valnes are:

kin	1 i	\%	,	is
is	10	1 1,	(1)	Lit
0,84:34.	1,0769\%	1.16417	1.2695 .25	1,37184
± 1.7	$\pm 0,6$	± 1.0	$\pm=1.2$	+ 8,1

Hence wo get for the diapersion romatants

	'(${ }^{\prime}$ (ac.)		$\begin{gathered} n-1 \\ n-1 \\ b \end{gathered}$
a	0.64403	0.94446	-10.00) 90020
b	0.54623	1	
c	0.50873	1.00304	+-0.0.0060006
d	0.47234	1.00669	± 0.01060109
e^{\prime}	0.43597	1.01145	$+0.00001513$
f	0.40478	1.01662	± 0.000023

In order to be able to eompare these with the results obmaned by other ohservers, dispersion constants for the wave-henghts I used have been obtaned from the results given hy Mascart ${ }^{1}$), Kassia
 Koch ${ }^{8}$, (cthbrersons ${ }^{9}$), and (ireschare ${ }^{10}$), vither by graphical interpolation on by eakculation from dispersion formatae given ly them: these results are collected in the following Table

Correspondence between the present resulte and thase given ly Prrrat and by Koch is quite good hoth with hydrogen and with air. Onty al $\%=0,6 \pm \pm$ does kocn dind a greater disperam for hoth gases. For air, the agreement with Hernans and with ('themakran is also very grod.

1) E. Mascart. Amb, de l'éc. nurm. (2) 6 p, (io) (1857),

d) K. Sameel. Verli. d. D. phys. (ies 9 p. $2 \overline{7}$ (1907).
${ }^{\text {a }}$) K. Hermann. Verh. (1. D) plys. (ies. 10 p. 477 (190.s),
${ }^{6}$) II. (4. Rentanher, Astrophys. J. 28 p. 395 (1900)
i) S. Loria Am. d. Physih. (f) 29 p. $61!9$ (19099).

‥) (t. Cirusthke. Am, d. Physik. (t) 34 (5. 807 (1911).

The following interpolation formula was calculated using the method of leas squares:

$$
c=\frac{n-1}{m_{b}-1}=0.95086\left(1+\frac{0,0056376}{i^{2}}+\frac{0.00005401}{\lambda^{4}}\right)
$$

in wheh it is the wave length in microns.
The degree of accurac! of this formala is evident from the following table:

$$
\begin{array}{lllll}
& { }^{\prime} \text { (air) } & { }^{c}(\text { cal }) & c^{c}(o b s) & \ldots \times 10^{\prime} \\
a & 0.64385, & 0.99451 & 0.99446 & 5 \\
b & 0.54608_{n}, & 1 & 1 & \\
c & 0.50859_{n}, & 1.00303 & 1.00304 & -1 \\
\text { d } & 0.47221_{n} & 1.00672 & 1.00669 & 3 \\
e & 0.43585, & 1.01144 & 1.01145 & -1 \\
f & 0.40467, & 1.01660 & 1.01662 & -2
\end{array}
$$

5. The dispersion of carhon dioxide.

In the following table are given results of two series of measurements made with carbon dioxide. The gas used for the tirst series Was only dried over calcium chloride, and contained about $96^{\circ} \%$ of carbon dioxide. The gas used for the second series was, in addition, distilled several times, and it contained $98^{\circ} \%_{0}$ of carbon dioxide. The measurements were made in exardy the same fashon as in the case of hydrogen and of air.

Carbon dioxide.

Just as with the other gases there is here no definite direction to be recognized in the differences, so that we may again conclude that in this case the dispersion is independent of the gas pressure u_{1}, to the saturation pressure.

The mean values are:

$$
\begin{array}{rrrrr}
0,8428 \pm & 1,07735 & 1,16501 & 1,2687 \pm & 1,37391 \\
\pm 1,2 & \pm 0,6 & \pm 0,8 & \pm 1,2 & \pm 1,7
\end{array}
$$

from which follow these values for the dispersion constants:

$$
\text { (iac.) } \quad \text {. } \begin{gathered}
n-1 \\
n_{b}-1
\end{gathered}
$$

a	0.64413	0.99374 ± 0.000014
b	0.54623	1
c	0.50573	1.00339 ± 0.000006
d	0.47234	1.00742 ± 0.000007
c	0.43597	1.01259 ± 0.000010
f	0.41478	1.01813 ± 0.000013

In the next tahle these results are eompared with values obtaned either by graphical interpolation or by eatenation from interpolation

 larities which were not contirmed by subsequent observers, are not imolnded.

Perrean Rentschler Koch Stuckert Gruschke Siertsema

0.644	0.9936		0.9938	0.9917	0.9929	0.9937
0.546	1	1	1	1	1	1
0.509	1.0033	1.0130	1.0031	1.0051	1.0033	1.0034
0.472	1.0072	1.01053	1.0071	1.0110	1.0082	1.0074
0.431		1.0096	1.0127	1.0173		1.0126
0.405		1.0154				1.0181

The atreement with I'RREAt and Korn is good, and with Grescure: not quite an wool. Raxacmare's results deviate considerably, just as with air, and ot too do steckerts.

The imerpotation formula calculated as before beomes

$$
\because=\frac{n-1}{m_{1}-1} \quad 0.97781\left(1+\frac{0,0065808}{1.2}-\frac{0,00000014}{2^{2}}\right)
$$

1) F. Prorbat Am. de Ch. ef de Ph. (7) 7 p. 345 (1896).
\therefore II. C. Restamber Astophys. J. 28 p. 357 (1908).
") 1. Kinh Nova acta req. soce stient. Lpsaliensis (4) 2 No. 5, p. 46 (1909).
${ }^{3} 1$. Sterkekr. Zaitechar. f. Fektrontemie 16 p. 67 (1910).
${ }^{5}$ (i. (ikrachke. Amm, d. Pho (4) 34 p. S10 (1911).
${ }^{\text {b }}$) E. Mamakt. Am, de léc. norm. (2) 6 p. 61 (1877).
in which 2 represents the wate-lenght in air. It gives the following differences hetween obsemed and ralentated valums:

	'(air)	${ }^{\text {c }}$ (cal)	${ }^{\prime}$ (obs)	10.0
a	0.64385	0.99379	0.99374	5
b	0.54608 "	1	1	
c	0.50859 "	1.000338	1.00339	1
d	0.47221	1.00745	1.00742	3
e	0.43585 ,	1.01258	1.01259	-1
f	0.40467 "	1.01811	1.01813	-2

In this ease, too, the theoretical dispersion formulat

$$
\begin{aligned}
& n^{3}-1 \\
& n^{2}+2
\end{aligned}=\geq \begin{gathered}
\sum_{1}^{2} \\
3 m_{1}\left(v_{1}^{2}-v^{2}\right)
\end{gathered}
$$

even with only one erm in the sum, gives quite whed agreemon. As with hydrogen we ohtain from it:
 The following table gives an itea of the degree of eomespmemes:

	${ }^{\prime}(\text { vac. })$	$c_{(c a l)}$	${ }^{\text {c }}$ (obs)	$10^{5} \sim$
		-		
a	0.64403	0.99391	0.99374	+ 17
b	0.54623	1	1	
c	0.50873	1.00334	1.00339	- 5
d	0.47234	1.00741	1.00742	-
e	0.43597	1.01258	1.01259	-
f	0.40478	1.01823	1.01813	+ 10

A subsequent parer will deal with the aboblute valuen of the refractive indices of air and of eatom dioxide.

1) These proccerling: 1911-1\% p. 602.

Microbiology. "10n the compusition uf tymesimss from turo

The product of the atedion of tyrosinase on trosin is commonly callent metanin, whose colour may he jet black, but lakes all shades belwoen light brown, pure red. bownish red. sepia and black in experimental conditions. There pigments are of motommon stability and resist eren heating with strong alkalies amd sulforid add, wherebe the Wack pms somewhat into brown but in chief remains mohanged. Deven when boiled with nitrie acid the melanin remains almost unchanged. It is areepted that the pigment of the hair and hide of higher anmals is asociated with these substances and is derived from tyrosin.

Wokemin formation by s!mbiose of an Actinomyees with a bacterium.
On a culture plate of the composition: distilled water, ${ }^{2} \%$ atrar, 0.1 "'。 yrosin (disolved in a few drops natrimmerbonate) and $\left.0.02^{n}{ }^{\circ} \mathrm{K}_{2} \mathrm{HP}^{\prime}\right)_{4}$. 0 m which some eentigums gaden soil are sown and Which is kept at $30^{\circ} \mathrm{C}^{\prime}$.. humdreds or thonsamds of litte sods of Actinomyeres (strpotothrix) will develop atter two or three days. The tyrosin serves at the same time as sombe of carbon and of nitrosen. But the agat itself also is attacked by these microber, althongh with difienlfy and used as food. This is not surprisimg as many Actimomymesperies can even live on cellulose as sobree of carbon.

The eommon hacteria of the soil develop not or hard!y on the tyrosin pate and camol in the given ciromastances compete with the slowly growing tetimomyers ats they do on better media, e.g. on both agar, where Actimomeres never oreurs when bacteria are present.

As the delicate threads of this genns enter deep into the agar, the plates may be freed by washing from the baterial colonies and the adhering soil: then the Acfimomyces sods can be easily comnted. In homus and humus contaming soil their number is amazing. When they (an freely multiply on plates which are poor in food their growth is untimited and they produce sods of great extension, even of one or more devimeters in surfare, commonly producing very fine myedial-rings, which by turns hear spores or not. These rings are independent of light and surgest a periodicity in the mutrition not yet fully explained.

In somewhat extensive culture experiments, similar to the above, it may with rertainty be expected that at some places brownish
red or jetblate spots will origmate. The brown spots are pathsed by the oxitising ation of some common mil hatererita, which produce a red ob brown-red pigment from tymsin: the batek ones, camsed by molanin, which will be mome matoly comsidered here, have quite another origin.

In or near the centrom of these hathe spots always lies a colong of Aetmomyes. Streaks on new colthre phate of the said composition to obtain a pure cuture, give the sumpring result. that the orgatism can vigotonely grow on the tyrosin bot produces mo pige ment at all. A more minute examination shows further, that the black plants of Atfimmores lie under a thin, ghass!, tramspurent layer of tine rot-bacteria. This layer covers like a crun the jet-bard sods of Actenomyces and prevents them firom producime spores, which does take place on that part of the myelima, which develops ontside the bacterial cover. If from this layer the hacterium is lnought into pure colture, which is easily dome on brothgelatin- or brothagarplates, it proses to be ant extremely delfote polat ciliate rodtet, which forms no spores and strongly lipuefies collure gelatin. Streakof the pure collure on a tyrosin phate produeds no melamin at all, so that in this respect the becterimm resembles detinomypres.

It is obvious that we here hase a case of pigment fommation reposing on the symbiose of the two organisms. Experience show that this supposition is right: their combined streats on a new tyrosin phate proluce heantif! hatek soots of any extension. Athey can both be very well grown on better media, such as hrothagar, the experiment is, the tirst isolation effected, easy and interesting. The experiment may be improved by providing the coulture phater with a better souree of cartron heside the tyrosin, for which ghense and peptone proved partionlan! useful. On the other hand, additions of an ammoniumsall or of nitrates had no eflect.

In order to ascertam which of the two organisms in the real couse of the melanin production. the following experiment was made.

On an agar-tyrosimplate of the sat composition, parallel streakof both organisms were drawn with some millimeters, distance hetween. The result was not dabions: after a few days the atreak of Actimmyces vigoronsly developed and covered with snow-white spores, but for the rest were quite colompese. 'The hacterial streakn. on the other hand. Which had developed to a thin, hardly visible transparent layer, had beorme jet-hack whereser they were near Actinomyces. The following must therefore take place: fetmomyeres decomposes the tyrosin and produres from it it colourtess chromo. gene whioh is comverted into medanin by the baterimm and easily

Proceedings Royal Acad. Amsterdam. Vol. NY.
dilluses thmorh the agar. evidently without spontaneously oxidising at the air.

From the foregoing it is elear that defmumpers an well as the hacterium, can only be found in qualen soil when germs of both -perem wror in each others immediate vicinity. lo promote this weourvenere I have tried dirst on lit agapplates to grow Actinomyes and bater thoted them with a trosin solution, in which the melanin hacterinm was present in so great quantity, that it conld develop anywhere on the phate after the tyrosin had difused.

As the various specins of tefimmyres are very vigorous polyphagous microbes, which develop especially in dilute media at the side of the common bacteria. the most different food may be used for the first part of the experiment.

So, an agarplate, only containing some potascimmfosfate and anmoniumsulfate, was sprinkled with a little dry innlin mixed with garden soil. The soon developing flora was washed off under the tap by which the loosely adhering bacterial colonies logether with the nondecomposed inulin. were remosed. The agarplate was now clear again but in the surface were hundreds of Actinomyces colonies which had not been removed by the washing, as they had penetrated too deep into the ayrar. After treating with the trosin solution in which the melanin bacterinm was suspended and a renewed cultivation for some days at $30^{\circ} \mathrm{C}$., black molanin spots appeared around some six colonies of Actinomyces; this species must thus be rather common in the soil.

The trrosin Actimmyes can also very easily be isolated from the roots of the elmoree (L'mus compestris), in whose dead periderm cells an almost pure I Itmomyces flora occurs, as I demonstrated before ${ }^{1}$). For the development of this tlora some of the hairroots are carefully washed, to remove the adhering soil and are then ground in a mortar. The thus obtained brown paste is diluted with water, mixed with the tyrosin bacterium (which however is also rather common on the elm roots themselves), then sown out on a tyrosinplate of the above composition. After a few days mmerous colonies of Actinomaces develop at 30° ('.., among which some jet-black ones.

Here it should be called to mind that the two organisms produce no pigment on peptone or broth-containing media, neither each for itself nor in combination. But herefrom cannot be concluded that at their cultivation from peptone no trosin originates. Nevertheless the conchusion must be drawn, that if at the splitting of the peptone

[^22]fyrosin is inded formon, in is axidined in another way but not to melanin.

That this \therefore defomapes mast bolome to another speries than foptnumgers chemmethes, so eommon in ome enveromment. is atwions. The latter mamely is chamateriaed by the production of a datk hrown pigment from pepten, thut hot from tromin in which, as I have formerly ${ }^{2}$) shown, under certan eiremmstanes chimon may be fomm.

Several other species of Actimmmotes prodmee bhe, red, of yellon pigments. Whereby, as to the hate and red the simultammat presence of certan ratieties of hat hateria is favomable. In this rane it in not tyrosin, but erluose, malates and bitrates that form the chrombogeneors food, so that the symbiose is then evidenty ascoriated with other factors than those ardive in the production of motanin from tyrosin.

Hitherto I have nor yed been able in lignid calturen with the help of Lefinomy/res and its symbiont to produce a somewhat considerable guantity of melanin. This ronk not be foreseen as this gemus is as common in the mad of moats and camals an in tarden soil. But some experiments as the above to find onr tetinumyers in mad gave no result. so it seems that this speceies at least is a real inhabitant of the moit.

That pigment production in this case is difiondt in liquid media.
 it as readily in liguid an in sold media, is pertaps owing to the general propries! of Sctinnmyces to grow hut slowly in solations protally in consequence of the linte tension of the dissolved oxygen. Dicrosipire, on the other hand, is is a trme water microbe evidenty better adapted to that temsion.

Theory "f the melumin formation ").

In physiological chemistry it gencrally arcepted that at the tyonin reaction from the fyrosin fist originates homorentisinic acid. ammonia and carbonic acid after the formula

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NO}_{8}+\mathrm{O}_{8}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{NH}_{8}+\mathrm{C}^{\prime} \mathrm{O}_{2} \\
& \text { Tyrosin Homogentisinicacid }
\end{aligned}
$$

and that only afterwards by a new oxdation the homogentisinio acid is converted into melanin.

[^23]This migh give a good explanation of the symbiose experiment, supposing that Actimomyces produces homorentisimic acid from tyrosin and that the symbonto baterimm oxidises this avod domelanin. Taken for erranted that these two processes ate due to two separde enzymes. this conecption may be called "he two enzymes theory" of the melanin production.

In order to obtain more certainty regarding the correctness of this suppositon, I made some experiments with the soda salts of the homogentisinic arid $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ and compared the results with the conversion of the calciom and soda salts of the gentisimio acid ($\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{4}$). Both substances 1 owed to the (hemical Laboratory of the Technical University, the homorentisinie acid as lead salt, which I ronverted into the soda salt, the gentisinc acid in free state. Both behave towards microbes in a corresponding way, but the gentisinic acid oxidises more greater difficolty.

I also receised from Professor Pbebhamas the lead salt of homogentisinic acid, prepared from urine, but this could not be distinguished from the other.

At the preparation with these substances of nentral or feebly alkaline agar plates, on which the oxidising microbes were to be grown. the difticulty arose that already during the heating at the air a brown colour appeared, which was not the case when cold. It could, however, with certainty be stated that, as was expected. Actinomyces produced no pigment from these acids; on the other hand. the symbiotic bacterimm gave a dark brown colour, which may finally run into jet-black. As this bacterium produces some alkali, it might seem doubtfal whether this alkali might be the eause of the more intense pigment proturtion, or if any oxidising enzyme, produced by the haterinm. Were artive in this case. By eations! nentralising the existence of an oxidase. which difhses in the agar to a relatively great distance from the bacterial colony; could be ascertained. It is clear that the thus found emzyme might be called "homogentisinase". It will he reen by and hy that it also ocours in higher plants and perhaps corresponds to the common lacease.

The formerly demeribed Jierospira typosimutice (l.e.) living in the sea and in sewagewater, oxidisen tyrosin direcoly to melanin without intervention of any other organism. That this is done here also by a vigoronsly artive tyrosinase is easily shown with the form living in the sea, the baclerim, when killed by choroform, being still able to canse the melanin reaction. I think it is proved now. that also in this case the frosinase consists of two enzymer, as it is possible with Dicrospion to oxidise the homogentisinic acd to a dark pigment.

In onder to asertain hon in this respect the tyrosimase of the higher plants behaves, I took strong wronate preptumbons derived from the potato, the beetront and Jaters of limplopthin Lathemes's) Which quickly colow tyrosin solution- deep blark, and made them wet on homogentisinic acid salts. The latex of Simphomen buthyris is extremely tit for these experiments as it can atway he mate to drip from the living plant, which supports on winter very well in the garden. A single drop on an agartyrowin plate at from 30° to $0^{\circ} 0^{\circ} \mathrm{C}$ forms deep black molamin spots after a few homs already. Sut homogentisinic aded can also be oxidised with great relocity. For this experiment I nsed an aquplate of this composition: water. 2^{0} oagar, $0.5^{\circ} \%$ natrimm homoqentisinate. 0.02° 。N $H_{4}\left(1 /\right.$ and $0.02^{\circ}{ }^{\circ} \mathrm{K}_{2} \mathrm{HPO}_{4}$.

On this plate drops of the latex were put and besides streaks were made of Actinomyces and the symbiotic bacterium. After some hours, at 30° C., dark brownish hark fields appeared, evidently more readily formed than the black fields from the tyrosin.

After about 24 hours Actimemyces also hegan to grow but no pigment at all appeared, as was to be expected. The symbiotic bacterium did not develop under these conditions. But some broth being added to a like medium the bacterium could grow and oxidised the homogentisinie salt to melanin. so it is centain that also the Errosinase of Euphorbia Lathypis mast be a mixture of two oxidising enzymes; one of these. which may preserve the name of tyrosinase, produces homogentisinic acid from tyrosin, the other, "homorentisinase", forms melanin from the arid, and corresponds with the oxidase of the symbiotic bacterium. This enzyme requires no special name as "homogentimase" and "lacease" are probably identic.

Although the "lwo enzymes theory" of the tyrosinase may he considered as confirmed by what precedes, still it should be called to mind that, when a method of experimenting is used somewhat deviating from the described the above result with Eiphumbir Latyris is not obtamed. Such is. namely, the case when the mitly juice of the plant is put on agarplates with homogentisinic arded salt. With addition of oroth for the bacteria. Then the surprising fitct ocourthat the bacterium is active but the latex is not. Wherenn this difference reposes is not clear.

Finally it may be mentioned that the existence of two enas mes in the tyrosinase of the beetroot was ahready made probable by P. C. van der Work (Recherches ausujet de certains, pronesses enzymadiques chez Beta culyaris, Nimègue 1912).

1) The latex of Euphortiu polustris, E. Peplus, E. helioscophu, E. Mysinitis, conlain no tyrosinase

Mathematics. "(m) sirimerim puints in romerion mith systems. "f nime arold puints ai pleme compes ai order Ba." By Dr. W.

16inmmunicated in the meeting of December थs 1912).
\$. In a former commomieation "has heen indicated what is the locus of the point forming with eight wiven paints as sysm of nime modes of a non degencrated plane sextic come; here will be treated a more general problem induding the preceding one as a parlicular case.

Ton that end we remark that hy nime abhitarily chosen points
 points is dotermined: in meneral howerer this C_{3} is a cutbic corve combled ${ }^{0}$ times. So the problem we propose now is: "Eight points $D_{1}, I_{2}, \ldots, D_{\text {, being given, }}$ (o) determine the boos of the point D, mader the condition that the nine points D, ean be o-fold points of a curve (is not detrenerating in the mamer mentioned.
§ 2. As we shatl find hy and by this problem is very closely related to the following one: "Let $B_{1}, B_{2}, \ldots, B_{9}$ be the base points of a poncil (B^{\prime}) of cubic curves, and u_{s} any courve of this pencil. On u_{s} lie $\left(9^{2}-1\right)$ points s each of which forms with B_{5} a stemerian pair: of order s. To determine the locus of these promts S, if u_{s} dereribe the pencil (3 $\left.{ }^{\prime}\right)^{\prime \prime}$.
5.3. We start by treating the first of the two problems.

So the bight points $D_{1}, D_{2} \ldots . D_{4}$ are given and we have to determine the forus of the ninth poim $D_{\text {s }}$ satisfing the condition sated. In the quoted memoix the case $o=2$ has been treated: for conventence sake we repeat here the primepal results.

Then we orcupy ourselves with the gase $0=3$ before passing to
 Amsterdam, wol Xilli, p. bies

Compare also Dr. V. Sxader, "The imoluporiel biretional trensformution of

\Rightarrow Two poins P and Q of u_{3} form a Stemerian pair of order n, if it be possible (1) inseribe in u_{3} ome and therefore an infinity of closed polyrons with $2 n$ vertices. 1har sides of which pass attermately through P and Q. Litercture: Stenser (dour-

the general case of an abhitary ". But we wish to give just now one theorem where of has aheady an! ambrary value:

 $D_{1}, D_{2}, \ldots, D_{9}$ "

For the froot it will sultice to remati, that the nine points lie on a cubic curve u_{3}; so the penil mentioned is represented by

$$
c_{3 z}+i u_{s} c=0
$$

§ 4. By $D_{1}, D_{2}, \ldots ., D_{4}$ we will henceforth denote arbitrarily chosen points; we represent by $\left(\beta^{\prime}\right)$ the pencil of courses co passing through them, by $B_{\text {g }}$ the ninth base point of this pencil. So the principal resuits, obtained for $0=2$, are the following:

1. "The locos of the prom forming with $D_{1}, D_{2}, \ldots ., D_{4}$ a set of nine nodes of a non degnerated ${ }^{3}$) c_{n} is a curve j_{0} of order nine passing three times through $D_{1}, D_{2}, \ldots, D_{8}$ ".
II. "This curve i_{9} is also the locns of the points corresponding with B_{9} in tangential point on the curves of pencil (B')".
III. "Let u_{s} be any cubic of $\left(\beta \beta^{\prime}\right)$ and (${ }_{n}$ any sextie passing three times throngh $D_{2}, D_{2}, \ldots, D_{s}$. Then the line joining the last two points common to u_{s} and c_{n} will meet u_{s} for the third time in the tangential point T ' of B, on $"_{3}{ }^{\prime}$.

Before contiming our comsiderations we wish to correct the presceding communication. We have indicated there that B_{9} does mot lie on j_{9} : indeed this is so, but one of the proofs - the geometrical one - may give rise to diftionties. Therefore we once more prove here: F_{9} does not lie on j_{9}. To that end we consider i_{9} as the locus of the points on any curve of (h^{\prime}) corresponding with $l_{\text {B }}$ in tangential point. Now b_{9} will be a point of j_{9}, if and only if one of these points coincides with B_{y}, which only can happen if B_{0} is a node for ond of the "urves of (a'). ()f these modes - the 12 so called "eritical points" of the pencil - none however conncites with one of the base points, if - as it is the case here - eight of the bave points have been chomen arthtramily. So f_{y} does not lie on j_{9}.
$\$ 5$. We now pass to the case $o=3$.
We still denote by $D_{1}, D_{2}, \ldots, D_{4}$ arbitrarily chosen points,

[^24]Whilot $"_{2}, B^{3}$. B, and I keep we siqnification ansigned to them in aty 4. Xow the grestion is for determe the locon of the point forminge with /O. D...... I), a set of threctiod puints of a som dearememated a $_{\text {. }}$

In urder 10 detemme a conve $e^{\text {a }}$, pasing three times through 1). I), D, we (an imply 10 it the condition of contaning six ambrary points. of these six points however mo more han two ${ }^{2}$) may lie on u_{s} : then the last point rommon to $"_{s}$ and c_{0} o is determined inequiverally. We will show immediately how the latter point fan the found: provisonally we sat from any c^{\prime} w wh the eight eiven threofold points, cuthing es in an abbinarily chosen fixed point \therefore. This i_{0} cuts u_{s} in two points more: the line connecting these two promst has still a third print $l:$ with u_{s} in common: ateording to the lissilual 'Thromen of simester the laffer point is a fixed point, i. e indepentent from the chosen combe patsing through X. Now We first determine the point E : to that end we choose a ${ }^{\prime}$, breaking up into a curve r of pencil (B) and a curve c_{n} passing twice through $D_{2}, D_{2}, \ldots . D_{\text {a }}$ and pasing moreover through X. We have seen that this f_{6} cuts $u_{\text {s }}$ in one point $)^{\text {more, being collinear }}$ with I and T, IIL) : moreover $"_{\text {s }}$, and r_{s} have $B_{\text {s }}$ in common. so the point E is the thire point of intersection of the line fils, and Ha_{s}.

If mow we fix on u_{3} wo points X, λ^{\prime} and consider a conve c, with threefold points in I_{1}, D_{2}, \ldots, D, and rutting I_{3} in X and X^{\prime}, then the last point of intersection of this F_{3} and u_{3} can be found as follows: we first determine in the manner indieated the point E : then the third point of intersection of the line $E_{i} X^{\prime}$ and u_{s} is the point lonked ont for.
lemoth: We have stated, that any (s, with $D_{1}, D_{2}, \ldots, D_{\text {s }}$ as threefold proints meets u_{3} in three points more: evidenty this does not hold if this c, breaks up into two curves one of which eoincides with u_{3}. In this case the residual crure of order six must be determined in such a manner that it admits on u_{s} nine modes, eight of which lie in $I_{1}, D_{2}, \ldots,()_{*}$. so we fall back on the case $\rho=2$, but we coan discard this by requiring that D, has been determined in such a way that the equder disenssion does not break up, neither
 of which admits a mode in any of its points of intersection with the former.

[^25]\$6. It is now immediately chan that there are fom promis in

 E as tangential point: likewise that any (on what the theefold points $D_{1}, D_{2}, \ldots, D_{\text {s }}$ tomehing $H_{\text {s }}$ will fut this courve in X .

We now will try to determine $\mathrm{I}^{\mathrm{I}} \mathrm{in}$ such a way that at comedens with one of the four points of which E is the langential point: in that (ase any 0_{0} with threefold proints in $\left.\left./\right)_{1}, /\right)_{3}, \ldots$, I) and touching u_{s} in X, will have in X a thite point in common with u_{3}.

Let us suppose that the point X has heen dmermined so as 10 satisfy the condition mentioned; then we can deswribe in H_{x} closed hexagons the successive sides of which pass atternately through B_{3} and I. If we choose B_{3} as first vertex and I^{2} js the thind point of intersection of $I s_{9} X$ and $\|_{3}$, then there is a closed hexagon with the

Fig. 1.

Fig. 2.

So the points I to be determined are the eight points carch of which forms with B_{9} on χ_{8} a Steinerian pair of order three. ${ }^{1}$,
\$ 7. We now choose one point ont of these 8 and call it Λ_{1}. If we then require that $\left({ }_{3}\right.$, hats threefold points in $I_{1}, I_{2} \ldots, D_{s}$ and tonches u_{3} in X_{1}. we can assume arbitrarily four more points $K, L .1 /$. I ' of this curve. which as we have seen above has in I_{1} still a third point in common with μ_{9}. Provisionally we suppose L, M, N to he fixed points but K to describe a right line k through
${ }^{1}$) That B_{9} and the point $I^{\text {v }}$ satisfying the imposed condition form on u_{3} a Steinerian pair of order three can also easily be shown by representing the points of u_{3} by means of an eliptic parameter. If β is the parameter value for $B 3$ and x that for the point A taken provisionally at random, we find for the values corresponding to T, Y^{Y} and E respectively - $23,2 \beta-x$ and $x-3 \beta$. So the condition that E be the tangential point of X is $3 ; \quad 3 x$. Chitlly tor the cases $p=4,5, \ldots$ presenting themselves later on the use of this parameter proves to be very convenient. Compare lilesch: Vorlesungen über Geometrie (p. G1河).
$I_{\text {, }}$ ditherent from the tangent to n, in $X_{:}$: then the C_{9} describes a pencil. one coure of which pases through any point of k. The coinvilenee of K° with λ_{1} then furnishes a C hwing in X_{1} three pointe in common with u_{s} and two points with k : so this (ghas a node in
 alongr $L_{2} X_{2}$ to X_{1} and afterwards $I /$ along $I X_{2}$ to X_{1}, we generate a (', having still threefold points in $D_{1}, D_{2} \ldots D_{\mathrm{s}}$, now admitting a nis:th threefold point in X_{1} and passing moreover through an anhitraty chosen point \backslash (compare $\$ 3$). So the point X_{1} is a point of the come is under discussion. Therefore:
 prints more It is al the seme time the locess of the proints forming

§ in. In onder to determine the eurse j, more elosely it is necessary so know the order of moltiphicity of the points $D_{1}, D_{3} \ldots D_{8}$ On it, i. e. how many times eath of these points happens fo form with B_{3} a stemerian mar of order three on a curve of (β^{\prime}). Let u_{3} liy. 2) he once more ath athtrary forve of $\left(\beta^{\prime}\right)$; then we projert B_{0} out of l_{2} on l_{3} (i. e. we determine the third point A_{1} common $10 I_{2} l_{3}$ and u_{3}. from this point A_{2} we projeet D_{1} on u_{3} into A_{8}. from A_{0} we once more propert B, on n_{3} into A_{s} and so on. alternately propecting B_{0}, and D_{1}. Then we allow n_{8} to describe the pencil (b^{\prime}) and determine the loci of the points $A_{1}, A_{2}, \ldots . A_{n}$; then every commedence of A_{1} with J) points to a comve out of (\vec{b}^{\prime}) on Wholl l_{8} and D_{1}, form a stemerian pair of order three.
so we find for the loons of
A_{1} : the line $D_{2} P_{n}$:
A_{2} : a \ddots_{3} with a double point in I_{1}, not passing through D_{s} and B, bul combaining 1$\left.)_{3}, 1\right)_{4} . . . I_{s}$:
A.: a $\left(_{0}^{\prime}\right.$ wihh an ordinary point in D_{2},
a threcfold point in I,
double poims in $D_{s}, D_{4} \ldots D_{s}$,
a fourfold point in B_{9} :
A_{4} : a C_{12} with a sixfold point in D_{1},
a threefold point in D_{3},
fourfold primts in $D_{3}, D_{4} \ldots D_{0}$,
a double point in B_{9};
.1.: a $C_{1,}$ will a fourfold point in D_{1},
a sevenfold print in I_{z},
-ixfold puints in $J_{3 .} . I_{4} \ldots . D_{,}$
a sinefold proint in b_{9};

$$
\begin{aligned}
& A_{n}: a{ }_{z a} \text { with a lwetretold pint in } D_{1} \text {, } \\
& \text { an cighlforl point in / } z_{z} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { at sisfold puint in } / \mathrm{B} \text {, } \\
& A_{2 n} \text { : a (isn" with a } u(n+1) \text {-lold point in } D_{1} \text {. } \\
& \text { at (} \left.n^{2}-1 \text {)-fold print in } /\right)_{2} \text {, } \\
& n^{2} \text {-fold points in Ds, I) ... (I, } \\
& \text { an } n \text { in } 1 \text {-find point in } l ; \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { an } \left.\left(n^{2}+n \quad 1\right) \text {-find point in } /\right)_{2} \text {. } \\
& \left.\left(n^{2}+n\right) \text {-fold points in } D_{3}, D_{4} \ldots . . I\right)_{0} \\
& \text { inn }(n+1) \text {-fold proint in } B_{n} \text {. }
\end{aligned}
$$

We prove this as follows. It gres withont saving that the locons of A_{2} is the lime $I_{2} B_{n}$. Through any point A_{1} of this line on econeve u_{3} of (β^{\prime}) passes and this curve is cout by $I_{1} I_{1}$ for the third time in A_{0}. In D_{1} we draw the tament to N_{s} and we indicate by $A_{1}{ }^{\prime}$ the point common to this tangent and $I_{2} B_{0}$. Now if u_{3} describen the pencil $\left(B^{\prime}\right)$ it will happen twice that A^{\prime}, and A_{1} 'comeide; in each of these two cases $A_{\text {, }}$ coincides with D_{1}, so that D_{1} is a double point of the locus of A_{2}. This point A_{2} deseribes a rational cubic curve. to be indicated henceforth by ${ }_{8}$, any line through D_{3} having only one more point in common with this curve. It contains the points $D_{8}, D_{4}, \ldots, D_{4}$, as $D_{2} D_{8}$ (outs eath of the limes $D_{1} D_{3}$, $D_{1} D_{4}, \ldots, D_{2} D_{\text {s }}$ in one point.

Let us now consider the locus of A_{3}. It is immediately evident that D_{1} is an ordinary and D_{2} a hreefold point of this locus: for θ_{3} is cut by $B_{3} D_{1}$ in only one, by $B_{3} I_{3}$ in three points; in the same manner we prove $I_{8}, I_{4} \ldots . . D_{4}$ to be donble points. so we have still to investigate how many times $A_{\text {s }}$ comondes with B_{2}. Let A_{2} be once more an abbitray point of u_{3} and u_{3} the come of (p^{\prime}) through A_{2}; then the tangent of n_{3} in B_{n} cuts u_{3} in three points $A_{2}{ }_{2}$. So the pointis A_{0} and A^{\prime} g generate a correspondence $(1,3)$ furnishing - e_{s} being rational - + eoincidences. Any coincidence of A_{2} and A_{2}^{\prime} gives a coincidence of A_{3} and B_{2}; so A_{3} describes a curve of order seven, to be indicated hencelorth by as a $_{0}$ any line through $B_{\text {, containing three points more of this bocus. }}$

We can prove that β_{4} is a fourfold pint of $e_{\text {, }}$ also as follows. In case A_{2} coincides with one of the points A_{2}^{\prime}, A_{2} is at the same time the tangential point of B_{8} on the curve ont of (B^{\prime}) through A_{2}. So the nmmber of points common to u_{3} and the thmpential curve of B_{0} - i. e. the locus of the tangential point of B_{0} on any curve
of \quad. amomb to four. the common points comeiding with the hath puin- of 3^{\prime} dincegated: for, the tangential curve is of order finu amb admita F, an threefold point whilst it pases only once through
 arder seven. From the mamber of the double points we deduce that $u_{\text {, }}$ is rathonal: this is right. for it corresponds point by print with hee lare //: $/$?
A. Th the locus of A_{4} it is immediately rieal that B, is a double pmint and $/$ y, a threefold pmint on it, while it passes four times thonth $/)_{s}, D_{8} \ldots, D_{\text {. }}$.

The tangential curve of J_{1} is coll by $u_{\text {, }}$ besides in the hase prints in if pumb more 2 which implies that D_{2} is a sixfold point on the foros of $A_{\text {, and that this dorve is of order twelve, any line through }}$ /) comaining six more points of it. In the same manner we determine the loci of the points A_{5}, A_{i}. ete. and then the loci of A2n and $A_{2 n+1}$ cian be fonnd by the Bemontlian methot. Provisionally we only still wish to remak, that the locus of A_{6} has an eightfold point in $/$), for this proves that the points $B_{\text {s }}$ and D_{1} firm fwo steinerian poins of order three on 8 chares of (β^{\prime}).
\$9. L.et 11s return to the point we stated from. We have seen that the curse i under discussion - the locus of the ninth threefold point - is at the same time the locus of the points each of which forms whth B_{3}, stemerian pair of the third order. (On each curve of (ar lie besides the base points eight points more of j_{i}; moreover D_{1}, I_{2}, \ldots, I_{4} are mightfold points of $i_{\text {s }}$

We have now 10 invertigate whether B_{3}, hes on j_{x} or not. This
 one of the eight points each of which forms with it a slemerian par of the thind order. However it is easy to prove that a suchlike conmedeme of two stemerian points san only present itself in a node: for the group of the mine inflexions this is immediately evident and for the other groups of stemerian points of the thid order it ran be deduced from this by progection. Now B_{3} is not a node of a curve out of (a^{3}) ; so it does not lie on i_{x}.

As the number of points common to ix and u_{3} amonnts to 72 we find:
"Thee crerrer is is "fo order herety-foum; it hess $D_{1}, D_{2}, \ldots, D_{s}$ as eighlemel puints."
§ 10. We will enumerate some points of j_{x}, which curve will be denoted turthermore by j_{24}. It is cut by the line $D_{1} D_{3}$ in eight
more points; any point I of there cight determines with $\left.\left./)_{1}, /\right)_{3}, \ldots, /\right)_{2}$ a pencil of conves e_{0} with threefold points in these nine pointo. Any other point (e of $D_{1} D_{2}$ devermime a rarve eg of this pemeit having ten points in common with that line and breaking up therefore into that lime and a curve (" with double points in $D_{1}, D_{2}, 1$ ' and threefold points in $\left.I_{2}, I_{4}, \ldots.\right)_{4}$. so any point of intersection P of $D_{1} D_{2}$ and j_{24} is at the same time a note of a cis forming with $D_{1} D_{3}$ a c_{0} with nine threefold points. At lirst this result may seem astonishing; for we cim indicate decen points on $\left./)_{1} /\right)_{2}$ each of which forms with $D_{1}, I_{2}, \ldots, I_{s}$ a'set of nime threefold pointof a c_{3}, and of these eleven points we find back ejght only. But the three other ones prove to determine it cand therefore apencil of eurves c_{y}) excluded from the begimming.

To prove this we consider the nei $|d|$ of eurven ${ }^{\text {a }}$, determined by the six threetold points $I_{3}, I_{4}, \ldots, D_{s}$ and the double pointD_{1}, D_{3}; the curve of Jacobr of this $[d]$ is of order twenty-one and, as it passes five times through D_{1}, D_{2}, it is cut by the lime $D_{1} I_{2}$ in 11 points more. So $D_{1} D_{2}$ contains 11 points each of which is a node of a c_{s} belonging to $[\boldsymbol{d}]$.

Now let us consider the curve c_{5} passing throngh D_{3}, D_{2} and admitting $D_{2}, D_{4}, \ldots, D_{s}$ ats nodes; this completely determined courve cuts $D_{1} D_{2}$ in three points E, H_{r}, t_{r} more. Each of these points lies on the eurve of Jacom of $[d]$, for c_{5} forms with the curve c_{3} of (β^{\prime}) passing through E a c_{s} of $[d]$, of which the point E is a node; likewise these two curves form with the line $D_{1} D_{2}$ a curve eof which $D_{1}, D_{2}, \ldots, D_{s}$ and E are threefold points. However E does not lie on j_{24}, for this c_{9}, ean be considered as the combination of a t^{2} of $\left(\beta^{\prime}\right)$ and a c_{6} and this combination has been excluded beforehand (5.5). But it is evident that $E, F_{,}, G^{\prime}$ do lie on the corve j_{2} guoted in $\$ 4$.

The eight remaining points of intersection of line $D_{1} D_{2}$ and the curve of dicobi of $\{d\}$ do lie on $j_{24} ;$ so on tach of the 28 lines $D_{i} D_{k}$ can be indicated eight points of j_{24}.

Moreover j_{24} is chl by the conic $D_{1}, D_{2}, \ldots, D_{5}$ in eight more points. These lie at the same time on the curve of Jacom of the net $[\varepsilon]$ of curves of order seven passing twice through $\left.D_{1},()_{2}, \ldots, l\right)$ s and thrice through D_{6}, D_{z}, D_{8}. This curve of Jurom of order eighteen is cut by the conic $D_{1}, D_{2}, \ldots, D_{5}$ in eleven more points; of these however once more three do not lie on j_{24}, i.e. the points common to this conic and the curve e_{4} passing once thromgh D_{1}, D_{2}, \ldots, D, and twice through D_{6}, D_{5}, D_{s}.

So on each of the 56 conics $I D_{i} \quad I_{k} \quad D_{l} \quad\left(I_{m} \quad I\right)_{n}$ can be indicated eight points of j_{24}.
811. We mow treal in a smmmary way the general cave: ? i - an arhitrary namber.
(Hme more the athitatily chmen poims $\left.D_{1}, D_{2}, \ldots.\right)_{s}$ are given and the gheation is 10 determine the lows of the point forming with these wiven puints a set of wine s-fold poims of a mon derenerated conce of onder Bo. In the same way as we have used the results whithed for $a=2$ in the solution of the problem for $a=3$, we can olve the suressive cares $0=4,5, \ldots$ hy ung every lime the re-ults whathed in the immediately preceding ase. so we consider for $:=4$ at list a varible c_{2} with fourfold points in $D_{1}, D_{2}, \ldots, D_{4}$
 determine the third point of intersection of ${ }^{\prime} e_{\text {s }}$ with the line connecting the las fwo points of intereection of ${ }^{\prime}{ }_{2 s}$ and u_{s}, which point is independent of the chonice of ${ }^{\prime}{ }^{2}$, elte.
bint before we sate our results mone in dotail we wish to make a remark. We timd, that aty point D, whith cath present itself as nimh o-fold point of at mon derenerated ras mast coincide with one of the points forming with $B_{\text {, }}$ a scenerian point of orde: s. The
 $D_{1}, D_{2}, \ldots . D_{\text {. }}$. Now howerer it in evident that this curve degenerates in several cases. So, if e.g. we consider the case $a=6$, we shall find among the point fomme with b, on a come of ($\boldsymbol{\beta}^{*}$) steinerian paits of onder six alan the poins which form with B_{0} Stemerian para of order two and of order three. so the enve $r_{3}=-1$, here of orter 105 , mast trata up into $j_{n-} j_{2 s}$ and a coure of order T^{2} gasing 24 times through $D_{1} . D_{2} . .$. , D. Now the batter curve forms the loous proper of the mimh sixfold point of a non degenerated corve cins so the lwo comes of which the first is the locus of the nimb ofold point, the seoond that of the point forming with B, a Stemerian pair of order o, comeide completely if o is a prime number: if ${ }^{\prime}$ is no prime mumber the first curve is a part of the second. So we have found:
"The lecess uit the minth a-fold puint comenciles completely or par-
 stemerian peirs of order o. The lather comer cuts any curce of (\boldsymbol{a}^{\prime}) besides in the hases points in $\left(0^{2}-1\right)$ mener peints, has the points $D_{1}, D_{2}, \ldots, D_{n}$ for $\left(0^{2}-1\right.$-fold points ame is therefore of order 3 $\left(0^{2}-1\right)$. The formor comacides completely with thes corres, if o is " prime: in the opposile edse its oreler amb the multiplicity of the buses proints on it coln ber pesily dedeced forme the corresponding mumbers of the sperond conve?

 and Benge Beckmax. ('ommmomatom N"。 $132^{\prime \prime}$ from the Phs sioal laboratory at Leiden. ('ommmanated by Drof. II. KismarLBN(HE (ONES).
(Communicated in the meeting of November 30, 1912.)
§ 1. Introtuction. The dittimbties which emompass the explanation of the variation of resistance with lemperature on the lines of the theory of electrons as developed by Raske, Drabe and lomata, and which are of particular import within the region of low temperatures, render it desirable to undertake an investigation of the behaviour of resistance at these temperatures under modification of varions external conditions. With that end in view we have alrealy developed in certain directions an investigation of the hehaviour of resistance in a magnetic field (and of the closely allied H.n.r phenomenon). In the present paper we commminate the result of a tirst investigation of the change of resistance under the influence of uniform hydrostatical pressure. Our first aim had been to trace the comection hetween pressure coefficient and temperature coefficient. Our data, however. are as yet too few to serve as a basis for deductions - however obvious these may the - affording an explanation by means of vibrators, electrons, dissociation or variation of the mean speed ${ }^{1}$).

The dependence of specitic resistance ($u_{s,}$) :pon pressure (p) can, in general, be represented by the formula ${ }^{2}$,

$$
u_{s_{j}}=w_{1 s p} e^{-a_{u}-b_{p}{ }^{2}}
$$

in which a and b atre constants, and $w_{1 s, p}$ is the specifice resistance for $p=1$. When p is not very great, this given

$$
w=u_{1}(1-u p)\left(1+\frac{1}{3} p_{p}\right)=u_{1}(1+\gamma p)
$$

for the resistance of a wire which is subjected to uniform hydrostatical pressure, in which

$$
-\gamma=u-\frac{1}{3} \beta
$$

and β is the compressibility. Hence the variation $c w^{\prime}=w^{\circ}-w_{1}$, is given by

$$
\Delta u^{\prime \prime}=\gamma \psi^{\prime}
$$

In the following only γ has been measured.

[^26]The meantrment of γ at very low temperatures is one of extreme diftioulty. Fom. at these femperatures, the temperature coefticient is
 affert the resistance: in this way a slight distmonce of the tempe-
 completely obecores the whole phenomenon of variation with pressure. With the wire we used, for instance, at $\quad T=20^{\circ}$. 3 K . a pressure of 100 atm. brought about a change in the resistance of only about 0.0018 , while a change of $0.0000: 8$ wat the result of a vatation of 0.01 derpe in the temperature And it is pretty obvious that it is a mather of extreme diffleulty to re-adjust the temperature to within 0.01 degres of it former value after it hats been attered by the heating or cooling of the liguid orecasioned by flatmations in the pressure.

There is a second factor operating which renders the meanarement ditticult. When the compression has theen continued for a long time, elastic aftereflects oreru which can also altam a value that is a considerable fratoon of the magnimde to he observed. Should, therefore, the variation of pressure be distributed ovei a long period of time in order to disturh the temperature equilibrimm as litte as po-sible. this after-action will give rise to a source of eror.

for the resistance measuremenss. At the upper end of A there wire pass through a perforated \quad glinder of ebonite in which they aro cemented with marine glae, and this olindom is hold light agatmot the fube by a sorew (ap). lienistances were meatured by the methon of overlapping shunts.

 1 fhoms the bather in aspert and cons sedtom, c_{1} is the erlinder and a^{2} the pistom. The temperature of the hath was regulated and mon-ared hy means of the gohal resisfance thermometer f, also shown in tie. 1. We may refer to eatier diagrams ('omm. No. 8.3, IPI. IV, anl ('omm. No. 127. 1\% 23) in wheh the same letters have been

 vapormes

When the temperature of the ervosiat has been adjusted the same kind of gats ath has been liquetied in it is admitted into the experi-
 which hats previously been lilled at high pressure. A second reservoir l_{1}, is compled in patallel with $l_{1_{1}}$ so that gat need be taken from $l_{1, \prime}$ only in suftivent quantity to complete the fitharg of the eylinder. In this way the reservir R_{1} is much longer aratable for rasing the pressure in the experimerat ogtinder to the highest ralues. An wher resersoir l_{a} served ats a regutator, and, as gas was added, the pressure wats read on the manometer . h_{1}. The tap κ_{5} was used for the evacoation of the apparathe and comnections before the experiments hegath. The supty of gat was regulated of K_{3}. behind K_{s} a
 as a bufter: to the inlet tube of this eytinder is compled sot onty the experimental relimder hat alsu the differentiad manometer. J_{s}, to whirh we shatl retmon presently. Thoongh the tap k, gats can be allowed to erape from the experimental rylinder and from the buffer. The pressure of the grats they contain fan thas be kept at any desired constant value he means of k_{3} and κ_{1}. Requation of the pressure is mate ateording to the indications of the differential manometer, 1/y. ohe sthe of which is attathed to the experimental appatatho and the ohere to ateseroir l_{i} which is mantaned at the reguired constant presinte and is, for that pmpose immensed in ice. To adjust to the drested presure ahe diflerential manometer is tirst remtered inompative by opening the lap $\mathfrak{K}_{\mathrm{s}}$ (ame must be laken in admitting pressme to the manometer that friction does not give rise to difference of presure belween the parts of the apparathe it eomects suffiefont to rathe the mereng of the differentiat manometer to be hown wer. Two siecl orerthow resels $\|_{21}, H_{20}$, serve as a safety deviee The presure in the experimental cylimter is read from the mamomoter h_{3}, which is commeded to I_{5}. $h_{\text {: }}$ is a satey valve which comes into operation when A, mas be ased for exhamsting.

TABI.E 1.
Resintance of the lead wire
$l^{\prime} b_{I}$ at low temperatures.
$T \quad i z$

289 K	$12.75!1$
90	3.77
202.3	0.725
17.8	0.626
14.5	0.520

('omparison of these ralnes with those given by Kimpatanall Oxam
 in solid solution at farly ronsiderable amomet of foreng matter, for the great change in the temperatme coefterent exhithted by metals in the presence of small amomots of impurit! thay memerally be attributed to the transition of this ahmiature to a state of ablat ahmion.

One measurements were mate with lignidorygen and lignid hydrogen as compresing liquids. The results are comtainal in Table UI. The pressure (f): is wisen in atmonpheres.

TABLE II

Change induced in the resistance of lead
Po, by compression at low temperatures.

$$
T=90^{\circ} \mathrm{K} \quad T=20^{\circ} .3 \mathrm{~K}
$$

$$
\because=-1,44 \cdot 10-i \quad \pi=273 \quad \text { K. }
$$

From ond meaturement we find
and $\quad \because=2,20 \cdot 10 \quad$ at $\quad T=30$ K.
-1) What the presome cofticient ha- lerome somewhat wreater at the hwer temperatures. The incrate obtamed beween $273^{\circ} \mathrm{K}$. and $\mathrm{m}^{\circ} \mathrm{K}$. chatoges amath lo a diminution. The areorate of the measurements is still too small to allow us to attibute amy signiticance to this diminntion at the lowest temperatures.

If we consider the decrease - $L 11$ in the resistance for $p=100 \mathrm{~atm}$. we tind that it approximates to zero at the lower temperatures. Thus we tind for P,

$$
\begin{aligned}
& 273^{\circ} \text { K. for } p=100 \mathrm{~atm} .-\angle \pi=0,017 \Omega \\
& 90^{\circ} \text { K. " } \quad, \quad, \quad-\angle w=0,00 s \\
& 20^{\circ} .3 \mathrm{~K} . \quad, \quad, \quad-\angle w=0,001 \text {. }
\end{aligned}
$$

 michures. XIS. Calcokletion of some thermal grantities for
 Comm. N". J33e from the Physical Laboratory at Leiden.
(Communicated in the meeting of November 30, 191:).
The empirical reduced equation of state for aron, V'll. A. 3, published some time ago ${ }^{*}$, enables us to calculate a number of thermal quantities which are esential to a knowledge of monatomic suhstances in general and of aron in particular. These quantities may also be ohtained graphically. Calculation by means of an equation which fits the exporimental results over the whole region of observation athows, however, a much greater acouracy to be atained.

In the present fraper we wive vatues of $\left(\frac{\partial f^{\prime}}{\partial T}\right)_{v},\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{v}$,

1) E. Laseel: Ljuala Iniv. Areshift 1903.
 N: 12x
 ubtained by C . A. Chommens for some of the quamtities here disensed have alveady been mablished by E. H. Amatist. C. If ! Aprif, 1912.
 as fundions of the temperature and of the density from equation
 is calcukated from $0^{\circ}\left(^{\prime}\right.$: the presiture is exprensed in intermational almospheres ${ }^{3}$).

The importanse of a knowledue of these quantitien esperially as functions of the temperature has abredy been repmatedly insisted "pon ${ }^{4}$) so that we need say nothing further here upon that point We shall only say hat acoording to the whef sus mer Whas equation with constant a_{w}, b_{1} and $h_{N}\binom{J_{p}}{\partial T}$, $\binom{d_{n}}{\partial_{v}}_{T}$, and μ_{12} shonld be independent of the temperature, and comserpently $\left(\begin{array}{l}d^{2} \\ d \\ d T^{3}\end{array}\right)$ should vanish, so that the deviations whirls they all show may he taken as a measure of the degree to which argon deviate from the simple assumptions regarding molecules acepted by Vis ber Wins in developing his principal equation.

Agreement, at least approximate, whith the chief vis der Wishs equation would first be expected in the monatomic substances, ind therefore the investigation of these quantities for argon as well ats a comparison of the results with those for substances of more complex molecular structure ts of the greatest importance.

Consideration of the quantity introduced by Ranassum ${ }^{5}$).

$$
n_{1}=r^{2}\left[T\left(\frac{\partial p}{\partial T}\right)_{v}-p\right]=-\left(\frac{\partial u}{\partial \rho}\right)_{T}
$$

cnables us to see that, as fiar as the mutual ations of the molecules is concerned, the assmmptions upon which vas Der Wanls founded his chief equation with constant a_{w}, b_{w}. and A_{w} must undergo some modification such as has recently been introduced by van der Wasis in the varions developments of the consideration of apparent association. If we retain for the moment the mosi immediate assumption sutable for monatomic substances such as argon, that the atoms are incompressible, then changes in als would he wholly due to deviations of the molecniar
${ }^{1}$) E. H. Amagat, numerous papers in the (i. R. collected in "Noles sur la physique et la thermodynamique". Paris 1912.
${ }^{2}$) For the notations used in this paper sre Enc. math. Wiss. V. 10. Suppl, N", 23.
${ }^{3}$) Enc. math. Wiss. V. 10. Einheiten a.
4) M. Reinganum, Diss. Gütingen 1899, Amn. d. Plys. (4), 18 (1909) p. 100 s . Suppl. N". 23, p. 140 sqq.

$$
\begin{aligned}
& \text { 信 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { M }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tablef. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 浆 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 羔忍 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 式 心 皆 心 心 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 尘去 } \\
& \text { 密 気 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{8} \\
& \text { Lcon'" } \\
& 81^{2} \\
& \text { c } 08 \\
& \text { TABLEV. } \\
& \begin{array}{c}
0.0 \\
\circ \\
\wedge
\end{array} \\
& \text { • }
\end{aligned}
$$

 Guch changes in "1a might wremate fom there calless: change in the a_{w}, in the bw of in the h_{w} of the dhafe equation, ats at result of the batias of the sthere of antion hemg but shighty greater than that of the molecule, a rimemstame reveated in apparent asteriation. simes

$$
T\binom{d^{2} p^{\prime}}{d T^{2}}_{n}=\binom{d_{c}}{a_{r}}_{l}
$$

the freestion as to whether $\binom{\partial \rho}{\partial T}$, is imberendent of the temperature and therefore $\binom{d^{2} p}{d T^{2}}^{2}=0$, is mosi intimately commented with the question as for whether $\binom{0 y_{n}}{\partial_{r}}_{F}=0$ or not. For a hong time this question rematined modecided on ateount of the lack of experimental data. We now know that, at last for a number of substances. $\binom{\partial p}{\partial T}_{0}$ is in wencial a function of the temperature, and that therefore $\left(\frac{\partial^{2} p}{\partial y^{2}}\right)_{n}$ does not vamish.

If we now compare the behaviour of argon with respect to $\binom{\partial p}{\partial T}$, with that of isopentane we lind corvespondence in many respects.

Youna $\left.{ }^{2}\right)^{3}$) dedued from his observations upon isopentane that $\left(\frac{\partial p}{\partial T}\right)_{c}$ decereases with lalling lemperature for ir <4.6 e.c. ; at greater volumes up to $r x=400$ e.c. it increases with filling temperature, while it remains practically constant at still greater volumes. For argon, for which the volumes are expressed in terms of the normal volume as unit, if the law of corresponding states were accurately obeved these volumes would correspond to $: x=0.00 .375$ and $v_{\mathrm{N}}=0.328$ or $\rho_{\mathrm{N}}=265$ and $\rho_{\mathrm{x}}=3.05$.

The argon observations embraced by VII. A. 3 lie entirely within these limits, and from Table I we see that argon arrees with isopentane within the region of ohservation. ()ver the entire region $\left(\frac{\partial p}{\partial T}\right)_{c}$ falls with increasing temperature. At the lowest argon density

[^27]Ex:- 2 21 he dmanntion beromes extremely small, printing to constan! at will hower dembites. Aron differ from indentane, howorer. in this reperd hall with argon at higher densities far atowe
 "f isplentane wonld leat one (a expeet a dimimmion in the rate of increate.

From his ohservatons upon isopentane forwis deduced the following rute for the behasione of $\binom{$ Na $^{2}}{$ ata } :

$$
\begin{aligned}
& \left.\binom{\partial^{2} p^{\prime}}{\partial J^{2}}_{v< \pm v_{h}}>{ }^{\prime \prime} \right\rvert\, \\
& \left.\binom{\partial^{2} v^{\prime}}{\partial J^{2}}_{v> \pm v_{k}}<n \right\rvert\,
\end{aligned}
$$

This mule has alreaty heen combmed for a variety of substames.

For corthon dioxide, ethrlene and isopentane, Remanery found
 : ${ }_{4} r_{k}$ and at temperatures atmot 10° atove $t_{\text {a }}$. If the law of comesponding states were strictly the this minimum for argon should be at $a s=380$, and therefore ontside the region of experiment. Nothing can be done consedmently bevond trying to judge from extrapolation, if, and where, the minimum exists. If for this purpose we graph μ_{1} ans a function of os at -122° and -116°, then extrapolation towards higher densities shows that it is pobahle that these eurves would also exhibit a minimum for arom at $r==_{4}^{3} \mathrm{rk}$.

 from the physical Laboratory at Leiden. (Contimed).
(4ommunicated in the meetine of Noxember 1912).
55. Result: The results ohtamed are given in the following tahle ${ }^{2}$ p. 9ril:

The catcolated values of the ordmates of the diameter wiven in this table have theen obtamed from the eqnation

$$
J_{\mathrm{c} \Gamma}=0.20954-0.0026235 \mathrm{t} \text { к }
$$

11. ".
\because For the notations, see suppl. Nor. 23.
 and - $1: 31^{\circ} .5$ t ('ink.deat.

bath	$t_{\mathrm{K}}=-T-T_{0}=\mathrm{C}$. Kelvin degrees.	*liqr	Orapr	$D_{\text {AT }}(0)$	$1_{6 \Gamma}(C)$	$0-\mathrm{C}$
O_{2}	183.15	1.37396	0.010801	1. 69499	0.69006	$+1.000093$
CH_{4}	- 175.39	1.32482	11.01457	1). 669711	0.66970	
CH_{4}	- 161.23	1.22414	1).03723	0.63069	0.63255	10.00186
$\mathrm{C}_{2} \mathrm{H}_{4}$	150.76	1.13851	11.06785	0. 610318	1). 0150108	- 0.0 .00190
$\mathrm{C}_{2} \mathrm{H}_{4}$	140.20	1.03456	0.12552	1).58104	10.57738	+ 0.0010266
$\mathrm{C}_{2} \mathrm{H}_{4}$	-135.51	0.97385	1). 15994	(1).56690	0.56517	+ 10.101818
$\mathrm{C}_{2} \mathrm{H}_{4}$	131.54	0.91499	(1) 19432	1). 55466	9.55466	
$\mathrm{C}_{2} \mathrm{H}_{4}$	- 125.17	0.77289	(1). 29534	0.53412	0.53794	-0.04382

Fis.
\$1. /hisension, The slope of the diameter is eriven hy

$$
\text { hir }=-10.0026235 .
$$

This coctheront is vory latre, larger than has hern found for any mher - mbathere set imentigated with the exception of xenon, for
 ('ompanison of the values of this comstant for the two monatomice sulstance arem and xemon again reveals the inthence exerted upon it by the values of the oritiond temperature.

With respet to the critical density the following remation mas be made. If we astmme that the diameter remans rectilinear right up to the aritial point, we then tind

$$
\mathrm{v}_{\mathrm{kd}}=0.5307 \mathrm{~s}
$$

Cring the equation

$$
\binom{\partial y^{\prime}}{\partial T}_{v k}=\binom{d p^{\prime}}{d T T_{0}}_{\text {kuea.k. }}
$$

the value

$$
o_{\mathrm{ks}}=0.509
$$

Wat previonsly found from the aron isotherms. ${ }^{2}$? The difference between these fwo values is of the same order of magnitude and is in the same divection as the differences found for other shistanes.
 The lairly lare desiation from redilineary of the experimental
 well with this behaviour.
$3.28: 3$ wat the value previonsly ${ }^{*}$) obtamed for the critical eoeftidem on taking $\mathfrak{K}_{\text {d }}=\mathfrak{K}_{4}$. we now timd

$$
k_{41}=3.424
$$

Which is herefore slighty greater than that for oxyent: (3.346)
 and not argon, is the shbithere for which K_{+1} lies mearest the theo-

 dmetorate, Lemben 1910.

b (i. H. Brasemas, Thesis for the docturate, Amsterdan 190 i.

 No. 1こla.

Ahhongh the deviations of the diameter from rectilincarity are sulficient!y small to enable one to sity that ateon whes the law of the diameter, hey are still tor latere, and experially tor sistematio. to be dae to axpromental exms. As is exily seen from the tathe and from the axdompanying digme She expermental diameter in the neighboumood of the eritical point exhibits at extathe concote towads the axis of temperature, while at hisher temperatures it is comes towards the same axis. The same hehaviom has ahready been observed in other substances. e. $\underline{\sim}$. (athon dioxide ${ }^{\text {a }}$

Ln lig. © ate given the redneed density comes and diameters for

 argon and helimm Kimertaxin (oxes ${ }^{\circ}$ b, the rednetion from the experimental data has been made by means of the critical density obtaned from the diameter.

On a previons oreasion it was shown by Kimbravief Owas and Kesom*) how the equations of shate for different subatances deviate one firm another, ant how these differences may find expresion in deviation functions. On doing thes, it appears that shbstances maty be arranged in order so that the deviations of suresesive substancer gradually increase. White at also appeats that substanes of whely divergent artiacal temperatures are then foumd to be in the order of their contical temperatures. The exemplifeation of this general property afloded by the behaviour of the diameter was noticed by one of the some time ago and is brought to light in fis. B in which the density corves are seen to enclore one anoher.

If the law of corresponding states were stridy obeved, then these courves onght to coincide exactly. From the diagram, howerer, it is seen that this is not the (ane. The ("mres enclose one another ${ }^{20}$) in

${ }^{3}$) W. Ramsay and s. Kouni, Phil. Thams. 178, (1887) p. it.

a) 1 c .
ij) l.c.

") Enc. Math. Wiss. V. 10. suppl. N: 2:3.
\therefore E. Nathas C. Li. 139, (190 \%), p. 339.

 pentane.

such a way that a complex molecolare stratore and a high critical temperature (ciremmathees which are ustally coexistent) cate divergence between the branches of the corve, white simple moleculas -tructure and a low rritical temperature appear to catuse them to contritet.

Looked at from this point of view. it is of importance to note that the curves for xemon and oxygen oo closely correspond that there appeats no appreciable difference between the density curves in the diagram, and they have arrordingly heen represented by a single

 and the diverging inthence of the emapratively hien eritical teme

 tomperatures (comtimul. By H. Kisumanoil (loses and E. Oostraticis. ('ommunication N". 132 e from the Physical Laboratory at Leden. (ommmatated hy Prof. H. Kimmbuang ()wnes.
(Ciommumicated in the meetine ol Derember ニx, 1912).
\$9. Cirystatlized mangomesp sulphute. The sall was proneured from Merck as puris.s. pro analysi. The results were*

TABLE VII.
Crystallized manganese sulphate $\mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{:} \mathrm{O}$. (1).

7	$\ldots .10^{6}$	$\% T .10^{6}$	Limits of H	Bath
2880.7 K	66.3	19140	$10000-17000$	Air.
169.6	111.5	18910	$8000-17000$	Liquid ethylene.
77.4	247	19120		
70.5	270	19030	$6000-10000$	Liquid nitrogen.
64.9	292	18950		
20.1	914	18370		
17.8	1021	18170	$4000-16000$	Liquid hydrogen.
14.4	1233	17760		

Down to and at nifrogen temperatures, this substance followpretty much the law of "toris.

```
    1) See N., 34 of Enc. Math. Mriss. V. 10. Suppl. N'...*.
    8) Prof. Werss has kindly informed us that in the determination of stamdards
```



```
found.
```

\$ 10. Anhutomes mangimese sulphate. All the water was driven cout of the salt by heating.

The re-ult are given in Table Vlll.
With andodrons manganese sulphate another diverqence from the law of ('rkis: over the whole fied of bow temperatures was found. Down to nitrogen temperature , hosever, it is only a disturbance of the firs kind. At hytrogen temperature a further disturbance
 and at any rate helongs to a kind of distmbanes that we have not get been able to reduce to a detinite type. It is remarkable that jus an with cryathized ferrons sulphate the presence ol molecules of Water of crestallization dauses a dimimation of the çmatity L to a very small value in comparison with that of the anhydrous sub-

TABLE VIII.

Anhydrous manganese sulphate MnSO_{4}. (I). $\Delta^{\prime}=24^{\circ}$.

| 7 | $\% .10^{5}$ | $\times\left(T+L^{\prime}\right) 10^{6}$ | Limits of H | Bath |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 2930.9 K | 87.8 | 27910 | $6-17$ kilog. | Air. |
| 169.6 | 144.2 | 27920 | $5-17$ | Liquid ethylene. |
| 77.4 | 274.8 | 27870 | $5-16$ | Liquid nitrogen. |
| 64.9 | 314.5 | 27960 | | |
| 20.1 | 603 | 26590 | | |
| 17.8 | 627 | 26210 | $4-16$ | Liquid hydrogen. |
| 14.4 | 636 | 24420 | | |

stance, here too L^{\prime} becomes less by the addition of molecules of water of crystallization, and to such a degree, that, if one does not go helow nitrogen temperatures L^{\prime} appears to have become $=0$, whereas with anhydrous salt $L^{\prime}=24^{\circ}$.

If we calculate the number of magneton for the erystallized salt with $C=\% T\left(\Delta^{\prime}=0\right)$ and for the anhydrous with $C^{\prime \prime}=\%\left(T+\Delta^{\prime}\right)$ and with $L^{\prime}=24^{\circ}$, we find the same number of magnetons in both (ases, viz. 29. This is one less than is found in the solution ${ }^{1}$).
${ }^{1}$) P. Weiss. Journal de physique, 1911, p. 976.
 phate. After the comdusion of the investigation treated in ('omm. N°. 129 , we twred to the dedemination of the water contathed in the preparations ferroms sulphato I and fermos sulphate III.

Prof. vas leabas kind! investigated the preparations and fomm that they comtaned ferme as well as fermos sufphate. They cannot therefore be baken as a rediathe hasis for catrutations of the momber of magnetons, and to make these ponable tha meaturements will be repeated with purer proparations.
 the appearance of disturbamese of the first kimd in ('creses law and the possibility of linding the constant of ('rkm for these subtances by means of a correction, still retains its value.

As regards the fertic sulphate, which the measurements in $\&+$ of ('omm. N". 1296 refersed to, the admixture of water may be put at about $1 /$; in first approximation. The molecnlar susceptibility of ferrous sulphate is therefore "; smaller than that of fertice sulphate, so that valency shows its influence in this iron satt atso all this in contradiction to what was observed in $\$ 4$.

We must also remark, that the sign amd the order of marniude of tha corrections which would be necestary for dednee the mumber of magnetons for the pure materials from the measurements of the ferrous suphate I of our Comm. N". 1296 and those of the erymallized ferrous sulphate of Kampriacil Oxata and Perkier in Comm. $N^{0} .122 \pi$, make it seem possible that there is a double analogy hetween ferrous sulphate and manganese sulphate. Just as in manganese sulphate the number of magnetons in the crystadized and in the anloydrous substance is equal, the same would be found for crystallized and anhydrous ferons sulphate (wiz. 26) (if fo! the anhydrous substance ('vrie's constant is calculated with the help of the corvection by $\Delta^{\prime}=31^{\circ}$), and in !urther analogy with manganese sulphate, this number with ferrous sulphate is also one less than in the solution, if for the latter one may lake the number, that has been found if W ${ }_{\text {ILILS }}{ }^{\text {b }}$).

Should the disappearance of L^{\prime} with the introdnetion of water molecules be ascribable to the inorease of distance between the iron atoms which is caused thereby, then it would be possible that with different contents of water of crystallization L^{\prime} deroteases with the increase of the number of moleoules of warer of crestallization. We intend therefore, to examine a salt in this respert, that crystallizes :

1) P. Weiss. Journ. de physique 1911. p. 976.
${ }^{2}$) Compare the investigation of Alle Fextis, (.. Ii. 153, p. 668.1911 on the
with a serte of different numbers of molecules of water of crystallization, and from that to dednee a possible dependence of L^{\prime} upon the densit?.
8. 12. Phatimun. A small eylimder of pure phamum from Heraets was examined. The shaceptibility changes very little with the temperature. On atoonnt of its small valne it is diffeolt to detemine \%acenrately. The result atre contaned in Table $1 \mathbf{X}$.

TABLE IX.
Platinum 1 .

T	$\% 10$	Limit value of H in Kilogauss.
		- --.
- 290.2 K	0.973	$11-17$
77.4		
20.1	1.080	
14.4	1.087	

The value at ordinary temperature lies abont the middle of those of Onex, 0.80 resp. 0.89, Hoxda 1.097 , Komigsbergek 1.35 , Finke 1.06 (all at 18° (.). If one wished to go so far with the application of the rule $C^{\prime}=\%\left(T+\triangle^{\prime}\right)$ that one applied it to platinum also, then it would follow from this that $L^{\prime}=2440^{\circ}$, and for the number of magnetons n calculated from C^{\prime} the vilue $n=10$.
§ 13. Dyspronium oride Referring to the data of \$ 7 , we observe that, as will also appear from a further communication of Kamerdingh Onsw and Perrifr, all the values of χ which oceur there must be increased in the ratio of 1:1.065. By applying this correction also the difference from the value at ordinary temperature found by Mlle Feytas which was stated uron in $\$ 2$ of ${ }^{\circ}$ omm. N^{0}. 122 and which was due to an error of calcutation, is reduced to a divergence within the limits of accuracy; hence the dysprosimm oxide appears to have been about in the same condition as the sample used by her. Our conclusions undergo no change by the correction.
influence of the successive molecules of water of crystallization upon x. This might be the consequence of a change in \triangle^{\prime} with an unchanged number of magnetons.
$\$ 14$. Oxygen. The ensereptibility of limpid oxygen has been determined by Kabmbingh owxis and Pbrrier by two methods. It hats now also been investigated by the attartion method in about the same way as the suscoptibility of liquid hydroren in Comm. N°. 122 , An evannated cylindrical glass tube was hang in the magnetie field and then the repulsion measured that the tube maderwent when the surounding space was filled with liquid oxygen. The value found at $T^{\prime}=90^{\circ} .1 \mathrm{~K}$. agrees well with that in Comm. N". 116 ; the small difference at the other temperatures is explained by the fact that the temperatures cond not be very aceurately ascertained.

In the following lable the values found stand beside those of Kambringh Onnes and Perrer aceording to their formula $\% \quad T=2.284 .10^{3}$.

The question naturally arises whether the behaviour of liquid oxygen can also be represented by the formula $C^{\prime \prime}=\chi\left(T^{\prime}+\Delta^{\prime}\right)$. If we assume that $L^{\prime}=71^{\circ}$ this comes out pretty well, as appears from Table XI in which the values of $\%$ are taken from Kameringu Ones and Perrier Comm. No 116 , Table Ill.

TABLE X.

Liquid oxygen.

```
                                    %10
```

T	$\% 10$	$\% 10^{\circ}$
	K.O. and O. (K.O. and P.)	
90.1 K	241.1	240.6
79.1	258.1	256.8
70.2	270.7	272.6

When the atoms are assumed to be free in the molecales C^{\prime} gives for the number of magnetons 11 per atom cralculated 11.04 ,

TABLE XI.
Representation of the susceptibility of
liquid oxygen by the formula $\chi\left(T+\Delta^{\prime}\right)=C^{\prime}, \Delta^{\prime}=71^{\circ}$.

T.	$\ldots 10^{\circ}$	$\times(T+71) 10^{6}$.
$90^{\circ} .1 \mathrm{~K}$.	240.6	38760
71.35	269.9	38420
64.9	284.2	38620

and on the heponthesin that in the liguid two gas molecoles are rigid! connected it gives 11 per molecule of two atoms.

Form \% $T^{\prime}+L^{\prime}=38800$ (the mean of the numbers in the table)

$$
\%_{243} \mathrm{k}=1116.0 \times 10^{-6} .
$$

This is very close to the value for gaseous oxygen at $20^{\circ} \mathrm{C}$ found hy Wras and Plccann ${ }^{2}$, from which follows 7 magnetons for each () the oxygen atom assumed to be rigid!y connected.
 to be by some chane that our lommatath $L^{\prime}=71^{\circ}$ gives that digure.

The graphice representation of ${ }^{2} / \%$ as a function of T, if our formula actual!y remained true up to 20° ('. would consist of two intersecting lines that have their point of intersection just at the temperature at which the value quoted is determined, which certainly would be a curious comed dones.

Another possibility which Prof. Werss suggested, in a kind private commmication, is that there might be discontinuity in the region helween $0^{\circ}\left(\therefore\right.$ and - $183^{\circ}(\therefore$ which has not been investigated, by which it remains accidental that the continuation of the line for liquid oxygen couts that for gaseous oxygen just at 20° C. There is much to be said for this explathation. It is quite possible that the chamge of density between liquid oxyen and faseous oxygen makes L^{\prime} into 0. This would be in aterodanee with what was deduced in $\$ 10$ for the intlaence of the water molecules upon the value of L^{\prime} for manganese suphate, and moreover quite in accordance with Wems's idea that the molecular tield essentially depends upon the density.

We can father observe, that the change of density, which takes plave diseombmonsly with evaporation, can take plate contimuonsly ly an indired transtion. In the atove line of thought, if we assume that the divergence for lignad axyen from Cumes haw may be detined ly a L^{\prime} and pay attention to the change of the momber of magnetons which must he assmmed in that ease, the oraph which represents ${ }^{1} / 2$ for oxpen of a wiven densily as a function of the temperature would be as in magnetile a suceresion of strathet lines perhaps commected by rommed off pieces. The magnetic eqmation of state which expresses the suseeptibility as a function of density and

[^28]temperature (with a view to dotermining which the experiments of Kampramgh Onas and Prarma were undertaken (see Comm. No. 116 \$1) would be given by a series of similat lines, differing for the different densities.

We must not forget that it is by no means established that in the case of oxygen the divergence from ('vris's law is determined by a \triangle^{\prime} which changes with the density, and that it obvionsly maty be due to an association of molecules into complexes with a diminution of the number of magnetoms.

However this may be, our attention is abain drawn to the important question whether the divergences from Coras's law depend upon a pecularity of the atom within the single molecule or from the approach of the molecules up to a very small distance.

In §3 of Comm. No. 122 b by Kambingh Onnes and Perrifr, it is sad that preliminary experiments with mixtures of liquid oxygen and nitrogen, which will soon be replaced by hetter final ones and which were based on the above mentioned assoriation hypothesis, seemed to indicate that binging the moleonles to a greater distance by dilution in the liquid state has no influence of importance upon the divergences from Curie's law. Here the question is raised in this form: whether Δ^{\prime} is a quantity which as perouliar to the atom in the single molecule can also be found in the giteons vate or whether it can only be developed by bringing the molecoles into immediate vicinity of each other. F'urther experiments ${ }^{2}$) with oxygen, already plammed, must decode this.
(To be rontimed).

Physics. - "The len" of compespomelimy states for difioment sulstamees,". By Prof. J. I). Van ber Wadis.
(Communicated in the meeting of December 28, 1912).
In the following pages I shall give an account of the result of the researches which I have made of late about the properties of the equations of slate for different substances. And I shall communicate in them the simple conclusion at which 1 have arrived for all the substances for which a chemical rombination does not take place, and the molecules continne 10 more separately, either really isolated, or perhaps joined to groups, if this aggregation (quasi association) behaves in the same way.
${ }^{1}$) As this communication is going to press, these experiments lave advanced so far, that we may accept with great probability as the result of them, that gaseous oxygen of 90 times the normal density obeys C'crae's daw down to - $130^{\circ} \mathrm{G}$.

Whan I disonered the law of corresponding states, I cond state the re-nth in lwo wat. .. and in the begimning l, therefore, hesitated thefore makimes athore between these fwo ways of expression: 1 . if for the different whetances a and m are edpual, $r={ }_{r r_{n}}^{r}$ is also equal, 2 . if for the diflerent shbstances x and m are equal, the whome for all is the same number of timen the volume of the molecoles. For so far as I saw then the two expressions were both true and it wats after all immaterial whether I chose one form or the other. Bht the first form was more suitable for experiment and the secomd form would only the of theoretical value - and so I chose the first form. In order not to get intogreat difticulties at onee, we thall disreqard guasi-asoctation for the present and our result will therefore, at least for the present, he vatid only for higher temperatures and not great density.

If we write $\mu=\pi p_{k}, R^{\prime} T^{\prime}=R^{\prime} T^{\prime} m$ and $r=r k$, and if we put RT_{k} $\bar{W}=s$, we derive:

$$
\left(x+\begin{array}{c}
6^{\circ} \\
1^{\circ} p^{\circ} r^{2}
\end{array}\right)\left(r-\frac{b}{m}\right)=m \cdot s
$$

and its we fonnd $\frac{a}{v_{k} R T_{k}}=\frac{i-1}{s}$ or $\frac{a}{p_{k} v_{k}^{2}}=t^{\circ}-1$, (These Proc. XIII 1. 118) we may also write:

$$
\left(x+3 \frac{3-1}{r^{2}}\left(x-\frac{1}{v_{k}}\right)=m s\right.
$$

Ln, our latea insestigations we have shown that

$$
\therefore=\frac{14}{27}(i-1)
$$

cither quite arourately, of with a high degree of approximation. Substituthe this, we find:

$$
j-1
$$

ur

$$
\left(x+3 \frac{{ }^{\prime}-1}{r^{2}}\right)\left(\frac{3 \mathbf{r}}{\frac{j}{3}-1}-b_{y}^{b}-\frac{3}{\frac{j}{3}}\right)=8 m
$$

It we put $\boldsymbol{x}, \boldsymbol{v}, m=1$, we tind:

$$
97: 3
$$

With $t=4$ and compesponding $r=3$, we dind $\frac{1,1}{b}=1$, and wint $f=7$ we lind:

As $\frac{b_{k}}{b_{n}}$ has been found only little smatler than 1 . ive will ation differ but little from 1: from \quad is <8 follows in the case that $s^{2}=\frac{6 t}{27}\left(f^{\circ}-1\right)$ is assumed as perfectly acolurate, with is <8 :

$$
r<\frac{8}{s}
$$

or

$$
r<\frac{8}{\frac{8}{3} \sqrt{j-1}} \frac{3}{3}
$$

$$
r<\frac{3}{1 / \frac{j-1}{3}}
$$

Hence

But it is to be experted that the value of -

$$
y / \frac{j-1}{3}
$$

only little greater than 1 . For $f=4$ with $r=3$ we find it exatetly equal to 1 and with $f=7$ we dind a valne of r little smaller than would follow from $r 12=3$, namely $r=2,121$. We accordingly determined this value at about 2,09 . But then we conclude at the same time that if f^{\prime} should have rinen to 10 , the value of r would descend to below $\frac{3}{V^{3}}=1$,73. At atl events in the equation:

Her fincos' $/$ will indeed be somewhat erreater than 1 . but differ anls litile from 1.

If we comtine ourselves to that part of the whole region where mu ynaーi-asandation worth mentioning is to be expected, to which part the critical point also helongs, the last equation will hard!y Champe if we pur maty in it mitead of 's ble . And then a rule follows from this holding for all mormal substances, so for not really asociating substances. viz. for given or and m, $\frac{v}{f-1}$ has the same value. For substances with the same value of $f-1, r$ is therefore also the same and with different valne of $f-1$ we have

or according to results obtamed in These Proce p. 903.

Not rigoronsly salid for the whole region. however. To equal reduced pressure and temperature corresponds a volume which in reduced measure is different for the different substances, when $\frac{b_{g}}{b_{\text {lim }}}$ difmers. But if we write the value r for r, and the value ${ }^{r}{ }^{b}$
$\frac{r^{\prime}}{r^{\prime}\binom{b_{n}}{b_{12 m}}^{\top} \text { for } v^{\prime} \text {, we obtain: }}$

$$
\frac{r}{b_{n, r} \mid} / \frac{b_{q}}{b_{l i n}}=\frac{r}{b_{g} r^{\prime} \left\lvert\, /\binom{b_{n}}{b_{l(i n n}}\right.}
$$

And as we have comeluded to the approximate equality of 3 , $r \frac{b_{n}}{b_{l i m}}, r^{\prime}\binom{b_{q}}{b_{\text {lim }}}^{\prime}$ ete, we limh as approximate rule: At the same redued temperathre and pressure the satme volumes are for all sutsiances the sume nomber of times the molecular volume viz. b_{q}. If, therefore we had expressed the law of corresponding states in
the serond way, it might have beren maintained umblatued for all normal substances at least owe a hate paty of the whole region.

The meaning of equation $=\binom{b_{11}}{b_{\text {un }}}^{\prime}$ is of connse this that e.g. for the reduced volume which in the system in which $f^{\prime}=4$ is phat equal to $r_{1}, r_{1} \quad$ Uhim must be laken in the sistem. where $\frac{j-1}{3}=\frac{b^{\prime},}{b_{\text {lin }}}$. Thus the eritieal volume is equal to $3 h_{\text {th }}$, if $t=4$ and the reduced volume is then equal to 1 . But in the system in which $f=7$ this volume would have the value of $1^{\prime 2}$ in eritical measure. That the reduced volume is found $\mathbf{1}^{2} 2$ limes latrer is due to this that we have divided by a $1^{\prime 2}$ times smaller hactor.

Hence the different \boldsymbol{x}, m, r surlaces for substances, for which $\frac{b_{g}}{b_{\text {lin }}}$ might differ, do not cover each other, but they can be made to overlap for the greater part, almost entirely, if we divide the value of r by $/ b_{l i m}$.

Then, however, the border lines, the loei of the coexisting vapom and liguid phases have not been made to cover eath other. Not even by approximation, for this locus. which is determined by

$$
\mu\left(v_{2}-v_{1}\right)=\int_{v} p d v,
$$

also requires the knowledge of the properties for smaller volumes. and will, therefore, also demand the knowledge of presence or absence of quasi-association. but especially the knowledge of the course of $\frac{b}{b_{g}}$. But this will be discossed later.

The cause of the circmastance that the above mentioned properties only hold by approximation is clealy to be seen, if it is borne in mind that the quantity ${ }^{\prime}$ b in the form found for the equation of state:
is mut momatit as som an $\frac{b_{0}}{b_{\text {lin }}}>1$. If very large volumes are concermal, we may put 1 for it and even in the critical volume viz. r ho, the difference whth 1 is still slight, and we tind from:

$$
\frac{b_{k}}{b_{n}}=r_{k r}\left(\begin{array}{r}
5 \\
1-\frac{b_{n}}{b_{k n}} \\
1+3
\end{array}\right)
$$

fin ${ }_{b_{1}}^{b_{n}}=2$ the value of $\frac{b_{k}}{b_{0}}$ to be equal to 0.97 or 0,96 .
We conclude from this that for the vapour volumes of the border line the rules given abowe hold with a high degree of approximation. But for the liquid rolumes lated if we hat retained $\frac{b}{b_{g}}=1$, and the density of the liquid greater. The limiting liquid volume is even not b_{0}. but $b_{\text {lim }}$, and so $\frac{b_{g}}{b_{\text {iim }}}$ times smaller, and the limitiny liquid density $\frac{b_{g}}{b_{\text {lim }}}$ times greater.

This must bring athout a change in the value of the factor γ. And we can calculate the value of this change.

Let us pul

$$
\frac{\varrho_{g a s}+\varrho_{v l}}{2 \varrho_{k r}}=1+\gamma(1-m)
$$

and for h comstant

$$
\frac{\mathbf{e}_{g a s}^{\prime}+\boldsymbol{\rho}^{\prime} \cdot \underline{2}}{\ddot{Q}^{\prime} \mathbf{o}^{\prime} k r}=1+\frac{1}{2}(1-m) .
$$

At very low temperatures the gas densities disappear. Wiah subtration of the two equations we find:

$$
\begin{array}{ll}
0 \cdot d & 0 \\
\because\left(0_{k r}\right. & 20_{k r}
\end{array}=\left(\gamma-\frac{1}{2}\right)(1-m) .
$$

Fin $m=0$ we must introduce the limiting liquid density, and we get :

$$
r \frac{b_{y}}{b_{\text {lin }}}-3=(2 \gamma-1)
$$

or

$$
\left.r \frac{b_{q}}{b_{\text {lim }}}=2(\gamma+1)^{1}\right)
$$

[^29]
${ }_{2}^{3} / b_{14}^{b_{11}}-(\gamma \cdot 1)$.

Hence the variability of b is the callse that the law of corresponding states does not hold perfectly for all vohmes. If this variability was governed by one law, and if arcordingly b_{n} was the same for all substances, it would hold perfectly. For then the value of r
 and so also of v would be the same for given \boldsymbol{r} and m. If the law of the variability of b, hence $\int \frac{b_{n}}{b_{l i m}}$, is different, then r is indeed not equal for given x and m, but the law of correspontence, as we have stated it here, holds with a high degree of approximation, at least for volumes $>\%$. Then for given \boldsymbol{x} and m the value of $\frac{v}{\square / \frac{b_{g}}{b_{l i m}}}$ is almost the same or $-\frac{"}{v_{k} / \frac{b_{g}}{b_{l i m}}}=\frac{r}{r b_{g}} / \frac{b_{g}}{b_{l i m}}=\frac{c^{\prime}}{3 b_{g}}$.

As the volume decreases. the law berins to fail. For $v>v_{k}$ it holds almost grood, below this the deviation beromes greater and greater. The value of $b, b_{l i n}$, however, does not seem to differ murh for the different substances. It is not equal to 1 for any substance. not even for monatomic ones. So substances for which h is constant, are only fictions. When, therefore, in my contimuity I calculated the critical ciremmstances keeping b constant, this did not take place because I thought that b would be invariable, but in the expectation that in the critical volume the guantity b would have changed so little that the influence of the change would be inapprectiable. And as we have found now, the quantity
is, indeed, not much smaller than 1 for x and $m=1$. And even if we should assign to $\frac{b_{a}}{b_{\text {tinn }}}$ a value so excessively high as would be the case if we put it at 3 - and substances for which this value would occur will, no doubt, have to be looked upon as fictions -
we-hmuld - till find blo $>0.4 \%$. The reanom, therefore, that even for Erat densibe the law of correapmone is foltilled by approximation will he uming to this that ber doen not ditfer muth for the different -nhatamer. Moreover the region in which the deviations would berome of impurtance is inaterenthe to experiment: e. gr for the liguid volumes which combl coexist with vapour solnmes at values of $m<\frac{1}{2}$. on fon olnmes under an excessively high pressare.

We shall and a few more remarks.
That the comodence of the surtives valuen of r entirely disappear: for r very small and near $r_{\text {rim }}$, will be clear if we pay attention to the fact that for $\int \frac{b_{n}}{b_{\text {bin }}}=1$ the surface has no boint: below $r=\frac{1}{3}$; for wen wimn $=b_{g}$ and $r_{k}=3 b_{q}$. For $\quad \frac{b_{q}}{b_{\text {him }}}$ equal to a value greater than $1, v_{\text {cim }}=b_{\text {lim }}$ and $x_{k}=h_{y}$, or

If e.g. $\frac{b_{g}}{b_{\text {lim }}}=2$. we have obtamed new points for the r surface, and the surface begins at $\frac{r}{b}=\frac{1}{6}$. It will be obvious that in such (ibenmstances with difference of the value of $\frac{b^{\prime}}{\text { bitim }}$ there can be no question of coincidence. There is only perfect comeidence with equality of $\frac{b_{g}}{b_{n}}$. If this value differs, the surfaces atmost coincide indeed, for large value of r, but for very small value of r the $\frac{r}{b_{a}}$
ordinates will contrat and approwh to zero as bum beromes langer in a region, however, which is hardly acressible to experiment.

Another remark.
From the circumstance that the r
 to coincide, especially for large value of r, it shonld, however, not be concluded that the border lines coincide. The top differs alreads. The top lies at x, m, and r equal to 1 , and so great differences are even derived for the gas-branch at low temperatures from the relation which holds approximatively, $-l_{p_{k}}^{p}=f_{m}^{1-m}{ }_{m}$. Thus we find in the region where the law of the rarefied gases would hold:

$$
-1 \frac{8}{3} m \frac{\downarrow \frac{b_{g}}{b_{\text {lim }}}}{v}=\left(1+3 \frac{b_{g}}{b_{\text {lim }}}\right) \frac{1-m}{m}
$$

Hence in a region where correspondence would perfectly prevail the border lines differ exceedingly much. This is of course the consequence of the liguid volumes no longer corresponding when $\frac{b_{n}}{b_{\text {lim }}}$ differs, and the construction of the border line also requires the knowledge of these volumes. Where the gas-laws hold, $\frac{p v}{R T}=1$, or $\begin{aligned} & \text { av } p_{k} \cdot w \\ & m \mathscr{R T}\end{aligned}=1$, and now we have come to the conclusion that $\frac{R T_{k}}{p_{k} v_{k}}$ for the different substances is equal to $\frac{8}{3} / b_{b_{l i n}}^{b_{l i n}}$. Then

$$
\frac{v v}{m}=\frac{8}{3} \quad \frac{b_{a}}{b_{\text {lim }}}
$$

or

A confirmation of the thesis, that the $n, \quad I \prime, \frac{1}{b}$ surfaces coincide for great value of r.

Now the importan question in still left modecided, in how far done the value of ${ }^{\text {bon }}$ dime for the ditferem substances. We have aldealy stated that $i t$ is mot probathe that there are substances for which this quantify $=1$. These shbatanes have somelimes been catled partect!! hemb subsiances. but then it should be borne in mind that since it hats appeared that $i>t$ and $:>{ }_{z}$ for monatomice suls. stances, even monatomic substances would not be perfectly hard. For all shbstances. with our present knowledge we may say without execption, $\frac{b_{n}}{b_{n n}}>1$, and prohably not very different from 2. Now we might account for about 2 by assuming quesionssucition. In large volume $b_{\text {, }}$ is the fourfold of the volume of the molectules: hence it the spherical shape is assumed and the diameter is put $=$ י , $b_{n}=4 \frac{\pi}{6} 0^{3}$. The limiting volume of the substance is present when the pressure is intinite at temperatures $T>0$. Then the molecules must tonch, and the volume is only little smaller than or or b^{3} im $\leqq \sigma^{3}$. Hence:

$$
b_{y} \geq{ }^{2 . \boldsymbol{T}} b_{1 i m}
$$

or $h_{q} \geqq 2,09 b_{h m}$.
But on the other hamd we should comvider that often

$$
b_{1, \ldots}<\ddot{2}
$$

If not the spherical shape was assumed, but as extreme case, a rectangular shape, by would be $=4 \sigma^{-7}$, and $b_{\text {lim }}=\sigma^{8}$, and $\frac{b_{g}}{b_{\text {lim }}}=4$. This will, probably, not be expected by anybody. For ellipsoidal shape we shonld again lind a little more than 2. In this way it seems impossible to me to explain the value of bim <2. But we shall possibly discuss this later.

The original theorem of the corresponding shates pronomed the equality of the $\boldsymbol{\tau}$, ,,r surfare. In the form given here it states the superposition of the π, m surfures. These Iwo forms would $1<b_{1 n}$ coincide, if there was only one single law for the course of b. In
 the advantage of the form given here is obvions, when there are different kinds of substances from the print of view of the law of correspondence. Virst of all it points out the canse for the existence of these different kinds, about which carse the form given origimally does not reveal anything. Secondly it apears that attempts to timd perfect correspondence between these different kinds must fail, and have certamly no chance of success by variations in the x and m ordinates. And thindly it shows that the deviation between the different kinds of substances is a gradual one, and the coincidence in the rarefed gas-state is restored.

Physics. - "On the Hatreeffect, ened on the chenege in vessistance in a magnetic fielet at low temperatures. V1. 'The Hasieefiect for nickel, and the magnetie chunge in the resistronce of nickel, mercerry and iron at lour temperatures dorn to the melting point of hydrogen". By H. Kampringil Onses and bexat Bechman. Communication N^{σ}. 132 re from the I^{\prime} hysical Laboratory at Leiden. (Commmicated by Prof. H. Kamerdiaill Osxes).
(Commanicated in the meeting of November 30, 191\%).
\$ 17. ${ }^{1}$) Mengetier chonge in the ressistancep of soldel mercury. The resistance was measured of mercury contained in a ghase capillary 9 cms. long, and of 0.12 mm . diameter. The capillary wats (T-shaped, and to either end were fused two glass leading tubes which were filled with mercury. The resistances were measured by the Konmanson method of overlapping shmms, in which the main current was $I=0.006$ amp. The mercury was fiozen by blowing cooled hydrogen vapour into the cryostat through al glas the whose lowner extremity reached below the resistance. The resistance was fonm to be

$$
\begin{array}{lll}
7,97 \quad \Omega & \text { at } & T=267^{\circ}, 3 \mathrm{~K} . \\
0,1014 & & T=20^{\circ}, 3 \\
0,0614 & & T=14, .3
\end{array}
$$

[^30]TABLE XIX.
Magnetic change in the resistance of mercury.

$T=20.3 \mathrm{~K}$.		$T=14.5 \mathrm{~K}$.	
H in gauss.	$\underset{w}{\mathcal{w}} \times 10^{3}$	H	$\int_{w}^{\triangle w} \times 10^{3}$
9760	+1.3	10270	$1+5.5$
10270	$+1.5$	10270	$+6.5$
10270	+ 1.6		

The measurements therefore show an increase of the resistance in the marnetie tield. At

$$
\begin{aligned}
& H=10000 \text { and } T=: 20^{\circ} .3 \mathrm{~K} \quad \triangle W=+1.5 \times 10^{-3} \\
& T=14^{\circ}, \overline{\angle n} \quad \frac{\angle \pi}{\mu}=+6 \times 10^{-3}
\end{aligned}
$$

were obtaned as mean values.
At these temperatures the temperature coefticient of the resistance is very great, and this lessens the acruray of the above measurements, especially at $T=14^{\circ} .5 \mathrm{~K}$. The large increase occasioned by lowering He cemperature from 20° to $14^{2} \mathrm{~K}$. is very trikime.
\$ 18. The Haldeffect for. and the monpmetic clennge in the ressistance of, nickel. The material in the form of a plate of 0.053 mm . thick-

TABLE XX. Halleffect for nickel $N i_{p l}$.

$T-2902.5 \mathrm{~K}$		T. $90^{\circ} \mathrm{K}$.		$T=20^{\circ} .3 \mathrm{~K}$.		$T-14.5 \mathrm{~K}$.	
H RH	$-R \times 10^{4}$						
301018.8	62.4	29502.93	9.83	29701.48	4.98	49402.50	5.06
517031.2	60.3	49504.55	9.25	56402.86	5.08	82504.25	5.15
7260939.3	54.1	72906.31	8.65	72603.53	4.86	. 102705.19	5.05
9016543.1	47.6	91107.62	8.36	82504.18	4.95		
102704.9	43.7	104008.29	7.98	1102704.81	4.68		

 mits. / was 0.7 10 (1): amp.

The resulls given in Table XX are hown graphically in Figs. 1 and 2.
 ordinary room temperature; this has alreaty heen foum hy . . W. Smon ${ }^{1}$) to be the (rase down to liquid air temperatmes Serording
 proportional to the magnetisation and not the the died. Ilence, when the magnetisation allains ils maximmm value, fle Hatseftere mant atso exhibit a state of saturation, that is to say the colven wime the Hableflect as a function of the field mast show a bend. Sumat:

Fig. 1.

Fis. 2.
 $+546^{\circ} \mathrm{C}$.. show such a bond. Which, as the temperature increaten right up of the critioal temperathere for niokel. is displaced towards the weaker tiedds, thas corresponding to a dimmmtion of the satmation magnetisation as the temperature fises. At 2 gho K . our prement
 At the lower lemperatures there is no decided bend visithe within the rexion of fields cowered by our observations $/ / /<10400$.: than if there are any bends at thene temperatures. hes mont oceoll at still stronger fields.

[^31]At $14^{\circ} .5 \mathrm{~K}$. the Hascefleet is strictly proportionat to the field, at is alsen the case at 20.3 K . as fate as $H=9060$. At $90^{\circ} \mathrm{K}$. the Hamwoefteiont is a limear function of the tiede, diminishing as the field increases.

For the Halboofficient in very weak lields the relation

$$
R_{\Delta}=c e^{l T}
$$

holds.
The Ledoc quantity $L_{L}=\frac{R}{u}$, the tangent of the angle of rotation of the equipotential lines in unit field, is here a linear function of the temperature.

The following Table shows the extent to which those relations hold.

TABLE XXI.

T	$R_{0}{ }_{\text {obs }}$.	R_{0} calc.	$D_{\text {Lcalc }}$	$D_{\text {Lobs }}$.
$290{ }^{\circ} \mathrm{K}$.	$66.0 \times 10-$	67.5×10^{-4}	5.37	5.37
90	11.2	10.5	3.07	3.10
20.3	5.0	5.3	2.22	2.30
(14.5	5.1	5.0	2.28	2.22)

For the nickel plate the magnetic change of resistance was also measured. I was 0.2 to 0.3 amp.

As the resistance of the plate is very small, and the changes were, at the most, 1.5%, it was not possible to evaluate them with any greater accuracy.

As has also been observed by Fr. (\%. Bake ${ }^{2}$), G. Bardow ${ }^{2}$) and C. W. Heap ${ }^{3}$), there is an increase in the resistance of nickel in the weaker fields $(H<3000)$; in stronger fields the resistance diminishes, and, in the region $5600<H<10270$. it does so approximately linearly with the field. This behaviour is, to a large extent, the same throughout the recrion $290^{\circ} \mathrm{K} .>T^{\prime}>14^{\circ} .5 \mathrm{~K}$.

In strong fields the diminution in the resistance is somewhat greater at low temperatures than at ordinary temperature.

[^32]

Fig. 3.

 As expermental material an bon wire fom konnaw, sweden, was
 storkboln. ()|latysis the following impmition were found present

1	(1)10
\cdots	$0.101{ }^{-}$
1	0.028
Ni\%	0.014
./1'	0.0.3

thus \quad riving a total impurity of about $0,18{ }^{\prime \prime}$. After amalysis the wire was drawn hy Harams to a diameter of 0.1 mm .
lofore it was drawn the temperature coefticient wats $\frac{\text { "8s" }}{\text { wesg }}=0.14$: afterwards it was ${ }_{\text {"su }}^{\text {"sen }}=0.1$.

The iron wire was wound non-indurtively upon an ehonite eylinder, and was so placed in the magnetic tield as to be perpendicular to the lines of fore throughout. The method of oremapping shonts was nsed for determining the resistance. Resistances withont field are even in Table XXIII.
T A B L.E XXIII.
Resistance of pure iron as a functio
of the temperature.
T
$285^{\circ} \mathrm{n} \mathrm{K}$
90

The temperature coclicient of the resistance is very smatl in the bignid hydroren rogion: in lignid oxyen and nitrogen it is large. Resistanes were measured at $255^{\circ} \mathrm{K}, 77^{\circ} \mathrm{K} ., 20^{\circ}, 3 \mathrm{~K}$. and 14°, K K. The measurements at $77^{\circ} \mathrm{K}$, are not quite irustworthy, and we
 demomine the orientation of the emperature curve.

Fig. 4 shows the resistance as atmotion of the fiek. 'The whepvations at $77^{\circ} \mathrm{K}$, are indicated by a hroken line.

TABLE XXIV.
Magnetic change in the resistance of iron.

$T=288{ }^{\circ} \mathrm{K}$.		$T=20^{\circ} .3 \mathrm{~K}$.		$T=14^{\circ} .5 \mathrm{~K}$,	
H	${ }_{w}^{w} \times 10^{4}$	H	${ }_{w}^{w} \times 10^{s}$	H	${ }_{w}^{w} \times 10^{1}$
990	+2.8	1500	-2.0	990	-1.7
1500	+3.8	2520	-2.9	2500	-2.6
2520	+ 5.7	3750	-2.7	3750	-3.1
3750	$+6.0$	4940	-2.2	4940	-2.4
4940	+ 5.4	6110	-0.9	6110	-1.4
6110	+ 3.2	7260	$+0.7$	7260	+ 0.3
7260	+ 0.3	8250	+2.6	8250	$+2.6$
8260	2.1	9065	$+3.6$	9065	+ 3.6
9065	-4.7	9750	$+4.6$	9750	+ 4.7
10270	-9.1	10270	+ 5.2	10270	$+5.4$

Fig. 4.
At $288^{\circ} \mathrm{K}$ the resistance increases in weak fiedds, and derreanes in fields greater than Fooo. This is in agreement with results oltained
 liquid hydrogen temperathes this behaviour is reversed, for the resistance diminishes in weaker tields and increanes when $/ />$ inno. There is a neutral zone at about $H=7000$.

1) L. Grunsach and F. Weidert: Verh, d. Dentsch. Physik. Ges. 1406, 359.
2) C. W. Heap: I. c.

Physics．＂（on the Ilase efiect，and one the change in resistemee in ＂metpuptir fishe at low tempurvtures．VII．Tho Hase effect for ：tuld－sileres allegs at temprevatures down to the melting primt of
 the Playsical Lathotatory at Leiden．（Communicated by Prot． H．Kimerbasef Omesis）．

Communicated in the meeting of December 28，1912）．
This commonication is a contimation of Comm．N＂，130\％．
IV: Coldesilerer-alloys.
© 10 ．Measurements at temperatures of $290^{\circ} \mathrm{K} ., 20^{\circ} .3 \mathrm{~K}$ ．and $14^{\circ} .5 \mathrm{~K}$ ．of the Had，effeet for three Au－dy alloys（I，II，III）con－ baming a lage percentage of gold were published by Kameringh Oxys and myself in Comm．N＂． 129 ，\＆ 12 ，and in Comm． $\mathrm{N}^{\circ} .130 c$ ， § 16．The results of my measurements made on one（I）of these alloys at $90^{\circ} \mathrm{K}$ ．Were given ins of（ omm ． N° ． 130 ．I have since investigated three other alloys contaning a greater percentage of silver．and in the present paper the results of these new measure－ ments on the lhad effeet for Au－Aly alloys are given and are dis－ russed in connection with the former results．

The observational method was the same as was formerly used， viz．the form of the compensation method developed by lafibet ${ }^{2}$ ） as used by vas Evermania ${ }^{2}$ ）．An iron－clad Thomson gelwanometer Wats used，with a period of about 4 sees，and a sensitivity of about 1 mm ．deflection at 2.5 m ．distance for 5×10^{-8} volts．In this method disturbances produced by the thermo－currents arising fromi the thermo－mannetic effect of vos ETrisishatsex are completely elimmated only in the case of instantancous closing of the main convent circoit．On aceount of the comparatisely large perod of the galvanometer this was not possible in the present experiments；but still，these disturbances were too small in the present case to be abiomed．

The main current wis 0.5 to 1 amp．The plates were eircular （ 11 mm ．diam．）with point electroles．The resistance of the plates was measured as well as the Hats effect．

Tho alloys were obtaned by fusing pure gold and silver in a poreelan crucible，and then rolling them ont．They were all sub－ mitted to analysis．I am greatly imbleted for these analyses to
${ }^{1}{ }^{1}$ ）Lemeret，Diss．Leiden 18！5．Comm．Leiden X＂ $19,1895$.
 ways and B．Beckrin，Comm．N＂。129a，1912．
$!4!4$
 dico (8. Kibr, Atmatrom, Tpealal.
 coefficient in c. .2.s. mits, wh the resistance in ohms at the absolture temperature ' i ', and $" 10^{\circ}$ o the resistathere at $\|^{\prime}($ '.

Alloy II contained 10.7 atomic pereentages of silver. The thickness of the plate was 0.049 mm .

TABLE XVI.
Hall effect for $(A u-A g)_{\cdot} / \|$

$$
T=290^{\circ} \mathrm{K} . \quad T=90^{\circ} \mathrm{K} .
$$

H		$R H$	$-R \times 10^{4}$	$R H$

Alloy III contained 30 atomic percentages of $A y$. The plate was 0.078 mm . thick.

TABLE XVII.
Hall. effect for $(A u-A g)_{I I I}$

$$
T=290^{\circ} \mathrm{K}
$$

$$
T=90^{\circ} \mathrm{K}
$$

H	$R H$	$-R \times 10^{4}$	H	$R H$	$-R \times 10^{4}$
8250	5.03	6.10	9065	4.26	4.70
9360	5.70	6.09	9750	4.55	4.67
10270	6.18	6.02	10270	4.83	4.70

$$
\begin{array}{lll}
& w=9.47 \times 10^{-}+\Omega & \\
w_{1}=1.015 & 0 & w=7.71 \times 101 \Omega \\
w_{n}=1
\end{array}
$$

Alloy V contand 90.9 atomic percentages of A!\% The plate was 0.082 mun. thick.

TABLE XIX.
Hall effect for $(A u-A g)_{V}$

$$
T=290^{\circ} \mathrm{K} . \quad T=90^{\circ} \mathrm{K} . \quad T=20 . \circ 3 \mathrm{~K} . \quad T=14 .{ }^{\circ} 5 \mathrm{~K} .
$$

/

$$
R H-R \times 10^{4} \quad R H-R \times 10^{4} \quad R H-R \times 10^{4} \quad R H-R \times 10^{4}
$$

9165	6.62	7.31	5.88	6.49	5.22	5.76	5.16	5.69
9760	7.23	7.42	6.30	6.45	5.59	5.73	5.66	5.80
10270	7.52	7.32	6.58	6.40	5.98	5.82	5.86	5.71
$u^{\prime}=5.29 \times 10-4 \leq m=3.81 \times 10-4!3 w=3.40 \times 10-4!3 w=3.40 \times 10-40$								
11	$\begin{aligned} & w_{1}^{\prime} \\ & w^{\prime}, \\ & 1 \end{aligned} 1.1025$		w u_{0}	0.735	$\begin{aligned} & \mathfrak{u}^{\prime} \\ & \ddot{u}_{1}, \end{aligned}-0.66$		$\tilde{w}_{w_{0}}^{w_{1}}-0.66$	

Aloy 11 montaned 97.8 atomi peremtages of Ag. The plate was $0.019: 3 \mathrm{~mm}$. thick.

TMBLE XX.
Hall effect for (Au- $/ \mathrm{g})$

,	$T=290{ }^{\circ} \mathrm{K}$.		$T-90 \mathrm{~K}$.		T-30.c3K.		$T-14.05 \mathrm{~K}$	
\mid	RHI	$-R \times 101$	RH	$-R \times 104$	$R H$	$-R \times 101$	RH	$R \times 10^{1}$
1								
- 9220	7.10	7.70	$6.79{ }^{\prime}$	7.37	6.41	6.95	6.38	6.92
9500	-	-	-	-	-	-	6.59	6.94
9760	7.56	7.75	7.22	7.41	6.82	6.09	6.73	6.90
10270	7.95	7.74	7.71	7.51	7.13	6.91	7.09	6.90
	$w=25$	$2 \times 10^{-5!}$	$i i=12$	2.7×1050	a- 8	$\times 10-5!?$	$w=S$	$<10-5!$

In Table XXI are collected my results for alloys of gold and silver. In it are given results for the Hath cocfticient $R T$, and its temperature coefficient $\begin{aligned} & R_{T} \\ & R_{290}\end{aligned}$, for the $I_{\text {abore constant }} D_{L}=\frac{R}{\mu}$. and for the temperature coefticient of the resistance without a magnetice field. All ate expressed in c. .s.s. umits.

Fig. 1 is a diagram of the elempical conductivity ($\overline{0}$) at $T=290^{\circ} \mathrm{K}$. and at $T^{\prime}=90^{\circ} \mathrm{K}$. as a function of the atomic percentage of $A \%$. The unit in which the conductivity is expressed is the receiprocal of the resistance in ohms of a 1 am. edged cube. The conductivity was calculated from the analyses. (See a previous paper ${ }^{1}$).

At lower temperatures the characteristic curses hecome steeper. This is strongly marked at hydrogen temperatures ats is shown by the measurements of Kambramith (Nxts and Ctay ${ }^{2}$) on a gold-silver alloy contaming about 0.4% Aly, and by ('tay's ${ }^{3}$) measurements on Au-dy alloys with varions compositions. The latter measurements have been contirmed by mine, and have heen firmher extemted to embrace cases of average and of small content of Lur For these cases, somewhat similar results were ohtained as with small content of Ag: the addition of amall quantity of gold to pure silver canses such an enormons decrease in the condnctivity that, for

[^33]\[

$$
\begin{aligned}
& \begin{array}{llll}
\infty & -1 & 0 & 0 \\
i & 0 \\
i & \text { i } & 0
\end{array} \\
& 0
\end{aligned}
$$
\]

$$
\begin{aligned}
& \begin{array}{ll}
0 & \infty \\
0 & 0 \\
0 & 0 \\
0 & i \\
i & 0
\end{array} \\
& \begin{array}{ll}
\infty & \lambda \\
\times & 0 \\
0 & 0 \\
\vdots & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\pi & E \\
0 & - \\
\frac{y}{x} & y \\
1 & E
\end{array}
\end{aligned}
$$

instance, an admixture of 2 atomie pereentages of gold reduces the conductivity (expressed in the above measure) from $51.10 \times 10^{6} 10$

Fig. 1.
1.35×10^{6}. The curves expressing the temperatmre quotient ${ }_{\sigma_{0}}^{{ }^{n}}={ }_{u_{0}}{ }_{u_{0}}$ as a function of the atomic percentage follow a similar cours. The researches of Kamerbingh (ones and (day ${ }^{1}$) on various gold wires have shown that the degree of purity of a metal can be very

Fig. 2 and 3.
${ }^{1}$) See note 3 p. 991.
anonrately watued from a delermination of the temperature coeflocient of its resistances at hydrogen temperatures.

Fifse 2 and 3 show the Hatwoetheient R^{2} at temperatures of $290^{\circ} \mathrm{K} . .90^{\prime} \mathrm{K}$, and $20^{\prime} .3 \mathrm{~K}$. as a fanction of the atomic percentage "11 ats. The durves resemble those which give the electrical condhetivity amh the temperature quotient of the resistance as functions of the atomic perentage. C\%, Kamaman Owas and Bragt Beckma, (omm. N". 180c). When silver is gradually added to pure rold, the Ihatacoediedent at low temperatures diminishes. at firs mpidly, and then more slowly, matil, with a mixture of about equal quantities of A 1 and A, a lage change in the composition occasions only a very small change in the Habeffect. The fower the temperature the steeper is the descent of the curve. For instance, when a 2% admisture of silver is added to pure gold the Hableoeficient diminishen

$$
\begin{aligned}
& \text { at } T=20^{2} .3 \mathrm{~K} \text { from } 9.6 \times 10^{+} 106.7 \times 10^{+}, \\
& \text {at } T=90^{\circ} \mathrm{K} \text { from } 7.6 \times 10^{-4} \text { to } 6.6 \times 10^{-4}, \\
& \text { at } T=290^{\circ} \mathrm{K} \text { from } 7.2 \times 10^{-4} \text { to } 6.8 \times 10^{-4}
\end{aligned}
$$

Hence a small Ay impurity in pold oceasions only a small variation of the Hameffert at $\quad T=290^{2} \mathrm{~K}$. Which, however, becomes more apprectable at lower temperatures. On the otber hand, as is evident from the meashrements of A. vos ETmasmasex and W. Nerset ${ }^{2}$), F . (ix Aubla ${ }^{2}$) and A. W. Smom ${ }^{\text {") }}$, the addition of a small quantity of sh or ib to Bi , which exhibits an umsually large Hhareflect, occasions even al ordinary room temperature a great change in the Hish-elfect.

Fitr. 1.

In Fig. 4 ane shown the curves of the temperature quotients $\begin{aligned} & R_{90} \\ & R_{0} 0_{0}\end{aligned}$ and $\frac{h_{20,30}}{\text { hone finnetions of the atomic }}$ percontage of 1%. These curves. have the same general features as those of Figs. 1, 2. and 3 .

In lifig as is hown the relation between I and T for some $A n-$ ly alloys. The comse of the curves between 20° K. and 90 K . is not quiterertan, as no observations could

[^34]be made between hytrogen and oxyent temperatures. Thene porlime of the curven are therefore indicated by dotted lines. With aty and

Au the Haldcoefficient increases as the temperature falls. This increase takes place chielly in the temperature region $20^{\circ}<{ }^{\circ}<77^{\circ} \mathrm{K}$. In the hydrogen rection, $20^{2} .3>T>14^{\circ} \cdot \bar{n}, l^{3}$ is constant within the limits of accuracy. A very smali diminution of the Hadrcoefifcient is exhibited by the alloy (Lu-ig) with $2^{\prime \prime} / \mathrm{A}$ - - y al low temperatures. At low remperatures alloys with more than $2^{\prime \prime} /$ of Ay show a distinct diminution in the Hat, effect, which is greatest for alloys of medium concentrations. Thns atloy Ill with 30 "/n lygiven $\begin{aligned} & R_{200} \\ & R_{290}\end{aligned}=0.64$. With Alu and $A!y$ the ratio $R_{R_{290} 0}$ differs but very litule from 1, while with alloys of medium concemtration it differs considerably from 1. Of the alloys with a large percentage of Ahe a distinct diminution of the Hableffect at low temperatures is already exbibited by alloy VI, with 2% of Au.

In tig. 6 is shown the relation behween the Ledte ronstant $D_{L}={ }_{\mu}^{R}$ and the atomic pereentage of $-1 y$ at $T=290^{\circ} \mathrm{K}$. and $T=90^{\circ} \mathrm{K}$. This constant is the tangent of the angle of rotation of the eguipotential lines in mit field. The curves are of the same nature as the conductivity-silver percentage diagrams; at lower temperatures they become steeper. When two per cent of Alu is dissolved in $\mathrm{A} y . D_{L}$ at $T^{\prime}=200^{\circ} 3 \mathrm{~K}$. sinks fiom $720 \times 10^{\circ} 1085 \times 10^{\circ}$. It is worth noting that with alloys of medlam concentration $/)_{l}$. is approximately constant thronghont the whole temperatare rexion $290^{\circ}>T^{\prime}>14^{\circ} .5$; this holds for $10.7<\ldots<90.9$ that is 10 saty, for alloys in which the percentage of nether component is less than 10.

With alloys which may be regated as dilute solutions, hence for $0<x<11$ and $90<x<100$, as a rule h is, 10 a first approximation, a linear function of the temperature quotient ${ }_{w_{0} T} T^{\prime}=290 \mathrm{~K}, 90 \mathrm{~K}$.

20:3 K.. Only the alloys with a bate peremtape of itg at $T=20^{7}, 3 \mathrm{~K}$. are an exreption to this rule.

Fig. 6.

At $T=290^{\circ} \mathrm{K}$. the Habroentrient for dilute solutions is proportional to the conductivity σ_{230}.

It would undoubted!y be of the greatest importance to systemafically extend these investigations of the Hadefled in alloys at low temperatures, which I have, to my regret been obliged to confine to a single series of alloys, and to forther investigate alloys of different gypes. I hope to continne this researd ats soon as I ein find a suitable opportunity.

I gratefully acknowledge my indehtedness to Prot. Kamerbingin 0xxm who invited me to modertake these investigations of the H.hls effect at low temperatures.

 the Physical Latoratory at leaden. ('ommmatated hy Prof. H. Kımaramen (owits.

> (commanicateal in the mertine of the comber en, ith12
\$ 20°). The Hablefönt in 'Tithurmm. The measmements were made with a shom period Wammans gatsammeter. The primaty (rurrent was $I=0.2$ amp. Two plates were invertigated. both construed from the purest Marek pellurimm. The dirst plate Pr, wan compressed in a steel mould. and the secomblyate 'terth was cant in a steel mondd. The lirat plate wat very brithle. bonh plates were circular with a diameter of I 1 am. The chectronter were phatimam wires $1 / 2$ mam. in diameter, and were finsed into the plates. To thene platinum wires the hoads were then soldered. The speritice resistance and its temperature ereflident were difterent for the lwo phates at
 The residance temperature compliofent for tor was always negative over the whole temperature region $259^{\circ}>T^{\prime}>20^{\circ} .3 \mathrm{~K}$. Te, $1 /$ on the other hand exhithited a minimum in the resistance below $T=70^{\circ} \mathrm{K}$.

The thickness of the phate Te, wats 1.175 mm ., its resistance

$$
\begin{aligned}
& 20.3 \quad 4=3.0
\end{aligned}
$$

and again at

$$
T=290 . \quad \pi=1.0
$$

at bow remperatures therefore the resistane in comsiterably increased; cooling, moreover, eatsed an incorase in the resistance at ordinary temperature, which is probably due to the production of small tissures.
 obtamed the following results lill and $/ f$ given in (o. g. s. units): see table NJT p. 998)

At $T=290^{\circ}$ the specilice resistatme of $T^{\prime} T_{n} h$ was $1.01 \times 10^{\circ}$ c.e.s.s. The plate was 1.88 mm . thats. The change in the resistance with temperature is shown in Tahle XXVI and in lis. S^{2}.

Hence as has already heen mentomed. the resistance of the plate Tern attans a minimm at ahmot $40^{\circ} 1060^{\circ} \mathrm{K}$. This hehaviour is somewhat smima to that foumd by Inaw to be chataderistio of

1) The sections of this Commmication are numbered as continutions of Comm. No. 1:3 2 t.
${ }^{2}$ The diagrans are numbered as continuation of those in Ciomm. No. $1: 32$ an

Proceedings Royal Acad. Amsterdam. Vol. XV.

TABLE XXV.
Halleffect for Topl
H $T=-290^{\circ} \mathrm{K} . \quad T=20^{\circ} .3 \mathrm{~K}$.

in gatus	$R H$	R	$R H$	R
37511	14.65×10	39.1	16.1×104	43.1
5640	22.4	39.7	-	-
72611	29.0	40.6	31.9	44.2
9065	35.4	39.1	41.4	44.5
10270	40.2	39.1	46.6	45.3

bismuth containing only a slight amount of impurity and by d. Komagiberger. (). Reichenhema, K. Somidina') for at kind of peri-

TABLE XXVI.
Variation of the resistance of Tellurium, $T^{e} p / I$, with temperature.

T	w
2890 K	0.212Ω
170.8	0.146
162.3	0.144
153.1	0.141
141.8	0.136
90	0.119
80	0.117
69.5	0.113
20.3	0.122
17.7	0.124
14.5	0.126

1) J. Koemgephagr, Jahatb. d. Rad. u. Elektr. 4, p. 158, 1907.
O. Ren henhem, Inang.Diss. Freiburg i. Br. 1906.
J. Kormgeberger und K. Schlling. Anh. U. Phys. 32, p. 179, 1910.
fes. for magnetite, motadie titanimm ame motallie ziveroninm, a phenomenon explained by d. Komaksbakek hy the dissociation of elere trons from the atroms.

With this plate, too, an increase of the resistance was observed on returning to ordinary temperature $T^{\prime}=290^{\circ} \mathrm{K}$ after havinge cooled it to hydrogen temperatures. In this case, however. it was much smaller than with Tepl, and wat, at the most. 5\%. We ohtained the following results:

TABLE XXVII.
Halleffect for $T e_{p / I}$

H	$T=291^{\circ} \mathrm{K}$	$T=59^{\circ} \mathrm{K}$	$T=20.93 \mathrm{~K}$	$T=14.05 \mathrm{~K}$		
in			$R H$	R	$R H$	R

| 3720 | 6.90×10^{5} | 185.5 | 7.85×10^{5} | 210.5 | 7.98×10^{5} | 214.5 | 7.85×10^{5} | 211 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5680 | 10.55 | 186 | 11.95 | 210 | 12.1 | 213 | 11.85 | 208.5 |
| 7260 | 13.6 | 187 | | - | 15.4 | 212 | 15.0 | 206.5 |
| 9065 | 16.75 | 185 | 18.75 | 207 | 19.05 | 210 | 18.65 | 205.5 |
| 10270 | 18.85 | 183.5 | 21.25 | 207 | 21.4 | 208.5 | 21.0 | 204.5 |

At amy detinite temperature l^{\prime} is praticatly comstant for various fields; at lower temperatures there is an indioation that h diminishes somewhat in the stronger fiedts; this is most marked at hydro-
gen temperatures at which l_{n} (R for $H=0$) is about 5% greater thath h for $H=100000$.

For both phates the Harmelfed inereases at lower femperatures, while the ratio $\frac{R_{2 n}}{R_{s}+n}$ is the same. This is very rematiable, for the flaten are complety differen with regrard to their speoilic resistance, resintane tomperature coefincont and absolute marnitude of the Hoseffert. For both phates the value of the Hatrefled is small
 and also by 11. Kans 2), and the electrical condnctivity is ako small.
 F . KRomer ${ }^{6}$) and others varions moditications of telluriam occur: according to kboxer it exhibits dynamical allotropy. The two moditications have very different condurtivities. The specific gravity of the plate Te,f was 6.138: this is perhaps connected with the circumstance that it cooled stowly after casting and that it was subjected to loeal heating when fusing in the electrodes. For a preparation very quickly cooled Kroxer gives a specific gravity as low as o.8. The modification with the lowest specitic gravity seems to have the smallest electrical conductivity.
\$ 21. The Hadegipet in Bismuth crgstals. In Table XllI. Comm. N". 129 , we gave results of measurements of the Hableffect in bismuth crystals for the case in which the crystalline axis is perpendiontar to the field, and the main current rums in the direction of the axis. To these we are now in a position to add results for the ease in which the lield is parallel, and the main current perpendicular, to the axis. For these measmrements we used one of the crestal prisms which had heen used by Vis Evermosea (Suppl. No. 2) in his measurements, choosing the most regular of the three (2,3 and 5 1. (.) which had been found suitable for this purpose (ef. p. 82 l. c.).

In the following Table are given R, H and $R / /$ in c.g.s.
At ordinary temperature and in weak fields R / l is negative, as was first discovered by Vis Evermogex and subsequently confirmed. by J. Becq(erel ${ }^{\text {i }}$).

1) A. von Ettinghausex und W. Nerxst. Silz. Ber. Akad. d. Wiss. Wien. 94, p. $260,1886$.
2) H. Zahns. Am, d. Plys. 23, p. 146, 1907.
${ }^{3}$) A. Matthesen und M. von Buse. Pogg. Anm. 115, 385, 186 .
${ }^{4}$) F. Exver. Sitz. Ber. Akad. d. Wiss. Wien. 73, 28j, 1876.
3) W. Haktix. lnaug. diss. Berlin 1910.
${ }^{6}$) J. F. Krouner. Inaug. diss. Utrecht 1912.
4) J. Becquerel, C. R. 154, p. 1795. June 24, 1912.

In stronger fields lill beromes prositive, as was also found to be the case by Van Eubrdinary and barcotrabo. We may, however, imodentally remark that the imitial negative valnes found by Propermen. are much greater than ours, and that with him zero is reached in much stronger fieds than with us. This leads us to saepect that the initial negative values we have obtaised are to be ascribed to some cause which occasioned their occurence to a much higher degree in Becquerea's experiments; this would be the case, for instance, if our bismuth were purer than his, but still not yet quite free from impurity. If that were the case, then with absolately pure bismuth we should, perhaps, at ordinary temperature, ohtain nothing hot increase of $l i l /$ with the fiedd, the rate of increase being slower in the initial stages.

bat une coan still quite well imagine, however, that at higher temperatures negative values can he obtaned in weaker fields in the contre of the change which l hlf at atmotion of $/ /$ madergoes with the lemperature. The part phayed by admixture would then be restriced to a displacement of the temperathere at wheh a negative value could still just appear, and this temperature would be higher for hismuth of greater purity than for impure bismuth. This would bo analogoms of the dimmation of the negative effect at fower temperatures in the cate disensed in $\$ 1+$ of Comm. No. 129 c in which the axis stands perpendionlar to the tield.

At lower lemperatures we formd the Hathefled positive in all tiehts, whoh is not what berogerab found to be will the gase at lignid air temperatures. It is further woth noting that Rlt shows no further change with remperatnre below the temperature of liquid air. This make it imporant to amplify the measurements given in Table Xlll for the axis perpendicular to the field by others at the temperature of liqnid air.

It is ceen from Firs if that for fields greater than 2000 gatuss at

Fig. B.
fow temperature, and in tieds greater than goto gatus at ordinary temperature, lill is mearly atrictly linear function of the field. If we write

$$
l i=\| \|+n
$$

in this region, we obtain

$$
\begin{array}{lll}
T=290 " K & T=90 K & T=20.3{ }^{\circ} K \\
\prime \prime=+1.7 & \prime=+2.56 & \prime=+2.36 \\
\prime^{\prime}=-5600 & \quad \prime=+1300 & \quad l=+1100
\end{array}
$$

\$22. Remark upon the hicopese in the messistance of hismuth in a mognetic jeld. A friendly remark by Prof. II. Dt Bos leads us to a further development of our ideas concerning the oremrence of a maximum in the isopedals for the increase in the resistance of bismuth.

Onr measurements make it probable that the maximum found by Blake at the comperature of liguid air must be ascribed to the presence of impurity or to some modification occasioned, for instance, by mechanical treatment, and that this maximum is not oblained with pure normal bismuth at these temperatures. The values which we obtained at the boiling point of hydrogen make it also certain that neither is a maximmm to be found between the temperatures of liquid atir and of liquid hydrogen. In the region of hydrogen temperatures a falling off in the rate of increase of the resistance of the bismuth wires is elearly apparent. The existence of this diminution has been proved twice, and on each occasion for different currents (and, as is evident from the table, for various fields). But a maximum, that is to say, a return to smaller values, we have not obtained. From the course of the curves given by Bengt Beckman in Comm. \mathbf{N}^{0}. 130 , it still remains possible that the phenomenon reaches a limiting value. From various analogous phenomena we might quite well expect something of this kind to happen at extremely low temperatures. In Comm. X^{0}. 129 we commented under 1 , § 2 , upon the macertainty as to whether a maximum is reached at these temperatures, or rather an asymptotic approach would be found to be made to a limiting value, stating that "Pertraps as the purity increases the maximum in the isopedals is displaced towards lower temperatures". The measurements we have made with the plates Bi lay further emphasis upon the "perhaps." As the temperature falls to $20^{\circ} \mathrm{K}$ the plates BipI. Bipu, which were not so pure as the wire, exhibit no diminution in the rate of increase. And yet, on account of the greater impurity suspected in these plates, they should be expected to exhibit a maximum between $14 .^{\circ} 5$ and 73°. K , if there were a maximum for pure bismuth at temperatures lower than $14^{\circ} .5 \mathrm{~K}$ and if this maximum were displaced towarts lower temperatures only by an increase in the purity of the material. In contrast with this we here fimd that only the diminution in the rate of increase remains between $20^{\circ} \mathrm{K}$ and $14^{\circ} 5 \mathrm{~K}$. Further experiments upon different bismuth preparations are of course highly desirable.
 T. Tisum: Commomicated by Prof. Nord. .
('mmmmicated in the mertins of November so, 1910).

In reoent reats there hate heen whemed also in hybridisation phemomenat whieh show a ereptan retation between difterent (haramber of a plant. Alreaty in 1900 Corrass ${ }^{2}$) pointed ont this relation and called it "Paktorenknppelme". Some years Later Batpases put forward a theny to explain the phenomena ohereved. Acoording to batesos, in the formation of gimetes in the cate of a plant heterozenoms for more than one factor, the various passible combinations of findors or welles do not arise in equal mombers. Thore may the fwo reavons for this. In the tirst place some factors may show a rertain temdeney to remain connected whilst they are iowever mot so completely coupled as to preclude occasional separation. In the serond plate there can be between different factors a tendener to repulsion.

Come examples of such "qametitecoupling" and "repulsion" or "spurions allelomorphism", as Batson calls these phenomena, are aheady known. I too made ohservalions in the course of my inrestigation on hybridisation that could best be explatimed by such a erenctic conctation. Whilst however the cases known up to the present relate to chataters whose presence or absence in the plants insestimated is easily defermined, this is not so in my impuiry. I have stodied pharacters whose fluothating varability is very maked. white moremer the distindion beween the parental forms for one and the same chatacter atrealy amomos to several genes. The
 the phenomena berome so complicated that a complete analysis is impossible or only possible by most laborious investiqation. I have so fit therefore taken a shoper eomse and shall only show in this preliminary paper that the phersomena point to at corelation not only between two but infed between a

My observations have been made on the cross atread! ') eartier deseribed, between Limme ampustifolimm Huds. and a variety from
 repriat.
\Rightarrow W. Batesus, Memdel's P'rimeiples of Hemedily. 1909. p. 14s.

 1. 'Traw but Sied. Vol. s, 1!11. p. Dol.
 The chiel points of difterene betworn these platste are the following the Hower. the from and the seed of h a amplestifintiom are smatter than those of byptian flow, and morower the cotont of the flower is lighter.

The following mean values show this.

Length of petal	8.08	mm	16.20	mm
Breadth	4.45	"	18.05	
Lengilh of seed	2.40	"	6.08	
Breadth	1.54		2.94	

By analysis of the second generation I was able to show that the difference in length of the petal of the two forms is catred by at least four factors. This holds good also for the breadth of the petal, while the difference for the length of the seed amounts to at least four and for the colour of the flower to at least three factors. The difference in breadth of the seed is also ramsed by several factors. ${ }^{2}$

I have attempted to trace the benaviour of the above characters on hybridisation. The tirst generation was uniform and intermediate in the case of all characters; in the second weneration a considerable segretation had oceurred. This meneration consisted for each of the reciprocal crosses of fully 100 plants. Both groups were separately investigated. Since these however gave exactly the same results, I will only deal with the corosing in which l. omphitifothom was the father. Of this I have observations of all characters in exatly 100 plants.

The lengith and breadth of the petal were determined by taking the averuge batues of sereral Howers: for the determination of the length and breadth of the seed at wreater mumber of seeds were measured, mostly 50 10 100, and the average was taken. The colour of the flower was estimated in the manner (teseribed befores) and expressed mumerically. The light colour of the llower of L. cmins:

[^35]1000°

1.ength of seed in mm	Breadth of seed in mm	Length of petal in mm	Breadth of petal in mm	Colour of petal
3.144	1.880	9.7	6.3	3
3.186	1.961	10.8	8.0	5
3.186	2.006	10.0	8. 3	4
3.224	1.921	9.4	7.0	1
3.242	1.976	9.5	6.4	2
3.281	2.007	10.6	8.0	3
3.305	1.960	9.4	8.5	6
$3.321{ }^{\text { }}$	1.895	10.5	7.8	5
3.383	2.054	11.4	9.4	6
3.387	1.916	10.1	7.5	5
3.405	1.983	9.5	7.7	5
3.449	1.960	10.0	8.0	2
3.450	2.006	11.0	7.1	6
3.451	2.016	10.9	8.3	6
3.458	2.005	9.6	7.0	4
3.473	2.057	11.1	9.2	8
3.482	2.023	11.0	8.3	7
3.495	1.928	11.0	8.5	7
3.501	2.104	10.8	8.9	8
3.511	2.038	11.0	8.0	6
3.529	2.1022	11.5	8.0	6
3.530	2.042	9.2	7.3	4
3.552	2.067	10.6	8.0	4
3.557	2.1986	11.3	7.5	5
3.562	2.239	10.5	7.0	6
85.064	50.241	259.4	195.9	124

1010

Length of seed in 11 m	Breadth of seed in mm	L.ength of petal in 1811	Breadth al petal 10 mm	Colour of petal
3.564	2.130	10.8	8.8	7
3.570	1.993	10.3	8.5	7
3.575	2.149	10.8	7.5	5
3:600	2.126	10.8	8.4	8
3.606	2.077	9.4	6.9	5
3.610	2.224	11.8	8.6	7
3.615	2.088	10.8	8.8	6
3.617	2.080	10.4	8.0	5
3.619	2.150	10.8	7.5	6
3.620	2.112	10.5	7.8	5
3:624	2.137	10.7	8.6	7
3.628	2.246	11.5	9.0	7
3.629	2.333	11.2	7.4	4
3.629	2.157	10.6	8.4	8
3:648	2.013	10.7	8.9	2
3.650	2.145	10.5	8.4	3
3.662	2.226	12.1	8.6	3
3.670	2.081	10.6	7.8	6
3.671	2.050	11.2	7.0	5
3.672	2.036	10.0	6.3	5
3.682	2.193	10.7	6.9	9
3.716	2.267	11.4	8.2	6
3.717	2.331	12.4	9.2	s
3.723	2.183	10.3	7.5	6
3.741	2.141	11.2	8.0	5
91.058	53.664	271.5	201.0	145

Length of seed in mm	Breadth of seed in mm	Length of petal in mm	Breadth of petal in mm	Colour of petal
3. 759	2.2111	10.8	7.0	4
3.761	2.105	11.0	8.2	5
3.766	2.127	11.5	7.6	5
3.767	2.167	11.2	8.4	6
3.731	2.209	10.4	8.0	9
3.753	2.155	10.0	7.5	4
3.781	2.251	11.2	8.5	6
3.280	2.196	10.1	8.7	10
3.791	2.181	10.2	8.2	7
3.795	2.227	11.0	9.5	7
3. 803	2.147	11.8	9.6	6
3.821	2.149	11.3	8.0	8
3.8.9	2.213	13.0	8.6	4
3.4.9	2.228	10.0	7.4	7
3.8.30	2.170	11.0	9.2	8
.3.830	2.224	11.2	9.5	6
3.83!	2.204	10.5	7.8	7
A.A.5	2.135	11.5	8.5	5
3.441	2.204	9.5	6.5	5
3.3.43	2.171	10.6	8.0	4
3.ant		11.7	8.5	5
3. 3 9\%	2.181	9.8	7.0	6
3.900	2.321	11.5	8.2	8
3.904	2.17	11.3	8.5	4
3.911	2.202	10.0	8.6	4
95.520	54.544	272.1	205.5	150

1009

Length of sced in mm	Breadth of sced in mm	l.ength of petal in mm	Breadth of petal in mm	Colour of petal
3.915	2.260	10.7	9.0	8
3.922	2.413	10.0	8.4	4
3.922	2.313	11.0	8.5	8
3.923	2.270	10.0	9.1	5
3.926	2.287	10.6	8.2	9
3.933	2.271	11.0	9.5	δ
3.940	2.351	11.7	9.8	8
3.948	2.361	12.0	9.2	7
3.949	2.150	11.0	8.8	9
3.968	2.298	10.5	8.0	6
3.988	2.196	10.6	9.5	8
4.016	2.218	9.5	8.2	4
4.031	2.225	11.5	8.2	8
4.139	2.295	11.3	9.7	6
4.140	2.317	11.0	8.0	5
4.154	2.350	12.0	9.5	7
4.167	2.389	11.3	8.0	6
4.188	2.345	11.3	8.6	7
4.238	2.348	11.2	9.3	9
4.244	2.456	11.0	9.4	5
4.274	2.446	11.8	9.8	10
4.335	2.452	13.2	10.7	8
4.350	2.311	11.2	7.5	6
4.381	2.461	12.2	10.0	7
4.420	2.469	11.5	9.9	7
102.411	58.252	279.1	224.8	175

 her hy 10.

I hate armated the whemations acombing to the aseending values wit the lemeth of the seed in onder to ohain a survey of the mutual relamaship of the varions eharaters.

In the proveding tathe the figures placed in a horizontal row refer to the varous charaters of the same phant, in the vertical columns thone for different phants are siven. The whole table is divided into four parto, eatch comaming 25 plants.

From these table it must now be clear whether there is or is not atn inter-relation between the length of the seed and the other characters. If the latter are wholly independent of the former then for each charaver the values in a vertical direction must follow each ohther without any regnlanity: the lowest average, and highest values for each charabler must he distributed equally over the four tables and the totals of the 4 successive series must be equal or nearly equal or must at least be arranged withont any regularity.

On the other hand should there exist an intimate relation between the length of the reed and the other chatacters such that they behave as a single whole, then these other characters i ill also be arranged in the tables acoording to avernding or descendiny values, except for smatl deviatons due to the intluence of external circumstances.

A superticial inspection alrealy shows that for none of the charaters are the values in the vertical colmons in a sequence; between successive figures a good many irregnlarities ocenr. If however the tables are compared with one another, it is seen that in general in the tirst lower values, in the last higher values are found.

In order to make a comparian easier, I have added the values for the 25 phant of each table. Below are wiven the totals obtamed for the different charaters.

Length of seed	Breadth of seed	Length of petal	Breadth of petal	Colour of petal
85.064	515.241	259.4	195.9	124
91.058	53.668	271.5	201.0	145
95.520	54.544	272.1	205.5	150
102.411	58.252	279.1	224.8	175

We see the values for all fons rharacters increase in surorsive series. It follows therefore that, on the whole, in the plants which have the smallest length of seed, the bremhth of the seed and the longth and breadth of the petal are smanl, whitst moreover the Hower shows the lighter shades, and conversely a greater length of seed is generally coupled with greater breadth and a larger, more deeplycoloured flower.

In the same way as proceeding from the length of the seed, I have also determined the inter-relations of the other characters. From the above table I have arranged the values in ascending onder according to the breadth of the seed and compared the others with it. The same was done starting from the other charateters. It is unnecessary to give here the complete tables. Below are set out the totals obtained each time for 25 sureessive phants.

Arranged in ascending order of breadth of seed	Length	Breadth	Colour
Plant $1-25$	261.3	195.8	121
" $26-50$	269.0	204.5	148
" $51-75$	270.0	205.0	154
" $76-100$	282.8	221.9	171

| Arranged in
 ascending
 order of length
 of petal | Breadth | Colour petal |
| :---: | :---: | :---: | | of petal |
| :---: |
| Plant $1-25$ |
| " $26-50$ |
| " 190.8 |
| " $51-75$ |
| " $76-100$ |

Arranged in ascending order of breadth of petal	Colour
plant petal $1-25$	124
" $\quad 26-50$	141
" $\quad 51-75$	150
" $76-100$	178

As is seen the values for successive series of 25 plants in all the above cases increase. There exists therefore a relation not only between the length of the seed and the other characters but the five characters together form a complex of which each part in its development depends somewhat upon all the rest.

Now the nature of the inter-relation of the characters of the

Howner athl sed which have heen shadied is, as the figures show, -and hat in general the development of all chanavers in one phant is in the same diverom, sime for example, a lomer petal shows a disting tendener to be comphed with a hood petal, with darker shade of flower and with a greater lengha and breadth of the seed.

Fiom hos it might he dedmed that here it is only a question of ordinary comsegmene of stigh differenes in external conditions in romsequene of whioh the hes momished plantedevelop more strongly and form larger depperooloned flowers and harger seds, in other words that the relation whered maty ond he the bstal rorrelation phenomenon of Huchating varying dharacters, just as met with in homogeneons material that is in pure forms.

There indeed werurs as the observations showed, a eorrelation hetween the charaters in the promt forms and also in the first generation, of the same kind as the relation here deseribed.
*In F_{3} allon this comrelation will play a more cemain part, but only in a subidiary way and the phenomenon is chielly due to amoher camse This is aheady clear from my cartier investigations. Moreoser I have also trated the relationships in the offspring. When the relation oberved in a thenomenon of correlative variability. then the offermine of each individual of the second ementation must exhbit axam the same comehationfigure as the whole second generation or at least the oflspring of a plant which is extreme for one or more characters mos in general deviate much less from the average type than this plant itself. Now this was not the case, for it was found that the relamonships as they appeared in the F_{g}-plant were it the man handed on to the offoping. Some examples havins reference (1) the length. Wreadth, and colour of the petal will make this clear. The valnes for four different ℓ_{2}-plants and their offspring are given in the following lable. The first $F_{g}^{\prime \prime}$ phant possesses the three characters in an extreme degree, the fom has extremely smatl values for them all. He two others show different combination.

	F_{2}		i^{\prime}	
Lemerth of petal	13.2	mm	12.1-14.8	1 mm
Breadih	10.7	"	10.3-12.2	"
Colour	8		7-9	
Length of petal	13.0	mm	12.1-14.0	mm
Breadih	8.6	,	7.7--9.2	
Colour	3		$2-5$	

	I		$1:$		
Lonuth al pran	10.01	11111	(4.\%)	11.2	11111
lireadib	9.1	-	8.8	- 10.1	-
C'olour' "	5		:3	?	
lemgeth of petal	9.5	117m	8.2	. 10.0	111111
lireadth \quad,	6.7	-	6.0	7.2	.
Colonn .	2		1	\because	

The above proves that there is still another relation befweon the chatacters in the plants stmbed in addition or ordinaty correlation. The whole phenomenon is only sumertiodally like moll a correlation.

Just as any simgle character which is based on several genes, gives in the second gencration a peoulo-enre which show- itself at at conve of fluctuating variability but in wheln the flactathong variahilisy plays only a more or less smbordinate role, so also here in b_{n} an inter-relation of different charaters may appear that simmates ordinary correlation, but that is in reality a completely different phenomenon which is only stightly affected hy this correlation. I point this out becanse it seems to me that in studying correlative variability it is of the highest importance to invextigate only pure homogeneous material. Since domaxsen has male known to us the "pure lines", it has become clear that moch that was formerly thought to be pure material, is a mixture of several forms perhaps also of hybrids. It is possible that the correlation foum in such material is not a pure correlation between the fluctuating variability of the characters but is wholly or in part a different correlation phenomenon. This is also the case here. We must assume that here a genetic relation exists between the groups of factor for the different characters. This relation is snets that in the formation of gametes in $r_{\text {a }}$ definite combination: of factors ocem preferentially. In gencral a lembency exists 10 make the proportion in the number of factors for the various characters such as it was in the original forms or at least to apo proximate to these. This explains that in f_{z} more forms arise in which the chatacters all deviate in the same direction from the average than should be the case areording to the haws of probability.

In the crossing mentioned above the gromps of fators for the various characters behave with respect to one another differently from the way in which the factots for one single chatater behave mutually ; for my carlier investigations have shown, that for each of
 of ome amolory. It is most moteworthy that there exists letween the
 the fitefor: for the same Finther investigations must show to what extent has fhemomenon orems in other sases and whether it is always coupled widn a tendeney to presorve the complete imate of the parent forms.

In the cate there described the qenetic rorretation is incomplete. A- is elear from the tablen plants are fombl, which for some characters more neariy approth the one parenal form and for others are nearer to the seoond. The bumber in whith the different combinations oceur. cammot the determined as is done by other investigators for their (rossings, aho becanse ordinary rometation phats though it and still further obliterates the separation between the gronps. If at ath, the ratios could only he fomm by much more detailed investigation; but it is clear from the foreroing that by this means some insight into the phenomena may be ohtaned.

The chataters mentioned all belong to Hower or seed, the fruit might be added sime a very dose relation exists between the size of the frout and that of the seed. I am also engaged in tracing the relation of the chatactets mentioned to those of the vegetatioe organs. I am. however, prevented by circumstathes from completing this investigation in the near futhre.

The results of the insestigation may be summarised as follows:
In hybrids of Limum usitutissimum and 1 . angustifoliem an incomplete genetic correlation exists hetween the groups of factors or genes for length, breadth. and colour of the peial and lengh and hreadth of the seed: whereas on the other hand the factors for the same character are completely imbependent of one another.

The inter-relation is such that there exists a tendency to approximate to the combination of chatacters as it oceurs in the parent forms.

The genetic correlation expresses itself apparently as a phenomenon of the ordinary corretation of flumbatingly sarying characters: the later "orrelation which also occurs, plays only through the former.

Botmical Laboraiory.
fironingen, 3 010.t. 1912.

 (Commmotated by P'roteron Wexp. (Commmicated in the medting of Nowrober $30,1992$.

