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I. INTRODUCTION

It is well known that many problems in physical sciences give

rise to the algebraic eigenvalue problem Ax = Ax where A is usually a

large symmetric matrix. The most effective way to solve such problems

consists of reducing A to the tridiagonal form [1, 13] and using either the

bisection method or the QL algorithm to find few or all the eigenvalues.

The major goal of this work is to study and analyze both algorithms on a

parallel machine, namely the ILLIAC IV, and find out the cases in which

each algorithm should be used.

The QL algorithm is an effective and reliable algorithm for finding

all or most of the eigenvalues on a serial machine. However, the implementa-

tion of this algorithm on a parallel machine is very ineffective since only

two or three PE's can be used at the most. On the other hand, the bisection

method is usually preferred for finding only few of the eigenvalues since the

algorithm is especially designed to isolate the individual eigenvalues.

The bisection method therefore can be easily generalized for implementation

on a parallel machine. We shall describe this modified algorithm which we

will call Multisection method, and show how it is implemented on the ILLIAC IV.

We will also give comparisons of time estimates, for finding all or few of

the eigenvalues for some tridiagonal matrices, between this parallel algorithm

and the serial QL algorithm.

Finally, we will provide in an APPENDIX the program listing written

in an ILLIAC IV language, GLYPNIR.



II. THE MULTISECTION METHOD

1. THEORETICAL BACKGROUND

(1 ) Sturm Sequences

It is usually desired to determine lower and upper bounds

for the real roots of a polynomial so that errors in approximating

them can be easily estimated. This can be done if we are able to

determine the number of roots of a polynomial within an interval,

this in fact can be achieved using the property of the Sturm

sequences

.

The Sturm sequence is defined as follows [10]:

DEFINITION. Let f (x), f. (x), ..., f (x) be a sequence of
o 1 m u

continuous functions. Such a sequence is called a Sturm sequence

on an interval [a, b], where either a or b may be infinite, if

(l) f (x) has at most simple roots in [a, b];
o

(2) f (x) does not vanish in [a, bl;m ' '

(3) if f (a) = 0, then f (a) f, . (a ) <
-K. K—X K+l

for any root ae[a, b];

(k) if f
Q
(a) = 0, then f (a) f (a) >

for any root ae[a, b].

For every such sequence, there exists the following property.

THEOREM I. [10, p. 126]. The number of zeros of f (x) in (a, b) is equal
o

to the difference between the number of sign variations in

{f (a), f (a), ..., f (a)} and in {f (b
) , f_(b), ..., f (b )} provided thato ± m o l m

f
> (a)f

Q
(b) + and (f (x), ^(x), ..., f (x)} form a Sturm sequence on [a, b]

The result described above is very useful in locating the zeros



of a polynomial. Now we discuss how it can be applied to find the eigen-

values
,

Let A be a symmetric tri diagonal matrix of order n with d. and

e as diagonal and subdiagonal elements respectively,
i

A =

d
l \

6
1

d
2

6
2

e
2

d
3

e
3

e
n_2

d
n-l

e
n-l

e . d
n-1 n

(2.1)

recalling that the characteristic polynomial is given by

p (A) = det (XI - A)
n

and that its principal minors are given by the following recurrence relation

P (A) = 1,

Pl (A) = A - d
1

,

p.(A) - (A - d.) p±_±
(A) - e^ p._2

(A) (2.2)

i = 2, 3, . . . , n.

If any e. = 0, then the determination of the eigenvalues of A is reduced to

that of determining the eigenvalues of two smaller matrices. Hence we

assume e. ^ for i = 1, .... n - 1. We then have
i



THEOREM II [10, p. l68]. Let the real symmetric tridiagonal matrix A be

defined by (2.1), with all e. £ 0. Then the zeros of each -n (A),
i *i

i = 2, 3, ..., n, are distinct and are separated by the zeros of p. , (A);

and, if p (A) / 0, the number of eigenvalues of A that are larger than A

is equal to the number of sign variations in the sequence

P
n
U), Vi (A)

' •"» P
1
(A)

'
1 *

Since the eigenvalues of a matrix are but the zeros of the

characteristic polynomial of that matrix, and the principal minors of

AI - A form a Sturm sequence, then the theorems described in this section

can be used as the basis of an algorithm for computing the eigenvalues of A.

(2) The Bisection Method

Suppose the eigenvalues of A are ordered so that

A > L > ... > A , if ve have two real values a and b such that
1 2 n> o o

b
Q

> a
Q

, V(a
Q

) < k, V(b
Q

) >_ k, (2.3)

where V(x) is the number of sign variations in the sequence

{p (x), p (x), ..., p (x)}, then from the results in the last section we know

that there exists at least an eigenvalue A. in the interval (a , b ). The
k o o

value of A can be determined as accurately as possible by an iterative process

called the "Bisection Method." The algorithm is as follows:

Start from the interval (a , b ), suppose tnat in (i - l) steps

we have established an interval (a. n . b. n ) such that
i-l' l-l

V(a. .) < k, V(b. - ) > k, b. _ - a. _ = (b - a )/2
1_1

(2.M
i-l i-l — i-l i-l o o

In the i-th step we compute the mid-point c. of (a. , b. ), i.e.,

c
i 4 (vi + Vi'- (2 - 5)



and evaluate the sequence

P (c.), P
1
(c

i
), ..., P

n
(c.) (2.6)

to determine V(c). Then>

if V(c. ) > k, we take b. = c. , a. » a. n : (2.7)
i — ill i-I

if V(c.) < k, we take a. = c, b. = b . (2.8)

In either case, we have

(b
i "V = I (b

i-l - Vl' (2 -3'

and

V(b.) >_k; V(a.) < k (2.10)

so that A is always in the interval (a., b. ) and we can locate it in an
K- 11

interval of width (b - a )/2 in p steps of the bisection process.
o o

With exact computation, this method can be used to determine any

eigenvalue to a prescribed accuracy without referring to other eigenvalues.