Varions inverigators hater stmed the dongitudimal growh of the stem. They hate for the most part paid attention to the dotal increase in length of the stem and only it few investigated the distribution of the rate of growth in one or sevemb internodes. Complete investigations, on widely diflerem phats with regard to the distribution of the pate of growth over the whole growing region have so far not appeated. There oreme indeed in the herature fwo important blterances which are hased on preliminaty owervations. The first is the opinion expressed by sums ${ }^{1}$, that the giowsth of stems with distine nodes differs from those with indistind nodes. If the stem is shandly artomated then acombing on suchs cach intemode shows its own rame of rate of growh. This ratc increases from the hase of the stem towads the apex, reaches a maximum and derreases again towads the unger node. If the stem has indistinct nodes then the whole growing region fields a single corve of rate of growth of this type.

Rothart ${ }^{2}$) has further described this. He suraks of imdividualised internodes when each intemode grows as a separate mait and passes through the great period of growh, whilst in other cases the whole stem pases throngh this growing-period as one internode. Notwithstanding that these two anthors have clearly distinguished two methods of growth, the growth of the whole stem in one growingperiod has had most attention paid to it. so that in most text books it is given chief consideration.

This is the circumstance which leal me in 1907 to make measurements on various plants in the Botanic (xardens at Ltrecht.

With regard to the results of this inquiry which will be shorldy communicated in my Disertation, I wish here to make a brief preliminary statement.

With the aid of a little stamp made for this purpose or of a brosh and India ink, linear marks were made on the stem, so that it was divided into zones.

1) Sachs Jul. 1873. Ueber Wachsthum und Geotropismus aufrechter Stengel. Flora 26 Jahrgang. Regensburg.
${ }^{2}$) Rothert W. 1896. Leder Helindropismus, Cons's Beitraze zur Binlogie der Pilanzen Bd Yil.
fommediately on the eompletion of intervals of time which were at fill as phrsithe coprat, the leneth of the zones was measured

In making the meashrement a ereat diftondy was the delermination of the exat boumbay of the zones, beanse the portion of the stem on which the mank had been placed, wrew at the same time. I therefore triod 6 determine as fan ats posible the middle of the mark. In my later olwervations, I sureceded in aboiding the ermo dne to this, hy matiog athernate zones with a lengthwise line. I then took the extremities of the lomgitudimal mark as the zone-boundary.

Rapid growth also cansed this boundary to thecome indetinite and diflicult to determine.

To gain an idea of the errors in my ohervation, I fregnenty also measured in the couse of my observations the zones which had already been found to have trown ont.

I thus obtaned momerical data concerning the length of the same zone meastred at different points of time.

The greater momber of these data were identical, only a few deviated. Cablation showed that the areage ermo was smatler than the experted degree of acemater.
 Horn and Linum ustatissmm, Lax, the whole resion of growth formed is single curve of rate of growth, i. e. regulaty increasing growth from below mpwads and then decreasing growth above this.

 13-17 Juli. curve of rate of growth with this difference that the zones in which the modes were sinated showed less growth than the zones lying nearest to them.

Fig. 1 shows the curve of rate of growth in Dentaie seabor Thbs. from $133^{\prime \prime} 1017^{\text {th }}$ July ${ }^{9}$)。

1) (the the abseissace axis the zones have heen photted at equal distances. The thin tines give the diwisumarks between the zones, the thick lines are the nodes.

As ordinates I have photed the aserage rates if growth of cach zone doring a dedinte space of time.

The rate of growth of the bowest zone of the stem is siven in the curve on the lett, and that of the uppermost zone on the right.

 Lass. the zones Jying below the mode hat moreover a distinctly slower growth than the others. see fig. 2.

Fis. 2. Polygomem siertutinense f: semmor 3-11 May.
In both groups of phant in the begiming the lowest part of eath internode grew fintent whilst the rate of growth near thr upper end decreased till in the "nowlerone" it berame very slight or zero (Polygomum).

Afterwad the maximal rate of growth wats displaced towad the apes and diminished in magnitude.

The zones in which the maximal rate of growth hat lated the longest time during which period this maximum in the internote also reathed its treatest value increased mach more than the uppermost zones in which the maximum lasted only for at shoter time and in which it was moreover much decra-ed in intensity.

The difference hetween the first gromp (Acer ete., and the secomb group (Clematis ele. hes in the rate at which the maximmof of growth travels along each internode and the poimt of time at whioh it oceors.

In the fire group the displatement of the maximmm hegin in a very eally sage of development and the maximmm is rery quictily fombl below the node. On the other hand this movement is sow in the plants of the second group, so that for some time, often imberd for a considerable time. the uppermost zones of an internote thow lpsis growh than the interior zones of the same internode.
since the difference is contined to the moment of time in which and the velocity with which the maximum moves in the direction of the apex, the two groups are not harply differentiated and sometimeit is possible to obtain a curve of the rate of erowth from plantin the one group, which agrees with that from the other group.

I have not yet been able to determine from my observations what fiators may influence the movement of the growth maximmm. When
the maximum chanced to weoll just moler the nothe and was flerefare mesambed in the motal zonte, this zone olowed the maximmon growill.

The ascent of the zone of maximal trowth from the hatal protion of the internode now contimed in the lower zone of the second internode up to the maximum rate of growth of this internorle. In this case 1 found in both internodes one ascent of the rate of growth withont diminution in we near the nodal zone (ree fig. 3).

Humulus: lupulus lass showed two Fig. 3. Samburus niger Lisx. different enves of the velocity of growth, 11-16 Nei. Hamely, some had a regnlar course (one maximmon for the whote growing zone) and some with a decrease at the upper end of some internodes. These divergent results can be bronght into agreement by peciatly noting the movement of the maximum.

Ifs quick pasage into the nodal zone, not only in the undermost growing internode but also in the second internodes, cansed the chave of velocity of growth in these internode to become a regulan! ascending line. In the higher internodes the maximum ocomred under the nodal zone.

If a sufficient number of growing internodes had been matied on the same stem. I was indeed able to observe this.

I think I have ako observed that the movement of the growth maximmm in ath internode of /hmmulus takes place at about the same time as the maximum of the whole growing region is found in that internote.

I regaded the growh as interabary, if there was either in the upper of in the lower portion of an internote a short zome which mantaned its growth a long time. whilst the middle of the internote was already full grown.

In fonmmelime I saw this stage preceded by growth thronghout the whole internote with the greatest tate of erowth below. The maximal sate did mot, homever, mone towats the unger end but
remaned situated in the hasal protion, whilst in the upher part growth quickly diminished and wholly reased.

In order to observe well the growh of stems with individualised internotes, external conditions must be fisomable. I fomm that during the days on which the femperatme was very low (an aremge of $10^{\circ}(\therefore)$ the curve of rate of growth was almost a horizontal line with seareely any maxima, and this was also the cate with plants which at a higher temperature hat a strongly modulating enree.

All plants, which were found to have a lower date of growil in or also under the nodal zone (to which class plants with intereatary growth also belongy possess complete notes, that is to say, the: show an external thickening romnd the stem at the point where a leat is inserted. This muy happen in plants with afternate leaves, but it alogys occums in plants with opmosite leares.

On the other hand plants in which ill-dofined nodes ("incomplete nodes") are found, show in the growing region a single curve of growth rate and the modal zones are not differentiated by a smaller rate.

It is therefore seen from these observations that there is here a comnection between phyllotaxis and the distribution of growth in the stem.

With regard to the sumeture of the stem three theories are chiefly put forward. Next in the view that the leaves spring from the stem as independent organs (strobilus theory) stands the phyton theory, which declares that the stem is composed of the basal parts of the
 his caulome theory.

A third opinion regards the interior of the stem as an axis round which there is a layer of leatlike origin.

Hormentrar regarded this development as ontogenetic, whilst Potonié ${ }^{2}$) thinks that it has taken place phylogenetically. The pith is according to Potovié the primeval canlome, roumt which originally xylem and phloem have developed from "leaf feet" (phyllopodia).

Celanovsky's theory as also those of Hopmeister and Potosif, holds that the surface of the stem is composed of pats which belong to the leaves lying above it. Drapino ${ }^{3}$, has called these parts "leatfeet" (phyllopodia).

[^36]la phant with incomplete mates there is fomed to the left and biah of the point of attachment of the leat an atea which belongs In a leat phaded atove, therefore there are two difteremt phythopodia.

When we now assmme that in plants with attemate phyllotaxis incomplete montes, the phythopodia themsetres ate subject to the satme growth ats is also to been in the node of the stems with complete nodes. then parts having a diflerent rate of growth will he adjacent.

The question mow ariee how in that cave will the rate of growh the diatributed wer the whole area of spowth, when according to this supporition eath piece of the stem has the average rate of growth of its component parts.

Lai onder to trate this 1 have made a catemation for which the known rate of erowit of the stem of Pohygumem wats chosen ats the - hatingpoint, becanse internotes of this plant are very makedly individualised.

I assumed that each leaf only surrounded a difth patt of the diremberence of the stem and that the leave were displaced along the sem to the pasition $=/ 3$.

From the averagen of the rate of growth of the dive zones thas -itwated at the same height I obtamed a regulaty ascending corve with a short dercending branch.

Its contse a oreed with the curve for plants with altemate phyt-lotaxi-.

Ahhongh I do not see in hais any prot of the theory that the stem may he composed of leaf vases or may be covered with them, yet it is clear in either cose that the observed manner of growth is not immonsiatent with his.

If this theory is arepped, there is moreover agreement between the growth of plants with complete nodes and those with incomplete oner.

F゙mally I shomld like to point ont that I have observed in one plant, namely, Gimbing hifun lasx a difference in growth between three sems, which were in the light and three which grew in the shate.

The nomber of my observatom is 100 small to warant any certain comblnsion, but nevertheles. I considel I have observed that the Ereater incocase in length of the shaded stem most only be attributed to a sight extent to the ervater rate of growh, but was more apperially due to at longer region of prowth, hat is to say, each zome grows during a longer period of time.

Physics. - "E'pherimental imwestigntions comerentim! the miscothitity "f liguids at prossomes up to 30000 atmosphepers". Bey Prof.

(Communisated in the montine of Xowember ab, 1912%.
8. 1. The theoretical researehes of the last few years have rendered it possible to give a complete colasification of the different trpes of mmmixing which are to be expected. Whother these theoretioal expectations are in conformity with reatity contd be ascertamed up to now only for a reve limited reqion, on acomnt of the inareensibility to experiment of the whole region of pressures higher than two on thres hundred atmosphores. The wellknown (Gmmbets tuhes are mamely useless at highor pressures. We have, therefore, been occupied already for a considerable time in devising an apparaths intended for higher pressures, and we have finally sureeded in comstrocting such an apparatns, with which we have carried out measerements up to 3000 atm., and which can probably also be wed up to 4000 or possibly 5000 atm .

The first problem that was to be solved was, of course, to render the phenomena visible. For, to ascertain the critical phenomena of mmixing, and the phenomena of ummixing in general by means of other properties than those which fiall within the sope of direct visual observation, seems hadly possible. Our tirst attempts to effect this visibility by pressing a thick piece of plate glass

Fig. 1 against the parking enclosed between C and A, failed entirely, Even the thickest plate glass plates snapped off inexorably, when we tried to screw the nut dight enough to prevent leakage.

Led by the figure that Amasist sives for the apparatus of his "methorle des regurds", with which he has sumeented in carrying out measurements up 101000 atm., we resolved to arrange the "windows" in such it way that neither on the front nor on the back side unequal pressures should be exerted ". Wht that the whole

1) The "windows" usat by Amagat have, howerer, mot been constructed according to this principle: they are mot cones but chindres, they bear on the end-plane directed to the observer; Andiat uses eelluloil pracking between steed and ghass. We bave, howerer, experienced that to wath the highest preseures, it should carchally be aroided to make the windows bear un their end-phane.
pressure exerted by the liquid inside the tube on the "window", should be borne hy the side-walls We therefore gave the window the shape of a truncated cone, the basis turned to the side of the liquid, and the smaller plave parallel to the basis quite free and furned to the observer. The conical wall must be ground as carefull! as possible into a steel celindre with conical opening, which is sorewed into the steel tube of observation. Fig. 2, where B is such a steel cylindre, and at the glass cone, will probably make this sufficiently clear. If the cone A is ground with sulticient care, and then fastened in B with a little cemert, an absolutely tight closure is obtained in this way: we have never experienced any tronble owing to leakue between glass and steel, nor has any of the glass cones ever burst in consequence of the high pressure, in such a way that the liquid could be pressed through those windows. We did meet, however, with other difficulties. First of all the diffenty of getting pieres of glass from which the reyuired ghas cones could be obtalined, without too much loss of time. We

Fig. 2.
first tried to start from thick plates of plate glass (3 (m. thick), Dut it appeared impracticable to salw or cut oft such small pieces (1.5) $10^{2} \mathrm{~cm}^{2}$ area) ${ }^{2}$), that they could seme for further preparation. We then applied to the "Stichtschen Ciashandel" at L'trecht, which prepared oxtogonal rods for us, about 6 cm . long and of a diameter of about 1.5 cm . from the best plate ghass. After these rods have been cut off doubly conical two cones of is cm. the bases resting

1) When the conus is ready the basis turned to the liguid has a diameter of 12 m.m., the other end-plane a diameter of 10 mm .
against eath other), they are enl Horong in the middle: the phanes of section must then be gromod once more and polishet.

A second circumstance which gave rise to diffenties, and sometimes does so now, is the becoming opratye of the cones. If such a cone which has become opargue, is removed from the cylindre, it appears that immmerable phanes of cheavage have arisen at right angles to the axis of the cone, so that it can be catily lroken up with the hand into a qreat number of phane plates. In consequence of these cracks the at inst perfectly transparent come has beoome quite opaque. It appears that the cones hardy ever or never become opague with rising pressure. It is probably the consequence of the compressibility of the steel cylindre. This extents with rising pressure, and so the glass cone is driven deeper and deeper into the cylindre. If then the pressure diministes, the cone cammot return to its first position and is cracked hy the immense pressure of the steel cylindre. In agreement with this is the fact that in experiments at higher temperature the cones become opaque still more frequently than at lower temperatures; the difference of the coefticient of expansion of glass and steel then acts in the same direction. Moreover by means of the brass model nsed for grimding the glass cones into the eylindre, it could he clearly demonstrated that one of the steel cylindres had widened by use. A cylindre made expressly of specially hard nickel-steel yielded better results in this respect. When this was used, the cones were less lable to crack, thongh even then it occasionally happened. To protect the window from injury as much as possible it is also desirable to diminish the pressure ats carefully as possible; a rapid increase of the pressure. On the other hand. rarely, if ever, gives rise to an atocident. Thongh this cleaving of the cones perpendicular to the axis continues to be a drawback, becanse the preparation and adjustment of new cones always remans a rather lengthy work, the observations themselves are mot disturbed by it, if only the experiments are made as much as possible with rising pressure, and decrease of pressure is elfected with the utmost care.

At present the apparatus camot be used for temperatures murh above Fo': the ('ailletet rement with which the windows are fastened into the steel eylindres, melts at that iemperature, or at least rapidy dissolves in the lignid which is in the pressure fube. First of all this renders the liquid tmbid, bat moreover it wives rise to leakages and breaking of the windows, which are now diredty presed against the steel. We are now trying to find means io apply the windows also at higher iemperatures. As to the limit of presure, we think wo have to fix this for the present at about 5000 atm.
§ 2. A secoud condition which the apparatus has to fultil, is this that the mixtures which are to heexamined, can be property stirred during the experiment. Of course there can be no puestion of an electromarnet stimer inside the heaty steet vesel. The ditiondty seemed the greater as during the experiment, and so aho during the stirming the steel vesel, which itself is ahready very heary, has to remain connected without leakage with the compression pump and the manometer. We have tinally suceceded in finding a construction meeting all demands: it rests on the following consideration. The pivot of a high-preswre cock may be turned round, whont giving rise to leakages: we can just as well keep this pisot still, and turn the rest of the apparatus round it. Suppose the inlet tube, which connett the vessel of observation with pump and manometer. at the place of this pisot, and armange the comnection in such a way that the observation vessel can thm rombl this inlet trbe as a pivot, then it must be possible to bring about the most efticient form of stirring viz. turning upside down the whole contents of the vesel of observation.

This intea is realized in the constrution representel by fig. 2. C is the inlet thbe of the compression promp, it has a diameter of about 15 mm .: the aperture is about 2 mm . wide. A prolongation D^{3} can he sorewed on to the twhe (', by which a projecting eone is pressed agamst atomical romeavily of $\left(\begin{array}{l}\text {. In this way a steel-to-steel }\end{array}\right.$ closure is obtamed, which is quite fight even at the highest presures. As is shown in the figure, the phece /) pierees with its carefully timished and polished patt through the packing E, which is enclosed botween two rings, and can he serewed so tightly by means of the grland f in commertion with the thage f^{\prime}, that leaking along this packing is prevented, thongh the pienes of and f with this packing (ann still tum romd D (' as pivot. To prevent 1) (' from beingpressed ontside thromgh the pressure on the end-plane of D, D) is kept in its place bs a ghand H, a ball-hearing adjusted hetween D and I/ making it possible to serew // sutheiently tight without making the friction between () and $/ 1$ so considerable that it would hamper the rotation. The thange $(;$ is now again pressed against the observation vessel L L means of the bolts K, when pass through it, and which are serewed into the observation vessel L, and the muts M. In this way the same steel-to-steel closure is applied as between (' and /). By means of the hathle \backslash ' the pressure vessel $/$ can, when everghing is mombed and pat umder pressme, be rotated,
${ }^{1}$) This lube is only 12 mm externally (and has in correspondence with this also a somewhat smaller opening than (d) to make the pressure on the ball-bearinge as small ats possible.

 perferdy mixed.

 Quite apart foom high or low temperatures, which would make it guite impossible, it wond be imombenient oven the temperature of the room when the hamdle X was imside this ihermostat. Therefore the comection of the observation vessed $/$, with I has been effected as follows. 'The rod l ' eombered with the handle wf which
 box (not doawn in the dignes in the wall of the thermostat, so that P 'ats still be moved forwad amd hatewad amd rotated in the thermostat wall. The rod l ' terminates in a fork (! which in the position drawn in the tignte encloses a pin R. whinh is rigiddy attached to the flange $\left(i_{2}\right.$, which like (i_{1} is again rigidly ronneoted with h, by means of bolts and mats.

So in the position represented in the figure / can be botated by $P^{\prime} N$; if I^{\prime} is drawn lack in the staming box of the wall of the thermostat, P^{\prime}, and together with it the thermostat, gets quite clear of R, i_{2}, and L.

The whole arrangement is finther elucidated by fig. 3. It exhibits the large Schifrer and BcdexbBerg hydrostatic press for 6500 atmospheres, belonging to the bas der Wanls-fund with the manometer standing on it. The pump is also connected with the large pressure-balance (not drawn) as a control for the manometer. One of us (K.) hopes soun to give a full description of these apmathes in commection with other experiments. The press is in comertion with the tube conduit Ce: from which it can be shat off if necessary, by means of the high pressure cock T. There are two conplings s_{1} and s_{2} in this thbe conduit, to which we shall present! return. Inside the thermostat (' rests on the hearing l_{1}, which in its furn rests on the bottom of the sheet iron themostat. This bearing at the same time fises the tuhe $('$, so that the lute is prevented from tuming round with the ressel $/$. A second bearer I^{\prime} esupports the rod $/$ ', whieh is already known to us from lig. 2. Fig. 3 also displays the stufing low in the wall of the thermostat through which l' passes. The thermostat is represented in

 lige 2. The thation in which the ohservatons are made. The phat hangle in the digure represems atan wimbon in the back wall of the themmstat mot to render the figure too indistimet it has been drams mand larger than it is in reality: of comse a glass window in the fromt wall corresponds with it. The themmotat hat a capadity of - 40 I .. it is provided with a vigorons giming-apparatos thermoregutators and thermometer: it rests on a solid stame of L -haped bat-iron.

The conpling is of in importane for the experiments desoribed heres it only areses to make it possithle if required to combert the press with other comduite, and if nevessary, to clean the thenes. The compling \breve{S}_{2}, on the other hand, is necessary for the filling of the apparathe, at will appear when the filling is dearibed. Fige 4 gives a section of these complings.

At the tops of the mikes C_{i} and C_{2} fwo cones D_{1} and /), have heen sorewad, which exhibit again fwo cones
Fig. . fitting into eadr other at their ends. By means of the glands E_{1} and E_{2} with hexagon. $\left./\right)_{1}$ and D_{2} arepressed agamst eachother, and a steetotosteel chowne is agath reathed tight even at the highest pressures. It is preferable to lake the sorews with which J_{1} is fastened to (is ant $/)_{2}$ to for such couphings with lefthanded Hhread, that when E_{2} and E_{z} are lightenct, D_{1} and D_{2} are not unserewed, hat on the contraly, are serewed tighter.

In eomecoion with the method of tilling another pationlar of the apparatus dererves being mentioned, which appeatis from tig. or. This

figure presents a side view of the observation ressel, a section of Which was given in tig. 2, with the parts in connection with it,
on the supposition, however, that the erans wintows are again horizontal foot vertical, as in bie. 2 , hat in the same position as it is represented on a smadl wate in fis. 33 . Sh a is agam the glass window: the other parts loo, for so lat as they are visible, are denoted by the same tetters. It is chat from the figure that besides the main conduit. in which the observation fube () lies, and the branch conduit, which eomects this main comduit with DC, there is amother brambl eondmit in the obseraation vessel L, all right angles to the two tirst mentioned. This hramb combluit is used for the filling ; it is then closed by a tigit stoppere If. Which is again provided with a cone, and which is presed adatinst the vessel $/$. with steel-to-steel closure by means of an oval flange (ra laid over this cone, with the muts and bolis helonging to it. This closure is further made clear by fig. 6, where the Hange $1 / i_{3}$ is
 represented seen from above, the line $Z^{\prime} Z^{\prime}$ correAponding with ZZZ of fig. 2. Fig. Galso shows the general form of the flame plates $\dot{C}_{\text {. Fig. }} 5$ linally shows the octagon $L_{1} \ldots L_{4}$ of the observation ressel L, which saves to tix the whole piecesufticiently tirmly, when the steel cylindres B, are screwed into it, which cylindres themselves have of conse also a hexagon. The closure of B on L takes of course again phace steel to steel by means of the raised hardened rim of 13 , which fig. 2 clearly shows in section.

We will avail ourselves of this opportunity 10 express our indebtedness to the instrumentmaker of the Vin ber Wasts-fund. Mr. (. 11. Sturenblira, for his intelligent assistance in the construction of this apparatus, and particularly in the wrinding of the windows.
\$ 3. Description of the observations.
When the apparatus described in the preceding paragraphs, is used, care should be taken in the tirst place that the composition of the examined misture does not change. and that no impurities can appear, which might have a preponderating influence on the course of the phenomena. This result may be attained by enclosing the mixtures to be examined in a glass tube, closed at the two ends and provided on the side by a capiltary (fig. 2, (1) as long as possible, which canses the pressme on the liquid inside to be the same as that on the surrounding liquid. This tuhe has beforehand been filled with a mixture of the required concentration, that of the critical endpoint.

Then the steel tube C is disconnected at S_{2}, being comected with the observation ressel L at the same time. Now one of the two
wimluw . 1 will the evtimdre $l i$ is serewed on, and the glass tube () is phaed in the resel /. After this through the other window "poning the vesod $/$ is tilled with one of the eomponents, till the
 meats of a wooten pegs, hae seond window is sorewed on, and at last the obsemation resed $/$, is quite tilled with lifnid throngh the comduit lemmating at $\|^{\circ}$ ties. 5. Then $\|^{\circ}$ is elosed. Beforehand
 has heen ponsed in at $x_{2} .10$ prevent contact of the observation reseal / will the oil from the press. The woden perg is quickly remosed, and the compling al sta effected. The steel thbe (\because being very namow, only very litte, if amy lignit!, eneapes. Thas the mix. ture under examination is quite gravded against the inthence of contamination, and its concentration changes but excedingly littie on ateooms of the slight compresibility of the investigated liquids, while there can hambly be any question of ditfosion through the namoth capilaty in the course of the observations. Moreoser a slight change in the concentration could not exert at: appreciable inflnence on the rewhts on aceome of the ereaty Hattened shape which the liguid-liguid phats always seem to present.

When the filling is fimished, the thermostat is put in its place. An intense metal wire incandescent lamp of 300 candles is placed behind the window in the back wall. In this way, the mixture, particularly the place of the meniscus, can be very clearly observed.

We have confined ourselves in this investigation to plaitpoint observations, as criterion the same phenomenon was taken as was also used by one of u (7 .) in his observations in Cailletet tubes ${ }^{1}$): while the pressure is kept constant, the temperature is slowly made to oscillate round the platpoint temperature, the liquid being continnoustr stirred. The temperatures are recorded at which the turbidity resp. the transparency sets in, and the mean of all the obsere vations is laken ats patpoint lemperature. Proceeding in this way emperatures of thohdity are always obtaned which diverge only some hundredths of degrees when the experiment is repented. It may atso be assmmed that the temperature of the mixture follows that of the thermostat very closely, for also the mean of the temperatures of tmondity deviates but a few handredths of degrees from the mean of the temperatures at which tramsparency sets in in general. This ciromstance proves at the same time that equilibrium is proferly secmed by the comstant stiming of the liguid. This was further confimed when a glass ball was placed in the glass tube

[^37](1. This would have to make the mixmes still more herongh, if posible

 and the satme intemsity up to the highert preashere that we have examined, which heats forther witnees to the fate that the platponint
 all over the extensise range of prestare ant tomperathere considered here. In this it is absolthely rexpmed to keep bhe fresume pere
 effee ") would disturd the observations. It in formmaty, however. easy to distinguish whether the edoutineos which appeare in the liguid, is the consergenore of the stow rooting of the thermositat or of an abrop cooling which takes phate in the examined lignid itself owing to atl expansion by deroreate of presurese. In the former ease, nameh, the colondiness hereins on blee ontside and proceds towards the eontre whereat in the hather cane it arisen in the centre, and sprats from there in all directions. The senvitivity of the fin bar bas effect in thene comomstane domws that the equilibrimn of pressure between the manometer and the liquid itself sets in athost immediately. A last proot for the arentary of the measurements in the new apparatus is afforded by the comparison of the results ohamed in this way al low presume with those obtained in Cailletet luthes.

Some values will give an itea of the athanable atcoracy.
a. The platpoint temperature remains comstant, ako after the mixture (nitrobenzene + petrolemm) mader investigation has been in the apparatus for fwo days, moder pressures but to more than 500 atm. As a mean of ten measurements 13.095 ± 0.006 was found.
b. The platpoint temperature remains constant when the experiment is repeated with different lilling-.

Water + triethylamine, pritical end-point 18.035 and 18.80%
The same system in a ('ailletet tube yields 14.33
c. The increase of the phatpoint temperature per atmosphere is the same for difterent tillings, and also for determinations in a cailletet tube. As an example we lake the system erolohexame + aniline.

$$
\begin{array}{ll}
\frac{d t}{d p} \text { between } 1 \text { and } 200 \text { k.g. per "om. yields } & +0.00067 \\
\text { in a Cailletet thibe was found. } & +0.00066
\end{array}
$$

```
hetween 1 and \(1000 \mathrm{k} . \mathrm{g}\). per com." vields
dp
for the first fillimer
\(+0.0078\)
for the second filling
+0.0079
```

The temperature determination were made with thermometers compared with standard ones tested at the Reichsanstalt; the manometrical determinations were controlled with the large pressure balance ${ }^{1}$) of the sin der Wasis fund: the observations are accurate to about $10 \mathrm{k} . \mathrm{g}$ and $0 .{ }^{\circ} 05$.

The sulstances used in these experiments, were identical in preparation and properties with hose used by one of us (T.) on a former occasion ${ }^{2}$); only the decane (di-isoamyl) and the tri-ethylamine have been used here for the first time. These two substances have been purified by fractional distillation (the tri-ethylamine over sodium), they presented the following physical constants: Freeaing point:
Decane - $52^{3}, 5$ Tricthylamine $-114,75$; boilingpoint $160^{\circ}, 05 \pm 0.10$ resp. $89^{\circ} 5 \pm 0002$: $110 / 4^{\circ} 0.73852$ resp. 0.74585 ± 7.

It may finally be mentioned that all the observations have been made by one of us (T.).
§4. Results obtained:

Press. in kg. ${ }^{3}$) per cm.'	Plaitpointtemp.	$d t \text { per kg. }$
1	$20^{\circ} .81 \pm 0^{\circ} .03$	-0.0164
100	19.17 ± 0.04	
250	17.27 ± 0.10	
425	15.82 ± 0.05	
625	14.80 ± 0.05	
825	14.18 ± 0.03	1

For a comparison we give the results obtained with a Cailletettube:

[^38]TABLE II.
P Press.apparat. Cailletettube Difference

1	$20^{2} .81$	$20^{\circ} .96$	$+0^{\circ} .15$
100	19.17	19.23	+0.06
250	17.27	17.29	+0.02

The nitrobenzene solidifies (quadruple point)
at - 1,5 under ordinary pressure
at $+1: 3,8$ under a pressure of 825 kg . her cm ± 25.

$$
\frac{d t}{d p}=+0^{\circ}, 018
$$

Tamman found $+0^{\circ}, 022$ for pure nitrohenzene.

T A B L E III. Decane (di-isoamyl) + Nitrobenzene		
p	T	$\begin{aligned} & d t \\ & d p \end{aligned}$
1	$28^{\circ} .37 \pm 0^{\circ} .04$	- $0^{\circ} .0068$
100	27.69 ± 0.05	
250	27.06 ± 0.04	- 0.0042
425	$26.63+0.07$	-0.00245
	26.63 ± 0.07	
625	26.44 ± 0.05	-0.0010
825	26.52 ± 0.04	$+0.0004$
1025	26.67 ± 0.03	+ 0.00075
1225	26.97 ± 0.07	$+0.0015$
14:5	27.31 ± 0.05	$+0.0017$

The nitrobenzene melts:
at $+1^{\circ}, 5$ under a pressure of 1 kg per cm^{2}. at $+28^{\circ}$ under a pressure of 1300 kg per cm^{2}.

$$
\frac{\partial t}{\partial p}=+0^{\circ}, 020
$$

TABI.E IV.

American petroleum 1$)+$ Nitrobenzene

$t \quad T \quad$| $d t$ |
| :--- |
| $d p$ |

1	$13.95=11.06$	+0.0018
100	$14.22-0.11$	+0.0017
325	$14.51=0.09$	+0.0030
525	15.11 ± 0.04,	+0.0030
725	15.70 ± 0.03,	+0.0033
925	16.35 ± 0.05	

The nitrohemzene solidifies at 92.5 ky . per cm^{2} and 16°.

> T A B L E V.
> Cyclohexane + Aniline

1st filling ${ }^{\text {a }}$

1	302.26 ± 0.07	+0.0067
200	31.60 ± 0.06	+0.0080
400	$33.20+0.07$	+0.0077
700	$35.52+0.10$	+0.0084
1000	38.04 ± 0.10	

2 nd filling

1	$31^{0.03} \pm 0.04$	
500	34.77	-0.09
1000	$38.95+0.08$	+0.0075
1100	39.79	+0.08

For a comparison we give the following results oblaned with a Cailletet tube:
critical end-point $31^{\circ}, 02$ instead of $31^{\circ}, 03$,
$\left.{ }^{1}\right)$ By way of comparison with the preceding hinary systems we have also carried ont a few observations with this mixtmer.
\because Will this first filling the critical concentration was not quite reached; there was a linle low math aniline, and it was dearly to be seen how the cyedohexane was dissolved in it.


```
under 1 atm. \({ }_{d t}^{\prime \prime}=+10^{2} .034\).
```

T A B I. E V.
Water + tri•ethylamine

p	T	$\begin{aligned} & d t \\ & d p \end{aligned}$
First series 5	$18^{3} .36 \pm 0^{\circ} .06$	
200	22.37 ± 0.06	
600	29.53 ± 0.06	+ 11.0179
1000	about 34.5	about +0.1125
Sec. series 5	18.35 ± 0.05	+ 0.0152
600	29.19 ± 0.11	+ 11.1127
1000	34.26 ± 0.13	$+0.0103$
1500	39.40 ± 0.20	+0.01080
2000	43.45 ± 0.15	

In neither of the serien was the critical comeentation perteraly reached: hence the discrepancy, which is, however, smath, hetween the remults. The aritical opaleseence was, howerre, ereary to be pereeived. In both bases the experiments had to be broken off on aceome of the appearame of a leak in the phatom of the hydrostatic prems.

For a comparison we give tho following resulto obtamed in a Cailletet tube, which have not yet heen published matil mow:
 dt
 d

Above this presure the patpoint temperature inceranos weatly: at a pressure of 1100 kg. per com the minture remains homogeneons at every temperature at heat no tumblity set. in up to at least
 batk to the heterogeneons region. When the temperature bes still higher, we seem to reach the maximmm persure of the platponm line, whete the bramot which come from the lower erition embl-

p	T	$\begin{aligned} & d t \\ & d p \end{aligned}$
225	$+00.7$	+ 0 2.096
2511	$+3.1 \pm 0.1$	+0.091
300	$+7.8 \pm 0.2$	T $0.09 \pm$
350	$+12.1 \pm 0.1$	-0.080
410	$+16.05 \pm 0 . i$	6. 079
450	$+19.75 \pm 0.15$	$+0.074$
5119	+ 23. 2 ± 0.1	$+0.069$
600	+ $30.2=10.1$	
7:0	$+37.3 \pm 0.1$	
E111)	$+44.1=0.3$	0.008
900	$-51.3=0.3$	
1ハッ)	$+61.6 \pm 0.3$	
11150	$+66.9=0.3$	+ 0.106

point foin- that proceding from the upper end-point. For thongh e.g. at sh the mixture, homogeneous under a presure of 1100 kg . per cm". heromen turthid when the pressure falls to 1085 kg . per cm^{2}. the presture must be lowered to 10.5 kg at 86°. 5 to reach the heterogencous region. Horeover a mixture homegencons at $86^{\circ} 5$ and $10^{-5} \mathrm{k}$. m . m mes no longer on hationg, as it did before, but on rooling: on forther cooling, if the same presore is retained, tinally the homogenegus region is again rembed.

In the lar-mentioned -ystem the ohservations were less areurate than what the others, becanse the critical opalescence is almost entirely wanting and the indices of refadion of the two phases aire nearly the same: we himk, however, that we are justified in arcepting the above results with certanty, at leat as far at the general poume is romerned, hecanse also another filling, with a somewhat ditherent concentration, gave analogons results. Here too the highen prestre for which there was still question of ummixing in ahout 1100 kg . per com^{2} : the platpoint then was at about 80°; above thi lemperature the windows herame opaque.
© 5. Summary of the results.
The preceding deteminations suflicisilly prove the efticieney of
the given methot. The material of ohereation reerorded in the tahbe gives rise to the following remarks.

1. The systems formed by nitmonzene with it hydrorathon are
 tramy they represent cases in whinh the phat is split ap, and lehoms to case 11 , in reference to which we had to state in 1 got hat we had not found an example of it for normal shbtamese and athom whose possibility for abormal sub-tances we then ventured to pronounce an opimion only with the greater peecration ").

This conclasion appeats with perferd rertainty for the sy tem nitrobenzene + decane: the atitial end-point meeting of threephase line and phatpoint line lies here on a hameh of the platipoint line with nerative "tt ${ }^{\text {dp }}$; if the pharpoint line is pmoned finther, "t becomes zero, and then positive. Acoordingly the platpoint line passes throngh a minmmon, and this minimum is experimentally realisable: the tramoplair exhibits a point where the elowed portion gets detached, a homogeneous doumbe platpont, and this lies in the absolutely stabie region. The puestion proposed pr tus) of the I eehrbuch der 'Thermodynamik ${ }^{3}$) hat, therefore, been answered in the affimative by experiment.

If in this comnection the dosely related system nitrobenzene-hexane is considered, it appears that it is only owing to an arceseory circumstance that the homogeneons double platpoint camon be realized. lor here too ${ }^{\mathrm{dt}}$ / is negative in the eritical end-point, but this ne wative value becomes smaller and smaller; but just hefore it has hecome zero, further investigation is prevented by the appearance of the solid phase. So the phatpoint line becomes metastathe by its meeting with the threephase line solid +1 wo liguid phases; we have agam a eritical end-point, - hot now the critical point of fwo " saturated solutions.".

The system petrolemm + nitrolrenzene - if we may compare it for a moment in this comnection with a binary sistem - mo mote belonge to type $11 /$, but to type lke. In the eritieal end-point dt
is here positive, the platpoint line is interected by the three-phrase dis line above the homogencons double platpoint: heme the latter falls

[^39]in the meta-table region inside the transerse plat, and for this reanh cammon the realized experimentally.

Su we have mow realized the succession which we supposed flosible in whe tirst communication ${ }^{1}$) for the sysems propane + methytaheohol, inobthane + methytatoon, pentane ${ }^{2}+$ methylalcolnol, hat atomt which we conld then only pronomme a guarded opinion in the abeence of further experimental material to prove the point. We now hope before long to be able to ascertain also for the system propane + melbyaleohol whether it really belongs to ("ane $11 /$, of in cane 1.
2. In the second phace we have been able for the firs time to fully demonstrate a case of tye 1 , whath two critical end-points P^{\prime} and G, and its maximum pressure E^{3}). The system water-methylethylketone fimmishe an examble of this even though we camot quite reach the lower end-point in consequence of the appeatance of the solint phase. So we have a system here for which simply by change of pressure one pasen from a partially miscible sytem to a system with complete miscibility. So stuel a case, 10 find which many attempts have been mate, appears really to ocem. H how far other systems will belong to this, and if particularly the systems clased up to now in case I will appear to belong to II , or possibly 10 a case la with a plaitpoint line which has a dine parallel to the p-axis as asmptote will have to be revealed by further experiment. In the sme way further experiment will have to show whether systems may be found betonging to type $11 /$, in which the maximmon temperature I and the maximmm presame E can be reached.
\therefore Loce cit μ. 248 .
\Rightarrow We avail onselves of this opportunity to rectify a few inaccuracies in former tables. In the table anmexed to p. 239 loc. cit, for methylateohol + isopentane read: nomal pentane. Idem in table VI, These Droc. XIII, p. 87i. In the last table erronoously a L (lower mixingpoint) is added to the system ethane -f methylatcohol; this should be omittet, jusi as it is not foum in the table of our lirst paper. Finally the said table VI shows an L : for the system ether and water. As the note of juteroqation denoles, we think this bower mixing point by no means proved. With our new apparatus we have already carried out a lew experiments with the system water + ether: they all show that on increase of pressure and decrease of temperature the two phases will approach each other more and more; they proind, indeed, in the direction of a bower mixing point, but we have not sucreceded as yel in dedinitely asertaining whether or no this will be realisabie on account of the appearance of the different ice modifications. We hope we shall loe able to retern to this subject later on.

Wr.ane thre different corvertions mentionad in this note to Prof. Kuexex's ereat hinduces, who drew our attention to the mistakes made.
3) F゙ig. 11 c 。

Summarizing we may sfate:

1. That we have wiven an experimental medhod to determine plaitpoints, and other phemomenat which must be made direetly visible, at high pressures to ath amomb of more tham 3000 atm .
2. That we have demonstrated that the course of the theoretically predicted ptatpoint lines is in concordanee with reality in the systems under insestigation, alheit that the more intricate case of the splitting-up of a platit ocous more frequenty, the les intricate case of simple retreat more rarely than was supposed.

Meteorology. - "(th the interdiumml change of the air-te."perature." By Dr. J. P. vas der Stok.
(This commmication will not be published in these Proceedings).

TE AMSTERDAM.

PRO(AEEDINGS OF THE MEETIN(; of Saturday February 22, 1913.

-................
Prosident: Prof. II. A. Lorent\%. Necpelemy: Prof. P. Zamain.

(Translated from: Verslag van de gewone vergadering der Wis- en Natuurkundige Afleeling van לaterdag e2 Februari 1913, Dl. XXI).

CONTEINTS.

C. 'T. Vas Valkembrg: "(On the occurrence of a monkey-slit in man." (Communicateri by

Fl. d. Waterman: "Metabolism of the nitrogen in Aspergillas niser." (Commanieated by Prof M. W. Bramprack), p. 1047. (With one table)
H. J. Watremax: "Metabolism of the fosfor in Aspergillus miger." (Communicatad by Prof. M. W. Beljehinck), p. 1038.
C. Brask: "A long dange weather forecast for the Lastmonsoun in Java." Cummunicated by Dr. J. I'. GaN mek Stok), p. 10G3. (With one plate).
 and Crapts". (Communicated by l'rot. A. F. Hombama), p. 1069.
 vapours." (Commanicated by Prof. A. F. Holamans), p. LO:8.

C. vas Whashingat: "On baryokinesis in Lunotia major Rabenh". Commmicated by Prot. J. W. Mole, p. p. 1088.
J. K. A. Wertiens bhomossos: "On a shurteninereflex", p. 1092.
L. S. Orxsten: "On the thermudynamical functions for mixtures of reacting compments". (Communicated by Prof. II. A. Loneratz), be 1100.
F. E. C. Schtffer: "On velocities of reaction and equilibria" (Communicated by Prot. A. F. Hellemin), p. 1109.
F. L. C. Scherfer: "On the velocity of substitutions in the benzene muclens." (Commanicated by Pruf. A. F. Holleman), p. 1118.
R. W. Whoo and l' Zemax: "A method for obtaining mamow absophion lines of metallic vapours for investigations in strong maynotic tielis." p. il29.
1'. Zmban: "The red lithimmline." p. 1130.
J. 1). vax mer Wals: "sone remarks on the course of the variability of the duantiey b of the equation of state." p. 1131.
N. L. Somage: "Oxidation of petroleum, paration, paratinoil and henzine by micobes." Communicated by Prot. M. W. Beidfracki, 1). 1145.

Jas de: Vriks: "On bilinear unll-systems." p. 115C.
dax her Vrifs: "On plane linear null-systems." p. $116 \overline{0}$.
Miss M. S. De Vries: "The influence of temperature on photutropism in seedtinge of Avena sativn." (C.mmunicated by Prof. 1". A. F. C. Wrat) p. $11 / 0$.
d. D. "ix der Wals Jr.: On the law of the partition of energy." (Commmicated ley fond J. D) van der Whals), po 1175.

1. vas Romburim: "Hexatriene 1, 3, 5." p. 1184.

1". Ehempest: "On Einsten's theory of the stationary eravitation field." Commmicated by l'vof. H. A. Lormatz). p. 1187.
 Šaxde Bakhutzex), p. 1192.

 by Prof. l'. vax Rombis(oit), p. izes.

Anatomy - "(the the occurrener of a monkely-slit in man." By

(Commanicated in the meeting of December ds, 1912.

If has long been known that under some cimemmstances in rase of distumberes in the development of the central nevons Estem of math, a stit may oceur on the surface of the oceipital Whe vivilly reminding of the so-called monkey-slit of anthropoides. I commonicated an example of this fice in a former paper. ${ }^{1}$) The Slit then chataterized as monkey-slit, answered to the requirement that at least part of its oreipital boundary covered convolutions at the bottom of the slit comered with the parital lobe (operealation). Ehaiot Smiti ${ }^{2}$) has described the brains of many Egyptians in which he very often found (70° of the hemispheres) a sulcus siminlis sive lumutus. Brobmas ${ }^{3}$) corrohorated this view with the brain of three Javanese. On the other hand Zaterbravid ${ }^{\text {a }}$) thinks that the existence of a monkey-slit in man is by no means proved. As a proof he gives a reproduction of some hemispheres in his abovementioned essay. On these surfaces however - of course specially selected by Zuckrrandi - Eidiot smoth would doubtlessly diagnosticate a monkey-slit.

How are these contradictory views to be reconciled. We read
 "dann ron einer Affenspalte die Rede sein. wemn an der Hemis"phärenobertläche beide Ränder der fraglichen Furche mit jenen der "Affenspalte am Affengehim identisch sind. Trifft dies nicht zu, "liegt eine Fourhe vor, welche nur auf einer Seite (hinten) von einem - .der (irensänder der Affenspatte abgeslossen ist, wahtend der andere "(vordere) nicht mehr dem Gyr. angularis sondern einem Bestandteil "der Affenspaltengrube (Leborgangswindungen) angehört, dam hat "man es nicht mil der typischen Affenspalle zh tun."

1) San Tahenbung, surface amd structure of the cortes of a microcephabic illiof. These Proc. Xill p. 202.
${ }^{2}$) Ebliot Smith, Studies on the morphology of the human brain. Records of the Leyptian Govermmentshool of modicine. Chiro 1904.

Liflot Smoth, 'The persistence in the haman brain of certain features usually supposed to be distinctive of apes. Report of the british Assoc. for the advanc, of Science 190 t, 9.715.
${ }^{3}$) Brodyaxix, Beitraige zur histologisehen Lokalisation der Grosshimrinde V. Journ. R. Psych. 11. Neurol. Bd. V1. S. 996.
4) Zuckerkandi, Leber die Affenspalle und das Opercalum occipit. des menschlichen Gehirns. Oberstemers Arbeiten Bd. XII, S. 207.

Zrekbranda, strongly emphasizes a difference between monkeyslit - i.e. the slit between the operobum ocopitate and the parictal convolution lying frontally to the opermated transition-convolations -- and the monkey-slit sukns . i.e. the sulous lying on the bottom of the sulc. lumatus.

This difference must unconditionally be aroopted, and to my knowledge this is done by the majority of authors (Botk a.o.).

It is however another question whether this difference is really of such a mature that we should be compelled by it for ever to deny the homologisation between a monkey-slit and a very simila sulens in man. For that similarity is even readily aceepted by Zacherkande, at he admits the oceurrence of "Affenspaltresten" in man. Eblot Suith is of opimion that the difference is nothing but a quibble of words. Evidently the matter hinges upon the question: what is in the monkey-slit-complex the cardinal point: We have then the choice between the slit-postulating the existence of bottom-convolutions and an operculum covering these - and the sulens existing on the bottom of the slit, which if there are no bottom-convolutions to be operculated, looks like every other suleus.

In lower monkeys (platyrrhines) and prosimii ${ }^{1}$) a sulcus is found that must doubtlessly be indicated as sulens lunatus whilst bottomcouvolutions, operculation, a proper "monkey-slit" ") may be absent.

This sulens lies in the hrains of these animals transversally often not reaching the interhemispherical fissure -- across part of the latero-dorsal surface of the lob. occipitalis. No other sulcus ends in it; it lies oceipital from the sulcus parieto-oceipitalis. In some platyrHines (ateles) the sulc. interparjetalis (which, as has been remarked, does not reach the sulc. lunatus) forms a T-shaped extremity, sometimes already indicated in some specimens of lemuridae. I refer those interested in this problem to the report that will be given by Dr. Arieas Kappers in 1913 at the International Congress of Medicine in London: Cerebral localization and the significance of sulci.

Ascending in the range of monkeys we find that the sule. interparietalis in katarhines hats its distal termmation in the s. lmatus. At the same time we find that, at the bottom of the latter, cortical convolutions are bidder; its occipital lip has grown an operctum.

The most developed katarhines - the anthropoides - usually

[^40]Show the begimning of apparent return to lower relations, because bat of the transition-consolations (he first has become superficial. It is however still separated by the sulce interparietalis from the -uperticial part of the $2^{\text {ni }}$ tramsition-convolution. A similar situation was to be found in the microcephatic idiot described by me in a former paper (1. e.). If now moreover the $2^{\text {nd }}$ and $3^{\text {ra }}$ transitionconvolutions become superficial i.e. if they pass from the bottom of the monker-stit to the surface of the lob. parietalis, then of the entire s. simialis-complex there remains only the bottom-sulcus which is then, with regard to its parietal lip, differently limited from what was the case with anthropoides, at least as regards the region of the $2^{\text {nd }}$ and $3^{\text {rd }}$ transition-convolution. This is however not always the case. Also where there is no question of great disturbances of development, as in the above-cited case of mikrocephalia, little hidden convolutions may be found (vide e. s. some drawings in Zuckerkandl's paper 1. e.). Such brains commet the monkey-slit in a more limited sense -- as it occurs in anthropoides. - with the sulcus lonatus (as with Elhot Smith we best call it) of man. About the frequency of the occurrence of this sulcus in Europeans I cannot fix a percentage on account of my limited material.

In 22 hemispheres of idiots of the Institute for Brain-research I find it 8 times. In the brain of normat individuals it likewise "often" oecurs. Einiot smith fixed atready the attention to the brain-photographs of Retaits. I could not decide with revtainty whether, as it seems to be Ehfot Smots view, there exists any preference in this respect for the left hemisphere.

Notwithstanding all these asertions it is necessary to tix as strongly as posible the diagnosis: snlens lunatus. One cannot give a definition of it of absolute value, i.e. without involving in it the relation to neighbouring sulci. As conditions for accepting a sulcus lunatus I fixed in general the following relations and circumstances:

1. The sulcus in question lies somewhat crescentshaped (with is: concavity candad) or more transteral, not far from the pole of the occipial lobe;
2. In its lateral part terminates a sulcos, that is often comected with the first temporal sulcus (vulcus maehmatus);
3. More or less parallel to it, more towards the front, lies a
suleus, into which the sulens interparimalis terminates (sule oreipitatio transversus);
4. The occipital extremily of the sukens calcarinns falls (whether bent or bot round the manle-side) behind it, and somerimes extends between two sulci oceipitales which are found there they may be connected V-shaped).

Fig. 1.
Occipital lobe of the idiot D, seen from behind. The dotted line indicates the direction of the section according to which fig. 4 has been drawn; for the shortenings vide text.

Fig. I represents an wecipital lobe (of an idiot) seen from behind on which the above-mentioned desiderata have heen mosi accomplished.

Tho principal requirements are falfilied: the sthation of the sulce oeciputalis tramsversus (o.t.) and colvamus (e.a.) resp. Defore and behind the sulcus lumatus (Lum) is trpical. At the former the sulens interparietalis (i.p.) terminates; the sukens parieto-occipitalis (po) cuts fromtally from it the medial mantle-side. An indieation of a l'shape of the oreipital suldei (u) between which the sule. calcarimus points, is extant. The suleus prelumatus (phlo) is distinct, but not immediately connected with the sule. temporalis primus (t_{1}). All other hemispheres possessing the sulcus lunatus have a similar appeatance. The greatest variation exists in the occipital sulei and the relations of the sulons praelunatus. All our cases answer to the above-mentioned principal requirements, where a sulcos lunatus was admitted, with only one exception. In the latter case (it regards the cerebrum of an idiot, with a too little frontocandal diameter; weight of the bratn about 1000 grams) the cuncus is very marrow, because the suletus calcarmus has a strongly dorsal direction. I refer to fig. 2. At the limitation of the second and posterior third part of the comens this suleus splits T-shaped. The inferior branch terminates near the occipital pole, behind the sulcus lumatns, the dorsal branch reaches the medial mantle-side immediately behind the sulcus parieto-occipitalis; consequently not only far before the sulcus lutanus, but even before the suleus occipitalis transversus. Vide figs. 3. I come to the conclusion that this hamoly must indeed be reckoned to the sulans calcarinus, and is not a cuneus-suleus

Fig. 2.
Left occipital lobe of the idiot W, seen from the medial side.
po $=$ sulc. parieto-occipitalis $c a=$ sulc. calcarinus
$C=$ corpus callosum (splenium).

Fig. 3.
The same occipital lobe as fig. 2, seen from behind; shortenings as above.
temmatime in the sulens calearinns from the fate. Hat its ligs show ats distinetly as the wher pate of the sulcus in puestion a beantiful stripe of Vicg o'dzar. When using this argmment we have introduced into our reasoning a new element of a microseopical, amatomical, and even, may be, of a physiological nature. Many anat tomists indeed regard the region over which the above-mentiod stripe extends as the terminal radiation, the recipient optic cortical-field (Visuosensory: Cimpbeai, Bultos, Mott a.o.).

Apart from any physiological function and even from specitie projection-combinations we may admit in man as irrefutable, that wheresoever the typical stria Vieq d'Azyr is found, we have to do with an area of a special chatacter, which on account of its peculiar relations (in the greater majority of cases) to the limitations of the sulobs calcarims, may be characterised as regio calcarina. Area - hriatia (Edidot smith) area 17 (Brommass) and regio calcarima are consequently regaded in man as synenyms. My above mentioned comblusion that in reality the cuncus-sulens terminating in the sulens calcarimus must be regaded as a timal branch of that sulens seems. consequently not to be a hazardous assertion.

As especially Bromman ${ }^{2}$) has tanght us, the area striata (his area 17) extends in the monker over the lateral surfice of the lob ocepitalis (the opereulum occipitale) as far as the monkey-shit.

Eddiot Sump stated the same fate in his Egyptians, be it over a more narrow strip of the region concerned, and he uses this fact as one of the argmments for homologising his sulc. lunatus with the monker-slit. This anthor conceives the comection between histolo-gically-chatacterised areas and bram-sulei a little schematically: very regulaty he admits and represents the latter as limits of the former" ${ }^{2}$. Apart from the fact that after the investigations of Bromman, ('ampbrif a. o. his view camot be mantaned in this form, it postulates in the case discussed here a complete homology in the relation between the sulcus lunatus and the area striata in monkey and man. As appears from the phylogenesis of the sulei there is no complete parallelism between the evolution of the sulci and the relative migrations of the spectal cortical zones.

[^41]Zabitex ${ }^{1}$) called atready attention to the emparative stowners. With Which in the range of development of mammals suled colange their phaten.

In the report that he intends to give (loc.), dabias Kibprem comes on other grounds to the same but more developed conclasion: sulei are more comservative than the neightmonimg forlical zomes.

Where we see in man the area stritat extembing at far as the sultens lomatus - if the latter is extant ... we may see in it a very weleome allitmation of the similarity hetween sulems bunatus and monkey-slit, aserertamed by other methods (morphologicatiy) It ('ath however not be a point of issue for proving it homology - in the way as Eddot Smorn regarded this fact.

As fay ats the extension of the area striatal can be mappet ont macroscopically (with the heli) of the magnifying ghass, (Efomot Sump: investigation was mate in this way) the material of the Bram- Whathte does not offer miform indications. It seems that the area shiata is not always dorsolaterally limited by the sule lanatus; this limitation is likewise not a sharp one in this sense. that sulens and arear mast join eteh other without any intervening spare (in this respeot on material corresponds wihh Bronman's Javanene). The fype of the

Fig. 4.
$v=$ stria Vicq d'Azyr; other shortenings as above.
Sagittal section through the occipital lobe of the idiot D. (vide fig. 1). cellamination offers the same evidence as that of the extemsion of Vice bedare's stripe. Fig. 4 gives a reproduction of the latter. It has been made after a section nomewhat lateral from the place where in fig. I a doted line has heen drawn. The preparation consequently cuts the sule. Lumatus perpendicularly. The leter placed in the figure render a further description almost superthous. I only draw attention to the slight depulh of the sule. lunatns, which is never found in anthropoids. In man (our material) this suldus shows a very different depth; in this respect likewise it seems to show all the transitions between the anthropoid-like state and its total disappearance from the surface of the brain ; its extremities (medial and laterab) are most modeep.

It seems an if first the hidden convolutions, afterwats their bottom is bronght to the periphery ; the cortex is "smoothed".

The immediate comexion between area triata amd sule lunatus.

1) Ziehen: Ein Baitrag zur Lehre von den Beziehungen zwischen Lage und Function im Bereich der motorischen Liegion der Grosshimriude, mit specieller Rücksicht auf das Riadenfed des Orbicularis oculio Arch. f. Ploysivlogie 1599, S. 173.

Gombn by Examot smon in his Egyphians - also distinctly visible in lige 4 - meeth not exist in the Ethopean who possesses this sulans. but it is even impossible - at all events in the material I had to dinpose of -- in cases where a sulets lunatus is extant always 10 ascertain a greater extenxion of the area striata on the lateral surfare of the brain, that in eases where no vestige of the above mentioned sulens is to be found. Of course there is no longer question of a limitation in the sense of Sutn ; it is an illustration of the conservatism of sulci we spoke off above, even of one that is destined to disappear. ${ }^{2}$)

I have asked myself if there was any comnetion between the pistence of a sulcus lmatus on the lateral cortical surface and the extension of the area striata at the medial hemisphere-wall, in so far as the latter in general is connected with - is dependent upon the direction and the modus of ramification of the sulens caloarimus. No regularity at all could be ascertaned in this respect. A suleus lmatus can be found with all sorts of s. calcar. I gave already examples of two forms.

I can add as a third, extreme, form a case where sulcus calcarimus and sulens parietoocepitalis we nowhere connected, where a superficial coneo-limbic transition-convolution exists at the point of the emmens. exactly as it is found - almost alway - in anthropoids.

The sulc. lunatus that was here very evident, showed all the athove mentioned characteristies, A more of less "anthopoid" condition of the cuncus. cansed by variations in the direction of the sulcus calcarimus does however, as it seems. not alwas hold connection with the existence of a suleus lomatus.

In general the existence of a sulcus lunatus is by no means a proof of imperfect development of the brain in which it is found. In nomal Europeans it is decidedly frequently met with, as Endot sumb concluded already from the drawings of others. The examples shown by me were taken from idiots, becanse I found in a comparatively little material such strong variations at the medial occipital surface, each time with distinct sulens lunatus on the lateral one. It seems probable that defective development may often be the cause of these deviations in the direction of sulei and convolutions, but with regard to the many variations in normal brains it camot be proved.

Whether and how - in a definite case - the existence of the sulcus lunatus is influenced by such a "defective development" is a phenomenon that lies completely bevond the tield of our observation.

1) In a case of Anophtahmos there existed a beautiful monkey-slit: the area striata at the medial brain-surlace scarcely reached the occipital pole: calcarina extension normal.

Microbiology. - "dequblesm "f the minemp"ll in Aspmathens niger"."

(Giommunicated in the meeting of November 30, 1912).
In a previous commmateation ${ }^{1}$ I deserithen the cireulation of the carbon in Aspregillus miger.

The changes which the plastie aequivalent or assimilation phoriont of the carbon and the respiration- or carbonice abid aequavaent underwent in the conse of time wave a clear siew into the metabolism. In the beginning of the development a great phatic aegnivalent was constant! fomm, which, however, lowered quickly, whilst the carbonice acid acquivalent rose considerably in the course of time.

The curve indicating the change of the wo dequivalents with time could not be explained by an adsorphion of mutrient substance.

The existence of an adsorption, that is to say, a change of concentration cansed by molecular attraction of the eomponents at the surface of a liquid formed by these components, was, etce and thenretically foretold by \mathbf{W}. (anbis and d. d. Thomsox, has in many cases ben experimentally confirmed. For such experiments it was desinable to artificially entarge the surface, for example by formation of scum, in order to bring the phenomenon within the reach of the relatively rough methods of observation.

Animal and plant cells present a great surface in relation to their contents. So it might be possible experimentally to observe the adsorption by the disappearance of the food from the surounding medium.

The above investigation, however, has proved that this is not the case and the following experiments confirmed this.

A living mould culture, some months old and washed out with distilled water, (a, B00 mgrs. dry and containing hardly any more glykogen, was during half an hour shaken with $50 \mathrm{~cm}^{3}$ solntion of 2^{2}, ghlucose, $0,15 \%_{0}$ ammonimmoitrate, $0,15^{\circ} \%^{K H} \mathrm{P}_{2}()_{4}$, and $0,066^{\circ}$ magnesiumsulfate in tapwater. The mond laver, which had aborthed hardly any glucose from the solution, was then repeatedly washed out with distilled water at room temperature, boiled for ten mimutes with distilled water, then filtered. The filtration did not reduce "Fehling", consequently contained no glucose.

If the concentration of the ghacose in the mould were likewise

[^42]2' .. at ieas if mors. shouh have heen found, a quantity which "an witl certainty be indicated by "Fehling".

This proven that there is no question of a considerable permatment adourption at the onter surfare of the protoplasm, but that it hehases more like a emi-permeable wall towards the glucose.

The same experiment was once more repeated. But this time with a 2". "glucoze solution without amorganic substatmes, with shaking for fwo homs. Now, tor, the mond proved to contain no glacose. A daplo-experiment gatse only tatees of gharose.

Hence the adsorption in Aspergillus miger is of no significance for the arcommbetion of motrient substances.

Now it is a matter of comre that the first stage of the aecormulation is an adsorphion, but it evidenty eseapes observation. The high plastic aequivalent in the berimming pointing to an extensive dixation of carbon-containing material, relates to a further stage of assimilation.

The food has then already passed into other compounds, e.g. into glykogen.

If the observations have ascertained that physiologic processes may be represented by an adsorphion chrve, this cambot be explained by adecenting an adsorption in the tirst part of the process but it may be a consequenco of what happens in a later stade.

Such an adsopption curve doen not in general represent a simple process; it is more a combnation of a whole series of successive physical and chemical phenomena.

In the study of the nitrogen results have been obtaned corresponding to those found with the carbon.

It has namely been observed that also the nitrogen compounds used for the mutrition, are arcommated in the orgatmism in way not yet explatined. First I convinced myself that the plastic aeguivalent of the nitrogen at the end of the experiment is subject to only slight changes, as is shown in table l.

Compare for this mrs. 1 with 2 and 3,4 with 5,9 with 10,11 with 12,13 with 14 . secondly the quantity is independent of . the nature of the souree of carbon provided the weights of the mond be alike. For the levulose we timd the same nombers as for the ghoose. Lowering of temperature does not (nrs. 9 and 10) influence the rate of nitrogen of the mould, nor is it changed by addition of boric acid (mss. 11 and 12).

Table $I l$ gives a siew of the quantity of nitrogen fixed in the monld layer at various periods of development.

After 3 days the atcommation of nitrogen is of importance. Per

 MgSO_{4} (free from water) with the organic food given below. Temp. 33° C

1000 mgrs. of assimilated ghtuse, i.e. per 400 mgrs. (athon $\quad 100$
$19,8=24,1$ mgrs. N is fixed after that time. that is $6^{\circ}{ }^{\circ}$ a N on the weight of monld. This salue I will eall mitrogrmmombta.

After 4 days the accumblation was laily the same. The nitrogen number was decreased to 5. Nearly all the ammonimmmitrogen foat 13 mgrs.) was taken up by the organism, for with Nesstar's test the liguid gave but an insignificant reaction. The remaining 5 mgrs. are furnished by the nitratenitrogen

```
    \mp@subsup{}{}{1}) An analysis of this water made in October litst gave:
solit substance 461,3 mgr. P. L. SO," 60,5 mgr. P. L.
org. ," 69,7 ,, "," C!' 97,7 . , ,
reduction power 3,5 mgr. O2 p. L. (k Mra O
```



```
Free }\mp@subsup{\textrm{CO}}{2}{
fixed CO2 126,8 , , , Silicic acid (wiO2) 2,0 mgr.p.L.
```



```
Temporaly hardness (Preteli-Watma): &,070 CaO ()
Total , ( ):9,430 NyOO 30,1 , ...
```



```
Total , (CiLark) :9,29` , from rest of combu-
                                    stion 1थ3,:1
```

${ }^{2}$) With this corresponds somewhat more than 26 mgrs , nitrusen.
${ }^{3}$) The temperature in these experiments was 250 (6
${ }^{\text {b }}$) Adelition of 5 mgrs . boric acid.
table Il. Metabolism of nitrogen.
Sh cm, fapwater, in which dissolved 2 pCt . glucose (free from water), $0,15 \mathrm{pCt}$. ammoniumnitrate, $0,1 \mathrm{pCt}$. potassiumchloride, $0,05 \mathrm{pCt}$. crystallised fosforic acid $11,1 \mathrm{pCt}$. crystallised magnesiumsulfate, 0.1 pCt . calciumnitrate (free from water). Temp. $34=\mathrm{C}$.

	Day's after	Quantity of nitrogen fixed	Growth and spore formation $\%$					Reaction of the culture liquid with				
	inocu. lation	in the mould in mgrs.							Essler.		,	$\begin{aligned} & \text { lami } \\ & \text { cacid } \end{aligned}$
1	3	19.3	vigor	or., ha	hardly a	any sp			slight		strot	
2. 3.4	4	20.3; $20.7 ; 19.6$	"	- vor	very fe		,		"		"	
5	5	17.5		,	"		"	rath	er strong		"	
6	7	11.8		,	"			"	"		"	
7.8	9	9.9;10.4		- ra	rather	many	"	"	"		"	
9	15	8.8	"	,	,	"	"	"	"		"	
11)	18	10.6		',	"	"	"	"	"		"	
11	19	$11)$		',	"	"	"	*	"		"	

Exeeptiner n'. 1 where on! bo" "of the glueose was used, all the enonese in the oher mature butes had been assimilated.

The dy weight ohtamed from them I have not determined in these exproments. For this my earlier invertigations mat he compared ${ }^{2}$).

Notwithstanding the quantity of fixed nitrogen had decreased on the $f^{\text {th }}$ lay from if 105° "of the assmilated carbon, the absolnte quantity wat not lower. On the eontary, a slight increase was oheerved cansed by the enturose still present after 3 days. The nitrogen excreted by the growing mould is assimilated again during the pormation of new cells. When all the gheove had been maed, which was already the base on the $4^{\text {th }}$ day, nitrogen only was excreted. The onnequence was a considerable lesening of the guantity fixed ill the organism. After bo days int. 5) only 17.5 mgrs remained fixed. This was anoomparied by a decrease of the nitrogennmmer as emphimally demonstrated (tig. 1. see p. 10ă1.

After b days it was already decreased to 4.4. after 7 days to 3 , after " days (1) 2.5. Then it underges but insignilicant changes.

[^43]The metaholism of the nitrogen eonvespond has in both eatices

Fig. I. Metabolism of the nitrogen; 50 cm^{8} tapwater in whith diasolved 200

 water). T'emp. 34 C.
which decreases very much in the course of time, fimally to rematin nearly unchanged.

Whereas carbonic amid is the form in which the earlon can leave the organism, the experiments in table $I I$ prove that the nitrogen is exereted as ammonimm. The lowering of the nitrogenmumber is parallel with a return of ammoniam into the metham so that there is cause to consider, as before with the carton, the course of the plastic aequivalent of the nitrogen and of the ammonimm arpuivalent in relation to time.

The decrease of the plastic aequivalent of the nitrogen is combined with an increase of the ammoninm aequivalent. This view may, however, give rise to error as to the nitrogen, the ammonimm beiny here a product of excretion, which liternise is mostly the form in which the nitrogen is given to the argatism. By introturing the nitrogemumber this arror is avoded. When exces of ammonimmnitrate is used it is chicfly the ammonimm nitrogen whioh is asimilated, as proved before.

In a previons paper ${ }^{\text {a }}$) was shown that manganese does mot (hatnge

1) These Procredinss, XV Pras

the nature of the melabolism of the eaphon. Ind does montily it
 that mature. This I have also fomm true lon the nitmenen moter the influence of the sad metal, as is shown in latble Ill.

Nr. 2. where manganese is added, has a lower nitrogenmmber that 1. which is owing to the manganese. The nitroxemmmbers of 7,8 , and 9 , are lower than those of $3,4,5$ and 6 , where mo manganere is added. 'The nitrogemmmber of 10 is like that of $\mathfrak{B}^{2} 4$, bat and 6 .
 the metaholism of the nitrogen nor that of the rarbon.

That the replacing of potassimm by mbidimm has litte intluence on the metabolism of the nitrogen is proved by eomparing ms. 11 and 12 with $3,4,5$. and 6, and 19 with 18 , whose nitrogemmmbers are nearly equal.

In the above despribed experiments the nitrogen in the liquid was of different nature, both in the form of ammoninm and of nitrate. For that reason I repeated the experiment and used ammoniumchiorid as only sonre of nitrogen.

Varions concentrations were also studied. The results are found in table IV.

From these experiments we may conclude that the mature of the metabolism with ammoninmehtorid is the same as with ammoniumnitrate. The nitrogemmmber, high at first ($\mathbf{6}, 1$), descends rapidly; after 7 days it is aheady decreased to $\pm 2,5$, then to remain nearly constant. Furthermore we see that excess of nitrogen does mot change the metabolism. All the nitrogen excreted is fonnd exelusively ats ammonium, the sum of the nitrogen in the mould and of that present in the solntion heing ronstant. The losses of nitrogen which may partly he aspribed to errors in the ablysis, are, as seen in the table. of little import, and party repose on the evaporation of ammonia. Thus we see that in the till now extmined easen ammonit is "

After Prof. Bömprox's adrice I insentigated if this is always the case: if also by nitrogen natrifon with $K N O$ ammonia is exereted.

The results of these experiments are found in hable V. We see from them that also with $\mathrm{K}_{\mathrm{NO}}^{3}$ as exelusive nitrogen food the nitrogen is acemmolated in the organism, albeit less fuidkly than $\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{NH}_{4} \mathrm{KO}_{2}$. The nitrogemmomber lowers also here whitst ammonia comes into the exthere liquid. There are hardly

[^44]any loses of nitrogen, an, fivergillus mifor is able to reduce nitrate (0) immonia.

Fruthermore it is prosed that the nitrogemmmber of a mature mond layer with oflocose on levalone as exclasive orgatic food for A.pmigiths mimer, independent of the somee of nitrogen, amounts ahout to 2,0 .

Nomwithstanding a fomg moutd colture sometimes contains 2 to 2^{2}, times at much nitrogen at a corresponding ohd one, such a gomber, duly wanhed layor, when boiled with distilled water gave no trace of the abone maned amorganies salls which had theen added to the medinm as exdusite soume of mitrogen. Here thms, too, the
TABLE V. KNO_{3} as nitrogen nutrition.

Nr .	Quantity of nitrogen in the mould	Quantity of nitrogen in solution as ammonia, in mgrs.			Growth and spore-forming.			Assimilated glucose in pCt.		Nitrogen- number
1	8.4	Solution gives :10 reaction with Nessler		days	vigorous,	very few	v spores		pCt.	4.5
2	14	Solution gives no reaction with Nessler	4	"	vigorous spore	, begin -formin		S0	"	4.4
3	12.7	Solution gives no reaction with Nessler	4	"	vigorous,	rather pores	many	75	"	4.2
4	14.8	Only extremely slight ammonia reaction	5	,	vigorous, sp	rather pores	many	97	"	
3	14.2	Only extremely slight ammonia reaction	5	.	vigorous, Sp	rather pores	many	92	.	
6	9.9	Aready rather much ammonia	7	,	vigorous,	many	spores	100	,	2.5
7	10.2	in the liquid	7	"	"		"	"	"	2.6
s	S. 1	4.9	111	"	"	.	*	"	"	$\underline{2.11}$
9	11.8	1.3	111	"	"	.	"	"	"	2.9
111	9.4	3.8	\because	"	"	.	"	"	"	2.3
11	9.2	$\therefore 5$	22	"	"	.	.	,	"	$\because \cdot$
12	9.5	not determined	22	"	"	"	"	"	"	$\therefore 1$

exeess of anorganic nitrogen compound attrated by the organism is very quickly converted into an mbnown, nitroren-omtaining intermediary product. Thas, here apain the adsorption hats no pratedeal influence on the distribution of the mutrient substames between the medium and the mould.

Then wath which in experiments have provel，hold also mood for at for mhor examimel orgatime，shom that in the literame the

 nitrowen the following experimetas were made table VI）．

The quantite of added ammonimmitrogen ditfer very much in

 in（：If amd A there was a detart of mitrogen relatively to the
 satifly the reguirements of a matme mond layer．

In A thin was mot．hwerer，the vase and the quantity of nitrogen was even mather than that fised in an ond mond culture contaning little grykoren and obtamed at the expense of 1000 mgrs．glueose． To this it mant he ampited that the assimilation of grlucose is －lackench．Aftur 9 dars $20{ }^{\prime \prime}$ ，is still maned．Fixation of nitrogen fiom the air conld not he ohserved in this experiment，nether for A．not for ${ }^{\prime}$ of（＇whils yet these serien of experiments might in particular come into consideration for an evental dixation of atmos－ pherie nitrogen in relation to the mentoned detiedt in the matrient sohnion．In the refermo literatmre．bowerer，are many statements tembere to prose the eontray

We furher see that alon the velocity of glueose assimilation in If is dimmished athough the general comse of the process of nitrogen fixation remained fine same：a high nitrogemmmber at time which for all the remes dereased with the time to 2 10 3.

The nitrogemmmber of d． 3 ．and（ \therefore and in slight degree also of I），ras in the hegiming lound to a eedain limit determined by the atded nitrowen and the mould．
series A hats at detioit of nitregen with regard to the quantity of
 ats 10 the guantity of fixet nitrogen．

We shonlal stith puint the assoctation of the plastio aegnivalent of the carthon and the nitrowemmmber．If the former is high this is atho the cease with the lather athl the reverse

S゙ルクリル！ル！！

1．The nitrogen fixed in the mature mond is propertional to the plentice atequitakent of the cathon imberementy of the nathe of the sathon as well at of hat of the mitrogen．

1）See alsu W．Rempers and D．Lely，These Procedings，1912，p．433．
2. The nitrogemmmber, by which is meant the nitrogen per 100 parts of weight of assmilated ratmon lowers with time; for a matme mould it is ea. 2 (ghorose on levolose as sombe of ratmon).
3. The metabulism of the nitrogen has much resemblance to that of the earbon.
a. An aremmataion of catoma is combined with a high mitrogennumber; inversely the mature mould has a low nitrogemmmber.
b. The nature of the metabolism of the nitrogen does not change under the intluence of many fitotors: neither is this the rase with the earbon.
c. The velocity of the metabolism is subject to great changes.
d. The same factors that areelerate the metaholism of the earbon also further that of the nitrogen.
a. Substation of mbidinm for potansimm is of lithe influence on the metabolism of the nitrogen.
4. The mature of the metaholism of the nitogen is independent of the soure of nitrogen. At first the nitrogemmmber is high, then it decrases whilst the fieed nitrogen botmon into the motrent solution as ammonia. This is provel for the rases when ammonimmnitrate, ammonimmelalord, or potasummitrate ing given an nitrogenfood. Asporpithes migpi, thus, redures mitates to ammonia but not
 nitrogen as to the geantity of earbon, bo ammenia can matne into the solntion at it is directly nsed for the prothedion of new rells.
6. In the cases of atetienery of mitrowen mo dixation of atmospherie nitrogen rould he ohserved.

Fimally my hearty thanks to Profescor De. J. Bianswise and Professor Dr. M. W. Bemamek for their valnable help in this investigation.

> Tralmieal l'nimersit!, Or!amial-chembeal Lahomem?!

Delft, November 1912.

Microbiology - "Metalmlisul of the fosfon in Anpergillus niger". Liy It. II. I. Whermas. Commonicated ley Prof. Dr. M. W. Dianman(h).
(Communicated in the meeting of December :os, 191?).

In ant earlied rommmateation I have shown that the metabolism of the nitrogen in this oreanism is analogons to that of the cathon ${ }^{2}$).

These two elements are aremmutated in the organism and are later partly exereted, the cabon as carbonie acid, the nitrogen as ammonia.

We find besides that ant exress of these elements retards the sporeformation. Foor the carbon compare tables Ila, IIb and III (p. torl, tin2, and thit Foblan microhologica): for the nitrogen see rable 11 (Preceding paper').

I have further found that the fo-for behaves in the same manere as the above elements.

In the tirst plare 1 aseertaned that the gate of fostor of an old mature culture of Aspmogilus niger is constant, independent of the way in which it is ohtamed.

The mould layer was before the autysis washed with distilled Water abl after drying destroyed by shongly concentrated nitrie aded in a closed thbe. In the thus obtaned solntion the fosfor was determined after Fixkixab ${ }^{7}$) as ammonimm fosfor molybate $\left(\mathrm{NH}_{4}\right)_{\mathrm{s}}$ $\mathrm{P}^{\prime}()_{1} 12 \mathrm{Mo}$ (). The results are found in Table 1.

For shortness sake I shall as for the nitrogen make use of the word "fosfomimber", whieh means the fostor fixed in the mould per 100 parts of assimiated carbon. As in the experiments of table I all the glakose 1000 mgrs.) had been assimilated and this quanlity corsesponds with 400 mgrs of carbon; the number of mgrs. of fosfor must than be divided by t to tind the fosformmber.

As the bable shows the formmomber is for an old mature monde

1) Sce the preceding paper.
${ }^{2}$) Folia microbiologica (1912) Bd 1. p 442 .
${ }^{3}$ The lifut eontaining ammoniumbitrate and the nitrie acid is heated till the first bmbles appear, then precipitated with ammonibmmolybdate under continuous stiming. The precipitato is then washet out with at solution containing ammoniumnitrate and nitric arid and dissolved in dilute ammonia. To the thus obtained elear solution is added an excess of ammoniumnitrate amf a small quantily of ammonimmolybdate, alter which it is again heated until the first bubbles appear; tinally low mitric ated is adted under rontimuous stiming. The mecipitate is dried in an air cument to constant weigh at $160^{\circ} \mathrm{G}$ in a Googns crucible.

TABI.EI.
Carcumstances of chltivations: $50 \mathrm{~cm}^{3}$. very pure dinthled water, in whols dissolved: $20, \ldots$ glicose and the amorsanic sulatances mentioned below. Temp.: 33 C.

layer rather comstant so that in this espect, too, the fosfor corresponds quite with the dabon and nitrogen.

In the second place the action of varions increasing fostate concentrations on the metabolism of Aspergilles niger was studied. The results are found in table 11 . The fosfor was added as kalimmbitosfite to the nutrient liquid, whilst I ascertamed by analysis that the rate of fostor of this compound was indeed in accordance with the formula $\mathrm{KiH}_{2} \mathrm{P} \mathrm{O}_{1}$.

After one day already, growth wats observed in all numbers, execpt in Nos. 1 and 2. After iwo days it had considerably increased in Nrs 4-18, Nr. 1 and 2 also showing a begiming of growth. After three days the growth of Nis. 1 and 2 had not increased, as little in Nr. © where, however, more mycelimm had been formed. The growth increased in the following Nis, and was very strong in Nr. A. This continued also after 7 and 14 days.

The refarding of the spore formation after 2 and 3 days is convincing in those experiments where mach fosfor is added. After two days $3-6$ had rather many spores. In 7 and 8 few had appeared Whereas in the following Nis hardly any spores were seen. After 3 days $3-6$ had many spores, 8 few, and the Nis. with moch fosfor very few. Only in Nre 17 and 18 the spore-fommation was considerable and about alike to that of Nr. 8. The same I have observed for the action of potasitum, as before for the carbon and nitrogen, so that it seems of general signiticance. This may be cxplaned thus: If an excess of the refermog element, in this case fosfor, is present, the cells are continually overloaded with new food and with the thecefrom arising intermediary products, by which the sporeformation is retarded. When the excess becomes very great it is possible that the process of the metabolism is so much aceelerated that also the pore-formation is quickened. Probably such is the rase in Nis 17 and 18, where three days after inoculation more spores were produced than in Nrs. 9-16. After 7 days the differences in sporeformation are no more observable.

Howerer. there are elements which in feeble concentrations comterart the spore-formation ${ }^{1}$) and then the limits will be quite different.

The quantity of monld is very small in Nis. 1 and 2 where no fosfor was added, and amoments with increase of the fosfor ; herewith the assimilation of glucose is parallel. After 4 days the solation in Nris. 9, 10 and 11, no more contaned fosfite, which after the same

1) These Proceeding: November 1912.
TABLE II.

Nr.		Fosfor -iv as forsfate as fosate	in mgr in mon mate after fo	Assimilated glucose ay's			$\begin{aligned} & \text { Assimi } \\ & \text { lated } \\ & \text { glucose } \\ & \text { ays } \end{aligned}$		$\begin{array}{\|c} \text { Fosf } \\ \text { min } \\ \text { lifuid } \\ \text { as fosfa } \\ \hline \end{array}$	in mgrs in moul mater after se	Assimi lated glucose day's	$\frac{\dot{6}}{\frac{b}{8}}$	Assimi- lated glucore after sist	$\begin{aligned} & \text { Dry } \\ & \text { weight } \\ & \text { in } \\ & \text { migrs. } \end{aligned}$ een days
1,2	0												$\geq 10 "$,	
3	0,02												$\pm 30 \ldots$	39
4, 5	0,22													$100 ; 106,5$
6	(1),44												5	150
7	1),66													
*	10,88													
13	1,1	0	1,0	$833^{\prime \prime}$	0.3									
10	1,55	11		79.	0,5									
11	2.1	${ }^{1}$		s7.	1,6\%									
12	3,2													
13, 14	4.2	$\begin{aligned} & \text { turtate st:1 } \\ & \text { Moment } \end{aligned}$	2,9	93	0,75									
15	10,5								8,7	1,6	101)"	0.4		
16	20,7					1,5	$10^{\prime}{ }^{\prime \prime}$	10, 7						
17	104,													
18	207.													

time was all present in Nrs. 13 and 14 . From these obervations may be concluded that the mond had drawn to it all the fosfor in the three tirst experiments. As these guantities, espectally that of Nr. 11, are considerably greater than those present in the old, matture mould layer (table I), it was indirectly proved that also the fosfor in the metabolism is accumulated in the organism in considerable quantity at the begimning of the development. This result was then in a dired way confirmed by analysis of the mould. So it was found for Nr. 9 that all the fosfor vanished from the solution was present in the organism (ca. 1 mgr.). For Nrs. 13 and 142.9 mgr were found in the mould, a quantity 7 tot 8 times as great as that in the old mould layer. The corresponding fosfornumber is $\mathbf{0 . 7 5}$. This number may even be higher, as is seen from an experiment which may be mentioned here for comparison. In a live days old mould layer conture liguid: $50 \mathrm{~cm}^{3}$ distilled water: 0.15% am. nitrate, $0.1 \% \mathrm{KCl}, 0.1 \% \quad \mathrm{MrSO}_{4}$ (crystall), $\mathbf{0 . 0 5} \% \mathrm{Ca}$ nitrate (free from water), 0.03 ${ }^{\circ}$, fosforic and (erystall), $2^{\circ} /$ wheose), 3.9 mers. 1 " was present. As all the wlucose was then assimilated the fosformumber was $=\mathbf{1 . 0}$.

In opposition to what is found for the carbon and mitrogen this gluantity of fosfor is loosely fixed in the organism. 'Ten minutes' boiling with water will do to dissolve considerabie quantities. Of a mature mould layer, treated in the same way, no, or hardly any fosfor is dissolved; the same is the case with lecithine or phytine. As the mond grows older the stperthons fostor. acemmutated in the organism, returns into the solution as fosforic acid. This was already indicated by the fact that the fosformmbers of mature cultures were very small (table I).

It was ascertained by direct amalysis both of the mould and the culture liquid of N^{0}. 15 after 7 days, and of the monld of $\mathrm{N}^{0} .16$ after 5 days. For N°. 15 the smm of the fosfor in the mould and in the liquid present after 7 days is $8.7+1.6=10.3$ mgrs. The totally added guantity was 10,5 mgrs., so that no loss of fosfor, in the form of hydrocenfostid takes place.

By this study of the metabolism of the elements we obtain a befter view of their signification than was hitherto obtained. We see that the quantities of the elements present in the mature mould, do not correpond with the quantities really atetive during the development. In the case of cathon the plastic aequivalent could in the comse of time decrease to the hatf. For the nitrogen there was a threctold, for the fosfor 1 could point ont a tenfold decrease. The quantitie of the latter element repuited for the normal assimilation
are much ereater than is exemeaty areopted, also as to the nitrogen, alhough in a less dergere. When comparing the acrommlation of the elements it thas seems, that durime the metathotism this areonmbat tion is greatest for those, which form a small permathent prerentage of the constituents of the oremism. So wa sere, that in the comer of an experiment the same quantity of an eloment may he many times antive in the motatholism, one coll laking up the produrts exereted by another cell.

Starting from this view the stuly of elements, such as maneanese. which are already active in pery dilnte solutions, are interesting.
 monsome in .tave." liy Dr. (. Brask. (Commmicaled by Dr. I. I', VAN Dek Stok.)
(Communicated in the meeting of November 30, 1912).
In a preceding commmication ${ }^{1}$) it was deduced from a study of lictors of correlation that in the Indian Arehipelago, with the exaeption of the western part north of the equator, a comnection in clearly perceptible between barometric pressure and ranfall. The mature of this connection appeared to depend upon the geoqraphical position as well as upon the different seasons.

In the following an attempt will be made to show that by means of this comection it is possible to make a long lange weather forecast.

For this purpose Java has been chosen, because a foreeast is of greater value for this island than for any other part of the Archipelago on account of its intense cultivation. Moreover this research will be limited to the east monsoon, as the comnection is less distinct in the west monsoon, and because a forecast for this season of aboudant rainfall is of secondary importance.

It will be necessary to prove, that the changes of the barometerreadings from year to year succeed each other according to detinite rules, so that they may be determined in advance. Futher we must also prove that it is possible to ascertain with sulficient aceuracy how the rainfall depends upon the barometric deviations.

With regard to the deviations of airpressure Java has an advantage over any other part of the world, because the variations of climate are determined by the variations of the barometric pressure in North Australia, which are characterised by an extraordinary regularity. No station outside North Australia can vie with it in this respect, not even Bombay of Cordova (Argentinal which sation-

1) These Proceedings 1912 p. 45.
were selected by Ioockize as the representatives of both types of the harometric periotical oseillation of 3.5 years ${ }^{3}$) Moreover the amplitude in Australia is much greater than elsewhere.

The variations of the arpressure in North Austratia from the nomal value are shown in come I of the plate, by means of the six-monthly deviations of the harometric pressure at Port-Dawin, manked monthly on the piate in such a way that, for instance, the deviation in the period Jantary-dune (in relation to the normal value is: the same months) is drawn on the 1 st of A pril. Begiming with 1899 the base valne has changed, apparenty becanse something has been altered in the barometer or its position.

The curve shows some very regular series of wases, namely from 1878 till 1881, from 1885 till 1891, from 1896 till 1904 . whereas in 1911 a new series seems to have begron. The maximatem minimet "tre' characteristic of gixed sedsons, they develop themselees momely in the first and lesest monthes of the yetur.

Minima.
1 Dee. 1878
1 Oct. 1886
1 Fetrr 1890
1 Fehr. 1898
1 Sept. 1900
1 Febr. 1904

Maxima.
1 Felmr 1881
1 sept. 1885
1 Jan. 1889
1 ()e\%. 1891
1 Nov. 1896
1 Fehr. 1900
1 Der. 1902
1 Mareh 1912

It is gurther sedent, that the time which elapses from minimum to maximum is one yewr, from morimum to minimem two yeras. The peried is eacactly 3 yedre.

The curve so closely resembles this schematie interpretation, that it may be represented by the schematic broken line IV of the plate. From 1878 it has been traced batckard by means of the barometrice observations made al Adelaide. For simplicity's sake the maxima and minima have been drawn on the 1 st of danuary

These regular periods are particulary adapted to forecast the aippresure a considerable time in advance. Disturbed periods are lying between them however, in which the curve makes the impression that there has been no development of the maximum for some years. The certainty with which the barometric variations may be predicted would decrase greatly, if the epochs at which these disturbed

[^45]periods appear cond not be predided and one wond always he uncertain whether the end of a regnlat sertes is meat. Fontmately howerer these disturdmeses seem to be anything but irmerglate in their appearance, so that there exists a posibility of amommemg them in adrance. This may be seen from the comparison of the burometerare I with the entre II, which represent- Wonfs relative numbers of sumspots. It is remmethelder thet the disturbumes in the berometercelve coinciede with the masime uf the sumspotenter, wherets: dering the previods with small sensepot intensity the regulae buevometrid wreve is deceloped remisturbed!!.

It eannot be denied that the mumber of sumspot periods over which this comparison is possible, is but small, howerer there seems to be every reason to suppose that we have here to do with at reat and not with an acoidental comection. Indeed it is a matter of fact known already since long that there exists a connection between the number of sumspots and different meteorological phenomena, and the above mentioned result agrees with what hat been found in earlier researches. At the close of this communtation this connection will be still further considered.

One would be inclined to go back, begiming with the year 1876 and examine still more closely the commedion hetween sumspots and disturbed barometerperiods by means of the observations made at other stations with longer records. For this purpose i.a. the stations Batavia, Adelaide, Bombay, and Madras would be adapted. As however at these stations the oscillation itself is less regular, it is very difficult to distinguish what is disturbed by the sunspots and what is not, and the results would not be very convincing.

Now the question arises how the rainfall is affected with regard to the barometer oscillations. In answering this question the disturbed periods in which the comnection is less distinct will be left out of account and only the regular waves will be considered. In curve V the rainfall deviations in West-dara (6 monthly means, calculated in the same manner as the deviations of curve I, accordingly reduced to one month) have been represented monthly; for the years $1875-$ 1878 the curve is based on the Batavia observations only.

The curve shows clearly that the comection between rainfall and airpressure is different in the West- and the Eastmonsoon, it may serve to illustrate the numbers which are given helow.

The investigation may be divided into three part- acrording to the schematie barometer curve.

1. The Eastmonsoons of the year's in which the barometer is moving firm maximum to minimum; these are years of transition.
2. The Eastmonsoons following the batomerric minimum. The pressure remains below normal during the whole gear.
3. The Eastmonsoons preceding the batometric maximum. The pressure is above normal during the whole gear.

The fins case is apparent in the years $1878,1886,1889,1897$, 1900,1908 , and 1912 . The departures of the ranfall from its normal condition from dane till Sovember (the latter included) ${ }^{1}$), were in these years, averaged monthly, in millimeters.

	West-Iava	East-Java
1878	-24 (Baterin)	Not obsemed.
1880	+1	+20
1889	+67	+50
1897	29	-30
1900	+34	+43
1903	+24	-15
1912	+2 (June-September)	-21 (June-September).

The second case is apparent in the years $1876,1879,1887,1890$, 1898,1901 , and 1904 . The raintall departures are in the same months as above averaged monthly :

West-Java	East-Java
$+4($ Buteriot $)$	Not observed.
69	+79
29	7
52	44
8	18
15	18
81	17

In the last cave are the Eastmonsoons of 1875, 1880, 1885, 1888, 1891, 1896, 1899, 1902, and 1911.

The sainfall departures in the months Jme-November are:
West-Java
East-Java

1877	-74 (Butnia)	Not observed.
1880	+62	-23
1885	-88	-53
1888	-86	+2
1891	-99	-60
1896	-102	-51
1899	-12	-41
1902	-104	-57
1911	-18	+7

[^46]In the years of transition mentioned sub $\mathbf{I}^{\prime \prime}$, evidently the rathath is also in a state of transition: the sigos of the depretures are changing and have no fixed eharacter.

On the contion!! all Eastmonsonms momiomed sul, 2 " without

It eamot be denied that among the firvourable case there are some in which the departure is but small. but on the other hand it is a matter of fact that with 2 of the 3 mataromathe eases the departme also remains small. In these yars the chavater of the monsoon has been indelimity developed, or has been different in different parts of dava or, as occured in 1911, the character was different during the different months. Certainly 1911 mast be reckoned among the dey years, even though the heary rainfall in June cansed a positive departure in East-Java.

It must be remarked that to the mumbers given for 1876 1878, as taken from the observations of only one station, but little value can be attached. It is howerer a well known fact that 1875 was a dry year over the whole of Java and that theretore the strong negative departure observed in Batavia has a general validity.

Above has been given a seheme of barometric changes and corresponding fluctuations of rainfall which may be applied to $2: 3$ years out of the 37 of the period $1876-1912$. If we exclude the year 1876 for the above mentioned reason, this scheme gives for 15 years (mentioned sub 2 and 3) a definite answer to the question what was the sign of the rainfall departure in the Eastmonsoon in Java. With one exception in West-Java and fwo exceptions in EastJava this sign corresponds with reality.

On the principle upon which the scheme has bpen bessed it also would have been possible to foreeast for these 15 yems the sign of the rainfall deproture in Westolena 14 times, in Enst-olatel 13 timess, if we had considered that the term should be twhen somewhat shorler at the begiming and at the end of at regulder wore series ras helf a year, whereass it might be taken lower boturem them, eren 1 or 2 , germs.

What may be concluded from the seheme for the near future about the rainfall in Java? The circmonstances for a forecast may presen! y be called really farourable, because a new regular series of barometer wates has abready made its appramance daring the present sunspot minimum.

We have already passed the barometer maximum and the pressure
i. ©hameng exably in the direertion indicated by the seheme, so that there is cerey reason to helieve that the neat minimum will appear at the experted time mamely abont the $1^{\text {met }}$ of danary 1913), while Where is mo indication in the combe of the smaspot momber that points to an eaty disturtathe . Therefore abo the appeatathe of the next batometric maximum about the $1^{\text {bet }}$ of dannary 1915 is rather certain.

 1914 proludely in the diy diresteon.

Fimally a remark may be made abont the barometereme itself. In the preveding eommanieation the question was raised ats 10 whether the barometerperiod of 3.5 years has a terrestrial or an extraterrestrial case; as for the Port bawin curve, (and to this one a considerable weight should be attached, because it is not only the most regular one, bu it has also the greatest amplitude), I should like to call attention to the fact. that the epock of the marimen and mimime serems to be entive? controlled bey the terestrial spetsons. This seems to me a new proof for its terrestrial origin. The cosmical influences instead of cansing the harometric orillations, seem to disturb them (namely during the sunspot maximmm).

If the variations of elimate departures of aippessure, temperabure and ramfall) of shor period (Brextexars period and the longer ones excepled are described as a combination of waves of terrestrial origin whth a perion of about 3 years, and a cosmical disturtsance, which is athog during the sunspot maximum, it seems to me Hat a satisfactory explatation may be given of the influence, that (as a result of different 1 researehes) is athibuted to the smopots. By
 explamed, that athough in many cases a eommedion is found, it mamifests itself at diflerent epochs in a diflerent way, as e.g. Köprax hats ebtablished for the temperature in the wopies.

The idea here given about the origin of harometrio variation of \because years is contraty, it is true, to the opinion of Lockyer and Bigedow, whose deas are that it is controlled by the number of prominemes. However the data on which this opinion is based are by no means comvincing as a comparison between ebres 1 and 1 II may teach. In curse $I I I$ we have put down the observations made at lame and Catania about the number of prominences, which data have also been used by the two above mentioned investigators. Agan the 6 monthly means of departure have been represented monthly in such a manner however tinat, following the
example of Bhatow, for the elimination of the 11 year perion the departures from the nemest formonthe (hems) have been daternlated and mot those from the nomal of the whole periond

Comparison teathes that in the begiming till 1891 the barometerenve shows inded much conformity with the prominence curve; atherwads however every similatity has vanished and in the later geas in which the prominenses hard!y show any variation, the barometeroseillation goos ons will the same regulaty at before Therefore very likely the romerem during the dirst years hat been only aucotental.

Welterveden, 10 Ootoher 1912.

Chemistry. ..- "D!pmomic resernches concerniny the reaction of Frabed and Crafts." ley S. (.. J. Ohivien and Prof. J. Diomeker. (Commmicated by Prof. A. li. Hodmand).
(Commmicated in the meding of December 2s. 1912).
Dynamie reseathes have already been earied out with AlCl_{3} or analogons substances as catalyst.

The first are those of A. Shatok ${ }^{2}$), who investigated the abetion of chdorine on benzene in the presence of SnCl_{4} and Fells.

The absorption of the halogen dissolved in an exeess of benzene was measmed, and it was found that this proceeded atecording to the reaction scheme of the first orler the constant being proportional to the amount of the catalyst.

We may conclude therefrom that the eatalyst is constantly active: that its action is not semsibly altered by any of the reaction products.

Further we mention the revearch of B. I). Strele ${ }^{2}$), who has stulied the ketone synthesis and the formation of phenyltolymethane under the influence of AlCl_{3} and FCl_{3} where the progressive change of the reaction was determined from the amount of hydrogen chloride evolved.
${ }^{1}$) Proc. 19, 135 (1903); Journ. Ghem. Soe. 83, 729 (1903); Zeits, Mys. Ch. 45, 513 (1903).
L. Bruner had carried out measurements as to the bromination of benzene, but as a catalyst iodine was used which is not direclly comparable with AlCl_{3}; moreover it was not sufficiently taken into consideration that the bromine unites with the catalyst (sce Dissertation S. C. J. Olivier).

Slator has also used iodine as catalyst. Although this researeh is very interesting as regards the benzene substitution, this part may be passed oper for the reason stated.
${ }^{2}$) Journ. Chem. Soc. 83, 1470 (1903).

Ahhomgh, in am opinion, this modus apromell (see Dissertation
 rendered proballe by him that, when in the ketone symthesis the pmportion $\mathrm{AlC}_{3}: \mathrm{C}_{3} \mathrm{H}_{5}\left({ }^{\prime}\right) \mathrm{Cl}$ is smatler than or at most only equal (o) maty, the reaction was of the tirst order. With an excess of AlC. I_{s} a reation of the seromb order would have to be assumed Where the Ale $l_{\text {s }}$ would combine with the acid chloride as well as with the foluene.

The latter course of reaction would always heve to be assumed with Feels as catalys. The digures found by him for the symthesis of phenylolylmethane differ so much that they do not admil of a safe comedasion.

Much more regula are the figures obtaned by H. Gondschmint and Il. Lansex ${ }^{4}$) in their researd on the chlorination of nitrobenzene and the henzylation of anisole in the presence of substances such ats SnCl, and AlCl_{3}.

They obtaned the result that the reaction was of the first order and that the constant was divectly proportional with the concentration of the eatalys.

As in the chlormation of benzene, the ation of the eatalyst appears not to be distmbed by the reaction produets.

If we consider that AlC l_{s} mites with the nitrobenzene as well ats with the ansole to molecolar compommes. and that these smbstanes were ahways present in large excess, this result is not a matter of great surprise.

The catalyst is then greatly paralysed, which condition cannot the modified to aty extent by the formation of ehoronitrobenzene (benzylanisole, respectively) in small quantities in regard to the nitrobenzene amisole, respertively).

That in the benzyation of ansole $A|C\rangle_{3}$ is not very active is Shown by the fite that this reatetion could still be measured at 25° in a V_{10} solution of $\mathrm{AlC} \mathrm{V}_{3}$, allhough as a rule the hydrogen atoms of anisole are much more readily subistuted than those of benzene.

The expedingly slow chlorination of nitrobenzene at 30° may be due to the paralytie combtion of the calalyst as well as to the lesser artivity of the benzene hydrogen atoms.

From this survey as to what has been eartied out in this direction it follows that a systematic researel umder varions conditions was very much to be desired.

The only somewhat fonstworlly results were obtaned in the

chlorination of benzene with sinc'l, (Simpore) and in the just montioned researeh of domsemant and lansex in which, lonwerer, neither the progressive change of the reation nor the role of the catalyst hat been much elncidated.

For this reason we have more elosely studied the reaction between p-hromophenylsulphonchloride and benzene.

It was first our intention to carry this out in a nentral solvent for which earbon disuphide was chosen; it appeared, however, that the reaction then took quite another rourse ${ }^{1}$) so that we were compelled to choose the hydrocarthon itself as the solvent.

The proromosulphonchloride was prepared from bromobenzene by sulphonating this with fuming sulphurie aciod, nentratising the mixture with lime and converting the calcoum salt by means of sodium (earbonate into the sodium salt; the sodimm p-bromosulphonate thus obtained was converted by PCl_{5} into the chloride. This was freed from $\mathrm{P}^{\prime} \mathrm{OCl}$, with cold water and recrystallised from ether.

We had chosen the suphonchoride as starting point because this is not decomposed by cold waler, whereas it is rapilly decomposed on warming with aqueous silver nitrate, so that the mattacked sulphonchloride could be freed, by means of cold water, from the AlCl , and the HCl formed and afterwarls be titrated with silver nitrate solution of known strength.

The benzene hydrocarbons were dried carefully over AlCl_{3} and kept in stock with exclusion of moisture.

The measurements were carvied out by making (with exclusion of light and moisture) a solution of definite quantities of sulphonchloride, alumininm chloride, and hydrocarbon; from time to time a detinite volnme of this solution was withdrawn and analysed.

For details we refer to the dissertation of Mr. Otrerer which will appear shortly.

We reprint therefrom a few series of analyses.
The benzene required for this was treated before the raction with AlCl_{s} and distilled; a thiophene-free benzene which had not thus been dried and distilled exhibited a small intial value and a strong course of the constant.

From table I we see that the reaction between 1 mol. of $A \mid C l_{3}$ and 1 mol . of acid chforide is one of the first order; when, however, 80% of the original quantity has been converted a serious retarda-

[^47]Proceedings Royal Acad. Amsterdam. Vol. XV.

TABLEI.

Action of $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(1 \mathrm{~mol})+.\mathrm{AlCl}_{3}(1 \mathrm{~mol}$. $)$ on excess of benzene. Concentration acid chloride $=0.1 \mathrm{n} . ; T=30^{\circ}$.
(a x) - concentration acid chloride in grammols, after the time t in minutes $K_{I}=$ constant monomolecular rcaction.

TABLE II.
Action and concentration as above. Benzene not again dried.

t	$(a-x) 10^{3}$	K_{1}
u	1	-
60	78.7	0.000698
210	71.8	0.000636
1320	50.6	0.000367

tion is noticed. We athribute this: $1^{\text {st }}$ to the absorption of moistare durime the manipulations, which exerts an intluence particularly when the amomet of the active catalyst has become small;
$2^{\text {nd }}$ to a slight paralysis caused by the reaction itself.
Influence of the temperature.

TABIE III.
As in table 1 , temperature $=40^{\circ}$

	$(a-x) 10^{3}$	K_{1}
0	-	-
30	61.6	-
90	52.3	0.00273
165	43.1	0.00251

The proportion $\frac{K_{t}+10}{K_{t}}= \pm 2$, , is therefore normat.

Influence of the concentration.

TABLE IV.
As in table 1. Concentration of AlCl_{3} as well as of $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}=0.2 \mathrm{n}$
(The expression $1(a-x) 10^{3}$ indicates the percentages
of the acid chloride originally present.

	$1 / 2(a-x) 10^{3}$	K_{l}
00	36.6	-
120	281	0.00220
300	19.6	0.00208
540	14.7	0.00169

The much more rapid progress of the reaction compared witl that of the $N / 10$ concentration was shown by the fact that after seareely a quarter of an hour, which is the time required to obtain a homogeneous solution, more than 65% of the original quantity had already been converted.

The constant for the $N / 5$ concentration is twice that of the N/10 concentration.

We should conclude from this, that the entire course of the reaction can be represented by the reaction:

$$
\frac{d x}{d t}=k C_{1 l l l_{8}}(a-x)
$$

that is to say, of a monomolecular reation influenced catalytically,
in which the velocity of the reaction is proportional to the amount wif chbride present and to the quantity of the catalyst.

In that case, at a given concentration of the catalyst, a change of the initial concentration of the ateid chloride should not eause any moditication in the value of the constant.

If, howerer, we take an excess of acid chloride we obtain the following:

TABLE V.
Concentration $\mathrm{AlCl}_{3}=0.1 \mathrm{n} . ;$ acid chloride $=0.15 \mathrm{n} . ; t=30$?

t	$2_{3} \times(a-x) 10^{3}$	K_{I}	K_{I}
0	90.5	-	-
120	53.9	0.000656	0.00106
240	77.5	0.000662	0.00110
369	72.5	0.000617	0.00105

TABLE VI.
Concentration $\mathrm{AlCl}_{3}=0.1 \mathrm{n}$.; acid chloride $=0.2 \mathrm{n}$. $; t=30^{\circ}$.

t	$1 / 2 \times(a-x) 10^{3}$	K_{I}	K_{I}
	-		-
185	89.7	-	-
370	82.0	0.00487	0.00117
585	76.6	0.00427	0.00108
180.9	$:$	0.00402	0.00110

Herein K_{1} has heen calculated as if all the acid chloride present is eonnerned in the reaction, hence in aceordance with the above selema, whereas $K^{\prime \prime}$, has been calculated as if only the acid chloride which has formed a molecular compound with the AlCl3, enters into reaction.

It is easy to see that, only on the latter supposition, we obtain a comstant withoul course and which agrees with the constant obtained with equimolecula quantities of areidehboride-AlCls (eoncentration $\boldsymbol{N} / 10$).

The exeess of acidehtoride is therefore quite inactive; only that acidehtoride which is combined with the aluminitumehloride is active.

Hence in connection with the preceding, applies the relation:

In solution of one of the active molerules, the velocits of reartion is therefore proportional to the quantity of the other molecule, in so felle as this has mited with the ratalyst, as well ats with the total guantity of the catalyst.

The part thereof which durimg the reaction passes to the sulphon:

$$
\mathrm{AlCl} \mathrm{BrP}_{0}^{1} \mathrm{H}_{4} \mathrm{SO} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{0}=\mathrm{HCl}+\mathrm{BrCO}_{6} \mathrm{H}_{1} \mathrm{SO}_{2}\left(\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{AlCl}\right.
$$

alkhough not eapable of rendering the acid chloride active mast retain its catalystic activity in other respects.

We may explain this by assuming that AlCl_{s} renders active the benzene, with which it forms no compound, never mind whether the catalyst is zmited to the sulphonchloride or to the sulphon ${ }^{1}$).

If the above relation is correct, the addition of an equivalent amount of sulphon to the catalyst before or during the reaction must either prevent or stop the same, becalase one of the necessary molecules cannot, or no longer, be rendered active.

From Table VIIa and b this appears really to be the case.
TABLE VII a and b.

$\mathrm{AlCl}_{3}=0.1 \mathrm{n} ; \underset{\substack{\text { sulphonchloride } \\ \text { sulphon } \\=0.1 \\ \mathrm{n} \\ \hline}}{a .1 \mathrm{nl},}$		b As ial a; the sulphon 0.1 n has been addcd after all had become homogeneons.	
t	$(a-x) 10^{3}$	t	$(a-x) 10^{3}$
0	99.2	0	83.6
180	99.3	155	83.9
500	99.8	435	83.6
		1200	S5.5

If on the other hand our explanation is correct, an excess of AlCl_{3}, which cannot then be paralysed either by the sulphonchoride of by the sulphon, must exert a pereeptibly stronger action. For we have assumed that the catalyst renders active the benzene also and it will do this undoubtedly better still when it is in looser combination; this is also confirmed by the experiment. (Table VIII).

[^48]TABLE VIll.
$\mathrm{AlCl}_{3}=0.2 \mathrm{n} ;$ sulphonchloride $=0.1 \mathrm{n}$.

t	$(a-x) 103$	K_{1}	
0	60.8	-	The AlCl_{3} remained
45	38.0	0.0104	undissolved to consi a corable
105	17.3	0.0120	0.0120

When eompared with table I, the reaction constant has become 10 times ereater; also it is constant till the end. The lesser value at the commencement will, probably, have been cansed by the fact lhat the henzene was not yet saturated with the eatalyst which is but slightly soluble therein.

Hence, it must be observed that the relation given above only applies to partly paralysed AlCl_{8}; the free aluminiumehloride has a much more powerful action.

We can now go a step further. The above reaction may be imatrined to take place in two phases:

$$
\begin{array}{ll}
& \mathrm{BrC}_{6} \mathrm{HO}_{4} \mathrm{SO}_{2} \mathrm{Cl} . \mathrm{AlCl}_{3}+\stackrel{\downarrow}{\mathrm{C}_{6}^{\prime} \mathrm{H}_{6}=\mathrm{Br} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{ClAlCl}_{8} \mathrm{C}_{6} \mathrm{H}_{6}} \\
\text { I } & \mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{8} \mathrm{ClAlCl}_{3} \mathrm{C}_{6} \mathrm{H}_{n}=\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AlCl}_{8}+\mathrm{HCl}
\end{array}
$$

The first (I) represents the real catalytic reaction which shows us the formation of a termary compound, called by one of us the dislocation.

This dislocation applies here to the benzene beause that of the other molecule in the formation of $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{Cl} . \mathrm{AlCl}_{3}$ has already taken place before the starting of the reaction. The arrows indicate that the benzene is rendered atetive by all the $\left.\mathrm{AlCl}_{3}\right]$.

The second (II) is the elimination of the hydrogen chloride.
If now we supposed that I would proceed with infinite velocity in regard to Il we should measure the reaction of decomposition of the fernary compound and the constant thereof could not be depenfent on the concentration of the almminimm chloride. Only by assuming that I proceeds stowly in regat to II we obtain the course of the reaction as found by us ${ }^{2}$).
${ }^{1)}$ Not the existence of a similar ternary compound is, therefore, essential because the course of the reaction shows that it breaks up, but the act of its formation called by one of us dislocation. (Also compare Dissertation H. J. Priss Delft 1912 p. 12 and 54).

The research which is being continned in different directions in order to confirm the result obtamed has elucidated the catalytice action of $\mathrm{AlCl} \mathrm{s}_{3}$ thus for that it does not exert its action becatuse it mates with one of the molecules, for the free AlC $t_{\text {s }}$ was much more active than the combined portion. The view already expressed many times hy one of us that the catalytic action of ahmintum chloride is based on an influence (called by him (lislucation) which makes itself felf before the real compound is formed, has, therefore, been confirmed by this research.

In harmony therewith it appeared that there was measured an additive reaction of the acid chloride with benzene, the first rendered active only in so fiur as it is united to AlCl_{3}, the second rendered active by the total aluminium chloride present.

We have also caried out some measurements with henzene deriratives in order to get sonse knowledge as to the influence of the substituting group on the reaction velocity; there it was shown that the reaction with toluene using $N / 10$ acid chloride A / C_{8} at 30° proceeded so rapidly that the conversion had already pratically faken place after the mass had become homogeneons; a constant could only be approximated. We give here also the reaction constants for benzene, chlorobenzene, bromobenzene and nitrohenzene af 30 and for a $N /_{\text {s }}$ concentration of the acidchloride- AlCl_{3},

| toluene for $0.1 \mathrm{n}$. | >0.0064 |
| :--- | :--- | :--- |
| benzene ", 0.2 n | 0.0021 |
| bromobenzene ", | 0.00102 |
| chlorobenzene ", | 0.00080 |
| nitrobenzene ,, | 0.00000 |

From this little survey we notice that in the reaction of Fribiden and Crafrs, another succession of the velocity influences is observed than in the nitration where, according to the researches of Hodremas and his students, it is exactly opposed to this in the case of the methyl group and the chlorine atom. It may, however, be pointed out that our succession is based on measurements whereas the succession of the nitration is deduced from a comparison of the dirigent power of the groups on the entering nitro-group which, perhaps, has no direct connection with the velocity of nitration.

When carrying out the reaction of Frieded and Crafts it is desirable, according to this research, to have the catalyst in small exress when it forms an additional compound with one of the reacting molecules.

$$
\text { Delft-Wrageningen, December } 1912 .
$$

Chemistry. - "On the behnevor of gets tomads lipeids amd their "apenes". By Dr, L. K. Woder and Dr. E. H. Diëchare. ('ommmicated by Prof. A. F. Hohlemis) ${ }^{2}$).
(Commmicated in the meeling of December 28, 1912).
A paper by Mr. Bascroft ${ }^{2}$), which came to our notice only a short time aro, indnces us to publish the following account of an investigation, which we do not yet consider completed. It concerns a phenomenon, discovered by vox Schroeder, ${ }^{3}$) who found that gelatine, swelling in water vaponr, behaved differently from gelatine, swelling in liquid water: in the first case it absorts much less water than in the second. This phenomenon seems to contradict the second law of thermodynamics, which immediately leads to the principle, that, if a certain number of phases are in equilibrium, the equilibrium will not be disturbed, if one of the phases (in our case, the water) is taken away. Being convinced of the validity of the second law, and not satisfied by the given explanations; we started this rescarch.

We can at once refute a seemingly obvious remark. It might be supposed, that the absorption of water capour tinally takes place so slowly, that the equilibrium would only be reached after a very long time, i.e. that we have at false equilibrium. The erroneousness of this suggestion is immediately proved by the fact, that gelatine, swollen in water, loses water, when brought into a space saturated with water rapour.

Yos schroeder fomd, that agar-agar showed the same phenomenon. though not so markedly, but he observed the reverse in the case of filter paper. As far as we know, no other experimental investigation of the subject has been published after vox Schroeder's paper, though theoretical considerations have been given by Frecemion and BanrRoft, which we will treat of Jater on.

We first repeated fow Scmiondr's experiments, concerning gelatine and agar; and we obtained the same results.

Both substances, when used in the proper concentration, can be unuite easily dried with filter paper, which is an essential point, as it was suggested that mechanical athering of water to the surface of the gelatine might serve as a means of explaining the phenomenon. When the plates grew mouldy or the growth of bacteria was noticed,

1) Although much work has been done, since the original paper was written (Dec. 1412), we prefer only to present the translation of the Dutch communication and to postpone the publication of our new results.
2) J. physic. chemistry 16, p. 395.
${ }^{3}$) Z. physik. Chemie 45, p. 76.
the experiments were rejected. We used very pure gelatine (Nrasos), the same as ron Sonnombre used. The agar too was very pure and freed as far as possible from foreign substances by contimously treating it with water. The substances were placed in desiccators in a room, which was as much as possible kept at temperature.

The data of an experiment on gelatime will he found in the following table; a solution of about 2% grelatine was solidified into a plate.

Whereas gelatime in water vapom absorbs not yet half its weight, we see that it takes up more than twenty-five times its own weight in liquid water. The experiment was repeated with other plates and always with the same result. A similar proportion is found with agar-agar.

$$
\begin{aligned}
& \text { Weight of the freshly prepared plate } 2.111 \mathrm{Gr} \text {. } \\
& \text { ". after } 8 \text { days in vapour } 0.032 \text {," } \\
& \text { ". " } 8 \text { more days in vapour } 0.037 \text {,, } \\
& \text { ", " } 3 \text { days in liquid } 0.422 \text { ", } \\
& \text { " "11 " ", vapour } 0.033 \text { " } \\
& \text { " ", } 4 \text { ", liquid } 0.358 \text {.. } \\
& \text { " ", } 8 \text {," ," vapour } 0.040 \text { ", } \\
& \text { " } \quad 6 \text { " } 0 \text { liquid } 0.395 \text { " } \\
& \text {.. , } 22 \text { ", "vapour } 0.035 \text { " }
\end{aligned}
$$

It will be observed that in our experiments agar shows the phenomenon much more distinctly than in von Schroeder's. This author also tried the experiment with filter paper; we however did not, hecause we found it impossible to free this material from the water adhering to the surface.

Then we investigated, whether other substances show the same phenomenon, and we found a very striking example in nitrocellulose. Celloïdin Schering was used, which is known to be very
pure. This substance swells strongly at room temperature in 98 "/ chytatcohol, whout heing solved to any" considerable degree; phaced in saturated alcohol vapour at the same temperature, it loses a Ereat part of the absorbed alcohol.

Celloïdin in ethytalcohol.

1.

II.

Weight of dry substance 0.774 Gr. Weight of dry subtance 0.561 Gr.
In vapour

Composition of the wel 14.3% cell.

Then in capour
after 2 days 5.139 Gr.

	4	,	4.953	
.	6	..	4.750	
	9	.	4.598	
	11	,.	4.510	
	16	"	4.316	
	18	"	4.200	
	27	"	3.949	
	113		3.140	

Weight in equilibrium, calculated from experiment II, 1.601 Gr.
It was noticed, that, when the swollen celloidin, taken from the liquid and well dried off, was placed in the vapour. a few drops of alcohol were found after some days on the bottom of the weighingbottle; these were removed before weighing.

Celloïdin also shows the phenomenon in methylateohol; the absorpfion in liquid, as well as the loss in vapour are nearly equal to those in ethylalcohol. It was ako found with rubber ("gummi elasticum" 1'h. Ned. IV in xylene and in chloroform. In these systems a difficulty presented itself viz. that the swollen rubber almost became liquid; we succeeded in separating it from the xylene or chloroform by centrifuging. Rubber is more soluble in these liquids than the other substances investigated are in water or alcohol, but that does not decrease the results of our experiments.

Laminaria and cornea of the ox show the phenomenon quite clearly in water; from the latter, though well dried after being taken out of the liquid, big drops were found on the bottom of the

$$
\begin{aligned}
& \text { In liquid } \\
& \text { after } 2 \text { days } 4.591 \text { (ir. } \\
& \begin{array}{lllll}
& 5 & & 5.440 & , " \\
{ }^{2} & 7 & ., & 5.430 & . .
\end{array}
\end{aligned}
$$

dish. 'The structure of thene two sutbathen, howerer, is so complicated, that we must allow for the possibility, that their behavious may be explained in quite a different way.

Until now we have only treated colloids; we thought it quite worth while to examine, if the phenomenon could also be found in erystalline bodies. A paper of Fischer and bobertag²) drew our attention to myricyl alcohol "), together with chloroform and amylalcohol. We are inclined to conclude, that this substance really shows the phenomenon. but the differences, which we found, are much smaller, and absolute certainty about the fact has not yet been obtained. The principal error in these experiments lies in the liquid athering to the surface, and its influence will grow, according to the decrease of the total difference. Besides this substance we investigated stearic acid with acetic acid and anthracene with ethylalcohol; the differences in these systems are still smaller and the uncertainty therefore is still greater. ${ }^{3}$)

All the above mentioned substances show the phenomenon more or less; a few others do not do so or at least they show differences, not exceeding the experimental errors; viz. silica jelly, (as could be seen from van Bemnetex's investigations), coagulated albumen (serumalbumen, Merck) and amongst the erystalline bodies stilbite; the latter absorbs only 3% water in toto. We did not investigate the hydroxydes of the heary metals, because we did not think it possible, to free them from the surface water. Therefore we do not wish to oppose ourselves to the researches made by Foote ${ }^{4}$) and Rakowsh1 ${ }^{5}$). A word must be said, however, concerning a remarkable observation of Foote, to which Mr. Rakowski drew our attention. Foote found, that a crucible, containing pure water, placed in a well closed weighing bottle, on the bottom of which was some water, and which was pending in a thermostat. lost some weight. Now theoretically the water on the highest level must evaporate wholly, but, if we do not consider this fact, we notice, at all events,

[^49]Hat the difference, which Foote speaks of $7 \mathrm{~m} . \mathrm{G}$.) is ont of proportion to the differences, found by us (al hundred and more m.G.).

We now wish to proceed to consider the given explanations. In voing this the first question that suggests itself is, whether the examined substances are composed of one or of two phases. Since bis Bemmedes and Hardr's investigations it is pretty generally asstumed, that gels are systems of two phases. As to bodies like silica. we do not oppose this statement; but for gelatine, celloidlin and rubber. it does not seem to be at all certain. Let us examine the grounds, on which it is based:

1. the well-known "Umschagpunkt" and the behaviour of silica jellies (ban Bemmelex); agar, selatime, celloïdin, and rubber do not show a sim:lar behaviour.
2. the pressing experiments; these do not prove anything. In the same way, one can expel the water from a salt solution. by exposing it to a pressure that exceeds the osmotic one, in a pot with semipermeable walls. Under these circumstances some water is pressed out; but nobody will maintain this solution to be a system of two phases. In the case of agar the canvas, between which the agre is pressed, acts as a semipermeable membrane.
3. the analogy to mixtures of water, alcohol and gelatine. in which Harby ${ }^{1}$) succeeded in observing the separation of smatl drops. Iedring the question, whether the drops appear just at the point of solidification, out of disenssion, we are not allowed to apply results, obtaned in a temary system, to a binary one ${ }^{2}$).
4. the behaviour of gelatine and agar, which are soluble in water, when liguid, but insoluble, when solidified, whilst the solution generally solidifies as a whole. If one lakes the hysteresis into account it does not seem impossible to explain this hehaviour also in a system of only one phase.
5. the structures found by Bütschal. These however do not seem to be of much value, since they are on the limit of the power of the microscope and since they have to be called into existence by all sorts of artificial means. Moreover /asmondy and Bachmanis ${ }^{3}$) have lately shown, by using the ultramieroscope, that both silica gel and gelatine are built up of much finer elements. It is doubtful thongh, if in this case we can speak of "phases". We too think it very likely, that molecular aggregates are formed in solutions of gelatine; but these are also to be observed (by means of the ultramicroscope)

[^50]in greatly diluted, non-solidifying solutions ${ }^{1}$, whirh, then, ought also to be considered as systems of two phases; a view, which to us seems to be without any foundation whatsoever.
6. the forming of a membrate in gels by opposite diffusion of salts that give a precipiate ${ }^{2}$). It is not clear fo us, why these precipitates should only arise in the ravities of the sel.

Let us tirst of all examine baxcrort's explanation, which is identical with the one, originally put forth by us, but which we have rejected for the reasons, we shall presently discuss. It assumes two phases in the gel - one with much, the other with little water which are separated by curved surfaces. The equilibrium in the vapour decides the composition of the second phase; the water, which is taken by the gelatine up in the liquid, forms the first. According to our observations, the concentrated phase of agar would contain 50% agar, whilst 3 to 5% would follow from Hardy's pressing experiments. So this does not agree exactly! If we try to obtain - as is necessary - a more detailed conception of the strueture of the gel, we have to choose between an open and a closed cell structure. issuming the former, one could only accept Baxcroft's hypothesis, if the surface tension of the diluted phase with regard to the concentrated one is as that of mereury with regard to glass. We have investigated, whether this is the case by covering glass capillaries on the inner surface with a thin layer of gelatine, agar, celloidin or rubber. We found a behaviour as that of water-glass; only in the case of vapour-swollen or dry gelatine we observed a convex meniscus; gelatine, swollen in liquid, behaved as the other bodies. An open cell structure is, therefore, not consistent with Bancroft's explanation. Another fact may be mentioned. which also speaks against this assmmption; a plate of gelatine, dipped half way and vertically in water, only swells for the lower part, while the part above the water surface presents exactly as gelatine in equilibrium with vapour. For if there were an open cell structure, the canals should fill themselves by capillary action. Whether an open or a closed structure is obtained, will depend on the question, which phase separates first. If this is the most concentrated and consequently the most viscous one, an open structure will arise and the water will have a concare surface; if, on the contrary, the latter appears first, it will of course show a convex meniscus. If, therefore, we accept Baxcroft's explanation, we are obliged to suppose that the phase with much water separates first in all the systems that show the phenomenon; of course, this
${ }^{1}$) See especially Bachmasa, loc cit.
${ }^{2}$) Bechuold, Z. phys. Cihem. 52, 180°.
is not impossible. In the case of silica and alumina jellies; where the concentrated phase separates, an open structure is to be expected. Since the surface tension will probably be similar to that of waterglass - the gel is completely moistened by water - , the gel will not show von Schroeder's phenomenon. In fact, we did not find it (hor did vis Bemmeles), in apposition to Bancroft's declatration, that gelatine and aluminium gel are theoretically equivalent.

It is, therefore, possible to explain in this manner, why gelatine, swollen in water, loses water, when in a space saturated with rapour; we should even be able to calculate the size of the drops by the difference of the vapour pressures of the gelatine swollen in vapour and in water. Vox somboeder has tried to measure this difference by allowing gelatine to swell in salt solutions and by determining the concentration of the solution, in which the phenomenon no more appeared. He found this to be the case in a solution of sodium sulphate of a normatity between 10^{-5} and 10^{-6}. This would give a difference in vapour pressure of $\pm 3.10^{-5} \mathrm{~mm}$. of water, out of which the radius of the drops in the gel can be calculated to $\pm 9 \mathrm{~mm} .{ }^{1}$). evidently an impossible result. In fibet, we have, in repeating vox Schrofder's experiments, obtained different results: celloïdin. Swollen in a solution of 3% sublimate in absolnte akohol, does show the phenomenon. We intend to try to determine the difference of the vapour pressures by a direct method. If, on the other hand, we suppose the diameter of the drops in gelatine to be $5 \quad \mu_{u^{2}}$), we calculate, that the rapour pressures must differ $\pm 100 \mathrm{~mm}$. of water, which to us seems a rather high amount.

There is, however, a serious objection to be raised against this explanation. The gel, swollen in liquid, loses water in the vapour; in consequence of which either cavities, filled with air and vapour, are formed, or the gel shrinks, according to its losing water. Silica jelly shows the tirst alternative, as is proved by its opaqueness, appearing at a certain point; gelatine, agar, celloidin and rubber, however, remain quite clear, but their volume is diminished. Now, if there tre no carities, we do not see, why they should be formed anew, when the gel is replaced in the liquid. This objection, we think, entirely pulls down Baxcroft's theory.

As to vos Scmrofder's remarks, we must observe, that they do not give an explanation in the proper sense of the word. Von Schroeder only wants to put an end to the controversy against the second law, by remarking, that the gel is taken from the liquid and ${ }^{1}$) According to the formula: $\Delta \mathrm{p}=\frac{2 a d}{D R}$ (see Chwolson, Lehris. d. Phys. III, 744), and assuming that the drops are bulbs.
*) $5 \mu \mu$ is the diameter of the capillary canals in silica jelly, as put by Zsigmondy.
placed in the vapotr very quickly and that the velocity of this process influences the work done. As Baxcrory says, this allered explanation is not likely to satisfy anybody; moreover it can be refuted by arranging von Somrobder's imaginary experiment in a slightly different manner. Pour upon the gelatine (in equilibrium with vapour) as much water, as can be totally absorbed, and place the whole in saturated vapour ; it will now lose weight, fill the rapour equilibrium is reached again. In this way the excess work, in ton S'mrondars opinion necessary for laking the gelatine quickly out of the liquid, is eliminated.

Frrundinch ${ }^{2}$) introduces special attracting forces of the surrounding liquid on the gel. As long as one does not enter into detail as to the nature of which these forces are, nor why they have so much influence especially with the gels, this explanation does not seem to be more than a circumscription of the facts, and we agree with Bancroft, who declares it to be "neither very clear, nor very convincing".

We must acknowledge, however, that we ourselves are not able to give a better one. When looking for the directions, in which the solution might be sought, we tind hysteresis, gravity, and capillary action. Hysteresis, of course, would do away with the possibility of a perpetum mobile of the second kind; we should then have to assume, that every time slight changes are left in the gel, and that it would consequenty be impossible to detect ad infinitum differences in water content, when the process of transferring the gel from liguid to vapour, and vice versa, is repeated. No fact, pointing in this direction, has however been found, neither by vos Schroeder nor by us; but it may be, that the process has not been repeated often enough; of course, this is not a more fundamental explanation either.

Concerning the influence of gravity, we wish to remark, that it might possihly explain the loss in the vapour, but never the gain in the liquid. Moreover, ron Scuronder made some experiments with regard to the influence of gravity, but with negative results. This would not, however, be a sufficient ground to deny the effect of gravity, since, as Bancroft justly remarks, the effect might be too small for observation.

When, at last, we try to ascribe the phenomenon to the action of capillary forces, we do not make more progress than Frbundach, though in this direction perhaps success will be most probable.

> Path. Amat and lnorg. Chem. Laboratories University of Amstrdem.
${ }^{1}{ }^{1}$) Kapillarchemie, p. 494-497.

Microbiology. - "Penetration of metlylenebhue into living cells "fter desiccation". By Prof. Dr. M. W. Belderinck.
(Communicated in the meeting of December 28, 1912).

It is generally known that methyleneblue does not enter living yeasteells, when these are first soaked with water or swimming in a fermenting liquid, whilst it colours the dead cells intensely. It is even posible several days to cultivate yeast in wort, coloured dark blue with this pigment, withont the cells being coloured in the least. On wortagar plates with methyleneblue, colourless colonies will develop. On these facts a method is based to ascertain in living yeast the number of dead cells, which gives very good results.

Meanwhile there is an exception to the rule that the cells, colouring blue are dead, and this exception will be more closely considered here.

At the examination of dried yeast, most cells of which take a dark blue colour with methyleneblue, whilst only a very small percentage remain colourless, the fermenting power often proves so great, that no other explanation can be given, but that the blue-colouring cells have for the greater part preserved that power. This is not unexpected, for it is well known that the alcoholic function is more permanent in dieing cells than the power of growth. Meanwhile, counting-experiments, wherehy on one hand the number of cells colouring with methyleneblue was microscopically determined, on the other hand by plate culture, that of the cells growing out to colonies, showed that from certain dry yeast samples it much greater nercentage of colonies developed, than the percentage of celis not colouring with methyleneblue. This fact was indeed mexpected and induced to a more minute observation.

First of all it was proved that the number of cells, colouring in a dilute solution of methyleneblue, depends on the way in which the solution is brought into contact with the cells. If this is done by introducing dry yeast into the solution, all the cells colour darkblue and cannot be distinguished from the dead ones. In plate cultures, however, a greater or smaller number of colonies may be obtained from these cells, althongh all seem perfeetly alike in their dark blue colour, and should be considered as dead by anyone ignorant of their origin. In favourable cirenmstances the number of colonies mounts even to 100%, which is to say, that all the cells may colour blue and still grow out to colonies.

This is in particular obvious when the cells are beforehand coloured with methyleneblue, and the coloured material is used for
sowing; it is easy then to recognise the blne cells on the plate and watch their germination under the mioroseope. The bhe colome in then commonly seen to distppear betore the formation of hads begins. But many of the later germinating eells remain the and produce colourless daughterecells. I never saw young cells taking the least trace of blue from the motherecell.

But if the dried cells are beforehand allowed to swell up in wort or in water and if the soaked material is laid in the methylenehne solution, which is the usual way to effect the colour reaction, the result is quite different. Then only part of the cells assume the colour and this part is the smaller as the rells have longer rematned in the uncoloured solution. A eertain pereentage, however, continue to take up the colour without having lost their reproductive power, and it seems to be very difticult to soak these cells with water.

The simplest way to effect these experiments is by using dey yeast, quite free, or nearly so from dead cells. I obtained it by centrifugation of the small-celled variety of pressed yeast from strong fermentations, these being in their most active state.

To this end it was cultivated at $28^{\circ} \mathrm{C}$. in nearly neutral wort, after 6 to 8 hours brought into the centrifuge, and then quickly transferred to ilterpaper in a thin layer for desiccation.

The large-celled variety of pressed yeast is less resistant to drying. To compare the two varieties, of which the smallcelled is richer in protoplasm than the other, the yeast must very cautionsly be dried, first at low temperature, e.g. $25^{\circ} \mathrm{C}$., then at a higher one, e.g. $50^{\circ} \mathrm{C}$. This precaution is not, however, necessary to render the bhecolouring of the dry living cells visible; to this end drying of common yeast at room temperature will do.

I have, however, also met with commercial dry yeast satisfying the requirement of containing hardly any dead cells at all. mamely the "Konservierte Getreide Bremnerei Hefe" of the yeast works of Helbing in Hamburg, which was sent directly from the manufactory. This preparation is delivered in solidly closed tins, but after some time it loses its power of growth and fermentation; its quality thus evidently depends on the length of time past since its fabrication. It seems that this loss corresponds to that of the germinative power of seeds, which depends on their state of humidity. I possess some more preparations from the same factory, that have hardly any fermen. tative power and contain no cells tit for reproduction, but they have not been directly got from the manufactory and are already some years old.

When using seed of Burasicur mapa, soaked in solutions of 1 per
Proceedings Royal Acad. Amsterdum. Vol. \mathcal{X} IV.

1000 or les of methyleneblue, the pigment penetrates through the seed conat into the germ, which party colours hlue. The germroot raker uj the rolour the cartiest; then follows a triangular field on the mater of the two secdlobes, which lie folded up in the seed. The hase of the thathgle, which colours first and most intensely, lies at that margin of the cotyledo, which is turned towards the germroot.
obviobily the primment has very quickly penetrated through the minopple of the seed, and only later through the seed coat. With -fronger methyleneblue solutions the experiments do not succeed much hetter, because then the pigment accomalates so much in the seed coat, that even water cimonly enter with difficulty. After 24 hours such seeds are but imperfectly swollen but, somewhat later, the remmination takes place as well. The coloured germs swell at $30^{\circ} \mathrm{C}$. so vigorously, that many soon burst out of the seed coat. When the parly bhe germs, freed from the seed coat, germinate on tilterpaper, they yield part of their pigment to it, hut especially in the meristem of the semroot it contimues to show for several days and disappears only at length, by the dilution which accompanies the growth. It is then easy to see how the part near the rootmeristem grows the most rapidly whilst the region of the roothairs grows no more at all.

That the pigment, without killing the cells, has penetrated into the inner part of the tissues, is not only shown by the germroots, but also by the coloured spots of the seedlobes. Whose phloembundles even have taken up the colour.

Botany. - "On Karyokinesis in Eunotive major Rabenh.". By Prot. C. vas Wissedixgit. (Communicated by Prof. Molid.).
(Communicated in the meeting of November 50, 1912).

Lattrmons's ${ }^{1}$) (letailed investigation on Diatomaceae suddenly hrought about in 1896 a complete change in our knowledge of the karyokinesis of these organisms. This investigator studied the process in suricella calcarata, Nitzecha sigmoidea, Pleurosigma attenuatum, Pimmalaria oblonga, and Pinmularia viridis. He came to the conclusion that the nuclei always divide karyokinetically. The karyokinesis here is not less complex than in higher plants. It shows an important deviation. For Latterbors found that in all cases during karyoki-

[^51]nesis a body appears, which plays an importand part, namely the central spindle (Kentralspindel), in body which does mot oneon in higher phants, but is specially fonm in Diatomateate. During katyo kinesis the nucleolus and the muclear membrane disappeat. The network forms a skein (Knänel) and by segmentation the chromosomes arise out of it. They are long and well-finmed. In Nitzschial 16 appear and more in surirella. In the middle the chromosomes form a ringe round the eentral spindle. By division of this ring there arise lwo rings which separate from each other along the central spindle. Each of these rings consists of the halves of the chromosomes. The danghter muclei develop from the rings.

Shortly after Lautbrborn a paper was published by Kifbanis ${ }^{-1}$) on karyokinesis in Rhopalodia gribba (Ehrenb.) (). Mïller. He deseribes the diaster stage and mentions the central spindle and the chromosomes which to the number of 5 or 6 are placed in a circle and are gramular in shape.

Some years later Karster: ${ }^{\text {of }}$ deseribed in detail the karyokinesis of Surirella saxonica. In general his results agree with those of Itatrerbors ; in one point however they disaree greaty, for Kustra found the chromosomes in Surirella calcarata and other Diatomaceae short and of irregular shape in complete contrast with the observations of Lauterborn.

In October 1903 I found an Eunotia in a ditch near Steenwijk. After further examination and consultation of the descriptions and drawings of the various species, "). I assumed that the specimen found was Eunotia major Rabenh. In the healthy, although not plentifut, material I saw numerous stages of karyokinesis, and since this phenomenon had not yet been described in Eunotia, I decermined to utilise this opportunity of studying it.

The living object was first investigated, and then material which had been fixed with fimmixg's mixture. In order to study the karyokinetic figures better I treated the fixed material with a solution of chromic acid of 20%. Various constituents of the cell-contente successively dissolve in it and finally there remains inside the siliceous skeleton of the cell-wall, when the cells contain no fatty oil, only the nuclear network, or what results from it. The prepa-

[^52]bations dan easily be washed with water and stained, for example, with Brillanthan extra gränlich. The muclear nefwork, the nuclear phate or its halves which all fall orev during the action of chromie ated are then stamed a tine bhe whilst the siliceons skeleton is not stamed. I will not enlarge on the method followed. I have already eatier stated the advantages which it possesses and which must be bunce in mind in its epplieation ${ }^{1}$).

Like other Diatomaceare Emotiat major has but one nuelens, situated in the centre and smrounded by eytoplasm, which sends out strands in rabions directions. As seen from the side of the belt it hows an oral shape and seen laterally it is round. It is provided with a membrane and consequently shows a sharp outline. The muclear network consists of grains which are muted by threads of protophasm. In the centre of the muclens is the nemeolus. The latter dissolves in chromic acid more readily than the network. Special filamentous organs, such as oceur in the nucleolus of Spirogyra, I have not been able to distinguish and to separate by the use of chromic aceid in the ease of Ennotia. The mucleolus agrees with that of the higher plants.
'The cells in whieh karyokinesis is about to oceur are broader than the others and possess four large flap-shaped chromatophores. When the cells are viewed from the side of the belt. the muclens is seen in the midst of the four chromatophores, two of which lie in the epitheca and two in the hypotheca. When a cell has divided, two chromatophores lie in each danghter-cell. These change their shape and position. Ther become twice as long and place themselves opposite each other in the epitheca and the hypotheca. A constriction then ocen's in the middle and finally each chromatophore has divided into two. This process, the division of the two chromatophores, therefore precedes the division of mucleus and cell.

The first phenomena of karyokinesis shoss agreement with those observed in other plants. The nuclear network becomes more and more ronghly grambar in appearance. In a number of places it comglomerates and forms lumps, which unite into larger masses Which more or less resemble short threads. I have not been able to determine the number of these thicker parts in the network. They always remain mited to each other by slender connections.

[^53]The thicker paris we comparable to chromosomes. Well-formed chromosomes, such as are met with elsewhere in the regetahle kingriom, do not oceur in Emotia. T'ise mucherr wall dissolves ant ronsequently the nucleus loses its sharp ontlime: the mucleolus also gradually disappears.

To this point karyokinesis in Emotia presents noflaing pecoliar, but the further cousse of the process is wholly different from that in higher plants. In the centre of the mass of protoplasm in which the nuclens is found, the central spindle can soon be distinguished. It is a strand of protoplasm of which the onter ends are furned towards the two shelis. At first I could distimgnish the central spindle as a short rod embedded in the protoplasm, but in dater stages of karyokinesis I observed it extending right acoos the whok mass of protoplasm; the two ends were seen to be club shaped and thickened. I was mable to study the origin of the central spindle, since the amount of material at my disposal was insulficient.

The muelear network contracts around the central spintle, and in this way the ring slaped nuclear plate is formed in Lumotia. The latter divides into two halves which are likewise anmman and separate from each other along the central spindle, until they are finally quite at the spindle ends. Together with this, there occuss division of the mass of protoplasm in which the nuclear plate lies. It divides into two parts, which send ont strands of protoplame in different directions just as did the whole mass and at first they are also connected with one another by strands of protoplasm. The whole figure very much resembles the diaster stage in higher plants, although I have never been able to distinguish a nuclear spindle. Meanwhile the primary division-wall has developed; it broadens out more and more and approaches the nuclear figure; the protoplasmic links between the halves of the muclear plate and the central spindle are divided into two. The central spindle disappears. The daughter-nuclei are now very close against the division-watl, then separate again from each other, move into the neighbourhood of the epitheca and hypotheca and finally take up a position in the middle of the daughter-cells.

With the development of the annular halses of the nuclear plate into daughter-nuclei the same pheromena appear as in the formation of the nuclear plate from the resting muclens, but in reverse order. The rings divide into lumps or short thread-shaped pieces which remain comected with each other by fine theads of protoplasm: the division procaeds to a point at which the nuclear network agrees again with that of the resting mucleus. In fully-developed
mudei I always saw one murleohs and in less-developed ones often there were two. l'robahy also in Enotia the meleoli which appear in the damphter-muclei wradually coalesce.

The primary division-wall, of which mention has been made, is a lamedla easily soluble in dilute chromie ated. The siliceous shells are formed later. I have not found a centrosome in Emolia.

Conchusions.

In Eunotia major Rabenh. the nucleus divides karyokinetieally just as in other Diatomaceate, a fact established by Lacterbors and Kilistex. In Eunotia major a central spindle (Zentralspindel) also ocenrs, a body which plays an important part in karyokinesis, as the above authors have also shown in other Diatomaceac. Welldeveloped chromosomes are not found in Eumotia major. The melear network forms short bodies of indefinite shape, which crowd round the central spindle and form an annular nuclear plate, which divides into two ammar halres; these separate from each other along the contral spindle and develop into danghter-cells.

With regard to the chromosomes, I may say that my results agree with those of Kbebiun and Karstes, but not with those of Lattbrbors. He fomd in Surirella calcarata and other Diatomaceae, in the mother-nuclens as well as in the daughter-nuclei, well developed long chromosomes, whose number could be ascertained (16 or more). Kifbins hats not been able to see such chromosomes in Rhopalodia gibba nor Kinstex in Surirella sasonica, but as I did in Ennotia major they found only a few short thick bodies of various shapes which could not be aceusately described, and whose number Wat indeterminate. It mast be remembered that the results which differ were obtaned with different species.

Physiology. - "om a shortemmireqle.e". By Prof. J. K. A. Werthem shemoxion.
(Communicated in the mecting of December 28, 1912).
By the expression thortening reflex I propose to indicate the conmaction of a muscle, the ends of which are passively brought nearer together. I shall try to prove this contraction to be a real reflex, though the primary shortening of the muscle may not be the dired cause.

We shall first consider what happens when any part of an extre-
mity is moved passively, in which ease one sed of museles is stretehed, anohier group being shortened.

A living animal's museles at rest are generally not entirely relaxed. A slight degree of elastic tension, catled temus, persiats. Tomus is for the greater part caused and restramed by regnlating impulses, originating from peripheral sensory and higher motor neurones. Also the cortex and the gangliongroups of the cerebrum, the labyrinth, the cerebellum control and intlnence the muscula fonns. Tonus varies under different circomstances, but it adapts itself automatically to the rate of stretching of the muscle. If the musele be slowly stretehed by a passive movement of the limb, its form changes. The muscle grows longer and thimer. But its tension does not change at the same rate. Only if the strething he carried very far or happens within a very short space of time its elastic tension grows apprectiably.

With a passive shortening of the muscle something anabogous occurs. The length diminishes, the diameter increases but the tension adapts itself automatically to the new condition, and the muscle does not become slackened so fir as to show folds or furrows.

This adaptibility only persists as long as the muscle remains in contact with the intact nervous system. As soon as the muscle is freed from its nerve, its reflex-tomus disappears and it seems to behave simply as an clastic string, in which a definte tension corresponds to a definite length. The action of the nervous system seems to equalise the tension for different lengths and causes the resting-lengih of an imervated musele to be a rarying quantity.

If the passive shortening of a muscle is effected within a very short time we sometimes observe a yenume contraction of the musche followed by the thickening caused by the reflextonus. This phenomenon I have called the shortening reflex.

If the foot be passively and somewhot forcibly extended (三 dorsal flexion) we are sometimes able to see and feel a very short contraction of the m . tibialis anticus. Afrer this contaction the tonusthickening becomes risible. The contraction cannot be elicited in every healthy individual, and even where it is to be foum, it is often rather difficult to obtain. We get it most casily in the tihialis anticus by extending the foot. In some cases I have also found it in other muscles, as in the flexors of the arm, the llexors of the leg after flexing the arm or the leg.

I have recorded the phenomenon with a special apparatus, constructed some 9 years ago for recording the foot-clonus. The difficulty was to rigidly attach a pair of Marey's tambours to the bony parts of the leg, so as not to become displaced by the violent movements
of the ley during the clonns. This difficulty was overcome by attaching a clamp to the upper part of the tibia and another to both malleoli, and connecting them by a very light hollow rod. To this rod the tambours were serewed with a pair of collars. With this arrangement which proved to be entirely satisfactory, I was able to record the thickening curve of any desired muscle of the leg and also the displacement of the foot with respect to the leg.

Fig. 1.

Shortening retlex in the tibialis anticus of a heallhy man.
Upper curve: displacement of the foot.
Middle curve: thickening curve of tibialis anticus.
Lower curve: time marks of 0.1 second.
I reproduce i few records (fig. 1 and fig. 2) which were taken in this way. The upper line shows the movement of the foot; rising of the eurve indicates dorsal flexion. The middle curve is a record of the thickening of the tibialis anticus. The time curve gives marks of 0,1 of a second.

Ifig. 1 shows the tibialis contraction occurving with a short dorsal flexion of the foot. Fig. 2 gives the record of tibialis contraction caused by a rapid dorsal flexion of the foot, the foot being kept in dorsal flexion for nearly two seconds. In this last record we clearly see the initial tibialis Iwitch followed by the reflextonus-thickening.

From the records we soon wather the fact, that the tibialis response immediately follows the foot movement. By comparing a great many records we also find that the interval between the commencement of the foot-movement and the beginning of the tibialis-musclelwiteh is of a very short and yet extremely constant duration. If as
the beginning of the footmovement be taken a point where the curve has risen abont 1 millimetre, and a similar point on the

Fig. ${ }^{2}$.

Shortening reflex in the tibialis anticus of a bealthy man.
Upper curve: displacement of the foot.
Niddle curve: thickening curve of tibialis anticus.
Lower curve: time marks of 0.1 sccond.
tibialiscurve as the commencement of the muscle-twith, the interval comes out as something between $0.028-0.032$ second.

This fact points in the direction of a reflexphenomenon. If we had to deal with a voluntary contraction, the latent period would have been a great deal less constant. It is also a fact, that the interval between an external stimulus and the commencement of a voluntary morement is of the order of $0.12-0.15$ second with a fairly experienced subject. Constancy of this latent period is only to be expected with the most experienced subjects or after a special training. The latency of sensory reflexes is much more constant, but it depends in most cases chiefly on the intensity of the stimulus. The highest constancy is shown only in the deep reflexes, in which the intensity of the stimulus does not seem to possess any influence on the latency. The latent period of the superficial rellexes is generally of the order of $0.07-0.09$ of a second, whereas the deep reflexes show a latency of the order of 0.035 second. With these figures we have to take into account that the latency is measured from the commencement of the stimulus until the commencement of the muscular response as indicated by the mechanical record. If we had recorded the current of action we should have found lower figures.

In my experiments I was not able to get more exact or smaller
figure for the lateney. This was not due to the fact that I used a mechanically recording instrument, but only to the difficulty in determining the exact moment of the stimmlus. The stimulus is applied during the passive movement of the foot. But we camot tell the exact moment at which the stimulns is produced. Must the foot move with a certain velocity or must it travel over a certain distance? Perhaps both conditions are necessary. At least with a very slow movement of the foot we only obtain the tonus-thickening and with a very rapid movement over a short distance only, we sometimes fail and sometimes succeed in getting it. Therefore it is impossible to indicate the exact point in the record of the foot-movement which is to be considered as the beginning of the stimulus. If I take the first point in which both curves begin to rise from the zero-line, I find a lateney from $0.038-0.045$ of a second, with an average of 0.041 second. If we take a rise of 1 millimetre in both curves as the begiming of the stimulus and the response, we get an average of 0.029 second. Though the exact figure is doubtful, it is yet of interest to note that it agrees closely with the average latency found in the deep reflexes.

The duration of the muscular response has also to be considered. from direct observation and also from most of the records we come to the conclusion that we have before us a simple muscle-twitch, the duration of which is something between $0.2-0.5$ second. Only in cases where the foot has been moved with great force, or has been kept in prolonged dorsal flexion, a muscular response of longer duration may be found. But in these cases the contraction shows a peculiarity, clearly visible in fig. 3, viz. a second contraction appearing before the first is tinished. We shall consider this point later on.

As from our observations we see that: $1^{\text {ly }}$ the latent period is constant, $2^{\text {thy }}$ that the latency agrees with the latency observed in deep reflex, $3^{\text {tly }}$ that the contraction is generally a simple museletwitch, we may conclude that the phenomenon itself is a real reflex.

This being established we may ask where the reflexcentrum is situated, which is the reflexogene mechanism and which is the significance of the reflex.

We may conclude from the latency that the reflexcentrum cannot be situated very high up in the central nervous system. I believe that another supposition as a medullary seat for the centrum need not be consideret. The reflex has a close similarity to the deep reflexes and may probably be regarded as a third group of this kind, the other groups being formed by the tendonreflexes and the periostrellexes.

It is somewhat more diffenlt to understand the reflex-mechanism. We only know that the retlex is elicited by passive dorsal flexion of the foot. But then two things happen simultancously : the extensionmuscles of the foot are shortened and the triceps surac is stretched. Which of the two causes the reflex? I fail to see the possibility of choosing between the two on clinical grounds only. In the accident of a torn or cut Achillestendon, which is unlikely to occur in a healthy man, only a positive result would have any significance, as the reflex camot invariably be elicited in healthy individuals. Some pathological arguments might perhaps be brought forward in support of the hypothesis, that the reflex is primarely caused not by the shortening of the muscle itself, but by the stretching of the antagonist.

As regards the significance of the reflex we may assume that it is the same as that of more elementary reflexes, viz, a means of protecting the organism against exogene stimuli. The obvious fact is that the contraction assists the automatic tonus-mechanism in attaining as soon as possible the necessary muscular tension corresponding to the changed attitude. Hence we conclude that the reflex is a protecting mechanism against a total want of control over the position of the foot, if the foot is passively moved.

I have already mentioned that in a few records a second contraction of the tibialis anticus appeared immediately after the first (fig. 3). This may be caused either by a voluntary or by an invo-

Fig. 3.

Shortening reflex of the healthy leg of a hemiplegic patient.
luntary impulse. In my experiments I have tried to exclude as much as possible any voluntary movements by impressing upon the subjects
to keep their mnseles relaxed, and to try not to make any movement. Judging from the eurves, this reguest has been attended to, as the duration and form of the second contraction seem to exclude the possibility of a voluntary origin. I think I may assume that the sceond contraction was not caused by any intended or conscions impulse. But then we have two possibilities. Either the second contraction was also a reflex-response, but from a higher nervous level, or it might be the first from a strongly damped clonus. I am inclined to think, that in most eases the second contraction was caused by a reflex from a higher level, though I camot prove it. But on the other hand I must also aceept the other explamation. Amongst a series of curves taken from the "normal" lear of a hemplegic patient, which often show the form of fig. है, I found one single record

Figr. 4.

Curve from the same patient from whom fig. 3 was taken.
reproduced in tig. 4 . Here we see that the tibialis contraction as soon as it is started, degenerates into a series of rhythmie, gradually ceasing clonic oscillations. In another patient suffering from a medullary disease, I obtained the record, shown in tig. 5. This record differs from the fig. $1-4$ in as much as the upper curve does. not represent the morement of the foot, but the thickening of the triceps surae. IVe immediately see, that the dorsal flexion of the foot starts the reflex and at the same time a series of clonic contraetions in both the tibialis anticus and the triceps surac. These last contractions prove at least the possibility of the second tibialis contraction being the first of a strongly damped clonus.

As yet I have not considered the literature. There is some reason for this, as 1 have not been able to find in it any reference to a
reflex such as has been deseribed as appearing in heathy subjects. I have only found the well-known pardoxical contraction of

ドis i

Shortening reflex in a case of arteriosclerolic medullary disease; clonic contractions in triceps (tuper curve) and tibiatis anticus (middle curve).

Westraile (1880), which is a tonic contraction of the tibialis anticus appearing at dorsal flexion of the foot in some patients. It is of rather long duration, Westrahl observing a contraction of 27 minutes, Erlanmbijer of 45 minutes' duration. Charcot has seen the same contraction, also after massage of the calves and has taken graphic records, one of which, taken from his article in Brain (VIII p. 268) I reproduce here (fig. 6). From this curve and the explanatory text, also reproduced, we immediately see, that this contraction is not at all the same thing as the shortening reflex.

But there seems to be no doubt, that a relationship exists between
Fig. 6.

Same patient (April 12th). Tracing of contraction of the tibialis anticus obtained by massage of the muscles of the calf. - A, B, C , beginnings of three consecutive experiments. (In this and the last liqure-much reduced in size - the length of $X \mathbb{X}$ reptesents one whole turn of the cylinder, viz. thirty minules.)
the shortening reflex and the paradoxal contraction. I am inclined to suppose that the latter is the patholorical form of the first.

The courves I have given as physiological were those taken in a patient with a severe trigeminus-nemralgia caused by periostitis alreolaris, who is now cured. His reflexes were not altered in the least.

The curves 3 and t were laken from the healthy side of a hemiplegic patient and are perhaps not to be considered as purely physiological. There is some reason to suppose, that hemiplegia may cause a heightening of the shortening reflex of the healthy extremity.

Amonget the pathological forms of the rellex we might perhaps include some forms of hysterical contracure and also some cases of crampi. But I intended to consider only the physiological aspects of the reflex.

Physics. - "On the thermodynamical finctions for mixtures of recteting components." By Dr. L. S. Orxatens. (Communicated by Prof. H. A. Lorentz).
(Communicated in the meeting of November 30, 1912).
In his dissertation Dr. P. J. H. Hoexix has developed a theory of the thermodynamical functions for mixtures of reacting components ${ }^{1}$). Considerations closely connected to those of this dissertation are obtained if the statistical method of Gabrs is applied to the study of the equilibrium in chemical systems. I will show this in the following communication, and will restrict myself to the case that only one kind of reactions is possible in the mixture, the extension to other cases being possible withont any diticulty.

In the following considerations I shall use a canonical ensemble of the modulus $\Theta\left(=\frac{R}{N} T\right)(R$ is the constant of Avogrado for the grammolecule, N the number of molecules present in this quantity of matter. We might as well use the micro-canonical ensembles; but for the calculations then being somewhat more complicated. The molecules participating in the reaction are indicated by $\mu_{1} \ldots \mu_{\ldots} \ldots \mu_{k}$ Then the reaction will be characterised by the stocehiometrical formula

$$
\begin{equation*}
{\underset{1}{1}}_{\stackrel{k}{n} r u}=0 \tag{1}
\end{equation*}
$$

the numbers r, indicating the smallest numbers of molecules that

[^54]can ake pari in the reaction. 'The res are neeessarily whole numbers, some of them must be negative.

We will imagine the molecules to be buill up of atoms $\boldsymbol{r}_{1} \ldots$....... e_{p} in such a way that the chemiad formula for the ett molecule is

$$
\begin{equation*}
u=v_{1} u_{1}+\ldots y_{r-\pi} u_{\pi}+\ldots y_{\mu_{1}} u_{p_{1}} . \tag{2}
\end{equation*}
$$

the numbers !/e being positive whole numbers or zero.
We will first treat the catse that the system has sogreat a voltme that the mutal ation of the molecoles may be neglected in the expression of the energy.

The state of the system can be characterised hy the coordinates of the centres of gravity of the molecules and the corresponding moments of momentum and by a certain number of internal coordinates and moments of momentum. The expression givirg the energy of each molecule consists in the kinctical energy of the centrum of inertia, a quadratic expression in the moments of momentum of this centrum, the coordinates of the centrum of inertia not playing a part. Further in the energy corresponding to the internal coordinates, which I shall represent by ε, An element of the extension in phase corresponding to the internal coordinates of the *th molectiles will be represented by the. Be the mass of the molecules m..

Be the total number of systems of the ensemble λ, the statistical free energy \boldsymbol{I} :

We now want to know the number of systems (2 ") in this ensemble, for which $n_{1} \ldots n_{1} \ldots m_{k}$ molecules of the different kinds are present in the volume V^{\top}. That is to say those molecules produced by a completely specified combination of atoms, for which the internal coordinates and moments are situated in completely determined elements $d \lambda_{2} \ldots d \lambda_{2} \ldots d x_{0}$ As for the situation of the molecules within the volume I^{r}, and the moments of momentum of the centres of gravity, we will not apply any restricting conditions ${ }^{1}$. We find for $z^{\prime \prime}$

The number of systems in which no restrictions are applied not even for the internal coordinates and moments is obtained by integrating over the $d \lambda_{\text {, }}$'s with respect to all possible values.

We now put

[^55]\[

$$
\begin{equation*}
\left(2 \pi m_{i} \Theta\right)^{2} \mathrm{~V} \int^{-\varepsilon} \cdot(\lambda=1 \tag{4}
\end{equation*}
$$

\]

in which the integration must be extended over the above mentioned share. Now the number of the systems considered z^{\prime} may be represented by

$$
\begin{equation*}
z^{\prime}=\lambda_{e}^{\left({ }^{(\cdot)}\right.} \sum_{1}^{\boldsymbol{\varphi}} I_{n}^{n} \tag{5}
\end{equation*}
$$

Now we have to determine the number of systoms in which the atoms are combined so ats to give n, molecoles of the esth kind, ete. We must beat in mind that the total number of atoms of each kind is fixed; so that when r^{-}is the number of atoms of the $a^{\text {th }}$ kind, we have p equations of the form

$$
\begin{equation*}
n_{1} y_{2 \overline{ }}+\cdots n_{v} y_{1} \boldsymbol{x}+\ldots n_{k} y_{k \pi}=x_{\pi} \tag{6}
\end{equation*}
$$

Now, in order to get the number of combinations possible, we must in the tirst place consider that x_{0} atoms are to be combined into groups of $n_{1} y_{1} \ldots \ldots$ particles in

$$
\begin{equation*}
\frac{x_{\pi}!}{\left(n_{1} y_{1}-\right)!\ldots\left(n, y_{n}\right)!\ldots\left(n_{k} y_{k-\pi}\right)!} . \tag{7}
\end{equation*}
$$

different ways.
Futher. that the number of different ways, in which $n_{1} y_{1}$ - particles are to be combined into n_{1} groups of n_{1} paticles, is given by

$$
\begin{equation*}
\frac{\left(n_{1} y_{1 \pi}^{\pi}\right)!}{\left(n_{1} \pi\right)_{n_{1}} n_{1}!\left(!n_{1}--1\right)!} \tag{8}
\end{equation*}
$$

In order finally to obtain the total number of cases possible, we still ought to consider in how many ways the n_{1} groups of $y_{12} \ldots y_{2} \pi \ldots y_{1} p$ particles may be combined into molecules $\ell_{1} y_{12}+\ldots \ell_{-1} y_{1} \pi \ldots+\ell_{p} y_{1}$. suppose β_{1} of the duantities y_{1} to differ from zero, then the wanted number of the combinations in question will be

$$
\begin{equation*}
\left.\left(n_{1}\right)^{\prime}\right)^{s_{1}-1} \tag{9}
\end{equation*}
$$

For the cotal number of combinations we tind, bearing in mind that $\left(n_{1}!\right)^{\text {an }}$ ete. oceurs in the denominator

By uniting into a constant C ' the quantities not depending on n, we get for the total number of systems, in which $n_{n} . .$. molecules \% are present (z)

$$
\begin{equation*}
=\left.r\right|_{n!!\left(n_{1}^{\prime} \ldots!\right.} ^{\left.l_{1}^{\prime \prime} \ldots n_{n}\right)} \tag{1111}
\end{equation*}
$$

Now in order in examine which of all sy-tems is the most firegrently ocentring in the ensemble, whith therofore is the syatem in equilibrimm, we have to consider for which values of the $\quad 1.2$ a or $\log =$, i.e.

$$
\begin{equation*}
\sum_{1}^{k} n,(\log , 1,-\log n,+1-\operatorname{lom}, \infty) \tag{1ㄹ}
\end{equation*}
$$

is a maximmm, (n ! being developer here accordiner to the formu'a of Sthesixa). The vatiations to which the numbers n, are submitted are exze in which e is a positive or negative whole number. The condition of equilibrimm that is reathed in this way is

$$
\begin{equation*}
\stackrel{k}{2} \sum_{1}^{k},(\ln , 1,-\ln , 1 n,-\operatorname{lon}, n)-(1 \tag{12'}
\end{equation*}
$$

Introduring

$$
I,=(\because x, m,(-1))^{2} 1^{\circ} \%
$$

for I_{k}. we get

As $\%$ contains still terms that depend on T, this formula cannon yet be compared to that of br. Hownw; however, in many regats it is already amalogons to it. Now, applying the theorem that $\frac{R}{N}$ ley μ. (in which 11 is the probatility of as state) is identical with the entrops, we find the entropy of an athitarily chosen state to be given by

$$
\begin{equation*}
y=\frac{h}{N} \frac{1}{1} n, \text { lon } I,-\operatorname{lon} n+1 \text {, } 1-\operatorname{lon}, \text { sid. } \tag{1.4}
\end{equation*}
$$

This quantity Herefore must agree with the entropy of a monequilibrium state as detined by 1)r. Homex. As appears from what is mentioned above, it possesses the quality of being a maximum in the state of equilibrium.

Now I will first use the 1 esult we obtained 10 catentate \mathscr{F} and through means of it the equation of state. Developing = with respect to a and summins x. We lind for T

$$
7: 3
$$

Proceedings Royal Acad. Amsterdam. Vol. XV.
$f^{\prime \prime}$ is ultained from (', by dividing the total number of systems; II. denotes the value in the state of equilibrium.

Applying the relation

$$
p=-\frac{\partial \boldsymbol{\Psi}}{\partial \boldsymbol{V}}
$$

we lind for the pressure

$$
I^{\prime}=\frac{\Leftrightarrow}{V} \sum_{1}^{k} n++\left(\cdot \sum_{1}^{k}\left(\log I,-\log n,-\log s_{1}\right) \frac{\left(n_{1}-n_{2}^{\prime}\right)}{d V},\right.
$$

where n, relates to the state of equilibrium of the volume V, n^{\prime}, to that of the volume $V+d V^{\top}$. These numbers always differ ens, and so, taking into account the condition of equilibrium, we find

$$
r=\begin{align*}
& k T \sum_{1}^{k} n \tag{16}\\
& N V
\end{align*}
$$

In orter to calculate the average energy we can apply the relation

$$
\bar{\varepsilon}=\boldsymbol{\Psi}-\Theta \frac{\partial \boldsymbol{\Psi}}{\partial \Theta}
$$

which gives, when the condition of equilibrium is taken into account

$$
\bar{\varepsilon}={\underset{1}{k}}_{k}^{k} n,\left\{\frac{3}{2} \frac{R}{N} T+\Theta^{2} \frac{\partial \log \gamma_{x}}{\partial \Theta}\right\} .
$$

Now, in many cases $\%$ inasmuch as it depends on Θ, may be represented by orig, ($/$ independent of $\boldsymbol{\sigma}$) or in other cases by a complicate function of Θ. So, in the first case,

$$
\bar{\varepsilon}=\frac{R}{V} T \sum_{1}^{k} n_{\mu}\left(\frac{3}{2}+\gamma_{\nu}\right)
$$

Putting the energy that is supplied when the numbers n, change with $r, c=\begin{aligned} & R \\ & N\end{aligned} r\left(\begin{array}{l}3 \\ 2\end{array}+\gamma, k\right)$, then we find that the condition of equilibrium (13) changes for this case into

When we represent the energy of the molecules ε, by a constant a, plus a function of the internal coordinates, then in the formula (13 3^{n}) the factor
still must be added. 'The formula obtained in this way arreos with that of p. 12 and 183 of the rited dissertation.
dust as in this dissertation p. 16, we ('an hy eomparing de=1/s tpele and dy show that

$$
\begin{equation*}
d!>+\frac{d Q}{T} \tag{17}
\end{equation*}
$$

if we have to do with the changing into a tate of non-eyuilitninm.
I will now consider what will berome of our condition of equilibrimm in the case we apply the theory of energy-ruanta. Let us suppose we have the ease of the molecules possessing 3 degreen of freedon of rotation, and 1 , vibatory degrees of freedom of the frequency a .

The valne of $\%$, can be given then. On areoment of the B^{3} rotations it contains a fictor $\mathrm{o}^{3 / 2}$; further the integral is equal to a prowhet of l, integrals of the form

$$
\int^{\varepsilon_{i n}} e^{\varepsilon_{i j}} \cdot l_{t i v}
$$

relating to earh of the ribrations. This intereal has the valne

$$
\begin{aligned}
& \text { hr, }
\end{aligned}
$$

Introducing for each molecule the energy ${ }^{\prime}$, for the zero state and a constant orginating from the integration with respeet to the angular coordinates of the rotations, then the condition of equiliturim takes the form

in which all constants relating to the molecules $\%$ are contaned in $S_{\%}$. If the theory of quanter must be applied to some of the rotatory energies, then the exponent of ' 1 ' will be smaller.

As appears from the calcubations of Dr. Acherter ${ }^{2}$) the experi-

[^56]ments can more sulticiently be represented by applying the formula not of Enstris, but of Nemst-Imomany for the specitie heat; the equation (18) leads for the specilic heat to the formula of Eisstens. For solid mater bons and lis Kimmas have given a theory leading to a formuk which seems to represent the experiments on s. h. as well as the fommat of Nurst-Indman. They stat from the conception that there camot be attributed one detinite frequency to the atoms of solid matter, but that, because of the coupling a great number of frequencies orcor, which accumulate infinitely at one or more delinite frequencies. The fact that the formula of Nernst is the more appropriate ako for gases, makes it acceptable that also in wases, through the mutual influence of molecules, there cannot be -poken of a tinite mumber of detinite frequencies.

I may still observe, that for the given consideration the way in which the system at length comes into the most frequently ocomriner state, is of no importance. That it will get into it, may be regarded to be sure, as well from the point of view of statistical mechanics as from that of the theory of energy-quanta.

I will still consider now in what way we can, in liquid states. come to the condition of equilibrium. We must for a moment return to equation (3), then. There we conld divide into parts relating to each of the molecules, the general integral which, according to the detinition of Gibls, denotes the number of systems of given state. However, in the case now considered we camot proced likewise, beranse of the mutual inthence of the molecules. The number of systems of specified state is in general given by

$$
\begin{aligned}
& Y-s \\
& \Lambda_{e^{\prime}} \quad d_{1} x_{11} \ldots l_{i} x_{n} m_{1} d l_{i} \ldots m, d \dot{x}_{n} d \lambda .
\end{aligned}
$$

where $r_{11} \ldots w_{n}$ represent the coordinates of the centres of gravity, n_{n} the velocities, and where d. relates to the internal coordinates aud moments of all molecules. Now considering a system with n, molerules $\%$, built up of specified atoms, and allowing all values for the coordimates of the cemtres of gravity, the total mumber of sritems obtamed in this way $z^{\prime \prime}$ may be represented by

The value of the integral can always be represented by

$$
V^{\frac{k}{\sum_{1}} n_{,}} i\left(V n_{1} n_{n} \ldots n_{k} \omega\right)
$$

For a gas the function fiakes the form of the function considered above. We will not consider the form mome chasely now. This lneing observed, it will be easy to point out the changes which (11), the formula that gives the mumber of systems, will matergo. We find

Asking again whioh is the most frequently oferoring state, we find for the condition of equilibrimm

For the statistical free energy we fint
the numbers $\|_{1} . . n$, relating here to the maximal system.
Calculating the pressure fiom \boldsymbol{T} we find
where the terms again are zero on arombt of the emolition of equilibimm. Like Prof. H. A. Lonmaty in his "Ahammmmen" alon Dr. Hopara uses the equation of state

$$
r=\begin{array}{ll}
k & T \\
x & 1 \\
1
\end{array}
$$

(1 put it in molecolar forms, the tem of thens demotes He deviation from the gas-laws, the $\frac{f}{}$ there used therefore aurem with win
loyf may be wiven the form

$$
\log f=-\frac{N}{R T} \int_{1}^{2} q d x+i t
$$

where i is a function of temperature depending on the n alan Introducing this into (20) then

Now if y is a finnction of the mombers n, the variation of q, if a sabies with dee, is because of oft, then being rede.

$$
d_{y}-\underset{\vdots}{k} d_{y} r, d m
$$

So that this sum may be represented by $\frac{\partial q}{\partial \ell}$ che
The condition of equilibrimen thus changes into

Putting the zero-energy \quad, and introducing 3 vibrational fredom: then. When the remamme pat of it is represented by t, we get

$$
\begin{aligned}
& -N T_{0}^{N} \int_{d r}^{x} d g
\end{aligned}
$$

the eonstant se containing all quantities that do not depend on l'and T. The puantity $\frac{1}{2}$ r, loys, may also be substituted by a simgle constant.

Also in the case considered the guantity $\frac{k}{N}$ lief 1 ean be defined for eatel state as entrops, and likewise we have for the supply of lieat $\frac{d Q}{T}<h_{0}$ for states of mon-equilihimm and $=h_{3}$ for states of equilibriam.

It may be regaded an an adsantage of the statistical method, that it contains at the same time the thermodynamieal consideration of
 Wanta - that he is bonnd to introdnee besides his thermodynamie - "onsiderations.

Girmimern, November 1912.

Chemistry. - "On relucities of reaction aml apuilibrin." By Dr. IP. 1之. C. S'mberer. (Communicated bs Prof. A. F. Homamas).
(Communicated in the mecting of dauary 2n, 1913.)

1. In a previous paper in conjunction with Prof. Kounstamm ${ }^{2}$). I discussed the relation between the relocity of reation and the themodynamic potentials of the substances participating in the reaction. It then appeared that the relocity of a reversible reaction may be given by the expression:

$$
\begin{align*}
& { }_{{ }_{l}}^{d^{d}}=C\left(e^{R T}-e^{R T}\right), \quad . \quad . \tag{1}
\end{align*}
$$

in which μ_{I} represents the sum of the molecular thermodynamic potentials of the substances of the first member, "III the sum of the potentials of the substances of the second member of the reaction equation. The constant C accounts for the choice of the unities of concentration and time. and has therefore the same value for all reactions when the same unities are used. We have shown that the function F possesses the same value for both partial velocities, that it is independent of time and volume, and that it is equally in relation with both systems before and after the reation. Asfurther, quantities of energy and entropy must oceur in the quantity r^{\prime}, we have tried to make clear that in general in case of chemical reactions "intermediate states" minst be assmmed, and we have pronouncerl the possibility that the energy and entropy of these transitional states are the only quantities dependent on the nature of the substances, which oceur in the function E^{*}. By entropy we mean here the entropy "free from concentration"; we have namely shown in our cited paper Hat f^{\prime} is independent of the concemtations in case of gas reactions and reactions in dilute solutions; hence it can rontain no terms originating from Gibbs's paradox. The value of the two partial velocities would therefore be determined according to this by the difference in energy and entropy (free from concentration) of the reacting substances and the transitional state. This in my opinion obvious assumption comes to this that hoth the difference of energy and the difference of entropy between the tirst and the second system must be split up into two parts; the first part then gives the differences of energy and cutropy of the first system with

[^57]the manitumal state the other the difference of the serom system with this mansitional state.

As far an the valne of energy are concerned such a sohtion was
 and reqemly also Traty ha- mied an amalogons splither up of the valnes of entery, as we already meationed in our previous paper. Thonsh in his earlion papers on remetion velocities Trasts considered a maversally hohding reablation possible a atinst which we thonght we had to protes in the ciled paper, Trata has introthed at possible ways different from reation to raction in his later papers, athe whith them different ways of splating up, so that as far as the vahes of energy are concemed the difference hetween our considerations and those of Tracte has partly disappared. Yet also in this respect a differemer comthmes to exist in our views, for Tratro exe(outes the phiming of of the energy at the absolnte zero, and it scems more plansible to me to attribute the course of the reation (1) the difference of energy at the reaction temperature. For the present it will certainly not be posible to whain a definite decision of this question, as for the greater part the quantities occurting in the expresions for the velocity of reation, have not ret been mea-ured with suficient areuraty, of sometmes are not even liable to direet measurement.

Wish remard to the ypltting up of the entropy the difference between the mentioned views is still greater. Whereats Traty does not execute a phatting up of the entrop and introdnces the absolnte value of the enfropy of the reating system into the equation of velocity makine nse of the integration comstants of the vapour pressure, an amalogons splithing up seems necessary to us also for the entropy, especially when we alopl the views which holdzmans has expressed on chemical atotions in his (iastheory.

In the cited paper we have illastrated. by the example of the chorine-hydrogen equilibinm. how we think we have to imagine the transition states ocrurring there. If we adopt the stampoint of botmmans: theory, we mast asmme that the two hydrogen atoms in the hydrogen molecule are boumd. in consequence of the fact that the "kritisohe Ränme" of the lwo hydrogen atoms cover each other entirely or partialy, and abo those of the two chlorine atoms in the ehlorine molecule. li we now inguire into the reaction hetween a chorine and a hydrogen molecule. We must imagine that the fwo molecules get so chose together that the four "kritische Räume" of the four atoms will entirely or partially coincide, so that the four atoms are in each others' shere of ation. After this transitional
state a separation takes phate of the "kritiselae Ratme" of the hydrogen atoms and the chomine atoms intere se, the dissimitat atoms remaining homd. Hence the enerys quantity fomat the the exeres which perats, when the four "kritinche Ratume" comede, white the value of the entrops must take aceonnt of the volmme of the coinciding Ritume.

When we consider that the difierene of energy hetween the rearting substances and the transitional state is no mone to be cotculated apromisheally than any other ehemical change of enerey, and that ase get we have no means at ond disposal either, to prediet the volumes of the "kritische Ranme" by the aid of the propertien of the sulstances. it is clear that we camot test the above considerations except by examining whether we can assign phansible values of the energy and the entropy to the tramsitionat states to get into harmony with the known material of facts. It is true that Nersists theorem of heat, in the form as it is coneeived by Praxek, fixes the valnes of the antropy of solid substances at the absolnte zero, so that the entropy eonstants of the gases are brought in retation with the integration constants of the rapome pressure, hat aven if one is convinced of the validity of the theorem of heat, yet die imperfect knowletse of the specific heals presems too sreat a difficulty up to now to calcolate entropies a prioni. With regarl to the transitional states such a calculation is a fortion impossible, as the fiacts known to us indicate that these transitional states greaty var? for different readions, and are e. . . greatly influened by catalysers.

When we now inquire into what the material of facts can teach us with regad to the transitional states. We will examine in the first place whether the energy in the transitional state is greater or smaller than in the initial or in the final state. or whether it perhaps lies between these two latter values. To answer this question I will (to keep the comsiderations as simple as possitule), comsider a reaction in a ratrefied gas mixture that completely takes plate in one direction. In this cas the second partial velocity has a medigithy small value compared with the first. The velocity of the reation is then represented by:

$$
\begin{equation*}
-{ }_{d t}^{d t}=C_{t} R T \tag{2}
\end{equation*}
$$

If we now insert the value of f1, for the dilute gas-mixture,

$$
\begin{gather*}
\left.u_{l}=\Sigma v_{l} \varepsilon_{0}-T \Sigma v_{l} b_{0}+\Sigma v_{l} \int_{d} c_{j} d T-T \geq v_{l} \int_{T} d T+\right\} \tag{3}\\
+R T \Sigma v_{l} \ln c_{l}+R T \Sigma v_{l}
\end{gather*}
$$

intu egnation 2, in which we write ε_{t} - Thy for F, where ε_{ℓ} and y_{1} reprenent the above values of energy and entropy of the transitional states, and in which we separate the functions of concentration ats spatate factor, we get:
$\cdots{ }_{.1 t}^{4}=$
$=1$.
$x_{l}{ }^{(4)}$
In this equation ar, represents the recurring product of the concentrations of the reateting substances. The factor of $\boldsymbol{x}{ }^{\prime}$, is the socalled constant of velocity and is generally represented by the letter R. If we now determine the value of lak and differentiate it with respect to T, we tind:

$$
\begin{equation*}
\frac{d l n k}{d T}=-\frac{\sum r_{l} \varepsilon_{0}+\Sigma v_{I} \int e_{l} d T}{R T^{2}}+\frac{\varepsilon_{l}}{R T^{2}}-\frac{1}{R T}\left(\frac{d \varepsilon_{l}}{d T}-T \frac{d n_{l}}{d T}\right) \tag{5}
\end{equation*}
$$

If now ε_{2} and $y_{\text {h }}$ have the signification of energy and entropy (free from concentration) of the transitional state. the last term of the second member of equation \bar{z} is zero; this is clear when we consider that $F=\varepsilon_{2}-T \cdot{ }^{\prime}$ ean contain no finctions of volume. Hence equation 5 reduces to

$$
\begin{equation*}
\frac{d l n k}{d T}=\frac{\varepsilon_{1}-\varepsilon_{I}}{R T^{2}} \tag{6}
\end{equation*}
$$

in which s_{g} reprevent the energy of the lirst system at the lemperature of reaction.

If we now retmon to the reversible (gats)-reaction, the relations

$$
\begin{equation*}
\frac{d n k_{1}}{d T^{\prime}}=\frac{\varepsilon_{1}-\varepsilon_{l}}{R T^{2}} \quad \text { and } \quad \frac{d l n k_{3}}{d T}=\frac{\varepsilon_{l}-\varepsilon_{I I}}{R T^{2}} \tag{7}
\end{equation*}
$$

will exist for the two partial velocities.
Hence the spliting up of the energy difference $\varepsilon_{I}-\varepsilon_{I I}$ into wo pieces $\varepsilon_{I}-\varepsilon_{l}$ and $\varepsilon_{1}-\varepsilon_{I I}$ is very prominent. If we now consider that in seneral the velocity of chemical reactions inereases with the temperature, it is clear hat ε_{t} will be greater than F_{1} anid $\varepsilon_{l l}$. The energy of the transitional states is therefore greater than the entrgies of the systems before and after the reaction. Accordingly this result necessarily leads us to the following conception: On coincolence of the "kritische Rainme" of the reacting molecules gain of energe takes place, in other words there is work
 fore a maximmon of potential energy.

As is known when molerales draw near to earh other attraction takes place; this led us to exper in our previons priper that the transitional state would possess a mimimmen potemtial enerey. As appears from the above consideration at such a distance that the "kritische Ratume" invale each other", the repulsive forces ontbalance the attractive forces and opposic therefore the invasion of the sphere of action.

A similar conchasion concerning the energy of the transitional states occurs already in Trators first papers. He imagined that the transitional state consists of fiee atoms. It is then clear that this state contains more energy hath the initial and the timal state, since heat will be required for dissociation into atoms. That Trast\% makes this resolution take place at the absolute zaro doen not involve an essential modification. For this question is in close relation on the question whether it is allowed with regard to these transitional states to speak of specifie heats, or what is the same thing of a mean value of energy at a certain temperature. And so fir as is known the difference of temperature between the reaction tomperature and the absolute zero generally causes no reversal of the sign of chemical heat-eflects.
2. Before entering into a discussion of the energy and entropy values of the transtional states, I shall insert here some considerations on the energy and entropy differences between the systems before and after the reartion, referring to a paper on gas-equilibria that has appeared earlier in these Proceedings ${ }^{1}$). The alpebtaic sum of the entropies of the substances participating in a gas-reartion wat represented in the cited paper by:

$$
\Sigma n h=\Sigma n \| l_{\substack{T=1 \\ k=1}}+\Sigma_{n} \int_{1}^{T} e_{T} d T-R \geq \ln \operatorname{lnc} \quad . \quad \text { (s) }
$$

If we join the dirst two terns of the second member of equation 8 , and represent it by $\Sigma \boxed{\prime} H_{i=:}$ (the entropy free from concentration) this equation passes into:

$$
\begin{equation*}
\Sigma n H=\Sigma n H n=1-R \Sigma n \ln \cdot \tag{!}
\end{equation*}
$$

According to the ched paper the equilibrimm combition for the gas mixture is:
${ }^{1}$) These Proc. Dec. 1911, p. 743.

If in this we introduce the entropy tree from concentration, this copathon may he written at follows:

$$
\Sigma n E-T \Sigma n H=1+R T \geq n \neq n+\Sigma n R T=0
$$

If we now express $\operatorname{\Sigma inlne}$ by $\ln K_{c}$, in which theretore \boldsymbol{K}_{c} repre--ant the so-called equilibrimm constant (in concentrations), then :

$$
\begin{equation*}
R T \ln K_{0}^{6}=-\Sigma n E+T \Sigma n H_{1-1}-\Sigma n R T \tag{10}
\end{equation*}
$$

Differentiatime this equation with respect to T after division by R'T, we easily find the well-known equation of Vix 't Hore:

$$
\begin{equation*}
\frac{d l n K_{c}}{d T}=\frac{\Sigma n E}{R T^{2}} \tag{11}
\end{equation*}
$$

If we now imagine In IL to be a very weak temperature function, which may be put practically constant over a limited temperaturerange, eynation 11 yields on integration:

$$
\begin{equation*}
\ln K_{c}=-\frac{\Sigma n E}{R T}+C \tag{12}
\end{equation*}
$$

On comparison of equation 12 with 10 , it appears that on this smposition also the entrops free from concentration may be put independent of the temperature. This ronchasion is moreoser also
 $\pm \because M I=1$ with the temperature is exclusively determined by the value of Sinc.. If therefore really the value of Sme in a certain range of temperature is nesligibly small, the observations in this range may be represented by equation 12 , in which fwo constants occur: ごn E
R, the change of energy divided by the gas constamt, and C, which contains the change of entropy and the gas constant.

And inversely when it appears that the constant of equilibrimm as function of the lemperature may be represented in an equation with two constants like 12 , a measure will be found in the value of these constants for the change of energy and entropy during the reaction. If therefore in one graphical representation $h / m K_{c}$ is represented as function of $\begin{aligned} & 1 \\ & T\end{aligned}$, and in another $T \ln K_{c}$ as function of T, and if the observations in the tirst graphical representation give a straight line, this is also the case in the second. The inclantion of the line in the first representation yields the energy value, that in the verond the value of C ' in equation 12 , so the entrops value, at least if the fite is taken into account that according to equation 10 C' allon contains the gith combant aml Ěn. If we now assume that the obervations have been made with great aceuracy, in gene-
ral the come in the first enaphioal ropresentation will deviate from a strabigt line If wo now eonomed two points from his graphical representation, the stope of this stratioht line will indicate the value of energy which hodomes to a temperatmer whioh lies between those of the two eommeded points. In will then the elear that if we wish to determine the energy value in at smila way, the found value will difter the less frem that which comesponds to the two observation temperatures as Elne is smaller. Henere the energy value will also be found with the ereater relative aternracy as the energy value itself is greater, i.e. the energy foum graphically will then proportionally diffor only iifte from the energy values at the observation temperatures. If we now till in the graphically found value in equation 12 and if we apply eqmation 12 (0) the iwo observation temperatures, a too great vatue for the energy difference will have been chosen for the one temperature, a toe small value for the other. For a temperature belween the two temperatures of observation the energy value is then chosen exactly right; hence the corret entropy value has therefore been yiedded by equation 12 for this lemperature. Therefore when equation 12 is used the found values of entropy will deviate somewhat from the real ones at the two temperathes of observation.

If we dowote the two temperatures of observation by T_{1} and T^{\prime} : and the temperature for which the wraphically found value of the energy holds, by T_{s}, and if we imagine the value of energy fonnd at T_{s} and the corresponding entropy substituted in equation 10, we may question what deviation equation 10 gives us for the values of K_{c} at the temperatures T_{1}^{\prime} and T_{2}. The error made in the energy when we apply equation 10 as T_{1}, amounts to $\int_{T_{1}}^{T_{3} d \Sigma n E} \frac{d T}{d T}$, Hat in the entropy-term amounts to $T_{1} \int_{T_{3}}^{\frac{T_{3}}{\cdot d \Sigma n H_{n}=1}} \frac{d T}{d T}$. If we now eonsider that the energy and the entropy occu with opposite sign in the second member of equation 10 and that

$$
\frac{d \Sigma n E}{d T}=T \frac{d \Sigma n I_{v=1}}{d T}
$$

we see that these two errors eancel each other for the greater pat in the second member of equation 10, and that therefore in spite of these approximations a pretty aceurate value of $\boldsymbol{K}_{\text {r }}$ ean he found. This fact explains why notwithstanding an appreciable value of the

- precifir heat many gas equilibria can be acommed for by means of fwo combant- m on mbly over a small temperature range, but -rmetimes even wer a very lage one at least if the observations are thot patientarly areurate. The disooriation constant of the nitrogen totroxide ban c. 8 . be expressed by an equation of the form 12 Sharbers equation) and also the dissociation equilibrimm of carhonic arid, the ervors of observation being comparatively large here, can be accounted for by equation 12 over a remperature range of humdreds of degrees.

These considerations teach us accordingly that observations of oquiliturim comstants with comparatively hage energy and entropy valnes enable us to calculate them pretty acourately, but that generally no conclusion can be drawn about the intluence of the temperature on energy and entrops, the errors of obsertation being generally 100 great for this. Thus the above formula of Scmeber enables as to find a mean value for the heat of dissociation of the nitrogen teroxide and for the "kritische Ramm" of the NO_{2}-mole(cule ${ }^{1}$), but the influence of the temperature on either is not to be derved from the measurements of the equilibrimm.
3. If we now return to the reation velocities, we can also apply the considerations mentioned in the preveding paragraph here mutatis mutandis. Eipuation 6, which indicates the dependence of the velocity constant with the lemperature, presents great analogy with vas 'T Hore's equation of equilitorimm (equation 11). If $\varepsilon_{I}-\varepsilon_{t}$ is a rery Weak temperature function, equation 6 y velds on integration:

$$
\text { , lnk } \begin{gather*}
r_{1}-s_{1} \tag{13}\\
k T
\end{gather*} \quad \text { B. }
$$

in which as appeatr: from equation $\pm B$ does not contain any constants depending on the nature of the substances, except the difference of entropy. so in this case too the dilference of entropy between initial and tramsitional state is practically independent of the temperature. Here ton we can therefore eraphically represent Rlut as function of $\frac{1}{T}$, and determine the differences of energy between intital and transitional state. It seems therefore matural to examine whether the material of fact- refermes to the reaction velocities can be represented ly equations of the form 13 , where $\varepsilon_{i}-\varepsilon_{1}$ and P are considered as constants.

In his Etudes de dymamique chmique vis of Hore for the first time gave an expression for the depentence of the velocity con-

1) Boltzmasw. (iastheurie II. § 66.
stant on the temperature. Led hy his relation of equilibuium 'equation 11) he pronommed the supposition that for the velocity eonstant ant equation would hold of the shape:

$$
\frac{d r u k}{d T}=\begin{align*}
& 1 \tag{1.4}\\
& T_{2}^{2}
\end{align*} 13
$$

This equation has been repeatedly put to the test in later times, generally, however, for reatenons in dilute sollonions. First of all the question suggests itself whether the ronsiderations which have led us to equation if , may also be applied to dilute solutions. Though the velocity of 6 for dilute solutions camot be ritporonsly proved, an application also for these reactions does not seem open to serious objections. We have, namely, tested our original equation. by reatetions in dilute solntions in the cited paper; it proved to he able to account for the comse of reaction, and the reasons which led us to the assumption of transitional states, hold unehanged atso for reactions in solution. Accortingly the shape of ermation if leads us to expect that this will be generally valid. VAx 'T Horr's equation (equation 11), moreover, holds also for equilibia in dilute solution, and it is therefore certainly natural to assume, that the splitting up of the value of energy will be essentially the same for all reactions.

Van 'T Horf's equation is generally not applied in the form as it is given by 14 , but in the form which arises when either A or B is put zero in 14. The expression which arises by the introduction of zero for B has been later defended by Arrhesits, and has appeared to be compatible with a great part of the material of facts. If, however, one puts B equal to zero in 14 , really equation 13 is obtained by integration, and all the reaction-velocities which satisfy Arrhenius' expression, can therefore be reprenented with the aid of the two constants $\varepsilon_{l}-\varepsilon_{\ell}$ and B of equation 13. Reversely equation 13 furnishes us also with the possibility of pretty aceurately calculating the differences of energy, at least if they are not too small; the absolute value of the difference of entropy, however, remainunknown, because B among others cuntains the unknown constant. which accounts for the unity of concentration and time. The above considerations, however, suggest that besides the difference of entropy B will not contain any constants dependent on the mature of the substances. In perfect analogy with the conclusion of \$? we conclude also here that measurement of reaction velocities, at least if they have not heen very accurately executed cannot decide whether the difference of energy and of entropy depends on the temperature.

I will apply the above considerations in my next paper to a series of experimental data from organic ehemistry.

Chemistry. - "Oh the relowity af suldatitutions: in the bensene
 d. 1° Hotamul.
(Commmicated in the meetise of dan, 250. $1: 113$)

1. In the preceding paper the dependence of the velocily con-- amt on the temperatme was bepresented hy the equations:

$$
\begin{equation*}
\frac{\text { Iluk }}{\| T}=\frac{s_{1}-\varepsilon}{R T^{g}} \tag{1}
\end{equation*}
$$

:alld

$$
\begin{equation*}
\ln k=\underbrace{}_{i}-\varepsilon_{t}-B \tag{}
\end{equation*}
$$

and it was shown that the greater part of the expermental data allows the subtitution of a constant value for $\&-\varepsilon_{i}$. According to the considetations of the preceding paper this value furnishes a prety arcomate meature for the encry difference between the reacting substance amb the intermediate state during the reaction, at least if the velocities have heen meatured with sulficient atecuracy, and the value of the enersy difference is not too smath.

In order to arrive at ath opinion about the elliciency of these considerations and the equations 1 and 2 derived from them, I have tried to apply the latter to the experimemal data. I have for this purpose tried to find thone examples where we may expeet the simplest behaviour, and in my opinion they are to be found in the department of organic chemistry.

If we imagine a reaction which is indicated by the equation of reaction $t+l i=\ldots$ and it we detemine the reaction velocities at different temperatures, the above mentioned energy value can be calcolated. If we then replace the molecole A by another A, we can find the required puantity of encrey also for the reaction of this molecale I with $l 3$, and in this way obtain an insight into what intluence a substitution of A for A exercises on the differences of energy with the intermediate state.

Let us e. g. suppose that the molecule benzene is nitrated; we might then calculate from meaturements of the nitration velocity ai different temperatures what quantity of energy is required to force the nitrice ach molecole into the shere of action of one of the hydrogen atoms in the benzene muclens. If we then replace the moleenle benzene e. g. by chloric benzene, we can calculate the quantity of energy required for this reation also by measurement of the ni-
tration velocity, and obtain an insioht in his way into what influence the chlorine atom in the bomzene hat on the repuided ynamtity of energy for the subsththon. In has way a value wan then be foumd which can quatitatively be expreseed lim that which is generally expressed by the intensity of the bimbing af the atome which are liable to substitution.

Such catculations, however, cambot be carried ont in the absence of the required material of finds. Determanations of veloctity of mato stitutions as mentioned above hase heen haddy daried out as yet; though Prof. Hobdman and his pupils have collected a considerable number of data on the relative velocity of the sthatitution of the different hydrogen atoms in the same aromatio molecule. All these measurements refer to simultaneon reactions and it is just for this kind of reactions that the application of the above mentioned equations is very simple.

When we expose the molecule tolucne to the atom of nitric atid, three substitutions appear simultaneonsly. In the whene three different kinds of hydrogen atoms liable to subsitution oceror. Lwo on the ortho-, two on the meta, and one on the paraplate with respect to the chlorine atom. So we have here three reactions proveeding simultaneously, each with a definite velocity constan. If we mow want to apply the above equations we masi first of all hear in mind that the velocity constant is determined by the energy and catrops difference required for the substitution, and that ateondingly if there quantities were equal for the ortho, meta-, and para-sulistitution, there would yet be formed twier as many ortho- aml metadisuhtifthtion products as paraproducte, beeatise in a delimite quamit? of tohene there are lwice at many ortho- and metathdrogen atons liable to substuthon, at parathydrogen atoms. If therefore the perlocity constans for ortho-, meta-, and paratsubstitntion are repressented by $k_{0}, k_{m n}$, and k_{p}, the substitution velocitios r_{0}, l_{m} and,$_{p}$, are represented by the equations:
alld

The ratio of the guantities ortho. meta-, aml para-pmonderts, whod are formed in the maty of time, therefore, amombts $102 h_{0}: 2 k_{n}: h_{i f}$: hence it is independent of the time. If therefore the reatetion is allowed to proceed regularly to its close, or if it is stonper al an arbitary moment, the ratio of the whamed shatitution products is
at the same time the reguired ration of the velocigy romstants ${ }^{2}$.
Sor the velucity com-tants themsetres. therefore, only their mutaal ration is to be derived from the measurements collected by Prot. Hol, EMAS

If we now apply equation= 1 and 2 to these examples, it appears that the applinalion heromes so very simple in this case in consequence of the equally of the enery of of the reaterne substances for ath the three reations that take place simulamemasy, and that therefore the difference in velocity of substithion at an ortho- and metaplace e.g. is diflerent ont in consequence of this that the quantity of energy (and entropy) to replace the ortho-hydrogen differs from the energy required to canse the substitution at the meta-place.

The objection that these reations do not bake place in dilute solntion camot be andranced agamst the application of the two equations, for in these substifutions a great exces: (molecular) of the subtiming sulstan:e is genorally present. In nitrations e.g. the shbstance that is to be nitated is adted in drops to a large quantity of nitric acid, and the nitration is practically completed before the following drop is added.

Moreover I pointed ont already in the preceding paper that the objection of higher concentrations canot be sertons. since it is selfevident that the splitting up of the energy values most always be carried out in essentially the same mamer. It has, moreover, repeatedly appeared in these substations that different ratio of the reathing substances has 10 apprebable influence on the mutual ratio of the reaction products.

If we now represen the enery of the intermediate states for the three -ubstitutions b! x_{0}. $x_{t_{m}}$, and $\varepsilon_{f_{1}, \text {, then }}$ equation 1 qives:

$$
\begin{align*}
& \quad \sqrt{d m \frac{k_{n}}{k_{m}}} \quad \overline{d T}=\frac{\varepsilon_{l_{0}}-\varepsilon_{i_{i /}}}{R T^{2}} . \tag{3a}\\
& \frac{d h_{n} k_{k_{n}}}{d T^{\prime}}=\frac{\varepsilon_{0}-\varepsilon_{l_{1}}}{R T^{g_{2}^{2}}} \tag{36}\\
& { }^{\prime} / n \prime \frac{k_{1, \prime}}{k_{i \prime}}={ }_{\varepsilon_{1 \prime \prime}}-\varepsilon_{l_{1}} \tag{3c}\\
& d T-\quad \| T^{2}
\end{align*}
$$

Here the thind equation is of course dependent on the two others.

[^58]These equations cmable us to colentate the diferemes of the reguired substitution energies from measuremonts of the velocily at laxat lon so far as they have been performed at diberent iemperatmes.

If we now also apply equation en, we wot:

$$
\begin{align*}
& \ln \frac{k_{0}}{k_{n n}}=\frac{F_{m}-\varepsilon_{t}}{l i}{ }^{\prime}+B_{m}-B_{n} \\
& \ln \frac{k_{0}}{k_{p}}=\frac{\varepsilon_{p}-\varepsilon_{1}}{R T}+B_{p}-B_{0} \tag{+b}\\
& \ln \frac{k_{n n}}{k_{p,}}=\frac{\varepsilon_{p}-\varepsilon_{m}}{R T}+B_{p}-B_{m} \tag{4c}
\end{align*}
$$

With respect to the constants $/$ from the equation 4 we know that each of them consists of the required entropy difference and of constants which do not depend on the nature of the reacting substances. These latter disappar therefore in apmation t, where always differences between fwo b-values ocemr, so that the batue $b_{m}-l_{n}$, of equation $4 a$ can be replaced by $y_{b_{m}}-y_{n}$, and just so for the other equations.

So we see that the difference of the substitution energies and entropies can be directly calculated for these reactions from the experimental determinations. The areoraty with which these calenJations can be carried out, is of course determined by the valne of the errors of observation.

When 1 applied equations + to the data, it sonn appeaped that
 sometimes differ very lithe from zero. I have therefore examined whether it is possible to account for the observations ouly by a difference of energy, heme by assuming that the diffopence in sulh-stitution-entrop! would be aron fon the digherent hydrempen atoms. Mathematieally this comes to this that every sulatitution might be represented by the aid of ome constant, which would then have the meaning of the difference in substitution-energy, On this hypothesis the equations 4 are transformed into:

$$
\begin{align*}
& \ln \frac{k_{0}}{k_{m}}=\frac{\varepsilon_{t_{m}}-\varepsilon_{n}}{R T} \tag{5a}\\
& \ln \frac{k_{0}}{k_{p}}=\frac{\varepsilon_{t_{p}}-\varepsilon_{l_{0}}}{R T} . \\
& \ln \frac{k_{m}}{k_{p}}=\frac{\varepsilon_{p}-\varepsilon_{t_{n}}}{R T} . \tag{in}
\end{align*}
$$

To -hme that the material of fatets really admits of such a hypo-the-in. I shajoin the values whiel mas be assigned to the differences of entery of the equation $\overline{3}$, expresed in matores.

Nitration of chlorobenzenc. Nitration of brombenzene.

Bromation of tolucne.

	$t=25$		- $z_{p}=658$			
					$t=$	
	found	calc.	found	calc.	found	calc.
ortho	35.5	35.5	23.5	23.5	6.2	6.0
para	53.9	53.9	32.8	32.8	7.5	7.7
	Nitration of benzoic ach.					
		t_{0}	${ }^{8} t_{m}$	= 800		
	$t=$	-30	$t=$		$t=$	
ortho	found calc	calc.	found 18.5	calc.	found	calc.
	14.4	15.9		18.4	22.3	20.7
meta	85.0	83.5	80.2	80.3	76.5	78.1
Nitration of ethyl-benzoate.						

$$
t_{t_{11}}-t_{m}=500
$$

	$t=-40$		$t=0$		$t=30$	
	found	calc.	found	calc.	found	calc.
ortho	25.5	25.0	28.3	27.5	27.7	28.5
meta	73.2	73.7	68.4	69.2	06.4	65.6

Nitration or wheme.

If we extend the investigation the the intreduction of a haid mhe stiment in the twice substituted henzene, we ore :

Nitration of m.chlor-benwoic acid. 1)

$$
z_{a}=1290
$$

$$
t=-30 \quad t=0
$$

found calc. found calc.

$a(1,3,6)$	93	93.5	42	91.5
$b(1,3,2)$	7	6.5	8	8.5

Nitration of m-brom-benzoic acid.

$$
{ }^{s} b-a=1020
$$

$$
t=-30 \quad t=0
$$

found calc. found calc.

$a(1,3,6)$	89	89.2	87	86.8
$b(1,3,2)$	11	10.8	13	13.2

Nitration of m-dichlor-bensene.

$$
\begin{aligned}
& { }^{s} b-{ }_{a} a=1400 \\
& t=-30 \quad t=0
\end{aligned}
$$

found calc. found calc.
$\begin{array}{lllll}\text { a } & (1,3,6) & 97.4 & 97.3 & 96.2 \\ 9.4\end{array}$
$6(1,3,2) \quad 2.6 \quad 2.7 \quad 3.8 \quad 3.6$

[^59]Nitration of o-dichlor-benzene.

Nitration of o-brom-bensoic acid.

	$t=$	- 30	$t=$
	found	calc.	found
a (1,2,5)	82.9	82.9	80.3
$b(1,2,3)$	17.1	17.1	19.7

When we now pass in review the results of the above tables, it appears that the hamony hetween the foum and the calculated values is very satisfactory in weneral. In the majority of the exmples the deviations very eertainly remain within the errors of observation. Only in the nitration of benzoic ateid an appreciable deviation between the fomm valnes and the ealealated ones aceurs. This nitration, however, is arcording to Pref Hobdman one of the first carried oul examples, in which the "method of extraction" was applied, which was later replaced by more accurate analysis methods.

 are considered which were whtamed in the nitration of the montay ester of benzoice acid, where rery prohally in the nitation an arow ocens at 0°, whieh is ereater than the athevedeviations. Prof. Hondomin informed me that he foo considered the anderment in the tathen ats very satisfactory.

The above test, therefore, really leads to the comelnsion that the substitutions in the benzene molens san be satisfatomily aromuted for no to now by one smgle constant. the differener of mergy for substitution at the differem phaces in the nomens. If there were only one example known where the errore of obsempathon were andonthedly smaller than the deviation from the thencetically catmbated value, the orizinally proposed hypothesis would have to he rejerted : so if will have to appear from the continued investigation whenher really all the examples without exception conform to the rule for which no execptions have been fomb as yot

Equations B^{3} and 5 acoodingly, aceome for the facts which are known up to now. If we now compare the two equations, we come to the following conclusion: The second members of the two equations have always oppored signs: if the cefore in apuation but $k_{"}<k_{n}$. i.e. if on substitution mone metat than orthomerivative is formed, then $\varepsilon_{m}-\varepsilon_{0}$ is nerative.

It then follows from equation 3 , that we value of ithen $_{k_{i}}^{k_{i}}$ is poritive. We can express this generally as follows:

The 'fumbity "f the protuct which is formed to "1 smuller dedred. increases whtiow! one rise of temperatures.

In this we should hear in mind that to decote whether a produre is formed in a smaller quantity, it is nevessary fo divide the quantities formed hy the value that indeates the number we extrivatern places in the nubleus. Thas the mitratom of bolueme fumbere serminyly an exeeption. as sepmingly the ghantity of ortho is ereater than the grantity of para-niteotomene. If homerer. it is bome in mind that in this substation there are lwo mothophares araibahle to one paraphace and that therefore prata and met outhon is the product that is formed in ereater pmanty. the sated pate apparato be valid also here.

As far as 1 am aware there are no exerphom (o) than rate ebther Only the sidatan of iodothenzene does not foblow it, as heme the

 bors, hecame the presence of dimitro-ompounds may posibly give rive in this ase to compatalively ereat errors in the amalyses. In the rate of another example that departs from the rule, the quantity of pataprodact in the nitration of henzoie acid and its methylester, the change at varying temperathre are so shight that the errors of ohervation may eren have changed the qualitative conduct.

Moreover the above consideration establishes the adready known patetical rule that in general it is desirable for the preparation of pure - nhestitution products to work at low temperature; for according to the stated rute higher temperature always pomotes the formation of he-products.

When we pamine what inllache the above result exeroises on our theoretieal considerations, we arive at the following conclusion :

When a hydrowen atom in the benzene nuclens is replaced by an atom or a group of atoms, an intermediate state makes its appearance, which is catnsed by exactly the same atoms for the substitutions att all avalable plates in the benzene-muclens. For instane in the case of a mitation the intemediate state js catused by the coincidence of the "kritische Reatume" of the carton atom of the nuclens at which the substitution takes phace, of the hydrogen atom, and of the OH and NO_{2} group of the nitric acid molectale, at least when in an amakous way as Boathans ascribes a "kritische Ramm" to the NO, molecule, we do so tor the gromps in question. Then the above conclusion would involve that the volmmes of the Ratmme which cover each other, do not differ, or only very little for the substitutions at the different places, but that the different velocity of substitution is catused by the fact that the more distant atoms intluence in a different way the energy required for the different places.
2. An entirely ditherent quention, which, however, can be brought in connection with what precedes, is the following: Is it possible when the quantity of the products, which are formed when a second substitnent is introduced. is known, to calculate that of the substances which are formed when a thind substituent is introluced: In other words is it possible to draw a conclusion from the enerrite required for the introduction of a second substituent, athont the enery required for the introduction of a third It e.g. We shppore that toluene is mitrated on one side, chlor benzene on the other, we know the relative quantity of the nitroproducts formed; if we mur nitate chlor toluene, $1 t$ is the question whether the quantity
 from the former cate. In for dist phate we hombl hear in mind that the energy of the substames we tat form is dithorents ant mow
 relative quantioes, yet the enerey of the jutermediats staten maty
 we shonla therefore have to introdure a hyporthe is emberning the energy quantilies.
 with other phenomena are not yet known for them. (hore of the most phasible hypotheses wonld in my opinion be the following:

Let us denote the energy requited for the sutstitmion of tho No \boldsymbol{z}_{2} gronp for the hydrogen atome in the henzene motente by fon . Then $^{\text {and }}$ the energy for substitution of the hydromen atoms in whene and chlor benzene resp. may be represented by $\varepsilon_{1}+\varepsilon_{a_{1}}, \varepsilon_{1}+\varepsilon_{\omega_{1},}, \varepsilon_{1}+\varepsilon_{p_{1}}$ resp. $\varepsilon_{1}+\varepsilon_{0_{2}}, \varepsilon_{1}+\varepsilon_{m,}$ and $\varepsilon_{1}+\varepsilon_{/,}$.

If we now think a mbetitution carried out in the molecole orthochlortolume, we might assume that the chergies requimed for every substitnable place must be added

For substitution at the plate 1 , which is in ath ortho-pusition with resped to chlorine and in metaposition with respert of (' H_{2}, ant energy quantity $\varepsilon_{1}+\varepsilon_{n_{1}}+\varepsilon_{o_{2}}$ wonld then be required. Veatonimp in an analogous way $\varepsilon_{1}+x_{\rho_{1}}+\varepsilon_{m_{2}}$ would he reguired for the plater $/$.

Applying equation 5, we get:

$$
\begin{aligned}
& \ln \frac{k_{b}}{k_{i l}}=\frac{\varepsilon_{a}-\varepsilon_{b}}{R T}=\frac{\left(\varepsilon_{1}+\varepsilon_{m_{1}}+\varepsilon_{v_{2}}\right)-\left(\varepsilon_{2}+\varepsilon_{m_{1}}+\varepsilon_{m_{2}}\right)}{R T}= \\
&= \\
&=\frac{\left(\varepsilon_{m_{1}}-\varepsilon_{n_{1}}\right)-\left(\varepsilon_{m_{2}}-\varepsilon_{n_{2}}\right)}{R T}
\end{aligned}
$$

When we now consider that the introdnetion of the seeond subs stituent requires:

$$
\ln \frac{k_{p_{1}}}{k_{m_{1}}}=\frac{\varepsilon_{m_{1}}-\varepsilon_{p_{1}}}{l T T} \text { and } \ln \frac{k_{p_{21}}}{k_{m_{2}}}=\frac{\varepsilon_{m_{2}}-\varepsilon_{o_{2}}}{R T}
$$

we find easily by combination of the three equations:

$$
\ln _{k_{n}}^{k_{n}}=\ln _{k_{m_{1}}}^{k_{p_{1}}}-\ln _{k_{m_{2}}}^{k_{n_{2}}}
$$

11

$$
k_{k_{n}}^{k_{n}}=\frac{k_{n_{1}} k_{w_{n}}}{k_{w_{1}}}
$$

This is the so-called rule of multipheation, which Prof. Hobdemas fried to apply for subl calculations already before. This rule appeared 10) be in pretly close agrecment with the observations for the nitration of the ortho-chor and ortho-brom benzoic acids; in other eases, howerer, great devations from the salculations are fombl.

Afterwads Helswas proposed a "rule of smmmation", but this too presents satisfactory agreement only in some cases. If we examine what relation would have to exist between the energy quantities required for substitution to arrise at a rule of summation, this relation appears to assume such an intricate form that it caniot be arcounted for in my opinion from a theoretical point of view. A general rule for the caldutaton of substitution energies at the introduction of a third substitnent from the values of energy which are required for the introduction of a second, seems to me impossible to find. It may, however, be possible to timd a relation between amalogons substitutions, and this relation might possibly be diseovered by means of the encrgy vatues calculated above. Up to now I have however not made an athempt to do so, becanse the energy values on which the above tables are fommed, can certainly still he modified in the units, and sometimes even in the tens: the extent of these modifications, namely, is in the closest relation with the emors of observation which may be allowed in the determinations.

Moreover I will finally point out that in this paper I only intend 10 show that the material of facts admits the assumption that the substitution entropies are identical for the different places in the muclens. That this is really perfectly true has of course not been proved by the lest: we can certainly also accoum for the data by means of equations with two constants (equation 4), in which the serond constant in general poseseses a small value. It appears in. any case that in crencral the course of this type of reactions is chiefly determined by difference of energy, and the difference of entropy plays only a secondary part. As 1 showed at the end of $\$ 1$ our theoretical considerations about the mechanism of the chemical reactions may be brought into hammon with these results.

In conclusion I gladly express my cordial thanks to Prof. Hohbman for supplying me with the information which I required for the foregoing investigation and for his interest in this work.

 1". Zheman).

In the summer of 1911 we intemted to make bugether some observations concerning magnetie hoble refatedion of motallio vapons.

The magnetic double refraction of some vapoms wats firat diseonered (and predicted) by Vour, afterwards commented unon by Zramo and Geest.

In the paper of the last named anthoms the interesting reqion between the components of the mawnetically divided sodimm lines was investigated and the results represented hy drawings.

It seemed desirable to extend his investigation uning very marow lines, which can be maintained constant during a long time and to fix the result by photograms.

Our investigation never passed the preliminary stage and hat become now superfluous hy the paper of VolgT and W soxer which has since appeared.

During our preliminary ohservations we tested a great number of methods of obtaining narrow and eonstant absorption lines. It seems to present some interest to record one of our results.

The absorption lines of sodium were obtaned beautifully marnow by using small glass tubes chatged with a little metallie sodinm, then sealed to the vacuum pump and evacuated. A tube some centimeters in length was placed vertically hetween the !noles, the magnetic field heing horizontal.

It is quite possible to use tuhes of an eaternal with of some millimeters. Of course much of the ligh of an are lamp is reflected and diffused by the tube, but enomyle remains to wheppe the inverse magnetic effect with a large Row easd quating. The marnetio renolution of the narrow lines can be splendidty seen and photographed in a reasonable time.

The heating of the tube can be done by a flame, but preferenty: electrically.

Of course tubes with other volatile metals can he prepared in the same way ${ }^{1}$).

[^60]Physics. "Th. al liftimm lim". lis Prof. I'. Zamman.

 mombing 10 do with the dismimamon of lines in series, fon there exist
 notir fichl-

Recenty: Pasomis and bise diseovered that line inelonging to a
 very perntiar manner. ('mere the action of a sulticienty strong magmotice lich we might expere to otratere at sureposition of the typer of separation of the compounts, hat contaty to expectation a normal triplet is seent.

Among tho line invertigated bo Pasome and bank are also the lithimm lines. Many physiotsto ly atogy with the other alkali metals athe theif eertes expeed that the lithinm lines ate very olose prats.
sometimes the uphon hat been expressed that the laws for the wher alkati metals do mot apply to lithimm. This then mixht explatin
 combary to Prasposis pote is rembed by a magnetice tied imto a triphef, which is at loas nealy momal. The measurements of Back ') for four lithimm lines prove that whath the limits of the errors of observation the eppatation hat the bommal balue.

It is therefore sery interesting lo know whether the lithimm lines
 Bank ate rixht phating the lithimm lines in parathel with the other
 retische Doppedinite", bocaluse it hats mever heen resotred.

I have treas able 6 do this using the method given in the foreronme commmatcation.
A. glats in strongly allathed hy heated lithium it is neressary to platee a amall irom or coppler besel insite the ghass mbe: the life of the the is then at least intreated.

 $897,1912$.

 latge Rowtann grating.

The red of the secomat ardere is sumerparat on the han wo the thitd order so that the lime bian is seob in the abmaption speremm as a blue lime. Witls smatl sapom demsity the bind pesolved into two components: this proves that the comelnom drawn from the amalogy of the spectrmm series of the alkati metalo is true. That component of the domble line which has the - malle watedement seemed to be the most intense. The diatatere hetween the cotipenenth could only be measmed in a rombdabont manber by means of a divided scale in the eye piese of the spectroverpe. 'Thi-meanmement gave for the distance between the components atome one fondth of and Angstrom mit. From the empirical rule that in the ease of the elements of the same family the frequency differences of the patis are neatly proportional to the signate of the atomic weights, it womb follow that for lithium this distance onght to be is $X_{2 y^{2}}=0,15$ Angstrom mis. The observed distance is much smather.

Physics. - "Sinme remmetks one the compare "f the retrichility "t the quentily b of the equation of state." By Prot. .I. I). WIS DER Waals.
(Communicated in the meeting of January $25,19131$.
In my preceding commantications I came to the conclasion that the differences which orern in the normal, not reall! assoriathos, substances are to the ascribed to the differem vatue of the puantity b_{y}
$b_{i i n}$. As this quantiy is greater, both f and s ate greater, vio. $\frac{j-1}{3}=\frac{b_{n}}{b_{\text {lin }}}$ and $:=\frac{8}{3}$ / $\frac{b_{n}}{b_{\text {linn }}}$. The deviation exhibited by the law of corresponding states, is also at consequence of the different course of the quantity b. Thus it becomes more and more chear that everything that ean eontribute to elne idate the eanse of the diflerenee in this course must be considered of the highest impordance.

If the conse of b is trued as funetion of r^{2}, a lime in ohnamed which roms ahmost patalled to the r-axis with ereat valum of 8 , ame appoaches asymptobeally to a line patatled to the e-axis at a distance $b_{\text {, }}$ from the latter. Not before $e^{\prime}=2 h$, does \quad ath apprectalhe ditherente begin to appear, and hats the valne of 1 deseended to eg.g ahout

0,96 /... (On firther dectatse of the volume 1 descents more rapidly - and when aton a line has heen drawn which starts from the orimin, so from $r=0$ at an angle of 45° to the e-axis, the continually dercending b cume will meet this line at $b=b_{\text {lim }}$. If b_{g} and $f_{l i}$, are given, this conve is determined. If bothould have the same value, and if $b_{\text {in }}$ should he smaller, the curve lies lower throughout its course, and reversely if $b_{\text {lin }}$ is wreater, the whole b curve lies higher.

Of course if there did not exist a similar canse for the variahility (of b, we might imagine a more irregular course in the different b comes. but if such a cause is assumed, nobody will doubt of the truth of the above remalis. I have even thought I might suppose that there is a certain kind of correspondence possible in the course of the diflerent b comes. The points of these curves which are of importance for the equation of state, run from $v=b_{\text {tim }}$ to $v=\infty$. At a value of $c=n b_{\text {im }}$ (and n can have all values between 1 and ∞), $b_{g}-b$ is smaller as $b_{g}-b_{i m}$ is smalles. Now I deemed it probable that there would be proportionality between these fwo latter fuantities, and that therefore the following character of these curves can be put, viz.

$$
\frac{b_{d}-b}{b_{g}-b_{t i m}}=f\left(\frac{r}{r_{l i m}}\right)
$$

and that hisis function of $\frac{r}{c h}$ is the same, entirely or almost entirely. When I considered the question what the meaning of this equation might be, the following thonght ocentred to me. Could possibly the $\mathrm{q}^{\text {masi-association }}$ be the canse of this variability of b with the volume:

I treated this quasi-association in an address to the Academy in 1906, and later on in some commmications in 1910, and 1 came then to the conclusion that it must be derived from the increase of tension of the saturate vapour in the neighbouhood of the critical temperature that at every temperature and in every volume a so-called homo\}reneous phase is not really homogeneous; but that dependent on the . size of the volume and also on the temperature there are always aggregations of a comparatively large number of molecules which gread uniformly. In very large volume the number of these aggregations is vanishingly small and with small volume, and especially at low temperature this number incrases greaty; so that at the limiting volume the number of free molecules has become vanishing small. If in each of these ageregations the value of b does not differ much from $b_{\text {aim }}$ or perhaps coincides with it, the following value of
b) might be derived. For that pat of the substane that is in the state of free molecules the value of h is equal to h_{y}. If the fraction of the quantity of substance hat is in the stato of areregation is put equal to d^{\prime}, and the fraction which is in the state of simgle molecules cqual to $1-r$, Hen $i_{1}=(1-r) b_{i}+h_{\text {min }}$ or

$$
\begin{aligned}
& b_{1,} \quad b_{1} \\
& b_{1}-b_{l i m}
\end{aligned}=\cdot
$$

And if we compare this result with the equation the signilicance of which we tried to find, we see that $f^{\prime}\binom{c}{v_{l i n}}$ is the function which determines the salue of x in every volume, but we must at onee add at any temperature. That 1 might atso depend on T I have never denied; I have on! denied that putting $h=f^{\prime}(T)$ woudd enable us to account for the conse of the equation of state, hut that chielly the dependence of r is indi-pensable. So we should now have arrived at the relation:

$$
\frac{b_{g}-b}{b_{g}-b_{\text {iim }}}=x=j\left(\frac{x}{r_{\text {cim }}}, T\right)
$$

But I must not be detained too long by these considerations, for on further consideration I have had to reject the thought that puasiassociation has influence in this way. For various reasons. First of all becanse at so preat contraction of the volume the name of quasiassociation would have to change into real association. Secondly betause the generated heat would then have to be much more considerable - and further the course of association would also have to be different for almost complete association, to which I masy possibly have oreasion later on to draw the attention. This, however. obviates the necessity of making $\frac{b_{n}-b}{b_{1}-b_{t, n}}$ dependent on T, and we refurn to the simpler efuation:

$$
\frac{b_{y}-b}{b_{y}-b_{\text {lim }}}=f\left(\frac{x}{v_{l i m}}\right)
$$

And though I am not yet able to give the theoretical form of this function, and though 1 camot indicate a priori the constants occuring in it, I can apply a correction in the value of v^{\prime} in , which I gave in my least commonication; and this has greatly wakened if not removed the objections I had to the assumption that the decrease of b with the volume is only an apparent explanation.

I have arived at the value of $v_{\text {aim }}=b_{\text {bim }}$ by following the same train of reasoning as when I drew up the equation of state. Vor
the anly new thonght atom the influence of the dimensions of the muhecute ('hapter VI! was this that the volume inside which the motion of the moleciales takes place, must be considered as in teality -matler thath it seem at lirst sight

If in case the molecoles should be material points, the consequence of the collisions is that they resist an external pressure $+\frac{h t}{i}$, the consequeme of their own dimensions is that they resist a pressure t . fimes at ereat. And we cannot dispense with this consideration. We may introduce this thought immediately ; and without having to spak of repulsive forens, write directly : $p, n=\frac{R T}{n-b}$, or if it is prefered first continue the eonse of the calculation with the ad of the theorem of the rimal further than I have done. But finally to arrise at the true formula it is again necessary to follow the course taken by me. I showed this long ago. When I wanted to determine the value of this new quantity b, however, I soon perreved that this would the attended with great difficulties.

If was not so difticult to determine the valne of b, and I could at once conciude that b_{0} is equal to t times the volume of the molecules. And it was ako easy to see that b would have to decrease with the volume. Ahealy the consideration that for intintely large pressure the volume would have to be smaller than 4 times the volume of the molecules, and would have to depend on the grouping in that smatlest volume, and that therefore Ihim would have to be $<b_{n}$. was sulticient for this. In reference to this I say what follows in Chapter VI (p. \tilde{z}^{2}), after I had reduced the way to determine the guantity h to the athmeviation of the mean length of path, and had therefore pat:

$$
{ }^{1} l_{1}={ }_{r \ldots-1_{1}}^{r}
$$

"bur this formula camot be applied up to the extreme limit of condensation of the whbtance". ete. as far as the word "rerwachten".

It appears from the cifed passage that 1 felt already then that the quantity l in a delinite bolume wond have to be determined by the detemination of the distance, at which during the impatet the centre of the colliding molecule mast remain foom the central plane at right angles to the direction of motion, in consequence of the dimension of the for colliding molecoles. This appeas amman others "hlon I sily that when $\cdot<t^{\prime}$, not only the double-central shocks,
but also the double tangent one will not take place, and the factor 4 wibl not diminish so raphidly as might have been experted withont taking this in consideration.

To make clear what I mean, imatine a molernte in motion to strike against another. On the supposition of spherical molecules draw a sphere which has its centre in the second molecole with a batdins $=2 r$ (if z^{*} is the radius of a molerole . Then at the moment of the impact the econtre of the colliding molerote must be on that sphere with a ridins twice as long as its own. Now imasine also through the second molecute a central plane at right angles to the direction of the relative motion, in which case the second molecule may be taken as stationary, then the mean abhertation of the free length of path is the length of the mean distance at which the centre of the moving molecule lies from the said central plane. In very large volume the chance that the centre of the moving molecule strikes against a cerlain area of the sphere with $2 r$ as radius is proportional to the extension of the projection of this area on the said central plane. It follows from this that the mean abbreviation of the free length of path is the mean ordinate of a haif sphere with $4 \pi r^{3}$ as basis, and so equal to $\frac{4 r^{\circ}}{3}$. It is true that this is the abbreviation of the length of path for 2 molecules, but this is compensated by the fact that an abbreviation of the same value exists also at the beginning of the free length of path for the moving molecule.

If also in a small volume the chance to a collision with the sphere with $2 r$ as radius could be determined, the way had been found to determine the value of b in every volume. For $v<4 h$ the double central impacts must be eliminated, but also the double tangent ones. And strictly speaking in every volume, however great, if not infinitely great, the chance to double central and dowhle tangent impacts must have lessened. Here a coure seems indicated to me which might possibly lead to the determination of the value of b for arbitrary volume. I do not know yet whether this will succeed, but at any rate it has appeared to me that this may serve to calculate blim and not only for spherical molecules. The latter is certainly not devoid of importance, as the case of really spherical molecules will only seldom oceur.

Let me first demonstrate this for spherical molecules. In the extreme case when they are stationary, they lie piled up, as is the ease with heaps of camon balls, each resting on three others. Let us think the centres of these three molecales ats forming the tops of the ground

Hane of a reqular tetratredron. For a volume infinitely little greater that the limitag volume the limiting diredion of the motion of the $4^{\text {th }}$ mofecole is that which is directed at right angles to the ground pane and in case of collision the three molecules of the ground plane are struck at the same time. The sides of the tetrathedron have a hemeth equal to $2 r$, and the perpenticular from the top dropped on the sromud-plane is equal to $2 r / \frac{2}{3}$.

The abhervation of the length of path in consequence of the dimensions of the molecules is equal to half $2 r / \frac{2}{3}$, if one Wamts to make this comparathe with the above fonnd one of $\frac{4}{3} 2$, berame this valne refered to the abbreviation at a collision of wo molecules, whereas the now fomm abbreviation holds for a collision of 4 molecules. The momber of times that $\frac{4}{3}$ r is greater than $r / \frac{2}{3}$, is the value of $\frac{b_{11}}{b_{l i m}}$, or $\frac{b_{n}}{b_{l i m}}$ is equal to

$$
\frac{4}{3} \int \frac{3}{2}=1 / \frac{8}{3}=1.633
$$

For spherical molecules, therefore, $\frac{f-1}{3}=1.633$ or f almost equal to 5,9 and $n=\frac{8}{3} 1,633$ or about 3,3 . And then it would follow that these values $f^{\prime}=5,9$ and $s=3,3$ must be considered as the smallest possible values.

But I do mot lay clatm to perfect aceuracy for these valnes. Doubts and objedions may be raised agamst these results, which I eamot entirely remove. Hence the above is only proposed as an attemp to catculate htim for spherical molecules. The tirst objection is this - and at tirst sight this objection seems conclusive. The value of biam must be equal to ram. Is the thus calculated value of blim then the smallest rolume in which stationary molecules can be contained:- This is certanly not the case. The volume of n^{3} stationary spheres phaved logether as closely as possible is eymal to $4 n^{3} r^{2}=2$ if n is very great, and areordingly 12 times smatler them if they should be phaced so that every molecolle wond require a cobe as volume with 2 , as side. If this valne must be the valne represented by blim,
$b_{d}=\frac{4 \frac{4}{3} \pi r^{3}}{b_{\text {him }}}=\begin{gathered}2 \pi V^{2} \\ 3\end{gathered}$, ind so in connedion with the law given by me f - 1 and s^{2} would hecome much greater than the valne given for them by experiment.

But the thas calculated value for stationary molecules is not what I have represented by loim; 1 should prefer to represent it by b_{0}. At the point where the b-enre meets the line which divides the angle between the eaxis and the b-axis into two equal parts, need not and camot be the point in which b is equal to b_{0}. The becurve does not cease to exist in this point; it passes on to smatler volume, or possibly follows the line $r=b$.

On closer consideration the h-curve appears to touch the line $e=b$ and at smaller volumes than that of the point of contact the value of v appears to be again large that b.

In the same way as kinctical considerations were required for the determination of the value of bg to show that by is equal to four times the volume of the molecules, and so equal to $4 \frac{4}{3} \boldsymbol{x} r^{2} \boldsymbol{N}$, brim cannot be found without the aid of kinctical considerations. And the attempt which I make to calculate the value of blim, follows the same train of reasoning as has been efficient for the determination of b_{y}. This train of reasoning is ats follows. If the mean length of path for molecules without dimension is equal to $\frac{r}{\sqrt{4} a r^{2}}$, and if the abbreviation amounts to B, then $\frac{r}{v-b}=\frac{v}{v-\lambda \frac{1}{4} r^{2} r}, a r^{\circ} b=34 \pi r^{3}$. For b_{y} is $B=\frac{3}{4}$, and if the above given calculation is correct, the value of $B=1 / \frac{2}{3}$ for $b_{\text {lim }}$. So that, if we also introduce a value $r_{u}=b_{0}, \frac{v_{\text {lim }}}{r_{0}}$ amounts $t o=1,814$. If we assume a regular arrangement of the molecules in n_{0} and $v_{l i m}$, the distances of the rentres are not equal to $2 r$ in rim, but equal to $2 r^{1-1,814}=1,22$ times $2 r$.

But for moving molecules such a regular arrangement is perfectly improbatle. For them no other rule is valid but this that within a certain small space of time in equal parts of the volume, if not in contact with the walls, the mean momber of molecules is the same. But their arrangement in such an equal part of the volume is
entirely ahbtrary and always varying. A regular arrangement as would be the ease for cubic distribution, when in every molecule, :3 directions could be pointed out at right angles to each other areording to which they would be surounded by 6 neighbouring molerules phaced at equal distances, while in all the molecules these three directions and distances would be the same, is altogether inconecivable. This is a fortiori the case with the other mentioned reqular arrangements, atcording to which it would be possible in every molecule to point out several directions inclosing angles of 60°, according to which they are surrounded by other molecules. This would only not be absurd for stationary molecules, and then r_{0} is not equal to b_{0}, but $\varepsilon_{0}>b_{0}$. Now it might appear that the $b_{\text {lim }}$ introduced by me would really have to be b_{0}. I introduced the blim when I disenssed the ratio of the greatest lignid density to the critioal density: and made use for this purpose of the role of the rectilinear diameter. Tlis greatest liquid density oceurs for $T=\mathbf{0}$, and would therefore seem to hold for stationary molecules. This, however, is only seemingly in my opinion. Below ' 1 ' equal e.g. to $\frac{1}{2}$ or $\frac{1}{3} T_{k}$ this rule camnot be verified, but apart from its approximative character this rule is extrapolated. It is then taken for granted that what we have observed over a wide range of temperature, will also hold outside these limits. And I too have assumed this in the determination of $v_{\text {im }}$. All this refers 10 a volume in which moving molecules oceur. And so, if we put $\frac{v_{k}}{v_{\text {lim }}}=2(1+\gamma)$, the value $b_{\text {lim }}$ in the relation of $\frac{v_{0}}{v_{\text {lim }}}=2(1+\gamma)=\gamma \frac{b_{g}}{b_{\text {lim }}}$ is also that which holds fer moving molecules. If observations conld also be made at $T=0$, the volumes which are smaller than that in which the curve tonches the line $r=b$, could be realized. And I do not douth at all that in the immediate neighbourhood of $T=0$ the rule of the redtilinear diameter would entirely fail.

Let us summarize the foregoing. There is only one point in which the b-curve has a point in which $n=b$. This takes place at a value of b which we have called $b_{\text {lim }}$, and in which, becanse $x=b$, the value of the pressure is infinitely great. In this point $\frac{d b}{d v}=1$. Then in:

$$
\frac{-\frac{d p}{d v}-\frac{\partial_{u}}{v^{3}}}{p+\frac{a}{v^{2}}}=\frac{1-\frac{d b}{d v}}{v-b}
$$

because p and $-\frac{d p}{d v}=$ inlinite, alion

$$
\begin{gathered}
d p \\
p^{\prime} \\
d e=0 \\
1
\end{gathered}
$$

And the determination of reim and brim takes platere as follons. In the formula yieded by kinetical eonsiderations, viz.

$$
r=\frac{r-4}{r}=\frac{2}{r}
$$

$v_{\text {lim }}$ must be $=4 \pi r^{2} \beta r$. And for the determination of rinn the smallest value for a will have to be found. For collisions with I molecule at a time, $\beta=\frac{4}{3}$. For collisions with 2 molecules the the same time, so that at the impard 3 molecules are in contact, $\beta=\frac{2}{3} 1^{\prime} 3$. For collisions with 3 molecules at the same time, the value of β is equal to $\frac{2}{3}$, as we saw above. And collisions with a greater number which are in contact at the same time, are excluded. So that now the value of $\frac{b_{q}}{b_{i m}}=\frac{4}{3} \int_{2}^{3}=\int_{3}^{8}$ for spherical molecules has been found back, but now on hetter grounds than above.

But this does not terminate the investigation into the value of $b_{\text {bim }}$. I have put the chance that in trim collisions with a single molecule or with 2 molecules might take place equal ahoolutely to 0 . By putting $v_{\text {lim }}=4 x r^{2}$ Br I have assumed the possibility that there is also a chance of collision tor points the projection of which on the central plane at right angles to the direction of motion lies at the edge of this central plane, also still at this great densily. A more complete investigation would probably yield a still somewhat lower value of β.

My principal aim was to draw attention to the difference in the value of b_{0} and $b_{l i m}$. I had been astonished myself at the comparatively small value of $\frac{b_{g}}{b_{\text {lim }}}$, whereas $\frac{b_{9}}{b_{0}}$ has such a large ratio. For pherieal molecules the latter amounts to $\frac{4 \pi}{3 V^{2}}$ or almost 3 , whereas $\frac{b_{0}}{b_{i n}}$ maty possibly come near to half 3 . The relations at which I had arrived, viz. $\frac{f-1}{3}=\frac{b_{11}}{b_{\text {tim }}}$ and $s=\frac{8}{3} \int \frac{b_{g}}{b_{\text {lin }}}$ would be altogether incorrect, if
one shomblenfose bim and b_{1}. It is, however, very easy to see that the presume equal to intinitely wrat chen ocem when $=b$, hut that this is mot the case for $b=b_{n}$. Then for pherical motecules ${ }_{b}=\frac{3 V^{2}}{\boldsymbol{x}}$. And so the dinat point of the h-ourve does not lie in the line which divides the angle botween the r and the b axes intotwo equal parts, but in the line which makes a much smaller angle with the t-axis, the tangent of which is about equal to $\frac{1}{V 2}$ or about 0.74.

I have questioned myself whether 1 can account for the result at which I have arrived. Esperially the existence of blim and the relation of this quantity to the existence of groups of molecutes which simultancously, fow at a time, collide, or at any rate are so close together that the space between them miy he considered as zero. And thongh there are still mumerous questions to which the answer camot fet be wiven, and there is therefore reason to hesitate before publishing the foregoing, yet the considerations which result from this question have given me the courage which might else have failed me.

How large is the space allowed to the motion for molecules with dimension? The external volume must be diminished 1 by a volume at the wall. The centres of the molecules cannot reach the wall, bot mast remain at a distance $=r$. Hence if 0 is the area of the wall. a volume $=0$ or must be subtracted from the motion. 2 . The centres camot reach the surface of the molecules, but must remain at a distance $=r$. Then a volume $=O^{\prime} r$ would have to be deducted, if θ^{\prime} is the area of the joint molecules, and so it would be the same thing if the molecules had a radius $=2 r$. But then if the molecole A collides with the molecule l; we have counted the space that is to be deducted, twice, both for A and for B. Of course the space to be deducted mentioned moder 2 greally preponderates on atcount of the great number of molecules.

But the oceurence of collisions is a reason for b_{n} to be diminished. If a molecole strikes against the wall on if a molecule approaches the wall so closely that there is no room for another to pass, two parts of the spate inaceresible to the motion orerlay, and hence the extent of the inaccessible space diminishes. This is also applicable for the collisions of the molgentes inter se. If two molecules are so close together that a third camot pass between, part of the space which is inatecessible to the 3 molecule oventaps, and b is diminished. The greater the number of collisions, so the smaller the volume, the more b is diminished. Whether also the temperature has influence
on this dimmotion of h has wot yed been deveded. In cease of ervater velocity there are indeed, more collisions, bont we may abo amomn that they are of shoter duration. At the moment, how leave this point mutecided. What I have sath here atmon the cathere of the dimimation of b with smaller r is prathtially what I had assumed as cause ahready hefore when I assumed the so-cathed overlapping of the distance spheres as canse.

The formula then derived for $b=b_{g}-a_{v}^{b_{n}}+b\binom{b_{n}}{n}$ elfe. Wats not satisfactory, and grave a fiul too rapid decrease with the catcolated cocfficients of and $\begin{aligned} \text { b. And the caase of this at least I think } I \text { shat }\end{aligned}$ have to attribute to the quasi association. If for a moment I dispegard the motion, and think all the molernles to be distribnted in pairs, every pair being in contart, the dimination in the value of 1 , is $\frac{1}{2} N$-times the overlapping of the spate at the collision between there molecules. But if in the motion I again ahmit the arhitary pretty regular distribution and if I assume the original space, the diminution in b would of course be much less. and would only hold for those that collide. So for every kind of collision either of 2 or 3 or 4 or perhaps of a greater mumber the chatme that such a collision occurs in the given volume must be calculated, and this fration must be multiplied by the parts of the spaces which overlap at every kind of collision.

In the formula $\frac{b_{y}-b}{b_{g}}=a \frac{b_{q}}{v}+B\binom{b_{q}}{v}^{2}$ ete. ${ }_{r}{ }_{r}{ }_{v}$ represents the chance that 2 molecules come near enongh to each other to bring about overlapping of the distance spheres; in the same way $\left(\frac{l_{n}}{n}\right)^{2}$ the chance that 3 distance spheres overlap ete. And multiplied by a certain coefticient this would also be the case in complete absence of any cause of association, so if there are no spectal reasons for the molecules to aqgregate. The quantities a, β, wre the pieces of the distance spheres that overlap. For b_{g} all the molecules withour exception are counted, whether they are separate or whother they are part of an ageregation - and for the factor of es all the groups of 2 molecules, whether or no they appertain to a larger agreveration. But I have not yet calculated all this.

That with dimimution of the volume the decrease of b will take place more and more rapidy may already be inferred from this that the number of every kind of collision or rather sulticient approach to each other, increases in a heightened degree, and at last if only the volume has become small enongh, it may be assumed
that overlapping of the distane sheres takes permanently place. For an anhtrary divection of motion we hall probably not have (1) wo any higher than to a sufficient approath of 4 molecules, and this would justify the athove given catcutation of $v_{\text {lim }}=b_{\text {lim }}$. We should have calculated this point when with decrease of r, the decrease of b is equal to it. Then $\frac{d b}{d v}=1$. With values of $v<r$ "im all the molecules are not yet in contact; then there are still motions possible in this space, e.g. flowing of the substance or vibratory motions. But the motion which we call heat, has become impossible. Not until r_{0} is reached does every motion become impossible. The points of the b-curve, which I have continued as far as in b_{0} above, have of course, no physical significance. The portion of the b-curve between $m_{h_{m}}=b_{0}$ is then only to be considered as a parasitical branch. In the formula for the calculation of b this branch is probably also included. Aecordingly I have entirely returned to the idea that the diminution of b is an apparent diminution of the volume of the molecules.

In these remarks I have touched upon several points which are of importance for the theoretical treatment of exceedingly condensed substances - whihont being able as yet to bring the investigation to a close. That 1 mention them already now is because I hope it may stimulate others to give their attention to it, and that they may try their strength to bring the investigation to a close. The determination of $v_{l i: z}$ seems to me of special importance.

Summary of the results obtained in this and previous communications.

If it was rigorously valid the law of the corresponding states wonld have taught that all substances belonged to the same genus. This has proved not to be entirely complete. Experience teaches that from this point of view, there are differences. All the substances, indeed, belong to the same genus, but there are different species. If the grantities characteristic of a substance are called the quantities f, s, and r, they appear to differ. But these differences need not be considered as differences in 3 characteristic quantities, but they may be reduced to a single quantity. If this single quantity is called h, then $\frac{j-1}{1}=h, s=\frac{8}{3} V h$ and 2 is at least approximately equal to $\frac{3}{\sqrt{2}}$. When we try to find the significance of this characteristic guantity, it will be found, as was a priori to be expected in what was left out of account in the derisation of the law of corresponding
states, viz. the variability of b. This variability of b differs for different substances, and depends on the form of the molecules or on the quasi-asociation, which indimetly inthencen the course of b. If we pat b, for the greatest value of 1 and bim for the smatlent value which is of importance for the equation of state, the ratio $\frac{b_{g}}{b_{\text {him }}}$ is different. This ratio however, oscillates comparatively little round the value 2.

Fig. 1.

Fig. 2.
This ratio $h=\frac{b_{g}}{b_{h m}}$ determines, if I continue to speak of species, the species to which the substance belongs.

The value of thum is that value of b, for which e hats the same value as b, and the pressure is therefore intinitely high. This value of ε_{0} an $=$ fom is the smallest volume in which the substance can still be in thermal motion, hut it is still appreciably Ereater than the juint volnme, in which the molecoles, when thes were stationary, could be contained. The reduced equation of state which has the form

$$
\left.f_{\{ }^{\prime} \boldsymbol{x}, r, m\right\}=0 .
$$

if 1 should be put constant, asstimes the form :

$$
\left|\left.\right|_{i} ^{\mid r,}\right| \frac{r}{b_{y}}, m \mid=0
$$

when the variability of h is raken into acoomet, with gradually increasing deviation, howerer, as the dencity approaches the limiting density

The form of this latter function is:

The deviation gradually increasing with the density is cansed by the variable term ${ }_{\text {b }}$ of The influence of this deviation may be neglected for large values of r. At the eritical density the different values of $\frac{r}{r} b_{g}$ differ only a few percentages. At the limiting density the valne of this latter quantity is equal to $\frac{1}{f-1}$. Now that f oscillates roum 7, this greatest difference is after all perhaps less great than might be feared, "hut yot not negligible, and manifests itself in the different directions of the rectinear diameter ${ }^{1}$).

[^61]Microbiology. - "dvidution of pmotrolem. permifine perefimail and benzine by mispotus." by Dr. N. L. Soungex. Communi(ated by Prof. II. W. Belderanek).
(Communicated in the methot of Junary 25 1913).
In the following it is shown that the bydrecartoms') of the parafin series, which chemically are so differall to decompose, are easily oxidised to carhonic adid and water under the action of microbie life.

Most of the fat-splitting moulds do not grow or only very poorly on paratfin. Rams ${ }^{2}$) hats described a white lemieilliom which ean use paratifin as source of carbou whilst, according to this experimenter. bacteria camot grow on hydrocahoms.

But the latter statement is incorsect. Mos of the bacteria which oxidise the hydrocatbons cannot decompose the fatty acids, which in their chemical composition differ little from the paraflins, but some pevies are also able to split fats by secretion of lipase

Hence, the paraltin-oxidising hateria can be classified in two groups: fat-splitting and nosi-fat-splitting.

To the former belong: B. fluorescens liquefaciens, B. patazanew, B. punctatus, B. ghorescens nom liquefociens, B. Stutari, B. Lipolyficum " b, γ and d, and the Micrecoecus perffinoe, deseribed below. To the second group belong some species of the genus Mycobucterium. ${ }^{3}$)

Oxitation in crude cultures.

The oxidability of petroleum, paraffin, vaselin and benzine was ascertained as follows.

To $100 \mathrm{~cm}^{3}$ of a culture liquid consisting of: tapwater 100 , ammoniumchlorid 0.05 , bikalimmfosfate 0,05 , in Erdfangeyer thasks
${ }^{1}$) For these experiments were used: paraflin (Grübler), paraffinoil (Merck), vaseline, petroleun (American and liussian), and benzine Beside the common commercial petroleum I ofter: used a more purified product obtained as follows. American petroleum was shaken with sulfurie acid D. 1,84 , with repeated refreshing of the acid, then with polash solution; after this again treated with acid and once more with potash; it was then dried on sodimm and distilled. The fraction $150^{\circ}-$ 250° (free from nitrogen) served after removing of a small quantity of sulfuric acid by potiths solution as food for the microbes.
${ }^{3}$) Rabn, Ein Paraffin zersetzender Schimmelpilz. Ceutralblatt für Bakt. 2 Abt. S. 382, 1906.
${ }^{3}$) A. Weber, Ueber die Tuberkelbazillen ähnlichen Stäbehen und die Bazillen des Smegma's. Arbeiten aus dem kaiserlicheu Gesundteitsamte 1903. Bd. 19. S. 251.

Neumans und Lehmann, Grundrisz der Babteriologie. be Aullage 1912. S. 619.
of $工=450$ cm" capacity. was added ahout 1% of one of the parallins: this medimm was inoenlated with about a gram of gaten soil and plated at $20^{\circ}, 28^{\circ}$ and $37^{\circ} \mathrm{C}$.

Commonly after two days already growth of microbes is olserved in the tubes at 28° and 37°; after aboul 7 days in those at 20°. The acceleration of the development is then very marked, so that the liquid becomes elondy in consequence of the great number of microbes growing at the expense of the hydrocarbons. The growth in the cultures, transferred to a similar medium, is also very strong and the droplets of the hydrocarbons are enveloped by a thick slimy layer of microbes. In a short time the hydrocarbons, disappear entirely from the medium.

From the foregoing follows that petroleum, paraftin, paraflinoil. vaselin and henzine are oxidised by bacteria.

This explains the disappearance of the petroleum, daily brought at the surface of canals by motor boats and in other ways, and from the sewage water of the petroleum refineries.

Isolation of the bacteria.

The paraffin-oxidising bacteria were isolated by streaking the above described crude cultures on plates consisting of: washed agar 2 (or gelatin 10), bipotassiumfosfate 0,05 , ammoniumehlorid 0,05 , magnesiumsulfate 0,05 , distilled water 100 .

To this medium was added as source of carbon, petroleum in the form of vapour, from a small dish placed on the cover of the inverted culture box.

Fig. 1. Culture method on agar a with salts and petroleum as rapour from the dish p.

In this way only those bacteria which can oxidise petroleum vapour develop on the agar to colonies and are very easily isolated.

The growth of the microbes is vigorous, the bacteria assimi'ating, beside the vapour directly taken up, the petroleum
condensed around the colonies and forming an iridesent layor on the agras.

On comparison of the velocity of growth of the varions species, much difference between them is observed.

By direot sprinkling of soil, canal water, or oher material on the plates, several species whioh do not aceummate in the deseribed culture liguids, 'an he isolated. Moreover it is possible in this way to determine the momber of paraftin-oxidising miorobes in any mat terial. So, in one gram of garden soil at Delft $\pm 0,000$, in one em ${ }^{3}$. canalwater ± 8000 paraftin-oxidising mierobes were found, which shows that they are very common.

It is clear that this method is also applicable to other volatile compounds.

Fror a nearer examination the cultures were sown, beside on the alove plates, on broth gelation and broth agar, and on media of other composition.

Accumulation of parafin-oxidising species at barious temperatures.
When the above media, consisting of tapwater, anorganic salis, and one of the bydro-cathons, are placed at temperatures between 15° and $25^{\circ} \mathrm{C}$. and the transfers are also cultivated at these temperatures, B. fluorescens liquefociens, B. punctutus, and other liquefying species are particularly obvions, but there likewise ocen some fat splitting, non-liquefying bacteria and micrococei, which can all be distinguished on broth gelatin.

In the lubes placed at $26^{\circ}-30^{\circ} \mathrm{C}$. the number of liquefying bacteria is still very great, yat, non-liquefying species are more common than at lower temperatures. At the same time the non-fatsplitting group of the paraffin-oxidising species, the myeobacteria, begin to develop, but especially at $30^{\circ}-37^{\circ} \mathrm{C}$. they find their optimum. They are very striking by their morphological properties and pigment formation.

By this method white, brown, red, and red-brown species were isolated. At 37° C., with paraffin as carbon source, a fat-splitting micrococens developed in almost pure state, which oxidised paratims vigorously; it was called Micrococcus parafinae and is in its properties, except in shape, similar to B . (ipolyticum ${ }^{1}$).

If instead of garden soil, sewage water is used for the infection, the growth of fluorescents and of B. pyocyaneus may become so intense,
${ }^{1}$) These Proceedings, 1911.
that the above mentioned species do not wel develop and often quite disappear.

At infection with pastemised soil (5 mimates at 80 (.) no growth fakes place, which shows that to the spore-forming bacteria no parallin-oxidising species helong.

Under anaerobie conditions parafins are not broken off by bacteria.

> Description of the parafien-oxidisin! mbcobacteria.

These bacteria are immotile; in young cultures (8 hours on broth agar at 30° C.) they are rod-shaped, length 4 r- 10 or, width 0.5 y -1.5 , , after division it often oceurs that the wo individnals are still joined in one point.

Very characteristic is the appearance of ramitications in these microbes, which remind of hacteroids such as are found in B. rudicicold.

After some days' culture en broth agar or broth gelatin, these rod-shaped bacteria pass into Streptococras-like organisms, the cells of this form having a diameter equal to the width of the rod form. The Streptococeus-form produces, on a new medium, first the rod form, which then again passes into that of the streptococcus.

Spore formation does not occur; heating during 5 minutes at 65° is not resisted.

All species secrete some slime. The growth of the mycobacteria, which after their pigment-forming power on potatoes or on broth gelatin are distinguished in Mycobacterium phei Lemmans and Nhevans, M. lacticola L. and N., M. album, and M. mbrem, varies very much on different media as is shown in the table below, where some of the results on grow thand pigment formation are given.

On potato these microbes form most pigment ${ }^{1}$) and grow very well; likewise on broth-, malt-, und glucose gelatin. A very good medium is also broth gelatin or broth agar with 3% glucose.

Besides on the above substances the fat-sptitting bacteria and the Wycohacteria grow on humus compoumes without these being decoloured. The hest source of carbon is peptone, then follows asparagin, ammonimm chlorid, and potassimmmitrate. Nitrate is reduced to nitrite; denitrification does not take place. In broth, with 3% peptone, indol is not formed.

In broth with 3% glucose, no fermentation is observed.
'lyrosin is not changed into melanin.

1) The pigment of Mycobucterium rubrm is probably carotine; it resists hydrochlorid ($381 / 1$), potash solution, and ammonia, dissolves in chloroform and ether and is coloured dark blue by sulfuric acid of density 1,86 .
GROWTH AND PIGMENT FORMATION BY MYCOBACTERIL'M ON VARIOL'S MEDIA.

Aesculin and indican are not decomposed.
Urea is only splitted by Myfobacterium album.
In feebly acid media the growth is inhibited; it is best in neutral or feebly alkaline solutions.

At the oxidation of paratins, organic acids, probably fatty acids are formed as intermediary products; they are, however, only present in slight quantities and evidently are oxidised almost as quickly as produced. Acid formation from parathin conld, however, be shown with the help of washed agar plates to which a litte congo red had been added, or in which some calciumfosfate was precipitated. In the former case bhe fields appeared under the inoculation streaks, in the latter clear ones.

T'elocity of the petroleme and paraffin oxidation.

The velocity with which Mycobacterium album, 1/. mbrum, Micrococcus paraffinae, and B. thorescens liquefaciens oxidise petroleum, was ascertained by weighing the quantity of cathonic acid formed in a certain time. The diminution of the petroleum could not be directly stated as it always evaporates.

The quantity of the produced carbonic acid was ascertained as follows.

As culture vessel was used a one liter Erlenmeder flask provided with a ground glass stopper, hearing a vertical glass tube, reaching to near the bottom, and a side tube. It was filled with $\pm 200 \mathrm{~cm}^{*}$ of a sterile culture liquid, consisting of distilled water, anorganie. salts, and $2 \mathrm{~cm}^{*}$. sterile petroleum.

The vertical glass tube was connected with a large U-tube tilled with soda lime; the side tube was joined to an apparatus successively formed by U-tubes, filled with sulfuric acid, beads and paraffinoil (to keep back the petroleum vapour), calcimmehlorid, potash solution to weigh the carbonic acid, and ealciumchlorid for control, with a Kortixg pump at the end. When the cock of the pomp is opened a current of air, freed from carbonic acid, passes through the thid and yields the dried cuthonic acid, formed in the culture, to the potash tube.

During 24 hours are formed in the culture, if infected and placed at $28^{\circ} \mathrm{C}$., Milligrs. carbonic acid by:

Mycobacterium allum 55
Mycobacterium mbrum 41
11. parafinae 34
B. fluorescens: liquefaciëns 27

Crude culture 93

About a thid part of the weight of the carbonice ated eonrespondo to the oxidised petrolenm.

The velocity with which parathin is oxidised by these bateteria was estimated by stating the dimmution in weinht, by the bacterial action, of two grams of paradfin, very mimutely mixed with distibled Water and amorganic salts, after a month's culture al $28^{\circ} \%$

The rest of the origimally added patation was disumed in petrolemmether; of this solution a certain quantity was evaporated and the remaining quantity of the paraffin was weighed.

So it was found that during a month's culture was oxidised in mgrs. by :

Wycobacterium almom	300
," mbrum	330
Wicrococels: paratimat	180
13. Jhorescens liquefuciens.	180
Crude colture	540

Summery.

1. D'arations (petroleum, parafin, benzine) (an be used by certain species of microbes as soure of carton and energy, and are oxidised to earbonice acid and water. As intermediary products abd could he indicated.

The bacteria were obtaned by means of the acemmulation method, with the said substances as source of carbon.
2. The microbes active in this process belong to two groups.
a. Fat-splitting bacteria, very common in nature, as B. fluopescens liqueficiens, B3. Pyocyomeus, B. punctotus, B. Stuteri, B. lipolyticum, 11. provafinare.
b. Non-fat-splitting bacteria belonging to the genus Ilycobacteriom likewise widely spread, of which the following were distimgished: Mycolucteriam album, M. pheiei, Il. lacticola, and II. mebrem.
3. The paraffin-oxidising species decompose, on ant average, 15 mG . petrolemm and 8 mm . patafin in 24 homs at $28^{\prime \prime} \mathrm{C}$. per $2 \mathrm{~cm}^{2}$. surface of culture liquid.

> Microbiological Laboratory of the Techmeal I niversity, Dilit.

Physics. - "The" coefficient of diftusion for gases according to (1. B. Merer." By Prof. J. P. KCbam.
(Communicated in the meeting of danuary 25,1913).
Among the varions methods of deriving an expression for the conticient of diflnsion from the kinetic theory on the assumption that the molecules behase like clastic spheres there is one - that of (1). E. Mexpr ${ }^{1}$), - which leads to a result differing largely from the others and from observation, athough the fundamental assumpfions are essentially the same.

The deduction of Meren's formula is shortly as follows ${ }^{2}$) : plane of unit area is considered at right angles to the gradient of concentration and therefore to the diffusion stream, and the numbers of molecules of each kind are calculated which cross the plane per second. It is assumed that the molecules have on the average had. their last collision at a distance l (mean free path) from the point where they cross the plane and that heir nomber in each direction is proportional to their density at the point where the last collision has taken phace. The numbers in question of both kinds of molecules are found to be

$$
u_{1}=-\frac{1}{3} u_{1} l_{1} \frac{d n_{1}}{d x} \quad \text { and } \quad a_{3}=-\frac{1}{3} u_{3} l_{3} \frac{d n_{2}}{d x}
$$

where u is the mean molecular velocity, n the number of molecules in unit volume and x^{2} the direction of the diffusion stream; obvioasly $\frac{d n_{1}}{d x}=-\frac{d n_{2}}{d d_{r} r}$; for l_{1} and l_{2}, the mean free paths of the two kinds of molecolles in the mixture, we have
and

$$
\begin{aligned}
& I_{1}=1:\left\{1 \bar{g}_{1}, \boldsymbol{\pi} N_{1}^{2}+n_{2} \boldsymbol{\pi} 0^{2} \int \frac{m_{1}+m_{3}}{m_{2}}\right\} \\
& \ell_{2}-1:\left\{\boldsymbol{1}^{\prime}=n_{2} \boldsymbol{\pi}{s_{3}}^{2}+n_{1} \boldsymbol{\gamma} \boldsymbol{\sigma}^{2} \int \frac{m_{1}+m_{2}}{m_{1}}\right\} ;
\end{aligned}
$$

Where s is the diameter of the molecule and $\sigma=\frac{1}{2}\left(s_{1}+s_{s}\right)$.
Owing to this double stream of molecules a total number $a_{1}+a_{3}$ pass through the plane: this would in general represent a motion of the gats. As the gas considered as a whole is supposed to be at rest, the stream $a_{1}+a_{2}$ will prodnce a pressure gradient by which at stream of the gas as a whole of the same amome in the opposite

1) 0. E Meyer, Die kim. Theorie der Gase p. 252 sef . 1899.
${ }^{2}$) e. g. L. Bolramans, Kim. Theorie. 1. p. 89 seq. 1890.
direction is generated. When this stream is superposed on the first. the numbers of molecules hecome $n_{2}-n_{1}\left(u_{1}+a_{2}\right)$ and $a_{3}-n_{n}\left(n_{1}+a_{3}\right)$ and the coeflicient of diflusion /)

$$
D=\frac{1}{3 n}\left(n_{2} u_{1} l_{1}+u_{1} u_{2} l_{2}\right) .
$$

According to this formula, () would vary strongly with the composition of the mixture, when m_{2} and m_{2} differ much. In order to show this we put successively $n_{1}=0$ and $n_{3}=0$ and find for the limiting values of D :

$$
\begin{aligned}
& I\left(n_{1}=0\right)=\frac{1}{3} \frac{u_{2}}{n \pi \sigma^{2}} / \frac{m_{2}}{m_{1}+m_{2}} \\
& D\left(n_{3}=0\right)=\frac{1}{3} \frac{u_{2}}{n \pi \sigma^{2}} / \frac{m_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

Using the relation $u_{1}^{2} m_{1}=u_{2}^{2} m_{2}=\frac{4}{. g h}$, where h is the constant in Maxweld's law of distribution, we can also write

$$
\begin{aligned}
& D\left(n_{1}=0\right)=\frac{2}{3 \boldsymbol{\pi} n \sigma^{3}} \frac{1}{\sqrt{x} h} / \frac{m_{3}}{m_{1} m_{1}+m_{2}} 1 \\
& D\left(n_{2}=0\right)=\frac{2}{3 \boldsymbol{\pi} n^{2}} \frac{1}{\sqrt{\boldsymbol{x} h}} / \frac{m_{1}}{m_{2} m_{1}+m_{2}} 1
\end{aligned}
$$

The lwo values of D are to each other as $m_{3}: m_{1}$ e. g. for carbon dioxide and hydrogen as $2: 44$.

The experimental evidence ${ }^{1}$) is in fivour of a coefficient which varies with n_{1} and n_{3}, but only to a very small extent, bo that a variation as given by Meyer's formula is out of the question.

The coefficient of diffusion according to Stefan ${ }^{2}$) is:

$$
D=\frac{3}{16 n o^{2}} \frac{1}{V \pi /} / \overline{m_{1}+m_{3}},
$$

therefore independent of the composition of the mixture, which agrees approximately with experiment. The same expression follows from Maxweli's second theory when applied to elastic molecules; this was proved by Lavgevin ${ }^{3}$). The only simplifying supposition which
${ }^{1}$) Compare A. Lonius, Ann. d. Ph. (4) 29 p. 664.1909
${ }^{2}$) J. Stefan, Wien. Sitz.ber. 65 p. 323.1872
${ }^{3}$) P. Langevin, Ann. chim. phys. (8) 55 p. 245. 1905. Maxwell himself had used the same method (Nature 8. p. 298. 1873): his result given without proof diflers by the factor 4/a from that of Langevin.
he had to make in order to carry out the required integrations was, that in ordinary slow diftusion Maxweld's law of distribution maty he taken as fuhtlled. The want of rigour which this implies may perhaps acount for the small difference between the formula and observation mentioned.

The question arises, what canses the great difference between Mrark's result and the others. Gross ${ }^{2}$) (riticised the superposition of the gas current on the diffusion current: he tried to improve the theory hy leaving out the former and by taking $\frac{1}{2}\left(a_{1}+a_{3}\right)$ as the real diffusion stream; but this is certainly illegitimate, as the definition of D presupposes the gats to be at rest or the plane throngh which the diffusion stream is calculated to move with the gas.

Laxgevis ${ }^{2}$) pointed ont, that the dynamical action between the two kinds of molecules is lost sight of altogether in Meyer's method, but he failed to indicate, how to modify or supplement it in order to take this action into acconnt. Neither does Boltzasses explain the striking contradiction between the two methods.

It is possible to remove this contradiction for the greater part by making use of the notion of persistence of molecular velocity which deass ${ }^{3}$) introduces into the kinetic theory and which also plays an important part in the theory of the Brownian movement. This quantity depends on the principle that, when a molecule collides with other molecules, it will after a collision on the arerage have retained a component of velocity in the original direction. Jians has calculated what fraction of the original velocity this component is on the average: he calls this fraction the persistence ond finds $\boldsymbol{v}=\frac{1}{4}+\frac{1}{4 \sqrt{2}} \log (1+1 / 2)=0.406$.

Jews shows that the usual calculations in the kinetic theory of the various transport-phenomena of which diffusion is an example have to be corrected for this persistence. For the sake of simplicity it is assumed that a molecule describes the same distance l between successive collisions. Owing to persistence a molecule will on the average after describing a path $/$ travel on in the same direction over distances successively of $7 t, 7)^{2}$ etc., therefore altogether describe a distance $/ /(1-i)$ before its motion in the given direction is exhansted and similarly a molecule which reaches a plane from a distance l will not on the average have had a component (0) in the given

1) G. Gross. Wied. Ann. 40 p, 424 1890.
$\left.{ }^{2}\right)$ l.c.
${ }^{3}$) J. H. Jeans. The dynamical theory of gases p. 236 sq4. 1904.
direction at that distame before it eollided there, bul all at distmen //(1-i). We ean also say, that the molecoles whidh hate land a collision at a distance $l(1-\sqrt{2})$ suceed on the acrate in erting for the plane before their velocity in the given direction is reduced foo In the calleatation of the mambers that eross the plane it wats assumed that the velocities were evenly distributed int all directions at a distance l : as it now appears that this condition does not hold for a distance l but for the distance $/ /(1-i)$, the correct result is obtatined by replacing l by $l(1-i)$ in the final formulat.

In this mamer Jeass corrects Mryer's formula ${ }^{1}$), hut it is clean that by this means no improvement is effected, as /) is multiplied by a constant factor and the anomalons dependence on n_{1} and n_{2} remains. An important point has however heen oventooked by Jrass viz. that the persistence obtains a different value when one deals with a mixture of two kinds of molecules of different mats.

When the calculation of it is carried out for a molecule m, amongot molecules m_{3} one finds

$$
\boldsymbol{v}=\frac{m_{1}+m_{2}\left\{-\frac{1}{2}+\frac{1}{2 V^{2}} \log \left(1+V^{2}\right)\right\}}{m_{1}+m_{2}}=\frac{m_{1}-0.188 m_{2}}{m_{1}+m_{2}}
$$

For $m_{1}=m_{2}$ this expression reduces to the one given by Jeass
As a molecule m_{1} collides not only with molecules m_{2} but also with molecules of its own kind, the correct expression for the persistence is obtained by multiplying the arevage mumber of collisions of the latter kind by 0.406 and that of the former by the ahove fraction. In this manner the factor $1 /(1-v)$ becomes

$$
f_{3}=1:\left\{1-n_{1} \boldsymbol{\sim} s_{1}^{2} \vee \bar{a} l_{2}>0.406-n_{2} \boldsymbol{\sim} \boldsymbol{0}^{2} \left\lvert\, \quad \frac{m_{1}+m_{2}}{m_{2}} l_{1} \frac{\left.m_{1}-1\right) .158 m_{3}}{m_{2}+m_{2}}\right.\right\}
$$

for the molecnles m, and

$$
f_{2}=1:\left\{1-n_{2} \boldsymbol{*} s_{3}{ }^{2} V \bar{⿹} l_{3} \times 0.400-n_{1} \boldsymbol{\pi} \sigma^{3} \left\lvert\, \frac{m_{1}+m_{2}}{m_{1}} l_{2} \frac{m_{2}-0.188 m_{2} 1}{m_{1}+m_{2}}\right.\right\}
$$

for the molecules m_{2}.
Repeating Meyer's argument we find for l)

$$
D=\frac{1}{3 n}\left(n_{3} u_{1} l_{1} f_{1}+n_{1} u_{2} l_{2}, i_{2}\right)
$$

If we now put $n=0$, we obtain
${ }^{1}$) Jeans l.c. p. 973. Comp. M. y. Sroutchowskr, Bull. de l'Ac. d. Sc. de Ceracovie 1906 , p. 202.

The symmetry of this expression shows that exactly the same value holds for $n_{2}=0$. The form of $/ 1$ abo agrees with Sterax's expression: the coefticients are in the relation of $1: 1.05$; therefore, considering the approximate character of the deduction, there is practically complete agreement.

For intermediate compositions the difference between the two expressions for l) becomes material only when $m_{\text {s }}$ and m_{3} are very different. This is probahly due to the method of caleulation which compels us to work with averages from the beginning. Moreover Ifares method of calculating the persistence is not rigorous: it might perhaps be found possible by applying more rigorous methods to reduce the remaining difference hetween Mrier's corrected formula and the other one. As a matter of fart the object of this paper was not *o much to deduce a correct formula, considering that the near areuraty of LAsobris's method eamot well be doubted, as to remove the strong contradiction between the two results.

In conclusion it may be added, that the method which is indicated in this paper can immediately the used to deduce rational formulae for the viscosity and the conduction of heat for gas mixtures.

Mathematics. - "On hilinedr mull-systems." Communicated by Prof. Jan de, Vries.
(Gommunicated in the meeting of January 20,1913).

1. In a bilinetr mull-system any point admits one mull-plame. any plane one mull-point. The lines incident with a point and its mull-plane are called mull-rays. If these lines form a linear complex. we have the generally known mull-system, which is a special ease of the correlation of two collocal spaces (mull-system of Möbus). The mull-rays of any other mull-system (1,1) fill the entire space of rays; with R. Stcra we denote by γ the number indicating how many times any line is mull-ray.

In the first we suppose $\gamma=1$ and we examine the mull-systems which may he called tritimen and which can be represented by $(1,1,1)$.
$\$ 2$. If a plane if rotales aroumd the line / its mull-point fore scribes a conic $(1)^{2}$; for on ateromm of $\gamma=1$ there is one pusition of if for which f lies on 1.

The mull-points of the planes of passing thromgh any moin /' lio on a quadratic surface ($\left.l^{\prime}\right)^{2}$; evidently it comtans I^{\prime} and on acomont of $\gamma=1$ one point more on any line through P^{\prime}.

Evidently the null-plane of l^{\prime} towches ($\left.l^{\prime}\right)^{2}$ in l^{\prime} and "onts it abcording to two lines $!/ 9 y^{\prime}$. Any point I of one of these lines is null-point of a plane y passing through f and ahon through f. Therefore these lines are mull-rays of 0^{2} pencils (1,7), i.e. simpment.

So the simgular lines "f a $(1,1,1)$ form "romymener (2,2 ,
All the other lines of $\left(I^{\prime}\right)^{2}$ are characterized by the fart that the null-planes of their points conewr in P '; otherwise: P is the vertex of the quadratic cone enveloped by these planes.
§ 3. Two surfaces $\left(P_{1}\right)^{2}$ and $\left(P_{2}\right)^{2}$ have in common the eonic $(l)^{2}$ corresponding to the line $l=P_{1} l_{2}$. As any other common point S bears two and therefore x^{1} null-planes, it is simplit. The locos of this point S is a conic σ^{2} mecting $(l)^{2}$ in two points.

The surfaces $\left(P^{\prime}\right)^{2}$ corresponding to the points I^{\prime} of $/$ form a pencil: the surface passing through any point F is indicated by the poin of intersection of l and the mull-plane of F. The mull-planes of amy point S evidently form a pencil, the axis of which may be represented by s*.

As σ^{1} contains two points of $(l)^{2}$, the line l bears two mull-planes the null-points of which lie on σ^{2}; therefore the locus of the axes s^{*} is a quadratic scroll or requlus.

According to the laws of duality there is a quadratic comu $\Sigma_{\text {. }}$ any tangent plane of which is simguldor, as it contains x^{1} mull-points lying on a line $s_{\text {sin }}$; these lines generate a second regulus.
§ 4. We now consider three surfaces $(P)^{2}$. As any pencil of planes (s^{*}) admits a plane passing through a point P_{3}, the surfare $\left(P_{8}\right)^{3}$ also contains σ^{2}. Amongst the points common to $\left(P_{8}\right)^{2}$ and the conic $\left(l_{13}\right)^{2}$ we find in the first place the points of intersection of $\left(l_{18}\right)^{3}$ and σ^{3}. One of the two remaining points common to $\left(P_{s}\right)^{3}$ and $\left(l_{13}\right)^{3}$ is the mull-point of the plane $P_{1} P_{2} P_{3}$, the other which may be denoted by T lies in three mull-phanes which do not pass through a line, on account of the arbitrary position of the points P; so T bears ∞^{2} mull-points, i.c. T is mincipal point.

Evidently all the surfaces $\left(I^{\prime}\right)^{2}$ form a complex with the simpulon conic σ^{2} and the principal point I ' as common elements. 'This com-
 face conrexpmatine to the point of intersertion of the null-phanes 1/2, $12.1 /$:

The corter of the simpulin come Σ^{2} bears x^{2} singuler mulloplenes a not passing throngh a line, from this ensues that it coincides with the principul pmint T '.

In an analogons way the pheme τ of the simpulat comic σ^{2} is prinripul pleme of the mull-system.

Let us consider the plane through I and one of the axes s*; it has for mull-point the singular point s' bing on sw but the same time the principal point T '; so it is singular and its mull-points lic on the line $s_{3}=T$. so the regulues $s_{\text {糈 }}$ is a come and consists of the eclyes of the cone projecting the simgular conte σ^{2} out of T.

Likewise the axes n^{*} form the system of tungents of a conic lying in the principal plane \boldsymbol{r}.

5 . The conics $(l)^{3}$ form a system x^{4} admitting a representation on the lines of space. For through amy two points F_{1}, F_{3} one $(l)^{2}$ passes, which is completely determined by the line $/$ common to the mull-planes of $_{1}, \mathscr{F}_{2}$.

The cones $[l]_{2}$ each of which is-the envelope of the null-planes of the points of a line $/$ also form a system x^{1}; any of these cones can be determined by means of two phanes $y_{2} \cdot \mathscr{F}_{2}$ the mill-points of which indicate then the line $/$.

If l lies in a singular mull-phane σ, the conie $(l)^{2}$ breaks up into the line $s_{\%}$ bearimg the mall-points of a and a second line l which is hoind to cont s; so the principal point ' $/$ ' which atso can ligne as mull-point of a camot lic ontside s^{*}. So we find once more that the regulas $\left(s_{m}\right)$ is a cone.

If l pases harough the vertex of Σ_{y} and bears therefore two singhlar planes, (7$)^{2}$ derencrates into two intersecting lines, the point of intersection coinciding evidently with the vertex of Σ_{z}; for the mull-pint of any other plane through /mast coincide with that vertex.
8. A spectal trilifnear mall-sytem is determined by the tangential phanes of a pencil of quadratio sutaces \boldsymbol{p}^{2} bonching each other along a conice 0^{2}, where the point of contat forms the mull-point. ${ }^{2}$)

[^62]If the pencil is represented ly

$$
\left.x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x^{2}=1^{1}\right)
$$

the tangential phane in (y) has the equation

$$
y_{3} x_{1}+y_{2} x_{2}+y_{3} x_{3}+2 y_{1} x_{4}=1
$$

2. being determined by

$$
\begin{equation*}
y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+x y_{3}^{2}=1 \tag{1}
\end{equation*}
$$

So for its coordinates (n) we tind

$$
\begin{equation*}
y_{1}: y_{2}=y_{2}: y_{3}=y_{3}: y_{3}=y_{1}: y_{1} \tag{2}
\end{equation*}
$$

(11)

$$
\begin{equation*}
y_{1}: y_{1} y_{4}=y_{2}: y_{2} y_{1}=y_{3}: y_{3} y_{4}=n_{1}:-\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) . \tag{3}
\end{equation*}
$$

From (1) and (2) we deduce

$$
{m_{1}}^{2}+1_{12}^{2}+1_{4}^{2}+y_{4}^{2}=0
$$

i. e.

$$
\begin{equation*}
y_{1}: n_{1} n_{4}=y_{2}: n_{2} v_{4}=y_{3}: v_{3} n_{4}=n_{1}:-\left(n_{1}{ }^{2}+v_{3}{ }^{2}+v_{3}{ }^{2}\right) \tag{4}
\end{equation*}
$$

So (4) shows that any plane has only one mull-point.
If the null-plane (\quad) passes through the fixed point $I^{\prime}\left(z_{k}\right)$ we have $\Sigma \Sigma_{k} \eta_{k}=0$, so the equation of $\left(I_{j}{ }^{2}\right.$ is

$$
\begin{equation*}
z_{1} y_{2} l_{1}+z_{3} y_{2}!_{4}+z_{3} y_{3} l_{1}=z_{1}\left(y_{1}^{3}+y_{2}{ }^{3}+\|_{3}{ }^{2}\right) . \tag{b}
\end{equation*}
$$

The intersection of this surface with the surface belonging in the same way to the point ($2(u \%$) breaks up into the singular conic

$$
y_{4}^{3}=0, \quad y_{1}^{3}+y_{2}^{2}+y_{3}^{2}=0
$$

and a second conic lying in the plane

$$
\left(\tilde{z}_{1} u_{4}-\tilde{z}_{4} u_{1}\right) y_{1}+\left(\tilde{z}_{2} u_{4}-\tilde{z}_{4} u_{2}\right) n_{2}+\left(\tilde{z}_{3} u_{4}-z_{4} u_{3}\right)!_{3}=0
$$

The latter contains the mull-points of the planes passing through $I^{\prime}\left(2\right.$. From this ensues that γ is equal to one. ${ }^{2}$)

All the surfaces $(I)^{2}$ pass through the principal point $y_{2}=y_{2}=y_{8}=0$. As could be expected, this point is the vertex of the quadratic cone touching all the surfares of the pencil $\left(\boldsymbol{d}^{3}\right)$ along σ^{3}.

The null-planes (v_{i}) of the points (!) of the plane ζ envelope the quadratic surface

$$
\zeta_{1} \eta_{1} \eta_{4}+\zeta_{2} \eta_{2} \eta_{4}+\zeta_{3} \eta_{8} \eta_{4}=\zeta_{4}\left(\eta_{1}{ }^{2}+\eta_{2}{ }^{3}+\eta_{8}{ }^{2}\right)
$$

All these surfaces forming a system x^{3} whehing the plane $y_{1}=y_{i_{2}}=$ $v_{s}=0\left(x_{4}=0\right)$ and the quadratic cone with the equation $r_{4}=0$,

[^63]$x_{1}{ }^{2}+r_{2}{ }^{2}+y_{s}{ }^{2}=0$, also represented by $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{s}{ }^{2}=0$. So we find once more that the plane of σ^{2} is the principal plane and that the common enveloping cone of the surfaces on tonches all the sintrular mull-planes.

By replacing σ^{2} hy the imaginary circle common to all the spheres. we find the metric mull-system in which any plane has for mullproint the foot of the normal ont of the fixed point T ?

We also limd a trilinear mull-system in the following way. Let \boldsymbol{o}° be any conic and T ' any point. We then consider as null-plane of any variable point Y the polar plane of $T V$ with respect to the cone with Y as vertex and s^{3} as directrix.

By assuming O_{4} in T ' and representing σ^{2} by

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, \quad x_{4}=0
$$

we find for the null-plane of X the equation

$$
y_{1}\left(y_{1} x_{1}+y_{2} x_{2}+y_{8} x_{3}\right)=\left(y_{1}^{8}+y_{3}^{2}+y_{3}^{2}\right) x_{4}
$$

so the coordinates y of this plane satisfy

$$
\eta_{1}: y_{2} n_{4}=y_{2}: y_{2} \eta_{1}=v_{8}: y_{3} n_{4}=\eta_{1}:-\left(y_{1}^{2}+y_{2}{ }^{3}+y_{8}^{2}\right) .
$$

As these relations are identical to those of (3) this null-system is equal to the former.
§7. We now pass to biline mull-systems where $\gamma=2$.
Then the locus of the null-points of the planes of a pencil with axis l is a twisted cubic curre (l) ${ }^{3}$ cutting l wice.

Analogously the mull-planes of the points of a line l envelope a developable with index 3 (torse of the third class), i.e. they osculate a twisted cubic.

The locus of the null-points of the planes passing through a point P is a cubic surface $(P)^{*}$.

Two surfaces $(P)^{3}$ and $(Q)^{8}$ have the curve $(l)^{3}$ determined by the line $l=P Q$ in common. In general they admit as completing intersection a twisted serthe σ^{1}, cutting $(l)^{3}$ in eight points and forming the locus of the singuler mull-points, each of which bears a pencil of mull-planes. (If these planes were to envelope a cone a° has to be manifold curve on $\left(l^{\prime}\right)^{*}$ and this is impossible if we surmise that the intersection of $\left(P^{3},{ }^{3}\right.$ and $(Q)^{3}$ breaks up into two parts only).

The axes s^{*} of the pencils of null-planes through the points S of σ° form a scroll af oreler eight; for the points of intersection of σ^{6} and (l) determine eight mull-planes through l, each of which has a point S as mull-point and contains therefore an axis s^{*}.

The surfaces $\left(l^{3}\right)^{3},(Q)^{3}$ and $(R)^{3}$ have the singular curve σ^{8} in common and moreover one point only, the null-point of the plane
 points on 0^{n} and therefore in one point outside on n.

Evidently 0^{n} is base curve of the linear complex of surfaces (l')
§ 8 . A special null-system $(1,1,2)$ ('an be ohtained in the following manner. We start from two pairs of non intersecting lines a, a^{\prime} and b, l^{\prime}. We assign to any point f the plane y of the two transversals t and u throngh F over n, d^{\prime} and b, b^{\prime}.

The hyperboloids (lun') and (llhi') admit a conve $(1)^{8}$ of which l is a chord as completing intersection. So we have indeed $\gamma=2$. Also $a, a^{\prime}, b, b^{\prime}$ are chords of $(l)^{3}$.

Here the singulter curve σ^{b} is represented by the lines $a, a^{\prime}, b, b^{\prime}$ and their quadrisectents q, q^{\prime}. So the figure of singularity has eight points in common with (l s .

For any point S of a the transversal u is determined while we can assume for t any ray of the pencil ($S^{\prime} \ell^{\prime}$). So the mull-planes of S form a pencil with axis u. So the scroll (s^{*}) breaks up here into the four reguli with the director innes $\left(a, b, l^{\prime}\right),\left(l^{\prime}, b, l^{\prime}\right),\left(l,\left(l, l^{\prime}\right),\left(l^{\prime},\left(l, l^{\prime}\right)\right.\right.$,

For any point of q the transversals / and u coincide and the same happens for any plane through q. So the lines q, q are not only loci of simuler points but also envelopes of smgular plumes. As this is also the case with the lines a, a^{\prime}, b, b the two dually related figures of singularity are united.
\$9. For a line l intersecting a in A the locus $(l)^{2}$ breaks up into a conic $(l)^{2}$ and a line u containing the null-points of the singular plane (l t) ; the conic lies in the plane ($/ 4 t^{\prime}$) and passes through A, this point being the null-point of the plane connecting l with the transversal u_{0} through A.

If l meets q, the curve $(l)^{2}$ degenerates in q and an $(l)^{2}$. The lines l determining conics $(l)^{2}$ form therefore six special linear complexes; so there are ∞^{3} conics $(l)^{2}$.

If l meets both lines q and q the hyperboloids (laa') and (lub') intersect in l, q, q^{\prime} and a fourth line l^{\prime} meeting q, q^{\prime} as l does. So the relation between l and l^{\prime} is involutory; each of them contains the null-points of the planes passing through the other, the planes containing either q or q^{\prime} discarded.

If l meets a and b, the curve $(l)^{3}$ breaks up into a line u in the plane (al), a line t in the plane ($(b l)$ and a line $l \prime$ cutting t and u containing the null-points of the other planes through l.

If we assume for l a transersal t, the curve $(l)^{3}$ is represented by the lines u and u of the planes $(a l),\left(a^{\prime} l\right)$ and by t itself. This
line evidenty contains the null-points of the remaining planes throngh 1 : therefore it is simpular.

We derise from this that the surface $\left(I^{3}\right)^{3}$ comains the transwersals t and " passing through P^{\prime}; so the null-plane of P is a threefold fangential plane. The third line of $(P)^{3}$ lying in that plane admits the property that the null-planes of its points envelop a cubic cone with P as vertex.

If $n, \ell^{\prime}, \ell, l^{\prime}$ form a skew quadrilateral each null-plane touches one of the guadratic surfaces of the pencil with those four lines as base. Then the surfaces $\left(I^{\prime}\right)^{3}$ have four nodes in common, the vertices of the tetrahedron with $a, a^{\prime}, b, b, \%, q^{\prime}$ as edges.
\$10 We still examine an other mull-system $(1,1,2)$ the singular curve of which degenerates.

Let us assume the conic σ^{2} in the plane τ and a pair of non intersecting lines. Throngh F we draw the transversal t over a, a^{\prime}; then the polar plane of t with respect to the cone $F^{\prime}\left(\sigma^{2}\right)$ may figure as mull-plane of F.

Reversely, if the plane r is cut by q according to the line d and D) is the pole of d with respect to σ^{2}, the transversal through D determines in of the unll-point F.

If if rotates around l. the line d describes a pencil around the true l of l as vertex and l) describes a line of r. But then t describes a regulus with a, a^{\prime}, r as director limes, in projective correspondence with the pencil of planes (1). Consequently the mull-point f then describes a twisted cubic ($l,{ }^{3}$ with l as chord. The twopoints common to (l) and (l) $)^{3}$ lie on the regulus.

Each point A of the line a is simgulet. The transversal t describes a pencil in the plane $\left(f \ell^{\prime}\right)$, its trace D with the plane r describes a line e hearing the trace A^{\prime} 。 of a^{\prime}. So the polar line d rotates round a point E (pole of e); the mull-plane of A deseribes therefore a pencil with axis $1 E$.

If A describes the line n, the line e keeps passing through A^{\prime}, and therefore E describes the polar line of $\mathbb{V}^{\prime}{ }_{0}$. So the axes of the pencils of null-planes corresponding to the singular points A form a regulus. A second regulus contains the axes of the pencils corresponding to the singular points A^{\prime} of a^{\prime}.

The conic σ^{2} too is simgular. Any point S of it admits as nullplanes all the planes touching σ^{2} in S.

All the surfaces $\left(l^{2}\right)^{3}$ have in common the singular curve σ^{2}, the singmar lines a, a^{\prime} and also the line s throngh the traces A and A_{0}^{\prime} of a and a^{\prime} with r, containing two points S_{1}, S_{2} of σ°.

For any point of sthe cone progerting oz degencrates into the plane r counted twice; so its mull-phame is imfelmite and this explains why s must lie on each surface $\left(I^{3}\right)^{3}$.
lndeed the plane r is primeipal plame; low the mull-phane of any point of τ lying neither on 0^{3} nor on x coinoides with r ats polat plane of a line t not stmated in r.

In comnection with this result the coblice forse of the mull-planes of the points !ying on / always contains the plane , i.e. r is common tangential plane of all the surfues of class three enveloped by the null-plames of the points of a plane.

The trace d of a singular plane must be incident with the pole D, i.e. it must touch σ^{2}. In this case t is transversal of $11, \|^{\prime}, 0^{2}$ and each of its points may digure as mull-point. The locus of hese transversals is a quortic scroll $[t]^{4}$ with n and a^{\prime} as double director lines and the line s mentioned above as double generatrix.

The polar surface of any point l ' with respect to $[t]^{1}$ intersects $\sigma^{\prime \prime}$ in six points; the planes tonching $[t]^{1}$ in these points are simguler mull-plemes. So these planes envelope a forse of cluses six.
\$ 11. In the mull-system considered in the preceding article the transversals t form a bilinear congruence. If we replace it by a congruence $(1, n)$ we get a null-system $\left.(1,1, n+1)^{1}\right)$. If the plane φ rotates once more around the line l, in which ease its trace d describes a pencil in τ and the pole D a line r, then the ray t resting on r describes a seroll of order $n+1$. So the null-point of γ lies $(n+1)$ times on $l(\gamma=n+1)$ and describes a twisted curve $(l)^{n+2}$.

Let the congruence $(1, n)$ be determined by the director curve $e^{\prime \prime}$ and the director line a, which is to have ($n-1$) points in common with e^{n}.

Each point of s^{n} is simpular and bears a pencil of mull-planes (see \$10). From a point of a the curve en is projected by a cone of order n with an in-1)-fold edge \quad. To the thace of this cone, considered as locus of 1) corresponds a curve of class 2 . the envelope of the trace l of the noll-plane 4 . So each point A of \boldsymbol{t} bears x^{\prime} null-planes enveloping a cone of class n. So a is an n-fold line on the surtace $\left(P^{2}\right)^{n+2}$.

Here also any point of the sinquider conic or bears a pencil of null-planes, the axis of which tonches i^{2}.

The intersection of two surfaces $\left(P^{2}\right)^{n+2}$ breaks up into a curve $(l)^{n+2}$, the curves $a^{\prime \prime}$ and σ^{2}, the line ${ }^{\prime}$ (10 be rounted n^{2}-times) and
${ }^{1}$) For $n=0$ we get the null-system of $\& 6$, for $n=1$ that of $\S 10$.
the n rays of the congruence lying in r. As in $\$ 10$ the line s these n rays partake of the property that the null-plane of any of their points is indetinite.

The simpuler mull-planes tonch in the points of σ^{2} the seroll $[t]^{2 n+2}$ with σ^{2}, ℓ^{n}, a as director lines and n double generatrices in r. The polar plane of l^{\prime} cuts σ^{2} in $2(2 n+1)$ points each of which bears a singular null-plane; so the simgular null-plames envelope a torse of class $(4 u+2)$.

Evidiently r is once more principal plane.
The bisecants of a twisted cubic a^{3} determine in an analogous way a mull-system ($1,1,4$). Here each point S of the singular curve ${ }^{3}$ is vertex of a quadratic cone enveloped by the null-planes of S.

Now two surfares $(P)^{3}$ have in common the singular curve a^{3}, to be counted four times, the singular conic σ^{2}, a curve $(l)^{5}$ and finally the timee chords of e^{3} lying in x.
§ 12. By the considerations of \$ 11 we have shown that bilinear mull-systems with $\gamma>2$ do exist.

Now we will prove that the locus of the singular points of a null-system $(1,1, \gamma)$, with the condition $\gamma>2$, cannot be a single curve.

Evidently the curve $(l)^{+1}$ containing the mull-points of the planes through l is rational, l being a γ-fold secant. The null-points of the planes through P lie on a surface $(P)^{\prime+1}$ touched in I^{\prime} by the null-plane of P.

The surfaces $(P)^{2+1}$ and $(Q)^{+1}$ have a curve $(l)^{x+1}$ in common. Now let us suppose that the completing intersection is at curve σ of order $\gamma(\gamma+1)$.

In order to determine the number of points common to (l) and a we first determine the number H of transversals passing through any given point O and resting on (l) and σ.

For this number the known relation

$$
m(!-1)(r-1)=2 h+H
$$

holds, where $!, v$ are the orders of both the surfaces, whilst m is the order of the first curve and the number of its apparent donble points.

Here we have $!=v=m=\gamma+1,2 \ell=\gamma(\gamma-1)$, as (l) is ratiomal. So we get $\Pi=\gamma\left(\gamma^{2}+1\right)$.

The transversals under consideration are common edges of the cones projecting (l) and o out of $(O$; the remaining common edges pass through the points of intersection of both the curves.

For the number of these points we find therefore $\gamma(\gamma+1)^{2}-$ $\gamma\left(\gamma^{2}+1\right)=2 \gamma^{2}$.

Now the surface $(\boldsymbol{R})^{\gamma+1}$ has in common with (/) besides the $2 \gamma^{2}$ points lying on a and the mull-points of the flame $I^{\prime}($ lh still $\gamma(2-\gamma)$ more points and this is only possible for cither $\gamma=1$ or $\gamma=2$.
so we may ronclude that for $\gamma>2$ the singular points must be arranged at least on tho curves.

Mathematics. - "On plane line $\begin{gathered}\text { mall-systems.". By Prof. Jax DE }\end{gathered}$ Vries.
(Communicated in the meeting of January 25, 1913).
$\$ 1$. By a plane mull-system (\boldsymbol{a}, $\{$) we understand a correlation between the points and lines of the plane in which to any point f^{\prime} correspond a mull-rays f passing through it and to any ray f correspond β null-points sitnated on it.

We restrict ourselves to the case $a=1$ in which any point F bears only one null-ray (imetr mull-system) and represent by \hat{k} the second characteristic number.

If the ray f rotates around a point P, its k mull-points describe a curve of order $k+1$ passing through P and touching in P the mull-ray of P; we denote that curve by $(P)^{k+1}$.

The curves $(P)^{k+1}$ and $(Q)^{k+1}$ have the k mull-points of $P(l$ in common; any of the remaining $(k+1)^{2}-h$ points of intersection bears a ray through P and another ray through Q, therefore a pencil of null-rays; so these points are singular.

Therefore a mull-system $(1, k)$ admits $k^{2}+k+1$ singular points.
The curves P^{k+1} form together a net with $k^{2}+k+1$ base points; through any pair of arbitrarily chosen points X, I passes one curve determined by the point common to the two null-rays x, y

A pencil of curves \boldsymbol{q}^{n} with n^{2} base points (letermines a linear null-system, in which to any point F^{\prime} corresponds the tangent f in f to the curve passing through F. This pencil intersects an arbitrary line f^{\prime} in the groups of an involution of order n, admitting 2 ($n-1$) double points, therefore $k=2(n-1)$. This null-system admits $\left(4 n^{3}-6 n+3\right)$ singular points. To these belong the n^{3} base points, lying on ∞^{1} tangents; the remaining ones must be nodes of curves $y^{\prime \prime}$. So we fall back on the known property of the pencil ($/$, $)$ to contain $3(n-1)^{2}$ (ourves possessing a node.
§ 2. The bitineter mull-system $(1,1$; has three simentar points A, B, C. The lime $A B$ dmits A and B as mull-points and bears therefore x^{2} mall-points. So the sides n, b, e of triangle $A B C$ ate simpular lines.
If f^{\prime} describes any line l, the null-ray f^{\prime} envelops atomic tomeling a, b, c and l (the latter in its mull-point).

The conic $\left(P^{3}\right)^{2}$ degenerates if l^{\prime} lies on a singular line. If we assume P on the sull-points of the other lines through P lie on the line PA.

Let f^{\prime} be a line conting a, b, C^{\prime} in $A^{\prime}, l^{\prime}, C^{\prime}$ and F^{\prime} its mull-point. If f^{\prime} rotates around A^{\prime} the point F^{\prime} deseribes a line through A, and the cross ratio $\left(I^{\prime} B^{\prime} C^{\prime \prime} F^{\prime}\right)$ remains comstant $=d$. lf f rotates around B^{\prime}, the point F^{\prime} deacribes a line through B and ($A^{\prime} B^{\prime} C^{\prime \prime} F$) is once more $=\delta$. So this cross ratio has the same value for all the rays and is characteristic of the null-system. Now, according to a known theorem, we have also $F^{\prime}\left(A B C f^{\prime}\right)=d$.

So amy null-system $(1,1)$ consists of the pairs $\left(F^{\prime}, f^{\prime}\right)$ comnected with each other with resplect to the singular triamgle A $B C$ by the relation $F\left(A B C^{\prime} f^{\prime}\right)=$ const.

In his "Lehere von den geometrischen Vervandivehaften" (vol IV, p. 461) M. R. Sters proves that this construction furnishes a $(1,1)$ but probably it has escaped him that we can get amy $(1,1)$ in this way.

A pencil of conics touching each other in two points A, B determine a $(1,1)$ by its tangents. Then the singular points are A, B and the point C common to the common tangents in A and B.

If in any collineation with the comedencies A, B, C the point l^{\prime} corresponds to F^{\prime}, the line $f^{\prime}=F F^{\prime}$ admits F^{\prime} as mull-point in a bilineair null-system ${ }^{1}$).
\$ 3. From a given linear mull-ststem $\left(h^{\prime}, f^{*}\right)$ we derive a new one $\left(F \cdot f^{*}\right)$, if we replate f^{\prime} by the line f^{*} normal to it in r^{r}. In this construction f° and f^{*} are harmonically related with respect to the alosolute pair of points. By a harmomic: transformation we will understand the thasformation of a mull-system in which f and f^{3}. are hamonically separated hy the tangents from F to a given curve y^{2} of class lwo.

For any point F^{\prime} of γ^{2}, the mull-ray f passes into the tangent f^{*} of y^{2} in F; if f totuches y^{2} in F_{0} we may assume for f^{*} any line throngh F_{0} and F_{0} is a simgular point of the new mull-system

1) From $y_{k}=c_{k} x_{k}, \Sigma_{3} \Sigma_{k} x_{k}=0, \sum_{3} \Sigma_{k} y_{k}=0$ we deduce $f_{5}=\left(c_{2}-c_{3}\right) x_{2} x_{3}$, etc. i.e $\sigma_{5} x_{1}=c_{2}-c_{3}$, etc.
($1, h^{*}$) . As any simmular poin of $(1, h)$ remains singular, h^{*} mus supass k.

In order to determine $k^{* /}$ we hear in mind that all the gays f, which pass into a delinite raty f^{*} ly means of the transformation considered, must pass throngh the pole I 路 of $f *$ with respect to 7^{2}. So the mull-points of f^{*} lie on the conve ($\left.I^{*}\right)^{k+1}$ corresponding to I^{*} in the mull-system $(1, h)$.

So a $(1, i)$ passes into $\ell(1, i+1)$ by the kumomic thmsformution.
From these fats we can derive that $2\left(k^{*}+1\right)$ singular points of $(1, k i+1)$ must lie on of 3. We can confirm this result as follows. Iet 6 be the second point of intersertion of 7^{2} with a rat f admitting a null-point F^{T} on q^{3}. Then the curve $(G)^{i+t}$ conts $\|^{2}$ in G and in $2 k+1$ points r more. In any of the $2(k+1)$ coincidencies of the correspondence $\left(r^{\prime}, G^{\prime}\right)$, the ray f^{\prime} tonches r^{2} and $f^{\text {* }}$ can be taken arbitraily through l^{\prime}; then l^{\prime} is singular.

By repeating the transformation (μ^{\prime}, f^{*}) must pass reversely into the original null-system $(1, k)$. The mull-points of f lie on the curve $(P)^{k+2}$ corresponding to the pole I^{\prime} of f^{\prime} in the null-system $(1, k+1)$. On this curve we also find the points of contact of ${ }^{2}{ }^{2}$ with the tangents passing through l^{\prime}; these points are mull-points of f in the special null-system $(0,2)$ of the pencils the centres of which lie on 4^{2}. So the null-system $(1, k+1)$ is transiormed into the combination of $(1, h)$ and a 0,2 , admitting exclusively singular points the points of $\left(f^{2}\right)$.

If a is a singular ray of a mull-system ($1, k$), hamonic transformation with respect to a pair of points lying on a generates once more a $(1, k)$. For in this case ${ }^{2}$) the pole $P^{* *}$ of a ray f^{*} lies on a, which implies that the locus $\left(P^{*}\right)^{k+1}$ breaks up into a and a curve cutting f^{*} in k mull-points F^{*}.
\$4. In the case of the null-system $(1,2)$ the curves $\left(l^{2}\right)^{3}$ form a net with 7 base points. Any net of culic curves with 7 base points. determines a null-system (1,2), in which any line f admits as nullpoints two base points of a pencil belonging to the net. For the curves of the net generate on f^{\prime} a cubic involution of the second rank, the neutral pair of which belongs to x^{1} triples, i. e. consists of two base points of a pencil.

The tigure of singularity has no special characteristic, as we can choose the base points of the net arbitrarily. As soon as three singular

[^64]points are collinear, the line bearing them is singular, as it contains three and therefore x^{1} mull-points.

Though we can determine any $(1,2)$ by a net of cubic curves we do not judge it superlluous to point out some null-systems (1,2) which can be obtained otherwise.

If the points F^{\prime} and $l^{\prime \prime}$ correspond to each other in an involutory quadratic transformation (quadratic involution) they may be considered as null-points of the comecting line f. Then any line is cut by the conie into which it is transformed in its mull-points. Then the figure of singularity rontains the four points of comeidence and the three fundamentai points and consists therefore in the vertices and the co-vortices of a complete quadrangle, the six sides of which are singular lines.

The same figure of singularity is found in the case of the nullsystem, where any line has for null-points its points of contact with two conics of a pencil.

Another null-system $(1,2)$ is determined by a pencil of cubic curves admitting three collinear points of inilexion B_{1}, B_{3}, B_{3} with common tangents b_{1}, b_{2}, b_{3}. The cubic involution determined by the curves of this pencil on any line f has a threefold point on the threefold line $b_{0}=B_{1} B_{3} B_{s}$; so f is touched by two cubic curves only. We generate a $(1,2)$ by considering their points of contact as the mull-points of f. Three of the singular points coincide with the vertices of the triangle $b_{1} b_{2} b_{2}$, whitst B_{1}, B_{2}, B, are three others; the seventh is node of a non degenerating cubic curve. Evidently there are four singular lines.

By applying the harmonic transformation to a null-system (1,1) with $A B C=$ abce as simgular triangle in such a way that the conic r^{2} tonches a, b, e respectively in $A^{\prime}, B^{\prime}, C^{\prime \prime}$ we get a null-system $(1,2)$ of which $A, B, C, A^{\prime}, B^{\prime}, C^{\prime \prime}$ are singular points whilst the seventh can be found ly a linear construction. Here a, b, c are singuler lines.
§5. For any mull-system $(1, k)$ the curves P^{k+1} form a net with the singular points as base points. Here any line f bears an involution of order $k+1$ and the second rank admitting a neutral group formed by the k null-points F. But for $k>2$ the net is not more a general one; for this wouk cut any line in an involution with $\frac{1}{2} h(k-1)$ neutral pairs. Indeed a gencral net of curves r^{k+1} admits at most $\frac{1}{2} k(k+5)$ hase points, whilst the rurves $\left(l^{2}\right)^{k+1}$ pass through $\left(h^{2}+k+1\right)$ fixed points and the latter number surpasses the former by $\frac{1}{2}(k-1)(k-2)$.

Evidently a mull-system (1, fi) fin be determined by the equations

$$
\begin{aligned}
& \xi_{1} x_{1}+\xi_{2} k_{2}+\xi_{8} v_{8}=0, \\
& \xi_{1} a_{r}^{k}+\xi_{2} b_{k}^{k}+\xi_{3} c_{r}^{k}=0 .
\end{aligned}
$$

The null-points of the line ($(\underset{\xi}{ })$ are its points of intersection with the curve indicated by the second equation.

For the curve (1$)^{k+1}$ comesponding to the point $P^{\prime}(y)$ we find, by means of the relation

$$
\xi_{1} y_{1}+\xi_{21} y_{1}+\xi_{8} y_{1}=0 .
$$

the equation

$$
\begin{array}{lll}
y_{2} & y_{2} & y_{8} \\
x_{1} & x_{2} & x_{8} \\
a_{x}^{k} & b_{x}^{k} & c_{x}^{k}
\end{array}=u .
$$

So the singular points are determined by

$$
\left|\begin{array}{ccc}
x_{1} & u_{3} & x_{8} \\
a_{x}^{k} & b^{k} & c_{x}^{k} \\
1 & x_{x}
\end{array}\right|=0
$$

By hamonic transformation with respect to the conic $a_{5}^{2}=0$ we find a mull-system ($1, i+1$), in which the line (0) indicated by uter $=0$ corresponds to the point (x).

If we put tor short

$$
x_{2} c_{x}^{k-x_{8}} b_{x}^{k}=A_{x}^{k+1}, \quad x_{3} u_{x}^{k}-x_{1}^{c^{k}}=B_{x}^{k+1}, \quad x_{1} b_{1}^{k}-x_{2} e_{x}^{k}=C_{x}^{k+1}
$$

then we find

$$
\xi_{1}: \xi_{2}: \xi_{8}=A_{x}^{k+1}: B_{x}^{k+1}: C_{k}^{k+1},
$$

i. e.
 and this equation determines with

$$
x_{2} \eta_{2}+x_{2} \eta_{2}+x_{3} \eta_{2}=0
$$

the new null-system.
That it is impossible to deduce any arbitrary $(1, h+1)$ by harmonic transformation from null-systems $(1, k)$ can be shown ahready by remarking that the $2(k+1)$ new singular points furnished by this transformation lie on a conic, which does not happen generally for $k>2$.

Botany. - "The infuence of temperature on phototropism in seedliegse di Atent saticre." By Miss M. S. de Vries. (Communi(ated by Prof. F. A. F. C. Went).
(Communicated in the meeling of Jan. 25, 1913).
In (romection with Retgers' ${ }^{1}$) investigation on the intluence of temperature on the geotropic presentation-time in Arena sativa seedlings, I have madertaken experiments to find out how far temperature influences phototropism.

I had originally no intention of making a preliminary statement at this stage becanse some of the experiments are not yet complete, but after the publication of Torstre Nybergh's") work on the same sutiject in which results wholly opposed to mine are given, it became desirable to make a commmication now.

Torsten Nibergil comes to the ronclusion that temperature has no intluence on the process of phototropical stimulation. According to him therefore the influence of temperature on phototropism may be represented graphically by a straight line. The results I have oblatined at various temperatures can however be represented by a detinite optimum-curve. Before I consider the results, I should like to saly a few words about the method.

Seedlings of Avena sativa having a length of about 2.5 cm . were used. The boxes of seedlings were warmed for at least an hour beforehand in the thermostat used by Rotgers at the temperature to be investigated; they were then exposed to light in the thermostat and then taken out of the apparatus. The seedlings always executed their curvature at $20^{\circ} \mathrm{C}$. While the seedlings were in the thermostat, fresh air was drawn through it, moreover the dark room in which all the experiments took place was ventilated as much as possible. The warming of the thermostat was done by electrie lamps; gas wats not burnt in the dark room, so that the atmosphere was as prese ar possible. The source of illumination was incandescent gats light, placed ontside the room; the light entered through a frosted glaspplate, when the diaphragm was open.

[^65]The quantity of lightencrey which at varions iemperaturen wath necessary to cause a definte degree of comature was determimal. As at stadaded a curvature of 2 mm . Was always taken, that is 10 say, the apex of the coleopule was hent 2 mm . out of the vertical.

To begin with, experiments were mate at $20^{\circ} 1^{\prime}$., since a fuantity of light energy of 20 M . (. S. (metre-tandle seomds) save a cormvature of $2 \mathrm{~m} . \mathrm{m}$. In order to find the prantity necessany for a convature of 2 mm . a few boxes of seedings were stimmated for a varying mumber of seconds, and it wats ascertained atter ahont I^{2}. hours how many seedling had curvet. lioses in which ofo of the seedlings showed a curvature of 2 mm . served as at standat. The product of duration of stimulus and intensity of light then gave the required quantity of lmminar energy in M. (. S.

The experiments were performed at temperatures ranging from 0° to 40° C. No experiments were made above 40° C.: after one honr's preliminary warming at 40°, so prolonged an illmmination was neressary and the envatures which tinally occured, were so indistinct, that there was no question of determination after more prolonged warming. At 43° the seedlings died.

From $0^{\circ} 1025^{\circ}$ the observations were made at intervals of 5^{2} : athove 25° more frequent determinations were found to be neressary.

At each of the temperatures to he investigated there was first a Warming of one hour's duration, afterwards of 2 hours, 4 hours, \& hours ete, in order to see whether increased duration of pretiminary warming had any effect.

The results of the experiments are collected in the table given below, in which in successise columms is given in M. C. S. the luminar energy necessary for a curvature of 2 mm ., after 1 hour, 2 hours', 4 hours' warming, etc., corresponding to the temperature given in the first column.

It is cloar from the table that the phototropic stimulationprocese is dependent on temperature and that at higher temperatures the timefactor is of a great influence.

From 0° to 25° the length of preliminary warming has no influence on the quantity of luminar energy. It 27.5° and 30° longer preliminary warming has a favourable influence; that is to say after a longer exposure to a higher temperature a smaller quantity of luminar energy causes the same curvature as a greater quantity after a shorter preliminary warming. The harmful intloence of longer preliminary warming is first observable at 32.5° and this is the case also at $35^{\circ}, 37^{\circ}$ and at higher temperatures, in always increasing amount.

1172

Temp. 1 hour 2 hirs. fhrs 6 hrs. 12 hrs. 18 hirs 24 hirs. 48 hrs

rig. 1.
${ }^{1}$) For the absolute correctness of this figure I camot vouch on account of the difficulty mentioned on a previous page.

The favourable influence of longer preliminary warming at 27.5 and 30°. also the mitavomable inthence of a longere expminge at 32.5° and 35° is represented graphically in tionere 1 in which the alsecissate show the duration of preliminary waming, and the ombates the energy in W. C. S.

It is further clear from the figure that there is a transition point between the favourable and unfavourable intluence; the amount of II. (\% S. is here constant.

Figure 2 represents graphioally the energy in M. (1. S. which canses a convature of $2 \mathrm{~m} . \mathrm{m}$., as it function of temperature. Tho abseissae represent temperature, and the ordinates tuminat enerey in M. (: S. As the drawing is much reduced the lines representing longer preliminary warming are omithed for the sake of clearness: only the line for one hour's warming hats been drawn.

Fig. 2.
Evidently we are here concerned with an optimum-curve. The optimum is at 30°.

Finally there is the question whether vas 't Hoff's rule applies to phototropism. The energy in M. C. S. decreases to the optimum becanse perception takes place more rapidly. To determine the temperature-coefficients, the ration of the quantities of luminar energy must not be taken, but the ratios of their reciprocal values, ats was done by Rutgers ${ }^{1}$) for geotropism. For this reason $\frac{K_{10}}{K_{90}}$ etc. is taken, and $\operatorname{not} \frac{K_{20}}{K_{10}}$ ete.

The following temperature-coetlicients are then found:
${ }^{1}$) A. A. L. Rutgers. Proceedings Royal Acad. Amsterdam, Vol. Xill.

$$
\begin{array}{ll}
\kappa_{0}=3 . & K_{15}=2.6 \\
K_{10} & K_{25} \\
K_{5} & =28 . \\
\frac{K_{20}}{K_{30}}=2.5 \\
\frac{K_{20}}{K_{20}}=2.6 . & \frac{K_{20}}{K_{85}}=0.95
\end{array}
$$

The quotients appear to remain constant up to 30 and after that denease markedly, in agreement with what is observed in other vital processes. I refer to the paper of Conss Srcarre ${ }^{2}$ for this point.

Does the observed influence of temperature only affect perception (u) is the time of curvature (reaction-time) also influenced by temperature: The reaction took place at $20^{\circ} \mathrm{C}$ in all the experiments. of course it is conceivable that there is an after-eflect of the preliminary warming at the temperature investigated. The times of corvature (reaction-fimes) amounted to:

At	$0^{\circ} \mathrm{C}$.	120	minutes	
"	5°,	90	"	
,	10°,	90	"	
,	15°	90	"	
,	20°,	90	"	
,	25°,	85	,"	
,	30°	8.5	,	
"	35°	90	"	after 1 to 12 hours previous waming after longer warming 120'
,	37°,	90	"	after long warming 120
,	38°	± 100	,"	after long warming 120^{\prime}
,	39°,	120	"	
	40°,		103	urs.

By time of curvature (reaction-time) there is here meant the time which elapses till 50% of the plants are chred. The reation-time is therefore faily constant excent at $0^{\text {a }}$, and at the high temperatures. It seems clear from the tables, that, if there is any intlaence of the temperature at which the plant was warmed beforehand, on the reaction, this is found exclusively at $0^{\circ}, 39^{\circ}$ and 40° and, when the previous warming is of very great dmation also at $35^{\circ}, 37^{\circ}$ and 38°. If may therefore be considered probable that the inthence of temperature specially acted on perception.

I hope later to give further theoretical considerations and a review of the literature in a fuller commomication.
letrecht, Jannary 1913. ITherersity Botmical Laboratory.
${ }^{1}$ C. P. Conen Stcart. "A study of temperature-coefficients and van 't Hoff's rule". Proceedings Royal Acad. Amsterdam; Vol. XIV. p. 1109, 1912.

 dor Wahss).
(Communicated in the meeting of Junary 胞, 1913\%.

§ 1. Infroeluction.

The law of equipartion of energy must hold for the kimetio energy of all systems whose equations of motion can be represented in the form of the equations of Hambes. This is shown in statistical mechanies.

Experiment shows that this law is not fulfilled. This has first clearly appeared from the fiat, that the kineticenergy of monatomic and diatomic gases, as it may be derived from the value of $c^{\circ} \varepsilon$, accounts for only :3 and 5 degrees of freedom respectivel:, whereas the molecules of these gases have undoubtedly more degrees of freedom, which appears i.a. from the light which they can emit.

Later the observations of Nemsst and his disciples have shown. that the c_{c} of solids decreases indefinitely when we approach to the temperature $T=0$ (absolute) which is also in contradiction with the equipartition law.

Finally we usually deduce from the equipartition law that the partition of the energy over the different wavelengths in the normal spectrum must be as it is indicated by the spectral formula of Rambegh. In this case also experiment shows that the consequences of the equipartition law are not fulfilled in nature.

It appears from the above considerations that we are obliged to assume, that the equations of motion of the real systems commut here the form of the equations of Hanlason. The following considerations are to be considered as an attempt to dind a way, which may lead to the dedection of the form of the equations of motion of the real systems occurming in nature. In this attempt I will assume that the partition of energy in the normal spectrum is arcurately represented by the spectral equation of Pıaxck; so I will try to indicate a way which may lead to the drawing up of equations of motion from which the equation of Planch can be derived. In consequence of the mathematical difficulties, however, I have not succeeded in finding those equations of motion themselves.

[^66]It seems matural to assmme, that these equations when they shall have heen found, will be able to arcount for the different abovementioned deviations from the law of equipartition of energ. In fate these deviations are closely comnected with one another. If e.g. the energy of visible lightvibrations at 100° is imperceptibly small compared with that of infta-red rays, we cannot wonder that the vibrations of electrons which are in equilibrium with those light vibuations have an energy very small compared with that of vibrations of greater period. The thermal motion of the molecules may here probably he considered as a vibration of sather large period, althongh it is not a simple hamonic vibration. At a higher temperature the small wavelengths become more predominant in the spectrum. It is therefore to be expected that also the vibrations of the electrons of short period, which at a low temperature are devoid of energy, at a higher temperatme will obtain a measurable amount of energy, so that the specific heat with constant volume will increase with the temperature.

The physicists occupied with these problems have noticed this comection between the normal spectrum and the specitic heats from the beginning. Jeasis ${ }^{2}$) e.g. has applied his theory, which originally was meant to be an explanation of the c_{0} of gases, to explain the properties of the normal spectrom; and it is not astonishing that vice versa the theory of Phasek for the normal spectrom was soon used for the explanation of the specific heats.

The method in which we start from a theory for the normal "pectrum and deduce from it the value of c_{0} seems to have advantages orer the opposite way. For we have in the spectral formula of Plavck a relation which agrees well with the observations and which moreover is independent of the special nature of the walls. I will therefore follow this method.
\$ 2. The centre of radiation.
We may make the following two assumptions concerning the way in which the partition of energy of the normal spectrum is brought about.

1st. We may assume that every vibrator considered separately has the property to transform radiation of an arbitrary partition of energy into the partition of energy of the normal spectrum.

2nd. We may assume that this property only belongs to groups

[^67]of vibators, when their vitation is inllume ed ly their inferation (collisions).

I shall start from the first supposition. In the first plate beranse it is simpler. But it seems to me also to he more platuble. For we camot doubt that the equations of motion are not linear. A vibrator therefore, when set into vibration by a perfectly homogencous ray of light, will not execute perfectly harmonie vibrations. The radiation, emitted by it will therefore contain vibrations of other period than the incident ray. If therefore it is inclosed in a space with perfectly reflecting walls it will change the partition of energy of radiation which is atso imelosed in that space. If now the spectrom which originates in this manner was not the normal spectum (because this latter was only brought about by a great many interacting vibrators) it would be astonishing, that even the most ratifed gases, in which relatively only a few collisions occur, always give rise to the normal spectrum, and not to a spectrom whose partition of energy lies between the normal spetrmm and that of one vibrator.

I will therefore imagine one single vibrator. If its motion was determined by the equation:

$$
\begin{equation*}
m \frac{d^{3} x^{x}}{d t^{2}}+\dot{f} x-\frac{d^{3} x}{d t^{3}}=e e^{3} \tag{1}
\end{equation*}
$$

in which the coefficients m, f, g, e were constants, then it would necessarily give rise to a partition of energy agreeing with the spectral fommala of Raymeigin ${ }^{1}$).

Therefore we shall assume from the outset that the equation (1) is not satisfied. The vibrator will then not be able to execute perfectly harmonic vibrations, but its vibrations, when analysed in a scries of Focrar, will consist of several, in general of an infinite number of harmonic vibrations. This seems not to agree with the fact, that undisturbed vibrating vibrators as they oceur in gases, emit very sharp spectral lines. We must, however, bear in mind. apart from the fact that no element exists whose spectrum consists in one single line, - that according to the electron-theory the mass is not perfectly constant and the light of a vibrator therefore not perfectly monochomutic. It is true that light of a period $\%$. differing from the fundamental period $T_{\text {" }}$ of a vibrator, often occurs only to an imperceptibly small amount in its madiation. But it cannot be totally wanting. Now it is well known that the intensity of radiation of a certain period in the normal spectrom does not depend upon the emission alone, but upon the ratio between emis-

[^68]-ion and absorption, so that a certain wavelength may be represented in the pectram to its normal amount, even if the emissive power of the walls be impereptibly small for that wavelength, provided the aboopption have a eorresponding, small value. The small value of the emissive power has no intuence on the tinal partition. It only oreasions hat radiation of other energy-partion will only very - lowly be transformed into the normal partition.
so we wall asome that the centra of radiation are vibrators whose equations of motion are for the present manown. These equations cammot have rigoronty the form (1), but they need differ only very little from it.
§ 3. The iudependent maribbles. The ensemble.
We will imagite an ensemble each syem of which consists of a parallelopipedse space inclosed in perfectly reflecting walls and containing one vibrator, whose eentre has a fixed position in that space. We will assmme that the motion of that vibrator is determined ly one coordinate.

The choice of the independent variables requires a certain circumspection. The aether namely represents an infinite number of degrees of freedom, each of which eath therefore prosess an infinitely small amonnt of energy. The vibuator on the oher hand posesses a finite amount of energy. It seems. however, diftiont to deal with an ensemble in which one rariable possesses on ant average intinite times as much energy at the other variables. Therefore I will choose the variables as follows: If a monochromatie ray of light passes a vibrator the latter will be aet into vibation. After a certain time this vibration will have herome stationary. Now I will determine hy one coordinate the amplitude of the ray and the stationary vibration of the vibrator catused by it.

Resides this I will assume that the vibrator has a "proper" coordinate. Now if this proper coordinate, and also its time derivative are zero, this does not mean that the vibrator stands still in its position of equilibrimm. It does mean that the motion of the vibrator consists exclusirely of the stationary vibution, which it assumes through the influence of the radiation to which it is subjected. If the proper coordinate is not zero, then the vibrator has a motion whith does not agree with the ahsorbed vitration. So it is possible 10 assume, that in a radiation fiek which is in equilibrium (i.e. in Which the energy partition is that of the normal spectrm) the proper coortinate of the vihator has always an intimitely small amomet of energy (in the same way as the separate coordinates which determine
the condition of the ather), and that yet the vibrator vibrates with at finite energy the amount of which agrees with that catentated for it by Planek ${ }^{1}$).

We can divide the electromagnetic fich into two pats: Is The electrostatic field which agrees with the momentary position of the electron, $2^{\text {nd }}$ A lield consisting of the really existing eledric and magnetic forees diminished by those static foreres. In agreement with the above we assume, that the position of the eledron and therefore also the $2^{\text {nd }}$ field is determined by the first. An for this latter tield we have:

$$
\text { Hire }=0 \quad \text { and } \quad \text { Mir } 5=0 .
$$

We can represent it at follows, if for simplicity's sake we assmme, that the space in which it is inclosed is a cube with is side equal to unity :

$$
\begin{align*}
& \mathfrak{פ}_{n}=\Sigma\left(p_{1}^{\prime} \beta+p_{0}^{\prime}\right) \cos 2 \boldsymbol{\alpha} u x^{2} \sin 2 \pi x^{2} y \cos 2 \boldsymbol{\tau} \pi z \tag{}
\end{align*}
$$

In the summation we must take for $2 n, 2 r$, and $2 w$ all positive integers; $\sqrt{u^{2}+v^{2}+u w^{2}}$ represents the number of waves in 1 cm. and $2 x c^{\prime} \overline{u^{2}+v^{2}+w^{n}}=v$ the number of vibrations in $2 x$ seconds. The quantities $\quad \ell, \beta, \gamma$ and $a^{\prime}, b^{\prime}, \gamma^{\prime}$ are the direction coefficients of 1 wo directions which are mutually perpendicular, and also perpendicular to the direction determined by $\frac{u}{\sqrt{u^{2}+v^{2}+u^{2}}}, \frac{v}{1-\frac{v}{u^{2}+r^{2}-u^{2}}}, \frac{u}{v^{2}+u^{2}+n^{2}}$. The quantities q, q and p, p^{\prime} are the independent variables. One of these variables corresponding to a certan set of values u, n, w will be represented by qurn or p_{n}. It can be proved that the variables
${ }^{1}$) Comp. i.a. Max Pbaxck. Acht Vorlesungen uber theoretische Plysik. p. St. In fact our suppositions quite agree with what Playck does, when he treats his vibrators as resonators and assumes that their energy is perfectly determined by the radiation field, to which they are subjected. In that case it is however not allowed to equate the entropy of the system to the sum of the amome of entropy of the radiating energy, and that of the vibrator. For the motion of the vibration is perfectly determined by the radiation; the vibrations of the vibuator and of the radiation are therefore coherent and their united entropy is no more equal to the sum of their separate amonuts of entropy as this is the cave will the entropy of
 23 p. 1 and p. 795.1907 ext)
/' may he considered to be the momenta corresponding to the coordinates \%. As however we must assume that the equations of Hambtos do not apply, this oheevation is of no consequence for the equations of motion of the system.

Now if no vithator occured in the space, every partition of energy would rematn unchanged, and there would be no occasion to speak of an equilibiam partition. If a vibrator occurred which had the property to the able 10 transform radiation of every wavelength into every other waselength and whose motion was determined by the equations of Himbon, then the energy partition would approach to that indicated by the formula of Rambigh. In this case we might represent the condition of the system by means of an ensemble for which the probability of phase would be represented by ${ }^{1}$):

$$
P=e \frac{\psi-\frac{1}{16} \Sigma q^{2}-\frac{1}{16} \Sigma p^{2}}{\theta}
$$

where ψ, and θ are constants and $\frac{1}{16} \Sigma q^{3}+\frac{1}{16} \Sigma p^{2}$ is the energy of the system, the summation being extended over all quantities q and ${ }_{p}$, also over thove provided with accents.

Propery speaking this expression for the energy is incomplete. In the first place the energy of the proper coordinate of the vibrator hat been neglected, but moreover we have neglected the energy of the vibrator, which it has in consequence of its forced vibrations. If we imagine the volume sufticiently large these approximations will meet with no serions objections. More risky is another simplification which I will introduce; I will mamely represent an element of extension-in-phase ") by II dpely and here also I will neglect the proper coordinate (or coordinates if the electron has more degrees of freedom). I think I may suppose that this simplification also will not affect our conclusions greatly. Perhaps it is even perfectly justificd. It is namely possible that we must assume, that the motion of the vibrator is entirely determined by the electromagnetic field, and that therefore there is no reason to introduce a "proper" coordinate.

As the spectral formula of Raydeigh is not satisfied by the experiments, the formula (3) camot give the right expression for the probability of phase. I shall therefore put:

[^69]\[

$$
\begin{align*}
& \mu-\frac{1}{16} \text { ェ゙ッ }{ }_{16}^{1} \text { ェ゙い: } \\
& r-\rho \quad A \quad \text { I }(\% \ldots \gamma) \text { 。 } \tag{4}
\end{align*}
$$
\]

If it is possible to dind such a form for the function of（which represents a fometion of all variables y amd phat Ho followime formula is satisfied：

$$
\begin{aligned}
& \text { v- } \frac{1}{16} \Sigma q^{2}-\frac{1}{16} \Sigma p^{2}
\end{aligned}
$$

then the average energy in the ensemble for every degree of freedom has the value which is indicated for it by the spectral formula of Planck．The finction of If must of course have such a form that an equation of the form（5）is satisfied for every variable，not only for the q＇s，but also for the p＇s．The function if may moreover contain the frequencies r ，but it must be independent of $\%$ ．for else the equations of motion of the system would depend on＂，whereas the conception＂equation of motion＂involves，that they are perfectly determined by the condition of the system at a given instant the I＇s and p＇s and constants），and that they do not contain a quantity as θ ，which is not characteristic of the individual system，but of the ensemble．If the condition that＂f must be independent of A did not exist，then it would be casy to find several solutions for the integral equations（5）．W＇ith this condition it seems to ofler rather great difficulties ${ }^{1}$ ）．
${ }^{1}$ ）The integral equation can in general be brought into the following form：

$$
\begin{aligned}
& -\frac{1}{16} \Sigma_{q^{2}}-\frac{1}{16} \Sigma_{\nu^{2}}{ }^{2} \\
& \int e \theta \quad q(q \cdots p)\left\{\begin{array}{l}
\left.\frac{q^{2}}{8}-\frac{v h}{v / h} \right\rvert\, \text { IIdqu }=0 . \\
, H \quad 1
\end{array}\right.
\end{aligned}
$$

It is possible that ；may be split up into a product of tunctions fig．${ }^{\prime}$ earth of which contains unly one saliathe and the number of vibations belonging to it． In this case the equation for the determination of $f(2,0)$ may be writen：

Yet lave thonghe it useful to draw attention to this equation ats its -othtion wonld be atn important step on the way which leads (1) the drawing up of a setem of dynamies firom which not the -pectaal fommat of Rambagh, bat that of Psaxek would follow.

La this sytem of dynamies the equations of motion can of course not be brought into the form of IDammon. Instead of the lan of conservation of density in phase, which follows from this form of the mpations of motion, amother relation can be derived, which is foum ats follows. In order that the state is stationary, it is of conrse required that the probability of phase for a point with constant coortinates is comstant. If we indicate the time derivative for such a puint with $\frac{d}{d}$, then we hase in the rase of equilibrium:

$$
0=\begin{gathered}
\partial I^{\prime} \\
\partial t
\end{gathered}=-\Sigma\left(\begin{array}{cc}
\partial P_{i}^{\prime} & \partial I^{\prime} \\
\partial \eta & \partial p^{\prime}
\end{array}\right)
$$

OH°

$$
I \Sigma\left(\frac{\partial \dot{q}}{\partial q}+\frac{\partial p^{\prime}}{\partial p}\right)=-\Sigma\left(\frac{\partial P^{\prime}}{\partial \eta} q+\frac{\partial P^{\prime}}{\partial p} \dot{p}\right)
$$

It follows from the form of I 'that we may also write:

$$
\begin{equation*}
\frac{1}{\psi} \geq\left(\frac{\partial \varphi}{\partial q} \dot{\partial}+\frac{\partial q}{\partial p} \dot{p}\right)=-\Sigma\left(\frac{\partial \dot{q}}{\partial_{q}}+\frac{\partial \dot{p}}{\partial p}\right) \tag{b}
\end{equation*}
$$

When the fintion $/ f$ is found by solution of the equation (5), then (6) is a relation which the equations of motion must satisfy. If hat for the modified mechanies the same sigmifience as the thesis of Lhotrare has for classical mechanics.
\$ 4. The equations of motion of the plectrons.
Though the ribrator does not tigure explicity in equation (6), the values of if and if oremring in it are determined by the properties of the vibnator. For the motion of the electron we can deduce the following eqnations. We start from the expression for the electrical force of which the X-component can be represented by:

$$
\begin{aligned}
& \begin{array}{c}
1 \\
-\quad 169^{2}
\end{array}
\end{aligned}
$$

In the original Duth paper there is an error in these two formulae and in equation (b), Whicin 1 have corrected in the English translation.
m denoting the electrical moment of the vilatar.
From this expression follows:

$$
\begin{aligned}
& \frac{2}{4 \pi r^{3}} \frac{d m}{d r}
\end{aligned}
$$

and in comnection with (2) and with equations of the form

The divergence of the vector in the lefthand member of this equation is zero, and so also that of the vector in the righthand member. We can therefore represent it by:

$$
\Sigma\left(\sigma u+\sigma^{\prime} c^{\prime}\right) \cos \ddot{\partial}+x \sin \ddot{\partial} x y \sin 2 x u z .
$$

Equation (7) being satistied identically in is, !/ and z, we have

$$
\begin{equation*}
\dot{q}+r p=\sigma \quad q^{i}+r \eta^{\prime}-\sigma^{\prime} \tag{s}
\end{equation*}
$$

Differentiating these equations respectively with regard to q and q' we get:

$$
\begin{equation*}
\frac{\partial \dot{q}}{\partial \eta}=\frac{\partial_{\bar{\sigma}}}{\partial_{\eta}} \quad \frac{\partial_{q}^{\prime}}{\partial_{q}{ }^{\prime}}=\frac{\partial \sigma^{\prime}}{\partial_{\eta}^{\prime}} \tag{9}
\end{equation*}
$$

If we treat the expressions for the components of in in the equations (2) in the same way, we find:

$$
\dot{p}-\mathbf{r}_{q}=0 \quad \eta^{\prime}-\mathbf{r}_{q^{\prime}}=0
$$

and

$$
\begin{array}{ll}
\partial \dot{p} \tag{9a}\\
\partial p^{\prime} & =0
\end{array} \quad \frac{\partial \dot{p}^{\prime}}{\partial p^{\prime}}=0 .
$$

and therefore:

$$
-\Sigma\left(\frac{\partial \dot{q}}{\partial q}+\frac{\partial \dot{p}}{\partial p}\right)=\frac{1}{\tau} \Sigma\left(\frac{\partial \psi}{\partial q} \dot{q}+\frac{\partial \varphi}{\partial p} p\right)=-\Sigma \frac{\partial \sigma}{\partial q}
$$

When of is known, we can substitute in (10) the values for \dot{q} and j from (8) and (8a) and so we get a relation which the coefficients of fonctions of $/ f$ and f must satisfy. The value of the σ 's on the other hand depends upon the value of o as a function of x, y, and z and upon the velocities ($v_{x} \frac{d m}{d t}$ in eqpation (7)) which
tho electom assumes maler influene of the fied determined by q and p.
§ .). I'melusiom. In the atowe considerations I have tried to show that it is positite to areount for the partition of energy in the normal speremm with the aid of differential equations, which admit of a continums emission and absorption of enerey, and that it is therefore $n 01$ necessary for the explanation of the normal spectrum to have recomse to the supposition of quanta, either of encrgy or of "action". For this explanation it is nevessary to draw up a system of mechanies, in which a relation of the form (b) takes the place of the equation of Latoritas: in "elasicieal" mechanies. In order to determine this equation further knowledge of the function of would be required, which finction can be found by solution of the integral equation 5) I have howerer not succeeded in this solution.

If such an explamation with the aid of continuous equations is possible for the partition of energy in the spectrum, then this will also be the case for the variation of the specitic heat with the temperature, which follows from this energy partition.

Chemistry. - "Mpatiome 1, 3, 5." By Prof. P. vax Romburgif.

(Communicated in the Meeting of February 22, 1913)

In previous communications, published in this Proceedings ${ }^{1}$), an aroont was given of the results of an investigation carried out jointly with Mr. Sas Dorsses and which had led to the preparation of the above hydrotarbon. Owing to the departure of Mr. fis Dorssex the contination of the study of hexatriene has experienced considerable delay. Since then, however, a fairly considerable gnantity of this substance has been prepared and kept in sealed hottles. As hexatriene - ats might be expected from its analogy with other unsalurated compounds (and what also proved to be the ease)-exhibited a tendeney lowards polymerisation particularly on warming, I have submitted the contents of the bottles which had been kept for five years, to investigation.
 flask was then distilled in vacuo. At $\pm 100^{\circ}$ about 30% passed over whilst in the thask wats lefi hehind a colomtess, rely viscous mass which dissolves in henzene. From this solution it is again precipitated by acetone or abohol. If the residne is heated more strongly,

[^70] swells in contad with henzene, han does not dissolve therem.

The lignid boiling at abou $100^{\prime \prime}$ in varom. When distilled at the
 of products with a higher boiling point. After fratomal distillation in vacuo the bulk was obtathed as a perfectly colomene liguid which is more viseous than hexatriente (h.p. $999^{\circ} .5$ at 16 mm. pressure).
 1110.09) ant the vapou density determination (aceonding to Hommax: foumd 5.5 ; (adentated 5.5) led to the formula (${ }_{12} H_{1 \times}$, so that the sub)stane is to be considered as a dimer of hexatrient.

$$
\text { I). }{ }^{11}=0, \dot{8} 80 \quad \quad 1_{10}^{11}=1.51951
$$

$$
M R=55.2 \quad\left(\text { 'alleulated for } \mathcal{C}_{12} H_{10} \text { i } 53.54^{1}\right)
$$

The density is considerably higher tham that of hexatriene 0.7498 at 13°) whereas the exatation of the moleculat refration is momb smaller. This is partionlarly suking when we compare the spee. exaltations.

$$
\begin{aligned}
& \text { For hexatriene } \mathrm{E} \Sigma_{\mathrm{D}}=3.125 \\
& \text { For the dimer } \mathrm{E} \Sigma_{\mathrm{D}}=1.037
\end{aligned}
$$

The dimer of hexatriene readily forms an additive compound with one mol. of bromine; on further addition much hydrogen bromide is eliminated. It is rapidly oxidised by a solution of potassium permanganate. The investigation thereof is being contimued.

The method ky which hexatriene was formerly obtained (interaction of formic acid on s. divinylglycol) did not exclude the possibility that it might be contaminated with hydrogenated derivatives thereof and hence it was thought desirable to try other means and get it in a pure condition by regeneration from crystalline derivatives. Mr. Mulafer who for a considerable time has been engaged on the study of hexatriene has succeeded in regenerating the hydrocarbon from the beautifully erystallised dibromo additive compound. By treating hexatriene with sulphur dioxide he has also obtained a solid product, the investigation of which is not yet eoncladed and from which the hydrocarbon may be prepared also.

It was further to be expected that hexatriene would also be fore med by dehydration of the lrexadiene 1.b-ol 4 , which alcohol might be obtained by reduction of the divinylethylene oxide recently descri-
${ }^{1}$) Here it has been assumed that with elimination of two donble bombs, a ring has been formed, as suggested by the high density.
bed by Mr. in Herx: The vield of the alcohol from the axide, ahready se diftomit to prepare, was. however, so small that the appliation of this method was out of the question.

Juinty with Mr. fis Dorses. I endeavoured some time ago to prepare this aleohol according to the method applied by Ferd. Tiemons and R. Schmint at in preparation of homolinatool where they allowed a mixture of allyl iodide and methylheptenone to act on gramulated zinc. With acraldehyde and allyl iodide we did not get a successful reaction. Nor did we snceeed in obtaining the desired alcohol hy the interaction of these substances in ethereal solution ou "activated" zinc (if.. m toxe and Trme), whilst in an experiment with 70 grams of zine filings, 60 grams of allyl iodide and 60 frams of acraldehyde only a slight action took place, so that we refianed from further experiments.

Mr. Lek Herx has tried, in vain however, to obtain the desired alcohol by means of ally bromide, acraldehyde and magnesium.

The favourable result obtained by Itr. C. J. Exhiaar ${ }^{3}$) when applying the method of Focraize ') to (ratonaldehyde for the preparation of the hephadiene 2.6 -ol 4 . induced Mr. dee Hecx to allow (acoording to Focrasers directions) ally bromide, zinc tumings and absolute ether to act on acrabdehyde with the object of obtaining the alcohol in lareer quantities. With a yied of 30% of the theoretical quantity, the hexadiene 1.5 -ol 4 was now obtained as a liquid boiling at $132^{\circ} .2$ - $132^{2} 4$ under $769 \mathrm{~m} . \mathrm{m}$. pressure. The elementary analysis and the vapour density determination contirmed the formula $\left(!\mathrm{H}_{10} \mathrm{O}\right.$.

$$
\begin{array}{ll}
\mathrm{D}_{4}^{10.3}=0.8695 & n_{D}^{10.5}=1.45231 \\
M R=30.44 & \text { calenlated } 30.498
\end{array}
$$

The odour of the alcohol reminds of that of allyl alcohol but it does not produce the irritating after eflect, however.

With acetic anhydride and a drop of sulphuric acid the acetate is formed as a liquid boiling at $151^{\circ} .2$ - $152^{\circ} .7$.

Phorphorous tribromide yields the hromide (bp. $59^{\circ}-63^{\circ}$ at 35 mm . pressure which very readily aboorts 1 mol. of bromine; a further addition of bromine acts but very slowly withont, however, yielding hydrogen bromide.

From this alcohol Mr. Muder has obtained a hydrocarbon, by the

[^71]action of potassium hydrogen sulphate as well ats of phthatie anlydride, which, judging from provisional experimentseonsists of hexatriene.

In conseguence of the fian noticed by Dr. (. . J. Exkman (toe cit.) that the homologne of lowatriene which he prepared catn be obtabed in a erystalline comlition by strong cooling, Mr. Mrdmaz has cooled a freshly prepared and carefully frathoned specimen of hexatriene in a misture of solid carbon dioxide and alcobol and obtained it also in the (erystalline form ${ }^{1}$), so that this fate may be wilised for the purification of this hydrocabon.

Finally it may be mentioned here that Mr. La Heix, by reduction of the chloroacetine of \therefore. divinylylyed with a copper-xince couple in ethereal solution with addition of hytrochloric acid, obtained a lipmid boiling at $77^{\circ}-81^{\circ}$ which on strong cooling became ceystalline and consists very probably of hexatriene $1,3,5$. At any rate it yields with bromine a dibromide identical with the dibromide from the said hydrocarbon.
ltrecht. Ory. Chem. Lab. Linie.

Physics. - "the Eimstein"s therory "f the stationtry gravituthom, mele." By Prof. P'. Ehrenfest. (Communicated by Prof. II. A. Lorlintz).
(Communicated in the meeting of Febr. 22 2 , 1913).
§ 1. Let ia "laboratory" L with the observers in it have some accelerated motion with regard to a system of coordinates x, y, z, which is not accelerated. Let it e.g. move parallel to the z-axis with some positive acceleration or other. Then the observers will find that all the inert masses which are at rest with regard to the liboratory, exert a pressure on the bodies which are in contact with their bottom side. There are two ways for these observers to explain this pressure: a. "Our laboratory has an acceleration upwards, hence all inem masses press on the bodies under them." b. "Our laboratory is at rest. A field of force acts in it, which pulls the masses down."

Observations on the course of the rays of light seem to make it possible to decide experimentally between the suppositions and 11 : with regard to the system of coordinates x, y, z the light triacels rectilinearly. Hence with regard to an accelerated laboratory cumilinearly. By means of this curvilinear propagation of the rays of light the observers might therefore ascertain that their laboratory has an accelerated motion.
${ }^{1}$) Preparations which have been kept for some time and then contain polyme. rides do not solidify even at this low temperature.

The posihility of such an experimental decision disappearsimme. diately when alon in at statomy lahoratory, in which there is a fied of force, the says of light are admitted to have a corresponding curvature.

The "hypothesis of equivalence" on which Enstens bases his allempt at atheory of erravitation ${ }^{2}$, really requires such a corvature of the rays of light in a lied of atteaction.

The hepothesis of equivalence, namely, demands that a laboratory I', which rests in at jelel of atraction, is equivalent with respect to all physical phenomena with a laboratory L without gratitution, hut acceplerated."

It is therefore required that the observers which are in L, camot asertain in any way by experments, whether their laboratory has an accelerated motion, or whether it is at rest (in a corresponding field of attraction). So we are here concerned in the first place with all attempt to extend the theory of relativity of the case of umifurm motion of a laboratory to that of non-tmiform motion.

The physical signiticance of Eisstan's hypothesis of equisalence womh, however, chiefly lie in this that it requires a certain funcional relation between the fied of athaction and other physical quantities (e.s. the velocity of light).

When working out the hypothesis somewhat more closely, Einstens is confronted by certain difticulties. These led him to pronounce the supposition ${ }^{2}$) that the theory of equivalence would possibly only be valid for infintely small regions of space and time, and not for tinite ones.

Einstan contined himself here to a mere supposition, as the said difficulties only presented themselves in the consideration of the dynamie phenomena in the laboratory L^{\prime}, and he had to do there with derivations from so great a number of suppositions, that it becomes difficult to see, where the difficulties arise from: the hypothesis of equivalence, or one of the other more special suppositions (as e.g. concerning the dynmic actions of rigid kinematic connections).

The following considerations try to throw light on this question. They show that similar difticulties already ocenr in these phenomena which are the most elementary in Eisoten's theory: in the propaqation of rays of light in a statical tield of attraction.

The principal result is: All the statical fields of attraction with the exception of a very particallor class, are in contradiction with Limstein's hypothesis of equicalence. Abrad! the statical dield of
${ }^{\text {1) }}$ Ann. ©d. Phys. Bd. 35 (1211) p. 898 ; Bd. 38 (1912) p. 355 and 443.
\Rightarrow Amn. d. Phys. Bd. 38 (1912) p. $452-456$.

 thesise of "puivalence.
\$2. Let, therefore a bahoratory L^{\prime} he given, int which there is
 of light propagate in it comilimeaty in some way on wher, lat su that the following conditions are satisfied:

When once a ray of light maty have pasaed throngh the promh $A, B, \ldots I^{\prime}, A^{\prime}$ of the laboratory $L^{\prime}{ }^{2}$, then
[A] this way $1, I$, ... I', fir mat derms. be possible for the light ("Comstancy of the werlss "f light"),
$[\mathbf{B}]$ the reversed way $\left(r^{\prime}, l^{\prime}, \ldots . B, A\right.$ must also be abwas pusiblale ("reversibility of the noty. of light").

The hypothesis of equisalence now compares this laboratory $/$ ' resting in the fied of athation with a laboratory h which is free from gravitation, but has a corresponding ateceleration instead. /home must ther points af this leboratory in which there is riol growitntem moce, so theat the diserver's in it shall ubspare comstency and reversibility of the ways of light in the sense of the hypothesis af erguicalence?'
§3. For the sake of simplicity we contine ournelves to a twodimensional laboratory L. As fundamental system of coordinates, with respect to which L moves in an atcelerated way may serve the system of coordinates e^{2}, y, which has no acceleration, and the time t measured in it. With respect to this system which is without gravitation, the rays of light move in straight lines and with constant velocity 1. In the corresponding in, themorld-apace of Minkowsim every optical signal tratelling in this way is represented by at staght line forming an angle of 45° with the t-axis. Such a line in the x, y, t-space is called. "u line of liyht". The motion of the different points $A, B, \ldots l$. (r of the moving laboratory L is represented by the same number of (cursed) world lines a,b... $f, \%$

When the observers in the laboratory L state that they have succeeded in making an optical signal S_{1} pass through the points $A, B, \ldots I^{\prime}, G^{\prime}$ of their laboratory this means that the corresponding line of light s_{1} intersects the wortd lines $a, b, \ldots, i,!/$ of these points of the laboratory.

According to condition $[\mathbf{A}]$ of $\$ 2$ the observers in the laboratory L must in this ease be able to send light signals $s_{2}, s_{3} \ldots$ through

[^72]the puint $A, B, \ldots l$. A of the batwatory at other moments as many times athey like deometrical reptesentation in the x, y, l-space The womblines a, $1, \therefore, f,!$ are intersected by all the x^{2} lines of light $s_{1}, s_{2} \ldots$ they all lie on the ruled snface formed by the x^{2} light lines.

In agreement with condition $[\mathbf{B}]$ of $\$ 2$ the observers of the lahoratory L most then moreover as often as thes like be able to send optical signals S_{1}, $\mathfrak{N}^{\prime \prime}, \ldots$ in "pposite direction $G, F, \ldots B, A$. In the x, y, t-space again ∞^{\prime} light lines $s_{1}^{\prime}, s_{2}^{\prime}, \ldots$ correspond with "his, which all intersect the word lines $a, b, \ldots, f, \%$. Hence the world limes a, b, \ldots, t, h all lie on a surface covered by two systems each of x^{2} light lines. If we then bear in mind that the light limes all make in angle of $45^{\circ} \mathrm{C}$. with the t-axis, it is easy to see that such a surface must nevessarily be an equilateral hyperbolod of revolution with the axis of revolution // to the t-axis; i.e. the equation of this surface has the form:

$$
\begin{equation*}
A\left(x^{2}+y^{2}-t^{2}\right)+B x+C y+D t+E=0 \tag{1}
\end{equation*}
$$

In particular the case maty also present itself that $\Lambda=0$, i.e. that the hyperboloid degenerates into a plane.
such hyperboloids will he briefly called "light-hyperboloids". Accordingly the world lines $a, b, \ldots f, y$ of the points $A, B, \ldots l$, G of the laboratory L lie on a common "light hyperboloid" $H_{a b}$.

Now the observers might just as well have sent a light signal instead of from 1 to B, from A to any other point B^{\prime} of the laboratory. In exactly the same way we see then that also the two world lines a and $\|^{\prime}$ must lie on a common light hyperboloid $H_{a b}$. Let the equation of this be:

$$
\begin{equation*}
A^{\prime}\left(c^{3}+!^{2}-t^{2}\right): B^{\prime} x+C^{\prime}!l+l^{\prime} t+E^{\prime}=0 . \tag{2}
\end{equation*}
$$

So the woild line a lies at the same time on two different lighthyperboloids $H_{a b}$ and $H_{n t}$; it is the section of both, and this is necessarily a plane section. Maltiply equation (1) by A^{\prime} and equation (2) by A, and subtact). If we now bear in mind that the point A of the laboratory must never have a greater velocity than that of light, of all the plane sections of a light-hyperbolod onty two types deserve consideration: hyperbotas the two branches of which run from $t=-x$ to $t=+x$, and as limiting case the light lines of the hyperboloid. (In other words the sections with planes which 1 cot the gorge circle of the hypertoloid, and 2 make an angle of $\leq 45^{2}$ with the t-axis. As hesides, the case maty ocem that the light hyperbohods which pass through the world line a, degenerate to planes, the world lime n may also be a strath line, making an angle with the t-axis, which is smaller than 45°.

1, however, was an ahblaty poin of the labmatory I. So we have proved the following:
"If the observers in a moving laboratory Le, which is without gravitation are to observe constancy and reversibility of the ways of light, it is necessary that the "worddines" of the points of the laboratory are a system of x^{2} batuches of hypertholas, or else straight lines in the x, y, t-space."

Without at new supposition, only in consequence of the ciremmstance that through every pair of these worddines - e.g. p and g - can always be brought a light hyperbolod $/ I_{m}{ }^{1}$, it can further be proved: that the x^{3} wortd line hyperbotas lie in x^{3} surfaces, which pass fimlike through a straight line I of the er, I, t-spate ; they cut I in two real or conjugated maginary points Ω_{I} and $\Omega_{/}$ (which may also comode. In this way dependent on the sitnation of the points Θ_{I} and $\Theta_{I I} x^{n}$ tields of word lines originate, which are of a very particular mature. ${ }^{2}$)
$\$ 4$. The frequency of the static fields of attraction caused by 7 centres which are stationary with respect to each other, is already greater than $x^{\prime \prime}$ for $">3$. But the "hypothesis of equivatence". camot be satisfied in any other case than in that of the very special fields of attraction, which correspond to the α^{β} fields of acceleration of the preceding $\$$.

Remark.

Up to now we have only used the constancy of the form of the rays of light. Moreover in every point of the laboratory I^{\prime} the velocity of the light must also be independent of the time. In order to introduce this condition, the measurement of time in L^{\prime} would have to be taken into accoms in the considerations, which renders them more intricate.

Possibly the class of tields for which the hypothesis of equivatence is admissible, might then be still further limited.

The field of hyperbolas which in the x, y, t-spate represents Bons: "motion of hyperbolas" of a two-dimensional laboratory", is contaned in the $\propto^{\prime \prime}$ fields of hyperbotis of $\$ 4$ as a spectal cane.

Moreover it satisfies (with suitable measurement of time in L^{\prime}) the condition that the velocity of the light is indepentent of time.

[^73]Astronomy. -- "The remblitity "! the Polooster." By Dr. A. Panae-

(tommmicated in the meeting of January 25, 1913).
A -light variability of es Lrate minoris hats already several times bern -Hopectet ly difterent ohservers semper, S(HMnt). When in 1889 aml 1890 I exeroted a ureat mumber of ohservations (estimates with the maked eye after draminsimes method) for the determination of the brighmen of the stars of the $2^{\text {nd }}$ and 3^{3} magnitudes, such great differences showed in some of these stars, that they were being ohserved as regularly and as often as possible in the following years with a view to probable variabitit. Among these stars was also the Pole-star ${ }^{2}$). In 1890 I found that the perion was about 4 days: eateh time 2 days atter a grat intensity came a faint one and the reverse. I did not succeed, however, in finding in acemate value for the perion. From the nbervations in December 1890 I found two maxima Gn Der. 7.0 and I Dee. 29.8 (in reality they occurred on Dee. 15.6 and Jee. 30.4 , which yiedded a probable period of 3.8 days; this however did not agree with the observations of that winter.

After all it must indeed have heen hopeless to derive the elements of the pariation from these observations on!y. As the mean error of ant estimate amonnted to 0.7 of the whole amplitude, as appeared later ons. it might even happen that a maximum and a minimum seemed to have changed places owing to errors of observations. Moreover the remembrance of the results of previons days may spoil an observation. If on one particular day the star has perhaps wrongly, heen estimated very faint, one expects to see it very bright two days afterwards, and this may influence the estimate. On the other hand the small nmmer of observations in a given interval of time, sty a month, owing to bad weather, did not allow to counteract the uncertanty of the sequate estimates, by initing a great momber into a normal place. I have long continted the observations of this star, up 10 1899 , in orter to have material for a closer investigation. in case the variability should he proved and the period should be accurately known.

In 1898 Cimpbed, discovered that the madial velocity of this star is vamiable and hence that it is apectrocopic double star with a

1) The other stars in which I consider variability to be probable, although I camol prove it with certainty owing to the smallness of the amplitude, are ζ Tauri (period of a few days), 40 Lyncis (wh days) and \% Hereulis (14 months); the latter two are of a red colour.
perion of 3 .968 days late of time, beranme of my work at the observatory, prevented me from immediately redmeing my ohomvalionby means of this value for the period and so testims the variathity. The probability that ef trate mimoris was imteed a short-periorvariable of the type of o Cephei grew strongen', when I fonnd in $1906{ }^{\circ}$) that it showed the same perobtianty in its spectrm as those stars (erotharacter after Miss Marry and has, as all stars of short period of this type, an extraordmary slight density. In a foomote attention was alreaty drawn to these moments of probability.

Starting from the consideration, that for all these short-periont. variables the photographie amplitude is moch larger than the visual one, Herrasprexa at Potsdam has therenpon (in 1910 and 19911) taken a great number of photographs 418 plates in 00 nights of lolaris, and from this setled with alsolute certanty a variability with an amplitude of 0.17 magnitude ${ }^{2}$. For the epoch of maximum light he found J. I) $2+18985.86 \pm 0.08$ Greenwich M. 'T'. Subsequenty J. Strabins has executed a number of photometric measmements with his exceedingly sensitive seleninm-method in $1911-12$; these also Clearly show a variability with a visual amplitnde of 0.07 magnitude ${ }^{3}$). The epoch of greatest brighess as found by him, viz. d. L. 2418985.94 (ir. M. T. agrees very well with Hertzspreag's result.

I have also reduced $m y$ ohservations of $1890-1900$ with the aid of the periodic time 3 a 9681 , as spectrographically found. In the second half of each year 1 used for comparison the stars of l'ersens and Andromeda, in the tirst half those of Ursa major. Thus the observations form two mutually independent series, partially overlapping in wintertime. For the 1 st series a Persei $=6.3$, Andromedare $=3.8$, γ Andromedae $=3.1$, and exceptionally \quad drietis $=5.4$ and " Andromedae $=2.3$ were used as a scale of comparison-stars; for the $2^{\text {nd }}$ series served \& Ursae maj. $=2.4$, v Uraze maj. $=0.0$, and, exceptionally, u Ursat maj. $=4.0$. The observations were not corrected for atmospheric extinction, since this influence disappears in the mean of many observations and at the most can make the mean error seem too great. Taking all lowether, from 18.00 up to 1899 259 comparisons with the Perseus-Andromeda-stans were avalathle and 251 comparisons with those of Ursa major. With the aid of the periodic time 3.968 all epochs of observation were redued to

[^74]one -imgle period, viz. Aug. 3-7 1894, and subsequently united into normal places. These normal places are the following:

First series		Obs-CMalc.		
Aus. 3.12	3.72	(18)		1.03
3.42	3.94	(16)	+	11
3.73	4.11	(21)	+	08
3.96	3.91	(16)	-	29
4.22	3.94	(20)	--	42
4.54	4.68	(17)	+	18
4.76	4.86	(16)	+	33
4.94	4.76	16	+	24
5.18	4.11	(17)	-	34
5.52	4.45	(14)	$+$	19
5.76	4.11	(20)	$+$	02
5.94	3.67	(18)	-	29
6.23	3.67	(16)	-	11
6.46	3.78	(14)	$+$	10
6.73	3.79	(19)	$+$	16

Second series Obs.-Cale.

Aug. $3.21 \quad 0.59$ (18) - 0.03 $3.48 \quad 0.68(16)-08$ $3.65 \quad 0.59(13)-28$ $3.921 .13(18)+07$ $4.251 .39(20)+10$ $4.46 \quad 1.40(22) \quad 00$ $4.65 \quad 1.69(24)+22$ $4.941 .55(14)+05$ $5.22 \quad 1.20(17) \quad-\quad 23$ $5.46 \quad 1.27(18) \quad-\quad 03$ $5.72 \quad 1.02(20)-11$ $6.22 \quad 0.74(19) \quad-\quad 04$ $6.480 .86(16)+22$ $6.860 .67(16)+11$

Both series show, as loes the graphic representation, with unmistakable certainty a periodical variation of the brightness to an amount of about one scale-unit with a maximum on 4.8 August. The calculation of a sine-formula resulted in (revo epoch 3.0 Angust): $1^{\text {st }}$ series $4.08+0.45 \sin \left(y-72^{\circ} 0\right)$ Maximum $4.79 \mathrm{Aug} . \pm 0^{\mathrm{d}} .13$ $2^{\text {nd }}$ series $1.0 .3+0.47 \sin \left(1-78^{\circ} 9\right)$ Maximum $4.86 \mathrm{Aug} . \pm 0{ }^{4} .09$

Eig. 1.

The remaining deviations Ohs. Cale have heen placed in the last columm. They yield for the mean aror of a momal phate

according to the mean of the two series, 0.21 (if we adopt this same value for both series, then each maximum has a mean error of $0^{1}, 11$), from which we find 0.84 as mean error of one observation, while 0.7 had been found from the differences between the separate results and the adopted normal places. The devations of the normal places from the simusoid, it is true, show a systematio character, in the sense that the maximmm is very sharp, the minimum very flat, hence that a term with 2 ir is indicated, the positive maximum of which falls together with the maximum of the principal term. Since, however. nothing of this kind is to be observed in the lightecurves of Hertzaprusa and stebbiss, no further attention has been paid to this phenomenon. Thus my observations yield as eporh of the maximum, after reduction to Greenwich-time:

$$
1894 \text { Aug. } 4.81 \text { Gr. М.'. }=\text { J.I). } 2413045.81 \pm 0)^{d} .08 .
$$

The interval between my normal-epoch and that of Hertzapresi J. D. 2418985.86 is 5940.05 days $=1497$ periods of 3.9680 days.

In order to reduce the brightness of maximum and minimum to the same photometric scale, the catalognes of Potsdam and Harvard were used. For the reduction of the magnitudes griven there to the homogeneous seale that has been derived and adopted in my disweptation "Untersuchungen über den Lichtwechsel Algols" (p. 14i-158. first a correction was added to the values of Harvand 44, in order to reduce them to Hawam 14. This was derived from the differences between the two catalogues, calculated by Melotian aud kempre and commanicated in their "(iencralkatalog der photometrinchen Durch-
masterung ${ }^{2}$. Eimbimber s. XXIII. For our purpore they were given the following form:

$$
11.44-11.14=-10.01+1(64.0)
$$

 function of the magnitude, varying lineany with the difference between the apparemt hightnes of the star in the fwo photometers, calcolated in the mamer as han heen indicated on p. XXIN of the same intorlurtion for magntude $1.0 .2 .0,3.0$ we hate $=+0.062$, $+0.054,+0.042$. Sutsegnenlly to these marnitudes, reduced to H. 14 and to the magnitules of H. 14 itself, the correction for colour was added, which has been found in my dissertation p. 158. There is atso to be found the correction varying with the magnitude which has to be added to the results with Photometor C II, in order to reduce them to the same system ${ }^{2}$). All stats used by me have been ohserved in l'otsdam also with Photometer (C III. As they have no excessive apparent brightness in this instrument and hence no variation with the brightness is to he expected in this case, a constant conrection- 0 n. 23 was added to the results with C III.

For the employed comparison-stats, supplemented with a few other stars, continuing the scale further to the fainter side, we give successively : the colour according in Osthorf, devised in the manner as indicated in my disertation p. 168), next the magnitudes of Harvard 14, Harvard 44, Potsdam C II and C'II, all corrected in the way already mentioned, subsequently the adopted simple mean value from these four and then the brightness in the employed scale of comparison-stars.

1) Publicationen Potsdam 17.
${ }^{2}$) Mëller and Kespf have not corrected the resulls obtained with Cill, because they could not discover a systematic difference between CI and CII (Einleitung S. XIV). Since, howerer, for the comparison of these imstruments they could only avail themselves of stars between magnitudes 3.5 and 5.5 , this does not clash with my result that a correction is needed for the brighter stars up to the \mathcal{Z}^{n} magnitude, which of course can only be foum by comparison with another catahogue. White the comparisons employed by Mëlser ath hempr can teach nolhing about the absence of systematic errors for these bright stars, the fact that increasins neqative corrections are needed for Lil above magnitude 4.8, and for photometer I above magnitude 61 (Linleitung S . XII), renders it exceedingly probable that similar corrections are needed for Cill above magnitude 3.n, such as I derived in my dissertation. The final values of the Polsdam "General Catalog" are therefore likely to be systematically erroneous above the $3^{\text {rad }}$ magnitude. For this reason I have not been able to use simply the Potsdam system for the magnitudes of the comparison-stars, as would have been a matter of course for fainter stars. By using the Putsdan system I should have found the amplitude too small.

Star	Colour	1114	1141	P.CII	P.C.III	Mcan	scale	Calc.
, Persei	3.4	1.94	1.88	1.87	1.95	1.91	6.3	1.92
, Arietis	5.4	2.03	2.10		1.91)	2.03	5.4	2.02
,5 Andromedae	6.2	2.20	2.05	2.04	2.11	2.10	3.8	2.14
, Andromedae	5.2	2.13	2.19	2.019	2.14	2.14	3.1	2.16
, Andromedae	1.8	2.09	2.22	2.21	2.17	2.17	2.3	2.15
, Cassiopeiae	2.1	2.32	2.35	2.24	2.23	2.28	0.8	2.25
3 Cassiopeiae	2.9	2.43	2.50	2.36	2.33	2.41	-1.7	2.43
* Ursae maj.	4.9	1.96	1.88	1.79	1.77	1.85	4.0	1.86
: Ursae maj.	1.8	1.86	1.89	1.98	1.84	1.89	2.4	1.89
, Ursae maj.	1.4	2.03	2.03	1.98	2.05	2.02	0.0	2.03
Y Ursae maj.	2.1	(2.40)	2.29	2.18	2.12	2.20	3.6	2.25
- Coronae	1.8	2.39	2.38	2.32	2.39	2.37	-4.8	2.32
: Bootis	4.8	2.55	2.57	2.37	2.52	2.50	-5.7	2.43
, Ursae maj.	1.7	2.63	2.71	2.41	2.42	2.54	-8.9	2.56
\% Ursae maj.	1.8	2.59	2.66	2.54	2.39	2.55	-9.7	2.61

The relations between the soale-values n and the magnitudes m are represented by the following formulate (3.7 is the colour-mmoner of e ITrsae minoris):

$$
\begin{array}{ll}
1^{\text {st }} \text { series } & m=2.335-0.065 n+0.020(c-3.7) \\
2^{\text {nd }} \text { series } & m=2.07-0.059 n+0.020(c-3.7)
\end{array}
$$

The magnitudes of the stars calcolated after these formatate are given in the last column of the preceding table. With the aid of the same relations the sine-formalae for the brightmess of e L'race minoris, become expressed in magnitudes:

$$
\begin{array}{ll}
1^{\text {st }} \text { series } & 2^{m} 0-1-0^{m} 029 \sin \left(1-52^{\circ}\right) \\
2^{n d} & \text { series } 2^{m} 01-0^{m} 028 \sin \left(1--78^{0} 9\right)
\end{array}
$$

So the amplitude of the variation of light amomats 100 (1).at, while we find as mean error of an observation hased on the deviations of the separate observations $0.04: 3$ and on the deviations of the momeal places from the formulat 0.051 .
II.

Amons the older material that may serve for the examination of the variability of Polaris, we must in the first place consider the observations executed by (x. Müdrer in 1878-81 at Potsdam for the determination of the atmospheric extmetion and published in Vol. Ill of the Potedam "Pnblicationen". As these observatione consist in measurements of the differences in hrightuess between Polaris and .5 other stars observed in very different zenithdistances, they yield abundani material for the determination of the variability of Polaris

For this purpose I have examined the deviations of these differences from their mean value remaining after correction for mean extinction, which are to be found in Mërder's Table IV, last colmmn but one (p. 261-265). Excluded were all observations in which the zenithdistance exceeded 60° and all those indicated as uncertain by the observer. The others were arranged according to the phase, comnted from 1879 December $12.0+n \times 33^{3} 968$. The unit of these deviations is that of the third decimal place of the logarithm of the proportion star: Polaris, i. e. 0.002b magnitude. In order to give the positive sign to the maximmm light, the signs must be reversed. In the following table are given the normal places formed from these deviations reversed in sign and reduced to magnitudes; the number of observations on which each normal deviation depends has been added in brackets.

poch	Deviation		O-C	Epoc	Deriation		O--C
Dec. 12.02	(1)	25) +	-0^{20001}	Dece. 14.	(1)		12
12.34	+ 030	(18)	000	14.50	009		015
12.64	+ 047	(23)	014	14	009 (23)		013
12.92	008	(20)	021	15.0	021 (25)		004
13.21	028	8)	008	15.2	048 (1		036
13.63	+ 000	(20) +	+ 003	15.34	017 (24)		022
13.84	010	(17)	004	15.69	008 (29)		001

Here also the variability of Polaris appears with ummistakable clearness and it may be expressed by the following sine-formula:

$$
\text { Deviation }=+0 \mathrm{~m} 00 t+0 \mathrm{~m} 028 \sin \left(1,35^{\circ}\right)
$$

Maximum Dee. $12.61=1879$ Dec. $12.57 \pm 0.14 \mathrm{M}$. T. Greenwich
The last column of the table contans the differences Obs-Cale.
The mean error of a mean value from about 22 observations is 0 "016, hence the mean error of one observation 0 m077.

The immense number of photometric measurements made at the Harvard Observatory, in which Polais has been used as comparison-
 Caknatimg the time of maximam light alow foom the moth deviafions given by him. by means of a sindermala, we athan:

$$
\text { Deviation }=+0 n 02+0 n\left(039 \cdot \sin \cdot\left(1+254^{\circ}\right)\right.
$$

Phase	Deviat		(). (1.	Phase	I eviation	(1).-(')
012	$+0 \mathrm{~mol}$	120)	+0\% 045	$2{ }^{12}$	+ 00003 (123	- 10 m 011
19.18	06	(19\%)	$0: 31$	2.18	+ 0\%3179	102
1.1	()2	(152)	012	3.0	(0) 168)	112
1.4	())	(126)	025	3.4	O3) 168	
1.8	09 $+\quad 09$	(126)	+ 0imb	3.8	02 (150)	1111

The last column again eomtains the differences (thes ('ale. The mean erer of a normal deviatom is 0notas? As a positive sign here means a preater brightnese of lobaris the maximum-light oceurs at the phase $2^{\prime \prime} .16 \pm 0^{\prime} .24$. The woro epoch of the phase is at d. I).
 so that the nommal epoch of maximm becomes

$$
\text { J. I) } 2408228.45 \pm 0.24
$$

III.

l'utting together the hitherto ohtained results for the light-vatiation of 's Ursae minoris and comparing them with the formolat for the maxima given by Martasprova:

$$
\text { J. D. } 2418985.86+3.9681 E
$$

we lind the following table:

Year	E.	(haspred	1)-C'	Amplitude	(1)seratar
		$2+$			
1879	-2845	07696.57 ± 0.14	-0405	(0m056 vis.	Mäthar
1881	-2711	05228.45 ± 0.24	+0.11	0.078 vis.	Harcarb
1894	-1497	13045.81 ± 0.08	$+0.20$	0.0 .37 vis.	Pantroofk
1910	0	18985.86 ± 0.08	0.00	$0.171 \mathrm{ph}^{\text {d }}$	Hertzerra
1911	$(+100)$	18985.94 ± 0.09	$+0.08$	0.078 sel .	Stebbins

Attempring to corrent with these data Hfrtasprove's formula, we find (adopting as weights $2,1,4,4,4$) as comection:

$$
+0^{1} .05\left(\pm 00^{2} .060-0.00001(\pm 0.00004) E\right.
$$

Thus for the length of the period the exact valme alopted by Hertaspresg is found. The most probahte formula for the maximmenepoch of e Ursace minoris now becomes:

$$
\text { J. D. } 2418985.9 \%(\pm 0.060+3.96809 \pm 0.00004!
$$

${ }^{1}$) Harvard Circular Ne. 174, Astronomishe Nachichten 4597 Bel. 192. S. 219%
Proceedings Royal Acad. Amsterdam. Vol. XV

Chemistry. - "Eipuilibrit in tomary systems" IV. By Prof. F. A. H. schmeinamatirs.
(Communicated in the meeting of Jamary 知, 1913).
We eonsider a liquid L, satmated with the solid substance K and in empitibrimm with the rapom ($\%$. We allow this bipuid to proceed atong ie shathet line which passes through the point $\%$.

It we call din the quantity of solid substance f that dissolves in the umit of guantity of the liquid, we get:

$$
d x=(n-x) d n \quad d!=(\sqrt{n}-y) d n
$$

If we substitute these values in (i) (II) and (7) (II) ${ }^{2}$) we have:

$$
\begin{align*}
& -M \cdot d n=A d I-B d T \tag{1}\\
& -N \cdot d u=(\cdot l l) \cdot H d T \tag{2}
\end{align*}
$$

where for the sake of lorevity:
$M=(x-n)^{2} r+2(x-r)(y-3) x+(y-3)^{2} t$
$\left.N=\left(x_{2}-x\right)(x-n) r+(n-n)\left(n_{1}-!\right)+\left(x_{1}-x\right)(!)-n\right)^{2} s+\left(!n_{1}-\eta\right)(n-\beta)$
From this follows:

$$
\begin{align*}
& d D^{\prime}=\frac{B I I-B D}{B C-A D} \cdot d n=\frac{B A C-B N}{B C-A D} \cdot \frac{d \cdot}{(C-a} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& { }_{d T}=\frac{D M-B N}{C M-A N} . \tag{4}
\end{align*}
$$

As in the previous communication, we assume the very probable case that $B C-A D$ is positive.

If now we call $x=a$ and $y=b$ then $l=0, V=0$ and $\frac{V}{\ell-x}=0$, lout $\frac{N}{a-x}$ does not become 0 as a male. If we call turf $=\frac{y-\beta}{x-a}$ we yet:

$$
\begin{equation*}
d P^{\prime}=\frac{B\left(\left(x_{1}-\theta\right) r+\left(y_{1}-B\right)+\left\{\left(c_{1}-\theta\right) x+\left(y_{2}-B\right) t_{1} t y_{n} \mid\right.\right.}{B C^{-}-A D} d x^{x} . \tag{6}
\end{equation*}
$$

and for ${ }^{l}$ 'T a same form with this diflerence that in the numerator P has been rephaced by A

To peree the signiticance of this we take fig. 1 in which the Chsed curves indiate the boiling point lines of the solntions saturated with f. The exphased ones, at has heen stated previously, have

1) The figures (1), (II), and (II) reler to the lomer communications.
shifted to that side of f where the vapour region is sitmated. Ont increase of pressure, the builing point line disappeass dimally in the point 1/ the cormetated prour lime in the poini $1 /$. The point D) indieates the vapour whid ran be in equilitnjum with the solid substance F° and the liquid P, therefore the vapour which foms at the minimum melting point of the componnt f. The line $X V^{\prime} Y^{\prime}$ is the tangent in f at the boiling point line passing throngh f. We
 conjogated diagonats of the imdicatrix in F at the lignidum side of the ζ-phane.

We now lay down throngh f an arbitrary line $\% Z_{1}$ and let a liquid proceed along this line: as ateording to .6 dly and d'thave a detinite value dillering from mil it follows that in this point neither the presture nor the temperature is at a maximmor or amimum.

If, however, we choose the line in such a manner that
then dly as well as dT' is mil. From 13 (1) it follows that 7 , is satistied when the line drawn hoough if comes into contant in f with the boiling point lime passing through this point, therefore when the liquid proceeds along the straight line $\left\langle\bar{\prime} J^{\prime}\right.$.

If now we introduce a line element dos positive in the direction away from F and negative in the direction towards l, and if we let y change from 0° to 360° we have dre $=$ cosif. do so that (6) is converted into:

The factor

$$
\begin{equation*}
\left\{\left(x_{1}-u\right) x+\left(y_{1}-\beta\right)\right)_{1} \cos \varphi+\left\{\left(x_{1}-u\right) s+\left(y_{1}-\beta\right)\right\}_{\}} \sin \| \tag{9}
\end{equation*}
$$

in the point F is mil towards I as well as towards Y; in all other directions it differs from mil . If 10 of is given such a value that the line passes through the point I) we notice that the farctor 9 is positive. Hence, in the point f the value of 9 is positive in the direction towards D and negative in the direction towards E.

We may now easily deduce that (9) is positive if, starting from r, we move towards that side of the line SFY where the point $I)$ is sitmated; and that ((9) is negative when we move from F towarts the other side of the line X / l. These positise or newative values are, however, very small if the direction almost coincides with $F^{\prime} \mathrm{I}^{\circ}$ or $E V^{-}$so that at some distance a reversal of the sign may perhaps dake plate. $B=H-a_{1}$ hemg positive it follows from (8) that the pressure when stanting liom F increases towards that
shto of the line X / Y where the point D is sitwated and decreasen when starting from f fowads the other side of the line $X F Y$.
 vapon presture increases stange from F : if it proveds along the
 in the direction of F fowati I or towards $)$ the vapon pressure rematins at first mohanged.

It will be easily pereeted that there considerations are in hamon! with dig. 1. For the closed comes drawn in fig. I are the boiling point lines of the solutions sathated with r^{r} : each corse, therefore, apples to a definite constant pressure. As the pressure beeomes higher, these furves draw nearer to d/ to thally disappear in this point. Of conrse, it mey happen also that on inerease of pressure a coure moses away entirely or patially from $1 / 10$ again draw nearer to I/ at a finther immease of pressure. In the point P this, howerer, is not the ease: we have alleady demomstated that the part of the boiling point line passing fhomgh I^{\prime} sitnated in the vicinity of F moves on increase of pressmre towards $1 /$, and on reduction of pressure away from $1 /$.

Fig. 1.

F゙is. !

Fig. 3.

In tix. 2 the line $~ \% / F Z_{1}$ represents the same line of tig. I: the but 1% lien, therefore, at the same side of $X F Y$ where the point () is silwated: the part 1%, lies. therefore, at the uther side. Perpen-
 rapour pressures of the liquids saturated with l of the line $Z F^{\prime} Z_{1}$. As
aceording to our previons comsiderations the presure indratas from If towards Z and dererases towath $\%$ the vapour pressure abore in $F^{\prime \prime}$ mast have a direetion like curve af"h. As the line f\% comme into contacy with one of the exphated hoiling paint lines, the pressume in this point is a maximum: on the come af bof fige 2 a amamman vapour presure must, therefore, orem somewhere between "and $\mathrm{F}^{\prime \prime}$.

It, however, the line $Z F^{2}$, of tig. I is thrmed in such a manner that it keeps ou passing comtmally through f ', the curve a $E^{\prime \prime} h$ of fig. 2 will change its form ahthough it will of coarse, also keep on passing through F^{\prime}. From onr previons considerations it follows at once that the direction of the tangent in F^{\prime} and the porition of the point with maximum rapon pressure changes. It $Z t^{\prime} Z_{2}$ comodes
 tangent in $r^{\prime \prime}$.

We have assumed in lig. I that the boiling point line pasing through F^{\prime} is curved in the point F in the direction towads D: in our previous commmication (II we have noticed. however, that, in the vicinity of f it may be ermed in some other direction aton. It may then present a form such as curve afty of lig. 2 (II) in which, however, we must imagine the arrows to point in the opposito direction. We have dedured this form white ansuming that the vapour contains one of the three components on!? Although in this case, the appearance of such a form is not very likely, the possibility thereof is greater when the vapone contains the three components and when, for instance, it the system $/$, i a manimum temperature occors. We now imagine through point F of tig. 1 and also at somewhat higher and lower pressures, boiling point lines of this form. Lines proceeding from F towards that site of NFY where the point D is situated will then ach again come imto contact with a boiling point line, so that a pressure maximmon must occur. Lines which proceed from ir towards the other side of XVY either do not come into contact with a boiling point line al all, or else they meet two of theste, so that there occus one point with a maximum and one with a minimum rapour pressure. The latter case will oecur on lines in the vicinity of $F^{\prime} \mathrm{V}^{\text {and }} F^{\prime} b^{\prime}$.

On turning the line $2 F \%$ of fig. I we will, therefore, have vapour
 if Z / Z_{1} comeides with $X F Y^{-}$of lig. 1 , a sapour presure coure r $F^{\prime} d$ of tig. 3.

In order to investigate the change in temperathre in the point Ir on the lines passing through this puint we take the formulat correspondimg. with (8):

in which $A=1^{\prime}$ - . Herefore positive or negative.
From this it follows that dT will be ni! when 9 , is mil, therefore when the line drawn through F coincides with the tangent $X F / V^{\prime}$ in F at the boilmg point line passing through this point, or what amounts to the same thing, at the saturation line mader its own vapour pressure. We now distinguish fwo cases.
$I^{\prime}>v$. The saturation lines under their own vapour pressure are now sitnated as in fig. It(I); we now imagine, in this fignte, the tamgent drawn on to the saturation line under its own pressure, pasing through l. As in fig. 1 we will call this $X V Y$. The point corresponding with the point D) of fig. 1 is, of course, situated in tig $14(\mathrm{I})$ on the vapour line correlated to the satmation line under its own vaponr pressure which passes through the point E. Hence it is sitnated, as in lig. 1 to the left of the lime $\mathrm{I}^{\top} \mathrm{F}^{\prime} \mathrm{X}$.

If now we move in fig. 14(I) from I towards that side of the line XV' where the point D is situated, then, as follows from (10), the temperature increases starting from F^{\prime}; when moving towards the other side of the line SHY the temperature decreases from I.

Alter the previous considerations in regard to Fig. 1 it is evident that this agrees with tig. $14(\mathrm{I})$. If in this tigure we imagine a line drawn from l towards that side of $X V V^{\prime}$ where the point D is situated this will come into contact with one of the exphased saturation lincs mater their own rapour pressure. As each of these curves belongs to a definite constant temperature differing, of course, from curve to curve. the temperature in this point of contact is a maximum one. If now in tig. 2 we imagine the pressure axis to be rephaced by the temperature axis we agan obtain a corve like af ${ }^{2} b$ with a maximum temperature between a and $r^{\prime \prime}$. If in tig. it (I) we turn
 " $F^{\prime} h$ of lig. 2 is transformed to curve $e F^{\prime} d$ of this ligure.
shouk the case ocemr that in fr the saturation line under its own vapour pressure becomes cursed away from D, we obtain curves as in fig. 3 in which we must again imagine the pressure axis to be replaced by the temperature axis.
$I^{\prime}<r$. The saturation lines mater their own vapour pressure are no longer situated ats in fig. $14(\mathrm{~J})$; we may, however, easily imagine them from this tigure if we suppose the point f to lie on the line MAM, hetween $I /$ and M_{1}. From a consideration of this figure it then follows that, starting from F^{\prime}, the temperature decreases towards that side of the line $X P\rangle^{2}$ where the point D is sitmated and
incereases fowards the other side of this line. At the side lumed atsay
 maximum. This is also in argeoment with 10). $1=10 \quad 10$ now being nemative it follows that for positive vatues of (9) and of dy, d'T from (10) is mow negative; this means that the pressure dererases from F'towats that side of the line $X /{ }^{\prime}$ ' where the point D is sithated.

We now take ${ }^{\text {dP }}$ drom (5 , and white this in the form:

$$
\begin{equation*}
\frac{d l^{\prime}}{l \bar{T}}=\frac{B-R I}{I-R C^{\prime}} \tag{11}
\end{equation*}
$$

In this:

 that the denomintar ako beeomes 0 : this is the eate, when startine from F° in fis. 1 one moves along $F A$ or $F V$. We will tirst assume that this is not the case.

If one moves from f fowads that side of $X F \mid$ where the point D is situated l^{2} will be positive: when moving from fowamb the other side l will be neyative. We now let a liynd saturater with solid F^{\prime} proceed along the line $Z F^{\prime} Z_{1}$; from (11) it now follows that in the point F

$$
\begin{equation*}
\frac{d l^{\prime}}{d T}=\frac{B}{A}=\frac{l l-v_{i}}{1-v} \tag{19}
\end{equation*}
$$

$I^{\prime}>r$. In the P^{\prime} Thliammon of tig. 4 af represents the sublimation.

Fiz. 1

LiF the threephave and Fal the molting point curse of the compound f : thene thate comes atre therefore the same as the homogeneons
 lier. 4) is determined by:

$$
\begin{aligned}
& 111^{\prime}=11-1 \\
& 1 T=10-1
\end{aligned}
$$

From (12) it follow that, in point for of the the Prene ZF $\%_{1}$ masis come into contad with the melthig point line Pil. The finther course of this P'teurve in the vionity of the point if may be traced in the following mamer :

We proceed in tig. 1 from $F_{\text {towards }} \zeta_{1}$, R thms becomine newative. From (11) it now follows that $\frac{d I}{d T}$, remains positive so that the curve must be situated like curve $F Z_{1}$ of fig. 4 .

If. in fig. t we move from I towads $~ /, ~ R$ becomes positive. A heing small, the denominator of (11) will soon become mil so hat curve 1% of fig. 4 must have a vertical tangent in the vicinity of the point $l:$. If in lig. 1 we move further from F towards K, then 11' IT from (11) will become negative first, and mil afterwards, so that curve $I \%$ of fig. 4 most have a horizontal tangent. As $\frac{d T}{}$ afterwarls becomes positive, corve 1% is hound to fall at a decreasing temperature.

Proceding from point $\%$ we find on curve $\angle F Z_{1}$ first a pressureand then a temperathre maximmm. further a point of contact with the melting point line Fel of the compound f at the minimum melting point of the compound and finally a receding branch $F Z_{1}$. All this remints of the P, l'corves deduced by Van der Wadas for solid + liquid + gas in binary systems.

To some differences, for instance that the P, T-curves mentioned here do not meet the sublimation line of f^{\prime} in the maximmm sublimation point, I will reter later.

In fig. t it has heen assmed that curve Z / Z_{1} exhibits a double print b, hamely a point of intersection of the bramehes $F \%$ and $F Z_{1}$. In order to pereeive the possibility of a similar double point we take a (bermphased boiliner proint line (tig. 1). On this occurs a point with a maximmon and another with a minimmm tomperature. These points divide the boiling point line into wo bramehes and in such at manner that forel proint of the one batuch appertatus a detinite point of the ohber lowach, samely in that sense that both prints indicate
 satmatted with $l:$

Of all statight lines which amite fwo stob conelated points of the two branches one is sure to pass through the point fis In Inw, we allow the line $Z F Z_{1}$ of tig. 1 to comede with the abowe monfioned comerting line, we then find fwo solntms sitnated at different sides of $I^{\prime \prime}$, which have the same lemperature and the same vapour pressure. The branches $\mathrm{F} \%$ and $I \%$ of lig. \& then mmst intersect each other at that temperature and pressure.
$l^{\prime}<r$. The melting point line Fill of tig \& mow proceeds from the point formads lower temperatures and higher pressures: the point F of curve $K F Z_{2}$ now gets sthated between the point with a maximum temperature and that with a maximum vapour pressure.

To each of the solutions of the line $Z 1 \% \%_{1}$ of fig. I saturated with solid r^{\prime}, appertans of comse a detmite vapour; t'be points representing these vapons form a curve which we will gall the vapour line romgugated with the line $\% F_{1}$. It is evident that this vapour chrve conjugated with Z / V_{1} must pass through the point I) of tig. 1 . If the line $Z: \% \%_{1}$ is tomed, the comjurated vapour come will also alter its position and form, hut still pass throngh the point D. In tig. 5 , the rapour curve rongugted with $Z / \%_{1}$ is represented by the dotted curve (fien De).

In tig. 5 it is assumed that the straight line $Z F Z_{1}$ and its conjugated sapour curve intersect wath wher in a that such a point of intersection can appear is easy to maderstand. On each of the boilmg point lines of tig. 1 orcums a point where the temperat tare along this curve is a maximm and another point where

Fig. it is a minimum. If now we take the vapour phase appertaining 10 a similar solution, this with the liquid and the point f, will he on at straight line. We now draw, through at similar liguid b with a maximum or minimum temperature, the line $\% \%_{1}$ lig. 5): the rapour " which is in equilibrimm with this liquid b is then also situated on the line $\%$ F\% so
 earh liguid of the lime b Z_{2} is now in equititnimm a vapour of come "tr, such ats liquid /t with vapoure e, liguid fo with vapenur /). Diguad (\% with rapour a. With each liquid of line hil a vapour of enve

A! i is in equilibrimm. If operesents the vapone in equilibrimm with the liguit! ${ }^{\prime}$, a rapon between a and c will be in equilibrium with a liquid between is and b. If each liguid is mited with the vapour with which it is in equilibrium, these conjugation lines not only oceupy the strip eu\%, and foh but also a part situated between bon and curve of outside this tield.

We have taken the point of intersection of $Z / F Z_{1}$ and the coure fe between L and Z : it is evident that it may also be situated at the other side of r.

We now imagine drawn in fig. 5 a set of straght lines passing through I^{\prime} and for each one its conjugated vapour curve; these latter all pase throngh the point D. Among these there is one that also pasaes through the point $l \therefore$ do the maximum sublimation point of the compound F^{\prime} the rapour in equilibrium with solid F has the composition F^{\prime} and the lignid which then, of comse, is present in an infinitely small quantity only, a composition k (lig. \quad). We can observe this also by other means. We imagine then in tig. 1 , besides the hoiling point lines of the solutions saturated with l, also drawn their appertaining vapom limes; one of these passes through the point F so that at a detinite l^{\prime} and T^{\prime} a vapour exists of the same composition at F which cam be in equilibrimm with solid F° and a liguid. This liguid is represented by the point \mathcal{H} of the boiling point line of the pressure P, appertaining to the vapour point F. In dig. 1 and 5 this point is represented by K. Hence, the equilihrimm solid $F+$ vapour $F+$ liquid K oceurs; we are therefore, at the upper sublimation point of the compound r, therefore, in the print K of the sublimation line ak of tig. t.

It now in dig. 5 we thon the line $/ / F^{\prime} Z_{1}$, until it passes through the point K, its conjugated vapour curve will pass through the points I and \because

We have noticed above that the straight line $Z F K_{1}$, and its conjugated vapour line can have a point of intersection a (fig. 5). As in this case the vapour o, the liguid b and the solid substance F are situated on a straight line, it follows from (11) that:

so that the same relation applies as if the three phases belong to a binary system.

If, on one of the straight lines $Z \% Z_{1}$, the points a and $/$ of fig. 5 conncide, the solid substane F is in equilibrium with a liquid and a vapour which both have the same composition. This is the
case if in the tematry stom lignid + vapmar, a singular point orours and when the sathation ebure of fremes thromgh this point. As in this case $r=r_{1}$ and $!=!/ 1$ it follows from (11), as R becomes intinitely large, that:

$$
\|^{\|}=\begin{align*}
& I \prime \tag{11}\\
& \|
\end{aligned}=\begin{aligned}
& H_{1}-H \\
& 1,-1
\end{align*}
$$

We have notied above that if the statight line $\% / \%_{1}$ passes throngh
 D) and F^{F} and that with the liquid K a vapour F is in equilibrimm. Hence, we have for the point $K r_{2}=11$ and $h_{1}=;$ As R now heromes - 1 it follows from (11) that:

$$
\begin{align*}
& M P \tag{15}\\
& H T
\end{aligned}=\begin{aligned}
& B+D \\
& A \\
& i
\end{aligned}=\begin{aligned}
& H_{2}-\frac{1}{r} \\
& r_{1}
\end{align*}
$$

The alove formula also determines the sublimation linn ak of the
 thongh the point k, we corresponding P, T-ecurve in tige 4 must meet the sublimation curve "K in the point K. We now give in fig. 1 different positions to the straight line \angle / Z_{1}; to eath position apprtains a definite l ', 'rouve in tim. 4 so that we can draw in this tigure an infinite number of I^{\prime}, Tewores. From our previons considerations it now follows that all these (I will reter later to a single exception) meet the melting point line Fid of the compound I^{\prime} in the point I^{\prime} and that ome only meet the sublimationcurse a K in the point K. The latter takes place when the straight line $\angle F Z_{1}$, in fig. 1 masses through the point K. All other P, T-rurves in tig. 4. proceed ahove the point K, or in other words: at the upper sublimation temperature ' T; of the compound F the vapour pressure of cach system: solid $F+$ hipuid + vapour is greater than the vapour pressure oit the solid substance f.

Different P, T-corves, besides roming into contart in f with the melting point curve $F \mathscr{l}$ will also meet the three-phase line $F \mathscr{K}$. Athough all this is evident from what has been said previously, we will still consider a few of these points in another manner.

On warming the solid compomal l ', this, as memtioned previonsly. proceeds along the sublimation coure of of tig. 4 until the upper sublimation point k is attained; then the equilibrium: solid $F+$ liquid + vapour is formed which proceeds along the three-phase line $K f$ of fig. 4 until the melting point line F f hats been obtained.

We have already noticed previonsly that the liquid and vapour continually alter their composition therewith and we may now ask what curven they proced atong in dig. 1.

At the bemperature T_{K} of fig. t, therefore at the upper sublimation point of the compound F^{\prime}, the vapour has the composition F and the liquid which can be in equilibrium with that sapour the composition K of tig. 1 . At the temperature T_{f} of lig. t, therefore at the minimum melting point, the vapour has the composition D and the liquid the composition F of tig. W. Whereas the compound F proceds in the P, Trdiagram of fig. 4 along the three-phase line Fh the liguid in fig. 1 proceeds along a corve from K towards E and the vapour atong a curve from f towards $/$) we will call these curves the corves Kf and $\mathrm{F} l$).

We now imagine drawn in lig. 1 some more boiling point lines of the solutions saturated with F among which also those passing throush the point \mathcal{K}; on each of these a maximum and a minimum temperature occurs. The curve $K \mathscr{F}$ now intersects each of the boiling point lines situated between K and F in the point with the maximum temperature, or in other words the curve $K F^{\prime}$ is the geometrical place of the points with a maximum temperature on the boiling point lines situated between k and r.

The liguid and vapour of the three-phase line $K \mathcal{F}$ of tig. 4 being formed from the solid substance F. the three points F, L, and G in fig. 1 must always lie on a straight line.

This means that the temperature along the boiling point line of such a liguid is a maximmo or a minimum one.

From a consideration of fig. 1 it follows that here the femperature in this ease is a maximum, from which follows at once what has been said above ats to the course of the corve $k f$.

In the same manner we find that the corve $F D$ also intersects each of the rapour lines conjugated with the boiling point lines in the point with the maximum temperature.

In tig. 1 we might also have drawn instead of the boiling point lines the saturation lines of $/$. under their own vapour pressure. We then should have found that the corve $K \neq$ interseds each of these lines in the point with the minimum vapour pressure.

We now tum the line K / Z_{1} of fig. 1 until it intersects the curve $K F$ of this ligure; the corresponding l^{\prime}, T-curve in fig. 4 must then meet the three-phase curve l / K in a point lor in the point of intersection of the line $K F \%$ and the curve $K \mathscr{F}$ in lig. 1 the pressure and temperature for both curves is mamely the same; as, however, the curve Kf passes through the poins with maximmon temperature of the boiling point lines in tig. I and as this is not the case with the line $K l K_{1}$ a higher temperature the pressure being equal) is found on curve $K \%$ than on the line $K L L_{1}$. The I, T-curve of the line
$2 W Z_{1}$ therefore comes into contad whth the threephase line KV of figs. 4 and is situated finther atome and to the lofit of this theres. phase line.

In onder to dedues something more from the I', T'surves we take a amperature ' T_{k} lower than the minimum meltimer point of the compound f. The saturation line of f boder in own vapour pressure has at this temperature ' I_{13} a form an in lig. 7 (1) or 11 (1 ; the minimum vapour pressure in the point of of this saturation line under its own pressure we call $l_{\text {'m }}$, the maximmo prensure $P_{1 \%}$. Of all the equilibria of ${ }^{\prime}+$ liguid + gas appearing at the temperature T_{B}, the highes vapour pressure is, therefore. Ps and the lowest $P_{i n}$. If, in fig. t, we represent both pressures by the points $/ /$ and m, one l^{\prime}. T'sume passes through the point I/ and one through the point m, whereas at the others must intersect the perpendicular line placed in $/$ B betwen $/ / /$ and m. Whe obtams the I^{2}, Tobrve passing at T_{B} through the point $I /$ when the moving line $\% / \%$, of fig. I conncides with the line $l^{\prime} M$, and the one passing through the point m. when the line $Z l=Z_{2}$ coincides with the line F_{m} of fig. 7 (1) or 11 (I). In fig. 4 two P'Tombes must pase through each point between $1 /$ and m. Fror if we choose a pressure I between I ', P_{m} we notice from tig. 7 (I) and 11 (I) that at the temperature T_{B} two different systems: solid $\vec{F}+$ liquid + gas have a vapour pressure P, from which it follows at once, that in figs 4 two P, T curves must pass through eadh point between I/ and m.

If on the curve $\mathrm{l} / \mathrm{am} / \mathrm{of}$ fig. 7 (I) of 11 (I) we imasine two points of equal pressure connected hy a straight line, we notice that there must be a definite pressure l^{\prime} 'at whieh this conjugation line passes through the point l^{\prime}. If now, the straight line $\angle F Z /$ of tig. 1 passes through this conjugation line, the corresponding I, T-curve at the temperature T_{b} and the pressure P_{b} must exhibit a double point. This
 as a rule intersect the line J / m in 1 wo points of which one is situated above and the other below the point b.

If the temperature T_{B} is changed, then in fig. $\bar{i}(1)$ or 11 (I) the saturation line ander its own vapour pressure changes its position and form, while $P_{n} . P_{m}$ and P_{b} also change. The points M, In and 1 in tig. 4 then proceed atong a curve; the durve through which the points M and m go, is represented by $M, M_{1}, M, I / H_{3} / m_{2}$ Kim; we will call this curve the boundary curve of the system: solid $r^{\prime}+$ liguid + gas.
 (6) Il and \bar{f} (llj. 'To the point $1 /$ and m alvo applies the relation:

$$
\begin{array}{cc}
r-a & !-3 \\
r_{1}-r & n_{1}-!
\end{array}
$$

From this follows for the homdary purve:

$$
\frac{d l^{\prime}}{d T}=\frac{\left.\left(r_{1}-x\right) B-(x-u) l\right)}{\left(x_{1}-x\right) A-(x-u) C}
$$

so that this boundary eurve mast come into contact with the sublimation line of the compond in the maximum sublimation point K and with the melting line in the minimum melting point F. Further it is evident that the threephase line $N F$ of the compound F is a part of the boundary curve.

Hence, all the l^{\prime} Thorves in lig. t are silmated in the region encompassed by the boundary curve through each point of this region pass wo P, Teurves and throngh each point of the boundary line passes a l^{\prime}, T-curve which meets this boundiar line in that point.

The boundary curve itself is, therefore no l ', I 'curve in that sense that it corresponds with a straight line passing through F; this, however, is the ense if only one of the three componens of F occurs in the vapour.

The double point "pases in fig. 4 through a curve terminating in the point F. When the saturation curves under their own vapour pressure possess. in the vicinity of the minimum melting point T_{F}, a form as in fig. 12 (I) no double point of a P'T-curve appears above T_{F}. The donble point curve in fig. 4 then proceeds from f towards lower temperatures.

If, however, the satmation line at T_{F} under its own vapour pressure has a form such as the curve aly in fig. 2 (Il) the double points are still possible above T_{F} and at each temperature more than one may appear.

From (11a) if appears that R can become nil only for $x=a$ and $y=\beta$, therefore, in the point $f . h$, however, may becone infinitely great and change its sign in other points of the component triangle. This will be the ease when the denominator beromes 0 . hence:

$$
\begin{equation*}
\left\{\left(x_{1}-x\right) r+\left(y_{1}-y\right) s\right\}(x) y+\left\{\left(x_{1}-x\right) s+\left(y_{1}-y\right) t\right\} \sin \eta=0 . \tag{16}
\end{equation*}
$$

Let us call the solution for which this is the case, the solution q; (16) then means that the line Fif comes into contact in of with the liguidum line passing through the point q, of the heterogeneous region $L_{+}+6$. We may expres this also as follows: R becomes intinitely great when the conjugation lines liquid-solid and liquid-gas are conjugated diagonals of the indicatrix in the liquidum point. As $l i=\infty,(11)$ is converted into:

in which D and (' have another value than in (14).
Equation (16) is, of comrse, also satisfied,$r=r_{1}$ and $y=y_{1}$, hence by a singula point of the system liquid + yats. In this rase, D) and $\left(\right.$ and consequently ${ }^{\prime}$ ar obtain the same vatue as in (14) We now imagine atso the I^{\prime}, Ternve of the singalar point drawn in fig. 4; we may then easily demonstrate that $\frac{d T}{}$ is determined for this curve by (14).

If now, on one of the straght lines $Z F Z_{1}$ of tig. 1 a simgular point occurs, so that in the equilibrimen of sold $E+$ liquid + vapour the two latter ones have the same composition, its P^{\prime}, T'renve must meet the I'.'T- curve of the singular point in fig. 4 .
such a case wecurs when at a delinite P and T a singular point appears or disappears on the saturation line of l^{3}, so that the saturation line and the eorrelated vapour line meet each other in that point.

With the aid of the previous formulate we might he able to invess tigate more aceraraty the course of the P ', Thines if we expressed the quantities r, s, t ele by means of the equation of state of Van der Wands, in which " aud 1 must then be considered its functions of x and !/

> To bo contimued).

Chemistry. - "Equilibria in ternery systems." V. By Prof. F. A.H. Sombeinemakers.
(Ciommunicated in the meeting of February 22, 1913).
In the previous commmation we have dispegaded the ease when the straight line $K F Z_{1}$ of fig. I (IV) coincides with the line X / Y^{\prime} of this figure. If a liquid moves from the point f of this figure towards X or towards y^{\prime} then, as follows from (11^{a}) (IV) both the numerator amd denominator of $I f$ are $=0$.

The valne of $\frac{d P}{d T}$ from (11) (IV) then becomes indetinte so that we will consider this case separately. In order to simplify the catculations we again limat ourelves to the case when the vapure fontains one compunent only so that wo may pat an and $y=0$.

Ont combitions of apuilibomm are given in this case by (18) (H) (19) (11). We now write these:

$$
\begin{align*}
& \left.(x-l) \frac{\partial Z}{\partial x^{x}}+(y-b)^{\partial \eta}-\partial+z=0 \right\rvert\, \tag{1}
\end{align*}
$$

If we develop these with requd to r. $\%$, I and T and call $n="$ and $n=\vec{b}$ we tind if we keep to the same motation as in commmuitation (II:

$$
\begin{align*}
& =-r d \Gamma+D i l T+\ldots
\end{align*}
$$

In equation A^{3}, we wanting the terms dhe dl', dy dP, de d T^{\prime} and
 commmatation II: therein, however we must mow call $r=n,!=B$, $r_{1}=0$ and,$~ \%=0$.

We now allow the liguid, satmated with F and in equilibrimm
 this we call $d y=t y$. $1 x$: from (2) and (3) now follows:

$$
\begin{align*}
& (n+b t!q) d x+\frac{1}{2}\left(c+2 d t!g+v t q^{2} g\right) d x^{2}+\ldots \\
& =-C d l^{\prime}+D d T+ \tag{4}\\
& \frac{1}{2}\left(r+2 x \tan +1 t \eta^{2} q\right) d x^{2}+\ldots=A d P^{2}-B d T+. \tag{5}
\end{align*}
$$

We now allow the staight line $\% / \%_{1}$ in fig. I (IV) to coincide
 point f at the liquidum line of the heteromeneous region passing through l ', this is determined 'ly :

Hence, if in fig. 1 (N) the line $/ F F Z_{1}$ coincides with the line

If we substitute this value of ty'f in (4) and (5) we get:

$$
\begin{align*}
& -\frac{1}{2 b^{3}} Q d a^{2}+\cdots=-C d P+D d P^{2}+\ldots \tag{6}\\
& \frac{1}{2 b^{2}} s \cdot d x^{2}+\cdots=A d P^{2}-B d T+\cdots \tag{7}
\end{align*}
$$

In this (l and se have the same value as in communication (II), namely :

$$
\begin{aligned}
& s=a^{2} t+\ddot{H}^{2} r-a^{2} a k=\left(r+-s^{2}\right)\left(a^{2} r+\ddot{\partial}\left(a_{t} s+\beta^{2} t\right)\right.
\end{aligned}
$$

At first, we may limit ourselses to terms recorded in (6) and (7); from this we find:

$$
\begin{array}{llll}
d 1 & 1 & \ddots & ! \tag{8}\\
d 7 & 1 & \ddots & \vdots
\end{array}
$$

in which 11 and is have the same rignificance ats in commumiontion (II), mitmely

$$
\lambda=\frac{C}{A} \text { and } n=\frac{1 \prime}{B}
$$

and further:

$$
\begin{equation*}
d l=\frac{B}{2 h^{2}} \cdot \frac{Q-1 S}{B C-A D} \quad d x^{2} \quad d T=\frac{A}{2 U^{2}} \cdot \frac{Q-\lambda S}{B C-A D} \cdot d x^{2} . \tag{9}
\end{equation*}
$$

wherein, as in the previons oceasion, we take $B 0-A D>0$.
Let us first lake a P, drediagram such as in fig. 2 (IV) and 3 (V). As $B=\|-y^{\prime}$ is always positive, Il has the same sign as (ℓ - US: In communication (II) we have seen that Q - \quad, S is negative when the boiling point line, of the solutions saturated with F passing throngh l^{\prime} is curved in the point f towards (). The point (here represents the component ocemming in the vapour. The boiling point line then has a form like the curve aly in fig. 1 (H). "l now being negative, the l^{\prime}, ecourve must have a form like afoll in tig. 2 (IV).

If the boiling point lime of the solutions saturated with f is curved in the point F° away from the point () so that it presents a form lake curve aly in fig. 2 (II), (? - as will be positive. From the value of $d P^{\prime}$ from (9) it now follows that the P^{\prime}, , ${ }^{\text {a }}$ (curve must have a form like curve cold of fig. 3 (IV).

In order to tind the T,becurve in the vicinty of the point f we must distinguish two cases.
$I^{\top}>v$ or $A>0$. If $Q-2, S^{\circ}$ is negative, the saturation rurse of F under its own vapour pressure is curved in the vicinity of F^{\prime} towathe O and, theretore, has a form like curve allo in lig. 1 Il, dT is now negative and the 'ing-curve has a form like curve of"d in tig. 2 (IV). If $Q-\lambda S$ is positive the saturation line of F under its own vapour pressure will have a form like afb in lig. 2 (H); d'T from (9) is now positive and the Trexurve has a form like of $F^{\prime \prime}$ (in lig. 3(IV).
$1<v$ or $A<0$. If $(2-2 . S$ is negative the saturation canve of If under its own vapour pressure will have a form like coure afth in fig. 4 (II); th from (9) is now positise and the T,x-curve, hats consequently a form like curve col'd in fig. $3 \backslash 1 \mathrm{~F}$. If (Q-is is positive the saturation curve of f^{\prime} under its own rapour pressure will have a form like curve 1 Fh in hig. B (IL) : I'T from (9: is now

From the value of ${ }^{d l^{\prime}}$ from (8) it follows that this is not equal to ${ }^{13}$: the P 'P'erurve corresponding with the straight line $X Y$ I of .1
lis. I IV will. therefore not meet, in fig. 4 (IV), the melting point line fil in f. Whereas, as we have stated previously, all the I, T. conves in fig. $4(\mathbb{N})$ meet the melling point line of f in the point F this is no longet the rase when the straight line $Z F Z_{1}$ in lig. I (IN) coineides with $\mathrm{X} / \mathrm{F} \mathrm{V}^{\circ}$.

In order to determine this P'Teurve in the vieinity of f more (hosely we eliminate d $^{2} x^{2}$ from (6) and (7); we then get: ${ }_{1} d x^{3}+\cdots=(A Q-C S) d P-(B Q-D S) d \Gamma+b_{1} d x d P+c_{1} d x d T+\cdots$.

In this equation, as dl' and " T are according to (9) of the order d. x^{2}, dodl', and wad'l' are of the order d. y^{3}; the terms omitted are all of the order the ${ }^{4}$ and higher. We now sulstitute in (10) the value of $d x$ which we can dealuce from (i) namely:

$$
\begin{equation*}
d x+\ldots=a_{2} V A d P-\overline{B d T}+\ldots . \tag{11}
\end{equation*}
$$

so that (10) is converted into
$u_{3}\left(A d P^{\prime}-B d T\right)^{3} /:=(A Q-C S) d P^{\prime}-(B Q-D S) d T+$

$$
\begin{equation*}
+a_{2}\left(A d p-B d J^{\prime}\right)^{1 / 2}\left(b_{\mathrm{i}} d P+c_{1} d T\right) \tag{12}
\end{equation*}
$$

in which the terms omited are of an order higher than des. For (12) we write:
$(A Q-C S) d D^{\prime}-(B Q-D S) d T=\left(b_{2} d P^{\prime}+c_{2} d T\right)\left(A d P-B d T^{1 / 8}\right.$. or :

$$
\begin{equation*}
\left(\left(1,4^{Y}-b_{4} X\right)^{2}=\left(b_{3} Y+c_{3} X\right)^{2}(A Y-B X)\right. \tag{14}
\end{equation*}
$$

In order to insestigate (14) we take a straight line $a_{4} Y-h_{4} \quad Y=d$, in which of is infinitely small so that this line is sitnated parallel to, and in the immediate vicinity of. the tangent in the point l. Its points of intersection with (14) are given by:

$$
u_{4} Y-b_{4} X=d \text { and }\left(b_{2} Y+c_{2} X\right)^{2}(A Y-B X)=d^{2} .
$$

This is satistied by :

$$
\begin{equation*}
Y=u_{5} \cdot d^{n_{3}} \quad \text { and } \quad X=l_{5} \quad d^{\prime \prime} 3 \tag{15}
\end{equation*}
$$

hence: $a_{4} a_{5}-b_{4} b_{5}=0$ and $\left(b_{2} a_{5}+c_{3} b_{5}\right)^{2}\left(A a_{5}-B b_{5}\right)=1$ or :

$$
\begin{align*}
& \frac{b_{5}{ }^{8}}{a_{1}{ }^{3}}\left(A b_{4}-B a_{4}\right)\left(b_{3} b_{4}+c_{2} a_{4}\right)^{3}=1 . \tag{16}\\
& \frac{a_{b}{ }^{3}}{b_{1}{ }^{3}}\left(A b_{4}-B u_{4}\right)\left(b_{2} b_{4}+c_{2} a_{4}\right)^{2}=1 . \tag{17}
\end{align*}
$$

As I and I do not change their sign when y does so, it follows
that the P 'T-curve has in poim f a dosp so that we find at both sides of the tangent in $f=$ a hanch of this care Now $\|_{4}=A(\Omega-2,5$ $\left.b_{i}=B(0)-n\right)$

$$
A b_{4}-B U_{4}=(B C-A D) s
$$

so that A_{6} - Bat is positive. From (16) and (17) it now follows that b_{5} and $A(!)$ - $\left.2 x^{\prime}\right)$ have the same simn and the same applies

In eomection with (15) follows:

$$
\begin{align*}
& \text { dl' of } X \text { has the same sign as } A((l-2 S) \tag{18}\\
& \left.d l^{\prime},\right)^{\prime} \quad, \quad, \quad, \quad, \quad, B(l-u S) \tag{19}
\end{align*}
$$

what agrees with (9).
We will now consider some cases.
$V^{r}>r^{\circ}$ hence $A>0$ and $\quad \lambda>0 ;(\Omega-\lambda S<0 ;(\Omega-\mu S<0$. From

$$
\frac{d p}{d T}=\frac{A}{B} \cdot \begin{gather*}
Q-\mu S \tag{20}\\
Q
\end{gather*}=\frac{A}{B}\left\lceil 1+\frac{(i-n) S}{Q-2 S}\right\rceil
$$

it follows that $\frac{d P}{d T}$ is smatler tham $\frac{A}{A}$. (From our assumption $B C-A D>0$ follows namely $\lambda-n>0$). If in firs. 1 the line l_{1} / I_{l} represents the tangent at the point f of the not drawn melting point line. the P, Tecurve $X P Y^{\prime}$ will, in its hming point F, have a tangent like the dotted line in fig. I passing through F . From (18) and (19) and also from (9) it follows that d $1 P$ and $/ l^{\prime} T$ are negative, so that the curve $X P V^{\circ}$ in fig. 1 mast proced from F towards lower temperatures

Fig. 1. and pressures. The latter may be found also by other means. For this we take the minimum melting point of the compound r, therefore the temperature T_{F} of fig. 1; as $Q-2 . S<0$, the saturation line of F under its own vapour pressure has at this temperature a form like eurve atrb in fig. 1 (II) in which we must also imagine the tangent NYY to be drawn. As this tangent has only one point in common with the saturation curve, namely the point of contact F, a vertical line passing in fig. 1 throngh the point f may intersect the curve $X^{\prime} F^{\prime} b^{\prime}$ in the point F^{\prime} only.

We now take a remperature $l^{\prime \prime}$ somewhat lower than $l_{F^{\prime}}$; if $79 *$
now in lig. 1 (ll) we atso imagine to the draton the saturation line matie its own sapone pressure of this temperature $T^{\prime \prime}$, we notice What this interseds the line $\bar{X} / \mathrm{P}^{\prime}$ in two points. lat fig. 1 , therefore, is vertical line comenponding with the temperature ' 7 ' must intersect the colve $\dot{\lambda} / \mathrm{F}$ in two points.

If we take a temperature $T^{\prime \prime}$ somewhat higher than T_{F} we find that the vertical line correponding with this temperature does not intersed the curve $\mathbf{V} \boldsymbol{F}$) in lig. I.

We now take the boiling point line of the compound l of the pressture $P^{\prime} F$. that of a somewhat lower pressure $P^{\prime \prime}$ and that of a somewhat higher pressure $P^{\prime \prime}$. As ($2-a \leq<0$ it follows that that of the pressure I_{F} hat a form like enve atbo of fig. I (II) in which. howerer. We mast imagine the arrows to point in the opposite direction. From a consideration of these boiling point lines it follows that in tig. 1 curve $X \rho)^{\prime}$ is intersected by a horizontal line correrponding with the pressure $l^{\prime} F^{\prime}$ in F^{\prime} only, and in two points by a horizomal line corresponding with the somewhat lower pressure $P^{\prime \prime}$.
$r>r$ therefore $A>0$ and $2>0 ; 10-2 s<0 ; 0-\mu s>0$.
From (8) it follows that $\frac{d T}{} \frac{d}{}$ is negative. from (9 ; and also from (18) and (19) that d' T ' is negative and $A P$ posidive. In fig. 2 d $l_{1} F^{\prime} /$ again represents the tangent at the point f of the not drawn melting point line; the dotted line passing through the point f is the tangent in the casp of curve T / F :

The fact that the chave $X \%$ proceds from $I f$ towards lower temperatures and higher pressures may be deduced also in the following mamer. From a consideration of the saturation lines under their own

Fig. 2. vaponr pressure of the temperature T_{F}, the somewhat lower temperature T^{\prime} ", and the somewhat higher femperature $T^{\prime \prime}$, it follows that emre $1 \%{ }^{\prime}{ }^{\prime}$ in fig. 2 is intersected by the vertical line correxponding with the temperature T_{F} in F ' only and in two points by the vertical line corresponding with the somewhat lower remperature $T^{\prime \prime}$.
As $Q--: 1, S^{>}>0$. the boitine point line of the solutions saturated with f hats, at the pressure $P^{\prime} F$ a form like carve alth of dig. 2 (II) in which, however, the amows must be imagined to point in the opposite direction. If we imagine in this dignre the langent $\mathrm{N} Y$,
we notice that the latter, bevides the paint of combat f^{\prime}, lats amother two points of intersection in common with renre af\%, which lath appertain 10 a lower temperature than $T^{\prime} \neq$. The horizontal line in fige ${ }^{2}$
 S $F^{\prime} Y^{\prime}$, hesides in F°, also in two other points the the lif of point f; the one point of intersection must lie on the hranch J / r, the other on the branch 5%.

If now we take the boiling point line of a somewhat lower pressure $P^{\prime \prime}$, this will be intersected in lig. 2 : Il in fwo proms loy the line V / f^{\prime}. Hence, the horzontal line in fis. 2 conresponding with this pressme I^{2} mast intersed corve $\mathrm{V}^{\prime} \mathrm{F}^{\circ}$ in two points.

The hoiling point line of a somewhat higher pressme $I^{\prime \prime}$ is imersected by the line X lef in four points, of which two lie on the part $X f$ and two on the part $广$ Fe of this line. The horizontal line corresponding with this pressure $\rho^{\prime \prime}$ in fig. 2 intersects therefore dach of the branches $X \mathscr{V}$ and $)^{\prime} f$ in two points.

If in fig. 2 (II) we take a stratht line Z / F^{2}, whose direction differs but little from the tangent $X \mathscr{Y}$ this wiil intersed the boiling point line of the presure P_{F} not only in F but also in three other points namely fwo on $\mathrm{F} Z_{1}$ and another on $\mathrm{F} / \mathrm{C}_{\text {. The horizontal line }}$ in lig. 2 corresponding with the prensure $I^{\prime} F$. therefore, imterects the curve $Z F Z_{1}$ in F and further the branch $Z F$ in one and the branch $Z_{1} F$ in two points. Hence, on inanch $Z_{1} F$ must oceor a point with a maximum and another with a minimum vapour pressure
$V>v$ therefore $A>0$ and $\lambda>0 ; \quad(\ell-\lambda S>0 ; \quad(2-n S>0$.
From (20) follows: "It positive and greater that $\frac{13}{}$; from (9) and also from (18) and (19) follows dP and dTpositive. The coure NFY must therefore have a form as drawn in fig, 3 wherem l_{1} Flagain represents the tangent in the point if the omitted melting point line; the dotted line passing through F represents the tangent in the cusp F at curve $\mathrm{X} / \mathrm{J}^{\text {r }}$.

The fiact that come J/f in
 tig. 3 most proceal from fow towats higher temperatures and presures is again evident from a considerattion of the sambation line of the temperature Th under its own vapour pressure and of the boiling point line of the solutions saturated with F of the pressure P_{P} : For both curves have in this case a form
like in fig. 2. II) so that the tangent $1 / \%\}^{\prime}$ bevides meeting the curve "F\% in the point F, atso intersecta this in two other points. In hatrmony with fig. 3 we lind that the vertical line corresponding with the temperatmer T_{F} mast intersect the curve $\mathrm{V}^{5} \mathrm{~F}$ in two points above f^{\prime}, and the horizontal line corresponding with the pressure P_{F}, must infersect this curve in two points at the left of l.

From a eonsideration of the straight lines whose direction differs lat little from the tangent $X F Y$ it follows that their P. T-enres in lig. 3 must exhibit on the one branch proceeding from f°, a point with a maximum temperature and one with a maximum pressure. and on the other branch, besides two stmilar points, also one with a minimum temperature and a minimum pressure.

The deduction and further consideration of the other eases I must leave to the reader.

We can also determine the course of the saturation lines under their own vapour pressure and of the boiling point lines of the sohotions saturated with solid matter. Which has been discussed in the previons commonications, in a different mamer.

For the stability requires that if we convert a system, at a constant temperature, into another having a smaller volume the pressure must increase; if converted into one with a greater volnme the pressure must decrease.

We may also perceive this in the following manner. At the pressure P^{\prime} exists the system is which is comberted at the pressure $P+$ al into the system S^{\prime}. We represent the 5 of the system S, at the pessures l^{\prime} and $P+1 P$ by σ_{P} and $\xi_{P+1 P}$, that of the system S^{\prime} by ζ_{p}^{\prime} and $\zeta_{p+d p}^{\prime}$.

As at the pressure P the system is the stable one, it follows that $\zeta_{p}<\zeta^{\prime} p$.

As at the pressure $l^{\prime}+d P S^{\prime}$ is the stable one it follows that $\xi_{r}^{\prime \prime}+\boldsymbol{l},<\zeta_{P+1 p}$. If we represent the volumes of s^{\prime} and S^{\prime} at the pressure I^{\prime} by I^{\top} and $I^{\text {T }}$ the latter condition can also be expressed by :

$$
\xi^{\prime} P+V^{\prime} d P<s_{l}+V_{d} d D^{2} .
$$

From this now follows in comection with the first condition:

$$
V^{\prime} d P^{\prime}<V^{\prime} d P^{\prime}
$$

hence, $V^{\prime \prime}<I^{\prime}$ if $/ l l^{\prime}$ is positive and $I^{\prime \prime}>1^{\prime}$ if l^{\prime} ' is negative.
The volume $V^{\prime \prime}$ of the system $s^{\prime \prime}$, is at the pressure $P+d P^{\prime}$, like $V^{V^{\prime}}+\frac{d J^{* \prime}}{d P^{\prime}} d D^{\prime}$, in which $\frac{d V^{*}}{d P^{\prime}}$ is negative; from this now follows:
$V^{\prime \prime}<1^{-}$if $/ I^{\prime}$ is mositive alld $1^{+\prime \prime}>I^{\prime}$ if $/ I^{\prime}$ is negative.
 into each other, at a constant lemperature, hy a smatl alteration in pressure, it follow from the foregoing that:

If S exists at a higher pressure than $\mathcal{S}^{\prime \prime}$, the volume of δ is smatler, if S^{\prime} exists at a lower pressure than S^{\prime}, the volume of S^{\prime} is greater than that of S^{\prime}. And reversally :
if ${ }^{\circ}$'s has a smaller volume than $x^{\prime \prime}$ it exists at a highers, if it hate a grader volume than $S^{\prime \prime}$ it exists at a lower pressure than $S^{\prime \prime}$.

We may express this also a follows:
a system si is converted by increase in pressure into a system with a smaller and on reduetion in pressure into a system with a greater volume. And reversally :
if a system S is converted into another with a smatler volume, the pressure must increase, and if conserted into one with a dreater volume the pressure must decrease. We may then compare the volumina of the two systems either both under their own pressure or both under the pressure of the sistem S, or both inder the pressure of the system $S^{\prime \prime}$.

It is evident that a simitar consideration applies to two systems S' and s^{\prime} which, at a constant pressure, are converted into each other by a small change in temperature. For the case in question, the equilibrium: solid + liguid + gas we may also deduce the above rules in a different manner. For this, we take at the temperature T and the pressure P^{\prime} a complex consisting of n quantities $V^{\prime}+m$ quantities $L,+q$ quantities f_{r}. We now allow a reation to take place between these phases at a constant ' T ' and P ' wherein: $\left(n+(l n)\right.$ quantity $I^{\prime}+(m+d m)$ quantity $L^{\prime}+(\eta+d \eta)$ quantity θ^{\prime} is formed and in which L^{\prime} and $G^{\prime \prime}$ differ but infinitesimally from L and $(i$.

The increase in volume Δ in this reaction is then determined by:

$$
r d n+V^{\gamma} d m+V_{1} d q+m \frac{\partial V}{\partial c^{r}} d x+m \frac{\partial V}{\partial!} d y+q \frac{\partial V_{1}}{\partial v_{1}} d x_{1} x_{1}+q \frac{\partial V_{1}}{\partial y_{1}} d v_{1} \cdot
$$

As the total quantity of each of the three components remans melhanged in this reaction we have:

$$
\begin{aligned}
& a d n+x d m+d_{1} d q+m d x+y d c_{2}=0 \\
& 3 d n+y d m+y_{1} d q+m d y+g d y_{1}=0 \\
& d n+d m+d q=0
\end{aligned}
$$

After elimination of (m, dmand dq we find:
$m\left\{\left(y_{1}-\beta\right) A+(B-y)(A+C)\right\} d x-m\left\{\left(x_{1}-u\right) A+\left(u-n^{2}\right)(A+(1)\} d y\right.$
 $\left.=\left(x_{1}-c\right)(y-\beta)-(x-\pi)\left(y_{1}-\beta\right)\right) \Delta$
which for the sake of brevity we write:

$$
m A A_{y} d x-m A_{x} d y-q A_{y_{1}} d x_{1}+q d_{x_{1}} d y_{1}=E \cdot \Delta
$$

We will chone the new sysmen $\mu^{\prime}+L^{\prime}+C^{\prime \prime}$ in such a manner that it is in equlitnimm all the temperature T and the presure $P^{\prime}+$ ll'. Then, as follows from one previons communications, d.r. dy, din, and dy, are determined by:

$$
\begin{aligned}
& \mid(x-c) r+(y-\beta) s] d x+[(x-c) s+(y-\beta) t] d y=A d P \\
& \left.\mid\left(r_{1}-l\right) r+\left(y_{1}-\beta\right) s\right] d x+\left[\left(x_{1}-t\right) s+\left(y_{1}-\beta\right) t\right] d y=(1+C) d l
\end{aligned}
$$

and two corresponding eguations which determine der and dy.
From this we find:

$$
E\left(r t-s^{2}\right) d x=-\left(s+1_{n}+t \cdot 1_{y}\right) d P \quad E\left(r t-s^{2}\right) d y=\left(r d_{2}+s_{4} t_{y}\right) d I
$$

$E\left(r_{1} t_{1}-s_{2}{ }^{2}\right) d d_{2} v_{2}=\left(s_{1} A_{x_{1}}+t_{1} A_{y_{1}}\right) d P E\left(r_{1} t_{1}-s_{1}{ }^{2}\right) d y_{1}=-\left(r_{2} A_{r_{1}}+s_{1} A_{y_{1}}\right) d P$.
After substitution we find:
$m \frac{r^{2} A^{2}+2 s_{1} A_{x} A_{y}+t A^{2} y_{y}}{r t-s^{3}}+q^{r_{1} A^{2} x_{1}+2 s_{1} A_{r_{1}} A_{y_{1}}+t_{1} A^{2} y_{1}} r_{1} t_{1}-s_{1}^{2} \quad=-E^{2} \frac{\square}{d P}$
-() that \triangle and $d P$ must have the opposite sign.
In the above relation Δ represents the change in volume if both sstems are compared at the same pressure l; if, when the new system is taken at the pressure $l^{\prime}+d l^{\prime}$, the change in volume is represented by \triangle^{\prime}, we get:

$$
\Delta^{\prime}=\Delta+\frac{d V_{t}}{d P^{\prime}} \cdot d P
$$

in which V_{t} represents the total volume of the new sistem at the pressure I^{\prime}. From this follows that L^{\prime} and \angle have always the same sign and L 'and dl' always the opposite one.

Let us now consider the system $l^{r}+L+C_{r}$ at a constant temperature, namely the saturation line of F nnder its own vapour pressure and its conjugated vapour line. These are respresented in lig. 7 (I), 11 (I), 12 (I) and 13 (I) by the curves $1 / \mathrm{amb}$ and $H_{1} a_{1} m_{1} b_{1}$.

We now take the system $S=r+L+G$ which is stable at the pressure l^{\prime} and the system $S^{\prime}=F^{\prime}+L^{\prime}+\left(r^{\prime}\right.$ which is stable at the pressure P^{\prime}. If now the volume of S^{\prime} is smatler than that of S, $P^{\prime \prime}$ will be greater than P^{\prime}; if the volume of $S^{\prime \prime}$ is greater thath that of $S, P^{\prime \prime}$ will he smaller.

Reversally, if P^{\prime} is greater than P^{\prime} the volume of $S^{\prime \prime}$ is smaller than that of S^{\prime} : if $P^{\prime \prime}$ is smaller than P^{\prime} the volume of S^{\prime} will be greater.

All this applies, as we have noticed previously, if S^{\prime} and S^{\prime} can the converted into each other and when P^{\prime} and l^{\prime} differ but little.

We now omit from the system S the vapour so that we retain $f+I$ only. We now can distinguish two chief ases, depending on whether a phase reation is possible, or impossible, between the three phases of the system $l+L+(i$.
A. No phase reation is pusithe. The throuphase form the atexes of it three phase triangle med ats. for instance, fitm, in fige 4 (1). We may further distingmish three other rases, namely
 into $l^{\prime}+I^{\prime}+\left(r^{\prime}\right.$ and by a change of pressure in the other dirention, into $l^{\prime}+L^{\prime \prime}$. Hence on chande of presome in the ane direction rapour is formal, hut not when in the other direction.
2. $I+L$ is comserted ly a chame of pressure in the one diredtion into $F^{\prime}+K^{\prime}+Z^{\prime}$ and by a change of presure in the other direction into $F^{\prime}+L^{\prime \prime}+V^{\prime \prime}$. Hence, vaponr is forment on increase as well as on derrease of pressure.
3. $F+L$ is comberted on a change of pressure in the one dirertion into $l^{\prime}+L^{\prime}$ and by a change in the other direction into $F^{\prime}+L^{\prime \prime}$. Hence, no sapour is formed either on increase or on redurtion of pressure The case cited in 1 is the one gencrally occurming: those mentioned in 2 and 3 only oceur exeptionally.
3. A phase reaction is possible. The three phases are now represented by three points situated on a straight line. 'Thesystem f ' +1 . can then be converted by a change in volmme unaccompanied by a change of pressure, into the system $r+L+(\%$. So long ats these three phases are anjacent, neither the pressure nor the composition of liguid or vapour is attered by a change in volume: all that happens is a reaction between the three phates. As regards this reaction. we can now distinguish three cases:

1. $H \rightleftarrows L+C$.

In the graphic representation, the point L is silnated between the points L and G. On a change in volume in the one direction solid matter is deposited; when in the other direction this disappears.
2. $H+L \rightleftarrows C$.

In the graphic representation the point G is now sitnated between the points F^{\prime} and L. On change in volume in the one direction, gas is formed; when a change takes place in the other direction the gats disappears.

In the graphic representation the point L is now stmated between the points F and G_{r}. On change in volume in the one direction, liguid is formed, when in the other direction this disappears. If, in one of the reactions sub 1 and B rapotr is formed, the volume will as a rule become larger and if vapour disappears it will become smaller. The roverse. however, may ako ocolr as will be pereened in the following manner. In order to convert $F+L$ into $l^{\prime}+L^{\prime}+V^{\prime \prime}$ we first of all form from L a little of the vapour $\left(r^{\prime \prime}\right.$; the liquid L.
is herehy comverted into a somewhat different liguid $L^{\prime \prime}$. Now, so as 10 convery $L^{\prime \prime}$ into L^{\prime} either solid F^{\prime} must dissolve in $L^{\prime \prime}$ or erystallise from the same. If now this solution or erystallisation of P is accompanion by a great decrease in rolume, this may exceed the increase of colame occurrine in the generation of the rapour; the system $\rho^{\prime}+l$, is then conveded with decrease in volume into $F^{\prime}+L^{\prime}+G^{\prime \prime}$.
such a conversion may he particularly experted in points of the saturation line under its own bapour pressure which are adjacent to the point l. The liquid then difters but little in composition from the volid substance f so that in order to slightly alter the compo--ition of the liquid barge quantities of solid substance must either disolve or else crrallise out. Moreover. if in this case the solid substance f melts with increase in volume, the latter will increase on addition of l and decrease on the separation of the same. If F melts with decrease in volume, the volnme will decrease on addition of F^{\prime} and increase when this substance is deposited.

Hence, in the ease of points of the saturation line of F under its own rapour pressure situated in the vicinity of F, the system $F+L$ can be converted with decrease in volume into $l^{\prime}+L^{\prime}+\left(\sigma^{\prime \prime}\right.$:

1. if in that conversion solid matter separates and if this melts with increase of volume $\left(V^{r}>v\right)$.
2. if in that conversion solid matter dissolves and if this melts with decrease of volume ($\mathrm{I}^{*}<r^{*}$).

We may now apply the above considerations in different ways. If. for instance, we take the change in volume along the saturation line under its own raporr pressure as known, we may determine the change in presure ; if the value of the latter is known we may determine the change in volume. We now merely wish to demonshate that these views suphort our previons considerations. We first fake the case when all the points of the satmation line under its own sapour pressure are removed comparatively far from the point l^{\prime}, so that the two-phase complex $l+L$ is converted with increase in volmme imo the three-phase equilibrium $l^{\prime}+L^{\prime}+G^{\prime}$.

We represent the equilibrimu $l^{\prime}+L+V_{i}$ hy the three-phase triangle Prat of lig. $3(1)$ or $4(1)$: the two-phase complex $F+L$ is then represented by a point of the line Fore

As, aroorling to our assumption the system $l+L$ which exists at the pressure P^{3}, is converted whth incrase in volume into the there-phase equitibrium $l^{\prime}+l^{\prime}+l^{\prime \prime}$ existing at the pressure $l^{\prime \prime}$, the new pressure P^{\prime} must he smaller than P.

From a comsideration of fig. $3(\mathbb{I})$ or $4(\mathbb{I})$ it follows at once that the new liquid L^{\prime} must be sittated in such a way that the new
 From all this if follows that, on rednetion in pressure, the comguation line solid-liquid thens away from the vapour poim, and that on increase in pressure it thrns fowards the same.

We notice at once that this is in conformity with the change in pressure along the saturation lime mader its own bapour pressure in fig. 7 (I) and 11 (I).

For if we allow the comjugation lime solich-lignid to furn absy from m towards $1 /$ or along mad or along mbll, it always forns lowards the vapont point while the pressure increases. We now take the case when the saturation line of F fander its own vapour presure is situated, in part. adjarent to the point f. We now distingruish two cases depending on whether the substance Ir melts with increase or decrease in volume.
$V>e$. The substance melts with increase in volume. For thene points of the saturation line under its own vapourpressure which are removed far from the point $r^{\prime}, r^{\prime}+L$ will be converted into $r^{\prime}+L^{\prime}+l^{\prime \prime}$ with increase of volmme; for points in the vicinity of $r, r+L_{0}$ may pass into $F^{\prime}+Z^{\prime}+G^{\prime}$ with decrease in volume provided that, as stated above, much solid matter is deposited in this conversion.

We have alreaty seen above in what direction the conjugation line solid-liquid tums when $l+L$ is converted with increase in volume into $F^{\prime}+L^{\prime}+r^{\prime \prime}$: we may now readily dedne that this conjugation line will turn in the opposite direction if that conversion takes place with decrease in volume. Hence we find the following: we take from the three-phase equilibrium $l^{\prime}+L+l$ the two-phase complex $l^{\prime}+L$; if $l^{\prime}+L$ is converted into $l^{\prime}+L^{\prime}+l^{\prime}$ with increase of volume the conjugation line solit-lifuid on reduction of pressure turns away from the vapour point: at an increased pressure it furns towats the vapour point.

If $l^{\prime}+L$ is converted into $l^{\prime}+l^{\prime}+\left(i^{\prime \prime}\right.$ with derrease in volume the conjugation lime solid-liguid turns in the opposite diredion.
let us now consider the saturation line of fig. 12 (I) under its own vapour pressute of which a part is adjacent to the point / and which. as we have seen before, applies to the case when the substance F. expands on melting $\left(V^{\prime}>{ }^{\prime}\right)$. We draw throngh f two tangents at this courve J / m; we will call these points of contact l^{\prime} athl $l^{\prime \prime}$.

As seen from the fignte, the conjugation lime solid-liquid now moves, on increase in pressure, on the branch lel/ R^{\prime} towarts the
 the sapour point. In comection with the ahove, it now follows that the conversion of $l^{\prime}+L$ into $l^{\prime}+L^{\prime}+I^{\prime}$ is ancompanied
 a derreatie in volome.

In the proints of contact themselves where both branchos amalgamate. the chse sub A 3 now ocern's. Let u. lake the two-phase complex $l+$ liquid l. We now see that, on increase as well as on reduetion in pressure the conjugation line F-liguid R gets out-- ble the sew threephane triangle so that no vapour can be formed.

Let us now see what happens in a simila point of contact l if the pressure changes but infintesimally. At this infintesimal change of presure, the liquid then moses at an inlinitesimal rate atong the tangent F eh ether towards or away from F. The only thing What happens is that in the lignid a little f is dissolsed, or else crestallised from the same, without any rapour being formed.

If now a substance folts with increase in volume and, therefore in this ease also dissolves whith increase in volume, it will crystallise ont on increase in pressure and ret dissolved on reduction of the same. This also is in hamony with the change in pressure alome the saturation line under its own vapom pressure in the point A^{2} of tig. $12(1)$: on elevation of the pressure the liquid moves, starting from l^{\prime}, from the point r^{\prime}; this signities that solid matter is being deposited. On reduction of pressure the liguid moves from R towards the point F^{\prime}; this means that solid matter is being dissolved.

The fact that in a point of contact l no vapour takes part in the reaction may be also demonstrated in the following manner. We again take at the pressure P a system is consisting of: n quantities $F+m$ quantities $L+q$ quantities $(\dot{r} ;$
at the pressure $l^{\prime}+d{ }^{\prime}$ is formed thereof the system S^{\prime} consisting of:
$(n+1 m)$ quantities $l^{\prime}+\left(m+(m)\right.$ quantities $L^{\prime}+\left(q+(l q)\right.$ quantities G^{\prime}
From the three relations ahready employed for this and which indicate that the grantity of eath of the three components remans the same in this conversion we can deduce:

$$
\begin{aligned}
& E_{d} d x=-m\left\{\left(y_{1}-y\right) d x-\left(x_{1}-x\right) d y_{3}-q\left\{\left(y_{1}-y\right) d x_{1}-\left(x_{1}-x\right) d y_{2}\right\}\right. \\
& E d q=m\left\{\left(r_{1}-y\right) d x-(a-x) d!\right\}+q\left\{\left(\{-y) d x_{1}-(r-x) d y_{1}\right\}\right. \\
& E d m=m\left\{\left(y_{1}-\beta\right) l_{1}-\left(x_{1}-r\right) d!l_{1}+q\left\{\left(h_{1}-\beta\right) d x_{1}-\left(x_{1}-\boldsymbol{q}\right) d y_{1}\right\}\right.
\end{aligned}
$$

in which all the letters have again the same meaning as before.
If now we proced at the pressure l from the system $l+L$ we must rall $q=0$: we then obtain:

$$
\begin{aligned}
& E d n=-m\left\{\left(y_{1}-y\right) d x-\left(x_{1}-x\right) d y\right\} \\
& E d q=m\{(3-y) d x-(v-x) d y\} \\
& E d m=m\left\{\left(y_{1}-B\right) d x-\left(x_{1}-c\right) d y\right\}
\end{aligned}
$$

Hence, ats a rule din, dmand dil are mot 0: if, howerer, we can draw through the point r, y of the sammation curve mole its own vapour pressure a tament pasing throng the poin fore find:

$$
\frac{d y}{n}-\frac{3-y}{a-3}
$$

hence $d_{l}=0$, whereas dn and dme difter from nit. It means that no vapour bakes part in the reaction so that the system $12+1$ is converted into another system $F^{\prime}+L^{\prime}$ deroin of sapour.

We have noticed previonsly that the samation line of the sultstance f ouder its own vapour pressure which passes through the point ${ }^{\prime \prime}$ cam have a form like the curve fith of fig. 2, Il. At a somewhat lower temperature this curve still possesses athout this

Fig. 4. form that it becomes ciremphased. In tig. 4 a part of this curve has heen drawn, so long as the point F is situated sulficiently close to this chre we can draw through F four targents at this curve with the prints of contact $l^{\prime}, l^{\prime}, X$ and X^{\prime}. leet no now imagine in tig. \& the saluration line moder its own rapour pressure to be shitted further fowsurds the left and also its correlated vapour line to be drawn.

We now allow a comjugation line solid-liquid to turn from m in such at divertion that the pressure increases. Let ns now proced from m towards a. ©n the branch $m R$, the compuation line Frlipuid turns towards the vapom point, from $l i$ to l^{\prime} awhy from the sapour point and from $i^{\prime \prime}$ to a and further on it again turns towards the sapour point. The same applies to the branch $\mathrm{mXN}^{\prime} h$ on which, in the points X and X^{\prime}, the direction of the rotation of the conjugation line gets reversel. The conversion of $F^{\prime}+L$ into $F^{\prime}+L^{\prime}+\left(z^{\prime}\right.$ then takes place on banch $m R$ and $m X^{\prime}\left(\right.$ andm $\left.V^{\prime}\right)$ with increase in volume, on branch $R l^{\prime}$ (and $X^{\prime} N^{\prime}$) with decrease in volume and on branch R^{\prime} (and X^{\prime} b) again with increase in volume. In the print of econtact l now appears the case sul) $\frac{1}{2}$ and in the point of contact l ' the case cited sub 43 . Let us take for instance the two-phase complex $\vec{l}+$ liquid h. We now notice that on increase ats well an on decrease in presture the conjugation line F-liquid l gets stuated within the new three-phave triangle so that $l+l^{\prime}$ puid $l a$ is conserted imo $r^{\prime}+L^{\prime}+r^{\prime \prime}$.
(1) an infinterimal whan in pressme, nothing takes fare in the

With increase in volume, (ersallisation will occur at an increased and solution at a redmeet pressure. This is, moreover, in conformity with the chamge in prensure in the points l^{\prime} and $l^{\prime \prime}$ along the saturation line under its own vapour pressure.

The same considerations as the above-cited may be also applied 10) the vase when the stibstance fimets with decrease in volume.
(To be contimed).

Chemistry. - "The dymmmic Allotrop?! of sulphur." Fifit commanication. ${ }^{1}$) By. DI. H. R. KBuTT. (Commanicated by Prof. P. Vas Rombergh.)
(Communicated in the meeting of Janary 25,1913).

As point jo the resmme of my third paper on the above subject I wrote in 1909:
"Es wurden neue Lintersuchangen baber den Eintluss des S", auf den Umwandlangspunt $S_{1} \nleftarrow S_{\text {tmon }}$ in Aussicht gestellt"。

In comection therewith I wrote ${ }^{2}$) in July 1911:
"Dr. was Krooster of Groningen has this year started that investigation and although the provisional result is only of a qaalitative character as yet it may be taken for grated...."

Nevertheless. Messrs. Smis and be Lemiw published, in these Proceedings (XIV, p. 461), an investigation concerning this question.

In the Zeitschr. fi. Electrochemie ${ }^{3}$) I communicated, in connection with some other questions regarding sulphur, that the above investigation had been continued and brought to a close, also to what conclusions it had led and that a detailed communication would soon appear: recenty it appeared as the fouth communication in this series.

Meanwhile, Dr. de. Lrecw (Proc. XV p. 584) has contradicted the above cited conclusions and condemned the still umpublished investigations in adrance.

Although I should have every reason not to take any notice of that paper, wo reasons in particular have induced me to repeat and extend

[^75]the investigations of Dr. De Ifretw and theommonicate here the resulis. Finst of all, the erilicism did mot comeern my work only. but alsu that of Messes. vis Kooster aml sum who cormed this out at my request and whose work I wish to defend and in the second platee, owing to a paper by Messes. Kohnsmam and (orxstan'), the question as to the change of the hansition point of sulphar has lreen introduced into the disenssion of the heat theorem of Nemsst. Looking at the eminent importance of the prohtem whether the facts confirm. or do not confirm the conclusions from the heat theorem. eath experimental fact supporting the therom must be as much as possible elucidated.

Therefore, I will disenss the said reatise of ise Lebetw, but only in so fiar as required by the considerations just mentioned.

I have first of all rerified whether the result of ma Larew's experiment is correct namely, that a dilatometer, which contains a sulphur mixture rich in S_{y}, after it has been placed for some hours in a thermostat at $70^{\circ}-80^{\circ} \mathbf{('}^{\prime}$, exhibits a rise of the liquid in the capillary which is followed by a fall. This indeed proved to be the case. This verification appeared to me necessary because the statements in de Lsecth's table only contain observations of changes which sometimes amount to only $1^{2} / \mathrm{mm}$. and seldom more than 2 mm . For no one who has experience with the dilatometer theses observations will have any delinite value. And although the fat first investigated proved correct, the comolnsions arrived at by ma Lamew are not proof against a more elaborate insestigation.

The rise observed is attributed in all the treatises cited to the change in volume in the conversion $\boldsymbol{S}_{\mathrm{h}} \rightarrow \mathrm{S}_{\mathrm{m}}$, because the conversions $S_{m o n} \rightarrow S_{r h}, S_{0} \rightarrow S_{i n}$ and $S_{n} \rightarrow S_{m o n}$ take place with contraction of volume. Owing to the reaction $S \rightarrow S$, taking place meanwhile. the S_{n} concentration is altained at whel the conversion $\mathrm{S}_{\mathrm{r}} \rightarrow \mathrm{S}_{\mathrm{m}}$ at the temperature of experiment ceases: hence the rise in the capillary ceases also and a fall is exhibited there as a consequence of the still proceeding reaction $S_{n} \rightarrow S_{;}$. () $)_{1}$ elevation of the temperature the phenomenon ought to repeat itself each time. Such are the views of Dr. de laerw. In tig. I the thin line with the arrows indicates the changes of condition which the sulphur in the dilatometer ought to pass through.

In my experiments, however, it appeared that the hehaviom of the dilatometer is absolutely contraty to the expectations raised by this diagram.

[^76]

Fig. 1.

Owing to the peculiar method followed by Dr. de Lame to observe for a few minutes only whether the dilatometer exhibits a rise or a fall, one gets from his communication the impression as it each time, with the different (rising) experiment-temperatures, a similar phenomenon repeats itself. Now, such is by no means the casc. Only once or twice, the said maximum occurs. I have observed repeatedy that it then returned no more. The slight increase, or decrease observed by him at the subsequent temperatures have no signitiounce, moreover, such tritling values never have a definite meaning; the difatometer is not an instrument of precision not even when the best arting thermostat is msed.

In order to obtain really trustworthy results the experiments shond be so amanged that the reaction studied exhibits a suitable rise or fall: this should then sturely exceed a few m.m.

Below are given some of my invertigations.
As, for these experiments, glacial aretic aded is a much more approniate lipuid than turpentine-armon disulphide (see communication \mathbb{W}), these experiments have been caried out with that liguid. The themmostat has been described in commmotiation (III). The sulphor was treated exactly as directed by Dr. De Lemeth.

Table I contains the result of a series of experiments represented graphically in fig. 2. We motioe that, when we wish to attribute the great rises at $76^{\circ} .2$ and $83^{\circ} .0$ to conversions according to the seheme of fige I if becomes inexplicable why at the temperatures $86^{\circ} .7$ and $91^{\circ}, 9$ the pheromenon does not appear, but retums at $97^{\circ} .8$. Moreover, the consersion at the latter temperature exhibits the plan chatacter of a conversion above the transition temperature. From this series I already gained the impression that the maximum ocouring at $76^{\circ} .2$ and $83^{\circ} .0$ has mohing to do with the conversion $\mathrm{S}_{1} \rightleftarrows \mathbf{S}_{\text {(11272 }}$.

One might imagine that, during the time corresponding with the falling hatnches in A and B fig. 2 , so much S, has been regencrated that at the subseguent rises of the temperature one does not arrive any longer above the line AC in lig. 1 . True, that dilliculty

A. Temperature 76.2.			C. Temperature 86\%.7.			
Day	Hour	Dilatometer	Day	Hour	Dilatometer	
M.	$9.55 \mathrm{a} . \mathrm{m}$.	placed	Th.	10.00 am .	attained	
	$12.03 \mathrm{p.m}$.	533		11.00	482	
	1.00	560		12.04 p.m.	477	
	2.18	583		3.37	467	
	4.07	607	F.	9.25 am .	439	
	7.24	645	D. Temperature 910.9 .			
	9.14	635				
Tu.	$9.29 \mathrm{a} . \mathrm{m}$.	585	Day	Hour	Dilatometer	
	$1.52 \mathrm{p} . \mathrm{m}$.	580	F.	10.25 am	attained	
	Temperat	re $83^{\circ} 0$.		11.00	483	
Day	Hour Dilatometer			12.00	480	
			$3.00 \mathrm{p} . \mathrm{mm}$.	482		
'Tu.					5.05	481
	3.37	517	Sat.	9.48 am .	474	
	4.53	558	E.	Temperature 97.8.		
	10.20	694	Day	Hour	Dilatometer	
	10.50	701				
W.	9.25 a.m.	741	Sat.	10.25 am.	attained	
	12.12 pm.	731		11.25	438	
	4.28	727		12.15 p.m.	548	
Th.	9.44 arm .	677		3.40	> 1000	

then applies a fortioni to de Larew's experiments where the dilatometer liguid does not obstruct that conversion which certainly was the case in our experiment.

In order to avoid this objection anyhow, I proceded. in a subseguent experiment, to the higher temperature so soon as the maximmm had been attained. The result is shown in as series which in addition teathes other things as well ('able II).

Figs. 2.
This table gives us two minor result i and two highly important ones. The firs is that in Table II A a previous fall in the dilatometer occurs. Hence, the foal behavior on introduction is: a rise and a fall a rise and at fall. This first rise amd fall finds its explanation in the Renisurt effect and has been predicted and discussed in my fourth communication p. 7336. The negative catalysis of the acetic acid

TABIE 11.

A. Temperature 75 ,3.			E. Temperature 95\%2.		
Day	Hour	Difatometer	Day	Hour	Dilatometer
M.	$\begin{aligned} & 11.05 \mathrm{a} . \mathrm{m} . \\ & 11.33 \\ & 12.02 \\ & 12 . \mathrm{p} . \mathrm{m} . \\ & 12.14 \\ & 1.22 \\ & 3.07 \end{aligned}$	$\begin{gathered} p \text { aced } \\ 476 \\ 465 \\ 458 \\ 465 \\ 525 \end{gathered}$	W.	$\begin{aligned} & 3.10 \mathrm{p} . \mathrm{m} . \\ & 3.22 \\ & 3.45 \\ & 4.18 \\ & 6.21 \end{aligned}$	$\begin{gathered} \text { attained } \\ 510 \\ 510 \\ 511 \\ 510 \end{gathered}$
	$\begin{aligned} & 8.24 \\ & 8.45 \\ & 9.04 \end{aligned}$	$\begin{aligned} & 636 \\ & 628 \\ & 624 \end{aligned}$	F. Been during the night at $95^{\circ} .9$. No change.		
B. Temperatur e 84.8.			(i. Temperature $97{ }^{\circ} 2$.		
			Day	Hour	Dilatometer
Day	Hour	Dilatometer	Th.	9.30 arm .	attained
				10.018	629
M.	${ }_{10.01}^{9.45} \mathrm{p.m}$.	attained 439	$\begin{array}{r} 11.17 \\ 1.50 \text { p.m. } \end{array}$		
Tu.	9.31 arm .	406	H. Temperature 98.6.		
C. Temperature 930.0 .			Day	Hour	Dilatometer
	- -		Th.	$\begin{aligned} & 2.05 \mathrm{p} . \mathrm{m} . \\ & 2.15 \\ & 2.45 \\ & 3.22 \\ & 3.48 \end{aligned}$	attained692693767870
Day	Hour	Dilatometer			
		-			
Tu	10.04 am .	ained			
	$3.34 \text { p.m. }$	$\begin{aligned} & 745 \\ & 745 \end{aligned}$	J. Temperature 96.4.		
	$\begin{array}{r} 5.05 \\ 10.10 \end{array}$	748 748	Day		Dilatometer
W.	$9.34 \mathrm{a} . \mathrm{m}$.	740			
	merature	re	Th.F.	$\begin{aligned} & 5.00 \mathrm{pm} . \\ & 9.25 \mathrm{am} . \end{aligned}$	$\begin{array}{r} 757 \\ >1000 \end{array}$
	mperatur	e		$\begin{aligned} & 10.54 \\ & 11.18 \end{aligned}$	$\begin{aligned} & 7566^{1)} \\ & 778 \end{aligned}$
	Hour	Dilatometer	K. Temperature $95: 8$.		
W.	10.37 a.m.	attained464464460458	Day	Hour	Dilatometer
	11.17				
	${ }_{2}^{12.14}$ p.m.		F.	11.45 arm .	753
	3.00			$\begin{array}{r} 12.04 \\ 1.10 \end{array} \mathrm{~m} .$	

[^77](anmen the bising hatnch to mantan itself here so mach longer than in the experiment despribed previousty. We may, meanwhile, conelude that notwhthstanding the acetic acid present, Sy present in large concemtation, rapidy reverts to 5 , a conclusion that had aheady been drawn in my fourth communication; for the explanation of the experiments it is not to be neglected becanse it is thas shown that the $\mathrm{S}_{\text {y }}$, concentration has already considerably receded at the moment that the rise observed by de Leech commenced. Secondly, the rise in this experiment appeared to occur only once, and not to repeat itself either at $84^{\circ} .8$ or at $93^{\circ} .0$.

Much more important are the following conclusions: The rise has 110 connection with the consersion $S_{r h} \rightleftarrows S_{m o n}$. If. at the lower temperatures, monoctinic sulphur had formed it would have been impossible to realise a retardation of the sad conversion above the highest transition temperature. The tables II G and H , however, clearly prove the possibility thereof. Eren at $98^{\circ} .6,40$ minutes after this temperature had been attaned, the conversion had yet to start; once started it was, of comse, very evident. also still at a temperathe of $96^{\circ} . t$ (Table II J) whereas when umintroduced it had not appeared at $96^{\circ} .2$ (Table II (i).

The fourth conclusion is derived from Talle II K, namely, that at $95^{\circ} .8$, the reaction $\mathrm{S}_{\mathrm{n}} \longrightarrow \mathrm{S}_{\text {mon }}$ stops in the presence of some perent of S_{y}, just as was shown by the investigations commonicated in my fouth paper, again in contlict with the communications ariticised here.

If one should opine that the phenomena are fundamentally different owing to the use of atetic acid as diatometer liguid. it may be commmonated here that 1 have ako carried out the experiments with turpentmerabon disulphide. There it appeared, as might have been expected, that the first maximm appears in a less pronomeed mamer and also that, on using that ligtud, subsequent risings at higher temperatures do not take place; in fact no fundamental diflerence ocens.

The above insestigations had therefore demonstrated that the explanation of the dilatometer behavione at temperatures of $70^{\circ}-80^{\circ}$ by the conversion $\delta_{14} \leftrightarrows S_{m u n}$ fialed ulterly. Also as regards the conrevsion $S_{0} \rightarrow S_{0}$ I had my doubts as to whether this sufficiently explains the fall after the maximum has been attained. This was corroborated by the following experiment. Suphur was heated to boiling in a dilatometer vessel, gaseous ammonia was passed for a few mimutes, then it was chilled and not motil after three days acetie acid was introduced.

Teable 16 represents the progressive chather with this dibatometer

TAB1.1: II.

Day	Hour	Temp.	Didatometer
16 Now.	11.30 a.mm.	86.6	placed
	11.51	86.6	4.51
	12.14 pm.	86.4	462
	1.41	86.3	470
	3.18	86.4	469
	6.35	86.4	459
18 Nov:	9.24 arm .	86.6	386
	4.17 p.m1.	86.3	36.4
19 Nov.	$9.32 \mathrm{a} . \mathrm{m}$.	86.6	352
20 Nov.	9.24	86.5	328
$21 \mathrm{Nov}$.	10.30	86.5	328

A quite similarly treated sulphur mats was analysed (also three days after its preparation and contamed 0.6% of 5°.

Althongh this experiment has been carrich out with a not irreproachably acting themostat the result emmot be open to dembe After a small rise a great fall takes place, whereas according to the theory opposed the essential conditions are wanting; hence this experiment also shows that the fact stated by Messrs. Smos and de Idmew is absolutely mexplained by their intepretation, and that here quite new explanatory principles must be found. As to the question in what direction these should be looked for, I will not go into this although my research indicated some possible explanations; Dir. De Lever seems to ocrung himself with it just now and I feel compelled not to commmicate any investigations of which it is known to me that they relate to a subject on which somebody else is engaged.

The above investigation has, therefore, led to the conclusion:
a. that the change in volume of strongly supercooled sulphur, in the temperature range of $70^{\circ}-95^{\circ}$, is different from that observed by Dr. de Leect;
b. that the phemomena occuring have no commection with the conversion $\mathrm{s}_{\mathrm{rh}} \rightleftarrows$ 内mon $^{\rightleftarrows}$
c. That the conclusions from my previous papers remain unatiected are contirmed, for insame that the transition point is elevated by added sy.

L'trech, Immary 1913.
Vis 'T Horf-Laboratory.

kONLNKLIJKE IKADEMIE GAN WETESSGIIAPPES TE AMSTERDAM.

PROCEEDINGS OF THE MEETJNG
of Saturday March 22 and Friday April 25, 1913.

\author{

- - - - osc
 President: Prof. H. A. Lorentz.
 Secretery: Prof. P. Zemana.
}

Translated from: Verslag van de gewone vergadering der Wis. en Naturrkundige Apdeeling van Zaterdag 22 Maart en Trijdag 25 April 1913, D1. XXI).
II. A. Brocwer: "Leucite-rucks of the lingrat (East-J:a"a) and their contact metamorphosis." (Communicated by Prof G. A. F. Molemerimef). p. 1238.
W. Kaftern: "Expansion uf a function in series of Abel's functions :m (x ", 1%. 240 .
L. E. J. Bforwer: "Some remarks on the coherence type o", p. 1256.

Jay de Vraes: "An inrolation of assuciated points", p. 1263.
L. S. Onstran: "The diffaction of electromagnetic waves by a crystal." (Communicated be Prof. H. A. Lorentz), p. 1231.
J. Bofke: "Nerve regeneration after the juining of a mutor nerve to a receptive nerse",]. 1281.
H. J. Mamberger and J. de. Hiss: "The effect of fatty acids and soaps on pharocytusis,' p. 1290.
W. de Sitter: "A proof of the constancy of the velocity of light". p. 1297.

F A. II. Schreinemakers : "Equilibria in temary systems". P'art V1, p. 1298, Put V"II, por 1313.
F. A. H. Scmrememakers and D. J. van Prooraf: "The system sodium sulphate, manganous sulplate and water at $33^{0 \prime}$, p. 1326.
C. van Wisselingit : "On intravital precipitates". (Cummunicated by Prof.J. W. Moll), p. 1329.
II. R. Kreyt: "The inftrence of surfice-active subatances on the stability of suspansoids." (Conamunicated by Prof. E. vas Romburga), p. 1344.
II. J. Waterman : "Potassium, sulfur and magnesium in the metabolism of Aspergillus niger.' Communicated by Prof. M. W. Berderinck), p. 1349. (With two tables).
J. D. fan der W'als Jr.: "On the law of partition of energy." II. (Communicated by l'rof. J. D. Van der Waals), p. 1355.
J. K. A. Wertuen Suomoxson: "The electucardiogram of the foctal heare", p. 1360.
W. A. Versluys: "On a class of surfaces with algebraic asymptotic curves." (Commanicated by Prof. J. Cardinalle, p. 1363.
H. Kamerlingit Onnes and Mrs. Ansa Bechman: "On piczo-electric and pyro-electrie properties of quartz at luw temperatures down to that of liquid hydrogen," p. 1380.
Beagt Bechmas: "Measurements on resistance of a pyrite at low" temperatures, down to the melting point of hydrogen," (Communcated by lrof. H. Kamerdingir Onnes), p. 1384.
II. Kamerlingh Onfes, C. Dorsman, and Sophes Wfaber: "Inventigation of the viscosity of gaces at low temperatures. I. Hydroyen", p. 1386.
H. Kamerlengh Oxnes and Sopics Weber: "Investigation of the viscosity of gases at low temperatures 11. Helium. p. 1396. III. Comparison of the results obtained with the law of corresponding states," p. 1399.
II. Kaberlingh Osnes and E. Oosteriuts; "Marnetic researches VIL. On the susceptibility of gaseous oxygen at low temperatures", p. 1404.
H. Kamerlinait Oxnes: "Further experiments with hiquid helium. If. On the electrical resistance of pure metals ete. VII. "The potential difference necessary for the cle:tric current through mercury below $\mathbf{4}^{0.19 \mathrm{~K} . ", ~ p . ~} 1406$.
Mad. P. Ctrie and II, Kamerlingh Osnes: bothe radiation of Radium at the temperature of liquid hydrogen." م. 1430.
II. G. ris de Sande Bahbltzen: "The periodic change in the sea level at Helder, in connection with the periodic change in the latitude, p. 1441.
W. H. Jumus: "The total solar radiation during the annular eclipse on April 17 th 1912 ", p. 1451 .

Erratum, p. 1464.

Proceedings Royal Acad Amsterdam, Nol. XV.

Geology. - "Leuciterocks of the Ringyit (East-Java) and their con-trect-metemorphosis". Byy H. A. Brocwer. (Communicated by Prof. Molemgraffe)
(Communicated in the meeting of December 28, 1913).
The following pages will afford new proofs of the intermediary place which the contact-metamorphosis of the basic lencite-rocks ocoupies between that of the trachytic and the basaltic rock.

The Gumnong Ringeit (a corruption of the Madurese word reng-grik=saw-shaped) forms a steep mountain-range with five pointed tops on the northeoast of Java between Besuki and Panarukan; arcording to Verbeek ${ }^{1}$) the whole mountain-range with the old craterwall of the Grmong Besar sonth of it consists of lava-cakes and loose blocks of leucite-rocks. During a trip to Madura I visited the north-foot of the Ringgit; along the great postal-road at the northfoot lava is in several places found in situ. Near the $15^{\text {th }}$ milestone from Besuki, we see to the North of the road in the flat country one hillock consisting of leucite-lava forming a cape projecting into the sea (marked I on the annexed map). The rock is a lencitite with phenocrysts of biotite which are much resorbed

whilst it is characterized by a great number of enclosures, measuring from a few centimeters to a few decimeters, and consisting, as far as they have been examined, of a reddish andesite. It is in these enclosures that the contact metamorphosis of the lencitites can be studied.

[^78]Contact metamorphism caused by effusive rocks is eo ipso insignificant, both on account of the low temperature at which the metamorphism takes place, and on account of the escape of the pnenmatolytic gases during the eruption. It can however be studied in the enclosures of older rocks on which the magma whilst still umder pressure, could react in the same way as if it were a deep-seated rock. Lacrorx ${ }^{\text {b }}$) had divided the effusive rocks into two groups, according to the character of their contact metamorphosis: the basaltic and the trachytic rocks, differing from cach other in cither containing or not containing orthoclase and acid plagioclase. The metamorphosis caused by rocks of the former group is chietly restricted to the influence of heat confined to a narrow contactzone, whereat the rocks of the latter group, in consequence of their greater viscosity during the effusion, and in consequence of the pneumatolytie gases dissolved in these viscous magmas, are in less intimate contact with the inclosures, but, impregnating these inclosures by pmemmatolytic substances can cause intensive chemical changes, which are not restricted to the contactzone, but can affect the entire cnclosure.

The loucitite containing the enclosures which will be now described, shows besides many phenocrysts of augite, munerons strongly resorbed phenocrysts of biotite. Macroscopically we see both the minerals the augite of a green, the biotite of a brownish red colour contrasting against a greyish-black or brownish-red ground-mass.

The augitephenocrysts are under the microscope colourless or greenish; traverse-twins occur, and also twins according to (100) sometimes with polysynthetic lamels. Greenish and colourless portions alternate without regularity or in zones in the same crystal; sometimes there is a green core surrounded by an uncoloured margin; occasionally one sees a green band between a colourless core and a marginal zone, both of which extinguish simultaneously, but not together with the green transition-zone. Similar zones with varying optical properties occur likewise without observable differences of colour. As a rule the augite is poor in enclosures, only a few little prisms of apatite and flakes of biotite are enclosed.

The biotitecrystals are for the greater part strongly resorbed; some are entirely altered into a black ore which can be proved to represent altered biotite by comparison with crystals, in which still remains of the strongly pleochroitic biotite can be distinguished dimly between the specks of the ore. There is likewise a younger generation of biotite, just as has been described by me from a mica-

[^79]lencite basalt of East-Romeo, discovered by Prof. Morengraafe ${ }^{1}$). This last-mentioned biotite is not resorbed, and is often deposited in the rock of the Rimgrit round the older resorbed crystals, however with different ontical orientation of the optical groundmass. These little brownishred crystals which also occur dispersed through the rock, athe the a rule do not show any definite shape, enclose particles of the groundmass. The groundmass consists of lencite, augite and ore. Sometimes the leucite attains somewhat larger dimensions than the majority of the crystals of the groundmass, without forming real phenoerysts, the augites are column-shaped and colourless or light-green, the ore is plentiful in the rock.

Macroscopically one sees already locally in litfle cavities neogenic minerals of very small dimensions, many of which show the shapes of erystals of lencite or sodalite, or also of feldspar. Under the microscope one sees in these little cavities isotropic erystals, torether with neogenie feldspar and sometimes some biotite, whilst the dark background against which the prisms of augite set off between crossed micols, is often interrupted by anisotropic portions, Which for some distance have the same optical orientation, and poiclitically suround the particles of the groundmatss. These anisotropie portions sometimes consist of kalifeldspar, twimed according to the Camsbad-law; polysinthethic fwims have not been observed, but the zonal structure which is often distinguishable points also to the presence of plagioclases. These minerals have been formed after the erystallisation of the groundmass of the rock and point to pneumatolytic elements in the magma, which have been set free after the final crystallisation; consequently they are no normal constituents but products of the antopneumatolysis in the rock. Locally they may oceur in considerable quantities.

The enclosmes of this leucite are coloured light-red or brownish, and contain little phenocrysts of plagioclase where they have not been altered into a hypo- or cryptocrystalline groundmass.

In some of the enclosmres examined the plagioclases show microscopically a well developed zonal structure, in others they are only slightly so, or sometimes not at all. Major twins according to the Cimlsbaddaw of the polysynthelically lwinned feldspars occur. The basicity of the feldspars sometimes decreases regularly from the centre to the margin, in which case transitions were observed from labrador or bytownite to oligochase or andesine, but alternations of

[^80]more basic and more aded lametlate are very frequobl, and sometimes are found repeated several times in one and the same (ryatal.

Phenocrysts of the dark minerals are not met with as such, hou sometimes we find specks consisting of oparne secondary minerals proving by their shape that such phenoerysts may origimally have been present. The groundmass is likewise strongly weathered and contains laths of plagioclase, flakes of chlorite and opaque prolucts of disintegration of the ore which is not found in large quantity; moreover often an isotropie substance is found in large (puantities, which is considered as glass; in this ease the rock must be called an andesite.

Metemorphosis.

The metamorphosis of the enclosures examined encludes in the first place the alterations caused by the magma itself, appearing only at the immediate contact, and consisting, at the utmost, of remelting and recrystallisation after chemical exchange; in the second place the alterations caused by imbibition of volatile substances which penetrate well into the interior of the enclosures. From this the intermediary place becomes apparent, which this contactmetamorphosis occupies between that of the basaltic and that of the trachytic rocks. Especially the intensity of the pmematolytic influences varies greatly in the different enclosures; sometimes the chemical exchanges in the contactzone can be explained without pheumatolysis. In the examined rocks it is most frequently the case that in part of the enclosures a porous structure has been developed even to a great distance from the contact, whilst in the cavities neogenic minerals have been formed showing great analogy to the autopneumatolytic minerals of the enclosing leucitite, whilst in the contact zone the combined effect of remelting and pneumatolysis can be observed. The formation of a gold-yellow aegirine-augite is characteristic.

As an example may serve an enclosure of a few centimeters in diameter in which to a great distance from the contact a neogenic yellow pyroxene is formed in very small columns, sometimes areumulating locally and then accompanied by an isotropic mineral with low index of refraction and by neogenic feldspar. The angles of extinction of this yellow pyroxene point to aeqirine-augites of rarying composition. The ore is strongly disintegrated, here and there a reddish substance has been formed pointing to an oxydation to haematite. A small quantity of the yellow pyroxene is also found in the phenocrysts of plagioclase. The transition-zone with the leucitites
is characterised by the ocenrence of a very great number of little columms of gold-coloured aeginine-augite and of a few larger crystals with yellow margin which are mixed with feldspar, consisting partly of kalifeldspar, partly of plagioclase.

In this transition-zone we find only a very little quantity of ore, whereas the larger angite crystals with yellow margin have after all originated from phenocrysis of the lencitite. Very near to the contact we find the original plagioclases of the enclosure as an opaque central portion in the neogenic feldspars; whereas at a short distance the original plagioclases have been conserved as such, and the neogenic minerals have been erystallized in small cavities of the rock. The appearance of the ore points to chemical interchanging of elements between the lava and enclosures; the gold colom and the modified optical properties of the augite and likewise the crystallization of neogenic minerals to a great distance from the contactzone of the enclosure which has become partly porous, indicate the influence of pneumatolytic gases. Leucite-tephrites of the Somma metamorphosed by fumaroles show very similar modifications.

That in the contact-zone really melting has taken place is in suchlike enclosures often proved by the fact, that the transition-zone penetrates tongue-shaped into the magma which has been crystallized as lencitite. Macroscopically the line of demarcation be ween the transition-zone which is only a few millimeters wide, and the lencitite can often easily be followed by the rapidly decreasing of the percentage of ore, and by the colour which for this reason becomes lighter.

Among the smaller enclosures there we numerous ones, which have entirely been altered into a very porous rock, have obtained a yellowish colour, and contain besides the colourless neogenic minerals and the yellow pyroxene also a few crystals of haematite which macroscopically are perceptible as little black specks.

In a larger enclosure with a diameter of about 20 centimeters the transition-zone was hardly brighter in colour than the lencitite, and this fact appeared to be accompanied by a much more gradual diminution of the percentage of ore. Horeover the augite shows no change of colour, and neither do we find the gold-yellow augite in the enclosure at some distance from the contact, notwithstanding the porous structure and the crystallization of pnemmatolytic minerals. In the transition-zone little, but likewise much larger erystals of neogenic kalifeldspar and zonular phagioclase can he observed, enclosing the ore and the little columns and larger crystals of unmodified angite. In this contact-zone again borders of neogenic feldspar appear around the opague plagioclases of the enclosure.

The metamorphoses described above, which are conneded by all sorts of transitions show great resemblance to those found in blocks of leucite-tephrite of the Fosso di Caucherone (Vesurius) ${ }^{2}$) which have been altered by the action of fumaroles. The microlithes and phenocrysts of angite have become yellow, and the oxtinction-angles agree with those of an aegirine-augite, sometimes with those of aegirine. Hacmatite is abundant with the exclusion of marnetite. The biotite and amphibole show modifications of colour.

In the "sperone" of Latium, likewise a metamorphic rock which by transitions is comnected with a normal black lencitite, the normal green augite has been altered into a gold-coloured one, whose angle $c: c$ varies between 65° and 85° whilst likewise the original magnetite has more or less completely disappeared. Moreover there is often formed a yellow melanite ${ }^{2}$).

Finally a green-yellow aegirine-augite ocenrs in varietics of the shonkinite of the Katzenbuckel (Odenwald) which has been modified by pneumatolytic processes ${ }^{3}$). The iron-ore has here been altered into pseudobrookite, the feldspars are more or less zeolitised. Analyses made by lattermann indicate that in the rock modified by pnemmatolysis, the percentage of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ had increased from $5,86 \%$ to $8,51 \%$, whilst in the variety with yellow augite the FeO of $3,23 \%$ which had been found in the original rock, had entirely disappeared. Likewise in the analyses of sperone the $\mathrm{Fe}_{2} \mathrm{O}_{8}{ }^{4}$) dominates strongly over the FeO ; evidently the metamorphosing arencies had an oxydizing influence. The modification of the optical properties of the goldcoloured pyroxene tends to prove that the Na_{2} () percentage has also been increased, which could not be concluded from the different analyses.

In comnection with what has been said a second locality of rorks with gold-coloured pyroxene may be mentioned (Il of the annexed map) situated directly South of the road from Panarukan to Besuki at mile-post 18. At the northern foot of a bare hill a porons light-giey rock that microscopically proves to be rich in gold-coloured pyroxene. appears between rocks of dark-grey biotite-leucite-tephrite.

[^81]In the dark-grey lemede-tephrite one sees, maroseopically, phenocrysts of playitnelase ani dark minerads few millimeters in diameter, the finmer contrasting lithe agamst the gromdmass. Suder the microseope it appears that the platgorlases have a well marked zonal -hucture, the angite crystats are light-green and often include numerous specks of ore. The little phenocrysts of biotite are sometimes strongly resorthed; the angle of the optical axes is rery small, the pleochroism is strong from brown-black to light-yellow. The groundmass is composed of phagioclase with zonal structure, lencite and some nepheline), treen angite, a little biotite and much iron-ore. The latter mineral often obtans somewhat larger dimensions, without forming real phenocrysts. The lencite has likewise somewhat larger dimensions than the majority of the crystals in the groundmass.

The porous light-grey rocks with gold-coloured pyroxene show numerous phenocrysts of white plagioclase (some as long as $0.75 \mathrm{c} . \mathrm{m}$., but usually smaller) and smaller phenoerysts of the dark minerals in a groundmass which is either dense or micro-erystalline; in the eavities neogenic minerals have been formed. Under the microscope we see porphyric crystals of strongly zonal plagioclase and gold-coloured or partly still green pyroxene, in agroundmass of strongly zonal plagioclase, gold-coloured pyroxene iron-ore, an isotropic, sometimes light-brownish substance, and a few little columns of apatite. Further a fow rather large broad prisms hexagonal in cross section of an optically negative mineral with one optical axis, with a high refraction index, have been observed, which are slightly pleochroitical with $\varepsilon>0$; they are almost colourless or tinged very lightly brownish, and include sometimes particles of a black or vermilion-red substance. A cleavage parallel with the axis of the prisms is indistinctly developed. In case originally some lencite has been present in this rock, the mineral is now altered into pseudomorphoses, on account of its feeble resistance against pneumatolytic agents.

Without entering into details about the metamorphosic and preneogenic minerals found in these rocks, it can be mentioned that the aegirine-angites belong to different chemical combinations; we observed c. \&n. in sections parallel to (010) made across columns twinned according to (100), symmetrical extinctions of 14°, whilst several lathshaped sections extinguish with angles of 20° to 30°; very small angles of extinction were equally observed. Black iron-ore, blue-black in reflected light, is found in great abundance in the rock, sometimes it surrounds as a border the aegirine-augites, which likewise can include the ore in great quantity.

Moreover one sees elongated sections consisting entirely of black
ore, around which a mixture of ore and prisms of goldeotoured ategirine-angite coltmms is formed.

The metamorphoses described above by which gold-coloured pyroxenes with the optical properties of aegirine-angites are formed, appear to be connected with pnemmatolytie processes in magmas rich in alkali.

Fimally it may be mentioned here, that to the South of the road Panarukan Besuki, quite near to mile-post 13 , a loose piece of a lencitite was found with phenocrysts of leucites as large as $4 \mathrm{~m} . \mathrm{m}$. which certainly had come down from the northern slope of the Ringgit and consequently may be expected there in greater quantities; hitherto such types of rocks were not recorded from the Ringgit-mountain.

Mathematics. - "Eepansion of a fiunction in series of Abel's functions "f $n(x)^{\prime \prime}$. By Prof. W. Kaptern.
(Communicated in the meeting of February 22, 1913).

1. In the Oeurres completes of Abel ${ }^{1}$) may be found the following expansion

$$
\frac{1}{1-r} e^{-\frac{2 n}{1-n}}=\sum_{n}^{x} \sum_{n}^{x}\left(r^{n}\right) v^{n}
$$

where

$$
q_{n}(x)=1-C_{1}^{n} x+C_{2}^{n} \frac{x^{8}}{2!}-\ldots+(-1)^{n}!_{n}^{n}
$$

C_{p}^{n} representing the binomial coefficients.
These polynomia form the object of the dissertation of Dr. A. A. Nidand (Utrecht 1896) and have been treated afterwards by E. Les Roy in his memoir "Sur les séries divergentes" (Ammales de Toulonse 1849).

In this paper I wish to examine when a given function of a real variable may be expanded in a series of this form

$$
\begin{equation*}
f\left(x^{\prime}\right)=a_{0}+a_{1} f_{2}(x)+a_{2} f_{2}(w)+ \tag{1}
\end{equation*}
$$

2. In this article we collect those properties of the polynomia 'fu(x) which we want for our investigation and which we take from Nimand's dissertation.

In the first place we have the important relations

[^82]\[

\left.$$
\begin{array}{l}
\int_{0}^{\infty} e^{-x_{l / n}}(x) q_{n}(x) d x=0 \quad(m-=n) \tag{2}\\
\int_{0}^{\infty} e^{-x_{q}} n^{2}(x) d x=1
\end{array}
$$\right\}
\]

In the second place if $n(x)$ satisfies the differential equation

$$
x y_{n} \prime(x)+\left(1-x^{\prime} \varphi_{n}(x)+\operatorname{nr} r_{n}(x)=0\right.
$$

Which also may be written

$$
\begin{equation*}
\frac{d}{d x}\left[x \cdot e^{-x} \operatorname{rrf}_{n}^{\prime}(x)\right]+n e^{-x} r_{n}(x)=0 \tag{3}
\end{equation*}
$$

In the third place we have the following properties, which may we easily obtained

$$
\begin{align*}
& \boldsymbol{f}_{n}(x)=\operatorname{rf}_{n}^{\prime}(x)-\varphi_{n+1}^{\prime}(x) . \tag{4}\\
& \frac{x_{n}}{n} r_{n}^{\prime}(x)=r_{n}(x)-\mathscr{r}_{n-1}(x) \tag{5}\\
& (n+1) n_{n+1}(x)-(2 n+1-x) r_{n}(x)+n y_{n-1}(x)=0 . \tag{6}
\end{align*}
$$

3. If the expansion (1) is possible, the coefficients a_{n} may be expressed by means of the equations (2)

$$
a_{n}=\int_{0}^{\infty} e^{-\alpha} f\left((t) \varphi_{n}(t) d t\right.
$$

With these values the second member of (1) reduces to

$$
\begin{equation*}
S=\sum_{1}^{\infty} \varphi_{n}(x) \int_{1}^{\infty} e^{\alpha} \alpha^{\infty}(\kappa) \varphi_{n}(\kappa) d \alpha \ldots \tag{8}
\end{equation*}
$$

In order to determine this sum we introduce $f_{n}(x)$ in the form of a definite integral. This definte integral, which has been given by lef Ror, may be found in the following way.

Denoting by f_{0}^{\prime}, t) the Besselian function of order zero, Maclaurin's expansion gives easily

$$
\begin{equation*}
n_{0} J_{0}\left(2 \sqrt{\ell_{0} x^{2}}\right)=\sum_{0}^{\infty} \frac{u^{\prime \prime \prime}}{m!}!_{m}(\varepsilon) \tag{9}
\end{equation*}
$$

Hence, multiplying both members by $\frac{e^{-x} e^{\prime} d e}{n!}$ and integrating between the limits 0 and ∞
where the second member may be reduced by means of (7) to

$$
\sum_{0}^{n}(-1)^{m} C_{m}^{n} \frac{x^{m n}}{m!}=y_{n}(x) .
$$

Therefore we have

$$
\begin{equation*}
r_{n}\left(v^{\prime}\right)=\frac{e^{r}}{n!} \int_{0}^{e^{x}} e^{-x}\left(t^{n} J_{0}(2 V(\overline{e x}) d u\right. \tag{10}
\end{equation*}
$$

and

$$
S=\sum_{0}^{\infty} \frac{q_{n}(v)}{n!} \int_{0}^{\infty} f(a) d v \int_{n}^{\infty} e^{-\beta} \beta^{n} J_{0}(2 \vee(t \beta) d \beta
$$

Now, from the equation (9) we obtain
thus

$$
S=\int_{0}^{\infty} f(\tau) d\left(t \int_{0}^{\infty} J_{0}\left(2 V \overline{u_{i} \beta}\right) J_{0}(2 V \overline{\beta x}) d \beta\right.
$$

or, putting β^{3} instead of β

$$
\begin{equation*}
S=2 \int_{0}^{\infty} f(\imath) d c \int_{0}^{\infty} J_{0}(2 \beta \sqrt{\imath}) J_{0}(2 \beta \vee x) \beta d \beta \tag{11}
\end{equation*}
$$

3. This double integral may be determined by a theorem of Hankei. (Math. Arn. Bd. 8 p. 481), who proved that

$$
\int_{0}^{\infty} \gamma \operatorname{l}(\gamma) d \gamma \int_{0}^{\infty} J_{0}(\beta \gamma) J_{0}(\beta \xi) l^{2} d \beta=\varphi(\xi)
$$

where E represents a positive value and of (ξ) a function which satisties the conditions of Dirichiet for all values between 0 and x. Putting

$$
\gamma=2 \sqrt{ } \bar{\Omega}, \quad \xi=2 \sqrt{ } \bar{x}, \quad \text { r }(2 \sqrt{x})=f(x)
$$

this theorem gives immediately

$$
\begin{equation*}
S=2 \int_{0}^{\infty} f(\imath) d u \int_{0}^{\infty} J_{0}(2 \beta V \bar{\imath}) J_{n}(-\beta, \gamma, x) \beta d_{\beta} \beta=f(x) \tag{12}
\end{equation*}
$$

Thus we lave established the result, that every function $f(x)$ which satislies the conditions of Dirichiet for all values between 0 and x may be expanded in a series of the form

$$
\begin{equation*}
f(x)=u_{0}+a_{1} \gamma_{1}(x)+a_{3} r_{2}(\cdot v)+\cdots \quad 0 \leqq x<\infty \tag{1}
\end{equation*}
$$

where

$$
a_{n}=\int_{0}^{\infty} e^{-\alpha} f(\varepsilon) r_{n}(t) d u
$$

It is to be remarked that the values $f(c+0)$ and $f(c-0)$ being different, the second member reduces to $\frac{1}{2}[f(c+0)+f(c+0)]$.
4. We now proceed to give two interesting examples of this expansion and to show the value of this expansion for the problem of the momenta.

As a first example suppose it is required to express $f(x)=\frac{1}{1+x}$ in a series of Abei's functions (fn (x).

Evidently this function satisfies the conditions of Dirichlet from $x=0$ to $x=\infty$, thus

$$
\frac{1}{1+x}=a_{0}+a_{1} f_{2}(x)+a_{2} f_{2}(x)+\ldots
$$

where

$$
a_{n}=\int_{0}^{\alpha} \frac{e^{-\alpha} f_{n}(\alpha) d t}{1+\alpha}
$$

Now the following relation holds between successive functions of:

$$
\begin{equation*}
(n+1) f_{n+1}(c)=\left(2 n+1-(\varepsilon) f_{n}(\alpha)-n^{\prime} f_{n-1}(\alpha)\right. \tag{6}
\end{equation*}
$$

Multiplying this by $\frac{e^{-x}}{1+a} d r$, and integrating between 0 and ∞ we obtain

$$
(n+1) a_{n+1}=(2 n+1) a_{n}-n a_{n-1}-\int_{0}^{\infty} \frac{\infty e^{-x}}{1+\ell^{e}} f_{n}(\alpha) d \varepsilon^{\circ}
$$

But, as

$$
\stackrel{n}{1+n}=1-\frac{1}{1+n}
$$

we have

$$
\int_{i}^{x} \frac{a e^{-x}}{1+a^{2}} f_{n}(a) d a=\int_{0}^{x} e^{-x} r_{n}(a) d u-a_{n}
$$

where the latter integral, which may be written

$$
\int_{n}^{\infty} e^{-x} v_{0}(k) \tilde{S}_{n}(a) d u
$$

vanishes according to (2) if $n>0$.
Therefore three successive coefficients of this expansion are related in the following way

$$
(n+1) a_{n+1}=2(n+1) a_{n}-n\left(a_{n-1}(n>0)\right.
$$

so that all the coetticients may be expressed in q_{0} and u_{1}.
Now

$$
y_{1}(k)=1-\imath
$$

hence

$$
a_{1}=\int_{0}^{a} \frac{e^{-x}(1-u)}{1+t} d t=\int_{0}^{\infty} \frac{e^{\infty} \cdot[2-(1+(i)]}{1+u} u^{3} u=2 a_{0}-1
$$

which proves that all the coefficients are dependent on the first

$$
a_{0}=\int_{0}^{\infty} \frac{-\alpha d r}{1+i l}=-e l i\binom{1}{-}=0,596347 \ldots
$$

These coefticients may also be obtained in another way.
From Abri's expansion

$$
\frac{1}{1-v} e^{-\frac{1}{1-1}}=\sum_{11}^{\infty} f_{n}\left(x^{n}\right) v^{n}
$$

which holds where

$$
\bmod v<1
$$

we see, by putting

$$
t=\frac{v}{1--v}
$$

that

$$
e^{-x t}=\frac{1}{1+t}+\frac{t}{(1+t)^{2}} r_{1}(x)+\frac{t^{2}}{(1+t)^{3}} r_{2}(x)+\ldots
$$

if

$$
\bmod \frac{t}{1+t}<1
$$

Multiplying this equation by e^{-t} dt and integrating between the limits 0 and ∞, we ohtain

$$
\frac{1}{1+x}=a_{0}+a_{1} \boldsymbol{\varphi}_{1}(. x)+a_{3} y_{9}(x)+. .
$$

where

$$
\begin{equation*}
a_{n}=\int_{0}^{\infty} e^{-t} \frac{t^{n}}{(1+t)^{n+t}} d t \tag{13}
\end{equation*}
$$

Comparing this result, with the former, we obtain the interesting formula

$$
\begin{equation*}
\int_{0}^{\infty} e^{-1} \frac{t^{n}}{(1+t)^{n+1}} d t=\int_{0}^{\infty} \frac{e^{-t} r_{n}(t)}{1+t} d t \tag{14}
\end{equation*}
$$

which is evident if we put $n=0$.
From (13) we see also that

$$
\sum_{0}^{\infty} n_{n}=\int_{0}^{\infty} e^{-t} \frac{1}{1+t} \sum_{n}^{\infty}\left(\frac{1}{1+t}\right)^{n} d t=\int_{0}^{\infty} e^{-t} d t=1
$$

which shows, that the expansion

$$
\frac{1}{1+x}=\frac{x_{n}}{0} a_{n} y_{n}(x)
$$

holds for $x=0$.
5. As a second example we will expand a discontinuous fumetion.

Supposing $f^{\prime}(x)=1$ from $x^{\prime}=0$ to $x=1$ and $f^{\prime}\left(x^{\prime}\right)=0$ for $x^{x}>1$ we have

$$
f(x)=a_{0}+a_{1} q_{1}(x)+a_{2} y_{2}(x)+\ldots
$$

where

$$
a_{n}=\int_{0}^{1} e^{1}-\operatorname{sen}_{n}(u) d u
$$

This coefleient may be determined in the following way. From the differential equation

$$
\begin{equation*}
\frac{d}{d x}\left[x e^{-x} \operatorname{trn}^{\prime}(x)\right]+\text { ne } e^{x} \operatorname{rg}_{n}(x)=0 \tag{3}
\end{equation*}
$$

it appears that

$$
x e^{-x} \operatorname{tfn}^{\prime}(x)+n \int_{0}^{x} e^{-x} y n(x) d x=0
$$

therefore, puting $x=1$, we have

$$
a_{n}=-\frac{1}{n e} q_{n}^{\prime}(1) \quad(n>0)
$$

or, according to (5)

$$
a_{n}-\frac{1}{e}\left[\varphi_{n-1}(1)-\varphi_{n}(1)\right] \quad(n>0)
$$

The two first coefficients may be obtained dircetly, for

$$
a_{0}=\int_{0}^{!} e^{x} d u=1-\frac{1}{e^{\prime}}
$$

and

$$
a_{1}=\frac{1}{e}\left[\gamma_{0}(1)-\vartheta_{1}(1) \left\lvert\,=\frac{1}{e}\right.\right.
$$

The remaining coefficients are dependent on these. For putting $x=1$ in the recurrent relation

$$
\begin{equation*}
(n+1) f_{n+1}(x)-(2 n+1-x) \operatorname{r}_{n}(x)+n q_{n+1}(x)=0 . \tag{6}
\end{equation*}
$$

we get

$$
(n+1) r_{n+1}(1)-2 n \eta_{n}(1)+n y_{n-1}(1)=0
$$

and, changing n into $n+1$

$$
(n+2) m_{n+1}(1)-2(n+1) r_{n+1}(1)+(n+1) m_{n}(1)=0
$$

thas, subtracting the former from the latter equation

$$
(n+2) a_{n+2}-(2 n+1) a_{n+1}+n a_{n}=0 .
$$

6. The expansion holding for the value $x=0$, we must have

$$
\stackrel{N}{0}_{0}^{N} a_{n}=1
$$

and remarking that $x=1$ is a point of discontinuty

$$
{\underset{0}{3}}^{s} a_{n} q_{n}(1)=\frac{1}{2} .
$$

To prove these equations directly we may remark that

$$
\sum_{l}^{n} a_{p}=\frac{1}{e} \sum_{l}^{n}\left[f_{p}-1(1)-r_{p}(1)\right]=\frac{1}{\ell}\left[1-q_{n}(1)\right]
$$

so

$$
\sum_{1}^{\infty} a_{p}=\frac{1}{e}-\frac{1}{e} \operatorname{Lim}_{n=\infty} i_{n}(1)
$$

Now, the number n being very large, we have

$$
\varphi_{n}(x) \equiv 1-n x+\frac{n^{2} x^{2}}{(2!)^{2}}-\frac{n^{8} \cdot x^{8}}{(3!)^{2}}+. .=J_{v}\left(V v_{n} v^{\prime}\right)
$$

and

$$
\operatorname{Lim}_{n=a} f_{n}(x)=\operatorname{Lim}_{n=\infty} J_{0}(\sqrt{n \cdot x})=\operatorname{Lim}_{n=\infty} \left\lvert\, \frac{2}{\pi V} \cos \left(\sqrt{n x}-\frac{x}{4}\right)=0\right.
$$

therefore

$$
\stackrel{\Sigma}{1}_{\infty}^{\infty} a_{p}=\frac{1}{e}
$$

and finally

$$
a_{0}+\sum_{1}^{x} a_{p}=1-\frac{1}{e}+\frac{1}{e}=1
$$

The second equation may be obtained as follows.
From the differential equation

$$
\begin{equation*}
\frac{d}{d x^{\prime}}\left[x e^{-x} f_{\mu}^{\prime}(x)\right]+p e^{-x} f_{\mu}(x)=0 \tag{3}
\end{equation*}
$$

we may conclude

$$
\begin{aligned}
& \left.\left.\int_{10}^{1} e^{-x} f_{\mu^{2}}(x) d x=-\frac{1}{p} \int_{u}^{1} t_{\mu}(x) d \right\rvert\, x e^{-x} g_{p^{\prime}}(x)\right]= \\
& =-\frac{1}{p^{\prime}} \left\lvert\, x^{p-x} \eta_{p^{\prime}}\left(x^{i}\left|y_{p}^{\prime} p(x)\right|_{0}^{1}+\frac{1}{\mu^{\prime}} \int_{0}^{1} x e^{-x} y_{\mu^{\prime 2}}(x) d x\right.\right.
\end{aligned}
$$

so

Now, the equations (4) and (5) give

$$
\begin{aligned}
& y_{p},^{2}(x)=\boldsymbol{y}_{p}\left(x^{\prime}\right)\left\lfloor y_{p} p^{\prime}(x)-y_{p}^{\prime} \cdot 1(x) \mid\right. \\
& \frac{x}{p} \boldsymbol{y}_{p}^{\prime}{ }^{2}(x)=\boldsymbol{y}_{p}{ }^{\prime}\left(x^{x}\right)\left|\boldsymbol{y}_{p}(x)-\boldsymbol{y}_{p-1}(x)\right|
\end{aligned}
$$

hence

$$
y_{l}{ }^{2}(x)-p_{p} y^{\prime},^{2}(x)=\eta_{p-1}(x) \eta_{l}{ }^{\prime}(x)-\vartheta_{p}(x) \eta_{l}^{\prime}+1(x)
$$

and

This shows that

$$
\int_{0}^{1} y^{n}\left|y_{0}(x) y_{2}^{\prime}(x)-4\left(x^{x}\right) y^{\prime},+1(x)\right| d x^{\prime}=\frac{n}{1} a_{p} y_{p}(1)
$$

where

$$
\int_{0}^{1} e^{-x} f_{0}(x) \mathscr{y}_{1}^{\prime}(x) d x=-\int_{0}^{1} e^{-x} d x=-1+\frac{1}{e} .
$$

To obtain the second integral, the value of n being very large, we observe that according to equation

$$
\begin{equation*}
f_{n}(x)=y_{n}^{\prime}(x)-y^{\prime} n+1(x) \tag{4}
\end{equation*}
$$

the functions

$$
\text { y } n^{\prime}(\cdots) \text { and } y^{\prime}+1(x)
$$

tend to the same limit.
If, therefore n is very large, the second integral, iends to

$$
\begin{aligned}
& \int_{0}^{1} e^{-x_{1}\left(n(x) f^{\prime} n+1(x) d x=\int_{0}^{1} e^{-r^{\prime}} f_{n}\left(x^{x}\right) y_{n}\left(x^{\prime}\right)=\right.} \\
& =\left[\frac{e^{-x_{4}} n^{2}(x)}{2}\right]_{0}^{1}+\int_{0}^{1} e^{-x_{I} n^{2}(x)} d x=-\frac{1}{2}
\end{aligned}
$$

and we obtain

$$
\sum_{1}^{\infty} a_{\mu} y_{p}(1)=-1+\frac{1}{\rho}+\frac{1}{2}
$$

Thus, alding to this equation

$$
u_{0} \mathfrak{f}_{0}(1)=1-\frac{1}{\ell}
$$

we get finally the required relation

$$
\sum_{0}^{1} a_{p} y_{p}(1)=\frac{1}{2}
$$

7. In this article we wish to give a second veriftotion of the former expansion becanse this leals to a very interesting integral coniaining lessshes functions. This verification is obtained by direct summation of

$$
a_{0}+a_{1} f_{1}(x)+a_{2} r_{3}\left(x^{n}\right)+\ldots
$$

where

$$
a_{0}=1-\frac{1}{e} \quad \text { and } \quad a_{n}=\frac{1}{2}\left[\mathscr{f}_{n-1}(1)-\mathfrak{r}_{n}(1)\right]
$$

It appears from the equation (10) that

$$
\begin{aligned}
r_{n-1}(1) & =\frac{n e}{n!} \int_{0}^{\infty} e^{-x} t^{n-1} J_{0}\left(2 V^{\prime}\right) d \imath \\
r_{n}(1) & =\frac{e}{n!} \int_{0}^{\infty} e^{-x} \epsilon^{n} J_{0}(2 \vee a) d u
\end{aligned}
$$

therefore

$$
\boldsymbol{\varphi}_{n-1}(1)-\boldsymbol{\varphi}_{n}(1)=\frac{e}{n!} \int J_{0}\left(2 V_{\ell}\right) d\left(e^{-a_{l}} e^{n}\right)
$$

or, after partial integration

$$
\varphi_{n-1}(1)-q_{n}(1)=\frac{e}{n!} \int_{u}^{\infty} e^{-\alpha} \boldsymbol{a}^{n} J_{1}\left(2 \sqrt { } \left(\frac{d u}{\sqrt{n}} .\right.\right.
$$

If $n=0$, the first member hats no meaning, as if -1 (1) has not been determined. The second member howerer rednces to

$$
\begin{aligned}
& e \int_{0}^{z} e^{-x} J_{1}(2 \sqrt{a}) \frac{d a}{\sqrt{a}}=a_{e} \int_{0}^{x} e^{-x^{2}} J_{1}(2 a) d t= \\
& =e \sqrt{\bar{x}} J_{\frac{1}{2}}\left(\frac{i}{a}\right) e^{-\frac{t}{2}}+\frac{-i}{4}=e-1=a_{0}
\end{aligned}
$$

[Niebsex, Handbueh der Theorse der Cylinderfunctionen p. 185 (7)]. By applying again the equation (10), we have
and by summation from $n=0$ to $n=\infty$, as

$$
\begin{gathered}
\frac{\sum_{0}^{\infty}}{e^{2} \beta^{n}}(n!)^{2}
\end{gathered}=J_{0}\left(2 i \sqrt{\left.\ell_{i}\right)}\right)
$$

Putting β^{2} instead of β in the latter integral, this reduces to

$$
2 \int_{0}^{\infty} e^{-\overline{\beta^{2}}} J_{0}(2 i ; \sqrt{\ell}) J_{0}(2 ; \beta \bar{x}) \beta d \beta=e^{-x+\infty} J_{0}\left(2 V \overline{\alpha, v^{2}}\right)
$$

(Nhetsen p. 18t); thas

$$
\sum_{0}^{\infty} a_{n} \eta_{n}\left(x^{\prime}\right)=\int_{0}^{\infty} J_{0}(2 \sqrt[V]{u x}) J_{1}(2 \sqrt{u}) \frac{d u}{\sqrt{u}}
$$

or, changing a into $\frac{a^{2}}{4}$

$$
\sum_{v}^{\infty} a_{n} \gamma_{n}(x)=\int_{0}^{\infty} J_{0}(u / \bar{x}) J_{2}(u) d u
$$

The second member of this equation has different values according to the value of x, for

$$
\int_{0}^{\infty} J_{0}(a \vee a) J_{1}(u d u)=\left\{\begin{array}{rr}
1 & 0<x<1 \\
\frac{1}{2} & x=1 \\
0 & n>0
\end{array}\right.
$$

(Niblisin pr 200), and for $x=0$

$$
\int_{0}^{\infty} J_{0}(c / / a) J_{1}(t) d u=\int_{0}^{\infty} I_{1}(c) d u=1
$$

8. Now we will apply oun expansion to the problem of the momenta. In this problem the question is to determine the function $f^{\prime}(y)$ from the integral equation

$$
\kappa_{n}=\int_{0}^{\infty} f(y) y^{n} d y
$$

where e_{n} is a function which is given for all positive integral values of n.

Putting

$$
f(y)=e^{-y 0}(y)
$$

we obtain

$$
\iota_{n}=\int_{0}^{\infty} e^{-y} y^{n} \theta(y) d y
$$

Supposing $\theta(y)$ to be a function which satisfies the conditions of Dirichiet, we have

$$
\theta(y)=b_{0}+b_{1} r_{1}(y)+b_{2} r_{2}(y)+\cdots
$$

so

$$
r_{n}=\sum_{0}^{\infty} b_{p} \int_{0}^{\infty} e^{-y} y^{n} f^{p}(y) d y
$$

Now, this integral has the value zero, when $p>n$, therefore

$$
e_{n}=\sum_{0}^{n} b_{p} \int_{0}^{\infty} e^{-y} y^{n} r_{p}(y) d y
$$

Moreover, according to the equation (7)

$$
\boldsymbol{a}_{n}=n!\sum_{0}^{n}(-1) \mu b_{p} C_{p}^{n}
$$

so, with (10)

If now we expand the function

$$
!\left(n^{x}\right)=e^{-x}{\underset{0}{x} b_{p} \frac{x^{2} p}{p!}=e^{-x} X X X}^{x}
$$

in a power series, we have, differentiating n times, and putting $I=\frac{d}{d x}$

$$
\begin{aligned}
!^{\prime n}(x)=D \cdot\left(e^{-x} \mathrm{X}\right) & =e^{-x}(D+1)^{n)} \mathrm{X} \\
& \left.=e^{-x} \sum_{0}^{n}(-1) \cdot C_{p}^{n} D^{\prime} n-p\right) X
\end{aligned}
$$

where

$$
D^{\prime s} \mathrm{X}={\underset{0}{0}}_{\infty}^{\infty} b_{s+n} \frac{x^{2 \prime \prime}}{p!}
$$

which, for the value $r=0$, gives

$$
D_{0}^{(s)} X=b_{s}
$$

Introducing this value, we obtain

$$
\begin{gathered}
!^{n \prime}(0)=\sum_{0}^{n}(-1)^{n} b_{n-p} C_{p}^{n}=(-1)^{n} \sum_{0}^{n}(-1)^{n} b_{p}, C_{p}^{n}=(-1)^{n} \frac{\mu_{n}}{n!} \\
q\left(x^{n}\right)=\sum_{0}^{(x}(-1)^{n} \frac{\mu_{n}}{n!} \cdot x^{n}
\end{gathered}
$$

and finally

$$
f^{\prime}(y)=\int_{n}^{I_{n}} I_{0}\left(-\sqrt{x_{n}^{\prime}!}\right){\underset{n}{n}}_{\sum_{n}}^{(-1)^{n}} \frac{e^{n}}{\left(n^{\prime}\right)^{2}} x^{n} d x
$$

This solntion agrecs with that of hathor. In his memoir the discussion of this formula for difierent values of ℓ_{2} may be found.

Mathematics. - "Some remurlis on the conerence" type ri." By Prof. L. E. J. Bmocwer.

In ortier to introduce the motion of a "coherence type" we shatl say that a set, $1 /$ is normally comented, if to some sequences f of clements of $1 /$ wre adjoined certain elements of $/ /$ as their "limiting elements", the following conditions being satisfied:
$1^{\text {st }}$. each limiting element of f is at the same time a limiting element of each end segment of f.
$2^{\text {nd }}$. for each limiting element of f a partial sequence of f can be foumd of which it is the omly limiting element.
3^{11}. each limiting element of a partial sequence of f is at the same time a limiting element of f.
$4^{t^{\prime}}$. if m is the only limiting element of the sequence $\left\{m_{f}\right\}$ and

 that an abhitary sequence of elements mo, for which acomtinnatly increases, possesses m as its omly limiting element.

The sets of poins of an n-timensional space form it special case of normally connected sels.

Another spectial cates we get in the following way: In atr n-ply ordered set ${ }^{2}$) we understand by an intoreal the partial sed formed by the elements u satislying for $0 \leq n$ different valnes of i a relation of the form

$$
b_{i}<^{i} u<{ }_{c i}^{i} \quad o_{r} \quad b_{i}<^{i} n \quad \text { or } \quad u<c_{i}^{i}
$$

we further define an element in to be a limiting eloment of a seynence f, if each interval containing m, contains elements of f not identical to m , and the given set to be empmuthere dense, if none of its intervals reduces to zero. Then the prempelume donse, rombuble, n-wly ordered sets which will be considered move dosely in this paper, likewise belong to the class of normally commected sels.

A representation of a normally commeted set preserving the limiting element relations, will be called a contimuous repmespmtetion.

If of a normally comnected set there exists a contimuths one-one representation on an other normally connected set, the two sets will be said to possess the sume coheremee type.

One of the simplest coherence types is the type $y_{\text {a }}$ already introduced by Fistor ${ }^{2}$). From a proof of ('axtor follows namely :

Theoren 1. Alt countable sets of points !ying mprymhere dense on the open straight lime, possess the stome coluerence typee r_{i}.

The proof is founded on the following construction of a one-one correspondence preserving the rehations of order, belween two sets of points $M=\left\{m_{1}, m_{2}, \ldots\right\}$ and $R=\left\{r_{1}, r_{2}, \ldots\right\}$ of the class considered: To r_{1} Caxtor makes to correspond the point m_{1}; to r_{3} the point $m_{i_{2}}$ with the smallest index, having with respect to m_{2} the same situation (determined by a relation of order), as r_{2} has with respect to r_{1}; to r_{s} the point $m_{i_{3}}$ with the smallest index, having with respeet to m_{1} and $m_{i_{3}}$ the same situation (determined by two relations of order), as r_{3} has with respect to r_{2} and r_{2}; and so on. That in this way not only all points of R, but also all points of all have their turn, i.o.w. that if among $m_{1}, m_{i_{3}}, \ldots m_{i_{j}}$ appeat $m_{1}, m_{2}, \ldots m_{2}$, but not $m_{\cdot+1}$, there exists a number σ with the property that $m_{+1}=m_{i+\infty}$,

[^83]is evident by choosing for r bt the point of l ? with the smallest indes, havimg wilh respet to $r_{1}, r_{2}, \ldots r$, the same sithation, as $m_{0}+1$ has with respect to $m_{1}, m_{i_{2}}, \ldots m_{i}$. The correspondence constructed in Hhis way, is at the same time continuus; for, the limiting point relations depend exclusively on the relations of order, ats a point m is then and only then a limiting point of a sequence f, if each interval containing m contains an intinte number of points of f.

The above proof shows at the same time the independence of the coherence type y of the linear contmumm. For, after Castor it leads also to the following more general result:

Theorem 2. All everywhere dense, coumtuble, simply ordered sets possess the coherence type \quad o. ${ }^{1}$)

Theorem 1 may be extended as follows:
Tharorem 3. If on the open straight lime be given iwo comatrble, ecerbukere dense sets of points il and R, a contimuous ons-one transformation of the open straight line in itself can be constructed, by which $I I$ passes into R.

In order to define such a transformation, we first by Cantor's method construct a contimons one-one representation of M on R. Then the order of succession of the points of M is the same as the order of succession of the corresponding points of l. We further make to correspond to each point $g m$ of the straight line not belonging to M, the point $f r$ having to the points of R the same relations of order, as $g m$ has to the corresponding points of M. In this way we get a one-one transformation of the straight line in itself, preserving the relations of order. On the grounds indicated in the proof of theorem 1 this transformation must also be a contimuous one.

Analogonsly to theorem 3 is proved:
Theorem 4. If withim a fimite line segment be given two courtable, everyuchere dense sets of points if and R; a contimois one-one transformation of the line segment, the endpoints included, in itself can be constructed, by which $1 /$ pasises into R.

We shall now treat the question, to what extent the theorems $1,2,3$, and 4 may be generalized to polydimensional sets of points

1) The possibility of a definition founded exclusively on relations of order, shewn by Cistor not only for the coherence type r, but likewise for the coherence type 3 of the complete linear continum, holds also for the coherence type ε of the perfect, punctual sets of points in R_{n} (comp these Proccedings X11, p. 790). As is easily proved, this coherence type belongs to all perfect, nowhere dense, simply ordered sets of which the set of intervals is countable (an "interval" is formed here by each pair of elements belween which no further elements lie).
on one hand, and to multiply ordered sets on the other hamd. In the first place the following theorem holds here:

Theonas 5. ill comulable sets of peints lifing everymberp densp in a cartesian i_{n}, possess the seme coltancele (yper $r^{\prime \prime}{ }^{1}$)

For, to an arbitary commable set of points, lying everywhere dense in R_{n}, we can construct a cartesian system of coordinates C_{m}^{\prime} with the property that no $R_{n}^{\prime} 1$ parallel to a coordinate space contains more than one point of the set. If now two such sets, If and R, are given, then in the special case that C_{m}^{\prime} and C_{r}^{\prime} are illentical, a one-one representation of It on l preserving the n-fold relations of order as determined by $\left(_{m}^{\prime}=C_{b}^{\prime}\right.$, can be constructed by C'sstor's method cited above, only moditied in ats far as the "situation" of the points with respeet to each other is determined here not by simple, but by n-fold relations of order. As on the grounds indicated in the proof of theorem I this representation must also be a continuons one, theorem 5 has been established in the special ease that C_{n}^{\prime} and C_{r}^{\prime} are identical. From this the seneral case of the theorem cusues immediately.

If on the other hand we have an arbitary mephuther dense, countable, n-ply ordered set $\%$, then its n simple projections ${ }^{2}$), being everywhere dense, countable, and simply ordered, admit of one-one representations preserving the relations of order, on n com contable sets of points lying everywhere dense on the n axes of a cartesian system of coordinates successively; these n representations letermine together a one-one representation preserving the relations of order, thus a continuous one-one representation of $\%$ on a countable set of points, everywhere dense in R_{n}. From this we conclude on account of theorem 5:

Throren 6. All evemywhere dense, countable, n-ply ordered sets possess the coherence type \boldsymbol{v}^{n}.

As the n-dimensional analogon of theorem 3 the following extension of theorem 5 holds:

Theorem 7. If in a cartesian R_{n} be given two countable, everymhere dense sets of points II and h, a contimuors one-one trens formation of h_{n} in itself can be constructed, by which 11 masses into la.

In the special case that C_{n} and C_{r} are identical, we can namely first construct a continuous one-one correspondence between $I /$ and R in the manner indicated in the proof of theorem 5 , and then make to correspond to each point gm mot belonging to $\mathrm{J} /$, the point fr having to the points of $l i$ the same (n-fold) relations of order, ats the has

[^84]to the corresponding points of M. In this way we get a one-one transformation of R_{n} in iself preserving the velations of order as determined Lon $C_{m}=C_{m}$. As on the grounds indicated in the proof of theorem 1 this transformation is also a contimous one, theorem 7 has been established in the special case that C_{m} and C_{r}^{\prime} are identical. From this the general ease of the theorem ensues immediately.

The n-dimensional extension of theorem 4 runs as follows:
Theomin 8. If within an melimensional cube be given two countable, everguhere dense sets of points Il and h, a contimuous one-one tramiformation of the culve, the boumdary included, in itself cath le constructed, by wheh II parses into K.

The proof of this theorem is somewhat more complicated than those of the preceding ones. We choose in R_{n} such a rectangular system of coordinates that the coordinates $x_{1}, x_{2}, \ldots x_{n}$ of the cube rertices are all either +1 or -1 , and for $p=1,2, \ldots n$ successively we try to form a contimuons transition between the ($n-1$)-dimensional spaces $x_{\mu}=-1$ and $x_{p}=+1$ by means of a onedimensional contimumm $s_{m p}$ of plane ($n-1$)-dimensional spaces meeting each other neither in the interior nor on the boundary of the cube, and containing each at most one point of 1%. In this we succeed as follows: Let $S \equiv \sum_{p=1}^{n} a_{p}, x_{p}=c$ be a plane ($n-1$)-dimensional space containing $n o$ straight line parallel to a line F_{m} joining two points of M, and through each point $\left(x_{1}=x_{2}=\ldots=x_{p-1}=0\right.$, $x_{p}=a, x_{p+1}=x_{p+2}=\ldots=x_{n}=0$) let us lay an ($n-1$)-dimensional space: $a_{p}+e\left(1-a^{2}\right) S=a+e a_{p} \ell\left(1-a^{2}\right)$; in this way we get a contimous series σ_{c} of plane ($n-1$)-dimensional spaces, and we can choose a magnitude e_{2} with the property that for $e<e_{1}$ wo arbitrary spaces of σ_{c} meet each other neither in the interior nor on the boundary of the enbe. As further an ($n-1$)-dimensional space belongs to at most one σ_{e}, thus a line F_{m} is contained in an $(n-1)$ dimensional space belonging to σ_{i} for at most one value of e, and the lines f_{n} exist in countable number only, it is possible to choose a suitable value for $e<e_{1}$ with the property that no space of σ_{e} contains a line F_{m}, i.o.w. that σ_{e} satisties the conditions imposed to $s_{m F}$.

If for each value of p we choose ont of $s_{m ;}$ an arbitrary space, then these n spaces possess one single point, lying in the interice of the cube, in common. For, by projecting an arbitrary space of $s_{m 1}$ logether with the sections determined in it by $s_{m 2}, s_{m}, \ldots, s_{m n}$, into the space $x_{1}=0$, we reduce this property of the n-dimensional cube to the analogous property of the ($n-1$)-dimensional cube. So if we introduce as the coordinate $x_{m p}$ of an arbitrary point H lying in the
interior or on the bomblary of the rabe, the valne of ap in that point of the X_{p}-axis which lies with $/ /$ in one and the same patere of smp. then to each system of vathes >-1 and <1 for $x_{m 1}, x_{m 2}, \ldots$. . m $_{m}$ corresponts one and only one point of the interior or of the boundary of the cube, which point is a biuniform, continuous function of amt, $x_{m 2}, \ldots x_{m}$. L.o.w. the trastormation $x^{\prime} p=x_{m p}$, to be represented by T_{m}, is a continnous one-one transformation of the coube with its boundary in itself, by which I/ passes into a comntable, everywhere dense set of points I_{1}, of which $n o(n-1)$-limensional spuce pervellol to a coordinate spoter rontains more than one peint.

In the same way we cim detine a contimons one-one fransformation T, of the cube with its boundary in itself, hy which $/ 2$ passes into a countable, everywhere dense set of points R_{1} of whele mo ($n-1$)-dimensional spuce parallel to a coordinate spece commins more then one point.

Further atter the proof of theorem 7 a continnons one-one transformation T of the eque with its boundary in itself exists. by which M_{1} passes into R_{1}, so that the transformation

$$
T_{r} \quad 1 . T . T_{m}
$$

possesses the propertien required by theorem 8 .
We now come to a property which at first sight seems to clash with the conception of dimension :

Theores 9. The coluerence types y^{n} atelel y are identical.
To prove this property, in an n-dimensional cube for which the rectingula coordinates of the vertices are all either 0 or 1 , we consider the set $1 I_{n}$ of coherence type $I_{5}{ }^{\prime \prime}$ consisting of those points whose coordinates when developed into a series of negative powers of 3 , from a certain moment produce exclusively the mmber 1 , and together with this we consider the set M of coherence type of consisting of those real numbers between 0 and 1 which when developed into a series of negative powers of $3^{\prime \prime}$, from a certain moment pro-
duce exclusively the number $\frac{3 "-1}{2}$. The continuous Peavo represen(ation ${ }^{1}$) of the real numbers between 0 and 1 on the n-dimensional cube with edge 1 , then determines a continuous one-ono representution of I on μ_{n} establishing the exactness of theorem 9.

That in reality theorem g does not clash with the conception of dimension, is elucidated by the remark that not every contimuots. one-one correspondence betwern two comenteble sets of points il and R,

[^85]lyimy everymhere dense in R_{n}, achnits of an extension to a continuous one-ome transformation of R_{n} in itself. If e.g. the set of the rational points of the open straight line is submitted to the continnous oneone transformation $x^{\prime}=\frac{1}{x-x}$, this transformation does not admit of an extrnsion to a continuous one-one transformation of the open straight line in itself.

A more characteristic example, presenting the property moreover that in no partial region an extension is possible, we get as follows: Let t_{1} denote the set of those real numbers between 0 and 1 of which the development in the nona! system from a certain moment produces exclusively the digit $t_{2} t_{2}$ the set of the fimite ternal fractions hetween 0 and 1 . Let T denote a contimons one-one transformation of the set of the real mumbers hetween 0 and 1 in itself, by which t_{1} passes into $t_{1}+t_{3}$, thus a part t_{3} of t_{1} imto t_{1}, and a part t_{4} of t_{1} into t_{2}. By a Peano representation T_{1} the sets $t_{1}, t_{3}, t_{3}, t_{4}$ successively pass into coumtable sets of points $s_{1}, s_{2}, s_{3}, s_{4}$, lying everywhere dense within a square with side unity, and, so far as are concerned, s_{1}, s_{s}, and s_{4}, containing no points of the boundary of this square. The continnous one-one representation T of t_{3} on t_{1} now determines a contiruous oneone representation $T_{2}=T_{1} T_{1} T_{1}^{-1}$ of s_{3} on s_{1}, not capable of an extension to a contimuous one-me-rpmesentation of the interior of the square in itself. For, if such atn extension would exist, it would be, for each set of points in the interior of the square, the only possible contimuous extension of T_{2}. For s_{1}, however, $T_{1}^{\prime} T_{1} T_{1}^{-1}$ furnishes itself such a continuons extension, which we know to be not a oneone representation.

The conception of dimension can now be saved, at least for the everywhere dense, countable sets of points, by replacing the notion of colerence type by the notion of geometric type ${ }^{2}$). Two sets of points will namely be said to possess the same geometric type, if a uniformly contimuons one-one correpondence exists between them. And it is for uniformly continuons representations that the following property holds:

Theorem 10. Bievy uniformly continuous one-one correspondence between two combable sets of points. II and R, hing everywhere dense in an n-dimensional cube, admits of in extension to a continuous one-ome tromsformation of the cubo with its boundery in itself.
${ }^{1}$) For closed sets the two notions are equivalent. For these they were introduced formerly under the name of geometric type of order, these Iroceedings XII, p. 786.

Fore, on aceount of the miform contimity of the eorvespondence between $I /$ and h, to a sequence of points of $1 /$ possessing only one limiting point, a sefuence of points of $l \boldsymbol{f}$ likewise possessing only one limiting point, must correspond, and reciprocally. On this ground the given correspondence already admits of an extension to a one-one transformation of the cube with its boundary in itself of which we have still to prove the contimuty in the property that a seguence \{ \{mo \} of limiting points of $1 / /$ converging to a single limiting point $g_{m s s}$, the sequence $\left\{g_{n}\right\}$ of the corresponding limiting points of R donverges likewise to a single limiting point. For this purpose we adjoin to each point $g_{m y}$ a point m of $I /$ possessing a distance <8 from $y_{m, w}$ the distance between g_{r} and the point r corresponding to m , likewise being $<_{\varepsilon_{*}}$, and for r indefinitely increasing we make E, to converge to zero. Thus $\left\{m_{0}\right\}$ converging exclusively to $\left\{h_{\text {um }}\left\{r_{0}\right\}\right.$ likewise possesses a single limiting point g_{20}, and also $\left\{g_{00}\right\}$ must converge exclusively to (1/m.

On account of the invariance of the number of dimensions ${ }^{1}$) we can enunciate as a corollary of theorem 10 :

Tueorem 11. For $m<n$ the geometric types y^{n} and r^{n} ave different.
As, however, for normally connected sets in general the notion of uniform continuity is senseless, the indetermimateness of the momber of dimensions of everyohere dense, countable, multiply ordered sets, as expressed in theorem 9, must be considered as irreparable.

Mathematics. - "An involution of associated poimis." By Prof. Jas de Vries.
(Gommunicated in the meeting of february 22, 1913).
$\$ 1$. We consider three pencils of quadric surfaces $\left(1^{2}\right),\left(b^{2}\right),\left(c^{2}\right)$, the hase curves of which may be indicated by $e^{4}, \gamma^{1}, \gamma^{\prime}$. liy the intersection of any surface a^{2} with any surface b^{2} and any surface c^{2} an broolution of associuted points, I^{8}, consisting of ∞^{3} groups, is gencrated. Any point outside $\varepsilon^{4}, b^{34}, \gamma^{1}$ determines one group.

Through any point A of 8^{4} passes one surface b^{3} and one surface e°; these quadrics have a twisted puartic $(1)^{4}$ in common, intersected by the surfaces of pencil $\left(a^{2}\right)$ in ∞^{1} groups of seven points A^{\prime} completed by A to groups of the I^{9}. The points of the thrce base comes are simpular.
${ }^{1}$) Ciomp. Math. Annaleu 70, p. 161.

The locus of the gratio (1$)^{\prime}$ corresponding to the different points I of ℓ^{\prime} is a surlace which may be indicated by \mathbf{A}. The curves $\Omega^{4}=\left(J^{*}, c^{*}\right)$ passing through a given point B of i^{3} lie on a e^{*} meeting u^{\prime} in cight points A; so B lies on eight curves $(A)^{4}$, i.e. 3^{3} is an cinhtfold curve of \mathbf{A} and the same result holds for γ^{4}. A (fuadrice b^{2} meets \boldsymbol{u}^{\prime} in eight points and contains therefore eight curves (A ': moreorer it hats with A the eightfold curve ${ }^{\prime}$ ' in common. We conclude from this that \mathbf{A} is a surface of order 32.
52. The lines joining two points I^{\prime}, P^{\prime} belonging to the same group of I form a complex I; we are going to determine its order.

The curves $o^{4}=\left(b^{2}, a^{2}\right)$ wenerate a bilinear congruence $\left.{ }^{2}\right)$. Any line is chord of one a^{\prime}; the points Q, Q^{\prime} determined on the lines m through M by the a^{\prime} with m as chord lie on a surface $(Q)^{5}$ with $I /$ as threefold point; the tangential cone in M projects the ${ }^{4}$ passing lhough. I/.

The two suffaces ℓ^{2} passing through Q and Q^{\prime} cut m in two other points R, R^{\prime}. The locus $\left(l^{\prime}\right)$ of the points R^{\prime}, l^{\prime} has in $I f$ a sevenfold point, any plane u throngh h cutting $(Q)^{5}$ in a curve μ^{5} with threefold point $I /$ and the surface a^{2} throngh $I /$ in a conic ℓ^{3}; so the seven points Q common to μ^{3} and μ^{5} and difering from M bring seven points R in M. So (k) is a surface of order mine with sevenfold point $/ /$.

The curve 0^{0} common to (\boldsymbol{R}) and \because cuts u^{5} in $9 \times 5-7 \times 3=24$ points S differing from $J /$, which cin be arrangel into fwo groups. In any proint of the first group MS is louched by an a^{2}. So these points lie on the polar sufface $1 /{ }^{3}$ of $1 / 2$ with respect to the pencil $\left.\left(t^{2}\right)^{2}\right)$. Consequently the first gromp counts $3 \times 5-3=12$ points.

In any point S of the second group a point R coincides with a point Q^{\prime}; then the point Q coincides with R^{\prime} in a second point S and both points S lie on the same a^{2}; so these points are associated and belong to the same group of I^{*}. So the plame $!$ contans six pairs $l^{\prime}, l^{\prime \prime}$ collinear with $1 /$; in other words: the prins of points of the involution Is lie on the ragse of a complex of order six.

8 3. The complex cone of $I /$ contains the seven rays joining $1 /$ to the points J^{\prime} belonging with $I /$ to the same group of I^{\prime}. So
${ }^{1}$ We have treated this congruence in a paper "A bitinear congmence of twisted quurtics of the first species", These Proceedings, vol. XIV, p. W55.
${ }^{2}$) The polar surface of (y) with respect to $a^{2}{ }_{x}+\lambda u^{\prime 2}{ }_{2}=0$ is generated by means of this pencil and the pencil of plames $\alpha_{y y} \alpha_{x}+;{a_{y}^{\prime}}_{y} a_{x}=0$; so it is represented by $u_{y}^{\prime} a_{x}^{\prime} a^{2}=a_{y} a_{x} a^{\prime 2} x_{x}$.

M is sevenfold on the locus of the pains I^{\prime}, $I^{\prime \prime}$ collinear with $1 /$

 secting eath other moreoser in the rave of order themmon to $(Q)^{5}$ and the polar surface $d b^{3}$; so the residnal intersection consists of 11 lines. The lines are simgular chords of the bilinear congrucnere of the curves $0^{4}=\left(h^{2}, c^{2}\right)$, i.e. tuny of these lines contains ∞^{1} pairs $\left(Q, Q^{\prime}\right)$; these lines are not singular for I^{s}, as these (fradraticinvolutions have only one pair in common.

Amongst these 11 lines we find two chords of ${ }^{34}$ and two chords of γ^{4}. So the complex $I^{\text {d }}$ contains thee congruences $(2,6)$ and thee congruences $(7,3)$ the mays of which are simgutar chords of a bilneat congruence $\left(0^{4}\right)$.

There are 120 lines g each of which contains os pairs of the I ", i.e. the common biscemts of the base curves a', $\boldsymbol{B}^{\prime}, \gamma^{1}$ daken two by two. A common bisecant of a^{1} and a^{34} forms, in combination with a twisted cubie, the intersection of an a^{2} and a b^{2}; evidently any pair of the involation detemmed on it by the peneil $\left(c^{2}\right)$ is a pair of l^{8}. So this involution admits 120 simgulet chords.

The curve $(P)^{19}$ cuts each of the base curves in 20 points, as the surface $(Q)^{5}$ corresponding to $/ /$ has 20 points $(\ell$ in common with a^{4}; the surface a^{2} containing the corresponding point Q^{\prime} also contains Q, i.e. Q, Q^{\prime} is a pair of the l.

The three polar surfaces of M with respect to the pencils (u^{2}), $\left(b^{2}\right),\left(c^{2}\right)$ intersect each other in $4 / 1 /$ and 26 points more; in any of these points R^{2} the line $M R$ is tonched by three surfetes a^{2}, l^{2}, c^{2}. So R is a coincidence $l^{\prime} l^{2 \prime}$ of the i^{8}, the bearing line paswing through $I V$. So the twisted curve $(I)^{19}$ admits the particularity that 26 of its tangents concur in the serenfold point $1 /$.
\$4. If $I /$ describes a plane λ, the three polar surfaces senerate three projective nets. The locus of the points of intersection comsists of the plane λ and a surfice \triangle contaning all the coincidencies of the I^{8}.

We deduce from

A_{x}^{3}	$A_{x}{ }^{\prime 3}$	$A^{\prime \prime 3}$
B_{r}^{3}	$B_{x}{ }^{3}$	$B_{x}^{1 / 3}$
C_{r}^{3}		$C^{\prime \prime}$

What this surface is of order eight. ")
i) 100 rit.
${ }^{2}$) This result is in accordanee with a theorem of Mr. (i. Aritgha (Sulla sumer'-

The concidencies of the imolutions. \boldsymbol{I}^{\approx} lie on a surefuce Δ^{s} passimg therough the buse curves $0^{4}, \beta^{3}, \gamma^{4}$.

The surface L^{8} also contans the three conves of order 14 containing the points of contact of surfaces of two of the pencils.

The three polar surfaces generate three projective pencils if M describes a line 1 . These surfaces generate the line l and moreover a twisted curve of forming the locus of the coincidencies $P \equiv I^{\prime \prime}$, the bearing lines of which rest on l. If the three pencils are indicated by

$$
A^{3}+\lambda A^{3}=0 \quad, \quad B_{x}^{3}+\lambda B_{x}^{3}=0 \quad, \quad C^{3}{ }_{x}+2 e^{\prime 3}{ }_{x} \quad 0 .
$$

the twisted curve under consideration can be deduced from

$$
\begin{array}{ccc}
A_{x}^{3} & B_{x}^{3} & C_{x}^{8} \\
A_{x}^{3} & B_{x}^{3} & C_{x}^{3}
\end{array}=0
$$

So the degree of this curve is $6^{2}-3^{2}-1=26 .^{2}$)
The line / bears 8 coincidencies, so it is an eightfold secant of \boldsymbol{d}^{26}.
\$5. We now consider the locus of the points P^{\prime} associated to the points l^{\prime} of the line 1 . The curve ε^{4} contains 32 points $P^{\prime \prime}$, as l intersects \mathbf{A}^{33} in 32 points. So any surface a^{2} contains these 32 points and moreover the two sets of seven points P^{\prime} associated to the two points common to a^{2} and l. So the groups associated to the points of a line lie on a twested curve of order 23 , intersecting each of the three base curves in 32 points. In its points on \triangle^{8} the line l meets its curve λ^{23}; so l eightfold secemt of λ^{23}.

A plane $/$ through l meets λ^{28} in 15 points not lying on l; as these points are associated to 15 points P of l, the locus of the associated pairs lying in a plane is a curve of order 15.

This curve, ψ^{15}, has threefold points in the 12 traces of the curves r^{4}, B^{4}, γ^{4} on r. The curve (A^{4}) corresponding to any of these traces meets of in three other points, each of which forms with A a pair of the l^{8}.
§6. The sets of seven points $P^{\prime \prime}$ associated to the points P^{\prime} of "plane $\%$ lie on a surface \boldsymbol{p}^{38} intersecting y according to the curve f^{15} contaning the pairs P, P^{\prime} lying in of and to the corve d^{8} of the coincidencies lying in f.

The curve $(A)^{4}$ corresponding to the point A of $r^{4}(\$ 1)$ meets f
ficie luogo di un punto in cui le superficie di tre fasci toccano una medesima retta, Rend del Círcolo Mat. di Palermo, t. XX, p. 305).
${ }^{1}$) Aguglia, l. c. p. 321.
in four points associated to A; so \boldsymbol{p}^{23} passes four times throum the base conves r $^{4}, \mathbf{z}^{3} \cdot \gamma^{\prime}$. This is in areordance with the fato that each trate of at base come is threetold on \boldsymbol{y}^{15} and onefold on os.

The enve d^{8} contains is coincidencies the beamer lines of which lie in the plane, for the curve $f^{* B}(\$ \nmid)$ comesponding to a line $/$ of $I f$ meets l eight times. These 18 roineidencies lie on y^{15}; so y^{15} and d^{4} tonch one another in 18 points. Moreover they have 36 points in common in the 12 traces of the base comes ; each ol the remaining 48 common points belongs as coincidence to a group of the I^{8} containing still one more point of $\%^{25}$.
§ 7. The plane of contains a tinite number of associated triplets. As these triplets have to lie on 1^{15} we determine the order of the locus of the sextuples of points $l^{\prime \prime \prime}$ associated to the pairs $l^{\prime}, l^{\prime \prime}$ of y^{15}.

The surface \mathbf{A}^{32} passes eight times through β^{3}, γ^{2} and one time through e^{4}. As $y^{\text {ts }}$ hats threefold points in the 12 traces of the base eurves it meets \mathbf{A}^{32} elsewhere in $15 \times 32-4 \times 3-2 \times 4 \times 3 \times 8=276$ points forming 138 pairs I^{\prime}, $P^{\prime \prime}$ corresponding to 138 points $I^{\prime \prime \prime}$ of a^{4}. A surface a^{3} couts r^{15} in the four threefold points A and in 9 pairs $l^{\prime}, l^{\prime \prime}$ more, each pair of which determines six points $l^{\prime \prime \prime}$ on a^{2}. So the locus muder discussion has $138+6 \times 9=192$ points with a^{3} in common and is therefore a curce $q^{9 \beta 6}$. Of its points of intersection with if a number of 48 lie in the points common to \boldsymbol{r}^{15} and \mathbf{d}^{8} indicated above. Eridently the remaining 48 traces of y^{36} are formed by 16 triplets of the I^{8}. So any plene comtrins sipteentriphts of assuciated points.
\$8. If the bases of the pencils $\left.\left(u^{2}\right),(l)^{\circ}\right),\left(c^{2}\right)$ have the line ℓ in common, three surfaces a^{2}, b^{2}, c^{2} intersect each other in four associated points; so we then get an involution I^{4} of associated points.

Any point A of the curve e^{3} completing $/ f$ to the hase of (u^{*}) belongs to ∞^{1} quadruples. These quadruples lie on the twisted coubic $(A)^{3}$ common to the surfaces b^{3}, c^{2} passing through A and they are determined on $(A)^{3}$ by the pencil $\left(a^{2}\right)$.

In the same way any point B of the base curve fand any point C of the base curve γ^{3} belongs to x^{1} quadruples.

We determine the order of the locus \mathbf{A} of the curves $(A)^{3}$. By means of the points A the surfaces of $\left(h^{2}\right)$ and $\left(c^{2}\right)$ are arranged in a correspondence $(\boldsymbol{4}, 4)$, any surface,2 or e^{2} contaming four points A : so the surfice \mathbf{A} is of onder 16.

In any plane through ! the pencils $\left(b^{2}\right),\left(c^{2}\right)$ determine two pencils
in $\left(t, 4\right.$-corvepondence with the traces B and C of ${ }^{2}$ and γ^{2} lying outside !s as vertices. So \mathbf{A}^{10} is ent aceording to !/ and to a corve of order eight with fondold points in B and C :
so, the triplets of points essoctinted to the points af ame of the lase retreses he one a surfore of ordor sideen, prasing peght times throughe !t ane forar times thomegh ench of the ather theo hase curves.
 to be a point common to three cubic curves $\left.\left(a^{2}\right)^{2}\right)$, ($b^{2} e^{2}$), ($a^{2} e^{8}$) the surfaces a^{2}, l^{2}, c^{2} must admit in (r the same tangential plane.

We now consider in the first place the locns of of the curve $\left(a^{2} b^{2}\right)$. intersection of surfaces a^{2}, b^{2} tonching one another in G. Any plane /f through !/ ents these projective pencils (a^{2}), (b^{2}) according to two projective pencits, the vertices of which are the traces A and B of a^{3} and 3^{3} outside y. These pencils of lines generate a conir passing throngh $(r$, the lines $A G$ and $B G$ determining with I/ two surfaces a^{2}, b^{2} tonching 9 in $(r$. So ! b donble line and G is threefold point of ' \mathbf{P}^{\prime}.

In the same way the pencils $\left(\varepsilon^{2}\right)$ and $\left(c^{2}\right)$ determine a second monois \boldsymbol{u}^{3}. The monoids \boldsymbol{w}^{4} and \boldsymbol{u}^{3} have the base curve \boldsymbol{r}^{2} and the line !f to be counted four times in common; the residual intersection, locus of the three points associated to $(i$, is of order inine. The cubbe cones ionching the monoids in (i intersect in !/ and in five other edges: so G^{\prime} is ficefold peint of the curve $\left(G^{\prime}\right)^{3}$. Any plane through ! chis \boldsymbol{p}^{3} and $\psi^{\prime 2}$ according to two conics passing through G and a point A; in each of the two other points of intersection thee homolowons rays of thee projective pencils with vertices A, B, C ' concur. So ! is cut, besides in $\quad i \%$ in two more points ($;$, each of which forms with G^{\prime} a parir of associated points. So the pairs of the I^{4} lying on ! are arranged in an involutory correspondence $(2,2)$, i. e. I bears four coincidencies. This proves moreover that !/ is a serenfold lime of the locns \mathbf{G} of the curses $(G)^{2}$; for in the first phace any point G is fivefold on the corresponding $(G)^{9}$ and it lies furthermore on two suchike curves corresponding to other points of g.

The curve $\left(a^{2} b^{2}\right)$ meeting γ^{3} in a point C rests in two points G on g; so C lies on two curves $(G)^{3}$, i.e. γ^{8} is double curve of \mathbf{G}. The curve $\left(a^{2} b^{2}\right)$ contains the two triplets of points associated to the points of intersection (r with g. Morcover it has in common with the surface G in each of these two points (t seven points and two points in eachl of the eight pointe in which it rests on \boldsymbol{a}^{3} and β^{3}. So we lind hat \mathbf{G} is of order 12. So, the points associated to the
pointis of g lie on a surface of oreder forepere pressing serent limes therough g and twice thronugh encle of the busse crerves.

If the point $\left(i\right.$ of $!/$ lies on a^{3}, the sutferes i^{2} admit in i^{\prime} a common langential phane, the plane through !f and the tangent t in
 in i^{\prime} an l^{3} of associated points. The cone h^{*} projecting r^{3} out of G^{\prime} cuts any corve ($h^{2} e^{2}$) through G^{\prime} in a triplet of associated points; therefore these points lie on the intersection of k^{2} with the monoid χ^{4} contaming all these curves. So, for any of the six points common to g and a base curse, $(i)^{3}$ breaks up into a twisted cubic and a twisted sextic.

Any common transversal d of $\% \cdot t^{3}, b^{3}$ and γ^{3} forms with $/ 7$ the partial intersection of three sultices $u^{2}, ク^{\prime \prime}, c^{2}$ with two more points in common; these two points form a group of the $I{ }^{4}$ with any pair of points of $\%$.

The transversals of y, a^{3}, and β^{3} generate a seroll of order six with g as ivefold line; for the cobic cones projecting a a^{3} and β^{3} out of any point G of !/ admit ! as double edge and intersect each other in live lines of this scroll. On g this scroll has 10 points in common with γ^{3}, so it euts γ^{3} outside g in 8 points. So, the buse lines g, $\ell^{3}, \beta^{3}, \gamma^{3}$ admit eight common transeersals and therefore eight pairs of points belonging to ∞^{3} gromps. of the I^{4}.

Evidently the eight lines d lie in the surface Δ^{*} of the coincidencies; of this surface g is a fivefold line.
\$10. The pencils $\left(x^{2}\right),\left(b^{2}\right)$ determine a bilinear congruence of twisted cubics s^{3}. In general any ray m of a pencil (μ, μ) is bisecant of one ϑ^{3}; the locus of the points Q, Q^{\prime} common to m and this Q^{3} is a curve $(Q)^{4}$ with a double point in J . In the manner of $\$ 2$ we introduce as anxiliary curve the locus of the points l, l^{\prime} still common to m and the surfaces c^{2} through Q and Q '. The surface c^{3} through $/ / /$ cuts $(Q)^{4}$ in $/ / /$ and in six points Q; so $/ / /$ is a sixfold point of the curve (\boldsymbol{R}) and this curve is of order eight.

The polar curve of $1 /$ with respect to the pencil of intersection of $\left(c^{2}\right)$ and μ intersects $(Q)^{*}$ in $/ / /$ and $4 ; 3-2=10$ other points, lying also on $(\boldsymbol{R})^{*}$. So $\pm \times 8-2 \times 6-10=10$ points are arranged in associated pairs. So, the priers of puinte of the involution I^{4} lie on the rays of a complex of order five.

Any point G of y is associated to two points of y, the points common to g and to the curve $(f)^{3}$ corresponding to $\left(\frac{r}{r}\right.$. So g is a singular line of the 1^{4} : the pairs of points lying on it generate an involutory $(2,2)$.

Also the 27 common bisceants of $\varepsilon^{3}, \beta^{3}, \gamma^{3}$ taken iwo by two are simfulur limes of the I^{1}. A common chord of e^{3}, r^{3} bears ∞^{1} pairs of points determined on it by the pencil $\left(c^{2}\right)$.
§11. We now consider the locus 2 . of the points $l^{\prime \prime}$ associated to the points P of a line $\%$. To the points common to l and each of the surlaces $\mathbf{A}^{15}, \mathbf{G}^{12}$ correspond respectively 16 points of \boldsymbol{a}^{3} and 12 points of ! Any surface a^{2} contans these 28 points P and moreover the two triplets corresponding to the points common to a^{2} and l. So the locus λ is a curce of order 17.

As l contans eight coincidencies $l^{\prime}-I^{\prime}$ it is an eightfold secant of the coure ${ }^{13}$; so any phane of through l contains 9 points $l^{\prime \prime}$ associated to points of l. so, the preirs of asscreciated points lying in a pleme genorate a curre of order mime.

The curve $(G)^{9}$ corresponding to the trace $\left(\frac{t}{}\right.$ of I meets of in four points; so G is a formold print of the curve y^{9}. In an analogous way the nine traces $\mathrm{A}_{\mathrm{F}} \mathrm{B}_{\mathrm{k}}$, $\mathrm{C}_{\%}$ of the base curves are double points of ${ }^{\prime \prime}$ ".

The intersection d^{8} of ${ }^{\prime \prime}$ and the surface of coincidencies has a firefold point in (r. So $q^{\prime \prime}$ and d^{8} intersent each other in $9 \times 8-$ $-4.5-9 \times 2=34$ points differing from the traces of the bases. To these points belong the points of contact of the curves, corresponding to coincidencies of the I the bearing lines of which are contained in $\%$.

In order to determine their number we consider the three pencils of conics common to 4 and $\left(r^{2}\right),\left(l^{2}\right)$, $\left(c^{2}\right)$. The polar curves of these pencils with respect to a point P deacribing a line l generate three projective pencils $\left(v^{2}\right),\left(l^{3}\right),\left(c^{3}\right)$. The first and the second generate a curve ${ }^{s}$ with G as node and passing throngh the three base points Ak of c^{3} and the double points of the three pairs of lines. The curve b^{s} gencrated by the pencils $\left(a^{3}\right)$ and $\left(c^{3}\right)$ also contains these points. So b^{3} and c^{5} admit $25-4-3-3=15$ points of contact of three corresponding conies forming theretore coincidencies of the l^{4} with a bearing line lying in $\%$.

So y^{9} and σ^{5} have four coincidencies in common the bearing lines of which interseet the plane $\%$.

(Communicated in the meeting of Fedr. 22, 1913).
In the "Sizangsherichte der Koniyh. Bayerischen Akademie der Wissemshaften" ${ }^{1}$) M. Lame hat puhtished atheory -- and together with Messes. Frambrich abd Kompose experiments aloo - abomt this highly remarkable phemomenoms. W. I. lianat, in a paper entitled "The diffaction of shomt electromagnetio waves by a reystal" ") donbts of the explication of this experiments given by date hemg satisfatory. He proposes an emmentary theory, in which he pointont that we can describe the phemomenon of hate by regarding ath as if the Roxtrix mas were rellemed on the seto of phanes that can be brought throngh the molecules of the arystat. In the following lines I will develop the theory proposed by braga, and at the same time I will give a provisory discussion of some experiments made in the Physical Lahoratory of the University of Groningen which Prof. Haga has been so kind ats to put at my disposal, for which I may cordially thank him here.

I will confine myself to a regular crystal, the extension to crystals with other Bravas of Somise point-systems being possible without any difficulty.

1. Let us suppose a plane beam of Röntaen rays (direction of ray: x-axis) to strike a regular crystal, of which one of the cubical axes of the point system is set parallel to the incident beam. The origin of coordinates is chosen in a molecule lying within the crystal in the middle of the part through which the rays are propagated. The y and z-axes are oriented parallel to the other enbic axis. Be the length of the side of the cubes a. The coordinates of a molente of the crystal then are

$$
\begin{equation*}
x=k_{1} a \quad y=k_{2} a \quad z=k_{8} a \tag{1}
\end{equation*}
$$

in which k_{1}, k_{s} and k_{3} are positive or negative whole numbers.
We shall examine the influence of the rays in a point with

Now whatever may be the constitution of primary Roxtgen rays, we ean always imagine the disturbance of equilibrimm being dissotred, according to the theorem of Focraze. into periodical movements. In

[^86]the same way. the movement and radiation of molecules can be deseribed. Thus knowing the effect of the radiation from the molecules when a periotical radiation strikes them, we can from this ealculate for eath cate the intluence of a crystal on Roxtand rays. I will therefore consider the problem of a radiation of the wavelength 2. Ariking the crystal. Under the influence of this radiation the molecules will emit spherical waves. I will indicate the vector of radiation for the radiation emitted by a molecule situated at the origin, by
\[

$$
\begin{equation*}
\frac{A}{r} \cos 2 \boldsymbol{\tau}\left(\frac{t}{T}--\frac{r}{\lambda}\right) . \tag{2}
\end{equation*}
$$

\]

this formula representing the vector of radiation in the point 53%, white 1 depends on the direction. The radiation of a point (1) in the point ξ, ξ is now represented by

$$
{ }_{0}^{A} \cos 2 \cdot \tau\left(\begin{array}{c}
t \\
T \\
\lambda
\end{array}-\frac{0}{\lambda}\right)
$$

where ρ denotes the distance of $\equiv 3,5$ from (1). This distance is given by
$\rho=r-\frac{{ }^{2}}{r}\left(\xi k_{3}+v k_{3}+5 k_{3}\right)+\frac{a^{2}}{2 r}\left(k_{1}{ }^{2}+k_{3}{ }^{2}+k_{8}{ }^{2}\right)+\frac{a^{2}}{2 r}\left(\frac{\xi}{r} k_{1}+\frac{v_{2}}{r} k_{2}+\frac{\zeta}{r} k_{8}\right)^{2} \ldots$
Substituting in the amplitudo of by (which is allowed since $k_{1} a$ is small compared with r^{r} ete.) then we get for the vector of light considered

$$
\begin{align*}
& \frac{-A}{r} \cos 2 \cdot r \\
& \left.\left(\frac{t}{T}-\frac{r}{\lambda}-\frac{a}{\lambda}\right\}\left(1-\frac{\xi}{r}\right) k_{3}-\frac{\eta_{1}}{r} k_{3}-\frac{\xi}{r} k_{3}\right\}- \tag{3}\\
& \quad-\frac{a^{2}}{2 r \lambda}\left\{\left(k_{1}^{3}+k_{3}^{2}+k_{3}^{2}\right)+\left(\frac{\xi}{r} k_{1}+\frac{\eta}{r} k_{3}+\frac{\xi}{r} k_{3}\right)^{2}\right\}
\end{align*}
$$

And in order to find the total vector of radiation we have to sum up the expression (3) over all molecules struck (or rather put into vibration) by the primary radiation. In doing so we obtain the formula given by Late and with that, his cones of maximal intensily.

However, we can show that there are other maxima still, besides the roncs of Late. I will suppose r to be so great that we can neglect the fourth term.

The maxima that do not appear in Iare's theory can be made to appear ly first taking into account the interference of the points for which

$$
k_{1}\left(1-\frac{5}{r}\right)-\frac{v_{1}}{r} k_{3}-\frac{5}{r} k_{3}=0
$$

 $a^{2}+\beta^{2}+\gamma^{2}=1$, thas in this notation we have to fix our attention apon the interference of the radiation from those points for which the numbers h satisfy the equation

$$
k_{1}(1-\imath t)-\beta k_{3}-\gamma k_{8}=0
$$

Now if this equation determines a great number of points, the pulses originating from the molecoles will interfere without difference of phase.

This will be the ease when the plane

$$
x(1-a)-y \beta-z \gamma=0
$$

passes through the molecules of the crystal. Now, a plane through molecules may in general be represented by

$$
a x+b y+i z=0 \quad . \quad . \quad 4
$$

where abs are whole numbers, that we constantly suppose to be reduced to their smallest values possible. The values of a a_{6}. where maximal intensity is thus to be found on account of the cooperation of the points of a plane, we can tind by putting

$$
\frac{1--a}{a}=-\frac{\beta}{b}=-\frac{\gamma}{c}
$$

while $\varepsilon^{2}+\beta^{2}+\gamma^{2}$ must be 1. From this we find $\beta=0, \gamma=0$, $t=1$ (i.e. the light transmitted directly, a point of interference that is not observable) and

$$
\begin{align*}
& a=\frac{b^{2}+c^{2}-a^{2}}{a^{2}+b^{2}+\mathfrak{c}^{2}} \tag{5}\\
& \beta=\frac{-2 a b}{a^{2}+b^{2}+c^{2}} \\
& \gamma=\frac{-2 a c}{a^{2}+b^{2}+c^{2}}
\end{align*}
$$

Now we can easily show the direction thus fond to agree with the direction in which the Röntaex-beam would be reflected if the chosen plane rich in molecules should be a mirror. For the angle of the normal of (4) forms with the, \boldsymbol{y}-axis an angle of which the cosine is $\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}$, the plane of incidence has for equation: $\mathfrak{c} y-\mathfrak{b} z=0$, the direction cosines of the reflected ray are a $^{\prime} \beta \beta^{\prime} \gamma^{\prime}$ 。 Thus we have

$$
\begin{gather*}
\left(\alpha^{\prime}+1\right) a+\beta^{\prime} b+\gamma^{\prime} c=0 \\
\beta^{\prime} \mathfrak{c}-\gamma^{\prime} b=0 \tag{6}\\
a^{\prime 3}+\beta^{\prime 3}+\gamma^{\prime 2}=1
\end{gather*}
$$

The set of values (5) satisfies (6).
In this way we have shown the maximm to be veally in the direction of reflection. We can see this withont catedation, and I principatly gave the above calculation to show the comection between lace's considerations and mine.

Fow if P the origin of rays, and L the point of observation, both are situated at a distance from the motecoles of a plane which is infinite with respert to the dimensions of the plane of which A and 13 are athitraty molecules, then the way $P^{\prime} A L=P B L$, and there is interference of the light emitted the the molectules, if the angles of $P A$ and $A L$ with the normal of the phane are equal. Thus there is interference in L, if the point lies in the direction of the ray reflected in the plane. For the reat the disturdance of equiliorimm, if N is the mmber of particles of the plane, will be N times as great an the disturbance caused by one particte, and therefore the intensity will be ${ }^{2}$ times as great.

The intensity of the maximum is of the order of the number of molecules in a plane, i.e therefore, of the order of the "wo-cone" maxima of Lare. As we may now prestume, all pulses will interfere in the same direction which orginate from planes in the crystal parallel to the one considered. The equation of similar planes is

$$
\therefore x+b y+b z= \pm s a
$$

where I must be a whole number, ryiz being whole multiples of the side n, the coefficiente a, b, and 6 also being whole numbers.

Expressed in "sy the equation takes the form

$$
x(1-n)-y_{y} \vec{y}-2 y=d .
$$

We therefore have

$$
\frac{a}{1-a}=-\frac{1}{b}=-\frac{c}{\gamma}=\frac{s a}{d}=\frac{2}{d}
$$

which gives for u_{i}^{3} ? the same values as in the preceding formula, whereas we have

$$
d=\frac{\frac{2}{3}}{a^{2}+b^{2}+c^{2}} \text { sa }
$$

or

$$
a\left\{k_{1}(1-a)-k_{2} s-k_{8} y\right\}=\frac{2 s a a .}{a^{2}+b^{2}+a^{2}} .
$$

It is easy to intoduce into this formula the smatlest distance of the phanes under consiteration. It amoments to $\frac{a}{\sqrt{a^{2}+f^{2}+c^{2}}}$. For if
$a x+b y+c z=d$ is a plane, we pass on another phane wh her same kind by putting:

$$
a x+b y+c z=d+\left(e_{1} a+\beta_{1} b+\gamma_{1} c\right)(d
$$

where $\pi_{1} \beta_{1} \gamma_{1}$ are whole numbers. Now the distance of the two planes considered is

$$
\frac{a}{V_{a^{2}}+b^{2}+c^{3}}\left(a_{1} x+-\beta_{1} b+\gamma_{1} c\right)
$$

which, abo being given, must be a minimum. This minimam is reached if $\alpha_{1}, \beta_{1}, \gamma_{1}$, are such that

$$
\ell_{1} 1+\beta_{1} b+\gamma_{1}^{c}=1
$$

a, b and i being given, this equation can always be satisfied in ∞^{3} ways. The minimum distance of the planes 1 will represent by $/ m$. We may still observe that in applying the above results we have the means of easily comparing the number of molecules lying in the different panes. The number of molecules that each plane contains will be greater, the greater the distance of the panes of a givenkind is. If the mumber of molecules pro unit of volume is r, then a plane with parameters $a b c$, contains $\frac{v}{\sqrt{1 l^{3}+b^{3}+c^{2}}}$ molecules pro unit of surface.

The plane of the kind considered, denoted by the parmeter s. contains V_{s} molecules. The contribution to the vector of radiation, originating from this plane, thus amounts to

$$
\frac{N_{s} A}{r} \cos 2 . \pi\left(\frac{t}{T}-\frac{r}{\lambda}-\frac{2 s_{1} l_{n 2}}{2 V \frac{b^{2}+c^{2}}{2}}\right)
$$

Taking the sum with respect 10 s over all possible values, then we obtain the total vector of radiation origimating from the emission of molecules. Generally, however, the contributions to the vector of radiation here considered and originating from parallel planes, wre incoherent, unless, which may exeeptionally ocenr, λ and $\frac{a l_{m}}{\sqrt{a^{2}+b^{2}+c^{2}}}$ are mutually measurable. If we have to do with several wavelengths, this will certainly cause incoherence.

Now, the intensity of the maxima observed can easily be found if for a moment we imagine an equal number of points getting into vibration in all planes considered. Then, if n is the momber of plames considered, the intensity is

$$
n N^{3}
$$

where $n N^{2}$ is therefore substituted for

$$
\sum N_{s}{ }^{2}
$$

Taking into consideration that $n N^{r}$ represents the total number of the motecules strok by ratiation i?, then we see that the intensity of the maxima is proportional to

$$
38 . y
$$

so that the spots are the more intense according as they are coused by planes in which the number of molecules pro unit of plane is greater. ${ }^{1}$) We can even to some degree extend what was observed abore, so as to come to a conclusion which perhaps can the controlled by experiments. Take an x-axis in the dirention of the normal of the planes, then r will pass through the values $\pm l_{m} \pm 2 l_{m} \pm h l_{m}$ ete., in which the same positive and negative value ought to be taken for γ, when the origin is chosen in the centre of the plate. For each value of x the part cut off from the plane by the incident beam can be calculated. Be this part S_{2}, the number of molecules pro unit of plane is r_{m}, the contribution to the intensity of the plane S_{x}, therefore

$$
v^{2} l_{m}^{3} S_{1}^{3}
$$

and the total intensity is therefore $v^{3} l_{m^{2}} \Sigma S_{k}{ }^{2}$, for which we may approximately write

$$
v^{2} l_{m} \int S^{2} d x
$$

By applying this formula in different cases, we may come to a further trial of the theory ; however, we do not yet possess the necessary photometrical experimental measurements. The intensity of the maxima now under consideration is greater than that of the "two-cone" maxima of Lave (of the order 10^{7} times as great), it is, however, of the order 10^{7} times as small as that of the 3 cone maxima of Laue. However, the experiment forces us to such a degree to accept the explication by reflection, that probably in no other way than in the one described above the photograms may be explained, as I will show below.

We may still observe, that in the consideration as given above, the molecules are assmmed to contain only one electron. We can, however, easily get rid of this supposition by multiplying N^{\top} and v by s, where s is the number of electrons pro molecule. Perhaps, by laking this into account, we may derive an estimation of the proportion of the numbers of electrons pro molecule in different erystallised matter.

[^87]We may also observe, that in the direction of the propatration of the primary radiation too an interference can be noticed between the secondary pulses emitted and the primary radiation. At this interference a difference of phase shows itself, which to such a degree diminishes the primary radiation as is nevessary to deliver the energy of secondary pulses emitied in the directions of reflection.

We can still somewhat noarer consider the influence of a single plane. We the reflecting plane chosen as !/F-phane, be the ryphane the plane of incidence, and a the angle of incidence. Let us now consider the rector of radiation in a point

$$
x=r \cos x, \quad y=r \sin u+y, \quad z=5
$$

The vector of radiation is given by

$$
\frac{A}{r} \sum_{k_{1}} \sum_{k_{2}} \cos 2 \pi\left(\frac{t}{T}-\frac{r}{2}+\frac{k_{1} a}{\lambda r} \eta+\frac{k_{2} a}{\partial r} \zeta\right) .
$$

which, when summed $u p$ with respect to k_{1} and k_{1}, will give

$$
\begin{aligned}
& \frac{a_{1} A}{r} \cos \alpha \pi\left(\frac{t}{T}-\frac{r}{\lambda}\right) \cos N_{2 \lambda_{j}}^{a \lambda_{j}} \boldsymbol{x} \cos N_{2}^{a \zeta} \cdot \pi \sin (N+1) \frac{a r_{j}}{2 \lambda} \cdot \sin (N+1) \frac{a 5 \pi}{2 \lambda}: \\
& \sin ^{\frac{a}{2 n} x} \frac{a 5 x}{2 \lambda}
\end{aligned}
$$

For $y=0 \quad \zeta=0$ we obtain the maximum found above (diffraction maximum of the order zero) with the intensity there given.

A second maximum (first maximum of diffraction) could appear if $\frac{\eta a}{2 \lambda}=1$, or $\frac{a^{\zeta}}{2 \lambda}=1$, or thus if $y_{y}=\frac{2 \lambda}{a}$ or $\zeta=\frac{\partial \lambda}{a}$. Now r is about 4 in the experiments, and a is of the order 10^{8}; should λ be much smaller than a, then this second maximum would be observable. In the photograms we do not find differtion-rings of this kind. Thus if the wavelength is very small with respect to 10^{-8} then such images do not oceur, but if λ is of the order of a or not much smatler, then we ran neither observe such images, the latest estimation giving for λ a quantity of the order 10^{-9}. This might well thought to be consistent with the result that circular fringes do not appear on the plates.

Bragg has explained the form of the spors, -- ellipses whose long axis has the direction of the line perpendicular to the plane of incidence which belongs to the plane observed - by observing that the different layers are struck by waves not wholly parallel. Howerer, he does not take into account that in each point the radiation of molecules of all the planes interferes. The form might rather be explained by observing that the intensity in the said direction
approaches less rapidly to zero llan that in the direction perpendicular to it, whereas we have also to take into account that the distance between the source of radiation and the point of observation is not infinitely great with respect to the dimensions of the plane struck by radiation. Trying to explain the form of the spots by assuming a rectilinear propagation we do not come to the right result. E. g., if we have to do with a reflecting plane lying oblique to the beam, then the photographic plate would cut the reflected cylindre just in an ellipse, whose longest axis is perpendicular to the direction in the plane already considered, whereas on the photograms we observe just the contrary.

In the pencil the beams are not wholly parallel. What is the influence of this on the diffraction image? If the beams forming a small angle will have to give the same reflected beam then the reflecting planes must form a small angle too, and otherwise. Now if $a_{a} x+$ $+b y+c z=0$ is the plane rich in molecules, then a plane very little diflering from it as to its direction will be

$$
\left(x-\frac{1}{p}\right) x+\left(b+\frac{1}{q}\right) y+\left(c+\frac{1}{p}\right) z=0
$$

where p, q, r are large whole numbers ; or,

$$
q^{r}(p \cdot+1)+(6 q+1) p z+(: q+1) p q=0 .
$$

This plane however will be very poor since l_{n} here becomes 1
$\sqrt{\sqrt{q^{2} r^{2}(p+1)^{2}}+\cdots}=$ which is very small. The forming of the patterns is thus exclusively ruled by the planes very rich in molecules. Of course, each of the pencils in the incident beam gives a reflected pencil to a plane rich in molecules, but since the incident beams differ but a little, the reflected ones will not do so either. Always, when among the planes considered one is rich in molecules the spot will be formed by the influence of one of the pencils.

When we want to consider directly very thin pulses, we come to a problem which agrees in some way with the one treated by Prof. Jorest\% '). However, we can now direetly consider the pulses, reflected by the molecules, which were dealt with in this treatise, to be combined to pulses fommed by the planes rich in molecules, since in this case each of such planes gives only one pulse. This fact hinders the coinciding of the pulses considered in the publication mentioned. Take e.g. pulses originating from a detinite set of planes, be the dimension in the direction of the normal l, then we have $\frac{l}{l_{n}}$ pulses,

[^88] $\frac{l^{\prime}}{l}=\frac{\Delta}{l_{l,}}$, which is a small quantity so long as \angle is small with respect to i_{m}, as is generally the case. When the pulses do coincide, which again will be the case when we take into account the primaty distubances of equilibrimm emitfed sucessively by the anticathote, then the considerations developed by Prof. Lonextz must be applied. Thas also when operating with the byportesis that the Roxtoria rays exist in pulses, the ineoherence of the pulses originating from the different parallel phanes is a matter of liad, and therefore also on this assumption the intensity of the spots in the photogram will be proportional to the number of molerules pro unity of surface of the corresponding plane. We may suppose that in this direction also the solution is to be found of the question why the effect of the motion of heat which caunes the molecules to vibrate around the comers of the net, is so smatl.

Now we may still with a single word disenss the photograms which were at our disposal.

The way in which they were taken agrees in many points with that of Lade, only it has been somewhat less complicated. In order to shorten the time of exposition, a fluorescent screen was used. The spots oceuring on the plates may be arranged very conveniently into ellipses, hyperbolas, straight lines and sometimes parabolas; as Bragg has already explained, points of such a conical section originate from the reflection on planes rich in molecules, which have a line rich in molecules in common. The conic section then will be the inter-section of the photographit: plate and a cone, produced by letting the incident beam turn about the said line rich in molecules.

The photograms at my disposal were:

1. Rock-salt. The direction of incidence was lying along a cubioal axis. The diagram produced agrees with the one for zinc-blende. The distance of the crystal from the photographic plate was 4 cm. while 3.56 in Lade's experiment. By magnifying Lace's pattern in the corresponding proportion I got one perfectly congrnent with that of Prof. Haga. Only a few ellipses were missing or were represented less intense, which may be attributed to the fact that with NaCl the net is centric cubical, whereas Zas shows cubes with centric cube fares. This agees with the crystallographically deducted cleavability, which lies in the direction of the plane richest in molecules. The fact that the patterns for matters of totally different kinds are identical, is a strong proof for the above developed theory.
2. Cut fransmilting the radiation along a triangular axis, gave a pattern identical with $/ \mathrm{h}$ S.
3. Topaz, transmitting radiation in the direction of the bisectrix of the acute angle of the optical axes, gave a pattern which can ie explained by assuming the net of the molecules to be built up from parallellograms with equal sides in the plane perpendicular to the bisectrix, and by points perpendicularly placed above the net points obtained in this way.

From the photogram 1 calculated the angle of the pg . It amounts to $66^{\circ} 10^{\prime}$. A trying of this angle with the angles of the planes of the prism, known from erystallographic data, gives a suitable agreement. I hope to have an opportunity to calculate the proportion of sides ete. for more types of Brarais nets. We may suppose that in this way we shall obtain the possibility of deciding between the different structure theories, and of coming to a rational description of crystals.
4. The experiment of reflecting Röstaes rays on the cleavage plane published by Bragg in "Nature" of 23 of Dec., was repeated with mica. Because of the plate being longer exposed this time, there appeared on the plate, besides the reflected spot upon the planes parallel to the clearage plane already found by Braga, also a number of other points of which by far the greater part were lying upon an cllipse rather changed into a circle. For plane of incidence the principal cross-section had been chosen, the photographic plate was placed perpendicular to the plane of incidence. The circle was lying asymmetrically, although the plane of incidence had been chosen in a principal cross-section.

Supposing the monoclinic net for mica to exist in a rectangle (in the cleavage-plane) and a side inclining with respect to this rectangle, lying in a plane perpendicular to the cleavage plane, then in order to explain the patterns we must take for the proportion of the sides of the rectangle and the inclining side $8: 13: 100$, and besides we must suppose the angle of the clearage plane and the inclining side to amomit to 85°. The pattern obtained can still better be explained by using the second net of the monoclinic system. The basis then is a $P \cdot y$ with very long and almost equal sides, and an angle of about 85° between the short diagonal and one of the sides. The third side is perpendicular to the py considered, the rectangle through the short diagonal of the basis is centric. The cleavage plane then is // to this rectangle. This structure shows for mica an approach to the hexagonal type.

The same results were shown by the pattern obtained when
mica was crossed by a radiation in a direction perpendiontar to the cleavage plane. 'The photogrann so obtained was mukd weaker, although the time of exposition was laken erphally lones. and although the intensity of the primary radiation was the same. This may be explained by observing that in the refledion the celeavage plane rich in molecules gives a spot, which does not arpuar with the framsmitted radiation. But the other images are to be taken with resped to correspomting planes. The explication therefore most pun otherwise. In both cases a cylindrical pencil with cross-section of about 1 mm . strikes the plate. Consequently the patt struck by radiation of the plane richest in molecules, the reflection taking place under an angle \quad near 90°, is a good deal greater, namely in the proportion $\frac{1}{\text { cos e }}$, the number of working layers being the same. In the most unfarourable case of the vector of radiation lying in the phane of incidence, the working vector of radiation, if $\ell=90-\beta$ where β is a small angle, is $-S \sin 2{ }^{2}$. The intensity of the image reflected thas will be proportional to $I^{2} \sin ^{2}-\beta(o \omega)^{2}$ (where 0 is the diameter of the pencil, β the number of particles pro unit of surface). For the case of the vector of radiation lying in the plane of incidence, sin 2,3 in the mumerator is to be substituted by the unity; then the intensity will be great. As the incident pencil is not polarised, we have to expect a stronger effect with the reflection than with the light being directly transmitted.
5. The reflection on rock-salt (perpendicular to a cubical axis) again gave a set of apots very clearly observable, siluated on conical sections through the central spot. The spots werelying close together on the plate; as may be supposed they are partly to be assigned to different not wholly parallel layers in the erystal.

Anatomy. - "Nerve-requeneration after the jominy of "motor nerve to a receptive nerce." By Prof. J. Borki.
(Communicated in the meeting of February 22, 1913).
After the primary diseoveries of Fontana, Monro, Crimsmask, at the end of the $18^{\text {th }}$ century, no phenomenon of life has heen more closely studied than the process of nerveregencration. Altention was drawn to the primaty degeneration of the peripheral portion of a cut nerve deprived of its trophic centre, the ganglion colls: (Watifr), and the manner after which a new nervous umion was established
by the growing out of the fibers of the central end into the old path of the peripheral neve-portion became better and better known. It was seen how the new nerve-fibers growing ont from the cut-end may extend to the organs normally supplied by the nerve in question, form new end-organs and how thus even a functional regencration may take phace. It was seen how regenerating nere-tibers may even grow into a nerve-path betonging to another fout) berve, and how motor tibers from the entem of the nervas aceesentus for example maty grow into the peripheral degenemed portion of a cul facialis nerve and thas in the end provide with mots nerveendings the atrophying musele-fibers of the mimic museles.

This phenomenon leads naturally up to the question, whether it would he possible, after a nere containing motor and reeptive fibers hats heen severed in its combe, that motor nere-fibers from the cut-end grow into degenerated receptive fibers of the peripheral portion of the nerve, and vieeversa.

This quention, which was stmedied for the dirst time by Bmose in
 1873, and by different anthoms in the comme of the years, has been answered ahmost miversally in a negative sense. Even Lasamey and Andersons, who studied the question as late as 1904 , denied the functional and trophic regencrative union of motor and receptive fibers, and betate, who studied the question for fas far as l could gather) the last time in 1907°, gives as the results of his investigations the following statement: "dass atheh mater den für die Vereiniging gunstigeren Bedingungen (nach Durchschneidang der motorischen Wirzeln) eine functionelle oder anch mur trophische Verwachsung zwischen rezeptorischen mid motorischen Fasern nicht eintritt." (1. e page 481).

And yet, notwithstanding these shatements, the question must be answered in a positive sense.

To study the question, the same course was taken as that followed by Phatasix and Vulpax making their classic experiments in 1863 and 1873 (Vuphas). The nervus lingualis and the nervus hypoglossus of the same side were both cut through. Only I did not join the central end of the lingualis to the peripheral portion of the nervus hypoglossas ${ }^{2}$), as was done by the investigators mentioned above, but followed the example given by Berme in 1903, and joined the

1) Prluaers Ameniv, 1 ió idd. isot.
${ }^{2}$) In a second note 1 hope to describe the results of this line of experiments.
central end of the n. hyponglosiss to the peripheral portion of the nervas dingmatis. The two other nerve-ends were both exstirpated as fiar as they could be reached.

The entire cycle of experiments was the following:
a. In a mumber of fullgrown hedge-hogs (14 in all) the right nervos hypoglossus wats eut through, and the ends joined bogether. dfere a lapse of several ditys, weeks or months the animals were killed, the bloodvessels were rinsed by means of the fluid of Ranger-lookr, and the tissues were preserved by means of an injection of a bery sighty alcaline solution of formatin into the aorta; afterwands the nerves and the nerve-endings inside the tongne were stained by the Biedschowskr-method, and cross-sections or sagital sections of the tongue examineal under the microscope.

The phenomena of regencration of the motor tibers after the remion of the severect ends of the n. hypoglosins i will not dincuss here. In this connection it only interests us to know, that in preparations made of the tongue of amimats killed 5 to 10 days after they were operated upon, all the fibers of the 11 . hypoglossus of the right hatf of the tongue were entirely degenerated, the fibers of the nervas lingualis having of course remained entirely intact. In this way 1 obtained a very accurate insight into the topographical relations, the conrse and distribution of both nerves thronghout the tongre. These relations are very systematic, so that when we only take care to compare analogous cross-sections of different tongues with each other we are able to tell immediately in a given cross-section the places where the nerve-fibers of the n. lingualis and those of the n. hypoglossus (at least the larger rami) are to be foumd. For a safe and accurate judgment of the results of the following gromp of experiments (b) these preliminary experiments are absolutely necessary.
b. In another series of full-grown hedge-hogs at the right side of the neck the nervus lingualis and the nervus hypoglossus were cut through, great care being taken to make as small a wound as was possible and to injure no other elements. After this the central cutend of the n. hypoglossus was joined with the peripheral portion of the n. lingnalis, the two olher ends were exstirpated as far as possible, and the wound closed. After a lapse of some weeks or months the animals were killed, and stained sections through the tongue examined after the manner described above. To prevent ulcerative processes to oceur in the lamed and anacsthetic half of the tongue, before the operation all the teeth of the right side of the mouth were stripped of their crowns. After that uherative processes in the tongue did not occur any more.

Examimation of the place of secion of the nerves showed in the first place that in the greater half of the cases, viz. in 11 of the 20 aminals of group $1 /$ which were operated upon, a complete union of the heterogeneons neres had haken place. The central chtemd of the hypoglossus adhered tirmly to the peripheral portion of the lingualis, and after one or two months the peripheral portion of the joined neve had thmed white again, viz had hecome myelinised. After a due lapse of time even the plate of mion of the nerves, the cicatrice itself, was white. I however got the impression, that the process of umion of the eutends has a somewhat longer duration than after the dissection and joining of homogeneous nerve-portions. Tlie experiments of group "showed, that already after the lapse of one month regenerating nervefibers were visible in the tongue, and after one and a half month regenerating motor endplates were visible on the muscle-fibers even at the tip of the tongue. In the experiments of group b it was only after 2 or 3 months that I was able to detect the regenerating libers inside the tongue.

These results were confirmed in all points by the microscopic examination. The regencrating nerve-fibers of the hypoglossus had grown through the cicatrice, had reached the peripheral portion of the lingualis and had grown into it just as in the regenerative union of homogeneons nerve-ends. Sections throngh the place of uniontend to show the same intertwisting of the nemrofibrillar bundles, the regenerating axons, in the cicatrice, the slow forward movement, and at the end the same picture of the regencrating axons penetrating into the channel of the degencrated peripheral portion, in casu the n. lingmalis. Neary atl the regenerating tibers of the hypoglossus penetrate into the peripheral nerveend, in casu the n. lingualis. A few fibers only pass alongside and are seen growing out into the surrounding tissue, the perineural comective tissue.

The examination of the microseopic sections gave me however the same impression as the marroscopie inspection, viz. that the process of regeneration, especially of the penctrating of the regenerating axons into the peripheral nervend (lingualis) has a somewhat longer duration and slower movement than in the union of homogeneous nerve-ends. The intertwisting of the axons is more dense, and a greater number of the so-called spirals of Preroncito are formed. As however the bervins lypoglossus possesses a far greater number of nerve-fibers than the newns linguatis, finally the peripheral nerveend (lingualis) becomes entirely filled-op, with the regenerating axons of the hypoglossus nerve.

The examination of the cross-sections through the tongue gives
corresponding results. When we examine such at erosserertion in a sheressfal experiment (and only those are eonstaderd), we find all the sedions of the branthes of the 13 . Limematis filled with requererating

 of the degencrated nerve-tubes.

This is - and that gives ns the answer fo the ghestion mentioned above, why no physiotogical regencration is to be fomd - not only the ease with the larger bramehes, lom atso the smatler amb smatlest bramoses present the same atsered. When the larger brandhes of the hypoglossus are deroid of regencrating axoms, no trate of these is to be found even in the smatlest bamehes of the hypoglosens, whilst even the smallest branches of the limgnatis are full of regenerating axons, and a dense phexus of regenerated nerve-fibers is present in the mueons membrane of the tonguce, in the romecolive tisene of the submucosa, but not a single motor nerveppate is to he foumd on any oi the moscle-fibers, in shatp contrast to what we find after the regeneration of the berve-fibers of the hypoghosens imo the peripheral end of the hypoglessus itself (tronp (d), where we find everywhere the regenerating end-plates on the masele-fibers.

When regenerating nerve-fibers have penetrated into the ofd chamel of a peripheral degenerated nerve. it elearly is imposibte for them to get ont of it and they are compleded to travel it to the end. Nowhere is this rule demonstrated so eleaty at it is done here. The branches of the lingualis nerve wind thoir way fowads the final station, the mucous membene, between the bundles of musclefibers, and often seem to come into close contacl with them, as is clearly shown by the examination of the sections in the experiments of group a. And yet not a single nerve-fiher of the regencrating hypoglossus nerve leaves the chamel of the lingualis in group b to form an entorgan on the muscle fibers as it is to be seen everywhere in the experiments of group " ${ }^{1}$).

Now the question might be asked, whether these regeneraing nerve fibres growing into the peripheral end of the nervis lingualis are in reality hypoglossus fibres, and whether it is not more probable that the ingrowing tibres are after all lingualis tibres, which grew out from the central end of the lingualis and have found their way into the old nerve chanmel. 'Io exclude this sonce of earors, in a number of animals, in which 3 and 4 months ago the central end of the 11 . hypoglossus bad been jomed to the peripheral end of the

[^89]n. !ingualis (gromp) (1), the cicatrice was opened again, and after it had been ascertamed, that the nerveends had grown together and that the peripherat portion wat myelinised already, the eentral cutend of the nervos lingualis was prepared again, and cut out with a part of the sumombling commertive tissue as far as it was possible to rearh it, the comective tissue being exstimated because it might be possible that some neve fibres from the central end of the linguatis had grown into the comertive tissue and from there had reached the print of joining of the two nerve-ends. Ten days were allowed to the erentually cut nerse fibres to degencrate, and after that time the animats were killed and prepared after the manner described above. Ten days may be supposed to be entirely suflicient for the degeneration of all the nerve tibres eventually suphlied ly the central portion of the limgnalis nerve.

One of these experiments, which looked entirely surcessful, was studied as accurately as posible, and gave the following results: from the central portion of the lingualis nerve not a single neve finre antered the peripheral lingualis, nor had any other nerve (a small muscle nerve for example) regenerated into the peripheral lingualis, except the nervis hypoglossus. From the central cut-end of the hypoglossns, which was in full process of regencration, a large mumber of regencrating nerve fibres had grown out and had all penetrated into the peripheral end of the nervis lingualis. Only a very few tibes had grown into the perinemal comective tissue around the lingualis nerve. Inside the tougue all the lingualis branches were full of regenerating libres, the hypoglossus branches were entirely devoid of them.

The regenerating fibres, which here could have no other source than the hypoglossus, had followed the course of the lingualis nerve down to the smallest branches of the nerve plexus in the mucous membrane of the tongre. Of so-called antogenic regeneration (A. Betue) no trace was found (only full-grown animals were used for experiments).

The fibres of the hypoglossns nerve, having arrved at the end of the ferminal branches of the lingualis, begm to form nerve-endings of different patterns. It is here not the right place to desoribe elaborately the differences in form and in extension of the nerve-endings. I hope (o) do that in extenso chewhere. Here I will only mention two or three points.

It is certainly an interesting fact that the hypoglossus tibres after having penetrated into and arrived at the end of the linguatis tract, begin to form terminal branchings and different end-bulhs. But not only that they form nerve-endings in the comective tissue, but
they even penetrate into the epithelium. In most eases the terminal fibrilla e do not penetrate fiat into the epithelium, but remain

Fig. 1. Nerve endings of hypoglossus fibres in the epitheliam and the connective tissue of the mucous membrane of the tongue.
a, b, c. Ascending fibres, not penetrating into the epitheliam, but turning round and descending again towards the connective tissue.
$e=$ fibres penetrating into the epithelium.
in the basal layers, where they form small cornets around different epithelial cells, but sometimes they penetrate into the upper layers of the epithelitm (fig. 1 e).

It seems however that the epithelium offers a certain resistance against the ingrowing fibrillate, that makes it difitoblt for them to penetrate into the epithelial membrans. In the normal half of the tongue at all points of the epithelium the neurotibrillat may be seen
to penctrate fiar into the epithelium, sometimes as far as the superlicial bayers of rells. In the other half of the tongue, where the dithes of the hymotosis nere are regenerating along the nerve paths of the limuatis. one sees often strikingly how the nervous fibrillae Erow rixht up ayanst the basal side of the epithelimm, bat then do not penetrate it, but turn round and descend again, ending inside the connective tisene with an endinot or endnet, or run for a shorter or lonere distance along the hasal side of the epithelium as if seeking entrance, and then turn round and end between the elements of the commective tissue as derrobed above (fig. $1 a, b,(\circ)$.

In the second place it is an interesting fact, that the terminal bramehes of the hypuglossus nerve fibres often show a striking premblance to the endplates formed on the muscle fibres during regencration after simple rutting of the hypoglossus nerve (a-group) of experiments). An example is given in the figs. 2 and 3. In tig. 2 is drawn a set of terminal brathes formed by a hypoglossus nerve fithe against the hasal membrane of the epithelimm, in fiys. 3 is drawn a regenerated motor end-phate on a musele tibre of the tongue after

Fie. 2 Terminal branches of a hypo. glossus nervelibre in the connective lissue of the mucous membrane of the tongue (group b).

lig. 3. liegenerated motor endplate on a muscle fibre of the tongue (hedgehog group (i).
the entting of the hypoglostis nepre. It is eoplainly imberoling, Hat even in such atypice surmonding the hypoghosus nerve fithes try to buid up their proper bypal endfomations.

In the thind phace the following point may be montioned. In the course of the branches of the limgalis nerve are distributed sromps of ganglion celts of sympathetic nature, protaty, belonging to the chorda-tympani par of the lingualis nerve. The fitres of the lingnatis (chorda tympanif: form a beattifully impregnated notwork with meshes and interwoven fibillae on the surfare of there cells. After the eutting of the lingmatis nerve this network of fibrillate disapmears entirely, the cells themselves undergoing apparently no atteration. The fibers of the hypoglossus nerve appear to be mathe to regenerate this network of nemofibrillae, al least in all my preparations, even there where the neve plexus in the mucosa and the submucosa was very well regenerated. and all the batnches of the lingtalis norve were full of regenerating fibres, no trace of the above mentioned network could be found.

To conclude, it appears fiom these facts that finsion of heterogenice nerve-ends is not only possible, but may lead to distinct regenerative processes which do not differ much from these following on the fusion of homogenic nerve-ends. A functional (physiologicad) regeneration however does not take place, becanse the regenerating fibres are not able to reach their proper destination, and no contact with the muscle fibres is acquired.

And y et a certain amount of fimctional regencration may be obtained after all. Firstly some libres of the hypoglossus nerve will grow out, not into the neural lubes of the lingualis, but in the connective tissue of the perinemral sheath. 'These fibres after a time will reach their destination, the tongue, and these fibres will have no difficulty in coming into contact with the adjoining musele fibres and will form new motor end-plates on them. Secondly here and there in the preparations a fibre was found, which in forming terminal branches in the comective tissue of the mucous membrane of the tongue, had come in contact with the end of a masele filore, and wat seen to run alongside it for a distance (towads the centre of the tongue) and then to form a small end plate on the surface of the muscle fibre. This last mode of functional regeneration I met with however only in a few cases.

Leiden, 18 February 1813.

(Communicated in the meeting of February 22, 1913.)

In and former paper *) we drew the athention th the particulary moxions efled of fatty acheds on phagoeytosis.

Aheady at a concentration of $1: 1000,000$ the pernicious intluence
 wheyed hy ath the other fat-disobving substances. examined by us, did not lead us to expen sucd a prosonons effect of propionic acid.

How could his abmormal attion of propionic acid, and likewise of butrice abid, which was also examined by us, he explatined:-

St that time we fatided to supply an answer to this question.
In order to determine to what extent the ions of 11 are responsible for the noxious effect of the fatty acids we exposed the

TABLE I.
Comparison of sulphuric acid- and propionic acid solutions with equal percentages of ions of H . The solutions act upon the lencocytes during ${ }^{5}$, hours; the leucocytes are brought into contact with carbon during 25 minutes

NaCl-solution in which has been dissolved:	Number of leucocytes examined	Number of leucocytes having taken up carbon	Percentage of phagocytosis
nothing	349	101	$29{ }^{0}$
	208	0	0
\| Proprionic acid ${ }^{1.5}{ }_{1 / 4)}$	301	0	0
	19.4	13	6.7,
(Proprionic acid $8.55(1) \cdot \mid(1) \times 1$	180	0	0
$3{ }_{3} \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{1} 25000000$	148	33	22.2,
	215	52	24.2.

${ }^{1)}$ A more detailed account will be published in the Arehis. f. (Anal. u.) Plysiolugic.
\therefore The effeci of substances which dissolve in fat on the mobility of Phagocytes and other cells. These Drocedings Vol. XIV p. 314.
lencocytes to the ation of fatly abial amt of sulphurie atobl-ahnions containing the same percentaye of ions of If , and determinod subrequently its phaqocytarian power.

The table on p. 1290 will need no finther explanalion.
It follows from this series of experiments that the moxiont effeed of aqueons suphurie acid- and prophonice acin-molntions manifests itadf at the same concentration of ions of $/ /$.
 of a stromyly diluted solution of propiomic-aceid must be eltrituted to the action of ions of 11 .

If this view was the correct one, if it was not the amion of propronic acid, but the ion of // which had to be reckoned with, it might be expected that the propionate of sodium, in the correspometing dilution, would have no bad efferd.

This was indeed not the case, as appears from the following table.

TABLE 11.

Effect of Na-propionate on phagocytosis. The propionate acts upon the leucocytes during half an hour. The leucocytes are brought into contact with carbon during half an hour at 37 .

$\mathrm{NaCl}-\mathrm{sol} .0 .9^{0}{ }_{0}$ in which has been dissolved:	Number of leucocytes examined	Number of leucocytes having taken up carbon	Perc. of phagocytosis
nothing	768	373	$48.5{ }^{0}{ }_{0}$
	323	163	50.4.
Na-propionate 1:100 (i.e. 1 gr. propionate dis. solved in $100 \mathrm{ccm} . \mathrm{NaCl})$	923	535	57.9.
Na-propionate 1:250	549	332	60.4 .
, 1:1000	781	460	58.6
	412	247	59.9.
	344	83	24.1 ?
, 1:25000	891	437	49 *
, $1: 100.000$	633	321	50.7 ,

I harfful eftect of anions of $/ /$, even in much sreater concen-tation- Han those in which the anton was wed in the propionice acid experiments, is evidently out of the question. The propionate 1:20000 and 1: 100000 leave the phagedyarian power intact; propionice neid in this concentration destroys all the lencocyes.

Bult what is mech moree remarlable thom this ressult is the fiavourwhle efïat of still heigher concentrations of propionate 1:100; 1:250: 1: 10000 on phetfocytosis.
liy disantring for instance 1 gramme of propionate in 250 ecm. of Natll 0.9% the phagongosis is foum to increase by 100%.

This increase, which was also caused by the Vereselts of butyric neid and formic acid, was all the more remarkable, as the thid was made strongly hyerisotonic by the addition of these soaps, and at was shown hyperisotony has nearly ahways a highly mjurious effect upon phagoceytosis.

This is clearly confirmed by the following experiment in which isosmotie NaCl-solutions, with and without propionate, are compared with each other.

The comparison relates to the following isosmotic solutions:
NaCl $0,9^{0} /$ and NaCl $0,9^{\circ} \%$
$\mathrm{NaCl} 1, \% \quad, \mathrm{NaCl} 0,9^{\circ} \%+$ Na-Propionate $0,165 \%$
NaCl $1,1 \%$, NaCl $0,9 \%+,, \quad 0,33 \%$
$\mathrm{NaCl} 1,2 \% \quad, \quad \mathrm{NaCl} 0,9 \%+,, \quad 0,5 \%$
$\mathrm{NaCl} 1,3 \% \quad \mathrm{NaCl} 0,9 \%+, 0,0,66 \%$
These thuids acted for half an hour upon fresh lencocytes; then
TABLE III.
Effect of isosmotic NaCl and NaCl -Propionate-solutions.

Percentage of Solution $\begin{aligned} & \text { leucocytes having } \\ & \text { taken up carbon }\end{aligned}$	NaCl -solution 0.90° Percentage of leucocytes having taken up carbon +
$\mathrm{NaCl} \mathrm{O.90} \%: \begin{array}{ll} 132 \\ 465 \end{array} \times 100=28.20_{0}^{\circ}$	nothing $\quad \frac{68}{266} \times 100=25.5^{\circ} \%$
$\Rightarrow 1,{ }_{457}^{113} \times 100=24.7$	Na-Propionate 0.16500 ${ }^{(1)} \frac{42}{325} \times 100=12.9 *$
$\times \quad 1.1, \quad 62 \times 100=15.5$	$0.33>\frac{113}{316} \times 100=35.9$
$, \quad 1.2, \quad \frac{69}{524} \times 100=13.1$	$\cdots \quad 0.5$
, 1.3. ${ }^{6} \frac{6}{272} \times 100=2.2$,	$=0.60: 116 \times 100=27.1$

the suspensions were hrongin into montan with coal for : lann at 37°, and the preparations were mate.

This result is indeed interesting, for we lind that when hy the

 solution, isosmotic with the former, in which, howerer, pat of the Nat'l has been replated by propionate, promotes phaqueytosis to a considerable extent (10 $35.7{ }^{\prime \prime}{ }^{\prime \prime}$).

A similar result was ohtaned with lencorytes which had hean left in serum contaning citrate of Nat during one niwh, and which had consequently lost part of their phagocytarian power.

After the results obtamed with the propionate it might be expected that also the butyrate and the formate would give the same results.

This was indeed the case.
We subjoin a table, showing the results obtaned with butyrate.
This table shows that Na-butyrate in a dilution of $1: 1000$ has

TABLE IV.

Effect of butyrate of Na on phagocytosis. The NaCl -solutions containing butyrate have acted upon the leucocytes for half an hour at room-temperature; then they were brought into contact with carbon for half an hour.

NaCl -solution 0.9"0	
+	Percentage of leucocytes having taken up carbon

nothing		$\frac{132}{449} \times 100=29.3^{0}$
		$\begin{aligned} & 132 \\ & 488 \times 100=27 \end{aligned}$
Na butyrate 1:100		$\begin{aligned} & 130 \\ & 48 \end{aligned} \times 100=29$
"	1:250	$\frac{138}{479} \times 100=28.8_{\prime}$
"	1:1000	$\begin{aligned} & 321 \\ & 8+1 \end{aligned} \times 100=38.1$
"	1:5000	$\begin{aligned} & 300 \\ & 808 \end{aligned} \times 100=37.8$
	1:25000	$\begin{aligned} & 260 \\ & 554 \end{aligned} 100=39.7 \text { " }$

increaned phatneytosis from $28^{\circ} \%$ to 38%, and that this increase is sill mone whious in a dilution of $1: 25000$.

A- regards the formiate, bere too a dilmtion of $1: 1000$ eansed an importan increase, which continned at $1: 2000$. and which was - mill chearly visible at $1: 10000$.

An allempt at ane explamation of the fiacts observed.

How must the faworable effect of propionate and of other soaps on phagencytosis be explatined:

1s the catuse the same as that which we adduced to explan the ehter of lipuidedissolving substances such as iodoform, chloroform, chloral, etc.:

Also in the case of these soaps we might think that propionate
for convenience sake we shall only mention propionate when we should atso name the other two soaps which were experimented upon - dissolves in the lipoid surface of the phagocytes, softens them and facilitates in this way the amoeboid motion.

Trumerous superiments, lowever, shoued that propionate is absolutely insoluble in oliverail.

We have then tried to find another explamation, and it occurred to us that soaps hove in a high deasee the property of lessening the surface temsion of ail.

The reader knows Gan's experiment : if oil is bronght into contact with a soap solution, an extremely fine emulsion is formed.

As far as we know these experiments have only been carried out with soaps of higher fatty ards kapo medicatus or olive-oil contaning some fatty acid).

Theretore we have repeated them with soaps containing a smaller mumber of (' atoms in their molecules.

It appeared indeed that the propionate. butyrate and formiate of Na have an emulgent effect on olive-oil. The formiate of Na was mone active than the two others.

Wre mey conceive that the soaps. lay themselves ayoinst the surface. "i the phatocytes, relluce the surface-tension, and in this way facilitate Her amoeboid motion.

The following observations point in the same direction.
By way of an illustration we beg the reader to glance at Table III.
In this series of experiments the lencoeyte suspensions, after having been in contact with carbon for $3 / 4$ hours at 37°, were suddenly cooled down by water at 13°. Then the phagoeytes were fixed by means of a drop of an osmium-solution.

Nieroseopical examination showed that in the Nat'l-solution of
 slape, while in the isosmotic Nadl-propionate solntion nearly all the cells still had psendopodia.

Even in the NaCl-solution 0,9\%/ relatively few lencocgles with pseudonodia were found, and yet the phagocytosis had reached ahomi the same stage as in the latter flad, which comtaned moth propionate $\left(12,6^{\circ} \%\right.$ and 15% respectively $)$.

It follows from this that propionate has the property of influencing the amoeboid motion of the leneocytes in a favourable sense; one might be inclined to say that they are made more resistant.
for what was observed to take place
In the NaCl-solution $0,9 \%$ the leucocytes drew latek their protinsions owing to the lower temperature, but in the propionate-sol. with the same degree of phagocyosis they remaned, notwithstanding this low temperature.
similar results were arrived at in the experiments of Table II: in $\mathrm{NaCl} 0,9^{\%} \%$ no pendopodia, in NaCll combined with propionate $1: 100,1: 250$ and $1: 1000$ many peudopodia, in propionate $1: 5000$ fewer, and in 1:25000 and 1000.0000 none.

Now it would be incorred to look pon the promotion of phagocytosis and the capacity of resistance of the paendopodia as being identical.

First there are a number of lencocytes which protude psendopodia, but which show 110 phagocytosis, and secondly it appeared from another serics of experiments with propionate and CaCl where both substances equally promoted phagotytosis, that after being cooled down and fixed, the microscopic pictures were entirely different. In the CaCl_{2}-solution mamely the lower lemperature had caused the psendopodia to disappear almost entirely, in the propionate-solution on the other hand, this was not the case.

But since the formation of pseudopodia is one of the contitions for phadocytosis, it may be concluted from the observation with propionate that propionate by influencing the formation of psendopodia in a fivourable sense has contributed to the promotion of phagocytosis.

That the effect of propionate is due to a surface-action and not to a direct action on the contents of the cells appears from rolumetrical determinations,

The volumes of two equal amounts of blood corpuscles, exposed to the action of isosmotic solutions, are equal, as we know, but only on comelition that the substances do not penetiate into the blood corpus-
iles ame that therefore the phemonenon remains restricted to an interchmene "f urater between the cells and the surrounding fluid. ${ }^{\text {a }}$)

Comsersely it may be conchuled that if two isosmotic solutions give the same volume to the bood-corpuseles, the latter are impermeable to these substances ${ }^{2}$).

Therefore we have investigated to what extent a certain amount of blood-corpuscles in a solution of $\operatorname{NaCl} 1,2 \%$ had the same volume as a solution, isosmotic with the former and which contaned $0,9 \%$ NaCl and 0.5 propionate of Na.

If the volumes were equal then it might be concluded that propionate did not penctrate or hardy into the cells.

The eaperiments showed that only traces of propionate could have penetrated into the blood-corpuscles.

Consequently Na-propionate acted upon the red blood corpuscles like for instance Nabr and other anorganic Na-salts.

Now it might be objected that the permeability of the red and the white blood-corpuscles need not be alike. As regards this we may observe that none of the many researches carried out in this direction, have established any difference.

The agrecment goes even so far that the same hyperisotonic salt solution canses the same relative decrease in volume in the red and in the white blood corpuseles ${ }^{3}$). And this also applies to the hypisotonic one.

The analogy also appears from the way in which anisotonic saltsolutions act upon phagocytosis ${ }^{4}$).

We arrive, therefore at the conclusion that until now we have discovered threecanses which may increase phagorytosis.

1. Traces of a calcium-salt; there can be hardly any doubt but here we have to do with an action of Ca on the cell-protoplasm. It has not been verified as yet whether the Ca also acts upon the surface.
2. Fot-hessoleing suhstences such as iodoform, chloroform, choral, turpentine, ete. When applied in homoiopathie quantities (e.g. Chlo-

[^90]roform 1:500000, Propionic and $1: 100000000$ they testriet their action to the lipoid surface, which they weaken thas faciltathoge the amoeboid motion.

When applied in somewhat greater fuantitios a second fardon becomes of importance viz. the noxions effect of these substances on the protoplasm. All these substances indeed penctrate easily into the cells, thus causing paralysis.
3. Sorpses, such as propionate, butyrate and formiate. These substances, unlike the fat dissolving substances, do not enter into the phagocytes. Their action upon the phagorgtes is theretore entirely different from that of the fat-dissolving substances, for even when applied in high concentrations ($1: 250$), in concentrations in which the fat dissolving substances would inevitably kill the eells, the? lute a very faromable effect "pom phagocytasis.

When applied in still greater quantities their action is a pernicions one, but this may be due to the solution heing too hyperisotonic.

Further it is a remakahle fact - and in this respere the soaps are distinguished from calcium as well as from the fat dissolving substances - that within rather wide limits, the decree to which phagoeytosis is promoted is independent of the amomot of swap, found in the solution. (Cf. Tables II and IV.)

The researehes, described above, have given rise to dilferent questions, which, owing to the present cirommstances we comnot enter into now.

Physioherical Lahoratory. Cromingtrl, Jannary, 191:

Astronomy. -- "A prooft of the comstomey of the retweity of light". By Prof. WV. de Sitere.
(Communicated in the meeting of February 22, 1913).
In the theory of Ritz light emitted by a sonree mosing with velocity u is propagated through space in the direction of the motion of the source with the velocity $c+u$, e heing the velocity of light emitted by a motionless source. In other theories (Lorbatz, Einstran) the velocity of light in always c, independent of the motion ot the source. Now it is easily seen that the hypothesis of Ritz leads to results which are absolntely inadmissible.

Consider one of the components of a donble star, and an ohserver situated at a great distance Δ. Let at the time t, the projection of

The stars velocity in the divedion towards the observer be \quad. Then from the law of motion of the star we can derive an equation:

$$
\begin{equation*}
u=\dot{f}\left(t-t_{0}\right) \tag{1}
\end{equation*}
$$

The light emitted by the star at the time f reaches the observer at the time $r=t+J^{\prime}-\quad$ un. In Rita's theory we have, neglecting Whe reond and himher pown of ", $\because= \pm$, . In other theories we hatre $u=0$. If now we put $T_{n}=t_{0}+1$, we have

$$
\begin{equation*}
\|=f\left(r-r_{n}+\| \|\right) \quad{ }^{\prime} n^{\prime} \quad n=\eta\left(r-r_{n}\right) \tag{2}
\end{equation*}
$$

The fometion if will difler from f, males en be mmeasurably smatl. Therefore if ome of the two equatoms (1) and (2) is in anveement with the laws of medhates, the other is mot. Now ee is far fiom small. In the case of epeetroxeopice doubles u also is mot small, and consequemly an ran reath considetable amomnts. Taking e.g. $"=100 \mathrm{Kll}$ sect and assmming a parallax of 0 ". 1 , from which $3 / 4=33$
 of magnitate of the periodie time of the hest known spectroseopie doubles.

Now the observed velocities of spectrocopic donbles, i. e. The equation (2), are ats a matter of fate satisfatorily represented by a Keplerian -motion. Noreover in many gases the orbit derisad from the radial velocities is condirmed by visual observations (as for
 variables. We can thas not avod the comelusion $n=0$, i. e. the velocity of light is independent of the motion of the somere. Risz's theory would fore ne to assume that the motion of the double stars is govemmed noi by Nawtox's law, but by a much more complicated law, depending on the star's distance from the eath, which is evidently abeurd.

In a manner similat to that in which, in the previons commmivalions. We considered the sathration line mater its own bapour pressme we can also consider the comjugated vapour lime. Instead of the twophatio complex $f+h$ we now, howerer, bake, the complex $f+i$ and if in the therephase equilibrimm $f+L+i$ no phase reaction werns, we mast in the comersion of $f+G$ again distingrifoh three cases.

Let us now dake the rase qenerally ofemming in which, on a change in pressure in the one direction $f+t^{i}$ is convertes into
 other direction. Hence, on a change of pressure in the one direction liguid is formed, but not when in the other direction.

In the previons commmication we have dednced: if $h+1$, is converted into $I^{\prime}+L^{\prime}+I^{\prime}$ with increase in volume, the comjunt tion line solid-liguid will, on lowering the pressure turn lowards the rapour poini. If $l^{\prime}+l$, is converted into $l^{\prime}+l^{\prime}+l^{\prime \prime}$ with contraction of volume, the conjugation line solid-lignid furns in the opposite direction.

In a similar manner we may now deduce: if $E+{ }^{\prime} \quad$ is comperted into $l^{\prime}+L^{\prime}+\left(x^{\prime}\right.$ with increase in volume, the conjugation line solid-vapour, on lowering the pressure, turns away from the liguidum point, and on increasing the pressure it furns towards the same. If $l^{\prime}+\left(l^{\prime}\right.$ is converted imo $l^{\prime}+L^{\prime}+f^{\prime}$ with contraction of volume the conjogation lime solid-vapour will turn in the opposite direction.

The conversion of $l^{\prime}+L$ into $l^{\prime}+L^{\prime}+\left(r^{\prime}\right.$, or as we may also call it the formation of sapour from $L+L$, generally takes place with increase in rolume and only on certain conditions with it decrease in the same. The conversion of $l^{\prime}+l_{i}^{\prime}$ into $l+l^{\prime}+l{ }^{\prime \prime}$, or in other words the formation of vapour from $i+f$ titacs plare as a rule with decrease in volume and only in definite conditions with an increase of the same.

In the previons commmication (V) we have demonstrated that the rule for the rotation of the congigation line solid-liguid is in conformity with the saturation lines mader their own vapour pressure as deduced in communication (1) : in the same manner we may now also show that this is the case with the movement of the conjogation line solid-rapour.

Let us imagine in fig. 7 (I) a tangent to be drawn through f on the vapour saturation curve of F^{r} under its own vapour pressure, therefore, on curve $\Lambda_{1} a_{1} m_{1} b_{1}$. As on a change in pressure in either direction the new conjugation line solid-vapour falls outside the first three-phase triangle, the system $h+\left(\frac{1}{r}\right.$, in this particular onse, is converted on a change in pressure in the one direction into $N+f^{\prime \prime}$ and by a change in the other dircetion into $F+\left(i^{\prime \prime}\right.$. Hence, no liquid is formed either on an increase or a decrease in pressure. At an infinitesimal change in pressure nothing happens but crapoo ration of a little solid substance ${ }^{\prime}$ in, or chse a slight deposit of solid If from the vapom (i.

On evaporation of r, the volume will as a rule incratas; as the
gats then draws nearer to the point l, the pressure along the vapour saturation chrve, starting from the point of contact, will decrease towaris f and increase in the other direction. This is in agreement With tig. 7 (I) and 12 (1) but not so with fig. 13 (1); from the deduction of lhis last figure; however, it is more to be expected that the curve $H_{2} \mathrm{~m}_{2}$ is either circumphased or exphased, but is then situated at the other side of F like corve Mm .

Let us now consider the case when the vapon sathration cance of I^{4} under its own vapour pressure possesses a form like coure " 1 ll) in fig. 4 (V); the saturation line should then be supposed to lie more towath the right. We may then draw through fongents to the vapom saturation line with the points of contalet R, R^{\prime}, λ and N^{\prime}.

In the point $R^{\prime \prime}\left(X^{\prime}\right)$ now also takes place the above considered conversion of $l^{\prime}+G^{\prime}$ into $i^{\prime}+\left(i^{\prime}\right.$ and $l^{\prime}+\left({ }^{\prime \prime}\right.$. In the point h, howerer, the system $l^{\prime}+l$ is converted, on change in pressure, in the one direction, into $f^{\prime}+l^{\prime}+\left(r^{\prime}\right.$, and by a change in the other direction into $l^{\prime}+L^{\prime \prime}+i^{\prime \prime}$. Hence, liquid is formed on inerease as well as on decrease in pressure. At an intinitesimal change in presame, only a litle solid substance foraporates into, or else a little of this is deposited from the vapour; hence, when starting from the point of contad, the pressure along the vapoursaturation curve will decrease towads l, but increase in the other direction.

We have noticed above that the rotation-direction of the conjugagation line solid-liquid depends on the change in volume when vapour is formed from $l+1$, whereas that of the conjugation line solid-vapour depends on the change in volume when liguid is formed from $l+C$. In the threephase equilibrimm $h+l+l$ we may now suppose four cases to orcur.

1. The formation of vapom from $I+L$ lakes place with increase, the formation of hipuid from $r^{\prime}+(\dot{r}$ with decrease in volume.
2. The formation of vapou from $F^{\circ}+L$ takes place with dectease, the formation of hiquid from $F+h$ with increase in volume.
3. The formation of vapour from $l+L$ and that of liquid from $f+1$ both take place with increase in volume.
4. The formation of vapour from $r^{\prime}+I$ and that of liguid from $f+1 ;$ both ade place with derrease in volume.

Let us first take the ease mentioned sub 1 which is also the one usually occuring; from what has already been communicated it follows that, on increase in pressure, the conjugation line solid-liquid fums towards the rapour point and that the conjugation line solidvapour tums away from that point.

Hence, on increase of the pressure, the threc-phave triangle furms in such a mamer that the comjugation line solid-rapmor wes in front; on diminution of the pressure the three-phase triangle thm in the inposite direction, but in such at mamer that the ronjugation line solid-liquid precedes.

On increase in pressure the two three-phase triangles of fig. : (I) with their conjugation line solid-rapour in trom, will therefore move bowards each other; on dimmution in pressure they move away from each other, with the conjuration line solid-lignid in from, tw be converted, for instance, into fig. 8 (I). If in tig. 11 (I) we suppose each liguid to be united will its rorrelated vapour and the solid substance F we notice that the three-phave triangle moves in conformity with the above mentioned rule.

It is evident that we must mot look upon this rotation of the three-phase triangle as if this tums in its entirety without a change in form; during this rotation not only the length of the conjugation lines solid-liguid and solid-rapour is changed. but also the angle formed by the two lines.

In the ease mentioned sub 2 the changes in the volumes have the opposite sign to that mentioned in the case sub) 1 ; the threephase triangle then of course will turn in the opposite direction namely in such a manner that on increase in pressure the conjugation line solid-vapour gets in front.

A similar case we meet in fig. 12 (I), if in this we take two three-phase triangles, one at each side, and adjacent to the straight line $F m m_{1}$; the two triangles turn the compugation line solid-vapour towards each other. On lowering the pressure the two triangles must move towards each other and on mereasing the pressure they must part from each other, which is in conformity with fig. 12 (1).

In the case mentioned sub 3, the wo conjugation lines, solidliquid and solid-vapour, of the three-phase triangle will, on increase in pressure, move towards each other, and on decrease in pressure part from each other; in the cave mentioned sul) + they move in opposite directions.

Let us suppose that the exphased vapour saturation line of F, in fig. 13 (I) is sitnated at the other side of r. We now take a liquid close to the point m so that its conjugated rapour is adjacent to the point m_{2}. The three-phase triangle then forms in F an angle of nearly 180°. As here occurs the case mentionen sul), 3 , the two conjugation lines solid-liquid and solid-vapour must draw nearer each other on increase in pressure. And this is in aqreement with tig. 13 (1)

If we take a liguid close to the point $/ / /$ and hence a rapour
adjacent to the point I_{1}, the case mentioned sub 4 occurs and the movement of the conjugation lines is in conformity with the rule deduced above. The cases mentioned sub 3 and sub 4 also occur in other figures, for instance also in lig. 12 (I).

In the above considered conversion of $F+L$ we can distinguish Hhee special cases.

1. The case, mentioned above sub $A 2$ and $A 3$, which has already been discussed in detail, when no vapour is formed at an infinitesimal change in pressure or in volume.
2. At an infinitesimal change in volume the quantity of the liquid docs not alter (its composition, of couse, changes).
3. At ant infinitesimal change in volume the quantity of solid matter does not change.

In each of these cases one of the sides of the three-phase triangle will occupy a special position. We have already noticed previously that in the case mentioned sub 1 the conjngation line solid-liquid meets the saturation line under its own vapour pressure.

In the case mentioned sub 2, dhi in the formula given in the previous commmication $V^{*}(p .1213)$ must be taken $=0$; from that it follows that the tangent drawn in the liquidum point to the saturation line under its own vapour pressure is parallel to the conjugation line solid-vapour.

In the case mentioned sub 3 dn in the said formola must be taken $=0$; this signifies that the conjugation line liquid-vapour touches in the liquidum point the saturation line under its own vapour pressure.

In the saturation curves deduced previously diverse examples of these cases are to be found.

It is evident that in the system $\vec{r}+G$, three corresponding cases may be distinguished; these then relate to the direction of the tangent in the vapour point of a vapour saturation line under its own vapour pressure.

We will now consider the case already mentioned in the previous commmication sub B, when a phase reaction between the three phases lakes place. The three phases are then represented by three points of a straight line and the pressure for the system $l+L+G$ is then a maximum or a minmum.

Let us first take the case mentioned sub 131 when the reaction $r \nsim L+\left(r\right.$ oceurs; the point V^{\prime} then fatls between the points L and 6 as, for instance, in fig. $4(\mathrm{I})$, if in these figures we suppose ℓ_{1} to have coincided with b_{1} and a with b. We then obtain fig. $\overline{5}(\mathbf{l})$
in which the points m_{1}, l, and m correspond with the homonymous points in fig. 7 (l).

If now we suppose tirst that the reaction $f \rightleftarrows L+1$ proceeds from the left to the right with increase in volume, the system $L+t$ will then appear at lower pressures and the systems $f+C$ and $r^{\prime}+G$ at higher ones. Hence, on lowering the pressure, fig. 5 (I) will be converted into lig. $6(1)$ and on increasing the same into tig. $4(\mathrm{I})$, which is in agrement with our previous considerations. As, on increase of pressure. fig. 5 (I) is converted into fig. 4 (I) the pressure for the system $h+L+\left(\begin{array}{r} \\ r\end{array}\right.$ in fig. $5(1)$ is conserquently a minimum.

If we had assumed that the conversion $h \rightleftarrows L+G$ took place from the left to the bight with decrease in rolume, the pressure would be a maximum. Such a change in volume cin only ocenr when the liquid differs but little in composition from l, and when I' melts with contration of volume. If we imagine in fig. 13 (I) the curve $M_{1} m_{1}$ to have suifted so far to the other side of l^{\prime} that M_{1} gets situated at the other side of r, this case will oceur in the system $H^{\prime}+$ liquid $M+$ rapour V_{1}.

Let us now take the case mentioned sub B 2, namely when the reaction $F^{\prime}+L \rightleftarrows\left(\begin{array}{l}\text { takes place, so that the point } G \text { lies between }\end{array}\right.$ the points F and L. This is, for instance the case in fig, \mathscr{y} (I). Let us now assume first that the ration takes place from the left to the right with increase in volmme. The system $F+i$ will then appear at a higher, the systems $F+G$ and $L+G$ at a lower pressure. In agreement with our previous considerations fig. 9 (I) will be converted, on increase in pressure, into fig. 8 (I) and on lowering of the pressure into fig. $10(\mathrm{I})$. As on increase of pressure fig. $9(\mathrm{I})$ is converted into fig. $8(1)$ the pressure for the system $F+L+G_{r}$ in fig. $9(\mathrm{I})$ is a minimum. This is also in harmony with the situation of the points m, m, and F in figs. 11 (I) and 13 (I).

Let us now just take a system $F+L_{1}+G_{1}$ in which L_{1} differs but little from L, and G_{1} but little from $G ;$ this system will then be represented by a triangle situated in the vicinity of the line $F m m_{1}$. As the reaction $F+L \rightleftarrows G$ takes place with increase in rolume, the conversion of $F+L_{1}$ into $F+L_{1}^{\prime}+G^{\prime \prime}$ in the infinitesimally differing system $F+L_{1}+G_{1}$ will take place with increase in volume and the conversion of $H^{\prime}+G_{1}$ into $H^{H}+L_{2}^{\prime}+\left(\dot{x}_{2}\right.$ with decrease in the same. We have noticed previously that, in this case the three-phase triangle must turn in such a manner that, on increase in pressure, the conjugation line solid-vaponr gets in front and that on reduction of passure the conjogation line solid-liquid precedes. This also is in
awnement with tige \& 1 and 9 On lowering the pressure, the lirs firme is converted into the second and we notice that in this combersion both threc-phase triangles turn in such a manner that the compuration line oolid-liquid gets in front.

Ln the case now considered when the reation $r^{\prime}+L \rightleftarrows G^{\prime}$ takes place from the left to the right with increase in volume, the pressure (ann alou te a maximmon ; will elucidate this with a single example.

We take a saturation line of the solid substance F at the pressure $I^{\prime}:$ this is represented in fig. 1 by the curse figh; within this satumation line is situated a vapour region encompassed by a heterogeneous region, of which the liguidum line is drawn and the sapour line dotted.

On lowering the pressure the rapon region expands and at a

Fig. 1.

Fis. こ.
certain pressure P^{\prime}, the saturation line of l and the liquidum line of the heterogeneous region meet eath other in I . There is now formed the firee-phate equilibrium solid $F+$ lignid. $I f+$ rapour H_{2} represented by three points of a straight line. whereas the vapour phase M_{1} lics hetween the poims F and $I V$. Hence, the reation is $F+L \leftrightarrows C^{r}$ manely from the left to the right with increase of volume, whilst the presisure l_{M} is a maximum.

At a pressure somewhat lower than I_{1} is now formed a diagram ats in fig. 2 in which, howerer, we must imagine the only partially drawn sathation line uf and by of I^{\prime} to be closed. The vapour
 $a_{1} d_{1} b_{1}$ have been drawn only to the extent where they represent stable conditions.

We have noticed previonsly that from the system $i+1+$ f ${ }^{2}$, which exists at the pressure $P^{\prime} .1$, wre formed, on inerease in pressure, the systems $L^{+}+i$ and $L+1 ;$ we find this condiment here also in figs. 1 and 2. We also notice, in agreement will the mate given above that the two three-phase triangles fion and Fibll tum, on reduction in pressure, in such a mamer that the conjugation line solid-liguid gets in front; on increase of pressure the conjugation line solid-gas precedes.

I must leave the consideration of the other cases to the reader.
In our previous considerations we have compared the course of the saturation- and rapon-saturation lines under their own bapour pressure with the change in solmme that takes place in the eonversion of $H^{\prime}+L$ and of $H^{\prime}+l^{\prime}$ into $l^{\prime}+L^{\prime}+G^{\prime \prime}$. In the same manner we might compare the course of the boiling point-line and the vapour-boiling point line with changes in entropy orcurring in these reactions. Instead of increasing, or decreasing the volume of the systems $L^{+}+L$ and $L^{+}+\left(\frac{1}{r}\right.$ we must either supply, or withdraw, a little heat to, or from the same.

If we distill a ternary liquid at a constant temperature, then, as is well known, the pressure contimously decreases during the distillation. The liguid and the at each moment distillimy vapour proceed along a eurve which we distinguish as the distillation curve of the liquid and of the vapour. We obtain, as is well known, clusters of these distillation curves which emanate from one or more detinite points (the distillation points) and meet in one or more definite points.

If now at the temperature of distillation a solid substance F also oceurs, this can modify the course of the distillation lines; of comrse, not the theoretical but the experimental course.

According to whether the initial and terminal points of the distillation curves are situated within or withoat the saturation line of l under its own vapour pressure, we may now distinguish several eases, of which we will only take a single one.

Let us choose a temperature below the minimum melting point of the solid substance F, so that its saturation line under its own vapour pressure is circumphased. In dig. 3 has heen drawn a part of this saturation line with the point of maximum pressure . $1 / \mathrm{and}$ of minimum pressure m; the dotted curve $. ~ / /_{1} s_{1} \|_{1} h_{1}$ is a patt of the correlated vapour line.

Fig. 3
From the situation of the points h and m it is now evident that the arrows do not, as in the previous figures, indicate here the direction of the increasing pressure. lat that of the decreasing one.

Let us now imagine in dig. 3 to be dawn the distillation carve of a liquid and its conjugated vapour come. It is now evident that if the first does not intersect the saturation line under its own vapour pressure, the second will also not intersect the vapour saturation line and reversedty. We further perceive at once that in this ease the distillation curve will suffer no change owing to the appearance of the solid substance.

When, however, the distillation curve, such as the curve rest v in fig. 3, intersects the saturation line under its own vapour pressure, matters are different; the arrows on this curve rstuv indicate the direction of decreasing pressure, hence also the direction in which the liquid moves doing the distillation. It is now evident that with a point of intersection s of the distillation curve of the liquid and the saturation line of I under its own vapour pressure must correspond a point of intersection $x_{\text {s }}$ of the distillation curve of the vapour and the sapour saturation con se of F under its own vapour pressure. As s_{1} represents the vapour which can be in equilibrium with the liquid \therefore the distillation curve of the liquid must meet the line $s s_{1}$ in s.

If no solid F ocemred, the liquid r would, on distillation, proceed along the curve r st \quad; now however, when it has arrived in s something else takes place. For if we withdraw from the liquid s a small quantity of vapour s, the new liquid will be represented by a point of the line af ; we must then suppose the point a to be situated adjacent to s. The new liquid will now resolve into solid If and the solution "f of the saturation line under its own vapour pressure. The liquid, therefore, does not proceed along the distillation cone stu, but moves, with separation of f, along the saltation
line under its own vapour pressure from stowads a If now we again gencrate a little vapon which san be in equilitninm with the liguid a, therefore the vapom t_{1}, the liguid a moves, with separation of h^{\prime}, along the saturation line under its own vapour pressure in the direction of b.

If, as assumed for the point b in fig. B, the coningation line lignid-vapour the line $h_{2} b$) meets the saturation line under its own vapour pressure in the liquidum point b, then, as we have seen previously, the system $l^{\prime}+L$ is converted, at an infintesimal change in pressure, into $l^{\prime}+l^{\prime}+\left(y^{\prime}\right.$ withont any solid substance either dissolving or crystallising. If, however, we withdraw a lithe more vapour, so that the liquid $/$ is converted into d, l is dissolved and d is converted into lifuid e. Hence, on distillation the liquid s will traverse a part of the saturation curve of h mader its own vapour pressure, first with separation of solid F and afterwards with solution of the same. The point f in which all solid substance has again disap)peared will, as a rule, not coincide with the point u of the distillation curve fitthe Slarting from the point f, the liquid, on contimued distillation, proceeds along a distillation curve fil.

If no solid substance f did oceur the liquid r would, on distillation, traverse the distillation curve pstur' ; as now, however, solid matter F^{F} appears, it first proceeds along come is, then along curve $s b f$ and finally along curve fig. From the foreqoing considerations it follows: if a distillation conve meets the saturation line under its own vapour pressure it proceeds starting from this point of intersection, along a part of the saturation line moder its own vapour pressure and abandons it in amother point along it distillation line which, with regard to the first one, has shifted.

We may also express this as follows: If during the distillation of a liquid a solid substance H separates, the liquid leaves the distillation curve in order to proceed along a part of the saturation line of l^{\prime} under its own vapour pressure. As soon as, on continued distillation, we solid substance l^{\dagger} again disappeass, the liquid again proceeds along it distillation curve which, however, does not coincide with the prolongation of the first. The occurrence of the solid substance has, therefore transfered the liquid to another distillation curve.

Although, as stated above, the appearance of a solid substance generally causes the shifting of a distillation line, yet in some cases no shifting can take place so that the liguid after the disappearance of the solid matter traverses the prolongation of the original distillation curve. This will be the case when the vapour contains only
one of the three eomponents: the distilation conses of the hignid then herome stainh lines, those of rapmat and distillate are reduced 10 a single point.

When a dhatlation erase of a liguad meets the saturation line of $I f$ moler its own vapou presore in the point h, it will nof penetrate within the heterogencous region, but meet this saturation curve in 1,: its bapour distillation enve will then also meet the vapour saturation rowe

Amone all distillation eumes intersecting the saturation line of f under its own vapone pressure there is one that hehaves in a partiCobar mamer: it is the one that intersects the saturation line in the point $/ / /$ and, therefore, meets the line $/ / / / /$, in $/ /$. If we withdraw from the liguid $I /$ a little of the vapour $/ 1 / 2$, I/ will not change its composition, but the readion: liquid I / \rightarrow solid $F+$ vapome . $1 /$ will appear. If mow the rapom is contimously distibed off, the liguid $/ /$ will disappear without change in pressure and only the solid substance f will remath. The distlation come arriving in $1 /$, therefore, remmates in this point without proceeding any further alomg the sathation come of f.

What follows next is dependent on the temperature; this, as we have presuppoed has been chosen lower than the minimmm melting point of F. We now can distinguish wo caves.

1. The distiltation temperature is higher than the maximum sublimation point of F. The saturation curve and the vapour saturation cone of F under their own vapour presume then possess a form like in tig. i (I), the isothermicoisobarice diagrams are as shown in figs. I (I)-6(I).

After, on distillation. the higuid ./ has disappeared and only the solid substance F remans, the pressure conforming with tig. 2 (I) will fall to the pressure to which fig. 5 (I) applies. At this pressure, the reaction solid $l^{\prime} \rightleftarrows$ liquid $m+$ vapour $m r_{1}$ now oceurs. If now the vapour is contmually driven off, the solid substance f will disappear and the liquid m will remain, withont any change in pressure. On further distillation. the liguid transverses the distillation curve, starting from point m in tig. 3 .

The liguid. Herefore, procects tirat along a distillation curve terminating, at the pressure I_{Δ} in the point $d /$, and then along another one starting from m at the pressure P_{m}; at the transfer of the liquid from the one to the other distillation curve, hence, bolween the pressures P_{m} and I_{m}, it is eonverted into the solid substance P.
2. The distilation temperature is lower than the maximum sublimation
 their own vapourpressure then have a form as in lig. I (I), the isonhermioisobatic diagrams as in figs. $1(1), 2(1), 31,4(1), 8(1), 9(1)$ and $10(1)$.

As soon, as on distillation, the liguid I/ has disappeared and, consequently, only the solid substance f remains, the pressure conforming with fig. $2(I)$ will fall. If now, however, the pressure $/{ }_{m}$, which now conforms with fig. B) (I) hats been attaned, the solid matler h will not be capable of splitting, as in the previous case. On further lowering of the pressure, lig. 10 is formed; hence, the substance if will only appear in the solid condition. On further decrease in pressure the vapour saturation curve of fig. 10 (I , undergoes contraction and finally, at a definite pressure, coincides with the point F^{\prime}. The solid substance l ' 'an now be in equilibrium with rapour of the composition r^{\prime}, or in other words: the substance I sublimes.

Hence, the liquid first traverses, at a pressure l^{\prime}, ${ }^{\text {a }}$, distillation curve terminating in the point M, where it is converted into the solid sulstance F^{\prime}, which at a further lowering of the pressure sublimes at a detinite pressure. The distillation of the liquid is, therefore, finally changed into a sublimation of the solid substance F.

We will now investipate what happens when we distill a liquid saturated with a solid substance F. We take a liquids (tig. 3) and the solid substance l^{\prime} in such proportion that the complex is represented by point K of the line $s L^{*}$. We now withdraw from this complex K a little vapour s_{1}, which can be in equilibrium with this complex; the complex now arrives in $/$ and hence, is resolved into liquid $a+$ solid H^{\prime}. The little straight line k is now an element of the curve which the complex K will traverse on distillation; we will call this curve the complex distillation curve. From the deduction of this curve it now follows at once that the tangent drawn in the point K at the complex distillation curve which passes through this point, passes throngh the point r_{1}. Further, it is evident that this applies to all complexes situated on the line Fs. From this follows: in order to find the direction of the tangent to a complex distillation curve in a point (k) we should lake the three-phase triangle, whose conjugation line solid-liquid (s) passes through this point K. The line which comnets this point ($/ \boldsymbol{k}$) with the rapour point $\left(s_{1}\right)$ of the threephase triangle is the looked for tament. We may express this also as follows: in the point of intersection of a comples distillation edure with a conjugation line solid-liguid the tamgent to this curve passes through the vapour point eorrelated to that conjugation line.

From this follows: if we intersect a cluster of complex distillation curves by a conjugation lime solid-liguid, the tangents in these points of intersection form a cluster of straight lines which all pass through the 'apour point appertaining to that conjugation line. Further, it is evident that the vapour distillation curve representing the vapour distilling over at each moment is the vapour saturation line of F under its own sapour pressure.

We can now demonstrate that a complex distillation curve furns in each point its convex side towards the correlated vapour point and that a detinite point will be a point of intlexion if the tangent Which passes through this point meets the vapour saturation line of F^{\prime} under its own vapour pressure and if this latter point of contact is not itself a point of inflexion.

If we intersect a elaster of complex distillation curves by a conjugation line solid-liquid, then as we have seen previousty, the langents in these points of intersection all pass throngh the vapour point correlated to this conjugation line. If now, in the proximity of this vapour point the vapour saturation curve under its own vapour pressure is situated ontside the threc-phase triangle none of the above mentioned points of intersection will be a point of inflexion.

We can imame a curve transmitted through the points of inflexion of the complex distillation curve, which we will call the point of inflexion curve; this curve may be found in the following manner. We draw to the point X of the vapour saturation line under its own rapour pressure a tangent; the point of intersection of this tangent with the conjugation line solid-liquid appertaining to the point I we will cail S. If now the point I traverses the saturation curse under its own vapour pressure the point is will traverse the looked for point of inflexion eruve.

This point of intlexion curve always passes through the points I_{1} and m_{1} of the vapour saturation curve [Fig. 7 (I), 11 (I), 12 (I) \rfloor and if we can draw through F^{\prime} a datent to this vapour saturation curve also through the point F. For onr purpose, only the part of the point of inflexion curve which is sitnated within the heterogeneous region has ayy significance, that is in so fire as it interseets the conjugation line solid-liquid between the points indicating the solid substance and the liquid.

In the points of intersection of the saturation curve under its own pressure with the point of inflexion eure, the conjugation line liquidvapou meets the sapour saturation curve.

In the proximity of a maximum or a minimum point of the three-
 athe as noticed previonsly, we can disthonish many ceases. From a consideration of these cases apprats the following.

We represent, as betore, the liquid with the maximum pressure by al the correlated vipour by H_{1} the liquid with the minimmon pressure by m and the correlated vapour hy m_{1}. The complex distillation curves have, in the vicinity of the lime lid/ (F'me) a direction about parallel to this line from $/ \operatorname{lowards.~I/m)~or~revernedly~}$ so. If, however, the vapour point $I_{1}\left(m_{1}\right)$ is situated hetween I and I $/(\mathrm{m})$ they proceed from l^{\prime} and $M(\mathrm{~m})$ towinds the point $\|^{\prime}\left(m_{1}\right)$ or reversedly so, and in the vieinity of this point they inflect in

Let us take the case of a distillation temperature lower than the maximum sublimation point of the solid substance F^{\prime}; the saturation line of f under its own vapour pressure and the correlated vapon line then possess a form as in firg. 11 (1). In fig. 4 a path Mellom of this saturation lime has been drawn hut the correlated vapour line hat been omitted. From a consideration of the three-phase triangles we can readily deduce the course of the eomplex saturation curves ; the arows indiate the direction in which the complex moves on distillation. If these complex distillation ("urves are intersected by a straght line passing throngh the point F the tangents and curvatures in these points of intersection must then satisfy the conditions dednced therefor:

Fig. 4.
If in the vicinity of the line $F=m$ we imarine a threephase triangle so that the rapour point is adjarent to m_{1} and the liquidum point adjacent 10 m , we notice that a part of the complex distithation curves mast proceed towards the point F and another part towarts the point m, whilst there is one that, without bending
thwards f, 16 , draws near to the point m_{1}. This is represented by dm. The point b of fig. 4 corresponds with the homonymons one of lis. 3 ; it is. therefore, that point of the saturation line under its own vapour pressure in which the side liquid-gas of the threephase triangle meets this saturation line. The points d and b divide the branch Jhellm of the saturation line under its own vapour pressure into three parts.

On distilling the liguid d a complex $r+L$, is formed which traverses the complex distillation curve lom $_{1}$; the pressure therefore fatls from l_{d} to the minmom pressure I_{m} and the liquid itself traverses the curve $16 m$. As the pressure gets nearer P_{m}, the liquid and the solid substance f^{r} will be left behind more and more in that proportion in which the vapour m, can be formed from them; at the last moments of the distillation we notice the solid matter and the liquid to disappear simultaneously.

Let us now take a liquid c of the branch $\mathrm{M} \cdot \mathrm{l}$. On distillation of this liquid, a complex $r^{\prime}+L$ is formed which traverses the complex distillation curve proceeding from c towards l. The pressure, therefore, falls from P_{c} to the minimum pressure P_{m} and the liquid itself fraverses the branch cbm. The nearer the pressure gets to P_{m} the less liquid will be retained in the complex which finally will practirally consist of the solid substance F onty.

Let us now take a liquid s of the branch db; this on distillation forms a complex $l^{\prime}+L$ which traverses the complex distillation curve sf. Hence, the pressure falls from P_{s} to I_{f} and the liquid itself proceeds along the curve sbef'; the liguid os, therefore, converted into the liquid f at first with separation of solid matter which is then again redissolved.

We notice from this that the point a is a point of demareation and in such a manner that all the liquidum distillation curves which meet the saturation lime under its own vapour pressure between I) and $I /$ do not leave the heterogencous region, whereas those meeting this rurve between d and b abandon that region.

If we take a distillation temperature higher than the maximum sublimation point but lower than the minimum melting point of the substance fre saturation- and vapon-saturation coure under their own vapour pressure will have a form as in fig. 7 (I). All liquidum distillation enres which meet this saturation curve abandon the heterogeneous region. I muct leave the consideration of the other rases to the reader.

Chemistry. - "Equilibria in Thmong Systoms." VII. By Prof. F. A. H. Achmeinemakers.

Up to now we have only considered the orcorrence of a simgle solid substance l; we will now take the case when a seeond solid substance $l^{\prime \prime}$ also appears.

Jet us tirst investigate what happens if a mixture of houn substances F^{\prime} and $F^{\prime \prime}$ is brought together.

If, at a low temperature, we introduce a mixture of the suthitances F^{\prime} and $l^{\prime \prime}$ in an evaluated space, a vapour f^{\prime} is formed eansing the equilibrium $l^{\prime}+l^{\prime \prime}+l i$ to appeatr. The vapom l^{\prime} is of course represented by a point of the line $L^{\prime} l^{\prime \prime}$.

According to the composition of the rapour (i) or in other words according to the position of the three points in regard to eard other, the following reactions can ocem at a supply or withdrawal of heat or at a change in volume, I 'and ' I ' being constant.

1. If the point ${ }^{\prime}{ }^{\prime}$ is situated between l^{\prime} and f^{\prime} the reaction $r^{\prime}+V^{\prime \prime} \rightleftarrows\left({ }^{\prime}\right.$ occurs. Hence, if F^{\prime} and $F^{\prime \prime}$ are placed in an evacuated space a part of each of the solid substances evaporates. We will call this a congruert sublimation.
2. If the point $l^{\prime \prime}$ is situated between $l^{\prime \prime}$ and fo the reaction $^{\prime}$ $H^{\prime} \rightleftarrows H^{\prime}+G$ takes phace. Hence, if both substances are placed in an evacuated space only a part of $h^{\prime \prime}$ will evaporate while solid F^{\prime} is being deposited. The formation of vapour is, therefore, accompanied by a transformation of $l^{\prime \prime}$ into r^{\prime}. We will call this an incongruent or transformation sublimation.
3. If the point F^{\prime} is situated between $F^{\prime \prime}$ and (it the reaction $H \rightleftarrows F^{\prime \prime}+G$ oceurs. This case is quite analogous to that mentioned sub 2. so we call this also an incongruent or transformation sublimation.
4. As a transition case between 1 and 2 or 3 the point (i can also coincide incidentally with $H^{\prime \prime}$ or with h^{\prime}.

At an elevation of temperature, the vapour pressure of the system $l^{\prime}+l^{\prime}+G$ increases when G, of course, alters its composition; hence, in a l^{\prime}, T 'diagram we obtain a curve such as $u^{\prime \prime} D$ of tig. 1 which we will call the sublimation curve of $r^{\prime}+F^{\prime \prime}$. If, between the three phases occurs the reaction mentioned sub 1 we call $i^{\prime \prime} D$ a congruent, if the reaction mentioned sub 2 or 3 lakes place we call $a^{\prime \prime} D$ an incongruent or transformation sublimation curve. It is evident that the one part of a curve may be a congruent and the other part a transformation sublimation curve.

On finther heating the system $l^{\prime}+E^{\prime \prime}+G^{\prime}$ a temperature T_{D}
and its eomelated pressure $l^{\prime} D$ is attained at which an infinitesimal grantity of lignid L is formed. The sublimation emve, therefore, femmintes in a point D of fig. 1 representing the temperature T_{D} and the pressure P_{D} which we will eall the maximum sublimation point of $F^{\prime}+r^{\prime}$. The liquid L which forms in the point D will as a vule not be represented in an x, y-representation, by a point of the line $F^{\prime \prime}$. As, however, the quantity of this liquid L is as get but infinitely small, the vapour corresponding with the point D will still be represented by a point of the line $F^{\prime} F^{\prime}$.

If the temperature is increased still further, still more liquid is formed and the fonr-phase equilibrimm $F+F^{\prime}+L+G$ appears. As, however, a tinite quantity of liquid is now present, L and G must be in opposition in regard to the line $F^{\prime} F^{2}$; only incidentally, L and (it may fall both on this line.

At a constant I 'and T one of the following reactions takes place between the four phases on increase or withdrawal of heat or on a change in volnme.

1. $\quad F+F^{\prime \prime} \leftrightarrows L+A_{i} \quad$ 2. $\quad F^{\prime \prime} \rightleftarrows F+L+G \quad 3 . \quad F \rightleftarrows F^{\prime}+L+G$.

We will call the reaction 1 a congruent reaction, the reactions 2 and 3 incongruent ones. Which of these reactions takes place depends on the sitmation of the four points in regard to each other. As the system $F^{\prime}+F^{\prime}+L+G$ has formed from $F^{\prime}+F^{\prime}$ it is evident that in this four-phase equilibrimm L and $(\dot{r}$ are always present in such proportions that both disappear simultaneously in the above reactions.

Hence by wammo the system $F^{\prime}+F^{\prime}+G$ we have arrived on the formphase line $F^{\prime}+F^{\prime \prime}+L+(i$. As on this line the three components are present in fou phases, this system is a monovariant one, so that to each temperature appertains a definite vapour pressure.

Hence, the four-phase line in a P, T-diagram will be represented by a curve; a part of this curve is represented in fig. 1 by $D S$; we shall see later that it contimes in the points D and S. This colve, as we shall see mects the sublimation curve of $F+F^{\prime}$ in its terminal point D.

We now take a T and ${ }^{\prime}$ at which is formed from $F^{+}+F^{\prime}$ a liquid without rapour, hence the system $F^{\prime}+F^{\prime}+L$. The liquid will then, of course, be represented by a point of the line $F^{\prime} F^{\prime \prime}$. According to the situation of L, in regard to the points F^{\prime} and F^{\prime}, the following reatelions may oceur at a constant P and T on a supply, or withtrawal of heat, or on a change in volume.

1. If the point l. lies between F^{\prime} and J^{\prime} the reaction $F+r^{\prime \prime} \rightleftarrows L$
takes place. The liguid is, therefore formed by the fusion of a para of each of the solid substances. We will call this a comgroment on mutual fusion of $r^{\prime}+i^{\prime \prime}$.
2. If the point $r^{\prime \prime}$ is situated between l^{\prime} and l the reation $H^{\prime} \rightleftarrows I^{\prime}+L$ oceurs. Hence, the liguid is formed becanse a fart of F^{*} melts with separation of I^{\prime}. The formation wh lipuid is thus accompanied with a conversion of $f^{\prime \prime}$ into F. We will call that an incongruent or transformation fusion.
3. If the point l lies between $l^{\prime \prime}$ and L, the reaction $l \longleftrightarrow l^{\prime \prime}+L$, occurs. This ease is quite amalogous to the previous one.

If we change the temperature we must, of course, also change the pressure in order to keep logether the three phases I^{\prime}, $V^{\prime \prime}$, and L. The liquid L then also changes its composition. In a I ', 'I-diagram we thas obtain a eurve like $d^{\prime \prime} S^{\prime}$ in fig. 1 , which we will call the melting point line of $F^{\prime}+L^{\prime \prime}$.

If between the three phases occurs the reaction mentioned sub 1 we call $d^{\prime \prime} S$ a congrnent ol mutual metting point line of $h^{\prime}+F^{\prime \prime}$; if the reaction sub 2 or sub $: 3$ oceurs we call d" S^{\prime} an incongruent melting point line or the transformation melting point line of $f^{\prime \prime}+r^{\prime}$.

We now allow the system $F^{\prime}+l^{\prime \prime}+L$ to traverse the melting point line $d^{\prime \prime} S$ ' in such a direction that the pressure diminishes; at a detinite pressure P_{D} and its correlated temperature T_{D} an infinitely small quantity of vapour will form so that the four-phase equilibrium $H^{\prime}+H^{\prime \prime}+L+G^{\prime}$ again appears. The complex therefore passes from the melting point line on to the four-phase line DS. The melting point line therefore terminates in the point S and, as we shall see presently, comes into contact with the four-phase line in this point. We will call S the minimum melting point, or the meling point of the complex $F^{\prime}+l^{\prime}$ under its own vapour pressure. The vapour G forming in the point s will as a rule, not be represented by a point of the line $I^{\prime} F^{\prime}$, but the liquid I. will, of course, still be represented by such a point.

The sublimation line a" D and the melting point line $S^{\prime} / l^{\prime \prime}$ of the complex $I^{\prime}+I^{\prime \prime}$ are therefore connected with each othor by the part $D S$ of the four-phase curve. The fact that the points I) and S will not, as a rule coincide may be perceived in the following mamer. In the maximum sublimation point the points h^{\prime}, $l^{\prime \prime}$, and l^{\prime}, in the minimum melting point $l^{\prime}, l^{\prime \prime}$, and L are situated on a straight line. Hence, both points will coincide only then when incidentally the four phases of the system $l^{\prime}+l^{\prime \prime}+h+G$ lie on a stratight line.

The course of the sublimation curve, of the four-phase curve and of the melting point line is, as we will see presently, determined
by the relation:

$$
\begin{equation*}
T \frac{d D^{\prime}}{d T}=\frac{\angle W}{\angle I} \tag{1}
\end{equation*}
$$

$\angle I^{-}$is the quantity of heat which must be supplied, $\angle V^{*}$ the change in volume occuring when, between the phases in equilibrinm at a (onstant T 'and P ', a reation takes place in the one or in the other direction.

Let us first consider the sublimation curve a" D. For each of the reations meationed sub $1-3$ taken in such a direction that vapour is formed, $\angle I^{\circ}$ and $\angle V^{\top}$ are positive.

From (1) it thas follows, as drawn in fig. 1, that, at ath elevation of temperature, the sublimation corve must proceed towats higher pressures. The point $/$) lies as well on the sublimation- as on the four-phase curve. As, however, in this point D, the quantity of liquid of the four-phase equilibrimm is still but infinitesimal, $\angle W^{-}$ and $L I^{r}$ are the same for both systems so that the fwo enves must meet in D.

Let us now consider the melting piont line sid". We take each of the reations mentioned sub $1-3$ in such a direction that liguid is formed so that $\angle V^{\prime}$ is positive. At the congruent and incongruent fusion of $E^{\circ}+l^{\prime \prime} \angle V^{\prime}$ may, however, be positive as well as negative. The melting point line can therefore, proceed from S towards the right as well as to the left; in fig. I the tirst ease has been drawn. The fact that the melting point line and the fourphase line meet each other in is follows in the same manner as that given atove for the meeting of the two chrves in D.

In order to deduce formata (1) for the sublimation or the melting point curve, we consider the equilibrimm $F+F^{\prime}+V^{\prime}$ or $F^{\prime}+F^{\prime}+L$. We represent the composition of l^{\prime} by a, β, that of $l^{\prime \prime}$ by $a^{\prime}, \beta^{\prime}$, that of L or G by x, y. We call the volumina of these phases v, v^{\prime} and V^{\prime}, the entropies w, v^{\prime} and $I I$, the thermodynamic potentials 5. 5 and

As I^{\prime} and $F^{\prime \prime}$ are in equilibrium with $L\left(C^{\prime}\right)$ we have:

$$
\begin{align*}
& \ell-(x-\varepsilon) \frac{\partial Z}{\partial x^{r}}-(y-\beta) \frac{\partial Z}{\partial y}=\zeta . \tag{2}\\
& Z-\left(x-a^{\prime}\right) \frac{\partial Z}{\partial x}-\left(,\left(\beta^{\prime}\right) \frac{\partial Z}{\partial y}=\xi^{\prime} .\right. \tag{3}
\end{align*}
$$

From the condition that the three points V^{\prime}, F^{\prime} and $L\left(G^{\prime}\right)$ are shluated on a staight line, follows:

$$
\begin{equation*}
(x-a)\left(y-\beta^{\prime}\right)=\left(x-k^{\prime}\right)(y-\beta) . \tag{4}
\end{equation*}
$$

From these relations between the fom variables x, y, I and 'I' follows:

$$
\begin{align*}
& \{(x-\boldsymbol{t}) r+(y-\beta) s\} d x+\{(x-\boldsymbol{q}) s+(y-\beta) t\} d y=A d I^{\prime}-B d Y \tag{5}\\
& \left\{\left(x-\boldsymbol{a}^{\prime}\right) s+\left(y-\beta^{\prime} t^{\prime} d x+\left\{\left(x-\varepsilon^{\prime}\right) s+\left(y-\beta^{\prime}\right) t\right\} d y=A^{\prime} d P^{\prime}-B^{\prime} d T^{\prime}\right.\right. \tag{6}\\
& \left(B-i^{\prime}\right) d x=\left(t-t^{\prime}\right) d y \tag{7}
\end{align*}
$$

If from this we wish to deduce the relation between dl' and d'T we may divide (5) by (6). In consequence of (4) we get :

$$
\frac{x-a}{x-a^{\prime}}=\begin{gather*}
A d P-B d T^{\prime} \tag{8}\\
A^{\prime} d P^{\prime}-B^{\prime} d T^{\prime}
\end{gather*}
$$

or after reduction :

$$
\begin{equation*}
\frac{d P}{d I^{\prime}}=\frac{\left(a^{\prime}-a\right) H+\left(x-a^{\prime}\right) \eta+(x-a) \eta^{\prime}}{\left(a^{\prime}-a\right) V-\left(x-a^{\prime}\right) v+(x-a) v^{\prime}} \tag{9}
\end{equation*}
$$

which corresponds with formula (1).
Hence, as we have seen above, if we choose the exact conditions, we can compel the complex $F+L^{\prime \prime}$ to traverse the sublimation curve $a^{\prime \prime} D$, the four-phase curve $D S$ and the melting point curve $S l^{\prime \prime}$. We will now investigate which conditions of the complex $F+F^{\prime \prime}$ are represented by points situated outside these curves. We distinguish therein different cases.

1. The complex $I^{\prime}+F^{\prime}$ has a congruent sublimation line, fourphase line and melting point line.

Let us first introduce the complex $F^{\prime}+F^{\prime}$ in a point of the sublimation curve so that $F^{\beta}+F^{\prime}+G$ is formed. From a consideration of what happens on supplying or withdrawing heat or on a change in volume we deduce: at the right of and below the line $a^{\prime \prime} D$ are sitnated the regions $F+G$ and $H^{\prime}+G$, at the left of and above curve $a^{\prime \prime} D$ is situated the region $f+F^{\prime}$.

Acting in a similar manner with points of the other curves we find:
at the left of and above $a^{\prime \prime} D S l^{\prime \prime}$ is situated the region $F+F^{\prime}$. at the left of and below $a^{\prime \prime} D$ are situated the regions $F+G$ and $F^{\prime}+G$ " " " " $, \quad, \quad D S \quad, \quad, \quad, \quad, \quad E^{\top}+L+G$ and $F^{\prime}+L+G+$

Let us enter the region $F+L+G$ from a point of the fourphase curve in a horizontal direction. We then, at a constant pressure, raise the temperature of the system $F+L+G$. The liquid and the vapour of this system then traverse a part of the boiling point and vapour boiling point curve of the substance F.

If we enter the region $h^{\top}+L+G$ from a point of the fourphase curve in a vertical direction we then, at a constant tempera-

Proceedings Royal Acad. Amsterdam. Vol. XV.
tire, lower the pressure of the system $l+L+B$; the liquid and the sapour of this system then traverse a part of the saturation- and vapour saturation curve of the substance F ruder its own vapour pressure.

The same applies il we enter the region $l^{\prime \prime}+L+G$ from a point of the four-phase cure. In order to find the limitation of the different regions we draw in tire 1 the sublimation curve aK, the
 F^{\prime} and the same curses $U^{\prime} K^{\prime}$, $K^{\prime \prime} F^{\prime \prime}$ and $F^{\prime \prime} l^{\prime}$ of the compound $F^{\prime \prime}$. We will assume that F^{*} and $F^{\prime \prime}$ also melt with increase in volume. The curves $F \dot{\theta}$ and $K i$ have the same significance as the homonymons curves in fix. 3 (11 ; the same applies to the curves $F^{\prime \prime} e^{\prime}$ and $K^{\prime \prime} r^{\prime}$. The sfuention now arises: where are these curves situated in regal to the corresponding curves of the complex $F+F^{\prime \prime}$.

Fig. 1.
Let us first take a pressure so high that F and F^{\prime} as well as their complex ${ }^{\prime}+l^{\prime \prime}$ have a melting point. Now, as is well known, the mutual melting point of $F^{\prime}+F^{\prime}$ is situated lower than than of catch of the comments individually. A horizontal line intersecting the three melting point lines must therefore intersect the melting point line of $l^{\prime}+E^{\prime \prime}$ at lower temperature than the two other melting point lines.

In the same mamer we find that a horizontal line which interseds the three sublimation curves must cut those of $l^{\prime}+I^{\prime \prime}$ at a lower temperature than in the case of the two other ones.

Curve "D DSi" must, therefore, be situated in regard to the curves aK゙Pl and $a^{\prime} K^{\prime \prime} F^{\prime \prime} l^{\prime}$ as in lig. 1.

The regions $\quad+L$ and $\mu+L+C$ are separated from each other by means of a corve, where $f+L$ appears in the proximity of an infinitesimal amomnt of vapour. We call this system $R+1+\left(r^{\circ}:\left(r^{\prime}\right.\right.$ signifies here that the other phases can be in equilibrium with a vapour of the composition (i but that only an infintesimal amount of that vapour is present.

If, owing to solution of large quantities of l^{7} in a small quantity of L, the system $H^{\prime}+L+\left(i^{\circ}\right.$ approaches io solid $H^{H}+$ liquid $H^{\prime}+K^{\circ}$ the system $L^{\prime}+L+\left(r^{\circ}\right.$ then approaches the minimum melting point of the substance r.

If from $l+L+G{ }^{\circ}$ the solid substance $l^{\prime \prime}$ is separated, so that the system $F^{\prime}+F^{\prime}+L+G^{10}$ is formed, we find ourselves in the minimum meling point of complex $F+F^{\prime \prime}$.

Hence, the P, T-curve of the system $F+L+\left(i^{\circ}\right.$ proceeds in fig. 1 from S towards F.

In the previous communication IV we have already extensively considered this system $K+K+\left(x^{10}\right.$. The liquid L of this system traverses at an elevation of temperature a straight line passing, in the x, y-representation, through the point l, for instance the line $Z F^{\prime}$ or $Z_{1} F^{\prime}$ in fig. 1 (IV). The I^{\prime}, T curve corresponding with this line is represented in fig. 4 (IV) by curve $Z L^{\prime}$ or $Z_{1} F^{\prime}$. The curve SF must, therefore as a rule come into contact with the melting point line Fid in the point F. In fig. 1 it has been assumed that curve $S F$ corresponds with branch $Z F$ of fig. 4 (IV).

The regions $F^{\prime}+L$ and $L^{\prime}+L+G$ are separated from each other by a curve $F^{\prime \prime}+L+G^{\circ}$; in a similar manner as above we find that this is represented by a curve $S F^{\prime \prime}$. In fig. 1 we have drawn the two curves $S F$ and $S F^{\prime}$ in agreement with branch $Z F$ of fig. 4 (IV); we might have drawn both or one of them also in agreement with branch $Z_{1} F^{7}$ of this figure. The boundary curve of the regions $F^{\prime}+L+G$ and $F^{\prime}+G$ is formed by the system $L^{\prime}+L^{\circ}+G$; that of the regions $F^{\prime}+L+C \frac{1}{r}$ and $F^{\prime}+G^{\prime}$ by the system $I^{\prime \prime}+L^{\circ}+\left(\frac{r}{r} L^{\circ}\right.$ signifies here that the other phases may be in equilibrium with a liquid L, but that only infinitely little of that liguid is present. In an amalogons manner as above we find that the I ', T-curves of these systems are represented in fig. 1 by the curves $S K$ and $S K^{\prime}$. These curves meet in K and K^{\prime} the curves
ad and $a^{\prime} d^{\prime}$. On both curves a point with a maximum pressure and one with a minimum temperature is supposed to ocenr.

Besides the regions whose limitations we know now we find at the right of curve $a^{\prime} l^{\prime}$ also the regions $L+G, L$ and G^{\prime} which, howerer, are not drawn in the figure.

In order to survey the connection of these regions we might draw a representation in space; for this we imagine the composition of the complex $F^{\prime}+F^{\prime}$ to be placed perpendicularly to fig. 1 . Instead of the spacial representation itself we will here consider its sections with planes.

If we place a plane perpendicularly to the concentration-axis we get a P, T-diagram which applies to a definite complex, if we place a plane perpendicularly to the T-axis we get a pressure-concentration diagram which applies to a definite temperature, and if we piace a plane perpendicularly to the l-axis we get a temperature concentration diagram which applies to a definite pressure.

Let us place first a plane, which intersects the three sublimation curves, perpendicularly to the T-axis; we then obtain a section as in fig. 2 in which F and F^{\prime} represent the two compounds F and F^{\prime}. Perpendicularly to this line $F F^{\prime}$ is placed the P-axis.

In order to be able to indicate readily the different regions occurring in this and the following diagrams we will represent:

The liquidum region by L, the vapour region by G, the solid region by $H^{\prime}+r^{\prime \prime}$, the region $E+G$ by $1, H^{\prime}+G$ by $2, F+L$ by $3, F^{\prime}+L$ by $4, L+\left(\dot{b}\right.$ by $5, F+L+G$ by 6 and $F^{\prime}+L+G$ by 7 .

If in fig. 1 we suppose a straight line, which intersects the three sublimation curves, to be drawn parallel to the P-axis, we notice that in fig. 2 the regions $F^{\prime}+F^{\prime}, 1=F+G, 2=F^{\prime}+G$ and the region (r must appear. The points s, s^{\prime} and $s^{\prime \prime}$ represent the sublimation pressures of the solid substances F and F^{\prime} and of their complex $l^{\prime}+l^{\prime \prime}$; the complex, therefore, has a higher sublimation pressure than each of its components by itself.

Fiq. こ.

The curve ss" represents the rapours which can be in equilibrium with solid H^{\prime}, curve $s^{\prime \prime} s^{\prime \prime}$ those which can be in equilibrium with solid F^{\prime}; these curves have in s and s^{\prime} a horizontal tangent.

We now take a complex $F^{\prime}+F^{\prime \prime}$ of the composition c, so that the complex itself is represented by a point of the line $c c^{\prime}$. As this line intersects the regions $l^{\prime}+l^{\prime \prime}, 2$ and G, then according to the pressure chosen, there
is formed either $F^{\prime}+F^{\prime}$ or $F^{\prime}+C^{\prime}$ or ($\dot{\prime}$. If the complex has surd a composition that the line $c c^{\prime}$ intersects the regions $l^{\prime}+l^{\prime \prime}, 1$ and (\dot{x}^{\prime} either l^{\prime} - $l^{\prime \prime}$ or $l^{\prime}+l^{\prime}$ or ${ }^{\prime} \dot{\prime}$ is formed.

Let us now take a pressure concentration diagram for a temperature higher than the maximum sublimation point, but lower than the minimum melting point of the complex $F^{\prime}+F^{\prime \prime}$. If in fig. 1 we draw a vertical line which intersects curve $D S$ we notice that this diagram may be represented by fig. 3.

Besides the regions $G^{\prime}, l^{\prime}+I^{\prime \prime}, 1$ and 2 which appear already in fig. 2 we also find here the regions:

$$
5=L+G, \quad 6=F+L+G \text { and } 7=F^{\prime}+L+G .
$$

If from $l^{\prime}+h^{\prime \prime}$ is formed one of the systems $l^{\prime}, l^{\prime}+l_{r}$ or $r^{\prime \prime}+(i$, the vapour (i always has a composition that can be represented by a point of fig. 3 ; the same applies to the liquid L, if from $R^{2}+F^{\prime \prime}$ is formed one of the systems $L, H^{\prime}+L$ or $r^{\prime \prime}+L$.

If, however, $L+G$ is formed as in the systems $L+\left(r, H^{\prime}+L+G\right.$ and $l^{\prime}+L+G$, such, as we have seen previously, is no longer the case and neither L nor G can be represented by a point of the diagram.

Let us take for example a complex K (not drawn in the figure); this complex is resolved into a liguid L and a gas G, both situated outside the plane of fig. 3 . If L is situated above this plane, Glies below the same and reversedly so and in such a mamner that their conjugation line intersects the region 5 in the point K.

If we take a complex $K^{\prime \prime}$ within the region $6(7)$, we then suppose this to be resolved first into $F\left(F^{\prime \prime}\right)$ and a complex K of $L+G$; the complex K is, of course, represented by a point of fig. 3. To this complex now applies the same as to the complex K within the region 5 .

Fig. 3.

Hence, if from $h^{\prime}+F^{\prime}$ is formed a system in which $L+G$ appears, the complex $L+G$ is certainly represented by a point of fig. 3 but L, and G separately are not; one of these phases lies in front of, the other behind the plane of fig. 3. By way of distinction from the other regions, the regions 5,6 , and 7 are dotted; we may imagine that these points represent the points of intersection of fig. 3 with the conjugation lines liquid-gas. We have noticed previously that in some systems occurs only an infinitesimal quantity of L or G; of a similar complex $L^{0}+G$ or $L+G^{\circ}$ the gas is
represented by a point of the diagram in the first ease; the liquid in the second case.

The line of demareation of the regions 1 and firepresents the vapours which can be in equilibrium with solid F, that of the regions 2 and (those which can be in equilibrinm with solid F°. The line of demareation of the reqions 5 and is 2 represents the equiliturim $L^{\circ}+(i$, that of the regions 5 and $i s$ the complex $L+G$ of the system $F+L+G$ and that of the regions ${ }^{2}$ and 7 this same complex of the system $l^{\prime \prime}+L+1 \%$.

If in agreement with fig. 1 we take a temperature higher than the minimum melting point S of the complex $V^{\prime}+F^{\prime \prime}$ and lower than the maximum sublimation point K^{\prime} of the substance $F^{\prime \prime}$ we obtain a diagram as in fig. 4. If in agrement with fig. 1 we take a temperature higher than the maximum sublimation point K of the substance I^{\prime} and lower than the minimum melturpoint $F^{\prime \prime}$ of the com-

pound F^{\prime} we obtain a diagram as in fig. 5. If finally we take a temperature higher than the minimum melting point f of the compound F we obtain a diagram as in fig. 6 .

Between the diagrams firs. 2-6 exist different transition forms; we must also consider the possibility that, in lig. 1, we can draw lines parallel to the P-axis which eut the curves $D K$, $D K^{\prime \prime}, S F$ and $S H^{\prime \prime}$ in two points. We will not, however, diseuss here these transition forms.

When deducing the diagrams it has also been assumed that the points $D, K^{\prime \prime}, K, S, l^{\prime \prime}$ and H^{\prime} are situated in regard to each other as drawn in fig. 1. But this may be different.

As a rule, the points S, L^{\prime}, and F^{\prime} and atso the points D, K^{\prime} and K will bie in regard to each other as assmmed in lig. 1. The minimum melting point of the complex $A^{\prime}+r^{\prime \prime}$ is therefore, as a
rule situated at a lower temperature and pressure than the minimum melting point of each of the substances l^{\prime} and r^{2} separately.

For in fig. 1 we have assumed that corve sfe corresponds with branch $\%$ of fig. 4 (IV) and that S is situated on the rising part of this branch and is removed far from the point with the maximum pressure. If, however, s' lies on this branch somerwere between the point with the maximum pressure and that with the maximmontemperature the curve $S f$ in fig. 1 no longer exhibits a pressure maximum but only a temperature maximum; the pressure in the mimimum melting point of $\mu^{\prime}+l^{\prime \prime}$ is then higher than that in the minimum melting point of r.

If S is situated on branch $Z F$ somewhere between the point with maximum temperature and the point H^{\prime}, curve $S H^{\prime}$ in fig. 1 proceeds from S towards lower temperatures and pressures. In that case not only the pressure but also the temperature of the minimmm melting point $l^{\prime}+F^{\prime \prime}$ is situated higher than that of F^{\prime}.

From our previons considerations as to curve $/ 2 F L_{1}$ of fig. 4 (IV) it follows that the latter case can oceur only then when the liquid formed at the minimum melting point of $I^{\prime}+F^{\prime \prime}$ differs but little in composition from the substance r.

From these considerations follows: at a constant pressure the melting point of the complex $I^{\prime}+I^{\prime \prime}$ is always lower than that of each of the substances F^{\prime} and $l^{\prime \prime}$ separately. As a rule the minimum melting point of $l^{\prime}+l^{\prime \prime}$ is also lower than that of each of the compounds individually. By way of exception, the minimum melting point of $I^{\prime}+H^{\prime \prime}$ may, however, be somewhat higher than that of one or even of both of the substances I^{\prime} and F^{\prime}.

We shall see later that in this case at the temperature of the minimum melting point of $l^{\prime}+l^{\prime \prime}$, the saturation curve of F^{\prime} or $r^{\prime \prime}$ under its own rapour pressure is exphased.

A similar consideration applies to the maximum sublimation points of the complex $l^{\prime}+l^{\prime \prime}$ and the compounds l^{\prime} and $l^{\prime \prime}$.

Let us now bring a complex $\mu^{\prime}+l^{\prime \prime}$ of a detinite composition c_{0} to a temperature T_{0} and a pressure P_{0}. In order to investigate in which of the 10 possible conditions this complex will now occur we take a pressure concentration diagram of the temperature T_{0} and place in this the concentration c_{0} and the pressure P_{0} of the complex. If now the figurating point lies for instance in region $7 . L^{\prime \prime}+1+C$ is formed, if in region $3, W^{\prime}+L$ is formed, if it lies in region G^{\prime} it is converted wholly into gas, in region L wholly into liquid, ete.

Besides the pressure concentration diagrams considered above we may also deduce from fig. 1 , or its corresponding spacial represen-

Lation, temperature concentration diayrams for a complex of a definite composition ; I will, however, not go into this any further.
2. The complex $F+r^{v}$ has an incongruent sublimation line, fourphase line, and melting point line.

We will assume that both liquid and vapour have such a composition that on the sublimation curve $a^{\prime \prime} D$ (fig. 1) oceurs the reaction $F^{\prime \prime} \rightleftarrows F^{\prime}+G$, on the four-phase curve. $D S$ the reaction $F^{\prime} \rightleftarrows V^{\prime}+L+G$ and on the melting point curve Sol the reaction $L^{\prime \prime} \leftrightarrows L^{\prime}+L$. Hence if P^{\prime} is placed in an evacuated space and if gas is generated, then according to the capacity of this space $F^{\gamma}+F^{\gamma}+G$ or $F^{\prime}+G$ is formed or merely a vapour G of the composition F^{\prime}; if liquid and vapour are generated $F^{\prime}+F^{\prime}+L+G$ is formed, or $F+L+G$, or $L+G$; if liguid is generated $L^{\prime}+L^{\prime \prime}+L$ is formed or $F+L$ or merely a liquid of the composition $F^{\prime \prime}$.

From $I^{\prime \prime}$ according to the conditions chosen, one of the complexes $F+H^{\prime}+G, F+G, G, H^{\prime}+G, F^{\prime}+F^{\prime}+L+G, H_{r}+L+G_{0}$, $L+\left(\frac{r}{r}, F^{\prime}+F^{\prime}+L, F+L\right.$ or L will form or else the compound $I^{\prime \prime}$ may remain unchanged. If only L or $(\dot{r}$ is formed these will, of course have the same composition as the compound $l^{\prime \prime}$. Hence, we can never obtain from the compound F^{\prime} one of the complexes $r^{\prime \prime}+\left(r^{\prime \prime}, l^{\prime \prime}+L+G\right.$ or $r^{\prime \prime}+L$ unless these appear in a metastable condition.

In fig. 1 all curves relating only to the compound $F^{\prime \prime}\left(u^{\prime} K^{\prime}, K^{\prime \prime} F^{\prime \prime}\right.$, $F^{\prime} l^{\prime} F^{\prime} e^{\prime}$ and $K^{\prime} f^{\prime}$) and the regions encompassed by them, therefore represent only metastable conditions of the compound $F^{\prime \prime}$; hence, they cannot be realised in the stable condition. If, therefore, the compound F^{\prime} is introduced into an evacuated space it will not occur in the conditions which correspont with the P, T-diagram of $r^{\prime \prime}$, but with those corresponding with the P, T-diagram of the complex $l^{\prime}+F^{\prime}$.

The terminal point D of the sublimation curve $a^{\prime \prime} D$ is here not only the highest sublimation point of the complex $F^{7}+F^{\prime \prime}$, but it also represents the highest pressure at which the conversion of $F^{\prime \prime}$ into I^{r} takes place by the side of gas; the initial point S of the melting point curve $S d^{\prime \prime}$ is here not only the lowest melting point of the complex $l^{\prime}+l^{\prime \prime}$, but represents also the lowest pressure at which the conversion of $F^{\prime \prime}$ into F^{\prime} takes place in presence of liquid.

From a consideration of what happens with the complex $I+F^{\prime}$ on supply or withdrawal of heat or on a change in volume we deduce:

At the loft of and above $\|^{\prime \prime}$ D) Sid" is situated the region $l^{\prime \prime}+I^{\prime \prime}$

These regions are, therefore, situated, with regard to the curve $\left.a^{\prime \prime} D\right) S l^{\prime \prime}$, in the same manner as in tig. 1 . It is also evident therefrom that in the l^{\prime}, T-diagram the regions $l^{\prime \prime}+l i, l^{\prime \prime}+l+l i$ and $L^{\prime \prime}+L$ are wanting.

In order to survey the comnection of these regions we might draw a representation in space by now also placing perpendicularly to fig. 1 the composition of the complex $l^{\prime}+l^{\prime \prime}$. From this spacial representation we might then deduce the pressure concentration the temperature concentration and the P', I'diagrams for definite concentrations. We will, however, not go into this matter any further just now.
3. Some other cases.

Up to now, we have supposed that F and F^{\prime} melt with increase in volume and that this is also the case with the congruent and incongruent melting of the complex $F^{\prime}+F^{\prime \prime}$; in agreement therewith, the temperature on each of the three melting point curves in fig. 1 increases with elevation of pressure.

We now sce at once that there are many cases to be distinguished; the reader himself can easily introduce the necessary alterations.

Further, we have supposed sub 1 that in each point of the curve $a^{\prime \prime} D S d^{\prime}$ occurs a congruent reaction and sub 2 that in each point of this curve an incongraent reaction appears. It is evident that in this respect also many cases may be distinguished of which I will briefly mention a few.

We imagine on the sublimationcurve a point l; on the part $a^{\prime \prime} l$ occurs, between the phases of the complex $F^{\prime}+l^{\prime \prime}+G$, the congruent reaction $F^{\prime \prime}+H^{\prime} \rightleftarrows(i$; on the part $l D$ the incongrment reaction $F^{\prime} \rightleftarrows F+G$. In the point l itself the compound F will then take no part in the reaction but the reaction $H^{\prime \prime} \rightleftarrows G^{*}$ takes place in which G has the same composition as $L^{\prime \prime}$.

Hence, in the point l occurs the complex $F+F^{\prime}+$ vapour F^{\prime}; in l therefore, also exists the complex $l^{\prime \prime}+$ vapour $l^{\prime \prime}$. Irom this follows that $/$ is not only a point of the sublimation curve a" 1) but also of the sublimation curve $a^{\prime} K^{\prime \prime}$.

Now, the direction of these curves in each point, therefore also in l is determined by $T \frac{d P}{d T}=\frac{\Delta W}{\Delta V}$. As, however in the point l the reaction in the two systems $F^{\prime}+l^{\prime}+$ vapour I^{\prime} and $l^{\prime \prime}+$ vapour
F^{\prime} is the same (namely, $F^{\prime \prime} \nleftarrow$ vapom $\left.F^{\prime}\right) \subset I I^{\prime}$ and $\triangle V^{*}$ are also the same fion hoth sustems. The eurves $a^{\prime \prime} D$) and $a^{\prime} h^{\prime \prime}$ must, therefore meet in the P. Th-dianram in the point 1 .

I conrepmoding property hodds when a corresponding point I is sitnated on the fourphase corve, or on the melting point curve of the "momblex $r+r^{\prime \prime}$.

Hence, if the sublimation line, the four-phave line or the melting point line of the complex $F^{\prime}+F^{\prime \prime}$ is in a part a congruent and in a part a transition curve, the conve of the complex in the P 'T-diaIram will meet in its transition point the corresponding curve of that compoum which is being conserted.

If there are two transition points, many cases may present themselves, according to their sitmation, the compond converted ete., which we will not disenss here any further.

> (To be comtinued).

Chemistry. - "The system sorliun sulphete manganous sulphate and water at 35°). By Prof. F, A. II. Schrenemakers and 1). J. vis Proone.

In this system oceur as solid phases, which can be in equilibrium at 35° with saturated solutions: anhydrons $\left.\mathrm{Na}_{2} \mathrm{SO}\right)_{4}$, the hydrate Mnson, $\mathrm{H}_{2}(\mathrm{O}$ and the two anhydrous double salts:

$$
\mathrm{D}_{0.10}=\left(\mathrm{MnSO}_{4} \mathrm{SO}_{4}\right)_{3} \cdot\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{10} \text { and } \mathrm{D}_{1.3}=\mathrm{MnSO}_{4} \cdot\left(\mathrm{Na}_{3} \mathrm{SO}_{4}\right)_{3}
$$

The double satis previonsly dessribed:

$$
\left.\mathrm{MnSO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}\right)_{4}, 2 \mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{MnSO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot+\mathrm{H}_{2} \mathrm{O}
$$

have not been found by us, whereas on the other hand those now moticed have not been deseribed up to the present. Moreover, the acenate preparation and solubility of the salts previonsly described are but insufficiently known, so that it is difficult to decide whether these are perhaps metastable or whether the presence of two metastable salts was, perhaps, due to accident.

The equilibria occurring at 35° are indicated schematically in the figure; the two doulle salts are represented by the points $\mathrm{D}_{9.10}$ and $\mathrm{D}_{1.3}$, the salt MnsO M_{4}. $\mathrm{H}_{2} \mathrm{O}$ is represented by the point Mn_{4}. The isotherm ronsists of four branches, namely
${ }^{1}$) Mahgace and Gelger, A. Min. [5] 9. 15. Mag. Pham. 112%.

$$
\begin{aligned}
& \text { ab the saturation line of } \mathrm{Na}_{2} \text { SO } \\
& \text { be .. ,. I } \mathrm{l}_{13} \\
& \text { col, .. I). } \\
& \text { (le Mn. M1, H. H }
\end{aligned}
$$

The exact position of these trathene rath he drawn wilh the aill of the determinations recorded in bathe I

T.ABLE 1.

Composition in ${ }^{\circ}$ " by weight of the solntoms satmatad at 35° and of the residues.

Solution		Residue		Solid plaase
${ }_{0}{ }_{0} \mathrm{MnSO}_{4}$	${ }^{0}{ }_{0} \mathrm{Na}_{2} \mathrm{SO}_{4}$	${ }^{0} \mathrm{MnSSO}_{4}$	${ }^{0}{ }_{0} \mathrm{Na}_{2} \mathrm{SO}_{3}$	
39.45	0	-	-	$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
33.92	5.23	43.84	4.50	"
33.06	7.97	50.85	23.22	$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{910}$
32.76	7.71	49.35	14.71	"
32.92	7.42	43.49	7.76	"
31.05	9.20	39.21	28.73	D_{310}
27.67	10.76	33.44	21.81	"
22.14	14.28	37.44	35.46	"
14.58	20.01	31.06	35.50	"
13.96	21.91	24.51	40.65	$\mathrm{D}_{310} \div \mathrm{D}_{13}$
12.19	22.49	18.63	47.18	D_{1-3}
10.45	23.41	18.40	49.53	"
7.43	26.58	18.53	55.45	"
5.69	29.31	17.02	55.00	"
5.11	30.52	9.11	61.58	$\mathrm{D}_{1.3}-\mathrm{Na}_{2} \mathrm{SO}_{4}$
2.96	31.33	1.46	67.40	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
0	33	-	-	"

From the table it is shown that the composition of the solution satmated with $\mathrm{MnSo}_{4} . \mathrm{H}_{2}()+\mathrm{I}_{910}$ has been determined three times.

In order to be able to deduce the emposition of the solid sub-
stances with which the solutions are soturated, the composition of such a solution has been determined and in addition that of the corvelated residue.

As shown in the fable, four solutions of branch $c d$ and their correlated residues have been determined besides the two terminal points; if these are introduced into the figure and the conjugation lines are drawn, these intersect the side $\mathrm{MnSO}_{4}-\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a point indicating 48.89% of $\mathrm{Mn}^{\circ} \mathrm{SO}_{4}$ and consequently 51.11% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The double salt $\mathrm{Mn} \mathrm{SO}_{4}$. Na2 SO_{4} contans, however, 51.53% of $\mathrm{Mn} \mathrm{SO})_{4}$, therefore, 48.47% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, so that the solid substance with which the solutions of branch cel are saturated cannot be the double salt $\mathrm{MnSO}_{4} . \mathrm{Na}_{2} \mathrm{SO}_{4}$ or one of its hydrates. If from the composition ($\%$ by weight) of the point of intersection we calculate the molecular composition we find: $\left.(\operatorname{Mn~SO})_{4}\right)_{9}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{10}=\mathrm{D}_{9.10}$.

As shown in the table, four solutions of branch be and their correlated residues have been determined besides the two terminal points b and c; these four conjugation lines intersect the side Mn $\mathrm{SO}_{4}-\mathrm{Na}_{2} \mathrm{SO}_{4}$ in a point indicating the composition of the double salt: MnSO_{4} $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)_{3}=\mathrm{D}_{13}$. This donble salt contains 26.16% of Mn SO 4 and consequently 73.84% of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

The behaviour of both double saits in regard to water is shown at once in the figure if we connect therein the apex IV with the points $\mathrm{D}_{1.3}$ and $\mathrm{D}_{9.10}$. As the line W. $\mathrm{D}_{1.3}$ intersects the curve be and the line W. D. ${ }^{2} 10$ the curve ch, it is evident that at 35° both double calts are soluble in water without decomposition.

Botany. - "On intratital precipilates". By Prof. C. vin Wissemang. (Commonicated by Prof. Motid.).
(Communicated in the meeting of February 29,1913).
The precipitates caused by basic substances in living plant cells have long attracted the attention of investigators and the literature on this subject is already voluminous. Chardes Darwis was the first to investigate these precipitates. He ${ }^{1}$) first mentions the phenomenon in his work on insectivorons plants, and calls it aggregation. As de Vries ${ }^{2}$) has pointed out, Darwin includes two different phenomena under this name: in the first place, the movements which he discovered in the protoplasm of the cells of the glands of Drosera rotundifolia and other insectivorons plants, movements which occur whenever stimulation causes an increased secretion, and in the second place the precipitates which occur in the protoplasm when ammonium carbonate is used as a stimulus.

As Ch. Darwin ${ }^{3}$) has shown, precipitates with ammonium carbonate and with ammonia are also formed in many other cases in living plant cells. He stated that the precipitates no longer occur when the preparations are heated in water for 2 to 3 minutes to the boiling point and on this account he was inclined to consider the reaction as a vital one. With regard to the chemical nature and physiological significance of the substance of which the precipitates are composed Darwin expressed himself very cantiously. He supposed that they consist of protein and considered that we have to deal with an excretion product. He concluded his last-mentioned paper as follows: "But I hope that some one better fitted than I am, from possessing much more chemical and histological knowledge, may be induced to investigate the whole subject". From this it follows that Darmin may have thought that another explanation of the phenomenon he had discovered was also possible.

Fr. Darwin ${ }^{4}$) defends his father's views, as far as the chemical nature of the precipitate is concerned, which ammonium carbonate produces in the tentacles of Drosera rotundifolia. De Vruss ${ }^{5}$) is

[^91]abon of the opinion that the precipitate belongs to the group of the protems. as far ats beharion towards reagents is concerned.

The precipitates cansed by ammonium carbonate in the cell-sap of sphogrta and of other plants, have also been imestigated by Prepter. In his opinion they are composed of protein tamate and wive reactions hoth with proten- and with tamin-reagents.

Low and bokorsy ${ }^{2}$) have written numerons papers on the suhjeet of probintation in living phant cells hovarions basie sutrances. In theo publications, the same points generally have been stated, so that they can here he deatt with together.

In the opmion of these two invertigators the precipitates whicin have been cansed in the cells by ammonimm carbonate, antipyrine and caffeine consist of active protein. The bodies of which the precipitates are composed, calleif by these writers proteosomes, can be formed both in the protoplatsm athe in the cell-sap. According to Lons and Bokorsy the formation of proteosomes is a real vital reaction. When the cells have been killed, the reagents mentioned camot any longer bring about the phenomenon, becanse the active protein has been changed into passive protein.

The wo anthors describe pecoliarities of the precipitates and mention positive results which they obtained with varions protein reagents. The precipitates are stated to be composed either exclusively of active protein or they contain also other substances, such as tamin. but it is emphatically derlated in this connection, that the admixture of other substances is "mmesentich".

1) W. Pfeffer, Leber Aufnahme von Anilinfarben in lebenden Zellen. Untersuchungen aus dem botan. Jnslitut 24 Tübingen. 2. Bd. 1886-1888. p. 239 ff .
2) O. Loew und Th. Bokorsy, Ueber das Vorkommen von activem Alhumin im Zellsaft und dessen Ausscheidung in Körnchen durch Basen. Bot. Zeit. 55. Jahrg. 1887. p. 849. - Ueber das Verhatten von Phanzenzellen zu stark verdünnter alkalischer Silberlösugg. Bot. Centralblatt. 10. Johng. 1859. XXXVHI. Bd. p. 581 and 614. XXXIN. Bd. p. 369. XL. Bel. p. 161 and 194. - Versuche über aktives Eiweiss für Vorlesung und Praktikum. Biologisches Centralklatt. 1891. XI. p. ̄. Zur Chemie der Proteosomen. Flora. 1s92. Lergänzungsb. p. 117. - Aktives Eiweiss und Tanmin in Pfanzenzellen. Flora. (CI. 19i1. p. 113-116. Autoreferat. Botan. Cientralblatt. 32. Jahrg. 1911. I. Habbahr. Bil. 116. 1911. p. 361.

Th. Bukonsy, Neup Uatersuchungen über den Vorgang der Silberabscheidung durch actives illumin. Jahrb. F. wiss. But. XVIII. Bd. 1857. p. 192. - Ueber die Eirwirkung basischer Stoffe auf das lebende Protoplasma. 1. c. Bd. XIX. 1888. p. 206-290. - Ueber Aggregation, 1. c. Bu. XX. 1889. p. 427. - Zur Kenntniss des Cetoplasmas. Ber. d. 1. hot. Gesellsch. Bd. Vill. 1890. 1. 101. - Zur Protevsomenbildung in den Blätern der Crassulaceen. I. c. Bd. X. 1892. p. 619. Ueber das Yorkommen des Gethstofles im Phanzenreiche und seine Beziehung zum activen Albumin. Chemiker-Leit. 1596. No. 103. p. 1022.

The views of Loww and Boworsy hat preedpitates eansed in living plant-cells by ammonimm (arbonate, ammonia, antipyrine, caffeine and other basie substances are protein precipitates have been conterted by Ar Klereker ${ }^{1}$), Klema ${ }^{2}$) and ('zamsk ${ }^{3}$). All these consider that the precipitates are in reality damin precipitates. On treating these and the cell-sap with protein reagents they alwass obtaned nerative results, while on the other hand bamin reagents wave positive ones.

It is worlhy of notice that Kteme in connection with his experimentwith methylene-bhe regards tammin as ofeondary importance in the ease of spirogyra. Here amother as yet mknown substance might canse the precipitate.

Czapsk states that the precipitates may sometimes lake up other substances, such as colouring-matter from the cell-sap) and lipoids. Also, in spite of the negative results of experimental investigation, he thinks that the precipitates sometimes may contain protein substances, becanse the latter occurs in the cells.

There is a divergence of opinion between the last-mentioned investigators as to the place where the precipitates occur. Ap Klarekra holds that they occur in the cell-sap. Klemm thinks that detailed study will probably show more and more, that they are formed exclusively in the cell-sap and not in the protoplasm or in both, as Bokorny wrongly asserts for the Crassulaceate. On the other hand Caaper believes, that they can occur in the cell-sap and in the cytoplasm as, inter alia, may be the case in the leaf of Echevoria.

In 1897 an interesting investigation by Overtox ${ }^{4}$) was published. He experimented on Spirogyra with ammonia, amines, eaffeine, pric dine, quinoline, piperidine, and alkaloids. He has no doubt at all that the precipitates which are found in the cell-sap are compounds of tamnin with the above substances. He describes in detail the phenomena which are brought about by solutions of caffeine of different strength, namely, when successively stronger or weaker solutions are added. In explanation it is said that the compound of tannin and caffeine are in a condition of hydrolytic dissociation.

[^92]Shortly before the appearance of Czaper's publication quoted above $1^{\text {² }}$ made a prelminary communication on the demonstration of tamin in the living plant and on its physiological significance. While - eathehing for a method of studying the physiological signiticance of tamin in spirorgra my attention was also drawn to antipyrine and calleine, substances which had not then been used for that purpose.

Like (overtos I described the precipitates as tannin precipitates and have never for a moment thought of regarding them as protein previpitates. All the results were in agreement with the view that they were tamin precipitates. In the paper referred to above I drew attention to the fact that they were earlier described erroneously by Loew and Bokonsy ${ }^{2}$, as protein precipitates. To this these authors ${ }^{2}$) soon replied.

In comection with the various views on the chemical nature of intravital precipitates, I have further considered whether protein might oceur in them and subsequently performed some experiments on Spirogyra maxima (Hass.) Wittr. which in my opinion render much more certain the view that the precipitates contain no protein, than was already the case. It follows moreover from these experiments that the precipitates occur in the cell-sap and not in the cytoplasm. I will tirst explain this point.

Boronny ${ }^{3}$) assumes that in Spiroyyra proteosomes are formed in the eytoplasm as well as in the cell-sap. He thinks he has furnished proof of this by combining the formation of proteosomes with abnormal plasmolysis.

He placed Spirogyra in a mixture of equal parts of a 10% solution of potassium nitrate and a 0.1% solution of caffeine. After the action proteosomes were observed in the cytoplasm as well as in the contracted vacuole. Kemm ${ }^{2}$) agrees with Bokorny with respect to the lecalisation of the precipitate in Spirogyra. Kitmm first allowed the precipitate to occur and then to be plasmolysed.

When Bokorxy ${ }^{\text {j }}$) first brought about abnormal plasmolysis with a

1) C. van Wisselingit, Over het aantoonen ran looistof in de levende plant en over hare physiologische betekenis. Verslagen der Koninkl. Akad. van Wetenschappen te Amsterdam, Maart 1910. On the tests for tamin in the living plant and on the plysiological significance of tannin. These Proc XII, p. 685.
${ }^{\text {\% }}$) O. Loew and Th. Bokorny, Aktives Eiweiss und Tannin in Pflanzenzellen. I.c.
${ }^{3}$) Th. Bokorsy, Neue Untersuchungen über den Vorgang der Silberabscheidung durch actives Albumin. 1. c. p. 206.
2) P. Klesm, Beitrag zur Erforschung der Aggregationsworgänge in lebenden Prlanzenzellen. J. e. p. 407.
${ }^{5}$) Th. Bokorny, Ueber die Linwirkung basischer Stofe auf das lebende Protoplasma. l. c. p. 209.
10% solution of potassimm nifrate and subsequenty allowed basio substances to ated, he fomm only proteosomes in the contrated vatuok and exphans this by assuming that on the death of the protoplasm the active protein is changed into passive and that then no more proteosomes can be formed, so that a vital reaction is given no longer.

Without considering this explanation for the present, I content myself with pointing out that, when the above experiments are repeated, careful observation ahready shows that so far as the localisation oi the precipitate is concerned, Boкonxy's view, aceepted by Klemm, is incorrect.

When first abnormal phasmolysis is produced with a 10° solntion of potassimm nitrate and this is followed by application of a 10% solution of potassium nitrate which contains in addition 1% antipytine or 0.1^{0} "adfeine or if a rod with ammonia is then held above the preparation, precipitation takes place exclusively in the contracted vacnole. If the reagents are allowed to act simultanconsly or in reverse order, i.e. if the precipitation is first producet by the antipyrine or caffeine solution and is followed by abonormal phasmolysis, then it is seen that the contraction of the vacuole is accompanied by continued expulsion of the precipitate which is surrounded by cytoplasm. If the whole process is not followed under the microscope, but if the timal result alone is observed, then it is easy to imagine that precipitation has also taken place in the cytoplasm and thus to draw an erroneons conclusion, as did Boкокxy.

As "already mentioned, some investigator's have obtained all possible protein reactions with the intravital precipitates, whilst others have only got negative results. I may remark that protein reactions at our disposal are in general not sensitive as microchemical reactions. When these reactions, namely, the test with sugar and sulpharic acid, the binct test, Muros's test and the nitrice acid test, are tried on minute pieces of coagulated eqg-white, the various colorations can indeed be easily seen, but yet it is noticed that most of the reactions can have mo great value for microscopic investigation. With Mulos's reaction, and the nitrie acid and binet tests the colour with very thin pieces of egr-white is very faint.

With a minute object such as the protoplast of spirogy ya which in addition to protein contains also other substances, little is to be expected from the three last-mentioned reations. In aroordance with this I did not obtain favourable results, but the reaction with sugar and sulphuric acid yieldod better ones. The objects were left in a shera solation for some time and then sulturbe atod was allowed to

How in. I used a mixture of parts by weight of concentrated sulphurice acid and one part by weight of water, therefore sulphoric
 (on the shyar than concentrated sulphorie acid and is therefore to be: prefermed. With small pieces of egrg-white the reaction is very trikime. At first the colour is red (compare Kilincksieck et Valette, ('ode des ('olems, $1908, \mathrm{~N}^{\circ}$. 16 and 21), somelimes wilh a very weak violet tint, then pure red (Kis. et V. No. 41) and afterwards (Hampered (Kı.. et V. N". 51). With very thin pieces the colour is still obervable. The reaction is also very suitable for microchemical we. In spirograt the protoplasts are coloured a distinet light red, the suclens with the nucleolus and the prenoids are darker.

At this point 1 mention a reation which is indeed not a real protein reaction, but which may sometimes serve for the indirect microchemical demonstration of protein, namely, the test with tamin and iodine in potassium iodide solntion. In botanical papers I have foum it sated that iodine in potassimm iodide solmion gives a precipitate with a tamin solution and can he used to demonstrate ammin microscopically. I have not been able to contirm this and it is moreover in conflict with what is generally stated in chemical handbooks, namely, that it tamin solntion is coloured yolet by means of an iodine solution such as iotine in potassium iodide. Of course care must be taken that the violet colou is not masked by the addition of much iodine. In chemical books I have found no mention of a precipitate.

When hide-powder or pieces of egg-white are brought into contact with a tamin solution, washel with water after some time and then treated with iodine in potassium iodide solution, they usually show a dirty brown colour; after repeated washing with water a tine violet eolour Kl. et V. 591, 596) appears, however.

This reation ean also be apptied to Spirogyta, but in this case the tamin solution is unnecessary, because Sprogyra itself contans tamin in solution in its cell-sap. The tibaments of spirogyta are warmed to 60° in water. They are then killed, the tamin leaves the vacuole and partly combines with the protem of the protoplast. If the filaments are now treated with iodine in potassium iodide solution and afterwards washed with distilled water until the iodine reaction of the starch disappeas, it is then found that those parts of the protoplast which are rich in protein, we coloured violet. The nuclei whith the moleoli are finely coloured, the prenoids more faintly.

I have been no more able to find protein in the intraital precipitates with cafleins, antipgrine and ammonimm carbonate than were Af Kibrcher, Kiran and C\%aper; neither when the precipitates
with caffene and antipyrine had been trated anoording to bokoryy's method with $1 / 10 \%$ ammonia and hat thas berome insoluble.

Nor have I been able to obtain a protein reaction when the precipitates were some weeks odd and had become insolnhle. Spiromya can, it should be noted, remain alive for several weeks in a 1% antipyrine-solution and in a 0.1°, a cafleme-solution. At first the precipitates aggregate and form globules; gradually their solubility diminishes. When the filaments are then transerred into water, the globules leave resicles behind, which have disappeared after some days. After a few weeks the glohules seem altogether insolnble. In dead cells brown eslobutes are found, which are also insoluble in water. Neither the globules nor their insolnble residnes gave even a protein reaction with sugar and sulphotic acid, whilst the protoplast became distinctly coloured red. On the other hand the globutes gave tamin ractions.

It is remarkable that LoEw and Bokonsy ${ }^{2}$), who have repeatedly insisted on the protein nature of the precipitates, assert in one of their latest publications that the colour-reactions for protein substances, such as that of Mimos and the bimet reaction, are not the most important protein tests, although they formerly relied on these. Now they prefer coagulation by rise of temperature, by alcohol and by acids.

I treated Spirogyra-tilaments, with precipitates produced by 1% solution of caffeine, by Bokorxy's method with a saturated caffeine solution containing 20% alcohol or I exposed the filaments for a short time to the action of 10° io nitric acid or warmed them to 60° in a 1% solution of caffeine. In the first two cases I observed solution, in the last case coalescence. The results by no means proved the protein nature, as is especially evident from the following experiments.

When I mixed 1% solutions of gatlnut- or of Spirogyra-tannin with an equal quantity of a $L \%$ caffeine-solution and heated the mixture to 60° or added 10% nitric acid, the precipitate which was formed underwent a modification. It agghtimated more or less and a portion had clearly become much less soluble in water, so that after some days in an excess of water there was still a considerable resinous residue undissolved. It is possible that Lown and Bokorny succeeded by heating and by the action of nitric acid to transform part of the precipitate in the cells into an insoluble modification, but this is by no means a proof of its protein nature.

[^93]Loww and lononsy dectare the formation of protosomes with ammonimm carbonate, antipyine and catlene to be a true vital reaction. They say that when the eeils are dead, formation of protofomes can bo longer lake place, becanse the active protein has beoome passive. I shatl proceed 10 show how, starting from dead material, precipitates can be produced with antipyrine, caffeine and wher hasie substances, which completely agree with those observed in living material.

That in dead cells of Spirogyra no precipitates occur with the above basic substances, is simply due to the fate that the dead protoplas and the cell-wall allow the tammin to escape. A portion of the tannin gets outside the cell and another portion enters into combination with the protein-substances present in the cell. It is speciatly fixed in the muclei and the pyrenoids. Now antipyrine, calleme and other basic substances can obrionsly no longer cause any precipitate in the vacmole.

It conn be proved as follows that in dead Spirogyra part of the bamin passes onf. Pieces of Spirowra-fitaments are placed between - Dide and cover-slip in a 10.0 sohntion of egg-white or in a $\frac{1}{2} \%$ getatim or glue solation. These colloids do not penctrate into the cells and camot therefore form any precipitate with the tannin of the (ell-sap). When carefully heatel above a micro-flame. the rells are suressively killed. The tamin passes throngh the protoplasmie layer and coll-wall and forms a precipitate in the egg-white-, gelatinor erne-colution. On carelal heating the precipitate lies immediately agamst the shirogra-filament. The eells which ate still alive are not surmomed by a precipitate. It can be established by using solutions of ferric salts, and other lamin reagents, that the precipitate formed ontside the filamem is a tamin precipitate.

When spirowy hat heen slowly heated in water to 60° in a test-tuhe phated in a water-hath, it dies. In this case much tamnin nanally combines with the protein present in the protoplast and only a little leaves the cell. When a large quantity of Spirogyra was heated to 60° in rerg litite water, the liguid sometimes gave after filtration only a very weak tamin reaction with ferric salts, whilst the mule and pyrenoids always gate a distinct reation. The nuelei and promods also gave a distinct tamin readion with iodine in putassimm iodide solntion. Whers sufferenty washed out with water they show a fine red violet coloration.

When starting with dead material, it is desired to produce with

[^94]antipgrine, cafleine and other basie shbstances procipitates whidn agree with those oceruring in living cells, fore follosing methom may be adopted. A mbmber of spibogra-tibanents are taken, washed Gut with distilled water, which is athowed to drip oll ats much as possible and then they are heated to 60°, driod as well as possible by means of gentle pressure belween filter-paper, and extratod 2 on 3 times with a mixture of 4 parts of ether and 1 part of alcoloob, such as is used in the extraction ot bannin from gallmuts: the flot obtained is filtered and evaporated in a varum. The residue, whith resembles galhot-tammin, is dissolved in a little distilled water and filtered. We thas obtain a solution, which gives all the possible tamin reaptions, with lembe salts, potassimm hehromate, eger-white and gelatin solutions, caffeme, antipyrine ete.

The precipitates with antipyrine and eaffeine solntions, with pyrdine and oumoline-vapour, and other hasic substances completely resemble those oermring in living cells: little spheres or globules which show Brownian movement and gradually aggregate to larger masses, which on the addition of water dissolve and behave towads reagents as tamnin precipitates, all of which completely resembles what we observe in living cells.

From the above experiments it is evident that what low and Bokorny take to be reactions of atetive protein are in reality none other than reactions of tamin and the proteosomes mone other than precipitates of different basic sulbstances with tamm. It is further evident that after death these precipitates can be as distimotly produced as in living cells and can therefore hardly be called vital reactions.

The question what substances the precipifates can contain in addition to tammin-componnds is more difficult to answer than it was to demonstrate the tamin character of the precipitates in living eells. That other substances may be present in the precipitates, is already clear from observations on cells condaning red coloming matter as well as tannin in solntion in the cell sap. The precipitates take up the red colonring-matter and large red-colotred spheres finally arise through the aggregation of many globules.

The question whether the intravital precipitates can contain protein will now be dealt with. As already stated Pberfer ${ }^{1}$) assumes that the precipitate which is produced in spirogyra by ammonium carbonate, consists of protein and lammin, which, according to him, both occur in solution in the cell-sap. The acids present in the

1) 2. c. p. 239 .
 the tamman. When these adents are nembatised a proteintamin

Pratiar thaks that the formation of the preeppitate in spirogya mant he explaned wherwise than the precipitation of tamnin by ammonimm cartonate, becanse in spirogra filaments a precipitate oceurs with ammonimmerabonate at ereater ditution than in solutions
 incorvect. I have indeed found it to be correct and 1 have atso come to the comblaston that organic acols ean entively or party present the preapitation of protein and gelation by tamm.

On the other hand, in odder to explatin his observations Prepred atsumes vatons fatetors without proving their existence, whilst he takes no ateount of other existing fators. In the first pace Prefrek onght to have considered whether the lamin in spirogyta is really itentical with gallmut-tamin. It is quite possible that the tammin in Spirogya is a different chemical body from gathnt-tamin and behaves rather differently towads ammonimm-cathonate. Then Prefrer has fated to demonstrate the presence of organic acols in the cell-sap. Also he has not proved the presence of protein in the precipitate and moreover he has not investigated whether the formation of the precipitaie may be intluenced by other substances.

As to the first point, I have found that gathut-tamin and Spirogratamin in general behase similarly towards reagents and solvents. Also a solution of ammonium-carbonate must be more concentrated in order to produce in a solution of Spirogyatammin a precipitate than is necessary to produce it in the living cells of Spirogyra. The first point may therefore be left.

It is otherwise with the presence of acids in the eell-sap. When Spirogya is washed ont and then disintegrated, the mass has a faint acid reaction to limus paper but a solution of gallnut-tanmin and of Spirogra-tamin are likewise acid. A suitable microchemical method for demonstrating free arids in the cell-sap, does not appear te exist. So value eath be altached to LoEw and Bokorxy's ${ }^{3}$) method. They lay filaments of spirogya in a potassimm iodide solution and secing that no iotine is set free, they infer the absence of free acid in the cell-sap. The liberation of todne by free acid cannot be explaned chemically, for alfhough dihute abids might set free hydriodie acid from potassium iodide, they camot liberate iodine:

[^95] as follows. I placed spirogyat in a sohntion of potationm indide (0.1%) and of potassimm iodate $(0.025 \%$, but mon separation of iodine by free acid was indicated $\left.(5 K I+K I O)_{3}+6 I C(I) \rightarrow 6 K(!)+6 I+3 H_{2}()\right)$.

On heating Spirograt for some time in a $0.1^{\circ} \%$ solntion of ritrice acid, before placing it in the solution of potassimm iodn! and jodate a very fant blue colour in the starch and faint violet colomation of the nucher was to be seen; the latter had baken up tamm from the cell-sap, for in the meantime the eelts had perished. This result pmints to light absorption of eitric aded and separation of iontine by this acid. The method seems to vichl useful results and prohably in the first experiment iodine would also have been liberated, in catse Spirogyta contaned free abod.

It should be moted that spirogy is very sensitive to dilute solmans of organie adeds. In a 0.1°, solntion of citrice ated, tattarice adod, malie acid, quinie acid. it quickly dies.

On these grounds it is very improbable that spirogyra contains so much acid that protein and tamin should be ahbe to appear together in soluble form in the cell-sap. The experiments which I am about to describe, also show that Prezper has incorrectly interpeted his observations.

Whilst with many reagents it is quite easy to demonstrate tamin in the cell-sap of spirogyta becane the cell-wall and protophasm are permeable to these reagents, the most important lamin-reagents, namely, those which belong to the protein gronp camot permeate. For this reason I heated spingyra in ego-white-, gelatin- or ghesolutions.

On the death of the protoplasts the tamin passes through the protoplasmic layer and the cell-wall and a precipitate is formed outside the cell. If, instead of allowing the tammin to pass ont, a little protein solution could be introduced into the cell-sap which contains the tamin and if we could investigate the result, this would go a long way in my opinion towards solving the problem of whether in the cell-sap protein exists in solution as well as damnin. Should the cell-sap remain clear, one might be able to assume that the cell-sap, was of such composition as to contain dissolved tammin and protein side by side. If, on the other hand, a small amount of proteinsolution produced a precipitate. then this might be taken to exclude the simultaneous presence of the two substances.

I will proceed to explain how I succeeded in introducing a proteinsolution into the cell-sap, causing a precipitate which on closer investigation was found to be a compound of tannin and protein.

Is 1 h have previonsly dearihed, the eytoplasm in Spirogya perserect ath atsentar stmethe The hyatoplasm forms the walls of the atreoti, which ate dilled with a watery solution. Ry the action of reagents the struture is destroyed withont the immediate onset of death. Often the hyatoplasm is seen to form a wall, which epparates different portions of the eontents. If ahmormal plasmolysis is prodnced with, for example, 10% potassium-nitrate solntion then the hyaloplasm forms a wall rombt the contracted vacnole.
A. I^{2}) have previously stated, it may not be assumed that this wall is a prectal orgath and acomately represents that part of the protoplast which in the eell comstitutes the lining of the vacuole.

If dilute chloral-hydrate or phenol solutions aet on the living cells, other phenomena are again observed'). Cytophasm collects round the molens and, taking up water, forms a vesicle whose watl again consists of hyalophasm and whose content except for the nucleus is chiefly an ayneous solution. Smaller vesicles are formed on the smepensory threads.

If instead of the last mentioned solutions a 5% solution of ether 5 parts by weight of ether and 95 parts by weight of distilled water or ditels water) is used, then the death of the protoplasts is accompanied by the following phenomena. Cytophasm flows towards the noclens and collects there; the suspensory theads are detached and are taken \quad p by the protophamic mass, which has a gramular appearance; round the nuclous a resicle forms, which lies quite free in the cell sap. The wall of the resicte is again composed of a hyatopasmic layer; the nuclens is seen lying inside the vesicle and between the protoplasmic wall of the vesicle and the nuclens there is an arpueons solution, in which some granules can be distinguished. The protoplatmic wall is at tirst lloid and stretehed. When the protoplast dies, this changes; the protoplasmic-wall becomes rigid and often ateruires folds and creases. The nuclear-wall also, which is stretehed as long as the protoplast lives, contracts inregulaty. By the walls different lluids are at first separated; this also is changed by death. When the nuclear wall contracts, we may assume that its content comes into contact with that of the vesicle, but this is not arcompanied by any noticeable phenomenon. It is otherwise when the content of the vesicle and the cell-sap

1) C. vax Wisselingh, Zur Physiologie der Spirogyrazelle. Beih. zum Botan. Centralblatt. Bd. XXiv (1908), Abl. I. S. 190 fl .
\therefore 1. c. p. 155 ff and 192 fl .
2) Ci. Vas Whssecisif, Untersuchungen über Spirogyra. Botan. Zeitung. 1902. Heft ©l. S. 121 if.
come into contach. This dakes place at one of more paints on the ciremberence of the veside. At thene proints precipitates ate produred, but it cammot be seen whether at first smath openings or tears ondor in the vestole It is often possible to distimentish two parts in the precipitates: the one is compart and sembs to lie within the vesicle; the other is looser and oeroms ontside the wall of the latters.

When the preciphates are investigated with reagents. Whey are found to consist of protein and lamm. With sugaresolution and $85 \frac{1}{2} \%$ sulphute acid they become very diatinctly red. especially the more compact portion; after treatment with iotine in potassimm iodide sohution and washing ont with water they show a reddish violet colour. With ferme acetate they become blae-black, with potassium bichromate brownish-red.

From these results I think the following conclusions may he deduced. The vesicle contains a solution of protein, which is derived from the cytoplatm and probably orents there in solable condition in the alveolar fluid. When the protein-solution and the rell-sap containing tamin come into eontat with each other, the above mentioned precipitates are formed, from which it follows, in my opinion, that in addition to tamin protein in solution cammot be present in the rell-sap. They would at once form ant insoluble compound with each other. It is thus impossible that, ats Lown and Bokorny assume, the precipitates, which are formed in the cell-sap by basic substances, are protein-precipitates or, as l'zerfle assumes, precipitates of protein and tamnin.

In reality they are tamin precipitates. Althongh the possibility is not excluded that other substances are sometimes present in small quantity, experimental investiyation yields the proof, that there ean be absolutely no thonght of protein-substances in the first place.

Tammin and protein are separated in the living cells in a remarkable manner. 'Tannin in solution occurs in the cell-sap; proteins can be demonstrated in the muclens, the chromatophores and the cytoplasm. They are either solid, as for example, the pyrenoids of the chromatophores or dissolved, as in the cytoplasm. The nucleoli whicer contain a viscous substance, in which the two nucleolus-threads lie ${ }^{3}$ give specially clear protein-reactions.

There still remains the question why a solution of ammoninmcabonate which causes a precipitate in the cell-sap of Spirogyra, maty be much more dilute than that which produces a precipitate in a solution of gallmut-tammin or of Spirogyratannin.
${ }^{1}$) C. van Wisselinghi, Ueber den Nucleolus von Spirogyta, Bot. Zeit. 1898, p. 202 - Ueber abnormale Kernteilung, 1. c. 1903, p. 217.

It is ohvions that in the water in which Spirogyra grows and aiso It the cell-say salts are present and 1 have on this account traced the influence of various salts on the precipitation of gallout- and spiroryratamin hy ammonium carbonate. I found that precipitation is finoured by salts; expecially is this the case with calcium salts. The formation of a precipitate in the cell-sap at greater dilution of ammonimm cambonate is therefore readily explicable.

Intamial preefpitates can in many case also be brought about by aniline dyes. Premer ${ }^{2}$) has described this in detail. In particular he recommended methylene-blue which gradually produces a preaphate in the living cells of spirngra with a very dilute solntion.

In Prepras's ${ }^{2}$) opinion the lammin is completely precipitated as a methylene-blue compound. The precipitate is also supposed to contain protem. When the solution of methylene-blue is sumieiently dilute. the precipitation is regarded as imocnons to the vital processes. The explamation which Prefrer wives of the phenomenon he has ohsereal is incorrect, whilst he greatly overestimates the value of the results obtamable by his method.

Prefres ") wites: "In allen Fällen werden also Methylenblan und andere Forbstoffe wervolle Reagentien sein, mit deren Hülfe, ohne S'chädigung, Aufshbliuse üher Vorkommen und Verteilung gewisser Korper in der Zelle zu ertalten sind. Mit solcher vielseitig ausmutzbaren Methode laisat sich moter richtiger Erwägnog mach vichen Richtungen hin einc Kontrole des jeweiligen Zustandes des Zellsaftes und der Veränderungen dieses im laufe der Entwicklung erreichen."

Paprer frequenty writes of the hambessness of his method to life. As a proof of this he cites for instance the growth of spirogy rafilaments. In lwo cases this amounted in four days to 12 and $26^{\circ}{ }^{\circ}$. I mast here remark that l'perrer has made no comparative experiments. If the rate of growth of Spiromyat cells in ditch Water is studied, it is seen to be much greater. After two days the incrase in length in 1t eases was found to be 25 to 75% and after four days in 18 other eaves to to 75%. From l'refrer's rexults it is therefore elear that dihate solntions of methylene-blue also are harmfinl.

My own experiments on Spirogyra maxima with methylene-blue mothylene-blue pro nsu interno, the hydrochborde), indicated that it was very hamful. In a solution of 1 patt in 10000 parts of

```
リ16
\therefore1. c. p. 183 and 218.
3) 1.c.p 191.
```

 in 500.000 pats of ditchwater or Kxopps flad many dead codts were seen after one day and in a solntion prepared with distilled Water of the same strength the momber of dead rells was still greater: No growth was observed. The perisonous action of melly-lene-blue is the reason why there can be no question of "Kontrole des jeweiligen Zustandes des Zellsaftes und der Veranderungen dieses im Latufe der Entwicklung", as Prafer imagines.

It has been already demosstrated above that the eell-sap of Spirogyra contains no disolved protein. The precipitate with methyleneblue camot therefore at Prater helieves, comath protein. In his opinion the precipitate is actually a componnd of tammin with me-thylene-blue, which camot be brought into agreement with the fact that solutions of methylene-bhte even stronger than thos. used by Prefrek remain clear with solutions of gallont-and Spirogy ratamin. This is not explained by Prefrer.

It is noteworthy that when spirngra is placed in a dilute methy-lene-hlue solution (1 in 500.000) there is no gradual formation of a precipitate which is coloured bue from the beginning, but there is first a colourless or almost coloutess precipitate and that this is then gradually colomed a deeper and deeper blue. Of this Prepren makes no mention.

On examination of the precipitate with reagents tamin reactions could be obtained, for example, the black coloration with terric acetate. It may therefore be assumed that tannin is precipitated. The quantity of the precipitate even in Spirogytas with much tamin was however, small compared with other tamin precipitates.

Hence I doubted whether the tamin is rompletely precipitated. After one day I conld not, indeed, demonstrate any tamin in the cell-sap in addition to the precipitate, but it seems that the cells may lose tannin by exosmosis. For when, for example, pieces of spiro-gyra-filaments were placed in a dilute solation of methylene-blue, containing $1 / 2 \%$ gelatin, a precipitate was formed outside the cells and between the layers of the cell-wall which separated from each other. The precipitate was a compound of gelatin with tannin and beame coloured black with ferric acetate. I camot therefore venture to assume with Preprer, that a complete precipitation of tamnin takes place in the cell-sap.

It seems to me that various fachors play their bart in the production of the precipitate. In the first place the hamful action of the methylene-blue, of cansing great modifications in the organism. Further the presence of salts appear to assist the formation of pre-
"ipitate. In a solution of one part of methylene-blue in 500.000 parts of distilled water the phemomenon was not so clear as in a solution of the same strenghth made with ditedrewater or kxopp's that. A momber of experiments in teat tubes with mehylene-hhe, salts, grall-mat-and Spingyrataman led to the conclusion that the appeatance wi a precopitate is mot only athereted by the presence of salls but that also atmowheric oxyen comes into phay and limally, that me-Hystene-the itself has no precipitating action, but that in one way or another a damin precipitate is formed which eradually takes up more and more of the dye. How the precipitate is produced I cannot definitely saty, hat its formation does certainly not depend on a simple precipitation of tamin by methylene-blue, as Preffer assumes.

Chemistry. -. The influmee ui storitereactive sulestances on the
 by Prot. P', vis Rombergit.)

In the chemical literature of the colloids it is genemally stated that dectrolytes exert a great, and non-electrolytes no adion on the stability of suspensoids, at least when those non-electrolytes are not colloids themselves. Boblismma ${ }^{2}$) found that the formation of sediment in a suspension of colloids was much accelerated by electrolytes,
 of a reries of organic substances that they "in grosen Ueberschuss selhot bei hagelanger Einwitkng, kemen Einflnss anf die Beständig. keit des Amensulphidsols ansübten." This, however, merely shows that these subataces themselves do not canse a coagulation in a direet mamer.

If, however, we fake the stimdpoint of the ingenions theory
 on the stability is ahsurd. Fen when the stability is determined by
 this charge is formed by the relective ion-damption (Frewduch lee.) a callse which exerts an inthence on the adsorption cannot beinert towards the stability.
${ }^{1}$) Nachn. Giätingen 1593, :67.
\Rightarrow Diss. Leipzig, $190: 3$, p, 13, Zeitscht. f. physik. Chem. 44, 129 (1903).
${ }^{3}$) Consult his Kapiliarchemie, Leipzig 1909.
${ }^{\text {b }}$) Zeitschr. f. physik. Cihem. 33, 385 (1900).
5) Phil. Mag. [6] 12, 472 (1906).

Now an adsorbed substance is displaced by anoblow adsorbed substance; this is dependent on the dexpee to which that secomd substance is itself adsomed ${ }^{3}$; if to a suspensom system is added at substance which itself becomes strongly adsorthed it would he astonishing indeed if it left the statility of the system ummodilied.

As a rule, we possess a measure for the stathility of a system in the limitation value. ${ }^{2}$) Meanwhite it is as well to consider in how far we must attach value to this relation. A complete coarulation in a short time oceurs when of an added electrolyte so much gets dissolved that the colloid has become isoelectric. But this adsorption will also be modified by an added substance.

If, for instance, we have a $A s_{3} S_{3}$ sol this consists of praticles of arsenious sulphite dispersed in water; these particles at their preparation have adsorbed hydrogen sulphide in such a manner that an electric double layer has formed in such a way that the layer of $S^{\prime \prime}$-ions lies at the side of the solid particle and the H-ion layer at that of the liquid. If now we add a substance A which is adsorbed positively, the condition of that double layer will be moditied because A displaces $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{S}^{\prime \prime}$ as well as H°. When effectuating coagulation by means of an electrolyte such as BaCl_{2}, adsorption also takes phace of BaCl ${ }_{2}$, Ba. and Cl^{\prime} and the limitation valne will be attaned when the quamities of Ba* and s. are equivalent. ${ }^{3}$) But this adsorption process also experiences a similar intlaence firom the substance A. The change in the limitation value under the influence of A is therefore the resultant of those wo ations. Perhaps these might just neutralise each other. This seems to have always been an assumption not mentioned. Although we know as yet but little about the displacement in the capillay layer, such a symmetry did not seem to me probable and therefore the subjoined investigation was carred ont, provisionally for the prrpose of orientation.

The substance to be admixed should give rise to a strongly positive adsorption and hence, aceording to Cunbs's principle it mast strmgly reduce the surface tension. In this relation account must, of course. be taken of the surface tension solid-liquid; the measurement thereof is, as yet, almost impracticable, but experience has taught us up to the present (and theoretically this may be expected) that the surface tension must as a rule proceed similarly to that for lipuid gats. Hence, as strongly adsorbable components were chosen those which strongly lessen the surface tension of water.

1) Gif. Freundlice and Masius, Gedenkboek van Bemmiman (Helder 1910), is.
") A version of the German wond "Schwellenwert".
${ }^{3}$) Ci. Whitney and Ober, Zeilschr. f. physik. Chem. 39, 630 (1502).

The subgined investigations were, therefore, carried out to demontrate in the titst instance the existence of the inthence of suffaceative sulstances on the limitation value. Hence, they were fambed oun by means of an athitray colloid $A s_{s} b_{s}$ sol with ath athitraly electrolyte Bach with addition of subtances, which in diserse degrees lower the sblate tension of water, mamely firs of all. Boamyl ahoohol, isohntyl aleohol, propyl and ethyl aloohol the ore limes of which (as surface tension, (e molecolan concentration) had been determined by Tractas: ${ }^{1}$.

T A B L E I. Isoamyl alcohol.

Conc. of the alcohol	Limitation valut water	alc. mixture	Limation relat. value
0	1.08	-	1.00
66	1.08	1.16	1.07
78	1.07	1.32	1.23
92	1.07	1.38	1.29

T A B L E II. Isobutyl alcohol.

0	0.87	-	1.00
101	0.87	0.96	1.10
201	0.87	1.02	1.17
302	0.87	1.13	1.30

T A B L E III. Propyl alcohol.

0	0.92		1.00
197	0.92	1.06	1.15
393	0.92	1.14	1.24
787	0.92	1.30	1.41

T A 13 L E IV. Ethyl alcohol.

0	0.87	-	1.00
1560	0.87	0.97	1.12

[^96]To 10 ere of the sol were added with ronstant shaking bere of a solntion of the orgate subatane or water for the blank experiments Which were repeated each time and abom 15 mimmes later 1 fo. of a BaCl_{3} solution. The whole wats then argath shaken ath thon once more two hons afferwads: the baty. concentration, whioh was just incapable to cause a complep conaghation, reppesented the limitation valne. Those valyes may be taken as treing arcomate within two mats in the seerom deromal.

In the tables are given the concentrations relange to the finat total volume in millimols. per litre. In the last colnmm the limitation values have been recalculated so at to make the value for pure water $=1.00$.

From these tables it is indeed evident that the atcohol concemtration hat an influence on the limitation value: this inthence appeared to sary for the diflerent aloohols and therefore it was thought desitathe to make a comparison of their influence on the capillaty of water. with their adsombing properties and conseruently with their power of displatement.

This comparison may be reatily effected with the aid of the subjoined fie, we construed trom data ohatined by Tratbs l.e. (The, line for phenol will be disenssed presently. onal is taken therein as 76.0.

From the fables I-IV we now notice that the order of the admixed smbstames in which they effertmate an increase of the limitation vahe is: isoamyl, isobulyl, propyl, and amyl alcohol,
while a deoding to the figure the order for the power of lowering the surfite fension is the same.

This result is, therefore, mbdoubtedy in hamony with the adsorption theory. The only question still to be answered is why the added substances increase the limitation value. This however, was to be expected on account of the manner in which displacement takesplace as shown from the researeh of Frersmach and Masus (I.e.). What they fount is as follows: Let substance A be adsorbed according to the eqpation:

$$
\frac{x}{m}=\cos ^{\prime}
$$

or expressed in logarithms

$$
\log \frac{x}{m}=\log a+\frac{.1}{n} \log c
$$

(r the fuantity adsorbed, m the amount of adsorbent, c the concentration of the liquid in equilibrium, a and n constants).

If now a substance B is added in definite concentration, the adsorption of A takes place according to the equation:

$$
\log \frac{a^{\prime}}{m}=\log a^{\prime}+\frac{1}{n^{\prime}} \log a
$$

The investigation always showed that $\frac{1}{n^{\prime}}$ is smaller than $\frac{1}{n}$. As the dependency of $\log \frac{r}{m}$ on loy c is represented by a straththe, we readily perecive that the reduced coefficient canses a stronger displacement of A by 13 in the higher concentrations of A than in the lower ones.

If now in the experiments deseribed above the alcohol is added to the sol the concentration of the liquid in stability-promoting ions will be exceedingly small in comparison with the concentration of BaCl_{2} when the limitation vathe is attained. If now we assmme that the adsorption of each of these substances by itsolf is about the same, it will be readily perceived that the displacing intluence will hinder the cherge of the particle in a much lesser degree than the dischorge. Hence an increase in the limitation value.

Meanwhile it will be as well to dispense with further theories until the matter cited above has been extended by the investigation of more colloids and other organic substances as well as of other (particulary uni- and trivalent) coagulating ions. With this investigation I have already made a stait.

The following liat has alreaty been disclosed: aromatic substances
ate always adsorbed much more strongly ham migh be sumbised from their induence on the surface trmsion'). I determined tatatemmmetrically the ose figure for phenol (akso given in the ligum, : although it appeared to be hetween hat of isthbtyl and propyt alcohol, the inflaence exerted by addition of phenol is ereater than that caused by isobuty alcohol, exactly as was to be expeeted. This investigation is bemg contimed, atso in commection with a direct investigation ats to the adsorption of the substances added.

A more extended investigation in varions directions appears in me desirable all the more becanse the results may chadate several other problems in the chemistry of the colloids. I will again refer to this matter in due course.

Meanwhile the results obtained are interesting when taken in conrection with the researches of 11 . Larus and L. Monafist ${ }^{2}$), who found that sufface-active non-electrolytes exert no intluence on the adsorption of electrolytes: the above descrited investigation, however, makes us sumise that althongh these two kinds of smbetances should not be put on a par with each other withont further evidence, a displacement takes place nevertheless. The effect of the displacement. however, seems to elude the direct measurement, but it may be demonstrated by measurements of the limitation values. Hence, the said investigators could tiud a displacement effect for isoamylatcohol only, just the very alcohol which according to our research exerts the strongest power of displacement.

Utrecht, March 1913. vas 't Hoff-Laboratory.

Microbiology. - "Potassium sulfur, and metmesium in the methbolism of Aspergithus miger." By Dr. H. J. Waterman. Communicated by Prof. M. W. Belderinck).

In earlier investigations I have shown that the elements carbon, nitrogen, and fosfor oceur in large quantities in young mond material. but that, when it grows older, a considerable portion is again excreted as earbonic acid, ammonia, and fostorie acid ${ }^{3}$). During the development the plastic aequivalent of the carbon lowers to the half: as to the nitrogen, there is a threefold accumulation, whereas the quantity of fosfor in a young mould layer is ten times as large as that

[^97]TABLE 1. POTASSTUM.

 NaCl + A4. $\quad t=34^{2} \mathrm{C}$.

b. Nutrient liquid: Distilled water, 20_{0} glucose, $0,15^{0}{ }_{0}$ ammoniumnitrate, $0,10_{0}$ magnesiumsulfate (7 Aq.), 0, $05^{11}{ }_{10}$ fosforic acid (crystallised), $0,01^{10}{ }_{0} \mathrm{MnCl}_{2}$. 4 Aq. $t=34^{\circ} \mathrm{C}$.

Addition of KCl	Growth and spore formation after				
Nr. milligt. $\begin{gathered}\text { gram- } \\ \text { mol. } \\ \text { p. } 1 . .\end{gathered}$	1	2	3	4	8 days
100		+ -t-t, no spores	$\begin{gathered} t+, \\ \text { no spores } \end{gathered}$	$\begin{gathered} t+ \\ \text { few spores } \end{gathered}$	hardly any spores
$2 \quad 0,001 \quad \begin{array}{cc}1 \\ 3750 \times 00\end{array}$		" "	" "	$\text { " } \quad$	$" \quad " \quad n$
3 0,01 1 375000		$" \quad "$	$" \quad "$	" "	+ + + no spores
$\begin{array}{ccc}4 & 0,1 & 1 \\ & & 37500\end{array}$		\} + , beginning spore formation	$-+\frac{1}{}+$ beg. sp. formation	rather many spores	+++1 , beginuing spore formation
$\begin{array}{ccc}5 & 1 & 1 \\ & & 3750\end{array}$		+1 : very few spores	few spores	$-1+1+t+$, beg. spore formation	rather inany spores
$6{ }_{6} \begin{aligned} & \text { (}\end{aligned}$	($-t+i+\text {, very }$ few spores	" "	$+\underset{\text { few spores }}{+1+1}$	$\frac{1}{1+1} 1+1$ many spores
7 5 5 		" "	" "	" "	"
$8 \quad 12 \quad \begin{array}{lcc}12 \\ & \\ \end{array}$		" "	" "	" "	" \quad "
$\begin{array}{lll}9 & 15,5 & 15,5 \\ & 3750\end{array}$		" "	" "	" "	" "
$10,35,5 \quad 35,5$		" "	" "	" "	" "
11 85,5 85,5 3750		" "	" "	" "	" "

 such as temperature, concentration, lighergenions, borie ared, manganese, rubiditm, ete., were studied, in which only changes of velocity were observed.

I have now contimed these experiments, more \{fatitatively, with potassium sulfur, and magnesium and obtained the following results.
a. Potassinm. I nsed a nutrient liguid of the composition given in Table I. The constituents of the sointion in the series of experiments b) were the same as those of " only mo colcimm had been added, because, as I have shown before, the nom-adding of this element mader the mentioned circomstances, hats monthenere on the velocity or the matme of the metabotism. This was also the pase with chlorime.

The cultivation was always effected in Drmamatar fasks of dena glass and of $200 \mathrm{~cm}^{3}$. sapacity, the volume of the mediam being $50 \mathrm{~cm}^{3}$. The distilled water was onte more purified in an apparatus of Jena glass. These experiments prove that the quantity of produced mould, even in the Nrs. 18 and b1, where no potassium was added, is not inronsiderable. This may be ascribed to the diffentties arcompanying the exclusion of trates of this element. Further we see that by excess of potassinm the spore formation is temporarily inhibited. Compare Nr. 5 with Nr. 4, after 4 and 5 days (Table at , and Nr. 6 and following Nis. with 5 , after 4 days (Table b). This imhibition of spore formation by an exress of a necessary element finds its cause in the cells being able to accumulate reserve food. ${ }^{1}$).

Finally Table I shows that deficiency of potassium does provoke prodnction of mycelium but no spore formation (Nrs. 1-3, Table I b), Only at $\frac{1}{37500}$ gr. mol. KCl. p. L. spore forming begins after 8 days.

Formerly ${ }^{3}$) I have shown that potassium can but partly be replaced by rubidimm. Whereas the production of mycelimm is possible as well with potassium as with rubidium, spore formation takes only place with a certain percentage of potassiom and not at all with rubidinm. It was likewise proved that manganese is necessary for the latter process. The results given in Table I prove that at very low concentrations the action of potassium is quite analogons to that of rubidium: mycelium is formed, but hardly any spores, and this in spite of the presence of large quantities of manganese.

In the physiological action of potassium thus, two functions are to be distinguished, one corresponding whh that of rubidium, the other with that of manganese.

[^98]1. Sulfur: The results of the experiments on the ation of different sulfite comeentrations are fonnd in Table 11.

Here we see that in the euthure mbes ($\left.N^{0}, 1\right)$, where no sulfur was added, devehpment bakes place, just as had before heen observed for the nitrogent the fosfor, and the potassium, A considerable spore formation took Hate after 2 days abready in Nis. 1-7, which had a deficieney of sulfur, Whila in the experiments with more sulfur the prodicion of spores Was at tirs stackened. Nits 8-20 had only few spores. After is days Nis. 14-20 had hadly any, whilst in all other culture tubes an important spore formation had already occurred. After 4 days these diflerences were less marked; after 40 days all the mould layers were rovered with a considerable number of spores. The explanation of this temporary inhbition of the spore production is the same as for the elements treated before. In other respects, too. the sulfur quite corresponds with the other elements. Like the corbon, nitrogen, und fosfor, the sulfor accomulntes in the cells and is aftermatids perbly erereted.

Indirectly this rould atready be shown by the following consider ations.

We see that in Nr. 8 , after 3 days only $34,5 \%$ after 3 days in Nr. 9, 36%, after 40 days already 48% of the glurose has been assimilated, notwithstanding after 3 days no sulfate was left in the solution. Evidenty during the development of the organism by the dissimilation of an intermediary product, sulfate is set free in the liguid so that the assimilation of the glucose can go on. This is still more obvions in Nrs. 11-13. After 3 days the assimilation of the gheose was 49%, after 4 days it mounted to 61%, and after 40 days ahready 82% of the glucose had been used, whereas, here tho, after 3 days already, all the sulfate had disappeared from the solution. liy dired amalysis was shown that an old, mature mould layer indeed contains less sulfur than a young one obtained in quite the same way and maler the same conditions.

To this end the monld was, after frequent washing with distilled Water, destroyed by fuming nitric aoid, in a closed tube at $300^{\circ} \mathrm{C}$. The sulfate was precipitated in the usual way

It was here proved that of 4 mature mould layers 70 and 40 days old), treated in this way, after is to 4 hours' heating on a low flame, no precipitate was formed, whereas 4 young moulds (3 and 4 days ohd ${ }^{2}$), likewise treated, did wive a precipitate after heating. In what condition the sulfur, femporavily withdrawn from the liguid, exists in the organism, must for the moment be left undiscussed.
-) These were - hie mumh layers of Nis. 14, Is, 1\%, 16 (Table Il).

T A B L I IV. Activation of magnesium br sinc.
Nutrient liquid: $50 \mathrm{~cm}^{3}$ of distilled water in a Jena glass apparatus, in which dissolved 20^{0} glucose, $0,15^{0}{ }_{0}$ ammoniumnitrate, $0,1{ }^{0} 0$ potassiumsulfate, $0,05{ }^{10}{ }^{11}$ potassiumchloride, $0,05{ }^{\circ}{ }^{\prime \prime}$ fosforic acid (crystallised), $0,00^{0}{ }^{0}$ manganese sulfate.

It maty linally the vallen to mind hat with defiedency of a neressary

 cathon. The bathe shows, mamely, hat only tritling difterences are fonm forl all the simultaneons determinations. We see moreover, that thase mond labers, which are more developed, poseses a corre--pomdingy lower phastie aequivalent.
a. Jhamestum. Whilst in the stuly of the onlere required elements it was fonad that even the slightest quantities canse a perceptible growth, magnesimm behaves quite oherwise. Relatively great quantities
 fonged entivation, prodnee any macroseopically perceptible mycelimm,
 only after some days caused a considerable growth.

This reentt wams us to be camtions in the computation of a production in at way as shggested by Matsmemach ${ }^{2}$) even in a relatively simple case anch as the present. The results of the refermg experiments are fond in Table III.

The explanation of the above liad has sot yet been found. It might he supposed that the metatolism of the magnesimm is extremely - fow: whereas for each individual cell much magnesium should be wanted. More acceptable, however, is the supposition that by absence or deliciency of magnesium some unknown fator in the medium is allowed to exert its noxions influence which may be counteracted by addition of more magnesium. Beryllum, lithium, manganese, and calciam camot rephate magnesinm. (See Table III). Zine can replace it, as is shown by the experiments, whose results are exposed in Table IV.

Foro cadmiant, strontinm, and merobry I have not as yel been able to find an action analogous to hat of zinc. Nis. 12 and 13 are in particular comvincing as they show thet bent the shafletest

The abmadant wrowh in Nrs. t and $\overline{\mathrm{h}}$ is also remarkable as not any magnesinm was added there. This does not, however, prove that the magnesimm is here rephacel by zince, as it is always possible that slight phamities of magnesimm are present in the solution, so that in this case, foo, the intluence of the zine may be only an
?) Aitsenerbien, Bodenkunde liar Land und Forstwite, Ole Aull. Berlin 1913.
activating one. This efteet is the more important at hitherto I have not succeeded in the ustal way to demonstrate a fiomurable inthene of zine.
of the 'lechnical L'virensity

Delft, March 1913.

Physics. - "On the leen of prertition uf" enery!", II. By J. I). vis der Wams Jr. (Communicated by l'rol. J. D) was merr Wadles.
$\$ 6$. It is obvions that the chance that the value of one of the variables p or q lies between specified limits camot be represented by a normal frequency curve. If however we investigate a region of the spectrum, which is very namow, but yet contans many elementary vibrations, then we find another probability curve than for one single elementary vibration. If the region is sufticiently small, then the radiation will appear to us to be homogeneous. Only an observation during a long time (i.e. very long compared with one period) will reveal the want of homogeneity by the increase and decrease of the amplitude in conscquence of beats. In order to describe the momentaneous condition we cim represent one elementary vibration by:

$$
a \sin \frac{2 \boldsymbol{a} t}{T}+b \cos \frac{2 \boldsymbol{a} t}{T}
$$

and the total vibration of the spectral region by:

$$
(\Sigma a) \sin \frac{2 \boldsymbol{x} t}{T}+\left(\Sigma(b) \cos \frac{2 x t}{T}\right.
$$

In this expression the separate a's and b's may have all kinds of values. The chance that they lie between sperified limits is not represented by a normal frequency curve. But this does not detrat from the fact that the chance for a sperified valne of $(\underset{\sim}{(1)}=1$, is represented by a normal curve, at least if the sum contains a sutficiently great number of terms.

Let us imagine that the decrease of the amplitude of the vibratorin consequence of the radiation has such a value, that they are perceptibly set vibrating by a great mumber of elementary vibrations whose period does not differ too much from the fundamental period of the vibrators, then Manweds's law will hold for the chance that the velocity of a vibrating particle lies between specitied limits. The mean energy of a linear vibrator is probably righty represented by
the finmula of P'aver:

$$
i=\begin{gather*}
h r \tag{11}\\
h r \\
i \prime \\
i n-1
\end{gather*}
$$

-o the chance that the veloody of a vibuating particle has the value \therefore will he represented by:

$$
\begin{aligned}
& C_{0}^{-}{ }_{{ }_{3}}^{1} m s^{2} \\
& e^{\theta}-1
\end{aligned}
$$

It is true that the formula (11) has been calculated with the aid of ath equation of the form. (1) p. 1177 and that such an equation ('amot hold wood. But here a difference between the theory of Praxek and the conception indicated in this commmication comes to light. Fon if the quanti-hypothesis is right, the equation (1) camot even apporimately be fulfilled, and it is to be considered as the merest chance if it leads to the exact value for U. According to the here developed conception however, the equation (1) cannot be rigoronsly satistied, but it can hold with a rather high degree of approximation, and the sharpmess of the lines of the spectra seems to indicate that this is really the case. For this reason it seems to me that we have reason, 10 expect, that we can find the average kinetic evergy of rotating particles, or of particles describing paths distubed by collisions, with the aid of the ordinary fundamental equations of classical mechanies and electromagnetics. For this purpose we have to investigate the motions which those particles would perform aceording to those efpuations in an electromagnetic fied whose patition of energy is that of the normal spectrum. Accombing to the quanta-hypothesis it would seem donbtful whether suoh a calculation would yield the right value for the velocity of the priticles.

These conclusions would not be justified, if it should appear that the effuations of motion of the electrons camot be approximately represented by equation (1). In this case we should have no reason to expect that the velocities of the vibrating particles are distributed areording to Maxwbits law for the partition of the velocities. It seems probable 10 me that the normal probability-cmeve will rather apply to the momenta than to the velocities. If the mass is constant we have no reason to make this difference, but in the case that
the mass of the partioles is variable, the five that the nomal pros bability cume did hod good for the momemta would involve that it rould not apply to the velocities. For lormatzelectrons the devations from Maxweds's law for the distribution of the velorities, oceasioned by the variability of the mats, would remain small for temperatmes which are pratically reached. The aremge kimetio energy of electrons of that nature in the nommal radiation fiedd ban probably be calculated as if the mass were constant.

When we differentiate the value of the kinetic energy which we tind in this mamer, ateording to the temperature we dind es, as is well known, if only we add to it another term which accounts for the potential energy.

§ 7. The potential energy. The distribution in sperer.

For the distribution in space of particles of mass we have according to classical mechanics the following law : if n represents the number of particles per unit volume and \& the potential energy of one particle. the expression

$$
\begin{equation*}
n e^{y}=\text { a constant throughout the space. } \tag{12}
\end{equation*}
$$

For a mixure an expression of the same kind holds grood for each of the combonents. If we wish to take into account the volume of the particles we may write that

$$
\frac{1}{V-2 b} e^{\frac{5}{y}}=c \text { constant }
$$

where. V^{7} represents the volume of the molecular weight in grams of the substance, and I "-26 the "available space" present in this volume. The logarithm of this expression is, as is well known, equal to the thomodynamical potential ${ }^{2}$) of the component, to which the expression has relation. All thermodynamical equilibria, as well those for simple substances as those for mixtures, and also those in which electrically charged particles play a part, can be derived from the equation ($12 a$), which was for the first time used by Bolthans.

We will now consider the question how the space-distribution must be according to modified mechanies. Will this law of Boltzmass hold also according to them? This question must be answered negatively.

Let us imagine two coexisting phases e.g. lifuid and vapour. Even if we assmme that in each of the two phases Maxweda's haw for the distribution of the velorities is satisfied, the mean kinctie energy of the molecules in the two phases will be different. Of

[^99]course this difference will be exceedingly small at ordinary temperatures and will only get a noticeable value at extremely low temperatures, at which the molecules in the liguid phase which can be regarded as vibrators of a shorter period than those of the vapour, have less kinetic energy than they should have according to the equipatition-law. This will of course have intluence on the density of the vapour phase, which will be found to be smaller than we should expect according to classical statistical mechanics.

Corresponding considerations apply to the contact difference of potential at very fow tempratures. .

Besides the distribution of particles in space there are other problems which may be treated with the aid of considerations of the same kind, e.g. the orientation of the axes of polar particles under the influence of directing forces. The probability that the axis of such a particle, with moment m, in a tield of forces, whose intensity is \mathfrak{h}, forms an angle a with the direction of this foree, is according to classical statistical mechanies equal to

According to our considerations the probability that it has a considerable amount will at low temperatures be smaller than is indicated by this formula. Accordingly we find e.g. the Curab-point at a higher temperature than would be dednced from this formula, at least for those substances, for which this point lies so low, that at the Curb-temperature the mean kinetic energy of the rotations of the molecules is smadler than it should be according to the equipartition law.
§8. It is obvious that the above considerations have an excedingly provisional character. Many problems are referred to, but not for a single one have we found a sufficiently conclusive solution. I hope to be able to treat some problems more in detal on a later oceasion.

In the meantime I think hat I have shown that the drawing up of a new system of mechanies as amed at in my former communication upon this subjed is of the highest importance for all thermodynamic questions. I have done this with a view to draw the attention of the mathematicians to the problem and more in particular to the integral equation (5 a) or a corresponding equation ${ }^{\text {b }}$;
${ }^{1}$) I say a corresponding equation because, as 1 have already remarked on p. 1180 I was not perfectly sure that I was right in leaving the "proper coordinates" of the electron in this equation out of consideration. It is possible that the
the solntion of which would bring as an important step nearer to the drawing up of the new system of mechanies.

Some phenomena ate at present offen consitered in connection With the quata-hypothesis of which it is not clear from the above how they are connected whith the new system of mechanics, from which we expect the solution of the question conceming the partition of energy. Specially this is the case with the question of the emission of electrons under the influence of light-or Roxtgen rays.

In the thermodynamical applications it appears to me that we may expect from the quanta-hypothesis, that it will yield results which are sometimes quantitatively and always qualitatively accurate. For it has the tendency to lower the kinetic energy of vibrators of short period in agreement with the observations to an amount smaller than would agree with the equipartition law. And it is only this mean energy which is observed in thermodynamics, or the distribution in space which is closely connected with it.

Whether on the other hath the application of the quanta-hypothesis on the emission of electrons is justified seems doubtful to me. From a theoretical point of view it appears to me that no reason for the accuracy of the considerations can be found. And whether the agreement with experiment is sufficient to warrant the validity of the considerations seems to me to be still doubtful.

If in particular we take the theory of Somerfeld for these phenomena with the aid of the quanta of "action", then it appears to me that this theory (though perlaps accurate in itself) can be in no way connected with any possible theory for the normal spectrum. Let us imagine e.g. two equal guns with equal projectiles but with mequal charges of gunpowder. The projectile with the greatest gunpowder eharge will obtain the greater kinetic energy and that in the smaller time. And so we can assume that the molecular action is of such a mature that always the greater change of energy requires the shorter time in the way as is assumed by Sommerferd. This is a question of the law of action of molecular forces; it has nothing to do with the laws of mechanies, and in particular it is not confratictory to the laws of classical mechanies. I at last cannot discover any contradiction. But if indeed the theory of Sommerfeld can be reconciled with ciassical mechanics then it can also be reconsiled with the spectral formula of Rarreigil and leads by no means to the spectral formula of Plasck.
function co must depend besides on the p 's and the q 's also on the "proper coordinates" and that we, in connection with this, must add the differentials of the proper coordinates to the product of the differentials $\left(l_{1} p_{1} \ldots d l_{n}\right.$.

Physiology. - "The electrocerdiempeme uf the foed hemel." By f'wul. J. Ki. A. Wertheim shomorsos.

In land Cramer published an electrocadiogram of a hmman embry in ntero, laken in a healthy woman during the last period of pregnamer. The curve showed oseillations cansed by the heart of the mother, between which less conspicnous deviations could be seen, cathed by the foetal heartaction. These latter had the form of monomhasic deviations, but probably they shonld not be considered ats a the representation of the antual electrical potential differences.

Crbmer's investgations were repeated by Foa, who was not able to extend our knowledge in this respect and could only confirm Crampros statement.

I have tried to get some further insight in the peculiarities of the foetal encetrathogram by investigating it in the embryo of the chicken. This very obvions way was clearly indirated, as Zwasmemaker had shown that an electrocurdiogram rould be taken from partly-hateded eqge. He published a foetal electrocadiogram in his Treatise of Physiology.

Though my researhes on this subject were commenced about a year ato and we not yet completed owing to a lengthy interval duriner the autumn and winterseasons, I may be permitted to show some of the results of my experiments.

Lome before the conclusion of the tirst 60 hours of the incubating period, we can see in the chicken's embryo a strongly pulsating tubutar heart, slighty ewved to an s-form. In this early condition I have not been able to register any electrical potential difference ${ }^{1}$). The reason is that probably at that time the potential differences caused by the hear beats are exceedingly small. The electrical resistanee of the substance in which the foetal heart is embedded and which contains albominous and fatty matter is rather high. This combination of a low potential difference ading on a high resistance makes it very dilinoult even with an instrment so delicate as the stringrablamometer to delect the potential difference. The stringelectrometer give me no better results.

In the end of the firs week we can generally withont any particular dificulty lead off electrical oscillations from the foetal heart. These are very remular, isochonic with the heart heats, and show a simple monophasic deviation. Generally the ascending part has a wighter stope than the descending part. The descending part is followed immediately. withont an isoelectric interval, by the next
${ }^{1}$) I have since succeeded in doing so.
devalion, so as to give a regulady rising and balling line. No,

Fig. 1.
difference between the different beats could he cheerved. The maximal P'.I) amomets to about 20-30 mierovolts.

On the $8^{\text {th }}$ day we get a couve which is perferly diflerentiated. Instead of a series of continnons simple, nean! simusoidal deviations we get deviations which may be grouped in series of 3 eatch, carh group belonging to one heart beat. In each group the first and second deviation have the same polarity and are followed by a third peak of opposite polarity. The first peak seems to be some what higher than the others. I suppose that we may consider these thee deviations as identical with the summits $[$ ', R, and ' T ' in thenormat human electrocardiogram. The largest potential difference, that of the

Fig. 2.
P-deviation, amotents to some 50 or 60 microvolt. The duration of P is of the order of 0.07 second. The R-peak has a shorter duration. In a few records I believe I have also found slight indications of a Q and an S-peak. The electrical activity represented by the T-peak extends over $0.15-0.18$ second.

I am not yet prepared to speak about the extremely important question as to how the differentiated electromardiogran: of the $8^{\text {th }}$ day develops from the undifferentiated curves derived before the $6^{\text {th }}$ day.

After the $8^{\text {th }}$ day, as the foetal heart grows stronger. the electrocardiogram also grows stronger. It shows more markedly all the points generally visible in the electrocardiogram of the full-grown embryo and in that of the new-born chicken. This latter shows some similarity to the mammalian or human electrocardiogram.

On the $12^{\text {th }}$ and $14^{\text {th }}$ day electrocardiograms with higher potential oseillations, up to 0,5 millivolt, (an easily be recorded. After that

Fig. 3.
time the maximal P b rises very sowly the the ehen is fally
hatched. In the last week no finther changes in the form of the couve are to be found.

Fig. 4.
During my experiments, the results of which have been here broadly summarized, l found a few oher noteworthy details. So a record baken on the $14^{\text {th }}$ day gatse a definte hiphasibe oscillation instead of the ordinary monophasie P-peak. Anoher complication in the form of the curve was cansed by an musmal form of the T-peak, which also showed a tendeney to alter into a diphasie

Fig. 5.
deviation (tigs. 4 and 5) and to stant before the R-deviation had completely subsided (tig. 5).

Contrasting with these rather complicated forms, 1 sometimes found more simplified ones in which it was not possible to differentiate with certainty more than two elementary summits.

Lastly I found no small number of complexes which had to be considered as pathological forms. The principal of these were cansed by block; even isolated P-deviations could be found. The form represented in fig. is seems to me to be also a pathological form.

Fig. 6.
The pahological processes in these cases are probably caused by changes in the temperature, by lesions occurving during the preparation, or by the gradual death of the hear itself.
 curves." By Prot. W. A. Versuus. (Communicated by Prof. d. ('aboinati).
\$ 1. Let a twisted curve $C\binom{P, q, s}{a, b, c}$ be given by the equations:

$$
\begin{equation*}
x=a t^{\prime \prime} \quad, \quad!=b t^{\prime \prime} \quad, \quad z=c t s, \tag{1}
\end{equation*}
$$

t being the arbitrary paramoter, a, b, e comstants and p, q, s positive integers not admitting a common divisor. In general we suppose

$$
p<q<s
$$

By assigning to a, b, c all possible valnes we get a system of ∞^{2} curves, which will be denoted as the system $C^{\prime}(p, q, s)$. All the curves of this system contain the origin () and the point at intinity on the axis $10 /$: Hrough any other point of space only one curve of the system $C^{\prime}\left(p, q, s^{\circ}\right)$ passes. The curve determined by the point A shall be indicated by $C_{1}(p, q, s)$ or by C_{1}.

Leet $l_{3}\left(x_{1}, y_{1}, z_{1}\right)$ be the point of the curve $C\binom{p, q, s}{a, b, c}$ corresponding to the value t_{1} of the parameter t; then

$$
x_{1}=u t_{1}^{p} \quad, \quad y_{1}=b t_{1}^{4} \quad, \quad z_{1}=c t_{1}^{s}
$$

The equation of the osculating plane in P_{1} to $C^{\prime} b_{1}$ is:

$$
\begin{aligned}
& x-x_{1} \quad y-y_{1} \quad z-z_{1} \\
& \text { pat } t_{1}^{p-1} \quad \text { qb } t_{1}^{q-1} \quad \text { set } 1^{s-1} \quad \mid=0 \text {, } \\
& p\left(p^{\prime} 1\right) d t_{1} \mu^{2} q(q-1) h t_{1} q^{2} \quad \&\left(s \text { i) } c t_{1}^{s}=\right.
\end{aligned}
$$

or reduced

$$
\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
p x_{1} & m_{1} & s z_{1} \\
p^{2} w_{1} & q^{2} y, & s^{2} z_{1}
\end{array}=0,
$$

or worked out

$$
\begin{equation*}
\frac{s-q}{p}\left(\frac{x}{x_{1}}-1\right)+\frac{p-s}{q}\left(\frac{y}{y_{1}}-1\right)+\frac{q-p}{s}\binom{\tilde{z}-1)=0 ~}{\hat{z}_{1}}=0 \tag{2}
\end{equation*}
$$

By putting

$$
\begin{equation*}
\frac{s-q}{p}=P \quad, \quad \frac{p-s}{q}=Q \quad, \quad \frac{q-p}{s}=S, \tag{3}
\end{equation*}
$$

and replacing $P+Q+S$ by the value $-P Q S$, equal to it, the equation of the osculating plane becomes

$$
\begin{equation*}
P \frac{x}{x_{1}}+Q \frac{y}{y_{1}}+S \frac{z}{z_{1}}+P Q S=0 . \tag{4}
\end{equation*}
$$

5 2. We now propose the ghestion how to determine the thee fimetion: $\% \cdot \%_{s}, \%_{\mathrm{s}}$ in such a way that the twisted curve

$$
x=y_{:}(u) \quad, \quad y=\eta_{2}(u) \quad==\eta_{s}(u)
$$

atmits in the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ corresponding to the value u_{1} of uthe plane (2) as osculating plane.

The twisted curve if under disenssion has to cut the plane (2) thrien in the point $u=u_{1}$, i. e. the equation

$$
+\left(\begin{array}{cc}
1(11) & 1 \\
x^{2} & 1
\end{array}\right)+\left(\frac{y_{3}(11)}{y_{3}} 1\right)+\left(\frac{1 y_{3}(u)}{2}-1\right)=0
$$

must almil three roots $u=u_{1}$.
This gives the conditions:

$$
\begin{align*}
& \Gamma^{\prime} \frac{\boldsymbol{g}_{1}^{\prime}\left(u_{1}\right)}{\boldsymbol{q}_{1}\left(u_{1}\right)}+Q^{\boldsymbol{g}_{2}^{\prime}\left(\frac{\left(u_{1}\right)}{\boldsymbol{f}_{2}\left(u_{1}\right)}\right.}+S^{\boldsymbol{q}_{3}^{\prime}} \frac{\left(u_{1}\right)}{\boldsymbol{q}_{3}\left(u_{1}\right)}=0 . \tag{吅}\\
& P \frac{\boldsymbol{\varphi}_{1}^{\prime \prime}\left(u_{1}\right)}{\boldsymbol{\varphi}_{1}\left(u_{1}\right)}+Q \frac{\boldsymbol{\varphi}_{3}^{\prime \prime}\left(u_{1}\right)}{\boldsymbol{F}_{3}\left(u_{1}\right)}+S \frac{\varphi_{3}^{\prime \prime}\left(u_{1}\right)}{\boldsymbol{\varphi}_{8}\left(u_{1}\right)} . \tag{6}
\end{align*}
$$

As the equation (5) must hold for any value of u_{1} the first differential eofficient of the first member must disappear. This gives by taking (b) into account:

$$
\begin{equation*}
P\left\{\frac{r_{2}^{\prime}\left(u_{1}\right)}{r_{1}\left(u_{1}\right)}\right\}^{2}+Q\left\{\frac{f_{2}^{\prime}\left(u_{1}\right)}{r_{2}\left(u_{2}\right)}\right\}^{2}+S\left\{\frac{u_{2}^{\prime}\left(u_{1}\right)}{f_{3}\left(u_{1}\right)}\right\}^{2}=0 \tag{7}
\end{equation*}
$$

As the equations (5) and (7) must hold for any value of u_{1} they lead to the two sets of solutions:

$$
\begin{equation*}
\frac{q_{1}^{\prime}(u): \tau_{1}(u)}{p}=\frac{q^{\prime}(u): \tau_{2}(u)}{q}=\frac{y_{8}^{\prime}(u): \tau_{8}(u)}{s} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\boldsymbol{y}_{2}^{\prime}: \boldsymbol{r}_{1}}{\mu(\cdots+\eta+s)}=\frac{\boldsymbol{\varphi}_{3}^{\prime}: \boldsymbol{\gamma}_{2}}{q(p-q+s)}=\frac{\boldsymbol{r}_{3}: \boldsymbol{\gamma}_{3}}{s(p+q-s)} . \tag{9}
\end{equation*}
$$

By representing the three equal ratios ($\$$) by $\boldsymbol{q}^{(11)}$ we find

$$
\ddot{y}_{1}=u p^{p}{ }^{p \%(u) d u}
$$

which pasees, by replacing $\iint^{\circ} \boldsymbol{N}(u)$ du by to into

$$
x=\|(u)=u t\| \quad, \quad!=l u v, \quad z=c t s
$$

i. e. into a curve of the system $C(p, \eta, s)$.

Likewise the ratios 9 furnish

$$
x=\mathrm{er}^{\prime \prime} \quad, \quad y=\boldsymbol{r r}_{1} / 2 \quad z=\gamma^{s_{1}}
$$

i. e. a second curve belonging to a system $C\left(p_{1}, q_{1}, s_{1}\right)$ determined lys the relations

$$
\left.\begin{array}{l}
p_{1}=p(-p+q+s) \tag{10}\\
q_{1}=q(p-q+s) \\
s_{1}=s(p+q-s)
\end{array}\right\}
$$

So we have the theorem:
The equation (2) represents the ossenteting pleme in the cerbitrarity chosen point $l_{1}^{\prime}\left(x_{1}, l_{1}, z_{1}\right)$ to both the memes $C_{P_{1}}^{\prime}\left(p, \eta, x^{\prime}\right)$ rend $\left(P_{1}^{\prime}\left(p_{1}, \eta_{1}, x_{1}\right)\right.$.

We also find easily for the equation of the osentating plane in I_{3}^{\prime} to the curve $C_{P_{1}}^{\prime}\left(p_{1}, q_{1}, s_{1}\right)$

$$
\frac{s_{1}-q_{1}}{p_{1}}\left(\frac{x}{x_{1}}-1\right)+\frac{p_{1}-s_{1}}{q_{1}}\binom{y}{y_{1}}+\frac{q_{1}-p_{1}}{s_{1}}\left(\frac{\tilde{z}}{z_{1}}-1\right)=0
$$

so that

$$
P_{1}=\frac{k_{1}-q_{1}}{l_{1}}=\frac{q^{\prime}}{l^{\prime}}=-l^{\prime}
$$

and likewise

$$
\begin{equation*}
a_{1}=-Q \quad, \quad s_{1}=-s \tag{11}
\end{equation*}
$$

§3. Definition. We call $C\left(p_{1}, q_{1}, s_{1}\right)$ the complementroy system of $C(p, q, s)$.

By determining the complementary system of $C\left(p_{1}, q_{1}, s_{1}\right)$ we find again the original $C(p, q, s)$, as we have

$$
\begin{aligned}
& p_{1}\left(-p_{1}+q_{1}+s_{1}\right)=p(-p+q+s)(p-q+s)(p+q-s), \\
& q_{1}\left(p_{1}-q_{1}+s_{1}\right)=q(-p+q+s)(p-q+s)(p+q-s), \\
& s_{1}\left(p_{1}+q_{1}-s_{1}\right)=s(-p+q+s)(p-q+s)(p+q-s) .
\end{aligned}
$$

Therefore an exception presents itself if and only if we have

$$
(-p+q+s)(p-q+s)(p-q+s)=0
$$

For $p<q<s$ this reduces to the possibility $p+q-s=0$; on this supposition we find $s_{1}=0$ and $\mu_{1}=q_{1}$, i e. the sysiem $C\left(p_{1}, q_{1}, s_{1}\right)$ is the system of the right lines intersecting the axis $O Z$ and the line at infinity of the plane $z=0$.

We find $s_{1}>0$ for $s<p+q$ and $s_{1}<0$ for $s>p+q ; p_{1}$ and 7. are always positive.

For $p=0$ we also find $p_{1}=0$; then the two complementary systems $C(p, q, s)$ and $C\left(p_{1}, q_{1}, s_{1}\right)$ are both systems of plane curves situated in planes $x=$ constant.

If two of the three numbers p, q, s, e. g. p and q are equal, we find $p_{1}=q_{1}=p s$ and both systems $C^{\prime}\left(p, q, s^{\prime}\right)$ and $C^{\prime}\left(p_{1}, \eta_{1}, s_{1}\right)$ consist in plane curves complanar with the axis 0\%.

The identities

$$
\begin{gather*}
p P+q Q+s S=0 \tag{12}\\
p^{2} P+\eta^{2} Q+s^{2} S=0
\end{gather*}
$$

Proceedings Royal Acad. Amsterdam. Vol. XIJ.
fan immediately he verifed. Likewise one finds

$$
p_{1} p_{1}+q_{1} Q_{1}+\varepsilon_{1} S_{1}=0
$$

and an acomdiny to (11) $P_{1}=-P$, ete. We find
and alloo

$$
\left.\begin{array}{c}
r_{1}^{\prime} P^{\prime}+q_{2} Q+s_{1} S=0 \tag{13}\\
r_{1}^{2} P+r_{2}{ }^{2} Q+s_{1}^{2} S=0
\end{array}\right\}
$$

\$ 4 . 1 at ($)$, he a surface determined by the equations

$$
\begin{align*}
& x=\text { an } m^{q_{1}} \tag{14}\\
& y=\operatorname{lon}_{1} q_{1} \\
& z=c u^{s} v^{s_{1}}
\end{align*}
$$

where the coordinate lines $v=$ constant are curves of the system $C^{\prime}(p, \eta, s)$ and the coordinate lines $u=$ constant curves of the complementary system $C\left(p_{1}, q_{1}, s_{1}\right)$. The two coordinate lines passing thrount any point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ of $O_{t r_{1}}$ admit in this point the same osculating plane. 'This common osculating plane contains the tangents in P^{\prime} to both the coordinate lines and as the director cosines of these langents are proportional to
and

$$
\left.\begin{array}{l}
p_{x_{1}}, q y_{2}, s z_{2}, \tag{15}\\
p_{1} x_{1}, q_{1} y_{1}, s_{1} z_{1},
\end{array}\right\}
$$

these tamrents do not coincide and the common oseulating plane is at the same time the tangent plane of $U_{c c_{1}}$ in P_{1}.

This proves the theorem:
The tero systems of coordinate lines are the systems of asymptotic curves of the surface $0_{\text {an }}$ given by (14).

In any point P_{1} of $O_{t r_{1}}$ the tangents to $C_{P_{1}}(p, q, s)$ and $C_{P_{1}}\left(p_{1}, q_{1}, s_{1}\right)$ are the principal timgents as these curves are the asymptotic curves, So in any real point of $U_{\text {ch }}$ the principal tangents (see (15)) are real and different from one another; so we have the theorem:

All the prints of $U_{0,}$ are hemperbolic.
The equation of the surface $O_{\text {er }}$ is:

$$
\begin{equation*}
\binom{d}{a}^{p k}\left(\frac{b}{b}\right)^{(2 k}\left(\frac{\tilde{z}}{c}\right)^{S k}=1 . \tag{10}
\end{equation*}
$$

R being the lowest common multiple of the numerators P, Q, S of (3) after reduction of these fractions to their simplest values. Indeed the values (14) of the coordinates of any point of $O_{c c_{1}}$ satisfy the equation (16) for abitrary values of u and v, as according to (12) and (13) we have the identities

$$
\begin{aligned}
& p P+\eta Q+s S=0 \\
& r_{1} P+\eta_{1} Q+s_{1} s=0
\end{aligned}
$$

On aceount of $p<\eta<$ we have $1!<0$; so we preter tolyan= form (16) into

$$
\begin{equation*}
y^{P k}=z_{k}=B y-8 k . \tag{17}
\end{equation*}
$$

Corollary I. The degree of the surface () in $(I+S)$ l For we have:

$$
\begin{gathered}
L^{\prime}+Q+s=-P Q s>0 \\
P+S>-Q .
\end{gathered}
$$

Corollary 1/. The surfaces tore on which the lines of the systems $C(\rho, \not, s)$ and $C^{\prime}\left(p_{1}, q_{1}, x_{1}\right)$ are the asymptotice curves form a pencil.

Corollery //I. The hase coure of the pencil of surfaces $)_{\text {or }}$ is formed by the sides of the skew quadrilateral ($N_{\text {s }} V_{\infty} Z_{s o}$ (), each of these sides counted a reriain mumber of times.

Corollary / V. The complex of the principal tangents of the pencil of surfaces $O_{\mathrm{cC}_{1}}$ is formed by the tangents to the curves of both the systems $C^{\prime}(p, q, s)$ and $C^{\prime}\left(p_{1}, q_{1}, s_{1}\right)$.
§ 3. Reversely we start from the equation

$$
\begin{equation*}
x^{H} y^{M} \approx N=B \tag{18}
\end{equation*}
$$

where L, M, N are integets admitting no factor common to all three, in order to investigate under which restrictions with respect to these numbers the sufface represented by (18) admits as asymptotic curves the lines of a system $C(p, q, s)$ and therefore also those of the complementary system $C\left(p_{1}, \eta_{1}, r_{1}\right)$. This will be the case if the surface (18) contains curves of both systems; to that end we must have
and

$$
\left.\begin{array}{l}
p L+q_{2} M+s N=0 \tag{19}\\
p_{1} L+q_{1} M+s_{1} N=0
\end{array}\right\}
$$

or

$$
(p+q+s)(p L+q M+s N)-2\left(p^{2} L+q^{2} M+s^{2} N\right)=0
$$

what can be replaced, on account of (19), by

$$
\begin{equation*}
p^{2} L+q^{2} M+s^{2} N=0 \tag{20}
\end{equation*}
$$

where p, q and s are integers.
From (19) and (20) we deduce:

$$
\frac{p}{q}=\frac{-L M \pm V\{-L M N(L+M+N)\}}{L(L+N)}
$$

As p and g have to be integers the expression - $L M N(L+M+N)$ under the root sign must be posinve and a square; so L, M, N camot have the same sign. Let a^{2} be the highest integer square by which $L / M N$ and b^{2} the highest interer square by which $L+M+. M$ can be divided, so that $L U N: a^{2}$ and $(L+M+N): l^{3}$ contain

1368

prime finctors only orebring only once in eath expression; then we must have

$$
\begin{equation*}
L_{\Delta} M N: a^{2}=-(L+M+N): l^{2} \tag{21}
\end{equation*}
$$

By suhtituting the value of $-(L+M+N)$ following from it into the exprestion for $p: \eta$ given above we easily find:

$$
\begin{equation*}
\frac{{ }^{\prime}}{M(u \pm b N)}=\frac{q}{-a(L+N)}=\frac{\varepsilon}{M(a \mp b L)} \tag{22}
\end{equation*}
$$

So, as soon ats $/$, M, N satisfy the condition (21) we find sels of numbers $\left(p, \eta, s^{\prime}\right),\left(p^{\prime}, q^{\prime}, s^{\prime}\right)$ and therefore also two sets of curves $\ell^{\prime}(p, q, s), C^{\prime}\left(p^{\prime}, q^{\prime}, s^{\prime}\right)$ lying on the smface (18). After some reductions we tind $\mu^{\prime}: q^{\prime}: s^{\prime}=p_{1}: q_{1}: s_{1}$ as the deduction of $\left(p^{\prime}, \eta, s\right)$ and $\left(p^{\prime}, q^{\prime}, s^{\prime}\right)$ requires. So we have proved the theorem:

A surface

$$
x^{L} y^{M} z^{N}=B
$$

ulmites as asymptotic cumes the curces of the systems

$$
C(M(a+b N),-a(I+N), M(a-b L))
$$

and

$$
C(M(a-b N),-a(L+N), M(a+b L))
$$

us sum as L, M, N satisigy the condition

$$
L+M+N=-\frac{b^{2}}{a^{2}} L . M N
$$

" and b being integers.
The simplest example of a surface $x^{L} y^{M} z^{N}=B$, where the condition $L+M+N=-\frac{b^{2}}{a^{2}} L M N$, holds, is the lyperbolie parabolod

$$
x^{\prime} \approx=R y
$$

In this case the equations (22) become

$$
p=0, q=s \quad \text { and } s_{1}=0, r_{1}=g_{1} .
$$

The systems $C^{\prime}(0,1,1)$ and $C^{\prime}(1,1,0)$ are systems of right lines forming on the paratoolod the asymptotie lines.
§ 6 . Any surface $O_{\text {ec, }}$ contains besides the two systems of asympfotic lines $C^{\prime}\left(p, q, s^{\prime}\right)$ and $C^{\prime}\left(p_{1} \cdot q_{1}, s_{1}\right)$ other systems of curves belonging to the sysiems

$$
C\left(p+2 p_{1}, q+2 q_{1}, s+2 s_{1}\right)
$$

and this holds for athy rational value of λ. either positive or negrative.
Let, in order to show this, $P_{1}\left(r_{1}, ?_{1}^{\prime}, z_{1}\right)$ be any point of $O_{c r_{1}}$, so lhat we have

$$
n_{1} k_{z_{1}} S k=B y_{1}-(2 k
$$

Hen U_{n} contains any point of the curve

$$
x=\dot{u}_{1} t p+\mu_{1}, \quad y=y_{1} 1 \eta+i n_{1}, \quad z=z_{1}(s+\cdots
$$

as from the identities (12) and (1:3) we can deluce

$$
P\left(p+\lambda p_{2}\right)+Q\left(q+\lambda_{1}\right)+S\left(s+\lambda s_{1}\right)=0
$$

If λ_{1} and λ_{3} represent any two definite values of 2 , the cronso ratin) of the four tangents in a point P_{1} of $O_{\mathrm{ec}_{2}}$ to the curves through P_{1} of the systems

$$
\begin{gathered}
C(p, q, s), C\left(p_{1}, q_{1}, s_{1}\right), \quad C\left(p+\lambda_{1} p_{1}, \eta+\lambda_{1} \eta_{1}, s+\lambda_{1}, s_{1}\right), \\
\\
C\left(p+\lambda_{3} \eta_{1}, q+\lambda_{3} \eta_{1}, s+\lambda_{2}, s_{1}\right),
\end{gathered}
$$

is always equal to $\lambda_{1}: \lambda_{3}$ and therefore indepondent of x_{1}, y_{1}, z_{1}. So this cross ratio is constimt all over the smrace.

If we put e.g.

$$
\begin{gathered}
\lambda_{1}=1:(p+q+s) \\
\lambda_{1}=\left(p_{1}+q_{1}+s_{1}\right):(-p+\eta+s)(p-q+s)(p: q-s),
\end{gathered}
$$

the two systems of curves corresponding to these two values of λ are the systems $\left(\because\left(p^{3}, q^{2}, s^{2}\right)\right.$ and $\left(,\left(p_{1}{ }^{2}, q_{2}{ }^{2}, s_{1}{ }^{2}\right)\right.$.
so the cross ratio of the tangents in any point of () cri $^{\prime}$ to the four curves through this point belonging to the systems

$$
\ell(p, q, s), \quad C\left(p_{1}, \eta_{1}, s_{1}\right), \quad C\left(p^{2}, q^{2}, s^{2}\right), \quad\left(\quad\left(p_{1}{ }^{2}, \eta_{1}{ }^{2}, s_{1}{ }^{2}\right),\right.
$$

is therefore
$\left.\lambda_{1}: \lambda_{2}=\frac{(-p+q+s)(p-q+s)(p+q-s)}{(p+q+s)\left(p_{1}+q_{1}+s_{1}\right)}=\eta_{1} \eta_{1} v_{1} s_{1} p p(p+q+s)\left(p+q_{2}+s_{1}\right)\right)_{3}$.
This cross ratio becomes zero or infinite if two of the four tangents coincide with each other; then the curves touching these coinciding lines also coincide. For p, q, and s positive and $p<q<;$ the cross ratio becomes zero under the condition $p+q=s$ only and infinite for $p_{1}+q_{1}+s_{1}$ only. In the first case the systems $C^{\prime}\left(p_{1}, q_{1}, s_{1}\right)$ and $C\left(p_{1}{ }^{3}, q_{8}{ }^{2}, s_{1}{ }^{2}\right)$ coincide, in the second case the systems $C(p, q, s)$ and $C\left(p_{1}{ }^{3}, q_{1}{ }^{3}, w_{1}{ }^{2}\right)$.

Reversely, if a curve of a system $C^{\prime}\left(p^{\prime}, q^{\prime}, s^{\prime}\right)$ lies on the surface $O_{c c_{1}}$ it will always be possible to find a valne of λ. for which the system $C\left(p+\lambda p_{1}, q+\lambda q_{1}, s+\lambda w_{1}\right)$ coincides with the system $C\left(p^{\prime}, q^{\prime}, s^{\prime}\right)$.

So we have to prove that it is possible to find values λ and n satisfying the three equations:

$$
\begin{aligned}
& p+\lambda p_{2}+\mu p^{\prime}=0 \\
& p+\lambda q_{1}+\mu q^{\prime}=0 \\
& s+\lambda s_{1}+\mu s^{\prime}=0
\end{aligned}
$$

These three equations are not mutually independent; multiplying the first members by I^{\prime}, Q and S and adding the results
we get $0=0$. for the condition under which the curve $C^{\prime}\left(y^{\prime}, \eta^{\prime}, s^{\prime}\right)$ lies on $U_{\text {on }}$ is

$$
I_{p^{\prime}}^{\prime}+Q_{l}^{\prime}+s^{\prime}=0
$$

For this groot we have not made use of the fact that the two sysem: $C^{\prime}\left(\rho, \eta, s^{\prime}\right)$ and $C^{\prime}\left(\mu_{1}, \eta_{1}, s_{1}\right)$ are complementary ; so this theorem also hokd for athy surtace gencrated by curves of the system $C^{\prime}(p, q, s)$ mecting a curve of a $\mathrm{ys}^{\text {stem }} C\left(p_{2}, q_{2}, \kappa_{2}\right)$.
\$7. Let $l_{1}^{\prime}\left(r_{1}, \eta_{1}, z_{1}\right)$ be once more an ablitary point of $U_{\text {er }}$. Then the two ruled surfaces osculating $O_{\text {in }}$ along the curve through P_{1} of the system $\left(\left(\mu+2 \mu_{2}, \eta+\lambda \eta_{1}, s+\lambda s_{1}\right)\right.$ are the surfaces the generatries of which are the principal tangents of $U_{\text {er }}$ in the points of this curve. So these two oseulating ruled surfaces are represented by the following two sets of equations:

As soon as lwo surfaces are generated by curves of a same system $C(p, q, s)$ the intersection of these surfaces consists exclusively of curves of this system, whether single or degenerated ones; for the curve $C(p, y, s)$ passing through any common point of the two surfaces must lie on both. So, as the two surfaces I and $I I$ osculating $\theta_{i r_{1}}$ partake of the property of $O_{\text {ur }}$, of being generated by curves of the srstem $C\left(p+\lambda p_{1}, q+i \eta_{1}, s+\lambda s_{2}\right)$, or $C(\lambda)$ for short, the intersection of each of these two surfaces with $O_{e r_{1}}$ and their mutual intersection must break up into curves of the system $C\left(\lambda_{n}\right)$.

In the case $\lambda_{0}=0$, i.e. if the system $C(\lambda)$ coincides with the system $C(p, y, s)$, the ruled surface l is developable. If $C(i)$ coincides with the system $\left(\left(p_{1}, \eta_{1}, s_{1}\right)\right.$ the ruled surface $/ /$ is derelopable.

For $\lambda_{2}=-\lambda_{1}$ the cross ratio $\lambda_{1}: \lambda_{2}=-1$ (see $\$ 6$) and the four tangents form a harmonic quadruple. Then the tangents to the curves of the systems $C\left(\lambda_{1}\right)$ and $C\left(-\lambda_{1}\right)$ are two conjngate diameters of the indicatrix, the tangents to the curves of the systems $C(p, q, s)$ and $C\left(p_{1}, q_{1}, s_{1}\right)$ being the asymptotes of the indicatrix. So the two systems of curves corresponding to λ_{1} and - λ_{1} are coniugate on $O_{\mathrm{cc}_{1}}$.

So the developable enveloping $O_{\text {th }}$ according to a curve of the system $C\left(\lambda_{1}\right)$ is represented by the equations

$$
\begin{align*}
& x=x_{1}\left(1+v\left(p-\lambda_{1} p_{1}\right)\right) t p+i_{1} p_{1} \\
& y=v_{1}\left(1+v\left(q-\lambda_{1} \eta_{1}\right)\right) t q+i_{1} q_{1} \\
& z=z_{1}\left(1+v\left(s-\lambda_{1} s_{1}\right)\right) t^{s+\lambda_{1} s_{1}}
\end{align*} \quad,
$$

Indeal this ruled surfue proves to he developable, as it is possibe to determine v in such a way that the director cosimes of the fangent to the curve of the system $C(\lambda$,$) situated on this surface /// and$ corresponding to this value of v become proportional to the director cosines of the generatrices.

Indeed it is possible to find values r and matisfying the ergnations

$$
\begin{aligned}
& p+\lambda_{1} p_{1}+v\left(\mu^{2}-\lambda_{1}^{2} p_{1}^{2}\right)+w\left(p-\lambda_{1} \mu_{2}\right)=0, \\
& q+\lambda_{1} g_{1}+v\left(\eta^{2}-\lambda_{1}^{2} g_{1}{ }^{2}\right)+w\left(q-\lambda_{1} g_{3}\right)=1 \\
& s+\lambda_{1} s_{1}+v\left(s^{2}-\lambda_{1}^{2} s_{2}^{2}\right)+w\left(w-\lambda_{1} s_{1}\right)=0,
\end{aligned}
$$

as the sum of the three first members, multiplied respectively by P ', (, and S disappears.

This developable also cuts $O_{\text {an }}$ acoording to curves of the system $C\left(\lambda_{1}\right)$ to which also belongs the curve of contact.
§ 8. By assuming for λ_{1} the value - s we find $s-\lambda_{1} s_{1}=0$ and the system $C(\lambda)$ becomes the system $C(\mu(s-p), q(s-q), 0)$. The conjugated system, i.e. the system corresponding to the value $\lambda_{2}=-\lambda_{1}=s: s_{1}$, is then the system $C^{\prime}\left(p, m, m_{1}\right)$. Then the first system consists of curves lying in the planes $z=$ constant and the second of curves lying in planes throngh the axis $O Z$.

The developable D circumscribed to $D_{\text {an }}$ along a curve of the system $C(p(s-p), q(s-q), 0)$ is generated by the tangents to the curves $C\left(p q, p q, s_{1}\right)$ and admits therefore the equations:

$$
\begin{aligned}
& x=x_{1}\left(1+p q^{v}\right)^{t p^{\prime}(s-p)}, \\
& y=y_{1}\left(1+p q^{c}\right) t q^{(s-q)} \\
& z=z_{1}\left(1+s_{1} v^{\prime}\right)
\end{aligned}
$$

x_{1}, y_{1}, z_{1} satisfying the relation

$$
x_{1}{ }^{P k} z_{1}^{S k}=B y-Q k .
$$

As the system of curves conjugated to the curves of contact consists of curves situated in planes through the axis 0\%, the developable must be a cone (according to the theorem of Kobsigs ${ }^{1}$), the vertex of which lies on $O Z$. It is easily verified that all the generatrices of D pass through the point $\left\{0,0, z_{1}\left(1-\frac{s_{1}}{p_{q}}\right)\right\}$.

The developable D^{\prime} circumscribed to $O_{e c,}$ along a curve of the system $C\left(p q, p q, s_{1}\right)$ is represented by the equations:

[^100]\[

$$
\begin{aligned}
& x=x_{i}\{1+n(s-p) r\} t m
\end{aligned}
$$
\]

$$
\begin{aligned}
& ==z_{1} t_{1} .
\end{aligned}
$$

The direction of the generatrices of this developable being constant, I^{\prime} is an enveloping erlinder.

For $\lambda_{1}=-p: \rho_{1}$ and $\lambda_{1}=-q: \eta_{2}$ we obtain analogons results. so the theorems hold:

1. The pheme sections of Oa, by plames through any delfe of the tetrahedron af ceordimates are eomjunated to those by plames containing the oppersite edye.
 the phane of which comtains an edge of the tetratedron of coordinates is " come the vertex of whel lies on the opposite cellye.
2. Any of these enceloping comes cuts $O_{\text {ce }}$ according to curves ai the s?stem $C^{\prime}(\lambda)$ to whick belongs the carce of contact.
3. 9. Let $A(r, b, c)$ be an arbitray point. Then the curve of contat of the enveloping cone of $\Theta_{\mathrm{cc}_{1}}$ with A as vertex lies on $O_{\mathrm{cc}_{2}}$ itself, the equation of which surface is

$$
x^{P k} y^{(Q k} z=5 k=B
$$

and on the first polar surface of 1 with respect to $O_{\text {cc }_{1}}$ with the equation

$$
\begin{gathered}
P_{c u} P^{P} k-1 y^{0 k} z S k+Q b_{d} P k_{y^{(} y_{k-1} z^{S k}+S_{c \cdot c} P^{P} y_{Q k} z S k-1} \\
-(P+Q+S) B=0 .
\end{gathered}
$$

By eliminating B between these two equations we find:

$$
\begin{equation*}
P a y z+Q b x z+S x y-(P+Q+S) x y z=0 \tag{23}
\end{equation*}
$$

So the curve of contact always lies on a cubic surface O_{A}^{3} represented by $\left(2^{\prime \prime}\right)$. The equation (23) of O_{A}^{3} being independent of B, this surface O_{A}^{3} is the same for all the surfaces $O_{c c_{1}}$; so we have theorem:

The locus of the cumes of contact of all the surfaces $U_{c c_{1}}$ with. the enveloping cones with common rertex A is a cubic surface O_{A}^{3}.

The tangential planes of $O_{0 C_{1}}$ being at the same time the osculating planes of the systems $C(p, q, s)$ and $C\left(p_{1}, q_{1}, s_{1}\right)$, the surface O_{A}^{3} is also the locus of the points l 'for which the osculating planes to $C_{P}^{\prime}(p, q, s)$ and to $C_{p}\left(p_{1}, y_{1}, s_{1}\right)$ pass through A; this can easily be proved directly by making use of the equations (\mathbf{t}).

The surface θ_{1}^{3} containing the six edges of the tetrabedron of coordinates, four of which also lie on $U_{e r_{1}}$, the intersection of $O_{e c_{1}}$
and O_{i}^{3} breaks up into the curve of contact and these fonr edpes. The dangential phane of σ_{A}^{3} in any point of one of these elges is the same for all the points of this edue and different from the faces of the tetrahedron of coordinates. As we always have $S<-Q$ and we suppose provisionally that $I^{\prime}>-$ (2, the tangential planes of $O_{\text {th }}$ along the bour edges comede with fites of the tetrahedron of coordinates. So each of the form edges belongs to the intersection a number of times indieated by its multiphicity on $0_{\text {an }}$.

Now the edge O_{2} is always wiolold on (X_{0} and $Y_{\infty} \%_{\infty}$ is always $\left(S+Q+l^{\prime}\right)$-fold, while for $l^{\prime}>-$ ((he celge $X_{\infty} Y_{\infty}$ is Sh-fold and the edge $\left(1 Z_{\infty}\right.$ is - (0 -fold. So the fom edges represent together $\left(3 S+l^{\prime}\right) l_{i}$ common right lines. The total intersection of θ_{1}^{3} and $\theta_{\text {er }}$ being of the order $\mathbf{3}\left(l^{\prime}+S\right) k$, there remains at curve of contact of order $2 / \%$.
 on $O_{n_{1}}$ and the edge $O Z_{\alpha}$ comnts $I \%_{i}$ times. Then the four edges represent $\left(3 S^{\prime}+3 l+2(2) /{ }^{\prime}\right.$ common right lines belonging to the intersection and therefore the curve of contact is of order - 2 Q 2 .

For $P^{\prime}=-Q$ which implies $S=S+I^{\prime}+Q$ the tangential plane of $O_{\text {er, }}$ along $U \%_{\infty}$ is no more constant and therefore this plane does not coincide with the tangential plane of θ_{A}^{3} along this edge which is constant; likewise for the edge $Y_{\infty} Z_{\infty}$. So the multiplicity of these edges as parts of the intersection still remains effual to their multiplicity on $O_{\text {er }_{1}}$.

Now the edge $X_{\infty} Y_{\infty}$ is $S k$-fold on $O_{\text {cra }}$ and the edge $U Z_{\infty}$ is $P h$-fold. The order of the curve of contact is $2 P k=-20 h$.

From $P=-Q$ we deduce

$$
(s-p-q)(q-p)=0
$$

i. e. either $s=q+p$, or $p=q$. In the first case $U_{\text {or }}$ is a ruled surface (see § $3, \$ 14$), in the second a plane (see § 3).

As in general the point A does not lie on the surface ($)_{n}$ it neither lies on the curve of contact and the order of the enveloping cone to $O_{t r_{1}}$ with vertex A is equal to the order of the curve of contact. So we find the theorem:

The order of the enveloping cone to Ow, with an arbitromy dertex A is the larger of the two numbers $2 P h$ and $-20 h$.

If A lies in one of the faces of the tetrahedron of coordinates, O_{4}^{3} breaks up into the plane of that face and into a phatratic cone the vertex of which comeides with the opposite vertex of the tetrahedron.

If A lies on one of the edges of the tetrahedron of coordinates,
(1) heraks up into the two fates through A and into a third plane. Then the curve of contact is plane (see $\$ 8$).

5 10. The clase of the enveloping cone is equal to the class of 1)...: the chass of $O_{\mathrm{ci}_{1}}$ being $(I+S) k$, as we shall see immediately, the class of the enveloping cone also is $(I)+S) k$.

The class of $\theta_{\text {ec }}$ is equal to its order. the reciprocal polar figure of () heing also a surface $O_{c c_{1}}$. The homogencous plane coordinates ((1. $B, \gamma,(d)$ of a tangential plane to $O_{c c_{1}}$, i. e. of an osculating plane to a curse $\left(C^{\prime}(p, q, s)\right.$ satisfy the conditions (see $§ 1$, equation 4):

$$
\frac{a}{P^{\prime}: x_{1} u_{1} p_{c_{1} p_{1}}}=\frac{\beta}{Q: \ln u_{1} r_{1} q_{1}}=\frac{\gamma}{S: c u_{1} \varepsilon_{2} v_{1}}=\frac{\delta}{P Q S} ;
$$

where $\left(r_{1}, y_{1}, z_{1}\right)$ are the coordinates of any point of $O_{c c_{1}}$ and u_{1}, v_{1} the parameter values corresponding to the point of contact. By replacing $1: u_{1}$ and $1: v_{1}$ by u^{\prime} and x^{\prime} we find:

$$
\begin{aligned}
& \varepsilon: \delta=\frac{u^{\prime} P r^{\prime} p_{1}}{Q S x_{1}} \\
& \beta: \delta=\frac{u^{\prime} 4 v^{\prime} y_{1}}{P^{\prime} S y_{1}} \\
& \gamma: \delta=\frac{u^{\prime} s v^{\prime} s_{1}}{P Q z_{1}}
\end{aligned}
$$

so, hut for constant factors, the coordinates of the pole of the tangential phane to $O_{e c_{1}}$ with respect to the quadric

$$
\begin{equation*}
x^{2}+y^{3}+z^{2}+1=0 \tag{24}
\end{equation*}
$$

are equal to the coordinates of a point of $O_{c c_{1}}(\sec \wp 4$, equation 14).
So, if the equation of $O_{e r,}$ is

$$
x^{P k} y^{Q k} z^{S k}=B
$$

the equation of the reciprocal polar figure with respect to (24) is

$$
x^{P) k} y^{\left(Q k_{z}^{S k}\right.}=\frac{1}{B\left(P^{S}+Q Q^{P}+S S^{P}+\bar{Q}\right)^{1}} .
$$

So the product of the parameters corresponding to two reciprocal. polar surfaces of the pencil $O_{c c_{1}}$ is constant, viz.

$$
\left\{P^{(2+S} Q^{S+P^{\prime}} S^{P}+Q-k\right.
$$

§ 11. In the case $s_{1}=0$ the asymptotic lines of the system $C^{\prime}\left(p_{1}, q_{1}, s_{1}\right)$ are right; so according to a known theorem four arbitraty asymptotic curves of the system $C\left(p, q, s^{\prime}\right)$ most intersect all the gencratrices in four points with a constant cross ratio. This theorem not only holds for the ruled surfaces on which the curves
$C(p, y, s)$ are asymptotic (ourves, hut also for any ruled surface generated by these curves.

Proof: Let the ruled surface be represented by the equations

$$
\begin{align*}
& y=\left(n+(c){ }^{\prime \prime}\right. \\
& y=(b+B)^{\prime \prime} \\
& z=(c+\gamma n)
\end{align*}
$$

Led $P_{1}, l_{2}^{\prime}, P_{3}, P^{\prime}$ be the form points of intersection of the fome
 v_{3}, v_{1}, with the gencratrix corresponding to the parameter t_{1}. The cross ratio of these four points is equal to that of the four projecetions of these points on the axis $(S, X$ and in its turn this cross vatio is equal to that of the four points of ()X for which the ex coordinate hat the values

$$
a+a v_{1}, a+c v_{2}, a+e v_{3}, a+e k_{4} .
$$

These four coordinates being independent of t, the cross ratio of the last group of four points does not vary with t. So the cross ratio of the four points $P_{1}, P_{2}, P_{3}, P_{3}$ is independent of l_{1}, i. e. this cross ratio is the same for any group of tour points determined by the four curves $C^{\prime}(p, q, s)$ corresponding to the parameter values $v_{1}, v_{3}, v_{3}, v_{4}$ on any generatrix.

Example. The curves of the system $C^{\prime}(1,2,3)$ intersecting a given right line lie on a ruled surface of order four, for which one of the twisted cubies $C(1,2,3)$ is double curve (nodal curve, isolated curve or cuspidal curve). According to the theorem just proved any definite group of four curves of the system $C(1,2,3)$ cuts all the generatrices in four points with a constant cross ratio.
\$ 12. In the case of a rectangular system of coordinates we easily find for the first differential coefficient of the length of are σ in the point $I^{\prime}\left(r^{r}, y, z\right)$ of the curve $C_{P}(p, q, s)$ corresponding to the parameter value t the expression

$$
\frac{d \sigma}{d t}-1,\left\{p^{2} x^{3}+q^{2} y^{2}+s^{2} z^{3}\right\}^{\frac{1}{2}}
$$

Let $\triangle \theta$ be the angle between the binormals of the curve $C^{\prime}(p, q, \cdots)$ in the points corresponding to the values t and $t+\Delta t$; then we easily find:

$$
\frac{d 0}{d t}=\frac{\operatorname{PQS}\left\{p^{2} x^{2}+q^{3} y^{2}+s^{2} z^{2}\right\}^{\prime}}{t x y z\left\{\begin{array}{l}
P^{2} \\
\frac{Q^{2}}{2}+\frac{S^{2}}{y^{2}}+z^{2}
\end{array}\right\}} .
$$

So the radius of torsion ϱ becomes :

$$
!=\frac{d \sigma}{d \theta}=\frac{x y z}{P Q S}\left(\frac{P^{3}}{x^{3}}+\frac{Q^{2}}{y^{2}}+\frac{S^{2}}{z^{2}}\right) .
$$

For the ratins of torsion o_{1} of the curve $C_{p}\left(p_{1} \cdot q_{1}, s_{1}\right)$ in the same joint we get

$$
\varrho_{1}=\frac{x^{2} y z}{P_{1} Q_{1} s_{1}}\left(\frac{P_{1}^{3}}{x^{3}}+\frac{Q_{1}{ }^{2}}{y^{3}}+\frac{S_{1}^{2}}{z^{3}}\right),
$$

and, as $I_{1}=-I^{\prime}, Q_{1}=-\left(S_{1}=-S\right.$ (see § 2, equation 11).

$$
\left.|0|=\left|o_{1}\right|^{i}\right)
$$

Of the sorews osculating the asymptio lines of the surface $O_{c e_{1}}$ in any point the ane is righthanded, the other lefthanded, as the determinant

$$
\begin{array}{lll}
x^{\prime} & x^{\prime \prime} & x^{\prime \prime \prime} \\
y^{\prime} & y^{\prime \prime} & y^{\prime \prime \prime} \\
z^{\prime} & z^{\prime \prime} & z^{\prime \prime \prime}
\end{array}=\frac{x y z}{t^{6}} p^{2} \eta^{3} s^{2}(P+Q+S)
$$

assumes opposite signs for the two asymptotie lines.
Let X, Y, Z represent the director cosines of the binormal and d the distance of the origin to the osculating plane in the point (n, y, z); then we casily find:

$$
\begin{aligned}
& 1: o=\mathrm{NY} /\left\{\begin{array}{l}
P^{2} \\
x^{3}
\end{array}+\frac{Q^{2}}{y^{3}}+\frac{S^{2}}{i^{2}}\right\}^{\frac{1}{2}}=\mathrm{NY} \frac{S}{z}=\Gamma Z \frac{P}{x}=Z \mathrm{~S}^{\frac{Q}{y}} ; \\
& \varrho=\frac{d}{x Y \% P Q s}=\frac{x y z P Q S}{d^{2}} .
\end{aligned}
$$

Let L If be the angle between the tangents to a curve of the sysfem $C(p, q, s)$ in the points corresponding to the values t and $1+\angle t$; then we have:

$$
\frac{d y}{d t}=\frac{m s x y z\left\{\frac{p^{2}}{x^{2}}+\frac{Q^{2}}{y^{2}}+\frac{S^{2}}{z^{2}}\right\}^{\frac{1}{2}}}{t\left(p^{3} x^{2}+q^{2} y^{2}+s^{2} z^{2}\right)}
$$

by means of which we find for the radits of curvature R :
or, if ℓ, β, and γ are the angles between the tangent and the axes of coordinates

$$
\frac{1}{R}=\cos \varepsilon \cos \beta \cos \gamma\left\{\frac{P^{2}}{x^{2}}+\frac{Q^{2}}{y^{2}}+\frac{S^{2}}{z^{3}}\right\}^{\frac{1}{2}}
$$

So we get:

1) Pascal, Rep. di Mat. Sup. Cap. 16; 99.
and

$$
\begin{aligned}
& 1: \quad \text { I } \% \\
& \text { (1) ionsecons inay }
\end{aligned}
$$

Likewise, if $\boldsymbol{u}_{1}, \beta_{1}, \gamma_{1}$ are the angles between the tangent in the point $P^{\prime}(x, y, z)$ to $C^{P}\left(p_{1}, y_{1}, x_{1}\right)$ and the axes of coordinates, amb h_{1} is the radins of corvature of this conve in this pant, we find:

$$
R_{1}=\bar{P}_{1} Q_{1} s_{1} \operatorname{dos} R_{3} \cos \bar{B}_{2} \theta_{2} \gamma_{2},
$$

and therefore
\$ 13. The tangent in the point P_{1} to the curve $C_{p}^{\prime}\left(p_{1}, \eta_{1}, s\right)$ admitting the director cosines

$$
p^{\prime} x_{1}, \eta^{\prime} y_{1}, s^{\prime} z_{1},
$$

this line is normal, in the case of rectangular axes, in P_{1} to the quadric of the pencil

$$
\begin{equation*}
p^{\prime} x^{2}+q^{\prime} y^{2}+s^{\prime} z^{2}=11 \tag{26}
\end{equation*}
$$

passing through P_{1}. So the surfaces of this pencil (26) cut all the curves of the system $C^{\prime}\left(p, \eta, w^{\prime}\right)$ and consequently also atl the surfaces generated by curves of the system $C\left(p, \eta, s^{\prime}\right)$ under right anglen. Moreover the pencil (26) cuts any surface generated by curves $C(p, q, s)$ according to the orthogonal trajectories of these curves.

The surface $O_{\text {co }}$ being generated hy curves of any system (! (y), see $\$ 7$, we find the theorems:
I. Any ruatric of the net

$$
p x^{2}+q y^{3}+s z^{2}+\lambda\left(p_{1} x^{2}+q_{1} y^{2}+s_{1} z^{2}\right)=u
$$

cuts amy surfitice $O_{\text {er }}^{1}$ under right emples.
II. The arthogonal trajectories of the curves $C^{\prime}\left(i_{1}\right)$ sitmated on () an we the intersections with surfeces of the pencil.

$$
p x^{2}+q y^{2}+s z^{2}+\lambda_{1}\left(p_{1} x^{2}+q_{1} y^{2}+s_{1} z^{2}\right)=\mu
$$

1II. Any curve of order four forming the hose of' at pencil oi quadries belonging to the net (27) cuts min seriface (ow meder right anyles.
IV. In partiondar the orthogonal trajectories of the dsammpotie coures of $O_{\text {ce }}$ are determined by the intersection with the two puncils of quablic:

$$
\begin{aligned}
& p x^{2}+q y^{2}+s z^{2}=!1 \\
& p_{1} x^{2}+q y^{3}+s_{1} z^{2}=!_{1} .
\end{aligned}
$$

$\$ 14$. We now suppose $s=p+q$; then the numbers p, q, sare mutually prime two by two. We then find $p_{1}=q_{1}=2 p_{1}, s_{1}=0$; so the complementary system $C^{\prime}\left(p_{1}, y_{1}, s_{2}\right)$ is a system of right lines resting on the axis (1\% and on $I_{x} Y_{x}$. The surface $\theta_{c, 1}$ is a ruled surface with two right director lines.

Furthemore we fims:

$$
P=1, Q=-1 . N=\frac{q-p}{q+p}:
$$

\therefore o the lowest common multiple of the denominators of P, Q, S is wither $q+p$ or $(\eta+\eta): 2$ according to the numbers η and p being either one even and the other odd, or both odd.

We suppose in the first place that one of the mumbers p, q is even (see $\$ 15$, examples I and III).

Then the equation of the ruled surface $O_{c_{1}}$ is:

$$
x^{q+p q} q-p=B y^{q+F} ;
$$

so the ruled surface is of order $2 q$. The enveloping cone is of order $2 P k=2(\eta+p)$, see $\$ 9$, and of class $2 q$.

If p and q are both odd and therefore $p--q$ and $p+q$ both even (see $\$ 15$, examples II, IV and V), the equation of $O_{c r_{1}}$ is

$$
\left.\left.x^{\prime} p+q\right): 2 z^{(p-q): 2}=B y^{\prime} p+q\right): 2,
$$

so $O_{\mathrm{c} c_{2}}$ is a ruled surface of order $\%$. The enveloping cone with arbitray vertex A is of order $q+p$, see $\$ 9$, and of class q.

The ruled surface osculating U_{cc} along a generatrix l is generated by the principal tangents of $O_{c_{1}}$ in the points of l which do not coincide with l, i.e. by the tangents of the curves of the system $C(p, q, p+q)$. So this osculating ruled surface is represented by the equations:

$$
\begin{aligned}
& x=x_{1}(1+p c) t \\
& n=y_{1}(1+q c) t \\
& z=z_{1}\left\{1+(p+q) c_{0}\right.
\end{aligned}
$$

or by the equation

$$
\begin{aligned}
x y_{1}-y, x_{1} \\
p x_{1} y-q y_{1} x
\end{aligned}=\frac{z-z_{1}}{(p+q) z_{1}}
$$

§ 15. Example 1. Suppose $p=1, q=2, s=3$; then we have $s=p+q, p_{1}=q_{2}=4 . s_{2}=0, P=-Q=1, S=\frac{1}{3}$. So the equation of the ruled surface with the twisted cubics of the system $C^{\prime}(1,2,3)$ as asymptotic lines is

$$
x^{3} z=B y^{2}
$$

Buample II. For $p=1, \eta=3, s=4$; we fint $s=p+q$, $q_{1}=p_{1}=6, s_{1}=0 . \quad P=-\left(\Omega=1, s=\begin{array}{l}1 \\ \square\end{array}\right.$

So the surface admitting as asymptotic lines the twisted ynarties of the system $C^{\prime}(1,3,4)$ with two stationary tangents, is the cubic surface

$$
x^{4} z=B y^{2}
$$

The section of Ote by a plane $a=$ constant breaks u into the line at infinity of this plane and a corve of the system $C^{\prime}(0,1,2)$. The ruled surface osculating () along this sertion is represented by the equations :

$$
\begin{aligned}
& x=x_{1}(1+r) \\
& y=y_{1}(1+3 c) t \\
& z=z_{1}(1+4 v) t^{3}
\end{aligned}
$$

The equation of this osculating ruled surface is

$$
y^{2} z_{1}\left(4 x-3 x_{1}\right)=2 y_{1}^{2}\left(3 x-2 x_{1}\right)^{2} .
$$

The intersection of this cubic surface and $O_{c c_{1}}$ consists of the conic of contact counted thrice and of the two right directors of $0_{0_{1}}$.

Example 1II. Suppose $p=2, q=3, s=p+q=5$. Then $U_{c c_{1}}$ is a ruled surface of order $2 q=6$, the equation of which is

$$
r^{5} z=B!y^{3}
$$

So this ruled surface admits a system of asymptotic lines of order five.

Example $I V$. Suppose $p=1, q=5, s=p+q=6$. Then $U_{c c_{1}}$ is a ruled surface of order $q=\breve{5}$ with the equation

$$
x^{3} z^{2}=B y^{3}
$$

So this ruled surface of order tive admits a system of asymptotic lines of order six.

Example V. Suppose $p=3, q=5, s=p+q=8$. Here $U_{\text {cc }}$ is a ruled surface with the equation

$$
x^{4} z=B y^{4} .
$$

Example V I. If the first system of asymptotic lines is formed by curves of the system $C(1,3,6)$, then the asymptotic lines of the second system belong to the system $C^{\prime}(2,3,-3)$. So both systems are curves of order six.

The equation of $O_{c c_{1}}$ is

$$
x^{9} \approx=B y^{3} .
$$

Eaxample VII. If the first system of asymptotice lines belongs to the system $C(1,2,4)$ the second system belongs to the system $C(5,6,-4)$ 。

Then the equation of $\Theta_{\mathrm{Cc}_{1}}$ is

$$
x^{4}=-B y^{6}
$$

Physics. - "rmpin piznetectric amel paro-electric properties of quartz at loue temperstures demen to thut af liguid hageragen." By H. Kimphangh Osars and Mrs. Axsi leckmas. Communtation N) $1: 32 f^{\prime}$ fiom the Physical Lahoratory at Leiden.
(Commminated in the meeting of February 2. 19133.

1. 2. Intombetion. As many qualities of solid bodies are much simplitied at very low remperatures by the considerable decrease of the catorit motion, it seemed desirable to examine also the piezo- and pro-electric effects mider these probably favourable circumstances. In order to make a preliminary inquity into this branch of the subject we have measured the piezo-electric modulas of quarta, perpendicolar to the axis, down to the temperatures of liquid hydrogen.

Then we have also, at the temperatures of liquid air and liquid hydrogen, observed the pyro-electric phenomenon of quartz, which Frabdel. Corme and others have examined at higher temperatures.
\$2. Measurements of the piezo-electricity of yuartz at low temperatures. The measmements were effected by the generation of electricity on a quartz plate, which was kept at low temperatures and compared with a similar plate at ordinary temperature. The gencrated charge was measured with a quadrant electrometer. Both the plates were of the same sort as is used in the ordinary Curas's instrument, that is to say, they were cut out of the erystal parallel to the optical axis and with the broadest side perpendicular to one of the electrical axis.

They were $7-8 \mathrm{~cm}$. long, 2 cm . broad and 0.06 cm . thick. The two broad, sides were coated with tin ${ }^{1}$). One of the tin coatings of each plate was earthed, the two others were metallically connected with one another and with one patir of quadrants of the electrometer, as is shown in the figure.
The other pair of quadrants was earthed.
All the comections were enchosed in brass tubes, which were in

[^101]comnection with the eath. The electrometer needle was kepit at a constant potential of 120 volts.

The quatz plate $?_{2}$ was suppended in an eathed medat ease and carried a scale pan, on which weights could be placed, in order to streteh the plate: ($?_{2}$ was put in a Dowar ghas: its lower end was fastened in a brass support, which wats carted by the eap of the vacum vessel; the uppermost and was su-pended by a hase rod to one arm of a halance, whose other arm camied a seale, which rould be loaded with weights. In order to be able fordose the vesed hermetioally (which was quite neressary), and at the same time make the free movement of the rod through the eover possible, it wats simplest, for these preliminary measurements, to use an elastice indiat rubber fube which closed romed the rod and the mbe in the rap. As we shall see this had only a slight effect on the relative measurements.

Within the glass the quartz plate and the support were surrounded by a brass net in comection with the earth.

The measurements were made in the following way: tirst the plate Q_{1} was stretched by a weight (500 gr .) and the deviation of the electrometer needle wats observed. Then this plate was earthed, and when the comnection with the earth was broken, the weisht was removed and the deviation oi the electrometer to the other side was observed. The sum of these deviations is proportional to the quantity of electricity generated. Then the electicity which was generated on Q_{2} was measured in the same way. Immediately before and after the measurements the electrometer was calibated with a Weston element. The sensibility changed very little.

The insulation was generally very good, so that there was seldom any need of making corrections for leakare.

Always tive or seven turnings of the electrometer needle were observed. From these the eventual corrections for incomplete insulation could be calculated.
§ 3. Results. 1. Both the quartz plates at room temperature $T=290^{\circ} \mathbf{K}$.).

The deflections were

$\left(l_{1}\right.$	126.7	127.2	127.0	127.6	127.4	127.2
$\left(l_{3}\right.$	163.7	164.0	163.6	163.2	163.3	163.6

The Weston element (1.018 Volt) gave 34.4.
The capacity of the electrometer, of the comections to Q_{1} and of Q_{1} itself was about 150 cm .; that of the connection to Q_{2} and of Q_{2} was abont 100 cm . By the cooting of ($)_{8}$ its capacity changes.
11. Q_{3} in oxygen boiling under a pressure of $21 \mathrm{~cm} . T=78^{\circ} .5 \mathrm{~K}$. mean values

Q.	130.6	130.1	130.3
Q_{2}	165.2	165.7	165.4
	One Weston element	34.4.	

111. (! in boiling hydrogen, $T=20^{\circ} .3 \mathrm{~K}$.

			mean values	
$!$	129.6	130.5	130.0	130.0
$!$	165.4	165.5	165.4	165.4

One Wraton 34.4.
15. Q_{2} at ordinary temperature, $\quad T=290^{\circ} \mathrm{K}$.
mean values
$\begin{array}{lllllll}\text { ! } & 127.1 & 127 . t & 127.1 & 126.8 & 127.0 & 127.0 \\ \text { ! ! } & 162.5 & 163.0 & 162.8 & 163.1 & 162.7 & 162.8\end{array}$ One Wriston 34.3.

In order to examine the influence of the elastic connection between (l, and the cap of the valum vessel, two measurements were mathe whont the clastic tube, one at ordinary iemperature and the other in ligmid air. These gave
V. ℓ_{3} at ordmary temperature, $T=290^{\circ} \mathrm{K}$.
mean values

Q_{1}	126.2	126.8	127.7	127:5	127.1	127.0
'!	167.4	168.1	168.1	167.8	168.3	167.9

11. Q_{2} at the temperature of liquid air, $T^{\prime}=80^{\circ} \mathrm{K}$.
mean values
$\left(\begin{array}{lllllll}l_{1} & 129.3 & 129.6 & 129.8 & 129.7 & 129.9 & 129.7\end{array}\right.$
$\begin{array}{lllllll}\left(l_{2}\right. & 168.8 & 169.3 & 170.1 & 169.2 & 169.4 & 169.4\end{array}$ One Wenton 34.3.
by immersing (l_{3} int the bath of low temperature the deviations are therehy changed for both the plates. The change was at the meaturement

$I 1(1)=78.5$	R. $)$	$\left(Q_{1}+2.4 \%\right.$
111	20.3	2.2
$1 I$	80.0	2.1

The eleatobity generated on (g, was thas at all events hos than at ordinary emperature. The decrease was $1.30 / 0,1.2 \%, 1.2^{0} / \ldots$.

The influence of the elastio commedion faths within the lamite of errors of observation. In the absolute measmements the eonnertion causes a decrease of about 3%.

Thus we may conclude that the cooling from $290^{\circ} \mathrm{K}$. on $^{\circ} 80^{\circ} \mathrm{K}$. causen a decrease of 1.2^{n}, in the piezo-olectris moduhns. A further cooling from 80° to 20° canses a much smaller change, it appears even less than 2%. The importance of this result is perhaps that the change in the piezo-electioity by conding to low remperatmes seems to take place chitelly above the temperature of liquid air.
§ 4 . P'ymoelectricity of qumer. As has abready been said, we also made some observations on the pyo-electricity of quartz at the temperatures of liguid air and hydrogen. The pressure under whioh the liquid round Q_{3} boiled was changed. By the change of temperature, which is the consequence thereof, a pyro-electric charge is generated on Q_{2}. The deflections of the electrometer were

The deviation 7.8 per degree at the temperatures of liquid oxygen
1.6 per degree at the temperatures of liquid hydrogen
has by an increase of temperature the same direction as by a stretching of the plate.

We note that the generated pyro-electric charge is about propor* tional to the absolute temperature.

We wish to record our heartiest thanks to Mr. O. Holst, assistant at the physical laboratory, for his assistance at our experiments.

Physics. - "Masurements on resistance of a parite at low tempevetures, durn to the melting peimt of hydrogen." By Bexat
 mathey at Leciden. Commumiated by Prof. H. Rimeranain Duxes.
(Communicated in the Meeting of February 22, 1913).

In an carlier publication ${ }^{1}$) I examined resistance as anction of temperature in the case of a pyrite arstal from Gellivare, Malmbereat, sweden. Those measmements embraced the temperature interal $+100^{\circ}\left(.10-193^{\circ} \mathrm{C}\right.$. The resistance was well represented ly the formula

$$
\begin{equation*}
W^{+}=W_{0^{e}}{ }^{a l} \tag{1}
\end{equation*}
$$

where V_{0} is the resistance at $0^{\circ} \mathrm{C}$. and t the temperature on the centrigrade seale. The spee. resistance at $0^{\circ} \mathrm{C}$. in ohms per eube of 1 cm . Was $w_{0}=0,00294$; a wat 3.53×10^{-3}.

The measurements were made with a Wheatstose bridge. The conds of the erystal were galvanized with copper; as electrodes amalgamated copper plates were used. The resistance at $0^{\circ} \mathrm{C}$. was O. 101 ohms. To determine the magnitude and the variation of the contact resistances and of the connections with the temperature, a litte copper prism of the same dimensions as the crystai was placed between the electrodes and short-circuited, and the resistance of the short-circuited erystal support and the comnections were measured at the various remperatures.

I have now had an opportunity of continuing these measurements (on a prite throngh a larger temperature interval (down to - $258^{\circ} \mathrm{C}$.). This last investigation was made in the eygogenic laboratory of the University of Leiden, and for the opportunity I owe the director of the laboratory, Prof. H. Kimertagh Oxxes, great thanks.

To ohnain these measurements I have used another method, which elimimates the possible errors of the contact resistances. The erystal Wats pressed between two copper electrodes, through which the current was conseyed to it . Two other electrodes were firmly pressed against the longest side of the crystal. The voltage between these was measured with the compensation apparatus ${ }^{2}$).

In Table I the results of the measurements in Upsala 1910 are

1) Bexit Demstax: Uppalat Univ, Arsskrift 1911. Mat. o. naturvetenskap 1, p. 28.
 Where fire - gives a survey of the moanting.

TABLE I.
Change of the resistance of pyrite with the temperature. Measurements in Upsala 1911.

	$\left[\begin{array}{l}W \\ W_{0}\end{array}\right]_{\text {obs }}$	$\left[\begin{array}{l}W \\ W_{0}\end{array}\right]$ calc:
$+100^{\circ} .9 \mathrm{C}$.	1.422	1.436
+54.2	1.223	1.215
+44.5	1.180	1.173
0	1	1
-78.6	0.726	0.754
-193	0.508	0.495

TABLE II.
Clange of the resistance of pyrite with the temperature. Measurements in Leiden, 1912.

t	$\left[\begin{array}{l}W \\ W_{0}\end{array}\right]$ obs.	$\left[\begin{array}{l}W \\ W_{0}\end{array}\right]$ calc.
$\ldots-150.8 \mathrm{C}$	1.063	1.058
-183	0.519	0.520
-252.8	0.405	0.404
-258	0.390	0.396

miven and in Table II these !ast results of 1912. The values $\left[\begin{array}{c}U^{\circ} \\ U_{0}^{r}\end{array}\right]_{0}$ are calculated from the formula (1), where now

$$
a=3.59 \times 10^{-3} .
$$

The results are well represented by this formula. The values of II W_{0} at low temperatures that were foumd in the latst observations are in better agreement with the formula than the earlier ones.

The results for $t=-78^{\circ} .6 \mathrm{C}$, and $-193^{\circ} \mathrm{C}$. in these deviate a little from the calculated values. but in different directions. The
deviations do not exceed $t^{1 / \ldots}$ which corresponds to a difference of 0 onole whons at the most.

Thue lat measurements maty also serve for control whether the result of the eadier ones were not fully aceurate owing to the fontad resiatanes. The deviations that I have just mentioned might trise from this soure of error, but, as they go in different directions at $t=-7 \mathrm{~s}^{\circ} .10 \mathrm{C}$ and $t=-193^{\circ} \mathrm{C}$. one is inclined to think that llese deviations may orisinate in other errors too, for instance in variations of the temperature bath at $t=-78.6 \mathrm{C}$. (solid carbonic acid and ether\%
(). Rembmaman and d. Komasberger ${ }^{\text { }}$) have examined pyrite from Val (ianf, Grabunden and have found aminimum of resistance at about $t=-10^{2} \mathrm{C}$. This prrite has a specitie resistance of 0.0240 at 0° C., thus eight times larger than mine. An explanation of this difference of the conductivity is given by J. Koexigsberger ${ }^{3}$).

My prite shows no minimmo of resistance above $-258^{\circ} \mathrm{C}$. The resistance thronghout the whole temperature interval follows the formula (1), which is the same, mathematically, as

$$
\frac{1}{\mathrm{I}} \frac{d W^{\top}}{d t}=c o n s t .
$$

It seems very probable that there does not exist any minimum below - $258^{\circ} \mathrm{C}$., but that the resistance at still lower temperatures approaches asymptotically to a limit value, as is the case in, for instance, not perfectly pure gold and platimum.
A. $W_{\text {mak }}{ }^{4}$) hat recently examined a pyrite ceystal from the same place af origin, Malmberget, Gellivare. He found a still smaller spec. resistance, $w_{0}=0.00247$ and a temperature coefficient at $0^{\circ} \mathrm{C}$. of 0.00228 .

Physics. - "Imestigation of the viscosity of gases at low temperateres. 1. Iydrogen." lig 11. Kimerdixgh Onaes, C. Dorsman and sorbes Weber. Commmication N^{0}. 134afrom the Physical Laboratory at Leiden by H. Kimereangit Onxes.
§ 1. Introduction. ${ }^{3}$) The investigation of the dependence of the viseosity of gases upon the temperature at densities near the nomal,
I) O. Reichenhems, Inaug. Dissert. Freiburg 1906.
2) J. Kubsuristiblre: Jah, Jahbuch der Rad. u. Elektr. 4, p. 109, 1907.
") J. Komacisberima, Phys. Zeitschr. 13, p. 982, 1912.
${ }^{1)}$ A. Weskly, Plyss Zeitschr. 14, p. 78, 1913.
5) This Comm, includes the paper on the same subject by Kanerbingh Onnes

is chiefly of importane for the knowdedge of the merthanism of the impact of two molecoles, on, more simply in monatomire genen, of two atoms. In the nature of the cate it is desimathe for extemet this investigation with one shbtance wer the latrest prsible range of reduced temperature. 'This gives a particulat signiticance to bery low remperatures and substances stoll as hydrogen, neon, and helimm.

The puphils of Dors ${ }^{1}$) at Hatle have made systematie beesatches into the viscosity of diflerent gases. By these both abmatule values and temperature coefficients have been determined, and they have gone as low the temperature of lipuid airs.

In our researches we particularly wished to investigate hydrogen temperatures, while the viscosity apparatus was so armanged that it could be used without alteration for helinm at helinm temperatures.

Eig. 1. But it was matura for us to extend our investigation to the viscosity of oum grases at less low temperatures. It then appeared that hesides being of value for the contirmation of the above mentioned researehes ats fial as the temperature of solit carbonie acid, it Was also of value for the knowlealge of viscosity in the field of the temperature of liquid air:

In the field of hydrogen temperatures we found the viscosity of hydrogen while flowing through a capillary tube dependent upon the mean pressure. From Mixhem,'s ${ }^{1}$) researches we know that the viscosity of gases at normal density is independent of the pressure, and Warberg and ros Babo have shown in the investigation of carbon dioxide, that in dense vapours, it increases with the density. There is, therefore, every reason to further investigate the dependence of the viscosity upon the pressure in hydrogen vapour.
\& 2. Methot. The measurements were made arcording to the transpibtion methom. This presents experimentally perhaps the greatest difticultics, but it seems to allow

1) There is a survey of these researches by K. Schmitt. Ann. d. Phy:. (30). p. 393, 1909.
2) Eor the older litterature see H. Kamerlingin Osxes and W. H. Keesmar Leiden Comm. Suppl. $\mathbf{N}^{\prime \prime} .23$, page 86.
better that any other the falthment of the conditions which are a-rmoned in the theoreticald edetnetion.

The form which we choose diagrammatically represented in fig. 1, compare futher tig. 2) is distingushed by the following special features:

1. the preseme at hoth ends of the eapillary tube throngh which the gats thows, can be kept constant as long as desired at any height.
2. the mean presstare and the difference of pressure ate immediatoly meanured at both ends of the capillary.
3. betore it enters the capillary the gas flows throngh a copper fube (in our case 70 (cm. long) where it aryuires the desined temperature.

The cakentation of the measurements not by the tramspitabion mehtod wits made by the formabs of 0 . E. Mexer and 11. Kxodse ${ }^{2}$) for the amomb of gas that passes through a capillary they give:

$$
Q=\frac{\pi}{\delta} \cdot \frac{1}{y}\left(p_{1}-p_{2}\right) p \tau \frac{m^{4}}{l}\left(1+\frac{4 \zeta}{h}\right)
$$

iir which

$$
\frac{\xi}{\lambda}=1.0 .5-\frac{1}{j+\frac{\lambda}{R}} \text { and } p i=\int \frac{\pi}{s} \cdot \frac{1}{0,30967} \cdot \frac{\eta}{V o_{1}}
$$

$r_{1}=$ coedileient of viscosity.
$l ?=$ radius of the capillaty.
$L=$ length of the capillary.
$\tau=$ time of flow.
$\rho^{\prime}=\mu_{1} \frac{+\rho_{2}}{2}=$ mean pressure.
$\mu_{1}=$ pressure at begiming of capillary.
$f_{n}=$ presome at end of capillary.
? = the quamtity that has flowed thromgh, measmed by the produed of volume and pressure, and corrected for the temperature of the capillary.
$s=$ the gliding eoeflicient which is determined by the two last equations. in which o_{1} is the density of the gas.
The units are those of the \therefore (is s. system.
\$ 3. Arventement of the appomblus. The mamner in which the varions (frambites in these formmats were determined in the measurement, will easily be understood with the help of dig. 2.

1) M. Kycdsea : Am. d. Phys De, 1909. p. 75.

The pure gat ${ }^{2}$) fiom a store eylinder is first let into a pipetter l, in which it eath be brought to a sutahble pressute lyy means of merome. By a high pressure requlating tap it is then comblucted hy a brass eapiltary to A, where the capillary forks. One branch lead o to a meremy-water differential manometer, in which the !evel of the water is kept constant by the regulation of the dap (: At tirst we worked with oil manometers, which allow an casy adjnstment at any pressmre required. With these no comstant valnes were fomm for the viscosity coeflicient, which was perhaps in consequence of oil rapour solidifying on the capillary. On this atcount the oil manometers were replaced by meremy-water differential manometers.

The other brathe of the eaphlary at A leads the gas through a steel capillary Efle to the viscosity apparatus in the eryostat

Between D) and E is a ('hbe of chareoal immersed in lipuid air. by means of which the last possible thaces of eir would he kept back.

A vertical glass tube carried the gas further. To this was soldered the spiral copper capillay of about 70 cm . length, in which the above mentioned cooling of the gits took place, which had heen shown to be indispensible. This terminated at K, from where the gas was camed to $/ 2$. In $/$, which was a small resemoir, the thbe divides into two bramehes viz. the capillary and the tube $/$ d $/ /{ }^{+}$to the mercury manometer (). L and I 'could be directly comected by a tube in parallel with the capillary and provided with a stopcock. This was necessary during the exhaustion. The transition from the eapillary tube into L, in which the gats may be considered as at rest, is very gradual. This is of importance for the correction of Hagexbach, which ean be omitted in these circumstances. From is a branch $T O$ leads finther to a second mercury manometer I^{r}, which registered the pressure p at the begiming of the capillary tube. Through the eapillary tube, (about 65 cm . long, with a diameter of 0.122 mm .) the gas flowed into P. As at L a tube $P(R R$ leads from here to the other end of the mereury manometer O. By means of this manometer we could thus read the difference $\mu_{1}-p_{2}$. Another tube $W M Y Z$ leads the gas from L^{5} to $Z . Z$ is comected on one side to the mercury-water differential manometer b, and on the other side by a to c. At a there is a regulating tap, which enables $u s$ to keep the level of the manometer b at a constant height during the experiment. By doing this during the experiment we can keep $\mu_{1}-\mu_{2}$
${ }^{1}$) The gas was purified by passing over a spiral cooled by liquid hydrogen (Comm. N^{n}. 83). A traice of air was atterwards found in the gas, this may have been absorbed during the compression in spite of the precautions taken.

and p_{1} steady, except for the small inerghation due w the rewnation of the taps. The tube r is commerted to a vesise ${ }^{\circ}$ of about 4 l . placed in ice, intended for the detemintion of the rotume. The gan pressure in this reservoir was determined before and after every experment, by reading the manometer \%. As can be seen, a small portion of this volume is not redued to $0^{\circ}(\%$, it remains at about the temperature of the room. This portion is onty athont 15% of the whole volume.

The three manometers were read by a kathetometer, and were so placed that they cond all be viewed by turning the kathetometer.

The temperature of the viscosity capillaty was determined by a platinum resistance thermometer plared beside it, which was reduced to the hydrogen thermometer of the Lahoratory by comparison with a standard resistance thermometer.

For the arrangement of the ergostat with stirrer see Com. $\mathrm{N}^{0}, 123$. The measuring apparatus were immersed in a cryostat glass exactly like that of the helimm cryostat. As we said in \& 1 , it is our intention to determine the viscosity of helimm at helimm temperature with the same apparatus. The cryostat glass was covered by a cap, which is like that of the helium cryostat, but simplified in an obrions way. In fig. 2 the cryostat glass with stirrer and thermometer are omitted.
\$ 4. Course of the experiments. When the tightness of the apparatus had been properly tested and all found to be in order, the experiment was made in the following way. The volumenometer and the whole apparatus were promped out and the tap a was closed. Then tap c was opened, and regulated so that the manometers b and d were at the desired height. When this was attained the experiment was begun, and simultaneously with the beginning of the regulation of tap a the knob of a chronometer was pressed. During the experiment, as already said, the taps a and c were so regulated that the differential manometers which acted as indicators, kept constant, at the same time the manometers O and V were read, and the small irregularities which at the most were 1% were noted as well as was possible. By the determination of a mean value we tind from these readings the pressure difference, which existed between the extremities of the capillary tube during the experiment. If we reduce the readings of the manometer v by $\frac{p_{2}-p_{3}}{2}$, we find the mean pressure \bar{p}.

The chronometer was compared with the standard clock of the laboratory immedtately after pressing the knob. The latter served
at- the atolal time measurer. The end of the experiment was registered in the same way At the same time lap a was closed. Then the presiure in the volumenometer was read, and herewith the sereresary data were ohtathed.

The dismibution of temperature in the eryostat during the evaporation of the bath, may be a somre of error, as it affects the distrimmion of the Nensity in the tubes leading to the eapillary tube. Theme bunes and the time of flow were therefore so chosen that the errors which might arise from this were negligible.

The experiments were usually made at a mean pressure of about \%amosphere.

Rackis ${ }^{1}$) has proved that Rrwolds' eriterion applies also to gases. When we determine the aritical velocity for our experiments at lowhogen temperatmres, we find 325 cm .see. while the greatest which occurned in the experiments was $419 \mathrm{~cm} . /$ sec.
(5. Results. In the first measurements made with hydrogen in the mamer dearibed above, the viscosity became higher and the higher, which can be exphaned by the hydrogen still containing some haces (1) all which froze in the eapillary tube. On this atecomet we introdheod the mbe with chareoal deseritied above. The later determinations pare ronstant results.

The whole observational material is collected in Table I. The first column contains the temp. in Kelvin degrees, the second and third the difference of pressure and the mean pressure. These results, as alreaty said, are calculated from a great number of observations, the deviations firom the mean were about 2%. The fourth column fontains the time of flow in seconds, the fifth the increase of pressure in the volnmenometer.

This increase of pressure combined with the volume, gives the amount of gats which flows throngh, and this mast be reduced to mean pressure and temperature of the tube through which it flows. For this pupose the equation of state was used, which had been dedmed from the measurements of Kambrangh Onnes and de Has (Comm. ${ }^{0}$. 127) and Kımblagh Oxals and Brak (Comm. ${ }^{0}$. $97 a$).

The two first observations were ned to calibrate the apparatus, in which we assumed with Markowsin ${ }^{2 l} \boldsymbol{\eta}_{0}=841.10^{-i}$, while for (' in sutherfanh's formula 83 was taken.

By this means the values were determined which are given under

[^102]TABLEI.

$y^{\prime} \cdot 10^{7}$. They were corrected for the change of R^{2} / L with the temperature and for the gliding. The corrected values are in column 7 under $\boldsymbol{7} \cdot 10^{7}$.

From Table I we can immediately see the degree of atecurat? that may be ascribed to the measurements with regard to arecidental errors. As we have satd before the determinations were usually made at a mean pressure of half an atmosphere. At and above oxygen temperatures a determination at one pressure is sufficient, at hydrogen temperatures this appeared to be no longer the case. Table I shows that there the viscosity changes with the density, and in the same direction as was found by Warirra and Babo for carbon dioxide. Our differential manometers were not yet arranged, as we intend to do, for working with different mean pressures, and the apparatus was thas not very suitable for determining the inflnence of the pressure. In order to perform a few experimente with a different pressure, the two differential manometers were connected to an artificial atmosphere h, as can be seen in the plate.

For the further experiments which we intend to make (see § 1) concerning the dependence of the viseosity upon the density, it may appear that where it is a case of relative determinations only, the oscillation methon is perhaps the most suitable.

TABLE 11.

| $T^{2} \mathrm{~K}$ | $\boldsymbol{\eta}_{\text {obs. }}{ }^{100^{7}} \boldsymbol{\eta}_{\mathrm{s}} \cdot 10^{7}$ | $\left.\boldsymbol{\eta}_{\text {calc. }}{ }^{10^{7}}\right\}$ | |
| :---: | :---: | :---: | :---: | :---: |
| 457.3^{*} | 1212 | 1203 | 1207 |
| 373.6^{*} | 1046 | 1050 | $105 ?$ |
| 293.95 | - | 887.2 | 886 |
| 287.6^{*} | 877 | 874 | 875 |
| 273.0^{*} | 844 | 843 | 843 |
| 261.2^{*} | 821 | 814 | 816 |
| 255.3^{*} | 802 | 800 | 803 |
| 233.2^{*} | 760 | 747 | 757 |
| 212.9^{*} | 710 | 697 | 709 |
| 194.4^{*} | 670 | 648 | 606 |
| 170.2 | 609.3 | 582 | 608 |
| 89.63 | 392.2 | 326 | 389 |
| $\left[78.2^{*}\right.$ | 374.2 | 284 | $354]$ |
| 70.87 | 319.3 | 257 | 329 |
| 20.04 | $105-111$ | 58 | 137 |

In Table II our results are put together with those of Markorrski and of Kopsen ${ }^{1}$) (the last are marked with an asterisk). Fig. 3 shows that our measurements correspond well with the previous ones. Kopscn's determination in liquid air forms an exception. The cause of this is probably an insufficient fore-cooling in Kopscn's apparatus, as it is improbable that the densily shoutd have an important influence ${ }^{2}$) here.

In column 3 under $r_{s,} .10^{7}$ are given the values calculated by Sctherland's formula with $y_{0}=8 \pm 1.10^{2}$ and $C=83$. The differences become very great at the lower temperatures, in liquid hydrogen more than 100%.

Kopson has already pointed out that Sutherdands formula no longer holds for hydrogen at the temperature of liquid air, and athongh the deviation which he found seems to be partly ascribable

[^103]

Fig. 3
to insufficient fore-cooling his conclusion remains correct, as the amourt of the deviation of the observations from the formula even at the temperature of liquid air is larger than that of the deviation which is due to insufficient cooling.

We endeavoured to find a simple relation between $\log _{\mathrm{g}} \mathrm{a}$ and $\log T$, which would correspond to the observations better than Sutherland's formula. Column 4 under openk 10° contains the values of y calculated by the formula

$$
\boldsymbol{y}_{1}=\boldsymbol{y}_{9}\binom{T}{273}^{0.695}
$$

 medued anyen. We shat retum to this queation the following paper ahamt hae bironil! of helinm. in which we shatl finther deal will the dhange of the matens volume ho with the temperature, at it fillom: fomm orm experiments.

 tury all Leaten by lorot. H. Kimpranaill Oxama
y 1. lasults. With the sathe apparatus as was wed for the

 velocily was 105 cmosm. All own domerations are bromght towether in Table I. The motations we the same an in the previons papere abont hyidrogen.

Again the first fwo experiments were nsed fion the calibration

 way we got the valmes miven ander m, 10. These were comerted for the change in h^{2} with the temperature ant for the oliding. The

As ean be seen, most of the moasmements were made mater a mean pressure of 40 (0m. meremy. At $20^{\circ} 1 \mathrm{~K}$. We also took some measurements at 12 em. meremp presure. A shance at the table shows that the vismonity does not depent mpon the density.

TABLE I.
Viscosity of helium at about normal density, observations and results.

$T^{\circ} \mathrm{K}$.	p_{cmHg}	$p_{\text {cming }}$	$r_{\text {sec }}$	1. $P_{\text {cmilg }}$	$3^{\prime} \cdot 10^{7}$	$7 \cdot 10^{7}$
294.50	10.83	36.81	13475	1.565	-	
294.55	7.892	44.43	13372	1.370	-	\| 1994
250.3	9.870	42.98	9540.5	1.539	1806	1788
203.1	8.471	45.65	7828.5	1.622	1591	1564
170.5	8.522	42.60	7191.2	1.851	1420	1392
89.7	10.173	41.07	3201.0	2.709	943.7	917.9
89.8	8.480	44.60	2933.4	2.241	945.6	919.2
75.5	9.744	42.57	1828.1	1.999	841.8	817.6
74.7	7.037	45.30	3220.0	2.810	838.2	813.2
20.17	5.121	41.61	921.1	4.600	362.5	349.9
20.15	5.566	39.49	881.0	4.516	364.6	352.0
20.20	4.540	40.10	846.8	4.540	360.0	347.6
20.16	4.528	11.15	1788.8	2.113	362.9	351.5
20.16	4.530	12.28	1957.2	2.573	362.0	350.7
15.00	3.374	42.73	922.8	5.010	304.1	293.1
15.00	3.962	40.31	821.4	4.921	305.2	294.2
15.00	1.270	41.55	1514.1	2.981	307.5	296.4

1) K. Schmitt : Ann. d. Phys. $30,190: 1$, p. 393.

In Tahle II onr meaturements are placed together with those made al Hatle ho sombro,on and somutr, which are marked with an atheriak. Firm this talle and from lie. 1 it can be seen that our results comberome very well with the previous ones. Only Scmmats result in lignith air acms to the too high, which perhaps may be explained, at in Kopsints cxperiments with hydrogen, by the gas not being -uhiciently conded hefore it came into the eapillary tube.

T ABLE II.

Viscosity of helium at about normal density and representation of the dependence on the temperature by empirical formulae.			
$T^{\circ} \mathrm{K}$	$i_{\text {obs. }}{ }^{107}$	3^{3} S 10^{7}	"calc. ${ }^{10^{7}}$
$456.8{ }^{*}$	2681	2682	2632
$372.9 *$	2337	2345	2309
294.5	-	1994	1982
291.8^{*}	1980	1979	1970
290.7*	1967	1974	1965
250.3	1788	1771	1783
212.2*	1587	1563	1603
203.1	1564	1513	1558
194.6*	1506	1460	1516
170.5	1392	1317	1389
89.75	918.6	745	918.5
[79.9 *	894.7	659	852.1]
75.5	817.6	628	821.3
74.7	813.2	621	815.5
20.17	349.8	135	348.9
15.00	294.6	92	288.7

\& 2. Reppresention of the abservations by a formala. In the same bable mader $y_{s} .0^{-1}$ the values are given which Suthermann's formula gives with the assumed values of \boldsymbol{r}_{0} and C . Schmitr has aheady fimme that at the temperatme of lifuid air a distinct deviation appears. For this observation the same is true as we sad about that of

Kopsen with regard to the deviation from Suthemandes formala of the observations on hydrogen at lipuid air trmperatures.

At hydrogen temperatures strmatand's formula is shown to be entirely unsmitable for expressing our results. It gives a value two or three times too small. We have tried to represent the series of measurements by another formula. and in column 4 moder Voate, 10^{7} we have given the values which we hare calculated by the following formula.

$$
y_{10}^{\prime}=\binom{T}{273.1}^{0.647}
$$

As can be seen, this empirical formula agrees remarkably well with the values found over the whole extensive fied of temperatures. In a following paper we stall discuss the valnes for

$$
\begin{aligned}
& \eta_{0} V T^{\prime} \\
& \eta_{1} V T_{0}^{\prime}
\end{aligned}
$$

which follow from our experiments, and further the viscosities at varions temperatures for different substances in connection with the law of the corresponding states.

Physics. - "Investimation of the viscosity of gases at low temperatures. III. Comparison of the results obtained with the law of comespendiny states". By II. Kamblisin Ondes and Sophus Weber. Commmication N^{0}. 134c from the Plysical Laboratory at Leiden by Prof. H. Khmeringen Oxaes.
§ 1. Dependence of the viscosity upon temperature. We have already discussed this in our previous papers. It was shown that Sutherland's formula in no way corresponded to the observations at low temperature, either for hydrogen or for helimm ${ }^{2}$). Renganem's formola although founded upon acceptable bypotheses about the constitution and mutual action of the molecules, is even worse so long as we regard C ' in it as constant. This can be easily understood when we consider that Sutherfand's formula can be taken as a first approximation to Reixganom's, and that the terms left out must lead to a further divergence from the observations. Neither is it possible to come to an even approximate agreement at low tem-
${ }^{1}$) Shortly after our paper an important article by Eucken appeared in the Phys. Zeitschrift (April 15th 1913) in which observations concerning the viscosity of helium and hydrogen taken from an as yet unpublished paper by Voges were communicated. Within the limits of accuracy, which in Vogel's olservations are given at 5% at hydrogen temperature, these confirm oir measurements, of which the accuracy at hydrogen temperatures is to be put at about 1%.
peratme with the empibical comerection of Ravantess C which lismpasamath han -umestod.

We mixht for insame with helimm take $C^{\prime}=C^{\prime \prime}$ ' ${ }^{\prime}$ loy I^{\prime} ', to come (t) aterement with the observations. lant then lidagavem's formula would simply he comserted into ow intorpolation formula.

Krman, in suppl. N^{n}. 25 and 26 of these communications has shmw, that the secomed virial coefficient in the equation of state for fodrosen, at temperatmes at whelt this gas may be regarded as di-atomical, wat be very statiofacomity explaned by the supposition that hydmenen moleoules are hatd sheres with electric domblets in the combar. His formula for the virial of the eollisional fores under thene circmmstances gives a change of the radins of the molecule with the temperattore, which for higher temperatmes agrees faidy well with that deduced from the viseosity hy , wat . At lower temperatures at which hydrogen hehaves like a monatomice gas, the formala for hard spheres with a central fore aneording to the law
 the change of the viseosity with the temperatiore.

But when we go down to 193° (. deviations appear, in aterondanme with what we said above about sothrmasios formula, and at fower femperatures the value of the visoosity becomes moch 100 small.

None of the formalas dedued from thentetical suppositions can reprement the ohservations for helime for the present we can only use one empribal representation for this substame, whel for hydrogen alon holds sond for lower temperatures than the theoretical formmas, viz as far as the femperature of reduced oxygen. As regats the formala for helimm, it is not impossible, that the staright line in He logaththe diagram must be replated by one that at low temperature, and perdaph at higher one alio, corves somewhat towards greater values of the viscosity.
§ 2. Ipplientiom of the minciphe of imelamicul similarity upone the compmerison of the riscosithes in corvespombling conditions.

If f wo substances may be laken as mechanically similar systems of moleculen, it follows ${ }^{2}$) that the viseostics for hoth in corresponding fomblitoms mast be in a constant ratio which may be cateulated from the ration wi the mits of length, time, and mass in both systems. (On the other hand from the values of
 ל. p. 718.1881 .
where ${ }^{1 /}$ is the molecular weight, of the mean ratins of a molecule, as it is effective in viscosity, and of a constant, the same for all substances, we may, when the curves whith express the connection between y and $\frac{T}{T_{k}}$ are the same, inter the ratho between the units of length which have to be aseribed to the two mechanically similar ${ }^{1}$) systems. With the help of the viscosity we can, therefore, make a comparison of the just defined mean molecontar ratii and we may inquire how far the ratio foum corresponds to that of the mean molecalar radii, detemined in the way that is necessary in the deduction of the equation of state. If this correspondence were complete, then, when the exprestion of σ given above, is expressed in reduced quantities, the curses which express the logarithm of the reduced σ as a function of the lowatithm of the reduced temperature for the varions substances, would coincide. The accompanying diagram shows in how far this is the ease. In the construction
 are deduced to the same imaginary system. In this we have baken P_{k} and T_{k} which hold for the critical state ${ }^{3}$), as determining (puantilies, and postponed the consideration of deviation functions still later ${ }^{4}$).

The first thing that strikes one is the great deviation of helimm. In \& I we remarked that the character of the viscosity of helimm can be expressed by replacing the constant c, which may he understood as a measure for the attraction between the molecales, in Reinganum's formula (differing ly a constant factor from e in Kemom's formula) by $c^{\prime} T{ }^{\prime} \log T$. L'erhaps this points to an increase with the temperature of the quantity which determines the attraction of helium.
${ }^{1}$) More correctly: mechanically and statistically similar.
${ }^{2}$) H. Kamerlingi Onnes Leiden Comm. No. 12, p. 9.
3) The cristical dates we have used are the following.

	$p_{k}(\mathrm{Atm})$.	$T \mathrm{k}$
H_{2}	15.0	320.0 K.
H_{e}	2.26	5.25
O_{2}	50.0	155.0
N_{2}	33.0	127.1
A_{r}	48.0	150.7
$C 0$	35.9	1320

4) Kamerlingh Onnes and Keesom. Suppl No. 23, s 38, The ratios found by Keesos in Suppl. No. 95. p. 12, note 3, give 6\% deviation for hydrogen and argon, those used here 9%.
 athatemon with the remperatme, to explain peculatities in liquid holimm, and Ktany in dicoussing the second virial coefficient of helium it higher temperatures, found that pecularities of this coefti-

cient might be ascribed to the same eathe; in this ease therecediner of the attraction sphere (or the greater recedimg than in other sub)stances) might he the canse of a stightor terone of the visoosity at the reduction to lower temperatures. There might, however, also be an expansion of the molecule (in this cave the atom) with femperature, and finally both phenomena might he dependent upon one cause, and go together. The possible smatl curvature for helinn of the line in the logarithmice diagram [that we mentioned in \& i] in the opposite sense to that of the other lines which expresses the difference between helium and other substances, cond be ascribed to this change in the attraction.

That which might explain the deviation for heliun of the slope of the line from that which holds for a large range of temperatures for other substances, may also possibly belp (o) explain the deviation from Remasnom's formula at low temperatures, by the quantity which detemines the attration becoming smatler.

With hydrogen at the temperature of liguid air there is a distinct change in the slope of the curve. It is remarkathe that the same is found with nitrogen, and perhaps also with oxygen and carbon monoxide, and that the point at which it ocems seems to lie at the same reduced temperatme for hydrogen and nitrogen and perhaps also for oxgen and carbon monoxide. If this is the case, then the change which in the hydrogen molecules may according to kivana be taken as a change from hand spheres with electrie doublets inn hard spheres with a central force $r-y$ as far ats the vis cosity, is concerned would be a similar process for all these different substaneres, determined by the same units of length, time, and mass ats hold for the critical quantities, while this point only coincides with the point of transition in the specific heat of diatomic substances in the special case of hydrogen.

We must further notice the systematic differences between the different substances which appear from the non coincidence of the curves. It is remarkable that most of them (except a part of argon) can be removed by shifting the curves. The mean value of the molecular radins which comes into consideration for the viscosity seems thus to differ from the mean value which comes into eonsideration for the equation of state at the critical temperature, but both are in a fixed relation for the rarions materials over the whole field of temperature. This might be ascribed for instance, to a more clongated shape of the molecules in substances which give the smallest viscosity.

 and E. Oostermos. Communication N°. 134 d from the Physical Lahmatory at Leiden.) (ommonisated ly Prof. H. Kimermagh OMES.
\$1. The susceptilulity uf compmessed oremenen between $15^{\circ} \mathrm{C}^{\circ}$. and temperathes we we critical temperature of oxdyen. In our last paper in conmection with our investigations of various eases in which a molecular died of Werss with opposite sixn can be assumed with paramagnetic substanes, we mentioned the contimuation of the experiments by Kamarivan Owts and Perrier which have ahready been projected and the contimation of which may soon be expected, and which hate for their ohjeet to investigate the inthence, with oxygen, of bringing the molecules to varions densities upon the deviations from C'ura's law. Working in the same direction, we have endeavoured to ascertain whether in gasenus oxygen below the ordinary temperature and above the critical temperature a L appears. For this purpose we have measured the susceptibility of oxygen between 17° C and - $126^{\circ} .7$ C. We used the attraction method in the same form as described for the paramagnetic salts in our previons paper. A copper tube, closed underneath, 10 em. long, 8 mm . external and ${ }^{6} \mathrm{~mm}$. intemal diameter, provided with a capillary tube above, by which it conld be billed with oxygen under pressure, and closed, one time with a tine tap in which the capillary tube ended, another time by pinching this capillary, and then soldering up after it had served for filling, was filled with oxygen at ordinary temperature to 100 atmospheres. The experiment was then repeated with the evanotated tube in the same baths. For results: see table 1 p. 1405).

The experiments should be regarded as comparative for the yuestion monder consideration, but the absolute value of the susceptibility was also detormined at 289.9 K . It corresponds pretty well to that of Whas and Plocarb. As manometer we used a metal manometer which was compared with a hydrogen manometer gomg to 120 atmospleres. The density of oxygen was taken from dmagat. \%T appears to the constant, within the limits of accuraty (which is about 10% at fat as the boiling-point of ethylete ($169^{\circ} .6 \mathrm{~K}$.). The two points in ethylene, evaporating moder reduced pressure, deviate a little, but this need not be considered as of much importance, as these temperatures were not accuately known. Moreover the proximity

1405

of the eritical temperature mate the dintribution of density in the tube uncertain.

We may draw the eonchasion that withan the limits of aternaty

in the meanmements a L does not vet appear in oxygen above the critieal temperathre at densities which are 100 times the nommal. From this it seem- all the more probable that L only appears for oxygen at great densities, and in liquid oxygen can rise to the combiterable value of 71° as the density rises to 1000 times the normal.

In the aceompanying tigure our observations concerning gaseous oxygen and those of Kimbraxin Onses and Perbar which we contirmed in our last paper, are combined in a graphic representation: the nucertain points near the eritical temperature are not given. The point of interection of the line for gaseous oxygen with the protuction of the line for the liquid state, appears to have no physical meaning; as we supposed in our last paper, it is due to the value of the constants, that the temperature which indicates the intersedion of these lines happens to be about the ordinary one, at which amongst others, the observations of Werss and lercearb fall, and helow which as yet no observation had been made for gascous oxygen.

To be contimued.)

Physics. - "frerther experiments with liquid helwem. H. On the plestrical isastume of pure metals eles. Stl. The potentad defierense mecessery for the dectric cetrent theough mercery
 tion N^{0}. 1333 and 1330 from the Physical Laboratory at Leiden.
(Communicated in the meetings of February ge and March 20, 1913).
\$. Dificulties imuled in the inerstigution of the gaheanic phenomenn belon $4 .{ }^{\circ} 19 \mathrm{~K}$. In a previous Commmication (No. 124c of Now. 1511) we related that spectal phenomena appeared when an electric current of great density was passed throngh a merenry thread at a temperature below $4^{\circ} .19 \mathrm{~K}$., as was done to establish a higher limit at every temperature for the possible residual value of the resistance. Not until the experiments had been repeated many times with different mercury threads, which were provided with different leads chosen so as to exclude any possible disturbances, could we obtain a survey of these phenomena. They consist principally herein, that at every temperature below $4^{\circ} .18 \mathrm{~K}$. for a mercury thread inclosed in a ghass capillary tube a "thereshold value", of the current density can be given, such that at the crossing of the "threshold value" the phenomena change. At current density below the "threshold value" the electricity goes through without
any perceptible potential difference at the extremities of the thread being necenary. It appeats therefore that the thread has no resistance, and for the residual resistance which it might possens, a higher limit can be wiven determined by the smallest potential difference which contd be extablished in the experiments there $0.03 \cdot 10^{-6} \mathrm{~V}$ and the "thresbold value" of the current. At a lower temperature the threshold value becomes higher and thus the highest limit for the possible residual resistame can be pushed further back. As soon as the current density rises above the "threstudd retue", a potential difference appears which incretsoss more ropully then the current; this seemed at first to be about proportional to the stuare of the excess value of the eurrent alrove the initial value, but as a matter of fact at smaller expess valnes it increases less and at greater excess values much more rapidly.

It appears that the phenomena at least for the greater part are due to at heating of the conductor. It has still to he settled whether this heating is comnected with peculiarities in the movement of elertricity through mercury, which for a moment I thought most probable in comection with varions theoretical suppositions (comp. \&4), When this metal hats assumed its exceedingly large conductisity at low helium temperatures; or whether it can be explained by the ordinary notions of resistance and rise of temperature of a conductor carrying a current, perhaps with the introduction of extra numerical valnes for the quantities that inthence the problem. A further investigation of this with meacury in the most chwions direetions, such as cooling the resistance itself with helinm, presents such diffcoulties that I have not pursued it, as it would not be possible to prepare the necessary mercury resistances by the comparatively simple process of freezing mercury in capillary tubes. When 1 found (Dee. 1912) that, as I shall explain in a following ('omm., (see Vlll of this series Comm. $\mathbf{N}^{\prime \prime}$. $132(1)$ tin and lead show properties similar to those of mercury, the investigations were continned with these two metals. Thus the experiments with mercury which are described below may be regarded as a first complete series.

Various circumstances combined to make even the investigation of the mercury inclosed in capillary tubes difticult. A day of experiments with liquid helium requires a great deal of preparation, and when the experiments treated of here were made, before the latest improvements in the helium sirculation were introduced, there were only a few hou's available for the actual experiments. To be able to make accurate measurements with the liguid helitm then, it is necessary to draw up a programme betorehand and to follow it
quickly and methodically on the day of experiment. Modifications of the experiments in connection with what one observes, must usually the portponed to another day on which experiments with liquid helimm could lie mate. Very likely in conseguence of some delay caused by the cotreful and dithecult preparation of the resistances, the helium apparatus wonld have been taken into use for something else. And when we could go on with the experiment again, the resistance sometimes berame nseless (e.g. § 3) because in the freezing the fine mereury thread reparated, and all our preparations were labour thrown away. L'nder these circumstances the detection and elimination of the callses of moxpected and misleading disturbances took up a great deal of time.
§ 2. Confirmation of the sudden disappearance of the resistance at $4^{\circ} .19 \mathrm{~K}$. and first obsevations concerning the potential phenomena at lun temperature. The first experiments which showed the phenomena to be discussed were made in October 1911, with the resistance described in the previous (0 omm. ($\mathrm{N}^{0}, 124 c$).
\&. Before discussing them let us consider for a moment the measurements which were made with this resistance at $4^{\circ} .23 \mathrm{~K}$. and add something to what we said about them in the previous Comm. ${ }^{1}$). In the measurements which we are considering we could take advantage") of the presence of $H t_{5}$ to measure the portions between $H I_{1}$ and $H!y_{5}$ and between $H l_{5}$ and $H!I_{4}$ separately and afterwards the two in series. The result was $I_{!} I_{1} H_{I_{5}}=0.0518 \Omega, I_{!} I_{5} H_{!_{4}}=0.0617 \Omega$, together 0.1135 S. This gave a necessary check on the determination of the two in series $\left.I I_{g_{1}} I I_{4}=0.114^{2} \Omega^{3}\right)^{3}$. These values, considering
${ }^{1}$) For a survey of the observations concerning mercury at the lowest temp. in three liss. with rising scale the reader is referred to Rapport du Comite Solvay, Nov. 1911, fig. 11, 12 and 13 (in which read 13 for 12 , and 12 for 13, Leiden Comm. Supph. N^{10} 29).
${ }^{2}$) The measurements with a view to which the tube $H y_{6}$ was added (see Plate I in Comm. No. 1wic) were not made then, but postponed till later. (See §5!. They were to chable us to judge of the dependence on the section.
${ }^{3}$) The resistance at the boting point of hydrogen was 3.27Ω. A further Comm. will refer to the difference of the ratio of the values at $273^{\circ} \mathrm{K}$. and $20^{\circ} \mathrm{K}$. to Hose in previous measurements, which is here of no consequence and is due to different ways in which the mercury freezes. In the experiments deseribed here. similar differences were constantly found.

It should be mentioned that the glass was tested at all temperatures for its insulation and also that when the potential difierence at the terminals was found (1) be zero, it was always ascertained that the resistance of the galvanometer circuit which servel to measure the P'. D. had not changed materially.
 correspond pretty well to tho results obtained in the experiments in May 1911 Comm. N^{0}. 122 h, Ju!y 1911 , vi\%. that a mesintance of about 40Ω (baleulated for solid meroury at $0^{\circ}\left(\begin{array}{l}\text { (.) heomes } 0.08 t \leq \\ \Omega\end{array}\right.$ at the boiling point 4.25 K .
P. In these experiments the valitity of Omm's law was eonfirmed above the point where the almost sublens disappearance of the resistance begins which was treated in the previons Comm. by one measurement at a corrent strengh of 3 and another of 6 milliamperes which within the limits of arouracy give the same result (0.0837 at 3 , and 0.0842 at $6 \mathrm{~m} . \mathrm{A}$.). In connection with the experiments in Comm. N^{0}. 122b July 1911 we may mention that they were made with a resistance of a different kind from that ${ }^{1}$) which was nsed for the experiments in Oct. 1911, viz. the one which appears in the Plate of Comm. N ${ }^{0} .123$ as $\Omega_{I f}$ (of about 40Ω calculated for solid mercury at 0° (.). Narow tubes altemately gomp up and down were comnected by expansion heads (as in the Plate in Comm. No. 124) and comeded to platinum leading wires by fork-shaped turned down wide pieces ${ }^{2}$). which can le seen distinctly on magnifieation on the plate in ($\mathrm{mmm} . \mathrm{N}^{\circ}$. $12: 3$ (where the resistance is shown in the cryostat).
γ. After this digression about the change in the resistance between ordinary remperature and the boiling point of heliom, let us retmon to the experiments in and below the region of the sudden fall of resistance, which as has been said at the begiming of this s were made with a mereury resistance with merenry leads, and which were treated of in § 3 and fig. 1 of the previons (Comm. (Der. 1911) about the resistance at helium temperatures (experiments of Oct. 1911).
${ }^{\text {b }}$) This was a ramification of solid mercury theads consisting of a U divided at both ends, allowing measurements as well by the method of Calevdar as by the potentiometer method. (Note added in the translation).
${ }^{2}$) In the resistances which were used for the first experiments with mercury, the platimum leading in wires were simply sealed into the wider portions of the resistance tube at the ends (the expansion heads). When the mercury cannot be poured into the tube in vacuo but las to be boiled in the tubes in order that they: may afterwards be exhaused without any chance of the mercury separating there is some fear of platinum amalgam being formed which might penetrate into the current circuit. In order to prevent this the wide ends of the tubes are according to a suggestion of Mr G. Holst, made fork-shaped, the prongs which contain the sealing place being turned down. In this manner mercury leads may in generat be replaced by platinum leads without any trouble being experiencel with regard to the resistance of the current circuit. By a comparison with experiments with mercury leads it had been found that the mercuryplatinum contacts could be allowed in the potential circuit
dt 4.20 K . we find ourselves in the higher part of the almost smden chamere In the case that we are now ahout to treat it had almon lherome (onmplete. With a corrent of 7.1 m . A . it was a considerable time before the condition became stable. When this had taken phace, the resistance of $/ I_{1} / I_{9}$, was found to be $0.000746 \Omega \Omega^{1}$).

At at futher cooling of the meroury to $4^{\circ} .9^{\circ} \mathrm{K}$. With the same - Trengite of coment the result was only $H!h_{1} H y_{4}<1.4 .10^{-5} \Omega$.
d. At 4.19 K . we come into the lower pat of the region with which this Comm. deals in particular. The strength of the current had to be increased to $14 \mathrm{~m} . \mathrm{A}$. to give a perecptible potential difference at the ents of the resistane but even then it remained doubtful. It herame distinct at a (durent strength of 0.02 amp. and was then $2.5 .10^{-5} \mathrm{~V}$. At 0.023 amp. it became $5.10^{-6} \mathrm{~V}$, and at 0.0288 amp . $16.10^{-6} \mathrm{~V}$.

When the mevenry threat was cooled by helimm which evaporated at a mereury pressure of 40 cm . that is at about $3^{\circ}, 65 \mathrm{~K}$, with a strenglt of (omrent of 0.49 amp. there was no potential difference to be observed at the extremities. the current had to be increased to the threshold value of 0.72 amp . to make the potential difference observable.
\&. The highest limit of the value which the residual resistance can have in the case of the lowest temperature, is therefore in these last experiments again considerably reduced by the application of stronger currents, viz in this case (3 . 65 K .) to 10^{-9} of the resistane at 0° (C . (ealentated for solid meroury) while in Comm. N°. 122 h June 1911 at $3^{\circ} \mathrm{K}$. it could only be put at $<10^{-}$.
\$3. Appertromer a! the same potential phenomena in " revised normapmemt of the eqperimpt. The appeatane of the peculiar phenomena immediately ahove the "threshold value" of the ebrent, gave rise to the grestion whether the just established limit would not hase to be put lower when it should be possible to aroid the disturbances, which might still exist, and perhaps showed themselves in the above montioned phenomena. The most obvions thing in the first place was to prevent the posibility with great current density of heat, developed in phas in the main circuit where the temperature is higher, penefrating to the resistance hat is being measured. By this, from both ends, the thread would be brought over part of

[^104]its length above the vanishing temperature, which womld immediately cause eonsiderable potential differences. In this combertion we thought

Fig. ㄹ.. particularly of Jome heal. Peathar heat, whirh we had noticed before ($0 \mathrm{omm} . \mathrm{N}^{\mathrm{o}} .12 \mathrm{t}$) but which for the present we altributed to impuritien in the meroury in the legs, and assumed to be present only in the neighbourhood of the transition from solid to liquid, I took to be as far as possible excluted by the fiad that the whole curvent system was of pure solid mercury at the very low temperatures. Now this belief may be untrue, because owing either to tension caused by a difference of expansion to that of glass which it seems can be fairly great as the mercury sticks to the glass, or through the contact between erystals of different kinds or sizes, even in the purest mercury considerable thermopowers may possibly appar. But then they have theil seat, as shown by the previous experiments, chielly in places above the temperature of liquid air and Pbatise heat in these places need not be feared. To avoid disturbances of the sort to which we referred the experiment was repeated with revistances of such at kind that the coaduction of any kind of heat from at part of the apparatus where there was higher temperature was made very difticult. The accompanying figure, which should the compared with tigs. 1 and 2 on the Plate in the previons Comm. \mathbf{N}°. 124 e (VI of this series) shows the form chosen. The meroury threads which lead the curent to and from the apparatos, fon first through the liquid helimm downwards, before they come out into the widened parts of the resistance. The potential wires to the same ${ }^{2}$). Close to the surface of the liquid the leading
${ }^{1}$) Corresponding parts are indicated by the same letters, modilied pats by the addition of an accent a small additional improvement was further introduced into the contacts at the upper end, the four leading lubes were simply left open
wire ball he thin on areonn of the low temperature There were two resibance of the satme kind in the ervostat. one of $50 \leq$ and the other of $1: 30$ s. the sedtion of the tures was about $0.004 \mathrm{~mm}^{2}$ and 0.0015 mon". They were intended to insertigate the influence of the sertion of the tubes upon the phenomena examined, a thinge that had been amed at abready betore (see S 2) but did not sneceed and the preparation of the narowest one in particula hat given Ereat dimenties. It gave way during the experiment, so that the gustion of the indmence of the section had again to be solved later oll see 5 . The experiments which were of chief importance for the matere moler consideration were made in Dere. 1911 with the thatlest of the fwo resistances, the section of the narmow resistance the was here a little smatler than the mean in the resistance which was wed for the experiments in Comm. N ${ }^{0}$, 124 ${ }^{\circ}$.

On the whole the results were the same as by prevons measurements. Alhough ereat care ${ }^{1}$ was asain given to the distillation of the meremy with the help of liguid air ${ }^{3}$, the meremy legs, as has
(which mate it easy to add mercury which the contraction during the freezing made necessary, and bell shaped tubes Hyk were placel over the extremities in which the platinum wires My' cte are sealed, which connect the resistance to the current sources and the measuring apparatus. Platinum amalgam (see note 2, p. 4) need not be feared in this case, so that the compliation of the inverted forks was superthous.

We do not need here to enter into particulars of precautions such as the protection of contacts against chandes of temperature, and others which have reference to the special circmonstances under which the resistance measurements were made

${ }^{1}$) In $\S 9$ it is demonstrated that in repeating the experiments rot so many precautions would have been sufficient.
${ }^{\Rightarrow}$) In the distillation the mereury was not heated above 65°

Fig. ㄹ.. and $70^{\circ} \mathrm{C}$. while the cooling was effected with liquid air. In order not to have to wait too long to procure a sufficient quantity it was done in an apparatus shown in fig. 2 at $1 / 3$ of the actual size. The mercury is brought into the double walled tube $a b$ (with the reception beaker 0), which was sealed off below at e. It is exlausted through lube d, while the mercury is warmed and then seated off at f.

The lowest part is immersel in wam water; in the bollow " liquid air is poured. In 3 hours about $2 \mathrm{~cm}^{3}$ goes over; the condensed mercury in c is afterwards pourd out at f.
been observed, gave considerathle thermo-penver; the legs with the smallest thermo-power were chosen as potential wires').

There was some indication that the resistance of the meronty in narrower tubes falls a mitle less than in wider ones, when the lubes are rooied to $4^{\circ} .25 \mathrm{~K}$. (boiling point of heliums). The new experiments also raised the question whether the abmost sudden changes were found at a slighty different temperature of the lath in the narrower that in the wider tubes. But all this concerns particulars which ean probably be explained by differences of erystatlization and of heating by the cument.

That the almost sudden change begins at $4^{\circ} .21 \mathrm{~K} .{ }^{2}$) and ends

TABLEI.

Potential difference of the extremitics of mercury threads carrying a current.

Temperature	Current density in ampères per mm^{2}		Potential difference in microvolts	
	October 1911	December 1911	$\begin{aligned} & \text { October } 1911 \\ & l=7 \times 20 \mathrm{~cm} \end{aligned}$	$\begin{gathered} \text { December } 1911 \\ t=20 \mathrm{~cm} \end{gathered}$
	0.49×190		0	
$3^{\circ} .65 \mathrm{~K}$.		0.510×260		0
	0.56		0	
		0.665		0.5
	0.72		7×1.14	
		0.890		4.7
		1.10		12.7
40.19K.	0.010	0.016	0	0
	0.014		7×0.017	
				0.4
	0.020		7×0.36	
	0.023		7×0.71	
	0.024			4.7
	0.028		7×2.3	

${ }^{1}$) It amounted to only 19 microvolts, and this was compensated. The seat of these E. M. F'. (up to 340 microvolts) is to be found principally in the portion above hydrogen lemperature.
${ }^{2}$) This means more precisely $0^{\circ} 0 \pm$ below the boiling point of helium.

Within a fall of (10.02, was atain confinmed with a resistance of

Goncermine the threstod value of current and the potential diberenere aprabing at hirher currents, i.e. the phenomenon to which the invertigations were espectally directed this time (Dec. 1911) re-ults wern ohatned which comespond pretty well with the previous
 in the resistance itself, and at the same time make the natural assumption that the potential difference increases with the cursent density, and with conduetors joined in series is equal to the sum of the potential difiemenees in eath of these conductors. This is shown in the table, in which both series of observations are combined, and holds both fin the minimum value of the current at whoh the potential difference appears. and the value of the potential difference at a given excess valne of current and a given temperature.

For we must remember that the previous resistance consisted of 7 U-shaperl tubes not all precisely similar, weraging 37Ω, and the present one of one l-shaped tube of 5) $\boldsymbol{\Omega}$, while the lengths of the thbes did not differ much. The appearance of the potential ditherence was therefore, on our supposition, to be expected in the last case at a slighty smaller current than in the first; on the other hath. the ereater length which was partly compensated by a greater section, made it probable that in the (letober experiments the potential difference at the same temperature and corrent would be a few times larger, though not as much as seren times.

5 4. Cenostions to which the erperiments give rise. There were not sumicjent data to make out whether the resistances used really differed as much as was thought as regards the opportunty of receiving heat thromeh hat conduction from elsewhere in particular docta heat. If would however have to be regaded as a carious coincidence that Hhis comduction of heat in conjunetion witti other canses had ied to smolt a chose correspontente in the phenomena observed. It seemed muly more probable that the pheromena were to be accounted for not by disturbances from outside, but by resistance arising in the thread itself.

Where such a remankable change in the condition of the mereury bakes place as is shown by the disapmeatance of the ordinary pesistance the appearance of a "threshold value" dependent on the A(mperathor hathratly gave rise to the question, if we had to do with a deviation from (hnms haw for merny below $4^{\circ} .19 \mathrm{~K}$. The electron
${ }^{1}$) 1 hinpe to return to the new ani importam theory of Wies, in a further comm.
theory, supplemented by the hypothesis in ('omm. No 119. Hat the resistance is cansed by Planek's vituators'), and by the more special hypothesis that the clectrons move freely through the atoms as long ats they do not collide with the vibrators and are reflected as perfectly elastic bodies at the surface of the combluctor, indicates causes which might work in that direction. The distance which the free electrons travel between two collisions at which they give of energy derived from the electric foree might become comparable to the dimensions of the conductor below $4^{\circ} .19 \mathrm{~K}$. (compare Comm. $\mathrm{N}^{0} .119$ Feb. 191183 , last note); the speed which they acquire in the electric curcont is perhaps no longer negligible compared with the velocity of the heat movement; for a certain curent density at each temperature it might be just sufficient to loing the vibrators into motion, which otherwise below $4^{\circ} .19 \mathrm{~K}$. are stationary ${ }^{2}$). Considering all this, we may not take it as a matter of course, that Onm's law will still hold below $4^{\circ} .19 \mathrm{~K}$. and a further investigation of this will be interesting, if it only proves that this is actually the case.

As long as the contrary is not experimentally proved, we shall however adhere to this law, becanse we have first to try to refer the phenomena as much as possible to already known ones and so far on appropriate suppositions from the domain of known phenomena the results obtained did not seem incompatible with Onm's law.

Varions possibilities presented themselves at once. A very small residual resistance evenly distributed throughout the whole thread might remain, which might be peculiar to the pure metal as such $(\$ 12 t)$, or might be the consequence of an admixture (mixed crystais)
${ }^{1}$) Lenard has recently given two important papers on the conduction of clectricity by free electrons and carriers, which intend with a third paper to make a whole of his highly interesting researches on the interaction of electrons and atoms and the theory of metallic conduction. This gives to the latter a new and very promising base. In the first paper Ann. d. Pliysik 40 p. 414, 1913 he comes to the result making use of the great conductivity of metals at helium temperatures (Comm. N 0 . 119) that Ohm's law is only valid within narrow limits for metals at very low temperatures; comp. further Vill $\& 16$ of this Series. (Note added in the translation).
${ }^{2}$) At the great current densities that were attained in some of the experiments (see $\begin{gathered}8 \\ \text { 7 }\end{gathered}$), (they went up to 1000 Amp . per mm^{2}) the question arises if even the change in the resistance of the conductor through its own magnetic field of the current through the -conductor should be considered, as it might be the case, that the resistance in the magnetic field for mercury in this condition was much greater, just as it alters with the temperature for some other substances, and has been found to increase for mercury at hydrogen temperatures (Kamerdiag Onses and bengt beckman, Leiden Comm. N: 132u).
crenly distributed through the metal. It might also be that the pure metal in the particular condition in which it comes below $4^{\circ} .19 \mathrm{~K}$. and in which the atoms perhaph form one whole together, does not poseses any resistance at all, but that somewhere (\$11) in the thread Hmonsh sume peculiarity a section is sufficiently heated by great conrent density, to brims the temperature of the thread locally up (1) the vanishimp point. In cither way an ordinary resistance cond be formed somewhere, which, when the strength of current is finther increased, wives rise to an arcelerated beat evolution and an increased development of resistance.
\& 5. Fiuther investigution of the potential difference phenomena, in purticulon at temperctures slightly below the vomishing point. It was considered desitable in the first place, to imestigate the inflnence of the thickness of the thead upon the temperature, at which the fall of resistance oceurs, and also upon the more or less sudden disappearance of the resistance.

l'ig. :3.

The resistance apparatus with which the experiments (Jan. 1912) for this purpose were made differed from those of Dec. 1911 only in this, that in the two pairs of meremy threads which seme for the measurement of the resistance of the mercury (two current leads and two potential theads) the pieces that were above helium temperature were mopaced by copper wire, in this way that the mercury legs were cut off and sealed up, and in the seated up ends, as in the resistances of (Oet. 1911, platinmm wires were sealed in, which were in their turn joined to copper leads ${ }^{1}$). During the experiments all these contacts were immersed in liquid helium, compare fig. 3. This change was made since

1) The wires were made comparatively fine, to prevent the liquid helium from eqaprating too quickly from the conduction of heat. Besides the condition of heat from atove the absorption of radiated heat by the metal in the transparert appratus wats avoided Later on, when the various circumstances conld be better -urveged, leans were constructed which could carry a strong current without causing too much evaporation.
it had been shown that the kind of lead had litte inflnemere on the phenomena, so as to be free from the troublesome thermoroments in the potential wires, when these were of meromy, from the resistamo which was immersed in holimn to where the ordinary temperathre began, and all four were replaced in order to be free in the chonee of the pair of threads which were to be used as potential wires or as curent leads. The thermopowers were now only about 10 microvolts.

The experiments of Jan. 1912 were made wish two meroney threads, one with a resistance of about 50Ω. the other of about 130 ת. These resistances were joined up in a circuit whth at milliammeter, which could he shmoted, and to each of them one of the coils of a differential galsanometer was comnected as a shont. By using only one coil at a time the resistance of each of the mercury threads could be measured separately; by connecting the two coils in the opposite direction the change in the ratio of them with the temperature could be investigated as long as the difference was small.

The ratio

$$
\left(\frac{W_{180}}{W_{60}}\right)_{T=2900}=\frac{128,4}{50,4}=255
$$

became, through rooling to the boiling point of helium

$$
\binom{W_{180}}{W_{s 0}}_{T=4^{0}, 25} \frac{0,0542}{0,0249}=2,18 .
$$

The ratio changed, as had been found before, and as could be readily explained by a slightly different mamer of freezing of the mercury in the two tubes.

On changing the current strength at $4^{\circ} .25 \mathrm{~K}$. We found

Curent in Amp.	W^{\top}	$W_{\text {so }}$
0,006	0,0545	0,0251
0,010		$0,0250^{5}$
0,016		0,0249
0,030	0,0549	$0,0260^{1}{ }^{2}$

Up to currents of 0.003 amp. therefore it is confirmed that there is no reason to assume a deviation from Ohm's law above the vanishing point.

On lowering the temperature from the boiling point to where the
${ }^{1)}$ As regards the deviation at $0,03 \mathrm{amp}$. of $W^{\prime} 50$, we may perhaps conclude from the comparison of the ratio of the resistances at $T^{2}=290^{\circ} \mathrm{K}$ and $T^{\circ}-4^{\circ} .25 \mathrm{~K}$. in the two resistances, that there is a thinner place in the thread W_{511} by which a greater heating takes place locally at temperatures above the vanishing point, than would be expected from the average section.
disappeatane of the resiatane hegins, this ration remaned unchanged anobstiner to the observation with the difterential galsanometer : from that penint downwath the resistance in which the corrent density was umaller, disapreared more quickly.

Ahbomeh the resistance in the experiments disappeared gradually, bet the way in which it disappears gives the impression that the Chane in resistance of the mereury with the temperature oceurs smblenly and that the gradual disappearance of the potential is due (1) the fact that the thread is only gradually cooled over its whole tenyth to belos the vanshing point, and only that part which is below this temperature loses its resistance.

It was arain contirmed that at temperatures some tenths of a degree

| TABLE II. |
| :---: | ---: | ---: |
| Resistance of mercury threads carrying |
| current in the neighbourhood of $4^{0} .2 \mathrm{~K}$. |

below the vanishing point no resistance was found up to very high coment densities. Tathe III may be compared with Table I. In Il^{2}, the comrent density conld be ratised to 400 amp . per sq. mm. whomt the leat resistance being pereeptible. The highest limit for the resistance is hereby pat back at $3^{\circ} .6 \mathrm{~K}$. to $<4.10^{-10}$ of
the value at $0^{\circ}(3$ (in the solded state) and reduent to about half of that to which we ennld gor down in the dinnary experiments.

TABLE III
Potential differences at the extremities of mercury threads carrying a current. $l=20 \mathrm{~cm}$.

$$
r^{2}=0,0016 \mathrm{~mm} \text { for } W_{1}
$$

$$
=0,004 \quad, \quad " \quad W_{51}
$$

Current den- Potential sity in amp. difference Temp. 1 per mm^{2}, in microvolts

For $\|_{50}$ at a strength of current of 1 amp. the current density which in W_{130} appeared to be the thresthold value was not yet reached. A stronger current was applied. But now a special disturbance arose: on raising the corrent to 1.5 amp . so much Joule heat was generated by the current in the platimum wires joining the mereury leg, that this reached the thin mercury thearl and brought it up to a temperature above the vanishing point. All this was accompanied by a rapid boiling of the helinm, white the ammeter showed a strong falling off of the main current corresponding to a decided rise in the resistance. From the readings it could be seen that the resistance of \mathbf{W}_{50} had risen to that which it has at hydrogen temperature. This time it seemed most probathe that the potential differences could be attributed entirely to heat introduced from outside, so that if this could be prevented it would he possible to bring at these lowest temperatures the highest limit for the possible residual resistance still nearer to zero.
§ 6. Experiments with an apparatus arranged so as to be sur. that no heat penetrates to the thread firom places at athigher temprralure than that of the vamishing point.

A mereury resistance was made, suitable for observing the potential changes, when a current of "3 amp. went through the same mercury
dinead an in the last experiments, and to make certain that the distumanes which hat orented would he impossible. The mercury threand C, see lige t. at the ends of which the potential was to be meatured was for this purpose lengthened a both ends by an anxiliary meroury thrend of larger section. We will call these anxiliary threads it and B.

Fig. 4.

Fig. 5.

By measuring the potential diflerence at the extremities of both allailiary threals it could be aseertamed that any heating above the vanishing boint cond not be the comsequence of the introduction of heat which hat emtered the extromities of the resistance C which was to be examined throngh conduction. lior this heat could only enter through the sentinel wires, and these could only become damperons to the experiment after betraing a heating above the vanishing point by showing a potential fall.

On the gronnd of the experience in the last experiments, the combering wires carying the current in to the resistance (compare the diagrammatical fig. 4 and the perspective fig. 5) were again of merenty, in onder to prevent docter heat being dransported to the mesistane, white sealed in phatimm wires fo which copper wires were coldered semed as potential wires. The sentinel thread A had
 -36 Se resistance, the resistance (' comsisted of five thends in series of about 80 O rexistance exdy and with a combined resistane of abont 300 St ordinary tempeatme.

At the boiling point of helimm $\left\|^{\prime} \mathrm{st}=0.01831 \Omega,\right\|^{\circ} \%=$ $1.01285 \leq, \mathrm{IK}_{6}=0.1773$ S. The ohservations were as shown in Table IV.

We had therefore not snceceded, as had been our intention in giving a larger section to and l, than to f, in manging that if C should show potential differemer, it would do so before A and B did it. Only if this had happened it would have been shown that the heat that brought $(\mathcal{\prime}$ to a temperature above the smishing point was developed inside $(\%$ Anl the potential which now appeared in C ean again be ascribed to heat condaction throngh A. The experiment shows very cleary that accidental circumstances in the freezing of the meremry threads play a part in the determination of the "threshold value" of the current density, and that in calcu-

-			
TABLE IV. Resistance of a mercury thread			
just below 4.20 K .			
$-r^{2}=0.0025 \mathrm{~mm}^{2}$ for ${ }^{W} C$.			
	$W_{S A}$	$W_{S B}$	W_{C}
current density 2.5 Amp. p. mm^{2}in W_{C}			
40.24			0.163Ω
4.234			0.161
4.230		0.011	0.158
4.222		0.0078	0.0774
4.208	00022	0.0025	0.00775
4.192	0000024		0.000024
4.185	0.000012		$<10^{-6}$
current density 12 Amp.p. mm^{2}			
4.185	0.000071	0.000153	$<10-6$
	$\begin{gathered} \text { current density } 20 \text { Amp. p. } \mathrm{mm}^{2} \\ \text { in } W_{C} \end{gathered}$		
$4.1850 .000117 \quad 0.000048$			

hating with the aremare section of the tube in which the thread is pozen, muly a bowe limit can be given for this.

L'asihly the meremy in A and 1 b was only frozen in an unfarontrathe form, and therefore ereater loeal chrrent densities or worse exchange of heat had atisen than the arerage.
\$ 7 . Ciputition of the exproment with the some appuratus. We whanal nome fatomable results from another freezing. First a few remblas may be given, which were ohtaned by measurements at differn strengths of curent at $4^{\circ} .25 \mathrm{~K}$., that is at a temperature above the vanishing point. These results gave an opportunity of judumg to what degree hat can be given of by the mereury thread chosed up in at elase capillary or flows of along the extremities.

From the increase of resistance at greater current strength, the rise of temperature wat deduced on somewhat simplified suppositions, al which the equilibrimm between the douse heat and the heat epiven off to the outside is established. The result for the resistance and the average rise of temperature of C ' was:

rurent	resistance	rise of temp.	
0,006 amp	0,1928	0°,	
0,006	,	0,1932	0°,
0,356	,	0,2149	$0^{\circ}, 12$
$0,500 \quad, \quad$	0,2410	$0^{\circ}, 25$	

The average rise of temperature was calculated hy the formula got hy separate determinations

$$
\left.W_{T}=W_{S}\left(1+0.9\left(T-T_{s}\right)\right)^{2}\right)
$$

in which l_{s} reprevents the boiling point of helimm.
It follows from these determinations that per degree of difference of temperature between merenry thread and bath 0.057 calorie is given ofl per second. If we assume that all the heat goes through the glass, that the mercury tonches the glass everywhere, and that we only have to consider the narrow capillary, then we find with $d_{i}=0.0 .56 \mathrm{~mm}, d=2.07 \mathrm{~mm}, l=100 \mathrm{~cm}$, for the conductivity of qhass $k=0.00033$, while at ordinary temperature $k=0.0022$.

The loss of heat through the glass must therefore by cooling to the hoiling point of helimm have become much less than at ordinary temperature, which might possibly be the consequence of the mercury onfy tonching the glass at a few places besides in the bends.

[^105]The application of the data obtamed at temperatmen; hedow the vanishong point is in the nature of the matter motertain, as we do not know whether, with the gatrami fhange in the meroury, there maty not be another change in the thread, which would hing atron a further change in the giving off of heat.

With regad to the appearane of potential diflerences at the extremities of the thread, we found the data contamed in Tathe V.

At 3.6 K . the current at which a potental difference wond appear in the sentinel wires could not be measured, as, before the

Strength of current at which the potential difference appears at the extremities of a mercury wire carrying a current below 40.2 K . $\pi r^{2}=0,0025 \mathrm{~mm}^{2}$ for C.			
Temp.	A	B	C
$4^{2} .18 \mathrm{~K}$	0,0535	0,0615	0,034
4. 10	0,232	0,317	0,172
3. 60			1.068
3. 28			1,646
2. 45			2,56

current had reached this value, the resistance C was heated toabove the vanishing point along too great a length.

What we were aming at was however attaned in these experiments of Feb. 1912. It is established that heat is produced in C'by raising the strength of current sufficiently, and that the heat is not conducted to it from A and B, since A and B were at a lower temp. than the vanishing point as appeared by the absence of potential fall in them. It is developed in the thread itself.

Table VI may be subjoined concerning the experiment at 2°. 45 K. corresponding to Tables I and III.

At the same moment that the galvanometer which measures the potential difference at the extremities of the thread is deflected, the strength of current in the main circuit falls from $i=2.84 \mathrm{amp}$. to $i=1.04 \mathrm{amp}$. which corresponds to an increase of resistance $\Delta W^{\top}=2.44 \Omega$ in the circuit, from which it appears that the resistance is heated nearly to the temperature of hydrogen by the remaining curnent, of 1 amp, nearly.

If we take the last desoribed experiments together, we have beron ahle ly them on the one hand to raise the current density t10 the emmonms value of abont 10000 amp . per mmº, withont amy heat beine dercloped in the wire. This threshold value for

TABLE VI.
Potential difference at the extremity of a mercury thread carying a current below 4.2 K .

$$
-r^{2}=0.0025 \mathrm{~mm}^{2}
$$

Temp.	current density in amp. permm."	potential diff. in microvolts
20.45 K.	944	<0.03
,	1024	0.56
,	1064	1.5
,	1096	6.3
,	1120	very large

the current density brings the highest limit for the possible resistance of merany in the peculiar condition into which it passes below $4^{\circ} .19 \mathrm{~K}$. and particulaty when it is cooled to $2^{\circ} .45 \mathrm{~K}$. still further back, and the matio of the resistance at $2^{\circ} .25 \mathrm{~K}$. to that of solid mereury at $273^{\circ} \mathrm{K}$. becomes $\frac{W_{2^{\circ}}{ }^{\circ} 45 \mathrm{~K}}{W_{230 \mathrm{~K}}}<2.10 \cdot 10$.

On the other hand it is proved that the drvelopment of heat which appears at a still higher strengh of current, has its origin in the theredel itselt.
§s. Inthemer "f ller chment density upron the mamere in which the mastumet in merem?! thentels disompeots. What has been related. abose ball all wey well be reconciled with the view (see § 5) that the disappeatane of the ordinary meroury resistance at $4^{\circ} .19 \mathrm{~K}$. orems quite suddenty. and in a threat that has been cooted to below that lemperature, as soon as the "threshold value" of the eurrent den-ity is exreded, somewhere beating oceurs which carries the theat at that phace to above that temperatmee at first over a scareely promptible lonsth for at higher coments over a rapidy increasing distamer ly which ordinary resistance is generated in this part of the wire. With the e latree currents the thread then comes in astate

On which there is no mocortanty, it assmos over its entiore lenerh the new temperature equiligrimm of a thead carying a coment, which equilibrim is determined above the vanishmp point in the nsual way. In order to improve the comprehensive view that may be formed on the ground of Table IV combined with Table II in which latter the different (ourent densities do mot refer to the same wire finther experiments were made in June 1912, which show how with the same thread the resistance disappeats at different current densibes.

The threat had a section of about 0.00:3 mm^{2}., at the boilang point of helium the resistance was 0.1287 is. The experiments were made with a falling temperature, wilh corrent densities of $1 . B^{3}$

Fig. 6.

Fig. 7.

13 and 130 amp. per 1 mas ${ }^{2}$. strength of corrent 4,40 and 400 milliamp.). The phenomena are shown in the acompanying figs, upon which the numerical values are distinct enough to make it unnecessary to print a table. Fig. Gallows a comparison between the phenomena at 0.004 amp . and 0.04 amp ., fig. 7 at 0.004 amp. and 0.4 amp . The ordinates represent the potential fall in microvolts disided by the strength of the current, expressed in 0.004 amp., the abscissae the difference of the temp. T with that of the boiline point $T_{s}=4.25 \mathrm{~K}$. in thousandths of a degree. The unit of the seale of the abscissae in fig. 7 is five times as large as in fix. 6. At 0.04 amp. the couve contimes with diminishing valnes of the ordinate to lower temperatures than are shown on the dig. : at 4.11 K. , when the experiment hat to the stopped, the resistance was not quite 0, we found $0.2 .10^{-6} \mathrm{~V}^{T}$. The intersection with the

Lonizontal axis in dirg 7 is probathy drawn too shamp; at $3^{\circ} .96 \mathrm{~K}$. Hue potential difference was $<0.03 .10^{-6} \mathrm{I}^{\text {r }}$.

The whele gives one the impression that the lower temperature of the hath at greater strengh of current is required a comparison of 0.00t and 0.0.t amp shows that an almost constant shift of temperatme wonld change the potential differences per mit of eurrent in the one eatse into those of the ohtere to cool the patt of the threal that han an ordinary resistance strongly enongh to prevent it imparting its temperature to the part which is below the ranshang pant, and to prevent the temperature in the latter part from being laised athore the vanishing prom by the greater local development of heat.

With the same thread in the mamer of table Ill the results of table Vll were found, in which experiments are included sith a recond thread with a section of abont $0.012 \mathrm{~mm}^{2}$.

It appears that in the thread $\|_{I}$, $t 0$ which the experiments just quoted refer, local hating takes phace more easily at the same current density than in W_{180} (see $\$ 5$). The fact that the latter thread gives off heat more readily also explains why in IF_{180} a greater curcent density checks the disappearance of the resistance less than in the cate of H_{I} (June 1912).

As regards the threshold value of the current density for different temperatures with the same thread, it would seem from Table VII and Table V ronghly speaking to change linearly with the temperature,

T A B L E VII.

Potential differences at the extremities of mercury
threads carrying current

	Current density in amp. per m_{m}.	Potential difference in microvolts
Temp.	W_{I}	$W_{I I}$
$3 .{ }^{\circ} 6 K$		

if the fatl below the vanishang point is not too small, and if we leave ont of acrount a term for donter heat which omly apears distinctly at a higher coment stremght This mathrally surgests that we are dealing with a Pratarefled, basing the temperature to the vanishing point of resistance (e. og. connected with different forms of (eystallisation or tensions) ; (the simalaneons rooling of the opmosite contact has no effert on the resistance which is abreaty pratorically zero and remains zero when further cooled). As regated the the eshoht value of the density at a given temperature for different theads this appears (comp. \$ $(\mathbf{i}$ and Table \mathbb{N}) to be rendered uncertain by acodental commstances. But it deserves notice that it was also fommt very high in very marow capillaries.
§ 9. Experiments on impurities as a possible source of dislurlumces. Althongh the greatest care was always hestowed upon the purification of the mereury, the explanation of the appeatance of a residual resistance that offered itself the first for closer investigation was the influence of impurities. These may give an "additive mixture resistance" to the metal which changes little with the temperature and is proportional to the amomnt of impurity. To such an additive resistance I ascribed the fact Comm. $\mathrm{N}^{\circ} .119$ and Jeiden Suppl. $\mathrm{N}^{0} .29$) that the resistance of very pure platmom and very pure gold did not disappear at helium temperatures as I experted with absolutely pure metals. Now the experiments had ratized the expectation, that mercury could be so far ficed from impurities, as to make the resistance practically nothing. But if one may judge by the additive resistance which even very pure gold exhibits, then with the residual resistance of mercury which is only perceptible at the threshold value or curent density for the lowest temperatures, it would be a question of an impurity of the order of a millionth of the trace that could possibly be present in the most carefully preitied aokd. And it was a priori doubtful if the mercory could the procured in so much greater a state of purity than mold. ${ }^{1}$)

The experiment was therefore repeated with solid meroury in Which I believed a very small quantity of an other metal to be present. After being distilled in a vacuum by means of liquin air, the mercury was in one ease brought into contad with gold and the other lime with cadminm, after which it was mixed with a larger quantity of pure meromy. To my surprise with the mercury

[^106]that had heen treated in this way, the resistance disappeared in the same way as with pure meremry'; mueh of the time spent on the preparation of pure merenty lyg distiltation with liguid air, might therefore have been saved, without the experiments on the sudden disapperatuce of the resistance which were made with mereury propared in the ordinary way what double datillation giving other porblts.

Even with the amatgam that is used for the backing of mirrors, the mestance wat found 0 at helimm temperatures. (Later lece. 1912) it Was found that it disappared suddenly, as: with the pure mercury but at a higher temperature. ${ }^{2}$)

Where the intluence of impurities. in the form of mixed erystals in the solid meremy seems to retire into the back ground. the next most matmal supposition is that less conductive particles, separated sut of the meremy during the freazing, or coming amongst the mermy crestals in some other way, bring a resistance into the path of the coment. But if we do not assme that a thread of perfeotly pure meromer can posess a residnal resistance itself, this theory of the origin of the potential differences is not very probable, because in a resistane-free path of coment, only by a closing of the whole section by an ordinary conductor resistance is produced. Particles of the sort we mean, as also other casual ciromastances, for instance the mamer of freaing and small cracks, can influence the magnitude of the threshold value of the curent density derived from the exferiments, but the values fonnd for this quantity, althongh they vary, differ so little, that in addition to the earses mentioned we must assume for a thered of pure meroury the existence of a residual resistance which we will eall a "microresidnal" resistance, to distinguish it from the "addtive mixture" resistance to be attributed to impurities.
§ 10. Eiporiments on the possible implupnce of contract with an ordinary comulurtor upon the supercomucturity of mercury. In the reasoning that we have just eriven it is assmmed that the laws of comrent division between wo conductors which touch each other also hold when one of the eonductors consists of mercury below 4.19 K . But this assumption might not be correct. In the line of

1) Perthaps mot even a prantily of the order of a thousand millionth of zine or Fold is alosobbed in solid mercury. The application of the sensitive test of the disappasance of the resistance may be of value for the theory of solid solutions. If sandse in our atyment we only deal with sherption in a form which comes into consideration for lim resistance (mixed erystals).
${ }^{2}$ 'This !art of tho that is (hanged in accurdance with the facts see $\$ 13 \gamma$ in VIIl of this series.
thought of $\$ 4$ and taking into arcomnt the heat motion which takes the chertrons now to the inside and then for the surferce of the conductor, a pushing forward of the electrons in the gatvanic coment through a supereonductor without performance of work seems only possible, when its surface only comes into contact with an insulator, which reflects the electrons with perfect elasticity. If the electrons can hit adanst the atoms (or more anecurately the vibrators) of an ordinary conductor, they will of cousse give off work in this collision. Thus a thread of supereonducting meremy, if an ordinary conducting particle were present anywhere in the current path, could show resistance at that spot, even althoush the particle did not entirely bar the section which was otherwise free from resistance.

These considerations lead to the following experiment. A steel capillary tube, supplied with connecting pieces in which were platinum wires for measuring the resistance, was carefully filled with mercury at the air pump. The measuring wires were immersed in the mercury, without touching the current wires. According to the ordinary laws of current distribution the resistance of this composite conductor should disappear below $4^{\circ} .19 \mathrm{~K}$. Whether the mercury is in a glass or a metal capillary makes no difference to the conduction. Thus for instance, if one was to coil up such a steel capillary filled with merrury, and press the coils against each other without insulating them, the coil could still serve as a magnetic coil below $4^{\circ} .19 \mathrm{~K}$.; the coiled up mercury thread would be resistance-free, and the steel would take the part of the insulator, which otherwise separates the different windings of the current path in a maguetic coil. On the other hand if the above reasoning is correct, a mercury thread, that is provided with a close fitting steel covering should retain its resistance below $4^{\circ} .19 \mathrm{~K}$. though the current is lowered below the threshold value.

In several experiments with the above mentioned steel capillary, in accordance with the last conclusion, the resistance of the mereury thread did not disappear. Yet we must not conclude from this that the remaining resistance is given to the mercury by the contact with the steel. There only needs to be one little gap in the meremy which extends over the whole section, to canse the appearance of ordinary resistance of the amount according to the potential difference. If the resistance had disappeared in the experiments, there would on the other hand have been room for the question whether there had been contact between the steel and the mereury. With mercury in a steel capillary the result of the experment remains always doubtful. We may therefore mention here, that aftemands

Whon in was fomm that the resistame of tim disappeared suddenly fon. We -beveded in making a less doubtful experiment than is praible with meroury with a llattened ont ronstantan wire, which was encomen what a thin layer of tin ${ }^{2}$). The resistance of the layer (1) 1° the dixapeared 1 ith a weak chrent and at a low temperature, whike the comstantan rematins and ornary conductor at that temperature.

Thms we maty for the present adhere to the usual haws of emrent liviabor. and in fhis extreme case continue to assumbe that in so lat at the appearamer of the potential diflerence is to the explained by a loxal heating in conseguence of a lowal change in difference af the chemical mature of the conductor from pure mereury this di-futhate mon extend over the whole section of the current path. Thus the conclusion drawn in § 9 concerming the probability of tho existeme of a miero-resistance remains valid.
(To be contimued).

Physics. - "The mentintion of" ladium al the temperature of liquid
 Commmateation N^{0}. 135 from the Physical Laboratory at L.ciden.

One of the most remarkable peruliarties of radio-active substances, is that the radiation is independent of the temperature. Neither do the radio-active constants change with the temperature. These two fitels are related to carth other: they prove that the radio-active framofomations are not affected by the inthence of temperature, which phass such an important past in the chemical transformation "if tha mulecules.

Aroorting to the theory of radio-active transformations, the intensity of radiation of a simple substance is proportional to the bapndity of the transomation, so that a change in one of these framtities insolves a change in the other.

The experimental invertgations of the influence of temperature have heen concemed with the measmement of the radio-active romstats and the intensty of radiation of certain substances. P. ('rkms has shown that the law of transformation for the emanation thes not change at a temperature of 450° C. nor at the femperature

1. It is 14 be noted, haneres, that the current density in the dhin layer had to the wnly wery weak Comp the following part of this Communication VIII, § 16. ; P. An日, C. R. 1903.
radiation of radiam and wanimm have the same valne at ordinary temperature and at the temperature of liguid air ${ }^{t}$. The intlumere of hish temperatures on the radimm cmanation and fitwansformaton products, particulaty Radium (', has also been the subject of varioun investigations. 'The results have given rise to differences of opinion. Nevertheless it would seem to be justitiable 10 conclude that the dependence upon temperature which was observed in some cases must be attributed to secondary phenomena of lese importance, and that the radionctive constants of the above substances are not appreciabiy altered when the temperature is raised to 1500°).

As the question is of great importance it was desirable to extend the results alreaty ohtained, by extending the experiments over a wider range of temperature and by increasing the aconracy of the measurements, which in the above mentioned investigations could not have been greater than 1°. at the most.

Our object was to descend to the temperature of lipuid hydrogen. By using a compensation method we were able to determine very slight changes in the radiation intensity. Our measurements were concerned with the penctrating ladiation of radium. The results, within the linats of accomer which may be placed at 0.1%, do not confirm the existence of a quickly acting influence upon the radiation, in consequence of this strong decrease of temperature.

The investigations were made in the first part of 1911. The preliminary measurements were partly made in Paris, and party in Leiden, while the final measurements took place in Leiden in July 1911. We intend to continue and extend the experiments, which is the reason of the publication having been postponed. But as the continuation of the work has been prevented so far by the long indisposition of one of us, we thought it best not to wait any. longer in publishing our results.

Apparatus and arrangement of the medsurements. After some preparatory experiments we decided to use the following apparatus. The apparatus consists of a vacnum glass A, in which a copper vessel B is placed, which contains the low temperature bath. The vacuum glass, which is failly wide at the $10 \mathrm{p}\left(a_{2}\right)$ consists underneath of a tube-shaped portion, the length of which is about 16 cm . and the two diameters 8,5 and 13 mm . The copper vessel which fits into the vacurm glass, is also provided with a tube-

1) Beqquerel, Curie, Dewar, Rutherford.
${ }^{2}$) Curie and Danxe, C. R. 190 t. Brossox, Plit. Mag. 1906. Makower and Russ, Le Radium, 1907. Eigler, Ann. d. Phys. 190s. Schmidt, Phys. Zeitschr. 1908.
shaped protion. Which is shoter than that of the vacuum glase. This coppore twhe is domed moderncath $\left(B_{1}\right)$ by a metal stoppe: f_{2} (1) which a tuhe f^{\prime} a of thin ahmininm is attached thicliness 0.3 man. : this tube contains a sealed glass fube with the radimm. The narow pate at the bottom of the vacumm glass in which this bute is phaced, is cooled to a temperature that differs very little from that of the bath: the difference could hardly be eatablisheal, when the copper vessel was tilled with liguid air. This

lig. 1.
method of cooling seemed to us to be preferable 10 phaning the twhe itself into the liguid gas, which is always a litale dangerous.

The rays that the radiam in the futse semds out are pately of a penetrating mature. They go through the waths of the almminimm tube ant those of the vacumm wiass, and penetrate through it metal wall into the ionisation spare. This comsists of a cylimbical box D_{1}, which is commerted in a battery: in the midttle of the lid of this space a tube is soldered, which is closed at the lower emt. The insulated electrode E_{1} which is a hollow gylimder, is comnected with the electrometer. The metal ease l, which is comnerted to carth, serves for electrostatic protection. When the apparatus is monnted the tube-shaped portion of the valum glass is inside the subee $/ D_{2}$, which is placed centrally in the hox D_{1}, while it is closed by a thick piece of india-rubber tubugg round a piece of amber (is which is sealed to the vacumm ghass. When the tube comaining the radium is in its plate, ions are formed on both sides of the electrode $E_{\text {a }}$ in the air that fills the box D_{1}. The cursent that is taken up hy this electrode is measured by ath eledrometer and a plate of piezoquartz.

The experiment consists in measuring the ionisation corrent generated by the rays of the radimm: 1 . when the radium is at the temperature of the room, and 2. when the radium is cooled to the temperature of liquid hydrogen. The ionisation chamber, which is ouside the vacum glass remains at about the temperature of the room. The chamber is airtight, and the quantity of gas that it contains does not alter during the experiments.

The accuracy of the measurements is greatly increased if instead of measuring the total current, a compensation methot is used. This consists in compensating the current to be measured by a current in the opposite direction, which is generated in a second ionisation chamber by a tube containing radium, which is kept at constant temperature during the experiments. This current compensator is of a type which is greatly made use of in radioactive measurements. The insulated electrode C_{x} is in the form of a tube which is closed at the bottom; it is connected by means of copper wires celectrically protected in brass tubes filled with paraffin wax) with the electrometer and with the electrode E_{1}. This tube reaches into a colindrical box H_{1} which is connected to a battery and which forms an ionisation chamber. The outside case K serves for electrostatic protection. The electrodes $\left(t\right.$ and E_{1} are protected in the usual way by a protecting ring comerted to cath. The tube (i contains a sealed glass lube with radium salt. The boxes D_{1} and $I I$ alde kept
at high putentials of opposite sign. Ender these circumstances the dillereme of the two ionisation comrents is measured which are Lenerated is the wo chambers. With sufficiently strong currents ereat arouracy can be athaned in this way.

It is worth moticing, that the varions small imperfections in the mothod of measuring, which are usually umoticed, become apparent when the method desmibed above is followed. E. g. when oanh curvent is measmed separately, the saturation appears to be romplete at a potential of about 500 volts. But when the difference howsen the coments wats meatured, which was usually under 5% of eath comrent separately, it was found that the current under Here cifoumstances increased with the voltage. When the potential
increases from 500 to 800 volts, the current increases ly 2 io 3 thousandths. Constant potentials must therefore be used.

The atecuracy is limited by the stability of the apparatus and by the osellations in the radio-active radiation.

The investigations were made with radium salts in the solid state, contained in realed glass thbes; the salt was finely gramular, and the tubes were not quite filled. When they are shaken the grams can move to a certain extent, which couses a slight change in the distribution of the radiation inside the ionisation chamber. The danger of this is lessened by giving the grans a definite armagement beforehand by tapping the tuhe. But in spite of this, small perturbations of this nature remained in our experiments of not more than 1 in 1000 The very greatest care is, therefore, necessary in the manipulations which must be made during the experiments.

The radio-active oscillations of the ionisation current become apparent when the sensitivity of the measurements is raised sufficiently. They cause irregula deviations which can only be eliminated by a great number of measurements. They are least to be feared when gamma rays are used, as was the case in our experiments. In our case they could not do any harm to the determinations.

It is important that the ionisation chambers should contath an unchangeable quantity of air. When working with penetrating rays, the current is approximately proportional to the amount of ionised air. If one wishes to keep the current constant with great arcuracy, we must, therefore, take care that the ionisation chambers are properly closed. Each chamber is supplied with a lap. By changing the amount of air in the compensation chamber, the curent in the chamber could be so regulated as to get a compensation of the amount required. Both the compensation chambers are filled with dry air by a tube filled with cotton wool, which can be comected to the tap of the chambers by a ground joint, and to an air pump and a manometer to regulate the supply.

We had to take rery great precautions to prevent the cryogene operations from causing insulation erors in consequence of the precipitation of moisture from the surrounding air on the strongly cooled parts of the apparatus. The cryogene apparatus used hy us enabled us to aroid all difticulties of this sort. This instrument, which was arranged for working easily and safely with liquid hydrogen, had moreover the advantage that the radimm tube could only come into contact with the gaseous phase of the liguified gas, so that when this was hydrogen there was no fear of solid air being deposited on the tube.

The ervoreme apparatus is completely closed. The vacuum glass hats a lial hof hisn new silver, which is fastened air tight to the Elars by means of an indiarubber rines, so that when the radium folve is in its place the apparatus ean be evacuated, and can be filled heforehand wilh pure, dry gaseous hydrogen (by L). A small bule in the ropper C_{3}, upon which the radium tube in the aluminium tube rests. ensures the pressure equilibrimm, which establishes itself easily during these operations, so that the radimm tube is not expored to atly danger.

The linpid hydrogen is poured into the vessel B through the new silser the h_{1} and through the india-rubber tube h_{8}. For this purpose the ghans stopler is removed which closes the india-rubber tube, after the the with the stopper K_{3} has also been taken away, and the india-rubber tube is comected to the syphon K_{1} of the large vacum grats $\|^{\circ}$, containing the liguid hydrogen that has been previonsly prepard. Before the syphon and the india-rubber tube are comnected, the apparatus and the vacum glass are comected to a gasometer with pure hitrogen, by the tubes L_{2} and L_{2}. When the first mentioned comnection has been made, the connection of the vacumm glass with the grasometer is broken, and the liquid hydrogen is poured into the apparatus by means of pressure from a eytinder with compressed hydrogen, admitted by the cork m, and controlled by the mercury manometer m. The supply-glass and the gasometer are then again comected. The syphon is laken off the intet tube after the comection tube has been warmed, and this latter tube is immediately closed by a glass stopper.

To prevent these manipulations from shaking the apparatus, we made the indiarubber tube h_{2}, which is usually as short as possible, rather long; but as the great cold makes the india-rubber very brittle, and the breaking of it might canse great inconvenience, we nsed only a length of $7 \mathrm{c} . \mathrm{m}$. In this way the shaking remained below the limits of stability in the apparatus which we used for these experiments. In a larger apparatus, intended for experiments Hat take longer, more than 24 hours, but with which we have only been able to make preliminary determinations so far, we were able to attatin a greater amount of stability, and we were more independent of the shaking cansed by the manipulations.

G'are mas be taken in filling the copper ressel B, that the liguid. gats does not overflow, as it might penctrate into the cooling chamber, which would give rise to irregularities, and might injure the radium thare. On the other hamd it is necessary to know when the lipuid gat has evaporated, otherwise the experiments might be
continued without our being cerlain of the temperature. The height of the surface of the liguid gas ean be reat by means of athoat. This consists of a new-silver hox p_{1}, suspended from a weak spring μ_{2}, which spring is attached to a rod ρ_{3}. This rod is movathle in at packing tube which is fastened to the upper end of a glass tube q, commed by the lid h. Beside the spring and atso hanging from the rod, is a dlat rod which is provided with a scale at its lower end. In consideration of the very small density of the liguid hydrogen $(1 / 24)$, the float is made very light. When the float reaches the surfice of the liquid by the moving down of the spming. this is indicated by the shortening of the spring, and the height of the liquid can be reat on the scale and on the roth.

Before pouring in the liquid gas, the float is regubated to the height to which the ressel is to be filled. Before begiming the measurements, the spring is pressed down ats far as is nevessary to make the bngthening of it show when the liquid is so far evat porated that the measurements must be stopped.

The evaporated hydrogen is carmed off by L_{1}. The tube R, the extremity of which is placed in mercury, serves as a safety.

In order to be cerdan of the insubation of the vacum glass, and to awod currents which might be injurious to the constancy of the tension of the battery, a piece of amber is interposed in the tube L_{1}. To prevent the amber from being cooled too much by the itling, the cold vapours are carried off by a supplementary tube L_{z}, which is coupled off as seon as the filling is completed. When the evaporation of the bath has become stationary a current of air a little wamer than that of the room directed upon the amber is sufficient to maintain the insulation. This current of air is given by a reservoir of compressed air, the air flows through a long tube, part of which is wamed by hot water.

The connection of the piece of amber, y, which is seald to the sacuum glass, with the tube D_{z} of the principal ionisation chamber, is very carefully made, to insure an airtight closing, and theroby to prevent the possibility of moisture penetrating to the space between the fube and the vacuum glass. The currents of cold air that come down are kept away by a paper sereen. The water that runs down the ghass from the lid must also be disposed of. The very low temperature of the vapours inside the lid causes frost to settle on it during the filling, which thaws afterwards. Alter the filling is finished, the condensation of water vapour out of the air contimes; the water thas formed, is absorbed by cotton wool above the paper sereen we mentioned, and below it by filter-paper. A current of dry slightly

Warmed atir is direded upon the amber, which at the same time dries the lower part of the vacum glass.

Fimally, the cooling of the parts of the connection of the main elecorole L_{1}^{\prime} with the electrometer must be prevented. To attain this a curtent of dry and slightly warmed air is also directed upon the amber stopper between the stem E_{2}, and the protecting ring E_{3} at the bottom of the main ionisation chamber.

The colld currents of air, which come down from the tubes that lead ofl the gates, are diverted from the apparatus by suitable screens. and laree corrents of air in the room are avoided as far ats possihle, so as to prevent the ionised air around the contacts from being displaced: these contacts were further protected by various leat protecting mantles (in the fignre diagrammatically represented), hy tin foil, etc. The inthence of the wam currents of air already mentioned was tested at the temperature of the room: they did not canse any electrostatic phenomena.

Preperatery Experiments.
The experimental method was first studied in Paris, using liquid air as cooling bath.

The current in the main ionisation chamber was procured by using a lube with ahout 0.1 gr. of radium chloride. In the compensation chamber a tube with about 25 mgr . of radium chloride was need.

In the first experiments the first thbe was contained in an aluminium tuhe with walls of 0.3 mm . Hhickness; the central tube D_{2} in the (hamber D_{1} was also of aluminium, with walls of 0.5 mm . thickness. The rays, hefore penetrating into the ionisation chamber, passed through a layer of aluminitum of about 0.8 mm . and moreover a gras layer ahout 2.5 mm. (wall of the radium tube and both walls of the vacmum glass).

During the cooling a dimimution of the eurrent in the main chamber could be observed. It was not very regular, and amounted to about $2^{n} \%_{0}$, it wats pereppible immediately after the liquid air was poured into the copper ressel, and reached its maximmm in about half an hour.
'When, however, the liquid air was quickly taken out of the vessel, and the temperature of the radium tube was followed with a thermodement, it could be observed that while the temperature of the radinm tuhe was still comstimt, the strength of curvent already hegan to rise, and reached about its original value, by the time the whold appataths had returned to ordinary temperature. From this it Wat evident that the decrease of strength of current which we observed
was not atributable 10 a dhane of radiation in the radinm tube, but to some other catuse.

Various lest experiments seemed to show that it was caused by change in the power of absorpion of the sereens, due to their contraction at low temperatures. It was therefore necessary to make use of heavier and thicker sereets, to make sure that we only worked with the most penetrating rays, which are less susceptible to phenomena of this kind. After the radimm tube had been inclosed in a copper tube of 1 mm . thickness, we found that the decrease of enrent when the lignid air was poured in was reduced to $0.1^{\%} \%$. The decrease was completed in 10 minutes. Three successive experiments gave this result.

We found that we could make the circumstances even more favourable, by changing the artugement of the apparatus in such a way that the screens in which the absorption of the rays took place were not cooled at all. In order to do this, the radimm tube was once more put into the almminimm tube of 0.3 mm ., while the central tube D_{2} of the chamber D_{1} was replaced by a bras thbe of 2 mm . wall thichness. The decrease of the current became by this means less than 1 in 1000 . This arrangement was used in the final experiments.

Final Experiments.

The experiments were made in Leiden from July 20 th to 25 th 1911 .
The ionisation current in the main ionisation chamber was 1100 , expressed in arbitrary units (about 10 electrostatic units). The strength of the compensation curent was so regulated that it was a little larger. The difference was at most 20 units, about 2% therefore. The rays used for the experiments were gamma rays.

We were able to make two experiments with liquid hydrogen. In the experiments the cold ionisation chamber, as we said above, was filled with dry gaseous hydrogen, and by this we made sure that no deposit could come on to the radium tube.

In the tirst experiment the current of origimally 10.9 mits, attained the value of 14.7 units after the pouring in of the liquid hydrogen, which took 15 minutes. This change corresponds to a change in the main current of 0.34%. In the second experiment the current measured had a strength of 18.3 units, and was very constant, the invegularities measured during an hour were less than $1 / 10000$ of the main current. After the liquid hydrogen had been poured into the apparatus, measurements which agreed very well with each other gave for the value of the current dming halt an hour 18.5
mits amd after an hour 18.2 mits. We can thms assert that in this experimmot, which was evidently combeted under very favourable civommatances the cooling had not cansed a change in the man current of ats moth as 1 in 5000 .

We made another experiment at the temperature of liquid oxygen. The coment measured had a strengh of 1.8 mits. Measmements made during an hour at the temperature of liguid oxygen gave a value of 2.0 units for the current measured, which corresponds to a deratase of 0.7 in 1000 in the main coment.

It would have been desirable to have made a greater mumber of experimens and to contime these during a greater length of time; nevertheles it would appear to be justifiable even now to state, What conting "f redlum domen to the temperature of liquid hydregen (about 200°.3 "hsolute) charing a period at not more tham 1 's hours does nut conkse "e chemepe in the !gammere rectiation at' I in 1000 and probably neet sem of 1 in atoon.

It is thus probable paying due regard to the degree of aceuracy attated, that this decrease of temperatmre has no immediate or puickly discemable inthence upon the emanation or the active deposits of shot period (radium A, B and ('). But in these experiments there was no opportmity for detecting an eventual effect upon the radium itself, or a slowly developing effect upon its evolution products.

Enperiments with polumium.

I few preliminary experiments on the intluence of low temperafures upon the sadiation of polonimm have been made in Paris. The experiment which was made only with lifuid air, gives rise 10 some difhenlties. A plate on which was some deposit of polonium was placed at the bottom of a long glass tube, which could bo immersed in liguid air. 'This plate radiated through a thin aluminimm plate that c!osed the tobe, into an airtight ionisation chamber, where the polonium rays were absorbed by the atr. The polonimm luhe was at far as fossible exhatusted; and the vacum was further improsed by immersing a side tube containing a little chateoal in liquid air. The radiation was measured at ordinary temperature, and later, when the bottom of the tube was immersed in lipnid air. In these experments changes of chrrent of inconstant amoml were oberved when cooling was applied. These changes were smaller in proportion as the vacumm was made more comphete and liept more constant. It is thus highly probable that they
were entirely due to the influme upon the poloninm of the condensation of gases still present in the apparatus.

Experiments made in Leden in lipuid hydrogen with a provisional apparatus have comsineed us that one might get bid of the comdensations completely, even with liquid hydrogen, by using a ionsation chamber lilled with pure gaseous hydrogen and a side thhe with charcoal, immersed in liyuid hydrogen.

Conchusions.

All these experiments which unfortunately are not so complete as we could have wished, contirm the independence of the radiation from the temperature, over a larger range of temperatures than had heretofore been done. Moreover these experiments have brought to light sourees of error which must be taken into account, if one wants to make very accurate measmements at low temperatures.

Astronomy. - "The periodic change in the sede level at Ileder. in comection with the periodic clumpe in the latitucte". By Prof. H. G. v. d. Sande Bakhetara.

At the meeting of the Academy in February 1894 I read a paper about the variation of the latitude, deduced from astronomical observations, and added to this a determination of the change in the mean water level in consequence of the variation of the latitude.

Roughly speaking, one may regard the rariation of latitude, as consisting of two parts, a periodic variation which takes alace in one year, prohably due to meteorological influences, and a periodic variation which takes place in about 431 days, which depends amongst other things upon the coefficient of elasticity of the carth, its resistance to change of shape. As a consequence of these changes of position of the axis of the earth oscillations of the same periods must bake place in the mean sea level and if we eliminate the annual oscillation, the periodic variation of 43 L days remains.

For the determination of the latter variation, I had matle nse of the mean sea level dumg the different months of the years 185.)-1892, taken by the tide gange at Helder. The results attained then for the amplitude and the phase of the periodie variation conlirmed the opinion that such variations actually existed in the water, but as the changes in question are very small, it was desirable to extend the investigation in order to increase the accuracy of the results. I resolved therefore to submit to the calculations all the tidal observations made
at Hedder in the rears $1855-1912$, and as the results of the rears 18:9-1912 were not at my disposal, Mr. Gockixas, Chief enumeer Direcom of the "Watersata", was so good as to let me have the monthly arevares of these vears.
2. Before I give an acount of how the monthly averages were used hy me, it is desirable to explain the exact significance of the ohservation material. The tide corve of Helder, with its double maximum, hats an asmmedral form, which differs considerably from a sinceurve. so that to deduce the exact mean sea level during a dat from the observations. one mast either determine the area of the -urfare emolosed by the tide eure with a plamimeter, or, as will akon be sufficiently accurate, determine the aserage value of the 24 hourly heights. From the daily means one can then deduce the monthly means.

It will be clear that the work which is necessary to ealculate all the observations in this way for the more than 21,000 days from 1855 to 1912 is rely great; fortmately for our purpose we can use an easier way. ats we do not need to know the actual mean heights, but only their mutual differences. If the tidal curve were symmetrical with respect to the mean sea level, the half of the sum of high and low water would correspond to the mean sea level of that day; but the form is not srmmetrical, and even changes periodically, so that there is not only a difference between the half of the sum of high sud low water, and the mean sea level, but this difference changes from day to day. If, however, we determine the average form of the tide curve during the period of a month, then we get a fairly constant shape, and for such a period one may assume, that the difference between the hali sum of all the high and low waters and the mean sea level is almost constant. This assmmption will differ even less from the truth, if we take the average of a great momber of monthly means from different years, which is the case with my calcutations.

On these grounds I have taken as the monthly means of the sea level the half of the sum of the high and low waters during these months, deluced from the registered tidal curves in the years 1855-1912.

These monthly means show rather marked deviations from the ammal mean, due partly to the yearly and halt-yearly sun tide, and party to the regubaly changing meteorological conditions. From 58 years, I found for Helder the following mean valnes for yearly means-monthly means in millimetres.

January, Vehmary, March, Apmil, May, June, July, Angnat,
$-17.8+28.5+80.9+102.4+92.9+48.0 \quad 1.0 \quad 38.4$ September, Oetoher, November, December.
-42.6-85.2 25.1 72.5.
By the introduction of these corrections I have eliminated the intluence of the yearly periodic satriations in the water level.

In order to increase the arecuratey of the values firm which the results must the deduced and to remove entirely or partiatly the error that might arise, if the number of low waters in a month should be one less or more than the mumber of high waters, I have always taken the averages of two consevative months: Jan. and Febre, Frebr. and Mareh, ete. The further valculations are based upon these two-monthly means.

Corredions for known dides are not introluced into these values. The influence of tides of short period is verg slight upon the twomonthly means, and if, as is the case in my calculations, the average is taken of nearly 50 such means, it may be altogether neylected.

Of the tides of longer pariod we mast mention, hesides the yearly and half-yearly sun tide, the inflomene of which has been taken into account, the tide Mm, with a period of over 27 days. It appears from the calculations that the influence of this tide upon the twomonthly means can rise to about $\pm 6 \mathrm{~mm}$. but as the amplitude and phase constant of this tide are very little known, we canoot calculate the exat value of the correction. We may, however, assume that in an arerage of abont 50 of these valnes, for dates that correspond to rery varions phases of this tifle, its influence may he neglected.
3. The length of the period of the latitude variation of about 431 days (Chandler's period) was deduced from long series of astronomical observations, by E. IF. V. D. Sixoe Baкисяza, Do. Zorers and me; the results obtained by us differ very little, but 1 rake as the most accorate that deduced by Dr. Kwims in a paper in These l'roceedings of June $24^{\text {th }}, 1911$, Vol. NIN, p. 111, that is 431,24 days.

In order to determine whether it variation in the sea level takes place in that period, I have, starting frem the first bi-monthly mean for 31 Jan. 1855, determined the dates of the days, which fall 431,24 days later, or a multiple of that interval and then selected the bi-monthly means which are nearest to these dates, sometimes a little eadier and sometimes a little later, with a difference at most
of 15 days. From all theo mean sea levels, 49 in momber, corre--ymmine to the same plate of the batambe variation, an werage is then fommed. In at smilat way the averages are faken from the
 varianion 1, 2, $3, \ldots 1: 3$ momhs later than 31 danmary 1855. These 14 momtho contain over +20 days, atmost the entire C'mandmer period therefore.

I formd for the devations of these it valnes from their reneral me:all :

$$
\begin{array}{r}
-10.1 \mathrm{~mm} . \\
-\quad 9.6 \\
-\quad 6.6 \\
+\quad 1.7 \\
+11.0 \\
-\quad 4.2 \\
+13.4 \\
+\quad 2.9 \\
+\quad 1.6 \\
+\quad 1.2 \\
+\quad 9.0 \\
+\quad 7.4 \\
+\quad 4.1 \\
+\quad 3.3
\end{array}
$$

Theve numbers with the exception of the $4^{\text {th }}$ and $5^{\text {th }}$ seem to show. a periodic varition, and the assumption is permissible that the sea level at Helder undergoes a periodic change in the course of 431.24 days, and that the height, days after the end of Jannary 1855 is repremented by

$$
\begin{aligned}
& \text { h } \quad u \sin \left(\begin{array}{c}
t \\
431.24
\end{array} 360^{\circ}+\boldsymbol{u}_{0}\right)=a \sin \left(\frac{1}{}+\boldsymbol{a}_{0}\right)=u \cos \boldsymbol{u}_{0} \sin y+a \sin \boldsymbol{u}_{0} \cos \boldsymbol{s} \\
& =p \sin y \quad \eta \quad \eta \cos q \text {. }
\end{aligned}
$$

The heiuhts wiven in the abose colmm are got by taking the areratg of the hi-monthly means; if all the begiming of the period $y=y^{\prime}$, and all the eml $y=y_{2}$, then that average is
(1)

Afler the substitution of ${ }^{\text {os }} \boldsymbol{y}_{0}-\cos \boldsymbol{V}_{1}$ and $\sin \mathscr{y}_{2}-\sin y_{0}$ in whimh

$$
y_{1}--y_{n} \quad y_{1}-\boldsymbol{y}_{0}
$$

$\boldsymbol{r}_{1} \cdots \boldsymbol{r}_{0}=\frac{1}{1,1275}$, we get the following equations

$$
\begin{aligned}
& +0.415 p+0.874 q=-10.1 \\
& +0.750 p+0.611 q=-9.6 \\
& +0.940 p+0.230 q=-5.8 \\
& +0.948 p-0.195 q=+1.7 \\
& +0.792 p-0.529 q=+11.0 \\
& +0.447 p-0.858 q=-4.2 \\
& +0.036 p-0.967 q=-13.4 \\
& -0.382 p-0.889 q=+2.9 \\
& -0.727 p-0.639 q=+1.6 \\
& -0.930 p-0.265 q=+1.2 \\
& -0.954 p+0.160 q=+9.0 \\
& -0.793 p+0.554 q=+7.4 \\
& -0.479 p+0.841 q=+4.1 \\
& -0.072 p+0.965 q=+3.3
\end{aligned}
$$

Solving these by the method of least squares, we get

$$
p=-4.40, \quad q=+0.42
$$

therefore

$$
h=4.42 \sin \left(r+174^{\circ} 33^{\prime}\right)
$$

The mean error of the unit of weight (mean of two consecutive months) is $\pm 51.5 \mathrm{~mm}$., the mean errors of p and q are ± 2.86 and ± 2.89, and the probable errors ± 1.93 and ± 1.93 millimetres.
4. So far, we may deduce from this that the periodicity of the sea level in a period of 431.24 days is presumably real, although considering the small amount of this varition and the romparatively large value of the mean errors, a more detailed investigation as to the probability of the results is desirable.

For this purpose I have in the first place calculated the mean error of the unit of weight in another way, mamely by taking the yearly means, and in the assumption of a small change in the sea level, proportional to the time, determining the mean error of a yearly mean and therefiom the mean crror of the unit of weight; I found for the latter value ± 93.3 mom, much greater than the tiost value given. This shows that here are faily lange symmatic

Proceedings Royal Acad. Amsterdam. Vol. XV.
coms in the sea levels prohably to a large extent cansed by the vimombtane that the camses of deviations in the normal sea level are wif henethy duration, and thas can catuse abomomally high or low wa lavels durime a loner time.

In wator 60 invertipate this, I have taken the means of a series of 12 monthe in a different way, by combining the height in dan. wf the year ", with that in Febs. of the year a +1 . in Mareh of the rear " +2 eto. From this follows for the mean error of the mat of weight 60.2 mm . Which agrees mond better with the value we found zath. The real mean ervors of f 'and y therefore poolnally dow not differ greally from the values calculated.
\therefore A smomd way of judging of the reliability of the results whained is the catholation of the same quantities from another combination of observations. For this purpose I chose the observations of 1855 - 1892 , which I had eatentated in 1894 , but had now reduved to the yearly means with better values for the deviations of the monthly means and futher the observations of 1893-1912. I found from holl saries of obervations:

$$
h=4.50 \sin \left(\pi+168^{\circ} .59\right) \ldots(1850-1892)
$$

and

$$
h=3,74 \sin \left(f+176^{c} 13^{\prime}\right) \cdots(1893-1912)
$$

by the rhange in the reduction mumbers and a more aceurate calconation, the formula for the sea level during the period 1855 1692 differs somewhat from the formula found in 1894 . The striking correspondence between the three formulas now found for the periods 1855-1892, $1898-1912$ and $1850-1912$ is certainly largely due (1) ancodent, loat it confirms the view that the variation in the sea level is real.
6. In onder to tost the eftioneney of the method that I had followed, I applied it lo lwo cases in which one cond not a priori expert a periontie variation, and to another case in wheh the existence of such a variation was certain.

Firs I arramed the himonthly meass in a period of 13 months
 or man tite, and in which therefore we could not expect any promatio variation of level. For this prorgose I nsed the observations of 185.⿹ 1492 , and got the following teviations of the sea level from Hedremeral arerages.

1447
4.1 m.m.
-14.8
4.1
$+8.4$
$+5.1$
$+2.0$

+ $9 . \%$
2.8
$+0.8$
+2.9
- 9.8
-4.6
$+11.5$

A periodicity looks less likely here than in the first case. Further I amanged the himonthy averages acoording to the period of 438.0 . 6 days, which, acooding to a paper by Schomas from Vieman, should represent the lengh of the C'mandere's period. This value differs very greatly from the results obtamed in Leiden, and is a priori improbable as it is only theoretically deduced from the elements of the moon's orbit, withont taking into accom the elasticity of the earth, which certan! has a great influence upon this valne. From all the observations from 1855 to 1912 , arranged atcording to the phases of a periodie variation in 438.096 days, in distances of a month, I got the following figures for the sea level.
$-18.0 \mathrm{~m} . \mathrm{m}$.

- 4.8
$+13.9$
$+8.6$
- 4.4
- 0.7
-5.3
- 2.9
$+21.1$
$+17.1$
- 5.6
- 0.9
- 1.6
$-10 .{ }^{\circ}$

1448

In this series there is agatin little trace of a periodicity in a period wit tis days.

Fimally I amanged the mean sea levels according to the phases of
 monn the Mm. The length of which is 27.5545 days. It is plain that the intluence of this tide will only be felt to a very small degree in the biamomthly means, as these are the means of two complete periods
 meane will he athont $1 / 1$ of that which is due to the actual tide Mm.

Ahor arranging and combining the bi-monthly means I got for the sea level at 14 different epochs with intervals of one month

$2,6 \mathrm{~mm}$.	
	$\bigcirc, 2$
-	-1,3
1	3, 4
+	7,2
+	$\bigcirc 1,4$
$+$	-1,1
$+$	3,7
+	12,2
$+$	6, 0
	13,2
	20,8
-	4, ${ }^{\text {a }}$
+	4,3

The periodic chararer is here modeniable, and if we determine the amplitude of the Mm.-tide itself from these figures, we get for the amplitude 118.0 mm. whereas from the observations in 1892 I formerly got for the amplitude 83.t mm. (Versl. Kon. Akad. v. Wet. Vil 111, 1. 19.7. The correspondence is satisfactory, if we consider that the emor in the observations made in the above series appears in the amplitme moltiplied by about 16

These dillerent considerations give me reason to take the value fommathove for the periodic change of the mean water levels in the bime of ti3l:2t days as corred within the limits of the probable -mom。

The probathe eror of the amplitude 4.42 is ± 1.93, the probabitity that the :mpplinde lies between 0 and 8.84 mm. may therefore be bill ar
7. We have next to discuss the question what the connection is
between this variation in the seat level and the change in the pration of the pole. If the sea level atways comesponded to the position of the pole, the lowest sea level at a given place would alwars correspond to the maximum of the latitude at that phare.

In the formula for the periodic varation in the water level $y=0$ for 1 dan. $1855=2398585$ dulian date, and as the change of $/ \boldsymbol{y}$ per day is $0^{\circ} .83478$, we may represent the formula for the height of the sea level on a day for which the Julian date is t by

$$
\begin{aligned}
& h=4,42 \sin \{(t-2398585+209,1) 0,83478\} \\
& h=4,42 \sin \{(t-2398375.9) 10833478\} .
\end{aligned}
$$

The height of the sea level is a maximum when the expression under the sine is 90°; thus we find

Maximum beight of sea level for $t=2398483,7$.
Minimum ,. ,., ,., $\quad=2398699, \%$
and if we add to this $23 \times 431.25=9918.7$ we fimd
Minimum height of sea level for $t=2408618,0$.
According to Zwners (These Proveentirgs XIV p. 211) the Julian date for the maximum latitude fer (ireenwich is 2408580 , and il we reduce this for the difference of longitude between (ireenwich and Helder, the date for the maximom latme at Holder is 2408585,7 which gives a difference with the date of the mimimum height of the sea level of only 32,3 days.

If the latitude variation is really the eause of the variation in the sea level, some time will elapse between the maximum latitude and the moment of the lowest sea level; how much this will be, eannot be theoretically determined: it depends upon the confignation of the continents, but the small difference which has been found is an argnment in favour of the hypothesis that there is a connection between the two phenomena.

We will now investigate the relation between the amplitude of the 431 -days tide and the magnitude of the latitude variation. The distance from a point of the ellipsoid of the earth to the centre of the earth is approximately expressed by

$$
\log 0=C+1 / 2,1 / \text { e } \operatorname{Cos} 2 \pi
$$

if a is the ellipticity of the earth. and the radins of the equator is taken equal to 1 . If the pole moves through an angle Δy in the direction of the meridian of this point, so that the latitute becomes $o f+\Delta r$, and the liquid and solid parts of the earth could immediately change so as to both acguire in relation to the new axis the same shape as they had to the original axis, then the distance from that point to the centre of the earth wouk sary by the amount L, ,
siven by

$$
\angle \theta=-0 \quad \pi \sin 2\|\Delta\|
$$

If we take for o a mean value of 6367000 meters and for 1 "207 then expressing $\angle y$ in seconds:

$$
\angle o=104 \sin 2 \| \Delta \eta \mathrm{mm}
$$

The amplitude Δ r of the latitude variation seems to be variable, at shown by the investimations of Dr. Zwrers; as mean value I take \angle я $=0^{\prime \prime}, 16$, then for Helder with a latitude of about 53°, $\Delta o=16 \mathrm{~mm}$.
The displacement of water that is necessary for this change in the surface of the sea will be lessened by the attraction of the earth; Newcomb in his paper (M. N. R.S. vol 22 p . 336) estmates that the displacement is only half as great: Δo would be in this case about 8 mm .

The sea level is measured with reference to the solid earth, so that, in order to determine the relative variation of the sea level, one must also know the variation in shape of the solid earth, which of course depends upon its rigidity. In my former publication of $189 \pm$ I had deduced from a very approximate theory and very rough estimates, that the amplitude of the water movement would be about 4.5 mm . I do not venture to give such a theoretical deduction any more, especially as so little is known about the rigidity of the earth; whereas Schweman found by observations with a horizontal pendulum at lotsdam,

$$
17.6 \times 10^{11}
$$

for the coefficient of elasticity of the earth, Han of Karlsrube derlued a mach smaller value in exactly the same way from observations with horizontal pendulums in Freiberg and Durtach, namely

$$
3.2 \times 10^{11} \text { and } 3.0 \times 10^{11}
$$

So long as this great mecertanty about the elasticity of the earth exists, estimations are of little value, and we can only state that the theoretical value of the amplitude of the variation of the sea level is of the same order as that which is deduced from the observations.

These various considerations confirm the opinion, that the periodic variation of the sea level in 431,24 days, as it is deduced from the olnervations, is real within the limits of the probable errors and that it is a conserfuence of the latitule variation.

I think it is of importance to apply similat calculations to other tomer series of sea levels, as they might contribute towards the determination of the coeflicient of elasticity of the earth.

Astronomy. - "The total soler ratiotion during the remular eclipse on April 17'h 1912. By Prof. W. H. Juncs.

Scheme of the investigation.
The anmular eelipse of the sm on April $17^{\text {th }}, 1912$, offered a rare opportunity for investigating the total amom of radiation due to the entire "solar atmosphere" i.e. to the complex of layers of the sun lying outside the level, gencrally indicated as surface of the photosphere.

Every part of the solar atmosphere emits some proper radiation and scatters some photospheric light, and it is only matural to suppose that the lowest layers hear the greatest share in that radiation and scattering. Now, at a total ectipse the base of the atmosphere is always wholly or partly sereened by the moon; whereat during the ammular phase of the eelipse of April 1912 even the lowest strata of the atmosphere all rombl the disk contributed to the remaining radiation. From the minimmo valne through which the remaining radiation passes at the instant of centrality one must be able to calculate an upper limit, which the radiation, emitted and seatered by the entire solar atmophere, certainly does not exceed.

Since a relable determination of such an upper limit woud afford an important criterion for testing fomdamental ideas regarding the mature of the photosphere, the principal aim kept in view in devising our actinometric apparatus was, that the minimum of the radiation curve should come out as sharply and definitely as possible.

On former occasions (during the eclipses of 1901 in Karang Sago, Sumatra and of 1905 near Burgos) we measured the march of the total radiation by means of a thermopile directly exposed to the sun's rays, without making use of any lenses or mirrors to concentrate the beam. If circmmstances had then allowed us to find the true shape of the radiation curve, if would have been possible to calculate from those data trustworthy values for the radiating power of successive concentric zones of the solar disk. ${ }^{2}$) Unfortunately the weather did not favour the Sumatra and Burgos observations; so we desired to make similar observations again. The apparatus had proved satisfactory, and sensitive enough to give measurable indications of heat even during totality; for at Burgos a break in the clouds had permitted us to state that at mid eclipse the unscreened part of the
${ }^{1}$) W. H. Julus. A new method for determining the tate of decrease of the radiating power from the center toward the limb of the solar disk. Proc. Roy. Acad. Amst. 8, 668, 1905 ; Astroph. Journal 23, 312, 1904.
conoma radiated less than $\%$ monos of the output of the meclipsed sun (10 " of that of the full moon. ${ }^{1}$)

Foor wherving the radiation during the ammar eclipse we the efore decided to follow substantially the same plan, though with some atcrations in the apparatus. This time the minimmm would not be -n low. From a clone discussion of the Burgos results we presumed it to lie somewhere between ${ }^{1 / 20 n o o}$ and $1 / 1000$. So the galvanometer could be taken less sensitive, but, on the other hand, the steadiness of the aero conld be improved and the period of oscillation shortened.

Quickness of indication was, indeed, a very important condition, which not only the galvanometer but also the recipient of the radiation had to satisty, if the minimmo were to be observed exactly.

At the observing station near Mastricht ${ }^{2}$), selected by the Eclipse Commisson of the Royal Academy of Amsterdam, the ammar phase of the eclipse was expected to last less than one second. ${ }^{3}$) Our thermopile, used in Sumatra and burgos, required 10 seconds for reaching a stationary temperature after being suddenly exposed to a constant source of radiation, and therefore would be too slow to catch the minimum, although quick enough to give the greater pat of the radiation curve with sufficient accuracy.

Description of apparatus.

We determined on arranging two separate equipments: a rapidly working one, and a slower one, both suited for measuring the intensity of radiation from the first until the fourth contact, but in some respects complementing each other. The slower set of appabatus consisted of a thermopule (the same as used before), a movingcoil gatsanometer of SIEmess and llatske with accessories, and suitable rexistances. The thermopile was very carefully protected against all distmbing inlluences; it reacted only upon the radiation that passed throngh a long tube fitted with diaphragms and mounted parallactically, so as to be easily kept pointing towards the sun by means of a finting arragement ${ }^{4}$). We had ascertained by a special

[^107]inguiry, that for temperatare differences befween the solderimgs not greater than those prodned by full smanime, the electromotive fore of the thermopile conld be considered strietly propertional to the intensity of irradiation. The deflections of the simmess and Hatske galvanometer were observed visnally, by examining the positions of a bright index on a transparent soale. With a permanent shomt of 16 Ohms the instrument was just dead-beat; one millimeter deflection then corresponded to 10^{-5} Amp. The deflections were proportional to the current. The observer had the resistance box dose at hand, in order to keep the image on the seale, and marked the epoch of each reading by means of a doublehanded chronometer, one hand of which conld be stopped and made to eatels up again (a "chronographe rattrapante"). Many readings were also made, in the course of the eclipse, with the thermopile sereened; the zero proved very satisfactorily constant.

On' second actinometrie set was especially intended to answer rapid! and to give a photographic recond of the middle part of the radiation curve. It included a bolometer and a gatvanometer with a moring coil of extremely small moment of inertia. Both instrmments have been designed and constrmet by Dr. W. J. H. Morn, who also was in charge of this equipment on eclipse day. The bolometer consisted of many strips of very thin platinum (Wollaston sheet) coated with lamplack, and mounted so as to form two equal gratings, one of which received the radiation. A thick copper frame warranted quick equalization of temperature of all screened parts, while an envelope of non-conducting material protected it against rapid external changes. The whole was fastened to the end of a tube with diaphagms, which was directed toward the sum by an assistant.

As will appear from the photographic records, the gatvanometer answered the purpose admirably (time of dead-beat swing less than one second; deflection 4 mm . for 1 microvolt; zero steady within 0.1 millimeter); but the instrument being only a temporary one, adapted to the reguirements of this eclipe and not yet to general use, Dr. Monl, who has since been improving the pattern, desires to publish full particulars at a later date.

In order to obtain reasonable bridge-currents within the very wide range of sensitivity imposed by the phenomenon, the observer varied the resistance of the principal bolometer circuit by steps, as the eclipse proceeded, and each time read the strength of the main current on a milliammeter; the resistance in the bridge being left maltered. That the zero reading of the sensitive galvanometer was very little influenced thereby, was a proof of the symmetry of the arrangement.

> ohservations made with the bolometer.

During the greater part of the ectipse the galvanometer deflections were only visually observed, by noticing the motion of the reflected inater of a slit on a transparent sade; but from 5 minutes before muth a mintes after centrality the imase was received on a photographio recordinge drum.

For a reproduction of the photorram we must refer to the Astmpleysioul fonemul 37, 1P. 229, Plate X, Fig. 1. On the same pate, Fix. 2 shoms the central part of the curve on a buger scale ${ }^{1}$), and leis. 3 gryes on the same seale a control of the volt-sensitivity of the gratranometer, chected immediately after the eclipse was over. It shons well the gualities of the instrmment.

The vertical lines are time-rignals, prodneed by a small electric lamp Hashine up at intervals of ten seconds in front of the slit of the recorling apparatus: the first line following the minimum of the

Two of the gero-readings, obtaned by sereening the bolometer, are visible on 1 :on corve Fig. 1 one at 0.30 m , another at 0.37^{m}. A staimht line jombing them may quite sately be taken to represent the sero during the interval. The ordinate of the minimum thas comes ont to be a fuater of a millimeter. At $11^{\text {ha }} 30^{\text {an }}$ (6 minutes after first eontad a deflection of $6.1 \mathrm{~mm},{ }^{2}$) Was observed visually: the intensity of the main emrent at that time being $1 / 195$ of its vatue at the lime of recording. Rednced to the latter valne of the main current, the deflection corresponding to full sunshine would have been more than $195 \quad 6.1=1190 \mathrm{~mm}$., or nearly 5000 times the detlection at minimmm.

A few inverulaties in the curve, especially at $0^{2} 31^{m} 20^{3}$ and at 0'36 40 -, repuire explamation. They are not genuine, but simply due to an excusable negligence of the assistant who had to point the bolometer at the sum. The emotions of the event making him forget to keep the tube contimously in the right direction, he had fwice suddenty to make up for the loss. Fortumately the minimum is mathected.

Disenssion of the bolometer results.

If the apparatus hat followed the radiation instantaneously, the minimum would have heen lower yet. We may therefore certainly

1) The striped aspect of the curve is connected with the click of the recording apparatus.

- As a basis for calculation we purposely select this small deflection, because the great deflections of the pruvisory galwamometer were not strictly proportional to the current.

145.5

conclude from these observations, that at the central phase of the ammar eclipse the solar radiation fell below ${ }^{2}{ }^{3}$ noo of its ordinary value.

This remainder must in part be due to the macreened ring of the disk. Assuming the apparent surface of that photospheric ring to be ${ }^{1 /}{ }_{2500}$ of the surface of the disk (which certainly is a low estimate), and its apparent radiating power per unit of disk-surface to be ${ }^{\%}$. of the areage intrinsic radiating power of the disk, we may say that at the epocls of centrality the photosphere was still able to furnish us with at least ${ }^{2} \cdot 10000$ of the ordinary amount of radiation.

Consequently, less - and probably much less - - than ${ }^{2} / 10000$ of the sun's total radiation toward the earth is left as procecting from the anmular part of the soler atmosphepe visible round the moon's edue.

So fiar, the inference is pretty sure, hecause it depends on the outeome of direct observations only.

What we want to dedne next. however, is an estimate of the radiation due to the entire solar atmosphere - or rather to the visible half of it. This we camont do whthont making some simplyfying assmontions concernin! He aboblately manown comditions prevailing in the sun.

Let $Z Z$ bis. 1 , we the photonphere with radins r.

Fig. 1.

$$
y=\underset{\text { seqment } A B C}{\text { id }}
$$

For small values of a the surface of the segment is neary $2 / 3$ d. $A B$, and the ratio becomes

$$
p=\cdots \frac{r}{A B}
$$

Suppose we may replace the actual heterogeneous atmosphere by
an inteal homogencous one for which $d=2000$ kilometers $(=1 / 3 \mathrm{so}$ of the sun's radins). The corresponding value of $A B$ is about $0,15 r$, griving for the ratio

$$
r^{\prime}={ }^{*}{ }^{2} 0 \frac{r}{5}=10
$$

Our conclusion therefore is, that less than $1 / 200$ of the sun's total radiation is emitted or scattered by parts of the celestial body lying outside the photospherice surface.

Even though we are firee to admit an uncertainty of several Immedreds pereent in some of the estimates on which the above calenlation is based, our result yet makes it impossible to maintain the current ideas on the nature of the photosphere.

Most solar thenries, indeed, consider the photosphere to be a layer of incandescent clouls, whose decrease of luminosity from the centre toward the limb of the solar disk would be caused by absorption and seattering of light in an enveloping atmosphere ("the dusky veil"). Acrording to calculations made by Pickering, Whasos, Sonester, Vogra, v. Sbadgra, and others, such an atmosphere should intercept an important fraction $(3 / 4101 / 2)$ of the photospheric radiation. The atmosphere is of couss in a stationary condition; receipts and expenses must balance each other. Now, what would become of that immense fuamtity of absorthed energy, of which only something of the order of magnitude $1 / 300$ is emitted and scattered? So long as we have no evidence of any other form of solar output, especially proceeding from the atmospheric layers, and comparable in magnitude with the sun's total radiation, we are forced to reject the cloud-theory of the photosphere.

The radial variation of the brightness of the disk depends on the nature of the photosphere itself, not of its envelope. A new interpretation of the photosphere, agreeing with this result, will be proposed in a subsergent paper.

> Ohsereations made with the thermopile.

We now proceed to the disenssion of the observations made for finding the shape of the entire radiation curve. In this part of the work our thermopile arrangement had the advantage of the bolometric apparatus in point of proportionality, within wide limits, between radiation and gatvanometer deflection.

The total resistance of the thermopile circuit had to be varied in a few steps from 1300 for fill sunshine to 100 for the central quarter of an hour, and back again. Table I contains the deflections

TABLEI.

Leiden mean time	Intensity of radiation	Leiden mean time	Intensity of radiation	Leiden mean time	Intensity of radiation
$23^{\text {h }} 12^{\text {m0 }} 233^{3}$	4960	0h21m23s	849	Oh44mits	612
1352	(1sle contact)	2342	680	4637	733
1535	4950	253	593	4736	805
235	4725	$28 \quad 1.4$	410	4837	872
2516	4625	2834.6.	375	4943	945
$28 \quad 2$	4460	2910.4	335	5022	993
2940	4360	3050.6	224	5056	1034
3128	4280	3128.4	183	542	1222
3715	3950	3157.0	153	5516	1313
3852	3880	3227.2	122	5558	1386
4027	3765	335.8	87	5653	1453
4623	3355	3328.0	66.5	5750	1550
4831	3170	3352.6	46	5855	1640
5020	3150	3423.4	21	5957	1738
5143	3075	(minimum)	2.5	118	1839
- 0336	2213	3516.2	20	316	1962
58	2075	3552.0	50	417	2010
641	1954	3614.6	70	538	2095
87	1828	3636.6	89	650	2190
945	1685	379.2	119	749	2325
1138	1551	3740.8	149	99	2382
1339	1438	3810.0	178	3840	4340
1453	1342	3829.7	198	4040	4380
1652	1203	397.2	238	4210	4425
1749	1107	3943.8	277	4440	4520
1838	1054	4016.8	317	4610	4600
1928	978	4050.6	356	5210	4590
208	925	4356	545	5410	4660

all redneed to the lowest value of the resistance, and reckoned from zero-po-itions that were foum by interpotation between a series of zero-readinse, made in the course of the ectipse with the thermopile shaded. The shift of the zero was small and regnlar.

Plate XI Fig. 1 , is a reduced cops of the original mapping of the Table l. The detheroms observed between $0^{102} 28^{n} 10^{\circ}$ and $0^{n} 41^{3} 30^{\circ}$, ploted on at ten times larger seate, are shown on Plate Xl, Fig. 2. These latter ohservations wive evidence of the exceptionally favourable condition of the sky expecially during the middle part of the eclipse. When uniting the ohemvalional points by a corve, I was quite surprised to find it so perfectly smooth and symmetrical, for in our country a sky without even insisible hate is a bate oceurence.

The central part of this curve coroborates one conclusion drawn from the photographie curve, viz. that the minimm value of the ratiation was $1 /$ sun of the maximum. Indeed, the real minimum valne could not be reached by the slow apparatus; but if we prolong the lower parts of the falling and the rising branch of the corve downwat as nearly stmight lines (begimning at points corresponding $10 \quad 10$ seconds before and 10 seeonds after rentrality), they meet at ome millimeter above zero; and according to Plate XI Fig. 1, the maximnm was represented hy about 0000 millimeters.

The rest of the observations ran somewhat less regularly, both in the falling and in the rising phase of the radiation. From notes on skyeondition, mate by other members of the party, we could afterwards state that the depressions in the series of points exactly corvesponded to hazy clondets passing before the sun. Yet some arbitrariness was left in the process of tracing the radiation-curve so as to answer to an ideally constant degree of transparency of the sky. We simply made the curve pass through the highest points (because the observed valnes could only be too small), and for the rest took care that the curvature should vary as regularly as possible.

Special attention may be drawn to the points B (Plate Xl Fig. 1), marked ly small circlets. They are deduced from the Burgos observations of 1905^{2}) in the following way.

In the course of that eclipse the sun shone sometimes for a few mimutes in at beatufully clear patch of sky between heavy clouds, and happenced to do so during the phases in which the radiation passed through one-falt of its maximum value. The exact epochs at which the intensity was $\frac{1794000}{2}=897000$ oceurred $33^{m 3} 38^{\text {s }}$ before second

[^108] mimutes were reguired for the moon to cover the second effertive half of the solar disk.

Now, at Burgos the moon's edge took $77^{3} /$ minutes to aross the whole solar disk; at Maastricht, in 1912 , it took sols minutes. If, therefore the ratio of the rathins of the moon's disk to the ravlius of the sun's disk hat been the same in both eases, then the time necessary for covering the second eflective half of the solar disk would have been, at Maastrich1, $333^{2} / 3 \times \begin{gathered}30 \% \\ 77^{3} / 4\end{gathered}=$ very nearly 35 minutes.

But at Maastricht the moon's radins was practically equal to the sun's radius, whereas at Burgos the radii were in the proportion $132,8: 126,8$. This difference between the two eases implies that the interval of 35 minutes, calemated for Maastricht, is a little too great. Indeed, when drawing dircles representing the sun and the moon in the right proportion and position, and taking the distribution of brightness on the disk into consideration, one easily concludes that the interval has to be taken about 25 seconds smatler say $34^{1 / 2}$ minutes.

Consequently, the results obtained in 1905 required that in 1912 , at the epochs $0^{n} 0^{n} 20^{5}$ and $1^{14} 9 m^{2} 20^{s}$ (i.e. $34^{1} / 2$ minntes before and after centrality), the radiation should have shown half its maximum intensity, or $\frac{4960}{2}=2480$ seale divisions. This is indicated by the points 3 . The agreement with the actual observations of 1912 is indeed very satisfactory.

During the middle phase of the Burgon eclipse the conditions were, on the contrary, so unfavourable, that the central part of the radiation curve, there obtained, clatims no confidence.

It was worth while, therefore, to found on our present eclipse-curve a renewed application of the method, formerly devised ${ }^{2}$), of determining the rate of decrase of the radiating power from the centre toward the limb of the solar disk.

Discussion of the thermopile results.
On a homogeneous piece of paper a circle of 40 centimeters in diameter, representing the sum, was drawn, and divided in the manner shown by the adjoined figure ${ }^{2}$). There are (oncentric zones,

[^109]indicated by the numbers 1 to 12 , and ares representing the moon's limb in a series of positions. The width of the sickle-shaped strips bommed loy these arces, is ${ }^{1} / 20$ of the sun's radius, excepting the strips a. b. c. d, for which it is $\% / 0^{\circ}$

Fig. 2.
In $40^{8} / \mathrm{s}$ minutes the moon's limb accomplished a distance equal to the sum's apparent radius; so the strips a, b, c, d, required $1 / 40 \times 40^{3} /$ s minutes each for reappearing from behind the moon, the strips " to 16 took ${ }^{1} / 20 \times 40^{3}$ s minutes each. On our curve (Plate XI 1. (e) we read the sucressive increments of the radiation, corresponding to the series of sickle-shaped strips. We shall denote these increments by the same betters as the strips.

The increment a is entirely due to radiation from zone 1 ; the increment b foradiation from the zones 1 and 2 , ete.

Lee ns indicate by $x_{\text {, }}$ the aserage intensity of the radiation with which a mat of disk-sulace, helonging to zone m supplies our thermopile. Then the increment h, for instance, will be composed as follows:

$$
h=A_{1}, r_{1}+A_{2} x_{2}+\ldots A_{1} x_{1}
$$

H_{1}, A_{2} rte. being the surfaces of the parts that the corresponding
zones contribute to the strip h. Though posible it is extremely tedions 10 calculate these surfates. We therefore determined them by colling ont and weighing the piece of earl striph. So the unit of area, adopted for measuring the sutatere, wopesponts to a piece of our drawing-paper woighing 1 milligram. Expmented in that unit, the coefticients $A_{1}, A_{2} \ldots A_{\text {; }}$ were lomm to be $8,1,11,9 \ldots . .298$. Table 11 contains all the emblicients of $x_{2}, x_{2}, x_{n} \ldots . n^{2}$ thas

T ABLE H.

Increments.	Coëfficients of:											
	x_{1}	x_{2}	x_{3}	x	x_{3}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}
$a=47$	251.0											
$b=53.5$	83.0	168.4										
$c=58.5$	25.5	85.5	137.5									
d. 62	13.8	34.5	78.5	123.0								
$c=133$	15.7	37.5	59.6	113.0	264.0							
$f=135$	10.9	21.0	31.1	45.0	163.0	217.0						
$g=140$	8.5	15.0	19.5	27.0	80.0	146.0	192.0					
$h=144$	8.1	11.9	15.8	21.1	55.3	77.0	298.0					
$i=147$	7.7	10.3	12.3	15.9	42.0	55.51	198.0	146.5				
$j=150$	7.4	9.3	11.0	13.2	33.0	42.0	123.5	247.0				
$k=152$	7.1	8.4	9.2	11.9	28.7	34.8	93.5	168.5	120.0			
$l=153$	6.9	8.2	8.8	10.2	25.4	30.2	76.6	108.2	214.2			
$m=154$	6.9	8.1	8.5	9.8	22.4	27.3	65.1	86.5	$1+2.0$	93.2		
$n=154.5$	6.8	8.0	8.3	9.5	20.8	24.9	58.0	73.4	96.4	165.3		
$0=154$	6.8	7.7	S. 1	9.2	19.8	22.5	52.5	63.6	77.8	119.7	77.7	
$p=154$	6.8	7.6	8.0	9.0	19.1	21.1	49.1	57.3	66.2	82.2	134.0	
$q=154$	6.7	7.5	7.8	8.8	18.3	19.7	4.9	53.0	57.7	68.9	16.7	
$r=153.5$	6.7	7.4	7.6	8.6	17.6	19.0	42.4	49.7	53.4	69.0	181.2	
$s=152.5$	6.8	7.5	7.6	8.4	17.0	18.2	40.3	45.5	49.2	54.5	143.11	50.3
$t=151.5$	6.8	7.5	7.5	8.2	16.7	17.5	39.2	42.9	4.5	51.1	115.3	83.6
$u=149.5$	6.8	7.4	7.5	8.1	16.5	17.1	38.11	41.7	45.1	45.3	112.10	97.0

olotained. The first column wives the values of the increments of the radiation as read on the eelipse-curve. Every horizontal bow

Proceedings Royal Acad. Amsterdam. Vol. XV.

146

detines an equation. From the first equation we ohtain x_{1}, from the seoond equations x_{z}, me.

TABLE III.

The reant ate callenent in the serond column of Tahle III. The thiml cohmm shom- the same values conserted into percentages of the inmon-in! meratime in the eontre of the disk. After they had

 tha mambor wi the fimmh molnm were real as ordinates, belongimer
to the places defined in the fifth column. Our results are thus made more easily comparable with those obtained by other ohservers.

It is not surprising to find the shape of onr distribution-curve sensibly different from the shape of any of the eurves that represent Vogni's spectrophotometric measurements. Indeed, the latter show the distributions characteristic of special groups of rays, each covering a narow part of the spectrum; they are germone, but yet vary considerably with the wave-length. Tho combined effect of all waves (invisible ones included), that are absorhed by our thermopile, must give a distribution-emre of another type, less simple than that to which Voget's curves for nearly monochromatie light belong.

Sumemery

Daring the ammar eclipse of the sum on April 15 th 1912 the variation of the total radiation has been observed near Matstricht under exceptionally favourable sky-conditions, with two mutually independent sets of apparatus.

One set, comprising a bolometer and a short-period recording galvanometer, served the purpose of finding as accurately as possible the proportion of the minimum to the maximum radiation.

The ratio was found to be nearly $1 / 5000^{\circ}$ On this result we based an estimate of the total amount of energy radiated and scattered by the entire solar atmosphere; we thus obtained a very small fraction of the solar output (about $1 / 100 \mathrm{n}$).

It is impossible, therefore, to ascribe the fall of the sum's brightness from the cenne toward the limb of the disk to absorption or scattering of the light by ath atmosphere. enveloping a borly that otherwise would appear uniformly luminous. The cloud-theory of the photosphere is not borne out by the farts.

With the other set of apparatus, consisting of a thermopile and accessories, we obtained a sufticient number of reliable readines for constructing the whole radiation-curve, from the first until the fouth contact, with a fair degree of exactness. Besides contirming the value of the minimum as found with the bolometer, this coure procured the data nectsary for once more determining the rate of derease of the raliating power from the centre to the limh of the solar disk.

E I R A T [M.

1’mendine of lea. 2s. 1912 and dan. 25, 1913.

CONTENTS.

ABEL's functions $p_{n}(x)$ (Expansion of afunction in series of). 124.
absorption lines (A method for obtaining narrow) of metallie vapours for investigations in strong magnetic fields. 1129.
arr-temperature (On the interdiurnal change of the). 103%.
allotropy (Bxtansion of the theory of). Monotropy and enantiotropy for liquids. :36].

- (Application to the theory of) to the system Sulphur. II. 369.
- (The dynamic) of sulphur. 5th communication. 2228.

AMMONIUM-Sulphocyanate-thioureum-water (On the system). 683.
anatomical stiuctures (The Linnean method of describing). 620.
Anatomy. E. W. Rosenberg: "Contributions to the knowledge of the development of the vertebral column of man". 80 .

- G. P. Frets: "On the external nose of primates". 129.
- G. P. Frets: "On the Jacobson's organ of primates". 134.
- C. T. van Valkenburg: "On the occurrence of a monkey-slit in man". 10 ± 0.
- J. Boeke: "Nerve-regeneration after the joining of a motor nerve to areceptive nerve". 1281.

Angiosperms (Petrefactions of the earliest European). 620.
antagonism (The) between nitrates and calcinm-salts in milkeurding by rennet. 43.
Antmony (Series in the spectra of Tin and). 31.
ARGON (The empirical reduced equation of state for). 273.

- (Calculation of some thermal quantities for). 952.
- (The rectilinear diameter for). 667. 960.
aspergillus niger (Mutation of Penicillium glaucum and) under action of known factors. 124.
- (Action of hydrogenious boric acid, copper, manganese, ainc and rubidium on the metabolism of). 753.
- (Metabolism of the nitrogen in). 1047.
- (Metabolism of the fosfor in). 1058.
- (Potassium sulfur and magnesium in the metabolism of). 1349.

Astronomy. H. J. Zwiers: "Researches on the orbit of the periodic comet HoLmes and on the perturbations of its elliptio motion". V. 192.

- N. Scheltema: "Determination of the geographical latitude and lougitude of Mecca and Jidda, executed in 1910-11". Part I. 527. Part II. 540. Part ItI. 556.
-- W. de Sitter: "On absorption of gravitation aml the moon's longitude". Part 1. 808. Part 2. 824.

Astronomy．S．B＇sxenoek：＂The variability of the Pole－Star＂． 1192.
－II．De Sitana：＂A proof of the constancy of the velocity of light＂． 1297.
－11．（i．vas ure Sandr：baknuzex：＂The periodic change in the Sea－level at Heder，in connection with the perionic change in the latitude＂．Ittl．
－II．H．Jeluss：＂The twal solar radiation during the annular eclipse on April 17th 1912° ． 1451.
ATEN（A．11．w．）．On a new moditication of sulphur．572．
Amospumac pressere（The correlation between）and rainfall in the East Indian Ardipelago，in connection with the 3,5 yearly barometric period． 45 t ．
Atropur（On localised）in the bateral geniculate body causing quadrantic heminopsia of both the right luwer dields of vision．S 40 ．

AVEN SATHA The influence of temperature on photropism in seedlings of）． 1170 ． baAT（Miss W．C．D E）and F．i．H．Schreinemakems．On the quaternary system $\mathrm{KCl}-\mathrm{CuCl}_{2}-\mathrm{HaCl}_{2}-\mathrm{H}_{2} \mathrm{O} .467$.
rablifR（On the freshater fishes of Timor and）． 235.
Bacteriology．©．Exkmax：＂On the reaction velocity of micro－organisms＂． 629.
BAKHV゚YZCN（E，F．VAN DE SANDE）presents a paper of Dr．IV．J．Zwiers： ＂liesearches on the orbit of the periodic comet Holmas and on the perturbations of its elliptic motion＂．V． 192.
－presents a paper of Mr．X．Scheltema：＂Determination of the geographical latitude and longitude of Meces and Jidda，executed in 1910－1911．＂Part．I． 527．l＇art．Il．j40．Part．III．55 6．
－presents a paper of Dr．A．Paxnekoek：＂The variability of the Pole－Star＂． 119% ．
 at Helder in connection with the periodic change in the latitude．14fl．
13eaviort（l．I．dio and Max Weber．On the fresh－water fishes of Timor and Babber． 235.

BECKMAN（ANNA）and H．KAMLRLiNGif ONNES．The piezoelectric and pyro－ clectric properties of quartz at low temperatures down to that of liquid hydro－ sent． 1350.
 down to the meltine point of hydrogen．l384．
－and H．Kamerdiggi Onxes．On the Haheeflect and the change in the resistance in a magnetio hield at low temperatures．I．307．II．319．1II．649．IV．

－On the change induced by pressure in electrical resistance nt low temperatures． I． 4%
13x7ms：（Oxytation of petroleum，paraftin，paraffin oil and）by microbes，1145．
1mazexi，stclecs（On the velocity of substitutions in the） 1118.
 wilimm erlatum and Aepereillus nier under the action of known factors．＂ 124.
－prenohe a paper of l＇ruf J．Büesphis and II．J．Waterman：＂A biochemical methon of prepration of l－tartaric acid＂ 212.

BEIJ BRINCK (M, W.) presents a paper of Mr. !l. J. Watrmas: "Action of hydrogenions boric ande copper, mantaese, zine and rubidium on the metabolism of Aspergillus niger". 75.3.

- On the composition of tyrosinase from two enzymes. 932.
- presents a paper of Mr. H. J. Waterman: "Metabolisu of the nirogen in Aspergillus niger." 1047 .
- presents a paper of Mr. H. J. Waterman: "Metabolism of the fosfor in Aspergillus niger". 1053.
- P'enetration of methyleneblue into living cells after desication. 1086.
- presents a paper of Dr. N. L. sumagen: "Oxydation of petroleum, paraflin, paraffin-oil and benzene by microbes". 1145.
- presents a paper of Mr. H. J. Watcman: "Potassium sulfur and magnesium in the metabolism of Aspergillus niger". 1349 .
binary mixtures (Isotherms of monatomic: substances aml of their). Xlll. The empirical reduced equation of etate for argon. 273.
- (Isotherms of diatomic suses and of their). X Control measurements with the volumenometer of the compressibility of hydrogen at $20^{\circ} \mathrm{C}$. 2!5. XI. On determinations with the volumenometer of the compressibility of uases under smatl pressures and at low temperatures. 294.
- (Isotherms of diatomic substances and of their). XII. The compressibility of hydrogen vapour at and below the boiline point. 405 .
binary systems (On vaponr-pressure lines of the) with widely divercent ralues of the vapour-pressures of the components. Wi.
- (Contribution to the theory of) XXI. 602.

Biochemistry. J. Böeseken and H. J. Witermas: " A biochemical method of preparation of l-tartaric acid". 212

- J. R. Katz: "The antagonism between nitrates and calcium-salts in milkeurdling by rennet". 434.
- J. I. Katz: "The laws of surface-absorption and the potential of molecular attraction". 445.
BOEKE (J.). Nerve-regeneration after the joining of anotor nerse to a receptive nerve. 1281.
BüESEKEN (J.). On a method for a more exact determination of the position of the hydroxyl groups in the polyoxy compounds. 216.
BüESEKEN (J.) and S. U. J. Olvier. Dynamic researches concerning the reaction of Friedel and Crafts. 1069.
- and H. J. Wateradan. A biochemical method of preparation of l-tartaric acid. 212. bots (h. DU) presents a paper of Mr. Perre Mirtin: "The magneto-oplic Kerrelfect in ferromagnetic compounds and metals". III. 138.
- presents a paper of Mr. D. E. lobiserts: "The effect of temperature and trans* verse magnetisation on the resistance of eraphite". 148 .
- A theory of polar armatures. 330 .

BOKHORST (s. c.) and A. Sifits. The phenomenon of double melting of fats. 681. BOLK (io) presents a paper of Dr. (i. P' Fhets: 'On the extermal nose of primates'. 129.

- ($)_{n}$ the deduetion from) of the second virial codticient for material particles (in the limit riad spheres of central symmetry) which exert central forces uponeach other and fis rigid spheres of central symmetry containing an electric doublet at their rentre. 256.
bumic acid (Action of hydrorenious), copper, manganese, zinc and rubidium on the metabolism of isperyillus niger. 753.
Botany. C. Vas Wissclivan: "On the demonstration of carotinoids in plants. Ist ('nmmuntation. 513. 2m! Commumication. 656. 3rd Communication. 693.
- J. II. Mold and II. H. Jassonits: "The Linnean method of describing anatomical structures, Some remarks conceraing the paper of Mrs. Dr. Marae C. Stopes: "Petrefactions of the earliest European Angiosperms". 620.
- 1. © Schoute: "Dichotomy and lateral branching in the Pteropsida". 710.
- Miss T. Tammes: "Some correlation phenomena in hybrids". loot.
- Jon. vax Burkom: "On the connection between phyllotaxis and distribution of the rate of growth in the stem". 1015.
- (. bax Wissmangi: "On karyokinesis in Eunotia major Rabenh.". 1085.
- Miss M. S. de Vrics: "The intluence of temperature on phototropism in seedlings of Avena sativa". 1170.
— C. Pax Wisselivgh: "On intravital precipitates". 1329.
BinAAK (c.). The correlation between atmospheric pressure and rainfall in the EastIndian Archipelago, in comection with the 3,5 yearly barometric period. 454.
- A long range weather forecast for the East monsoon in Java. 1063.

BMOUWER (II, A.). On the formation of primary parallel structure in lujaurites. 734.

- Lencite-rocks of the Ringrit (hast Java) and their contact metamorphosis. 1238. 1B ROUWER (L。E. J.). On looping coefficients. 113.
- Continuous one-one transformations of surfaces in themselses. 5th Communication. 352.
- Some remarks on the coherence type \% 1256.

BÜCHXER (E, H.) The radio-activity of rubidium and potassium compounds. II, 22. B ̈̈ GHNER (E, H.) and L. K. Wollf. On the behaviour of gels towards liquids and their vapours. 1078.
BURKOM (JOU. H, VAN). On the comnection between phyllotaxis and the distribution of the rate of errowth in the stem. 1015 .
caboium-salis (The antaronism between nitrates and) in milkeurdling by rennet. 434. calclles rationum. 2nd part. 6 t.
canbiNaAl. (J.) presents a paper of l'rof. W. A. Versluys: "On a class of surfaces with alsebraic asymptotic curves'。 1363.
caronnonds (On the demonstration of) in plants. Ist Commmnication. 511. 2nd Communication. (5-6. Bra Commmication. li93.
crass (l'metration of methylene-blue into livim) after desiceation. 1086.
Chemistry. J. W. A. IIfux: "On some internal unsaturated ethers". 19.

- 1. H. Liunsian: "The radio activity of rubidium and potassium compounds" 11. 22.

Chemistry. F. A. H. Schrememenkers and J. Mhaks: : "On a few oxyhaluids". 52.

- F. E. C. Scueffer and J. P. Trevb: "Determinations of the vapour teusion of nitrogen tetroxide", 166.
- A. Smirs: "On critical end-points in ternary systems". II. ISI.
- A. D. N. Franchmont and J. Y. Dubski: "Contribution to the knowledse of the direct nitration of aliphatic imino compounds". 207.
- J. Büeseren: "On a method for a more exact determination of the position of the hydroxyd groups in the polyoxy compounds". th Communication. 216.
- A. Smits: "Extansion of the theory of allotropy. Monotropy and enantiotropy for lipuids". 361.
- A. Smats: "The application of the theory of allotropy to the system sulphur". LI. 369.
- A. Smirs: "The inverse occurrence of solid phases in the system iron-carbon". 371.
- F. E. C. Schefper: "On the system ether-water". 350.
- F. E. C. Scheffer: "On quadruple-points and the continuities of the threephase lines". 389.
- F. A. H. Schrenemakers and Miss W. C. de Baat: "On the quaternary system: $\mathrm{KCl}-\mathrm{CuCl}_{2}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O}$ ". 467 .
- F. A. H. Scurenemarers and J. C. Thonus: "The system $\mathrm{IIgCl}_{2}-\mathrm{CuCl}_{2}-\mathrm{H}_{2} \mathrm{O} .472$.
- W. Reinders and S. de Lavge: "The system tin-iodine". 474.
- W. Reinders and D. Lely jr.: "The distribution of dyestudls between two solvents. Contribution to the theory of dyeing". 482.
- A. H. W. Aten: "On a new modification of sulphur". 572.
- H. L. de Leeutr : "On the relation between sulphur morlifications". äst.
- A. F. Holleman and J. P. Wibact : "On the nitration of the chlorotoluenes". 594.
- A. Smits and H. L. de Leeuw: "The system tia". 676.
- A. Smits and S. C. Boкновsт : "The phenomenon of double melting for fats". 681.
- A. Smits and A. Kettner: "On the system ammonium-sulphocyanate-thioureumwater". 683.
- F. A. H. Schreinemakers: "Equilibria in ternary systems". I. 700. [J. sŏ3. III. S67. IV. 1200. V. 1213. VI. 1298. VIf. 1313.
- Ernst Cohen: "The equilibrium Tetragonal Tin \rightleftarrows Rhombic Tin". S39.
- L. fan Itallie and J. J. van Eck: "On the occurrence of metals in the liver". 850.
- A. Smits, J. W. Terien and H. L. de Leeuw : "On the system phosphorus". 885.
- S. C. J. Olivier and J. Böeseken: "Dynamic researches concerning the reaction of Friedel and Crafts". 1069.
- L. K. Wolff and E. H. Büchaer: "On the behaviour of gels tomards liquids and their vapours". 1078.
- F. E. C. Scheffer: "On velocities of reaction aud equilibria". 1109.
- F. E. C. Scheffer: "On the velocity of substitutions in the benzene nucleus". 1118.
- P. van Romburgle: "On hexatriene. 1, 3, 5.". 1184.
- H. R. Kruyt : "The dynamic allotropy of sulphur". 5th Communication. 1228.
 -uphate, maname sulphater and water at 350". 1320 .
- H. R. hamer: "The fonturnce of surfoe-ative substances on the stability of sumenewidi. 13日。
ambonombans ((On the nitration of the) 591 .
(louds and vapours (Electric double refraction in artificial). 178.
(o) blacient of diflusion (The) for gases accordiny to O. E. Mader, 1152.
corrtaciexts (On looping). 113.
Cones (ERAst). The equilibrium Tetrayonal Tin \leftrightarrows Rhombic Tin. S39.
comprexer-inmer (Some remarks wh the). 1206 .
cumet nombs (lesearches on the orbit of the periodic) and on the perturbations of its elliptic motion. V. 192.
comonems (On rapour-pressure lines of the binary systems with widely divergent values of the vapour pressures of the). 96 .
compocios and metals (The marneto-optic Kerr-ellect in ferro-magnetic). III. 138.a comprissimaty of gases (On determinations with the volumenometer of the) under smadl pressures and at law temperatures. 299.
- of hydrowen-vapour (On the) at and below the boiling point. 405.
coxgrusers (On loci), and focal systems deduced from a twisted cubic and a twisted biquadratie curve. 1. 495. 11. 712. III. 890.
Corper (Action of hydrogenious boric acid), manganese, riuc and rubidium on the metabolism of Aspersillus niger. 753.
comelation (The) between atmospheric pressure and rainfall in the East Indian Archipelago in comection with the 3,5 yearly barometric period. 434 .
conmelation hamomers (some) in hybrids. 100 .
conimstoximes stails (The law of) for diflerent substances. 971.
crarts (1)namic researches concerning the reaction of Frebel and). 1069.
chomadelis (c. a.) and H. Kambringu Onxes. lsotherms of monatomic substances and of their binary mixtures. XILI. The empirical reduced equation of state for argon. 273. AIV. Calculation of some thermal quatities for argon. 952.
 dianeter for aryon, 667. 960 .
chestab monmexts (On recent) in the island of Timor and their bearing on the seological history of the Eist-Indian Arehipelayo. 22t.
CRYstal (The diffraction of electomaguctic waves by id) 1271.
(Cerae (Ihadame P.) aml H. Kimerlingh Oxses. The radiation of Radium at the temperature of liquid hydrouen. 1 tiad
conves (On a clats of surfaces with algebraic asymptotic). 1363.
- of order \quad (On steinerian points in connection with systems of nine f-fold points of phane). 93s.
mexstix (Acedental deviations of) iu mixtures. 5 .
mambetare (0) the rectilinear) for argon. 667. 960.

undmacion (1 he) of electromagnetic waves in a crystal. 1271.
dorsman (c.), H. Kimerman Onxey and Somus Wembr. Investigations on the viscosity of gases at low temperatures. 1. Hydrogen. 1::96
dubsky (J. v.) and A. P. N. Fravomant. Contribution to the knowledse of tho direct nitration of aliphatic imino comprunds. 207.
Dyfsturfs (The distribution of) between two solvents. Contrilation to the theory of dyeing. 482.
dynamic researches concerning the reaction of Frmome and Cramts, 10093.
bast-indan arcuipebago (The correlation between atmospheric pressure aud rainfall in the) in connection with the 3,5 yearly larometric period. 451.
eas't monsoon in Java (A long range weather forecast for the) 1063.
egk (J. J. van) and L. van Irabie. On tho occurrence of metals in the liver. Safo. vchipse (The total solar radiation durine the amular) on April $1741,1912.14,1$.
ehbenfest (p.) On Einstern's theory of the stationary gravitation field. 1157.
alnstein's theory (On) of the stationary gravitation field. 1187.
binthovin (w.) presents a paper of Prof. La, van Imalifamid Dr. J. J. vin Eck: "On the occurrence of metals in the liver". 85\%).
blectinc properties (The piezo-electric and pyro-) of quarts at low temperatures down to that of liquid hydrogen. 1350.
electrical resistance (On the change induced by pressure in) at low tefoperatures. I. 9.47.
electrocardiogram (The) of the foetal heart. 1360.
electromageetic waves (The dilliaction of) by a crystal. 1271.
elte (e. L.). The scale of regularity of polytopes. 200()
enantiotropy (Monotropy and) for licquids. 361.
end-points (On critical) in ternary systems. II. 184.
energy (On the law of the partition of). 1175. II. 1355.
entropy principle (On the deduction of the equation of state from bolizmans's), 2t0.
- On the deduction from Bolrzmann's) of the second virial-coefficient for material particles (in the limit rigid spheres of central symmetry), which exert central forces upon each other and for rigid spheres of central symmetry containing tun electric doublet at their centre. 256 .
enzymes (On the composition of tyrosinase from two). 932 .
equation (On a differential) of Schläfli. 27.
equation of state (On the deduction of the) from Boltzmann's entropy principle. ato.
- (The empirical reduced) for argon. 273.
- (Some remarks on the course of the variability of the quantity b of the). 1131 .
equations (Homogeneous linear differential) of order two with given relation between two particular integrals (5th Communication). 2.
- (New researches upon the centra of the integrals which satisfi dillerential) of the first order and the first degree. 2nd part. 46.
equilibrid in ternary systems. I. 700. H. S503. 1II. 867. If. 1200. V. 1213. VI. 1298. VII. 1313.
- (On velocities of reaction and). 1109.
equilibrium (The) Tetragonal Tin \rightleftarrows Rhombic Tin. S39.

FThEA-WATER On the ststem). 350
FTHIRs (On some internal nnsaturated). 19.
LUSoma Major rabisil. (On karyokenesis in). 1085.
\& iJ K m a s (C.). On the reaction velocity of micro-oryanisms. 629.
- presents a paper of Mr. C.J. C. Vas Hogeniluije and J. Nieunenhuidze: "Intuence of the sensons on respiratory exchange during rest and during muscular exercise". 790.
Mascicle (The posterior longitudinal) and the manere movement. 727.
PATS (The phenomenon of double melting of). 681.
ratty acids (The eflect of and soaps on phagocytosis. 1290.
risnes (On the freshwater) of Timor and Babber. 235.
focal systems (On loci, congraences and) deduced from a twisted cubie and a twisted biquarratic curve. I. 495. Il. 712. ILI. 890.
rospor (Metabolism of the) in Aspergillus niger. 1058.
IRANCHIMONT (A. D. N.) and J. V. Dubsky: Contribution to the knowledge of the direct aitration of aliphatic imino compounds. 207.
frets (G. p.). On the external nose of primates. 129.
- On the Jacomson's organ of primates. 134.

FRIEDER and Crarts (Dynamic researches concerning the reaction of). 1069.
Fenction (Expansion of a) in series of dbel's functions $\mathrm{c}_{\mathrm{n}}(n)$. $124 \overline{\mathrm{j}}$.
Gases (Isotherms of diatomic) and of their binary mixtures. X. Control measurements with the volumenometer of the compressibility of hydrogen at $20^{\circ} \mathrm{C} .295$. XI. Cin determinations with the volumenometer of the compressibility of gases under small pressures and at low temperatures. 299.

- (On the second virial coefticient for diatomic). 417.
- On the second virial coetlicient for monatomic), and for liydrogen below the Boyle-point. 643.
- (Measurements on the ultraviolet magnetic rotation in). 773.
- (Detfrminations of the refractive indices of) under binh pressures. 2ud Communication. 925.
- (The coefficient of diflusion for) according to O. E. Meider. 1152.
- (Investigations on the viscosity of) at low temperatures. I. Hydrogen. 1386. II. llelium. 1396. HI. Comparison of the results with the law of corresponding states. 1399.

GELs (On the behaviour of) towards liquids and their vipours. 1078.
geugarmoal latitule and longitude (Determination of the) of Mecca and Jidda, executed in 1910-311. Parl 1. 527. Part II. 540. Part 111. 556.

Geology. (i. A. F. Molexgraaff: "On recent cristal movements m the island of limor and their bearing on the geological history of the Last-ludian archipelago". 22t.

- A. Wimamans: "On rhyolite of the Pelipis-islands". 347.
- L. Rutres: "Orbitoids of sumba". 461.
- 11. . linovier: "On the formation of primary parallel structure in lujaurites". 734.
 metamorphosis". 1238.
GRaphite (The ellect of temperature and transverse magnetisation on the resistance of). 118.
gravitation (On absomption of) and the moon's longitude. l'art 1.809. 1'art 2. S2t.
gravitation meid (On Enstern's theory of the stationary), 1157.
HA.Is (W. J. DEj). Isotherms of diatomic wases and of their binary mixtures. X. Cometrol measurements with the volumenometer of the compressithility of hydroren at $26^{\circ} \mathrm{C} .995 \mathrm{XI}$. On determintions with the volumenometer of the compressibility of gases under small pressures and at low temperatures. 299.
II a as (W. J. de) and H. Kamerlingil Onnlis. Isotherms of diatomic substances and of their binary mixtures. XII. The compressibility of hydrogen vapour at and below the boiling noint. 405.
hald-efrect (On the) and the change in the resistance in a magnetio field at low temperatures. I. 307. II. 319. III. 649.IV.659. V. 66t. VI. 981. VII. 958. VIII. 997.
hamburger (il. J.) presents a paper of Mr. J. Sxapper: "Comparative researches on young and old erythrocytes". 282.
hamburger (h. J.) and J. de lians. The effect of fatty acide and soaps on phagocytose. 1290.
heart (The electrocardiogram of the foetal). 1360 .
nelder (The periodic change in the sea level at) in connection with the periodic change in the latitude. 144.
helium (Further experiments with liquid). H. VII. 1406.
memmopsia (On localised atroply in the lateral geniculate body causing quadrantic) of both the risflt lower fields of vision. $\$ 40$.
hevx (J. W. Lef). On some intermal unsaturated ethers. 19.
hexatriene $1,3,5.11 S t$.
HOLLEMAN (A. F.) presents a paper of Dr. E. H. büchner: "The radionctivity of rubidium and potassium compounds". Il. 22.
- presents a paper of Prof. A. Smits: "On critical end-points in ternary systems". II. 184.
- presents a paper of Prof. J. Böesebex: "On a method for a more exact determination of the position of the hydroxyl groups in the polyoxy compounds". 216.
- presents a paper of Prof. A. Smits: "Extansion of the theory of allotropy monotropy and enantiotropy for liquids". 361.
- presents a paper of Prof. A. Smits: "The application of the theory of allotropy to the system sulphur". II. 369 .
- presents a paper of Prof. A. Surs: "The inverse occurrence of solid phases in the system iron-carbon". 371.
- presents a paper of Mr. J. K. Katz: "The antagonism letween nitrates and calciumsalts in milkcurdling by reunet". f34.
- presents a paper of Dr. A. H. W. Aten: "On a new modification of sulphur". 572.
- presents a paper of Dr. H. L. DE LEECW: "On the relation between sulphur moditications". 584.
- presents a paper of Prof. A. Smits and Dr. LI. L. de ieevw: "Ihe system tin". 676.

HOblema. (A. r.) presents a paper of lrof. A. Shits and S. C. Bobhorst : "The thenomenon of double melting of fats". © 681 .

- preents a paper of Prof. A. Smits and A. Klittner: "On the syistem ammonium -uphoevanate thioureum water". 653.
- presents a paper of Prof. A. Smirs, J. W. Terwen and Dr. H. L. de Leeuw : "On the system phosphortis". \$85.
- presents a paper of Mr. S. C. J. Olivier and Prof. J. Böesekes: "Dynamic researches concerning the reaction of Fraedea and Crafts". 1069.
- presents a paper of Dr. L. K. Wolff and Dr. E. H. Bücuner: "On the behaviour of gels towards liquids and their rapours". 1075.
- presents a paper of Dr. I. E. C. Scherfer: "On velocities of reaction aud equilibria". 1109.
- presents a praper of Dr. F. E. C. Scieffer: "On the velocity of substitutions in the benzene nucleus". 1118.
- and J. P. Wiasut. On the nitration of the chlorotoluenes. 594.
nolmes (liesearches on the orbit of the periodic comet) and on the perturbations of its elliptic motion. V. 192.
hoogexiboom (c. m.) and P. Zefman. Electric double refraction in some artificial clouds and rapours. 178.
hoogeshuyze (c. J. c. van) and J. Nieuwenuuyse. Influence of the seasons on respiratory exchange during rest and during muscular exercise. 790.
hybrids (Some correlation phenomena in). 100.t.
mynoges (Control measurements with the volumenometer of the compressibility of) at 20° C. 295.
- (On the second virial coeflicient for monatomic gases and for) below the Boylepoint. 643.

mymonyl groups (On a method for a more exact determination of the position of the) in the polyoxycompounds. 216.
mmos comporans (Contribution to the knowledge of the direct nitration of aliphatic). 207 ixtegrals (Homogeneous linear differential equations of order two with given relation between two particular). 5th Communication. 2.
- (New researches upon the centra of the) which satisfy diflerential equations of the first order and the lirst degree. 2nd part. 46.
nemberion (Au) of associated points. 1263.
mosecabos (The inverse occurrence of solid phases in the system). 371.
fsomenns of monatomic substances and of their binary mixtures. Xlll. The cmpirical reduced equation of state for arron. 273. XIV. Calculation of some thermal quantities for argon. 952.
- of datomic grases and of their binary mixtures. X. Control measurements with the volumenometer of the compressibility of hydrogen at $20^{\circ} \mathrm{C} .295$. XI. On the determination of the compressibility of gases under small pressures and at low temperatures. 294.
 bility of hydrogen vapour at and below the boiline point. tow.

ITALIAE (L. VAN) and J.J. VAN Eck. On the occurrence of metals in the liver. Són.
Jacobson's obgan (On the) of primates. 13.t.
JANSSONIUS (H. In.) and J. W. Mond. The Limman method of describiner anatomical structures. Some remarks concerning the paper of Mrs. Dr. Marie (\% Stopes: "Petrefations of the earliest European Angioperms". 620.
Java (A long ramge weather forecast for the liast monsoon in). 1063.
jobd (Determination of the geographical latitude and longitude of Meca and), executed in 1910-'11. Part I. 527. Pirt I[. 510. Part III. 556.

JULIUS (w. H.). The total solar racliation during the annalar eclipse on April 17th 1912. 1451.

Kamerlingil onnes (ho). V. Onnes (II. Kimerbincih).
KAPTEYN (W.). presents a communication of Dr. N. J. Van UVEN. Homogeneons linear dillerential equations of order two with given relation between two jarticular integrals. 5th Communication. 2.

- New researches upon the centra of the integrals which satisfy dillerentiat equaltious of the first order and the first degree. 2nd part. 46.
- Expansion of a function in series of Abel's functions $\varphi_{m}(x)$. 1245.
karyokinesis (On) in Eunotia major Rabenb. 1085.
KAT\% (J. R.). The antagonism between nitrates and calciumsalts in milkcurdling by rennet. 434 .
- The laws of surface-adsorption and the potential of molecutar attraction. $\$ 15$.

KEESOM (W. H.). On the deduction of the equation of state from Bolumanses eutroply principle. 2 ± 0.

- On the deduction of Bolazman's entropy principle of the second virialcoefficient for material particles (in the limit rigid spheres of central symmetry) which exert centrai forces upon each wher and for rigid spheres of central symmetry containing an electric doublet at their centre. 250.
- On the second virial coefficient for diatomic gases. 417 .
- On the second virial coefricient for monatomic gases and for hydrogen below the Boyte-point. 643.
Kenreeffect (The magneto-optic) in ferro-magnetic compounds and metals. Ill. I: S. Kattien (a) and A. Smits. On the system ammonium sulphocyanate thoureum water. 683.
KLESSENS (J. H. M.). Form and function of the trunkdermatome tested by the strychnine-segmentzones. 7t0.
Kluyver (j.c.). On a diflerential equation of Schläfli. 27.
K OHNSTAMM (PH.). On vapourpressure limes of the binary systems with widely divergent values of the vapour pressures of the components. 96.
- aud J. Thmmermass. Experimental investigations concerning the miscibility of liquids at pressures to 3000 atmospheres. 1021 .

KobTEWEG (I). J.) presents a paper of Dr. L. E. J. Browwer. "On looping coetlicients". 118.
KREXT (H. 及.). The dymmic allotropy of sulphtr. 5 th Communication. 1228.

- The influence of surface-active substances on the stability of suspensoids. 1344. K Y fiss: (J, p.). The conthcient of dillusion for qases according to O. E. Meljer. 1152. IA A k (3 . s. vis). The calculation of the thermodynamic potential of mixtures when a combination can take place batween the components, 614.
havge (s. Def) and W. Reniners. The system Tin-Iodine. 474.
hiteman blaxChivg (Dichotony and) in the l'teropsida. 710.
law (On the) of the partition of energy. 1175. II. 1355.
- of corresponding states (The) for dillerent substances. 971.

1, EEUW (H. L. De). On the relation between sulphur modifications. 554.

- A. Smits and J. W. Terwen. On the system phosphorus. S85.
- and A. smiss. The system tin. 676.

Lemy Jr. (d.) and IV. Reinders. The distribution of dyestulls between two solvents. Contribution to the theory of dyeing. 4S2.
leccite-rocks of the Ringgit (East-Java) and their contact metamorphosis. 1238.
bigut (On the polarisation impressed upon) by traversing the slit of a spectroscope and some errors resulting therefrom. 599.

- (A proof of the constancy of the velocity of). 1297.
hine complex (O In) determined by two twisted cubics. 922.
line spectra (lranslation series in). 156.
hinsean Metiod (The) of describing anatomical structures. 620.
LIPASE ([nfluence of some inorganic salts on the action of the) of the pancreas. 336 . liquins (Monotropy and enantiotropy for). 361.
- (Experimental investigations concerning the miscibility of) at pressures to 3000 atmospheres. 1021.
- (On the behaviour of gels towards) and their vapours. 1078.
hituicm-inee (lhe red). 1130.
hiver (On the occurrence of metals in the). 850 .
loci (On), congruences and focal systems deduced from a twisted cubic and a twisted biquadratic curve. I. 495. IL. 712. III. 890.
LOHUIZES (T, VAN). Series in the spectra of Tin and Antimony. 31.
- Tramslation series in line spectra. 156
lorextz (II. A.) presents a paper of Dr. L. S. Ornsteis": "Accidental deviations of density in mixtures". 54.
- presents a paper of Mr. J. J. van Lasf: "The calculation of the thermodynamic potential of mixtures when a combination can take place between the components" 614
- presents a paper of Dr. L. S. Ornstein: "On the thermodynamical functions for mixtures of reacting components". 1100.
- presents a paper of Prof. P. Eilmenfest : "On Einstein"s theory of the stationary uravitation field". 1187.
- presents a paper of Dr. L. S. Ornstein: "The diffaction of electromagnetic waves by a crystal". 1271.

Lujaurites (On the primary parallel structure in). 73.
magesium (lotassium sulfur and) in the metabolism of Aspergillus niger. L3w!
magetic rield (On the Hableeflect and the resistance in the) at low temperatures.
I. 307. II. 319. III. 649, [V. 659. Y. 66t. Vil. 981. V[I, 95s V1II. 997.
magnetic researches. On paramagnetism at low temperatures. VL. 3id. Vil. Non. VIII. On the susceptibility of gaseous oxygen at low temperatures. 1404 .
magetisition (The eflect of temperature and transverse) on the resistance of graphite. 148.
malignant oranuloma (On a micro-organism grown in two cases of uncompli. cated). 765.
MaN (Contributions to the knowledge of the development of the vertebral columm of). So.

- (On the occurrence of a monkey-slit in). 1040.
manege movement (The posterior longitudinal fascicle and the). 727.
mangane sulphate (The system sodium sulphate), and water at 350.1326.
manganese (Action of hydrogenious boric acid, copper), zinc and rubidium on the metabolism of Aspergillus niger. 753.
martin (pierre). The magneto-optic Kerreelfect in ferto-magnetic compounds and metals. III. 13 S .

Mathematics. M. J. van Uven: "Homogeneous linear diflerential equations of order two with given relation between two particular integrals". 5th Communication. 2.

- J. C. Klyyver: "On a dillerential equation of Schlarli"。27.
- W. Kapteyn: "New researches upon the centra of the integrals which satisfy diflerential equations of the first order and the first degree". 2nd part. 16.
- G. de Vries: "Calculus rationum". 2nd part. 6t.
- L. E. J. Brouwer: "On iooping coelficients". 113
- E. L. Elte: "The scale of regularity of polytopes". 200.
- L. E. J. Brouwer: "Continuous one-one transformations of surfaces in themselves". 5th Communication. 352.
- Hk. de Vries: "On loci, congruences and focal systems deduced from a twisted cubic and a twisted biquadratic curve". I. 493. I[. 712. III. S90.
- Jan de Vries: "On metric properties of biquadratic twisted curvez". 910.
- Jan de Yries: "(On the correspondence of the puirs of points separated har-- monically by a twisted quartic curve". 918.
- Jan de Vries: "On a line complex determined by two twisted cubics". 922.
- W. van der Woude: "On Steinerian points in connection with systems of nine (-points of plane curves of order $3 p$ ". 935.
- Jan de Vries: "On bilinear null-systems". 1156.
- Jan de Vales: "On plane linear null-systems". 1165.
- W. Kapteyn: "Expansion of a function in series of Abel's functions ch(n (x) ", 1 215 .
- I. E. J. Brouwer: "Some remarks on the coherence type r". 125ti。
- Jan de Vries: "An infolution of associated points". 1263.
- W. A. Versluys . "On a class of surfaces with algebraic asymptotic curves". 1863.
mathias (e.), h. Kamerlingh Onnes and C. A. Crommelin On the rectilinear diameter for argon. 667. 960.

- om reninture of a perite at low temperatures down to the meltingpoint of hydrocent. list.
MrCes and Jidhat (Determination of the geographical latitude and longitude of exe("ated in 1!30-'11. Part I.527. Part II.540. Part III. 556.
vertang of fats (On the phenomenon of double). 681 .
Metabuhisa of Aspergillus niger (Aetion of hadrogenious boric acid, copper, manganese, zine and rubidium on the). T53.
- of the nitrogen in Aspervillus niger. 1047 .
- of the fosfor in Aspergillus niger. 105S.
- (Potassium sulfur and manesium in the) of Asperyillus niger. 1849.
metallic varouts (A method for obtaing marrow absorption lines of) for investiations in strong marnetic fitdd. 1129.
matam (The magnetooptic kembetlect in fero-manetic compound and). ILI. 138. - (On the occurrence of) in the lives. Sj0.

Meteorology. C. Brask: "The correlation between atmospheric pressure and rainfatl in the Cast-Indian Archipelaro in comection with the 3,5 yearly barometricperiod". 15t.

- J. P. Vax ber Stok: "On the interdiurnal change of the air-temperature". 1037.
- C. Brask: "al lons range weather forecast for the East monsoon in Juna". 1063. Methybencblue (lenetation of) into living cells after desicention. 1086.
METRIC PROPERTLE (On) of biquadratic twisted curves. $!10$.
MEIJER (O. E.) The coclficient of dillusion for gases according to. 1102.
Microbiology. H. J. W.atermas: "Mutation of Penicillinm glaucum and Aspergillus niger under the action of known factors". 124.
- II. J. Whrermas: "Action of hydrogenious boric acid, copper, manganese, zince and rubidium on the metabolism of Aspergillus niger". 353.
- M. IV. BDramack: "On the composition of tyrosinase from two enzmes". 932.
- 11. . Witmaman: "Metabolism of the nitrogen in Aspergillus niger". 1047 .
- M. W. Bumbmack: "l'enetration of methyleneblue into living cells after desiccation". 1086.
- N. 1. SÖngen : "Oxydation of petroleum, pariffin, paraffinoil and benzene by microbes": 1145.
- 1I. J. Wathmax: "lotassium sulfur and magnesium in the metabolism of Aspersillus niger". 1319.
Maroobransism (On a) wrown in two cases of uncomplicated Malignant Granuloma. 765. Micho-0banisms (On the reaction velocity of). 62!.
 two sises of uncompliated Malignant (iramulomat. 765.
mitaks. (J.) and F. A. H. schmenemakers. On a few oxyhaboids. 52.
mbiketndasi (The antasonism between nitrates and calciumsalts in) by rennet. 434. miscmabit of liquids (Experimental investigations concerning the) at pressures to 3000 atmospheres. 1021.
Matches (Aecilental deviations of density in). 51.
matunes (The calculation of the thermodynamic potential of) when a combination can take place between two components. 61%.
- of reacting components (On the thermodynamical functions for), 1100 .
molecular attraction (The laws of surface adsorption and the potential of). 4ty.
MOLENGRAAFF (G.A. \mathbf{H}). On recent crustal movements in the island of Timor and their bearing on the geological history of the East-Indian Archipelagen. 22.4.
— presents a paper of Dr. H. A. Broower: "On the formation of primary paral. lel structure in lujaurites". 734.
- presents a paper of Dr. H. A. Broumer: "Leucite-rocks of the Ringgit (LastJava) and their contact-metamorphosis". 1238.
mobi (J. W.) presents apaper of Prof. C. Van Wisselingil: "On the demonstration of carotinoids in plants. 1st Communication 511. 2nd Communication 650 3ad Communication. 693.
— presents a paper of Miss T". Tammes: "Some correlation-phenomena in hybrids". 1001.
- presents a paper of Prof. C. Vax Wisselingu: "On karyokenesis in Vunotia major Rabenh." 1088.
- presents a paper of Prof. C. vin Wisselingit: "On intravital precipitates." 1329.
- and H. H. Jaxssosius. The Linnean method of describing matomical structures. Some remarks concerning the paper of Mrs. Dr. Mante C. Stopes: "I'etrefactions of the earliest European Augiosperms". 620.
monkey-slit (Ou the occurrence of a) in man. 1040.
mosotropy and enantiotropy for liquils. 361.
moon's longitude (On absorption of gravitation and the) Part l. S0s. Part 2. s2.t.
motor nerve (Verve-regeneration after the joining of at to a receptive nerve. 1251.
MUSKENS (L. J. J.). The posterior longitudiall fiscicle and the manege movement. 727.
mutation of Penicillium glaucum and Aspergillus niger under action of known factors. 124.
NeGri (ernestine de) and W. G. Mifremet. On a microoorganism grown in two cases of uncomplicated Maliguant Granulomar. 765.
Nerveregenfration after the joining of a motor werse to a receptive nerve. $12 \leq 1$.
Xieumfnhuyse (J.) and C. J. C. vax Hoogexhuluze. Intuence of the seasons on respiratory exchange during rest and during muscular exercise. 790.
nitrates (The antagonism between) and calciumsalts in milkcurding by remet. $13 \mathrm{t}^{\circ}$
nitration (Contribution to the knowledge of the direct) of aliphatic imino come pounds. 207.
- (On the) of the chlorotoluenes. 594 .
nitrogen (Metabolism of the) in Aspergillus niger. 1017.
nitrogen tetroxide (Determinations of the vapour tension of). 16h.
vose (On the external) of primates. 129.
nullasystems (On bilinear). 1156.
- (On plane linear). 1165.
olivier (s. c. J.) and J. böebekex. Dynamic researches concerning the reaction of Finevel and Crafts. 1069.

OXNES (It. KAMERIANG1t) presents a paper of Dr. W. H. Keesom: "On the deduction of the equation of state from Boltzmaxis entropy principle". 240.

- presents a paper of Dr. W. H. Kefsom: "On the deduction of Boltzmann's entrops primople of the second virial-coefticient for material particles (in the limit risid sheres of central symmetry) which exert central forces upon each noher and for rigid spheres of central symmetry containing an electric doublet at their centre. 2ani.
- presents a paper of Mr. W. J. de Hass: "Isotherms of diatomic gases and of their binary mixtures. K. Control measurements with the volumenometer of the compressibility of hydrogen at 20° ("). 295. XL. On determinations with the volumenometer of the compressibility of gases under small pressures and at low temperatures. 299.
- presents a paper of Dr. W. H. Kersom: "On the second virial-coefficient for Wiatomic gares". \&17.
- presents a paper of Dr. W. H. heesom: "On the second virial-coefticient for monatomic sases and for hydronen below the Boyle-point". 643.
- presents a paper of Mr. J. F. Sinks: "Measurements of the ultraviolet magnetic rotation in gases." 773.
- presnuts a paper of Prof. L. H. Sierrsema: "Determinations of the refractive indices of rases under high pressures" 2nd Communication. 925.
- presents a paper of Dr. Bexgt BeckBas": "Measurements on resistance of a prite at low temperatures down to the melting point of hydrogen". $138 t$.
- Further experiments with liquid helium. H. VII. 1406.
- and Mrs. Axiss Beckmas: On piezo-electric and pyro-electric properties of guartz at low temperatures down to that of liquid hỵdrogen. 1380.
- and Bengt Beckmas. On the Hald-plfect and the change in the resistance in a margetic held at low temperatures. I. 307. II. 319. LII. G49. IV. 659. V. 66t. VI. 981. VII. 9Es, VIII. 997.
- On the chande induced by pressure in electrical resistance at low temperatures. I. 94%.
- and C. A. Cbommelin : Isotherms of monatomic substances and of their binary mixtures. XIll. The empirical reduced equation of state for argon. 273. XIT. Calculations of some thermal quantities of argon. 952.
- and Madame P. Corie. The radiation of liadiam at the temperature of liquid hydrogen. I 130 .
- C. Dorsman and Sophus Weber. Investigrations on the viscosity of gases at low temperatures. 1. Hydrogen. 1386.
- and W. J. De: Hass. Isotherms of diatomic substances and of their binary mixtures XII. The compressibility of lydrogen vapour at and below the boiling point. 405.
- and li. Oostennuis. Magnetic researches. Vi. Ou paramagnetism at low temperatures. ©日, VII. 96\%. VIII. On the susceplibility of gaseous oxygen at low temperatures 1404.
- L : Maturas and C . A. Crommerin. On the rectilinear diameter for argon. 667.960.
onnes (II. kampalingit) and Sopmus Webrar. Investigation of the viscosity of zages at low temperatures. II. Helinm. 1396. III. Comparison of the results oltainel with the law of corresponding states. 1399.
oosterulis (e.) and IL. Kamprlingi Onnes. Magnetic researches. VI. On paramagnetism at low temperatures. 322 . VII. 965. VIII. On the susceptibility of gaseous oxygen at low temperatures. 1404 .
onbit of the periodic comet Holmes (Researches on the) and on the perturbations of its elliptic motion. Y. 192.
obbiroids of Sumba. 461.
ornstein (l. s.). Accidental deviations of density in mixtures. 54.
- On the thermodynamical functions for mixtures of reacting components. 1100.
- The diflraction of electromargetic waves by a crystal. 1271.
oxyaen (On the susceptibility of saseous) at low temperatures. 1404.
oxyitaloids (On a few), 52.
pairs of points (On the correspondence of the) separated harmonically by a twisted quartic curve. 918.
pancreas (Influence of some inorganic salts on the action of the lipase of the). 336.
pannekoek (a.). The variability of the lole-star. 1192.
paraffin (Oxydation of petroleum, parafin-oil and benzine by microbes. 1145.
parallel structure (On the formation of primary) in lujaurites. 734.
paramagietism (On) at low temperatures. 322. 965.
Pathology. Ernestine de neari and W. G. Mieremet: "On a micro-organism grown in two cases of uncomplicated Maliynant Granuloma". 765.
PEKELHARING (C. A.). Influence of some inorganic salts on the action of the lipase of the paucreas. 336.
- presents a paper of Dr. W. E. Ringer and II. van Trigt: "Intluence of the reaction upon the action of ptyalin", 799.
pelapis-islands (On rhyolite of the). 347.
penicilliok glaccum (Mutation of) and Aspergillus niger under action of known factors. 124.
periodic change (The) in the sea-level at Helder in connection with the periodic change in the latitude. 1441.
perturbations (Researches on the orbit of the periodic comet Holmes and on the) of its elliptic motion. V. 192.
petrefactions of the earliest Europen Augiosperms. 620.
petroleum (Oxylation of), paraifin, paraffin-oil and benzine by microbes. 1145 .
phagocytosis (The effect of fatty acids and soaps on). 1290.
phosphorus (On the system). 885.
phototropiss (The influence of temperature on) in seedlings of Arena sativa. 1170.
phyllotaxis (On the connection between) and the distribution of the rate of growth in the stem. 1015.
Physics. T. van Louuzen: "Series in the spectra of Tin and Antimony". 31.
- L. \&. Ornstein : "Accidental deviations of density in mixtures". 54.

Pbysics. Pin. Konsstamm: "On mapour-pressure lines of binary systems with widely divergent ralues of the rapour pressures of the components". 96.

- Pierre Martis: "The magneto-optic Klar-eflect in ferromagaetic compounds and metals". III. 135.
- Dand E. Liobberts: "The effect of temperature and transserse magnetisation on the resistance of graphite". $1+5$.
- T. var Lohuze: "Translation series in line spectra". 156.
- P. Zeeman and C. M. Hoogenboom: "Electric double refraction in some artiticial clouds and vapours". 3rd part. 175.
- W. H. Kersom: "On the detuction of the equation of state from Boltzansn's entropy principle". 210 .
- W. H. Keesom: "On the deduction from Boltzanss's entropy priaciple of the second virial-coefficient for material particles (in the limit rigid spheres of central symmetry) which exert central forces upon each other and for rigid spheres of central symmetry containing an electric doublet at their centre". 256.
- H. Kamerlingu Onnes and C. A. Crommelin: "Isotherms of monatomic substances and their binary mixtures. XIII. The empirical reducel equation of state for argon". 273. XIV. Calculation of some thermal quantities of argon. 952.
- W. J. de Hass: "Isotherms of diatomic gases and of their binary mixtures. X. Control measurements with the volumenometer of the compressibility of hydrogen at $20^{\circ} \mathrm{C} .295$. XI. "On determinations with the volumenometer of the compressibility of gases under small pressures and at low temperatures". 299.
- H. Kamerlingif Onses' and Bengt Bechmas: "On the Halleeflect and the change in the resistance in a magnetic field at low temperatures". I. 307. II. 319 III. 649. IV. 659. V. 664. VI. 981. VII. 958. VIII. 997.
- M. Kamerhingi Onses and E. Oostermuis: "Magnetic researches. Vi. On paramagnetism at low temperatures". 322. VII. 965.
- H. du Bois: "A theory of polar armatures". 330.
- H. Kamerling Onses and IV. J. de Hass: "Isotherms of diatomic substances and of their binary mixtures. XII. The compressibility of hydrogen vapour at and below the boiling point". 405.
- W. H. Keesoss: "On the second virial-coefilcient for diatomic gases". 417.
- P'. Zeeman: "On the polarisation impressed upon light by transversing the slit of a spectroscope and some errors resulting therefrom". 599.
- J. D. vai der Wails: "Contribution to the theory of binary systems". XXI. 602.
- J. J. van LaAR: "The calculation of the thermodynamic potential of mixtures when a combination can take place between the components". 614.
- W. H. Keesum : "On the secoud sirial-coellicient for monatomic gases and for hydrogen below the Bowlepoint". 643
- E. Mathas, h. Kamerlingi Onses and C. A. Crommelin: "On the rectilinear diameter for argon". 667. 960.
- J. F. Sirks: "Measurements on the ultraviolet magnetic rotation in gases". 773.
- J. D. vas der Wals: "Some remarkable relations either accurate or approsimative for dillerent substances", 903.

Physics. 1. H. Siertaema: "Determinations of the refractive indices of gases under high pressures". 2nd Communication. 925.

- II. Kamerlingir Onafs and bexot beckman: "On the change indueed by pressure in electrical resistance at low temperatures". I. 917.
- J. D. van der Wials: "Tho law of corresponding states for difterent substances". 971.
- Ph. Konnstamm and J. Timmermans: "Experimental investigations concermmg the miscibility of liquids at pressures to 3000 atmospheres". 1021 .
- L. S. Ornstern: "On the thermodynamical functions for mixtures of reacting components". 1100.
- R. W. Wood and P. Zeeman: "A method for obtuining narrow absorption lines of metallic vapours for investigations in strong magnetic fields". 1129.
- P. Zefman: "The red lithium line"。 1130 .
- J. D) van der Wals: "Some remarks on the course of the variability of the quantity b of the equation of state". 11.31.
- J. P. Kuenen: "The coeflicient of diffusion for gases according to O. E. Meyfr". 1152.
- J. D. van der Wals Jr.: "On the law of the partition of energy". 1175. II.] 355.
- P. Eluesfest: "On Linsten's theory of the stationary gravitation field". 118 \%.
- L. E. Orxstein: "The diffraction of electromagnetic waves by a crystal". 1271.
- H. Kamerlingil Onnes and Mrs. Anna Beckman: "On piezo-electric and pyriselectric properties of quartz at low temperatures down to that of liquid hydrogren". 1350.
- Bengt Beckman: "Measurements on resistance of a pyrite at low temperatures down to the melting point of bydrogen". 138t.
- H. Kamerlingif Onnes, C. Dorsman and Sopius Weber: "Investigations on the viscosity of gases at low temperatures. I. Hydrogen". 1386.
- H. Kamerlingh Onnes and Sophus Weber: "Investigations on the viscosity of gases at low temperatures. II. Helium. 1397. III. Comparison of the results obtained with the law of corresponding states". 1399.
- II. Kameringai Onnes and E. Oosterhuts: "Magnetic researches. Vilt. On the susceptibility of gaseous oxygen at low temperatures". 1404.
- H. Kamerlingii Onnes: "Further experiments with liquid helium". H. VIl. 1406 .
- Madame P. Curie and H. Kamerlingil Onnes: "The radiation of Radium at the temperature of liquid hydrogen". 1430 .
Physiology. J. Snapprer: "Comparative researches on young and old erythrocytes". 252
- C. A. Pekelliaring: "Influence of some inorganic salts on the action of the lipase of the pancreas". 336.
- L. J. J. Muskens: "The posterior longitudinal fascicle and the manese movement". 727.
- J. H. M. Klessens: "Form and function of the trunk dermatome tested by the strychnine-segmentzones". 740.
 searons on respiratory exchange during rest and during muscular exercise". 790.
- W. E. Linger and H. van That: "Influence of the reaction upon the action of ptyalin". 76n.
- C. Winkle: "On lucalised atrophy in the lateral geniculate body causing ynadrantic hemianopsia of both the right lower fields of vision". 840 .
- J. K. A. Werthem Shbomoxson : "On a shortening.rellex" 1092.
- H. J. Hamburger and J. de Hase: "The eflect of fatty acids and soaps on pharocytosis". 1290.
- J. K. A. Wertheam Sacomossos: "The electro-cardiogram of the foetal heart". 1360.
plaxts (On the demonstration of carotinoids in). Ist Communication. 511. 2nd Communication. 686. Bred Communication. 693.
ponsts (An involution of associated). 1263.
polar abmatcres (A theory of) o 330 .
polamisation (On the) impressed upon light by transversing the slit of a spectroscope and some errors resulting therefrom. 999.
pole-star (The variability of the). 1192.
polyoxy compousds (On a method for a more exact determination of the position of the hydroxyl groups in the). 210.
polytopss (The scale of regularity of). 200 .
potassicsi compounds (The radioactivity of rubidium and). II. 22.
potassidm sulfer and marnesium in the metabolism of Aspergillus niger. 1349.
gotestin (The calculation of the thermodyamic) of mixtures when a combination can take place between the components. 614.
potestial of molecular attraction (The laws of surface-adsorption and the). 445 .
prechitates (On intravital). 1329.
pressure (On the change induced by) in electrical resistance at low temperatures. I. 947.
primates (On the external nose of). 129.
- (On the Jacobsos's organ of). 134.
prooje (d. J. yan) and F. A. H. Schreinemarers, The system sodium-sulphate, mangane-sulphate and water at 35°. 1326.
iteropsida (Dichotomy and lateral branching in the). 710.
pTrabin (lnfluence of the reaction upon the action of). 799.
prate: (Measurements on resistance of a) at low temperatures down to the melting point of hydrogen. 1354.
quanduple-ponss (On) and the contiouilies of the three-phase lines. 359.
ausntity b (some remarks on the course of the variability of the) of the equation of state. 1131.
susat\% (The piezo-electric and pyro-electric properties of) at low temperatures down to that of liquid hydrogen. $1: 350$.
Quaterxary system (On the) KCl-Cu Cl $2_{2}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O} .467$.
mato sotisity (The) of rubidium potassium compounds. If. 22.

Bate or growris (On the conmertion between phythotax amt the diatribution of the ill the stem. lllŏ.
BEACtos (Influeme of the) upon the antion of ptyatin. Fith

beactros veloctur (On the) of micro-organisms. din.

REFBACTION (Electric double) in some artiticial cloms amb vapours. 17 .
bafbactive indtes (Determinations of of gases umler hinh pressures, 2ul. (ommunication. !2

REINDERS (W.) amd A. de LaNGE The system Tin-Indine tit.

- and D. Lemy Jr. The distribution of dyestulls between two solvents. Contribation to the theory of dyeines. 452.
melamoss (Some remarkable) pither accurate or approximative for dillerent substamces. 911%.
resistance (On the Hab-ellect and the) in the manetic field at low temperatures

mesparatory exchavae (Intuence of the seasons on) during rest and during muscular exercise. 790.
buyodite (On) of the Pelapis-istands. : 47 .
kinger (W. E.) and H. Vas Trigt. Intuence of the reaction upon the action of ptyalin. 739.
Ringait (Eist-Jara) (Lencite-rocks of the) and their contact-metamorphosis. $12: 38$.
K OBBERTS (DAV\&D E.). The effect of temperature aud transverse mannetisation on the resistance of graphite. lts.
ROMBCRGH (P. VAN) presents a paper of Mr. J. W. LE HeUX: "On some internal unsaturated ethers". 13.
- presents a paper of l'rof. Ernst Conen: "The equilibrium Tetragomal Tin \rightleftarrows Rhombic 'Tin'". S39.
- Hexatriene 1, 3, ว̆. 11st.
- presents at paper of Dr. H. K. Kruyr: "The dynamic allotropy of sulphur". 5th. communication. 122 S .
- presents a paper of Dr. H. J. Krovr: "The inthence of surface-active sub. stances on the stability of suspensoids". 13tt.
rosenberg (e. w.). Contributions to the knowledge of the development of the vertebral column of man. 80 .
rotamion (Measurements on the ultraviolet magnetic) in gases. 773.
rubidicm (The radio-activity of and potassium compounds. 11. 22.
- (Action of hydrogenious boric acid, copper, matuganese, zinc and) on the metabolism of Aspergillus niger. isb.
кutten (l.). Orbitoids of Eumba. til.
samodonson (J. K.a. Wertherm). On a shorteniug-reflex. loge.

SALOMONSいS (B.K. A. WEBTHEIV) The electrocardionram of the toetal heatt. 1300.
-uts luthence of =ome inoramie on the action of the lipase of the paracras. 3360 .

: (CHE. 1 PER F. F. (C). ()n the Eystem ether-water. 360.

- ()n quadruple-points and the continuties of the three-phase lines. 259.
- On velocties of reaction and equilibria". 1149.
- ()n the relority of substutions in the benzene nucleus. 1115.
- and J. P. Tkfch. Determinations of the vapour tension of nitrorentetroxide. 166 .
- chabtema (\times : . Determination of the geographical latitude and lougitude of

scirlafli (On ditherential eyuation of) $\mathbf{2 7}$.
schot'TE (J. c.). Jichotomy and lateral branching in the Pteropsidn. 710.
schoute (p. ir.) presents a paper of Dr. E. L. Flte: "The scale of regularity of pulytopes". 200
- presents a paper of 1)r. W. Vis der Wocde: "On Steinerim points in cone mection with systems of nine afold points of plane curves of order 3 (". 93 S .
s(HREINEMAKEMS (H.A. H.) presents apaper of Prof. IV. Reisders and S. de LadGE: "The system Tin-lodine". tit.
- presents a paper of l'rof. W. Remiders and D. Leli Jr: "The distrioution of dyestutls between two solvents. Contribution to the theory of dreing". 452 .
- Equitibria in termary systems. I. 300. L1. 5ǒ3. III. 667. IV. 1200. V. 1213. VI. 12!! V. VII. 1:313.
- and Miss W. ('. ne Bait. On the quaternary system: $\mathrm{KCl}-\mathrm{CuC}]_{2}-\mathrm{BaCl}_{2}-\mathrm{H}_{2} \mathrm{O} .46 \%$
- and d. Milikis. On a few oxyhnoids. 32.
- and D. J. vas Jroore. The system scdium sulphnte. mangane sulphate and water at 33°. 1320.
- and J. C. THost's. The system $\mathrm{HgCl}^{1}-\mathrm{CuC}^{1}-1 \mathrm{H}_{2} \mathrm{O} .472$.
sea-layer at Helder (The periodic change in the) in connection with the periodic change in the latitude. 1ttl.
seasons (Influence of the) on respiratory exchance durine rest and duriny muscular exercise. 790.
shomencing-rehlex (On n). 1092.
siERTSEMA (L. H.). Determinations of refractive indices of gases under high preso Eutps. 2nd Communication. 525.
s 1 BK K (J. F.). Measurements on the ultraviolet maqnetic rotation of gases. 773.
istten (W, DE). On aborption of gravitation and the moon's longitude. Part 1. she. Part 2. Sot.
- A proof of the constany of the velceity of light. 1207.

GMITs (A). On critical end-points in ternary systems. II. ISt.

- Extansion of the theory of allonom. Monotropy and enantiotropy for liquids. abl
- Ihe application of the theory of nlloropy to the system sulphur. II. 369.
- The inverse occarrence of solid phases in the systen iron-carbon. 371.
sM1Ts（A．）and s．C．Boknomst．The phenomenon of duble meltime fits．tiSl．
－and A．Kettafr．On the system ammonium sulphocyanate thionemon water．is a
－and II．I。 be，lefecw．On the sretem tin． 676.
－J．W．＇lemwes and II．L．ine lartuw．On the system photphorns， 45

soats（the effect of fitty acids and）on phagocyosis． 1250.

sönscex（ A, L ）Oxydation of petrelemm，paratim，parationobil and bemzine by microbes． 1145.
somar radation（The totol）during the ammar eclipse on Aprif 171t 1912．1tyl． solid phases（The inverse occurrence of ）in the system iron－arbon．3il．
srectra of Tin and Antimony（Series in the） 31.
sp－ctroscope（On the polarisation impressed upon light by transversing the slit of at and some errors resulting therpfrom． 599
sprovick（c．H． 11 ．）presents a paper of Miss Ery．de Negri and Mr．W．（ro Mifremet：＂On a micro－organism grown in two cases of ancomplicated Manimant Granuloma＇， 7 thă．
Steiserian formis（On）in comuction with systems of nine whold points of plane curves of order ：3：33s．
stem（On the connection between phyllotaxis and the disfribution of the rate of growth in the）． 1015.
STOK（J．P．VA，DER）presents a piper（f Dr＂C．Brask：＂The correlation between amospheric pressure and rabufill in the East－Indian Archipelaso in connection with the 3,5 yenty larometrie period＂． $45 \pm$.
－On the intmituran change of the artemperature．103\％．
－presents a piper（f D）r．（．Rrak：＂A long range weather forecast for the Einst Monsoon in Jama＂．lofia．
Stopes（Malif．c．）Eome remarks concerning a paper of Mrı。Dr．（－）＂Petrefac－ tions of the earlicst luropean Angiosperms＂． 620.
strachinessegmatrzonfs（Fomm and function of the trunk dermatome tested by He）． $7+0$.
stbstancfs（lsothems（fimchatmic）and of their binary mixtures．NIll．The empirical reduced equation of state for argon，273．XIV．Colculation of some thermal ¢ luatities of isgou． 952.
－（Isctlems of uiathmic）and of their binary mixtures．NLI．The compressibility of hydregen wapeur at and below the boiling－point． 405.
－（Some ramatiable itlations either nccurate or approximative for diflerent）． 903.
－（The lav of corresprading states for different）。 971.
－flhe inthunce of surface－active）on the stability of suspensoichs．liztt．
sulpher（ $O n$ ：new moditication of ）． 572.
－（The dymanic allotropy of）．5hl Communication． 1225.
－Application of the theory of allutropy to the system）．II． 369.
sulphur momficainoss（On the relation letween）． $55 t$.
stmba（Orbitoids of）．til．

- e:ther-water (\%n the). 350 .

- pimephorns, ()n the) ass.

- -ilphar Application of the theny of aldornoy to the). If, 369
- Iin (On theo. Giti.
- Tin-Ioline, The) tit.
-risfus of u-fold puinte (0) Steinerian prints in connection with of nine a-fold puinte of plame curves of order 3 ? 535.
Tamstis Mins r.). some correlation phenomena in hybrds. loot.

tmperatibe . The effect of and transerse magaetisation on the resistance of eraphite. 1ts.
- (The influence of on phototropism in sedlling of Arena sativa. 1170 .

 Theory (A) of polar armatures. 33 .
- of allotropy (Extamsion of the Monotropy and enantiotropy for liquids. 361.
- (Appli ation of the) to the system sulphur. Il. 3 fi9.
- of bimay systems (Contribution to the). XVIL. C02.
- of dreing (Contribution to the). +5s.

Thermal QCantitife (Calculation of some) for argon. 152.

 thueephase hixfs (On quadruple-points and the continuities of the). 389.
T1 M MERMANS (J.) and Pil. Konsstamy. Experimental investigations concerning the miscibility of liquids at prossures to 3000 atmospheres. 1021.
mmor (On recent crusta! movemeats in the island of and their bearing on the ereolorical history of the List Indian Archipelago. 22t.
thmor and bubber (On the freshwater dishes of). 233.
TIN (On the system). G70.

- (The Kiquilibrium Tetraqonal $\operatorname{Tin} \leftrightarrows$ Rhombic). S39.
- aud Autimony (Series in the spectra of). 31.
- bodne (The sistem). 174 .
rransformations (Contimuous one-one of surfaces in themselves. 5th Communi. (ation. 3; 2.
thanslation-semes in line spectra. 15%.

TREUB (J. Po) and F. F: C. Sehefper. Determinations of the vapour tension of nitrogen tetroxide. 166.
trigt (II. van) and W. E. Ringer. Inilluence of the reaction upou the action of ptyalin. 799.
thunidematome (Form and function of the) tested by the strychnine-sermentzones. 740. Twisted cubics (On a line complex determined by two). 92:.
twisted curre (On loci, congrnences and focal systems deduced from a) and at twisted biquadratic curve. I. 495. II. 712. III. 590.
twisted curves (On metric properties of biquadratic). 910.
thisted quartic curve (On the correspondence of the pairs of points separated harmonically by a). 918.
tyrosinase (On the composition of) from two enzymes. 932.
uven (m. J. van). Homoreneous linear dilferential equations of order wo with given relation between two particular integrals. 亏̈th. Comsnunication. ©.
valkenburg (c. t. van) On the occurrence of a monkey-slit in man. 1040.
vapours (Electric double refraction in some artilicial clouds and). 178.
vapour-pressure lines (On) of the binary systems with widely divergent values of the vapour pressures of the components. 96.
vapour tension (Determinations of the) of nitroren tetroxide. 166.
velocities of reaction (On) and Equilibria. 1109.
velocity of light (A proof of the constancy of the). 1299.
velocrity of substitutions (On the) in the benzene nuclens. 1118.
versluids (w. a.). On a class of surfaces with algebraic asymptotic curves. 1363. vertebral column of man (Contributions to the knowledge of the development of). Su.
virial-coefficient (On the deduction of Boltzmann's entropy principle of the second) for material particles (in the limit-rigid spheres of central symmetry) which exert central forces upon each other and for rigid spheres of central symmetry containing an electric doublet at their centre. 256.

- (On the second) for diatomic gases. 417.
- (On the second) for monatomic gases, and for hydrogen below the Boyle point. 643. vision (On localised atrophy in the lateral geniculate body causing quadrantic heminopsia of both the right lower fields of). 840 .
viscosity of gases (Investigations on the) at low temperatures. I. Hydrogen. 1386. II. Helium. [II. Comparison of the results with the law of correspouding states. 1399.
vries (G. de). Calculus rationum. 2nd. part. ©f.
vaies (hk. de). On loci, congruences and focal systems deduced from a twisted curve and a twisted biquadratic curve I. 495. II. 712. HII. 590.
vries (jande) presents a paper of Dr. G. de Vhies: "Calculus rationum". 2nd. part. 64.
- On metric properties of biquadratic twisted curves. 910.
- On the correspondence of the pavis of points separated harmonically by a twisted quartic curve. 918.
- On a line complex determined by two twisted cubics. 922.

V1:1t.s Jas br: () hilinear mull-sistems. 1151 ,

- ()n phane linear aull-ivatems. 1165.
- In involution of assuciated points. 1263.
vRIFs (Misa v. s.). The intluence of temperature on phototropism in seedlings of Aretus sativat 1174.
" : ALS (f. D. VAX DE R present- a paper of Prof. Ph. Kohsstamm: "On vapour-presenre-lines of binary systems with widely diverent values of the vapour pressures of the components". (16).
- present a paper of Dr. F'. L. (". Scherfer and J. P'. Treob: "l)eterminations of the vipour tension of nitronen tetroxide". 166.
- pre-ents "paper of Dr. F. E C. scnerrer: "On the system ether-water". 380 .
-- pesents a paper of 1 br. F. E. C. Scmerfek: "On quadruple-points and the continuities of the three-phase lines". 359.
- presents a paper of Mr. J. R. Kistz: "The laws of surface-adsorption and the potential of molecular attraction". 425 .
- Contribution to the theory of binary systems. XXI. 602.
- Some remarkable relations either accurate or approximative for different substances. 9u3.
- The law of correspondine states for diflerent substances. 971.
- presents a paper of Prof. Pu. Kohsatamm and Dr. d. Tmmermass: "Experimental investigations concerning the miscibility of liguids at pressures to 3000 atmospheres". I0: l.
- Some remarks an the course of the variability of the quantity l of the equation of state. 1131.
- presents a paper of Prof. J. D. van der Waals JR.: "The law of the partition of enerey". 1175.11 .1355.
 Water (lhe syaten sorlium sulphate, mancrane sulphate and) at 35°. 1326.
WATERMAX (H. A.). Mutation of Penicillium shatum and Aspergillus niger under action of known fatctors. 124.
- Action of halroxenions borie achl, copper, manyanese, zine and rubidinm on the metaliolism of Aspergillus niser. 753.
- Metabnlism of the nitrogen in Aspergillus niger. 105 S .
- Metabolism of the fosfor in Ispererillus niger. 1058.
- and J. Böesekme A biochemical methou of preparation of l-tartaric acid. 202.
- I'utasium sulfur and magnesiam in the metabolism of Asperwillus niger. 134!。 "esther morecast (A lonis ranue) for the East Monsoon in Java. locis.
 Bathber. $2: 35$.
 the visuosity of gases at low temperatures. 1. Hyedromen. 1356.
- amb ll. hammbrag ()wes. Investigation of the viscosity of gases at low temperatures. II. Helinm. 1396 . ILI. Comparison of the results obtained with the law of corresponding states. 1399.

WENT (P. A. F. c.) presents a paper of Dr. Johi. HI. van Burkom: "On the connection between phyllotaxis and the distribution of the rate of prowth in the stem". 10L5.

- presents a paper of Miss M. S. De Vhies: "The influence of temperature on phototropism in seedliness of Avena sativa". 1170.
WERTIEIMSALOMONSON (J. K. A.). V. Salomonson (J. K. A. Wertimem). WIBAUT (J. P.) and A. F. Holmemas. On the nitration of the chlorotolnenes. 594. Wh cif mann (a.). On rhyolite of the Pelapis-islands. 347.
- presents a paper of Dr. L. Ruveren: "Orbitoids of Sumba". 161.

WINKLER (c.) presents a paper of Dr. T. J. J. Muskens: "The posterior longitudinal fascicle and the manege movement". 727.

- presents a paper of Dr. J. H. M. Klessens: "Form and function of the trunkdermatome tested by the strychnine segmentzones". 740 .
- On localised atrophy in the lateral geniculate body causing quadrantic heminopsia of both the right lower fields of vision. S40.
- presents a paper of Dr. C. T. Van Valkenbura: "On the occurrence of a monkey-slit in man". 10 ± 0.
WISSELINGH (C.VAN). On the demonstration of carotinoids in plants. lst. communication. 511. 2ud. Communication. 696. 3rd. Communication. 693.
- On karyokinesis in Eunotia major Rabenh. 1058.
- On intravital precipitates. 1329.
wolff (l. K.) and E. H. Bichner. On the behaviour of gels towards liquids and their vapours. 1078.
WOOD (R. W.) and P. ZEEMAN. A method for obtaining narrow absorption lines of metallic vapours for investigations in strong magnetic fields. 1129.
WOUDE (W. VAN DER). On Steinerian points in connection with systems of nine ϱ-fold points of plane curves of order 3 3 . 938.
zeeman (p.) presents a paper of Mr. T. van Lohuizen: "Series in the spectra of Tin and Antimony". 31.
- presents a paper of Mr. T. van Lolutizen : "Translation series in line-spectra". $15 G_{3}$
- On the polarisation impressed upon light by transversing the slit of a spec= troscope and some errors resulting therefrom, 599.
- The red lithium-line. 1130 .
- and C. M. Hooaenboos. Electric double refraction in some artificial douds and vapours. 178.
- and R. W. Woov. A method for obtaining narrow absorption lines of metallic vapours for investigations in strong magnetic fielils. 1129.
zinc and rubidium (Action of hydrogenious boric acid, copper, mansanese) on the metabolism of Aspergillus niger. 753.
Zoology. Max Weber aud L. F. de Beaufort: "On freshwater lishes of Timor and Babber". 235.
zWIERS (H. J.). Researches on the orbit of the periodic comet Holmes and on tho perturbations of its elliptic motion. V. 192.

```
Q Akademie van Wetenschappen,
57 Amsterdam. Afdeeling voor
A48 de Wis- en Natuurkundige
v.15 Wetenschappen
pt.2 Proceedings of the Section
Physical & of Sciences
Applied Sci.
Serials
```

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: ${ }^{1}$) J. Lindhard. Seasonal periodicity in respimation.
 Skandinav. Archiv. f. Physiologie AXV1 p. $2 \supseteq 1$.
 \therefore Magnustafyr. Ueber die (grösze des respiraturischen (iaswechsels u. s. w. P'llïger's Archis. f. die ges. Physiologie. Bd 50. 1899, 1. !

[^1]: 1) Bexenter. The metabnlisu and encery transformation of healthy manduring :1. A.nangre: |nathutun of Washingh. L'ublication no, 126, 1910, p. 107.)
[^2]: 1 'Ther comenting factor is tha thationt of the hever which the wire of the - Dumbatue is fixed and the batiun of the dish.

[^3]:
 vai-un l!u!

[^4]: ${ }^{1}$) Occasionally $\&$ liters had to be made.
 ") Biochemische Zeitschrift, Bd. 30, p. 317 .

[^5]: 1) K. \&'. Bottlinger. Die Gravitationstheorie und die Bewegung des Mondes. Inaugural-Dissertation (München). 1919.
 see also "The Observatory" November 1912.
[^6]: 1) The ditherence in the multiplien outside the brackets is produced by the neglect of the influence of the variation in (81 (see preceding footnote).
 \Rightarrow In the course of time eclipses drop out at the beginning of the groups and new eclipses appear at the end. The limits of the groups are thus displaced whin the saros. During the interval of two centuries lreated in this paper, it is not necessary to lake account of this displacement.
[^7]: 1) In the origimal Dutch there was a mistake in the values of $\boldsymbol{\lambda}_{1}$ and $\boldsymbol{\lambda}_{2}$, which has hare been corrected. The conclusions remain the same.
[^8]: 1) Beobachtungs-Ergebnisse der K. Sternwarte zu Berlin, Ň0. 13, 1910.
 ${ }^{2}$) The most important of these is a correction of 0.185 to the coefficient of the well known Venusterm of 273 years period.
[^9]: 1) In my former investigation I was led to a similar conclusion (see "The observatory" Nov. 1912 page 892).
[^10]: 1) The eell-preparations of this bedy have been drawn with the camera of Zeiss: they are enlarged 20 dimes and redued to ${ }^{\prime} .12$ of then size by the reproduction. Adem with the retrotenticular arma.
[^11]: 1) Nearly the same can be said of dorsally situated fori (mutatis mutandis) which section the optice rathation either alose to the genticulate body or further otr, I shall refer to this later on.
[^12]: ${ }^{1}$ Compt. read. de l'Ac. der Sc. 84, 1877, p. 687 - 690 ,
 ${ }^{7}$) Wem. 85, 1877, p. 40-4.2.
 ${ }^{3}$) Arsenicum in het lierlijk organisme. Dissatatio Laiden 1908 .
 ${ }^{4}$) Arch. 1. Hygiene 24, 189.
 i) Bloemexdal l. c.

[^13]: ${ }^{1}$) Before death, the deceased had used Pilulae Blaudii c. Acido arsenicos. as a medicine.

[^14]: 1) These Proc. p. 700 and 85.2
[^15]: ${ }^{\text {1) }}$ For $m=n=1$ (two pencils) we get the tetratedrel complex. In a paper "(on a group) of complexes with rational sones of the complex" (Proceedings of Amsterdam, Vol. VII, p. 577) we already considered the case of a pencil in (1,1) correspondence with the tangents of a rational plane curve.

[^16]: 1) Zeitsch f. phys. Chem. 77, 367 (1911).
 2) J. Cihem. Soc. 65, 173 (1814).

 Lif. also Scuenck, Handb. Abega 111337.

[^17]: ${ }^{1)}$ Ber. 42, 4510 (1909).
 ${ }^{2}$) The italies are ours.

[^18]: 1) Ber. $45,1514(1: 112)$.
 2) J. Chem. Soc. 99 , 1066 (1911).
 3) Verslag Kon. Nhad. v. Wed. 25 Nov. 1911, 529.

 Zeitschr. f. phys. chem. 81, 305 (1912).

[^19]: ${ }^{1}$ A Also the system cyanogen has been investigated and conforms entirely to that of phosphorus. In the same way as for phosphorus we have surceded in showing by means of experiments of solidification that we have to do with different kinds of molecules, which can be in equilibrium with each other in solid and liquid cyanogen.

[^20]: 1) Schublime l. c. jage 62.
[^21]: 1) Schubert 1. c. page 6.2.
[^22]: 1) Centralbl. f. Bahter, 2 Abt. Bd. 6, S. 2, 1900. Arch. Neerl. 1900, p. 327.
[^23]: Commonly the chimon is absent, which I did not know in 1 sum.
 2) These Procoedinqs, XIll, 1066
 s) For the literalure see Czanek, Biochemio der Pquazen, Bed. ㄹ. po $46=$ and 46.

[^24]: 1) Here by non alegeneruted is meant a curve not breaking up into a c_{3} to be counted twice. In this manner is to be interpreted henceforth the expression non degenerated c_{6} used now and then.
[^25]:

[^26]: 1) B. Beckman, Upsala Univ. Årsskrift 1911, p. 107.
 \Rightarrow B. Beckman, l.c. p. 16 .
[^27]: 1) This ciremmstance canses a chanse in h_{w} also, cf. H. Kamerbixar (oxem and W. H. Keesca, Suppl. N0 223, Nr. 47.
 2) M. Relasianua, Diss. Gülluggen. 1899, pg. 先。
 ${ }^{3}$) S. Youna, Proc. phys. soc. Londen 13 (18 35), p. 602.
[^28]: ${ }^{1}$ P. Whase el A. Piccard. Ci. R. 155, p. 1234, 1912.
 ${ }^{3}$) Prof. Wrans who has particularly investigated this question, kindly tells us that the experimental resalts of Cobre agree so well with Cunte's baw within the limits of observation errors that $د^{\prime}$ could not be more than $+8^{\circ}$ or $-8^{\text {? }}$.

[^29]: ${ }^{1)}$ These Proc. p. 903.

[^30]: 1) The sections of this paper are numbered in continuation of those of Comm. N‥130c (Oct. 26, 1912).
[^31]: ${ }^{1}$) A. W. Sumph Rhys. Rev. 30, 1, 1:10.

[^32]: ${ }^{1}$) F. C. Blake. Ann. d. Phys. 28, 449, 1909.
 ${ }^{2}$) G. Barlow. Proc. Koy. Soc. 71, 30, 1903.
 ${ }^{3}$) C. W. Hear. Phil. Mag. (6) 22, 900, 1911.

[^33]: 1) Beagt Beckman. Upsala Lniv, Arskrift 1911.

 ${ }^{3}$) J. Cilay. Comm. n" $10 \overline{10}$ d, 190 s .
[^34]: 1. 2. V. Fimpmishalsen und W. Nmist: Wied. Amm. 33, p. $474,1888$.
 \Rightarrow E. VAN ILBBLL: L. R. 185, J. $786,136 \%$
 \therefore A. 11. sump: 1hys. liev. 32, p. $178,1911$.
[^35]: ${ }^{1}$) Since the appearance of my above mentioned paper I have succeeded in showing that the factors which cause the dilference in the colour of the flower are distributed over both forms and that these forms have no common factors Tho proof of this was obtained by the appearance of white flowers. The plant was found in much larger cullure than the one previously grown. In this case the hybrid thus oversteps the limits of the characters in the parents.

 With respect to the factors tor the other characters my insestigations are not yet complete.
 2) 1. c. p. 260 .

[^36]: 1) Celakovsky L. 'T. 1901. Die Gliederung der Kaulome. Bot Zeitung ま9er' Jahrgang.
 ${ }^{2}$) Potosif́s H. 1912. Grundinien der Phanzen. Morpholosic im Lichte der Pabar= ontologie. Jena.
 ${ }^{3}$) Delpino. Atti della reale Úniversita di Genura. Vol 15. Parte 11, 1883.
[^37]: ${ }^{1}$) These Proc. XIll p. 507.

[^38]: 1) See above p. 1025.
 ${ }^{2}$ These Proc. I. 6
 3; All the pressures and temperatures have been corrected to the standard thermometer and the pressure balance.
[^39]: $\left.{ }^{1}\right)^{2}$ These Proc. Xll p. 243 and table at p. 239.
 \geqslant loc. cit. p. 243.
 ${ }^{3}$) Vas der Whals Kohstama, Col. II. Leepziw, Bath. 191 g.

[^40]: ${ }^{1}$) Ziehen, Ueber die Grosshimfurchung der Halbalien Arch. f. Psych. Bd 28 S. 898 .
 Jenaische Zeitschr. fïl Naturwissenseh. Bol. ę, S. 1.
 for further literature vide Arasis Kaplers (l. e.t.

[^41]: 1) Brodmaxis: Vergleichende Lokalisationslehre der Grosshimrinde. Leipzig 1909.
 \Rightarrow Eifotot Smith: A new lopographical surves of the human cerebral cortex. Journ. of Anat. and fhysiol. Vol. ii.
[^42]: 1) Folia microbiologica, Holländische Beiträge zur gesamten Mikrobiologie. Bu. 1 p. 42.
[^43]: 1) The use if very pure chemicals free from manganese causes the bad spore formation
 \Rightarrow Fonla Microbiulogica, Bu. 1 p. 12en and these Procedtings AV p. 753.
[^44]: ') These Procedines, A'V'p. Tit.

[^45]: ${ }^{\text {b }}$) Solar Physics Committee. Monthly mean values of barometric pressure.

[^46]: ${ }^{1}$) These are the months which have negative corclation belween airpressure and rainfall as appears trom the preceding communication.

[^47]: $\mathrm{BrC}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{AlCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$.

[^48]: ${ }^{1}$) It is possible and even probable that the action of the AlCl ${ }_{3}$ does underqn a slight change; the course of the constant (see table 1) might be partly attributed to this.

[^49]: $\left.{ }^{1}\right)$ Jahresber. d. Schles. Ges. f. Vaterl. Kultur $86,36$.
 ${ }^{9}$) This substance was prepared for us of carnauba wax in Prof. Hoxdus Bol. dingh's laboratory; a crystallographic examination by Dr. B. Gi. Escher proved that it was wholly crystalline. We wish to express our hearty thanks to these gentlemen for their kindness.
 ${ }^{3}$) Whether the phenomenon also appears in two normal, non miscible liquids, is a question, directly connected with the above. Experiments about this problem have been commenced.
 ${ }^{\text {b }}$) d. Amer. Chem. Soc. 30, 1388.
 ${ }^{7}$) Zeitschr. für Chem und Industrie der Kolloìde. 11, 22.

[^50]: ${ }^{1}$) \% phys. Chem. 33, 326.
 2) Bachbann, Z. Anorg. Chem. 73, 125 expresses the same opinion.
 ${ }^{3}$) Z. anorg. Chem. 71, 356; 73, 125.

[^51]: 4) K. Lauterbons, Untersuchanyen \quad uber Bau, Kernteilang and bewegung der Diatomeen, 1596.
[^52]: $\left.{ }^{1}\right)$ H. Klebahy, Beitriage zur Kenntnis der Auxosporenbildung, I. Rhopalodia gibba (Ehrenb.) O. Müller, Pringshein's Jahrb. f. wiss. Bot. Bol. 29, 1896 , p. 59\%).
 ${ }^{2}$) G. Karsten, Die Auxosporenbildung der Gattungen Cocconeîs, Surirella und Cymatopleura, Flora, 1300, Bel. st. p. 25.3.
 ${ }^{3}$) L. Dippel, Diatomeen eler Rhein-Mainebene, 1905 , p. 125.
 Van Heurck, 'Traité des Diatomées, p. 998.

[^53]: ${ }^{1}$) Leber den Nukleolus von Spirogyra. (Bot. Zeitung. Jahrg. 56. 1898. Abt. I. p. 199). - Ueber das Kerngeriist. (Bot. Zeilung. Jahrg. 57. 1899. Abt. I p. 155). Ueber die Karyokinese bei Oedogonium. (Beih. \% Bot. Centralbl. Bd. XXIIL. 1908. Abt. 1. p. 13 S If.). - Uefser die Kernstructur und Kernteilung bei Closterium. (Beih. \%. Bot. Cientabl. Bd. XXVll 1912. Abt. I. p. 414).

[^54]: ${ }^{1}$) Dissertation Leiden 1912, comp. also these proceedings XV p. 614.

[^55]: ${ }^{1}$) Comp. for the case that one shouk want to specify for these quantities also, my diss. $p .39$, where the case of non-reaching molecules is treated.

[^56]: ${ }^{1}$) The complications arising when equal frequencies occur are easily to be overcome Comp. these proceedings \& March 1912 p .1103 an. 1117.
 ${ }^{2}$) These proceedings XIV. p. 743.

[^57]: 1) These Proc. Jan. 1911. p. 78.
[^58]: 1) Hmbeyax, Ibe dinckte Einfölaung won Substituenten in den Benzolkem, p. 72. We ateo tefer io thes work fur the experimental data oceurring in this paper.
[^59]: ${ }^{1}$) In these tables the place of carboxyle is indirated in 1.

[^60]: ${ }^{1}$) The method has been since applied with succes in inn investivation by Mr. Woltser in the Amsterdam laboratory; the results will the given separately.

[^61]: 1) For more accurate and more definite views arrived at later 1 must refer to my "Weiteres zur Custandsgleichung" Akademische Verlagsgeseilschaft Leipzig, which will shortly appear.
[^62]: ${ }^{5}$) In the ease of a general pencil with a twisted quartio as base we get a mull-ystem ($1,3,2)$, treated at some lenglt by Dr. d. Worme (-Ueber ein Null--yten (quadratischer Fliachen", Nicuw Archief roor Wiskunde 1911, vol. 1X, page 85),

[^63]: ${ }^{1}$) Coefficients which might present themselves have been comprised into the delinition of the coordinates.
 ${ }^{2}$) This can also be found by considering the involution determined on $P Q$ by the pencil $\left(b^{2}\right)$; one of the coincidencies lies in the plane of the conic s^{2}, the other is point of contact with one of the quadratic surfaces.

[^64]: 1) So the null-system $(1,1)$ of the tangents of a pencil of conies in double contact passes by transformation with respect to the absolute pair of points into the null-system of the normals.
[^65]: 1) A. A. L. Revters: The influence of temperature in geotropism. Proceedings hoyal Acad Amsterdam. Vol XIII, p. $476,1510$.
 A. A. L. Rutgers The influence of tomperature on the scotropic presentation. time. Recueil des Trav. Botan, Néerdandais. Vol. 1X, 1912.
 \Rightarrow Tonsten Nybaghe Studien über die Einwirking der Tomperatur auf die tropistische Reizbarkeit elidierter Arena-Kem!inge. Berichte der dentechen Botan. Gesellschaft. Band 30. 1912.
[^66]: ${ }^{1}$) With "equations of motion" I mean the equations which are required to reduce the time derivatives of the independent variables by which the condition of a system is determinel from the ralues which flese variables have at a given ime, independent whether or no these changes refer to motions in the strict sense.

[^67]: ${ }^{1}$ J. Il Jeans, Proc. Royal. Suc. of London 67, p. 236, anno 1400. Phil. Mağ. (6) 2, p. 421 and 63s, anno 1901.
 Proc. Phys. Soc. of Luondon 17, p. 754, anno 1901, elc.

[^68]: 1) Comp. H. A. Lorentz, Nuovo Cimento V, 16. Amo 1908.
[^69]: ${ }^{1)}$ Ciomp. Grbss. Elementary principles in statistical mechanics p. 16.
 $\left.{ }^{2}\right)$ Comp. Gibes, l.c. p. 6.

[^70]: ${ }^{1}$) Nov. and Dec. 1905 ; Junc 1906.

[^71]: ${ }^{1}$) Proc. April 1912.
 \because 13. 29. 691 (1s96).
 ${ }^{3}$) Chem. Weekbl. 10, 60 (1912).
 ${ }^{1}$) Bull. Soc. Cis [3] 11, 124 (1534).

[^72]: ${ }^{1}$) These points may be imagined e.g. as apertures in the walls of the laboratory.

[^73]: ${ }^{1}$) Formed by the lines of light of the sigmals, which may be sent from P to Q, and from Q to P.
 ${ }^{2}$) A proof for these theses and a classification of the abovementioned x^{6} fields of world lines is found in a paper by Mr. Gin. H. van O_{s}, which will shortly appear.

[^74]: 1) See A. Panneroek. The luminosity of stars of dillerent lype of spectrum. Proceedings Acad. Amsterdam 9, 1906, p. 132.

 2) Astronomische Nachrichten 451 s (Bel. 189, s: 9)
 ${ }^{3}$) Astronomische Nachrichten 4096 (Bl .192 , s .189).

[^75]: 1) For the previous communcations see Keitsehr. f. physik. Chem. vi\%. I: 64, 013 (1908); 11: 65, 486 (1909); 111: 67, 321 (1909) and IV; 81, 726 (1913),
 ${ }^{2}$) Cihem. Weekbl. 8, (613 (1911).
 ${ }^{3}$) K. f. Lettrochemie 18, 581 (1912:.
[^76]:

[^77]: 1 After the position had been regulated rith a sweeping capillary.

[^78]: y R. D. M. Verbeek un R. Fenvema. Java en Madoera l. page 71.

[^79]: ${ }^{1}$) A. Lacrorx. Etude sur le Métamorphisme de contact eles roche: volcaniques. Mémoires préseatés par divers Savants à l’Academie des Sciences. Tome XXXI. 180t.

[^80]: 1) 11. A. Brouwer. On micaleucite basalt from Eastern-Borneo. These Proceedings, Jume 26, 1909 \% 14s.
[^81]: ${ }^{1}$) A. Lacrorx. Etude minéralogique des produits silicatés de l'éruption da Vésuve (avril 1906). Nouv. Archives du Muséum. 4e Série. Tome IX, 1907, pp. 73, 94.
 ${ }^{2}$) A. Lacrox, l. c. p. 95.
 3) W. Freudenbena. Geulogie und Petrographie des Katzenbuckels. Mitt. Groszh. Badische Geol. Landesanstalt V. I. Teil, 1906, p. 81.
 ${ }^{4}$) V. Sabatini. I Vulcani dell’ Italia centrale. I. Vulcano laziale. Mem. Carta geol, d'ltalia, X, 1900, pp. 150, 163.

[^82]: ${ }^{1}$) Oeurres Complètes II p. 281.

[^83]: ${ }^{1}$) Ciomp. F. Riesz, Mathem. Annalen 61, p. 406
 ${ }^{2}$) Mathem. Amalen 46, p. 504.

[^84]: ${ }^{1}$) This theorem and its proof have been communicated to me by Prof. Burel.
 ${ }^{2}$) Comp. F. Riesz, I.c. p. 409.

[^85]: ${ }^{1}$) Comp. Math. Annalen 36, p. 59 , and Schomexftes, Bericht über die Mengenlehre I, p. 125.

[^86]: ${ }^{1}$) Loc.cit. June 8 \& July 6 1912. Interferenzerscheinur pen bei Rontgenstrahien.
 manenetice ow a crystal.

[^87]: ${ }^{1}$) We may here observe, that by this we have the means of comparing the numbers N, in matter with given density, for planes that are struck by equal radiation under similar circumstances.

[^88]: ${ }^{1}$) Serslagen Kon.Akad.v.Wet. XXI 1912 13p.911. "Over den aard der Röntgenstralen".

[^89]: ${ }^{1}$) J. Boeke, Ueber De- und Regeneralion motoriseher Endphatten, ote in Verhand der Anat. Gesellsch. Versamml. in Mïnchen. April 1912. S. 152

[^90]: 1) Perfectly equal when the isosmotic solutions are isotonic. Hedin, Pflücer's Archiv 60, 198, p. 300
 ${ }^{2}$) Only urea, as appears from investigations by Grisss and myself, makes an exception.
 ${ }^{3}$) Hamberger. Archiv. f. (Anat u.j Physiol. 1898 S. 317 ; Osmot. Druck u. lonenlehre L. S. 337.
 2) Hamburger and Hekma. Biochem. Zeitschr. 7, 1907, 102. Further Hamburger, Physik. C'hem. Unters. über Phagocyten u. s. W. Wiesbaden, J. F. Bergmann. 1912.
[^91]: 1) Charles Darwin, Insectivorous plants. 1875, p. 38. Chapter 11%.
 ${ }^{2}$) Hugo de Vries, Ueber die Aggregation im Protoplasma von Drosera rotundifolia. Bot. Zeit. 4. Jahrg. 1886, p. 1.
 2) Gearles Darwin, The Action of Carbonate of Ammonia on the Roots of certain Plants. The Journal of the Linnean Society. Botany. Vol. XIX. 1882, p. 239.
 ${ }^{4}$) Francis Darwis, The process of aggregation in the tentacles of Drosera rotundifolia. Quarterly journal of microsc. science. Vol. XVI. 1876, p. 309.
 ${ }^{\circ}$) 1. c. p. 42 fi. and 57 I.
[^92]: ${ }^{1}$) J. E. F'. Af Klercker, Studien über die Gerbstoffvakuolen. Inaug. Diss Tübingen 1888.
 ${ }^{2}$) P. Klenm, Beitrag zur Erforschung der Aggregationsvorgänge in lebenden Pflanzenzellen. Flora 1892, p. 3¢5. - Ueber die Aggregationsvorgänge in Cirassulaceenzellen Berichte d d. bot. Gesellsch. Bd. X. 1892, p. 237.
 ${ }^{\text {s }}$) F . Gzapee, Ueber Fiallungsreaktionen in lebenden Pflanzenzellen und einige Anwendungen derselben. ber. d.d. bot. Gesellsch. Bd. XXVill. 1910. Heft V. p. 117.
 ${ }^{\text {b }}$) E. Overton, Ueber die osmotischen Eigenschaften der Zellen in ihrer Bedeutung für die Toxikologie und Pharmakologie. Zeitschr. f. Physikal Chemie XXII. Bd. 1897, p. 189.

[^93]: 1) Th. Bokorny, Zur Kemutnis des Cytoplasmos. 1.e. p. 106.
 ${ }^{2}$) O. Loew und Th. Bokorny. Aktives Liweiss und Tamnin in Pflanzenzeflen. I.c
[^94]: 1) (U. Lobew and Th. Bukuray, Ueber das Verhalten von Iflanzenzellenzu stark

[^95]: ${ }^{1}$ 1. 1. P. 37 fir
 ${ }^{2}$) O. Loew and 'Th. Bokorny", Ueber das Vorkommen von activem Abbumin in Zellsaft und dessen dusscheidung in Kürnchen durch Basen. 1. c.

[^96]: ${ }^{1}$) Lied Sim. 1. Chem. 265, 27 (18:11).

[^97]: 1) Compare for instance 1. Traubbe, Verh. d. deutschen physik Ges 10. 880 (1908). In the Table on p. 501 , Aniline the only aromatic compound, oceupies a quite special position.
 ${ }^{2}$) Zeit-chr, f. Elektrochemie 17, 1 (171)
 ${ }^{3}$) Folia microbiologica Bu. 1 p. 422, 1912. 'These Proceedings 191ッ.
[^98]: 1) These Proceedings, 1912.
 ${ }^{2}$) These Proceedings, 1912.
[^99]: 1) $O r$ at least it differs from it only in a function of the temperature which is immaterial for the existence of thermodynamical equilibrium.
[^100]: ${ }^{1}$) G. Darboux, Théorie gén. des surfaces 'T. I § 91.

[^101]: ${ }^{1}$) The tinfoils were aph to get loose from the piate in the liquid oxygen, which gave rise to blisters; it would of course be better to employ a platimized quartz plate, silvered: Then, loo, the use of cementing material between the metal coating and the quartz would be obviated.

[^102]: 1) IV. Huckes Ann. (t. Phys. Qut, 1908 pag. 983.
 \Rightarrow II. Markuwar loc. cit. and K. Schamtt loc. cit.
[^103]: 1) H. Mabkowskt. Ann, d. Phys. 14. 1904 pag. 742.
 ") Observations for $H e$ which will be treated in a following paper, show that there is no such dependence on the density.
[^104]: 1) Here and in the following we speak repeatedly of resistance, without wishing to give it beforehand any ohber meaning than: caleulated by Ons's law from the straght of cursent and the potential diflerence observed.
[^105]: ${ }^{2}$) See the fig. in Comm. No. 194. Dec. 1911.

[^106]: ${ }^{1}$ For diffeulties inherent in the supposition of a resistance equally distributed throughout the thread which apply also to our present case of alditive mixture resistance see S 11 .

[^107]: ${ }^{1}$) Proc. Lioy. Acad. Ainst. Vol. 8, p. 50:3, 1905.
 ${ }^{2}$) A preliminary accomnt of the observations made by the Netherlands Expedition on April $17 l_{1} 1919$ is to be found in Proc. Roy. Acad. Amst. Vol. 14, p. 119.5 (1912). Cf ako: Ňxand, "De cklips van 17 April 1912", Hemel en D:mpkring 10, 1, May 191\%.

 ${ }^{1}$ I Iteserphon of the instrument is given in: Total Eelipse of the Sun, May 18 , fsol; Reports on the Dutch Expedition to Karang Sago, Sumatra, No. 4, "Heat Thadiation of the Sun during the Eclipse", by W. H. Julus (1905).

[^108]: 1) C. Astrophysical Jombal, 37, p. 232, 1913.
 ${ }^{2}$) Astrophysical Journal Vol. 23 p. 312, 1906.
[^109]: 1) Astrophysical Joumal 23, 312, 1906.
 ${ }^{2}$) The figure is not a copy of the original drawing, as this could not be so much reduced on account of the delicacy of the lines.