The process converges with an ' asymptotic convergence factor of 1/2 [10, p. 128]

It is clearly not a rapid convergence but the algorithm is quite effective.

The major part of the process is the calculation of the sequence

(2.6) using formula (2.2). There are roughly 2n multiplications and 2n

additions for each evaluation of the sequence. If all the n eigenvalues are

2
determined in t bisection steps, then essentially 2n t multiplications are

2
required (n is large). Remember that e. , i = 1, 2, . .

.
, n - 2, are computed

once and for all, this contributes (n - l) multiplications to the total

number of operations.

The situation is slightly complicated when there are a number of
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very close eigenvalues, since p (A) = g (A - A.) is very small for any A

which is in the neighborhood of these eigenvalues, the zeros of each p.(A)
i

separate those of p (A) and accordingly many of the p.(A) may also become

very small and give rise to underflow. Also, if some of the eigenvalues

are very large, then overflow may cause troubles during the evaluation of

the Sturm sequence.

This difficulty may be avoided by a simple modification [6], The

sequence of p. (A) is replaced by a sequence of q.(A) defined by

q
1
(A) = P

i
(A)/p._

i
(A), i = 1, 2, ..., n . (2.1l)

V(A) is now given by the number of negative q.(x). The q.(A) satisfies the

relations

qx
(X) = A - d

1 ,

q.(X) = (X - d.) - e.
2
./a. . (X) i = 2, ..., n . (2.12)

1 1 1—J. 1—1

In case q. (X) is zero for some i, we just replace the zero q. (x) by a

suitable small number and the error analysis for the p.(X) sequence applies

almost unaltered to the q.(X) sequence [6].

Comparing the computation of the sequences q^X) and p^X), we

find that two multiplications have been replaced by one division. Further-

more, we only have to detect the sign of q.(X) instead of those of p.
n
(X)

and p.(X). For serial computers in which the execution of a multiplication

or a division uses almost the same time, the replacement of p.(X) by q.(x)

causes an improvement in the execution time. But, for the parallel com-

puter ILLIAC IV, the execution time for a division is about six times that

of a multiplication, so usually the p. (A) sequence is evaluated except

for some special cases which will be discussed later.



The major process in the bisection method is the calculation of

the Sturm sequence p. (x) (or q. (X)). Once the eigenvalues are separated,

we may use any algorithm for the calculation of a zero of a real function

to find the eigenvalue within each interval. The bisection method can still

be used to calculate the eigenvalues up to some specified accuracy after we

separate all of them. But, it converges only linearly. Hence some other

algorithms with higher convergence rate must be considered. In this paper

we select the Zero-in algorithm [ll] which is due to Wijngaarden et. al. to

calculate the eigenvalues once we separate them. This algorith, a method

of order (/5~+ l)/2 [10, pp. 100-101 ] is described in APPENDIX I.



2. IMPLEMENTATION

The multisection method contains two major stages. In the first

stage we calculate the Sturm sequence p. (A) (or q.(A)) and find all the

intervals each of which contains only one eigenvalue. In the second stage

we use the zero-in algorithm to simultaneously determine 6h eigenvalues

at a time. We shall consider the implementation of this method on a N = l6 PE

machine for a symmetric tridiagonal matrix of order n = N = 16.

Figure 1 shows the storage allocation scheme for the first stage.

We store the diagonal and sub diagonal elements of A across the PEs . This

kind of storage allocation is very convenient for the parallel operation

which will he discussed later. The quantities e. (i = 0, 1, ..., n-1 ) will

be used frequently when calculating the Sturm sequence, so we compute them

and store them into row P for later use.

If all the eigenvalues are required, we use (- A , A )

as the initial interval, where A = max g. . The g. 's can be obtained
'

' ' ' ' oo "j. X
i

and stored into row A by one statement, that is,

row A = row D + row E + (row E route right one PE) . (2.13)

Then, one more instruction is required to pick the maximum element in

i i ii 2
row A as the value of

|

|A| | . All the quantities e. are also computed and

stored into row P by one instruction,

row P = row E x row E. (2.1*0

If the dimension of the matrix is not greater than N, we then always have

this simple situation.
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The major process in the first stage is to calculate V(y ).
i

The storage allocation scheme for this process is shown in Fig. 2. For the

given interval (a, b), assume that the value V(h) is known, we divide (a, t>)

into N = 16 subintervals. Let the left end point of the i-th interval be

y. , we then have
1

y. = a + (i - 1) 5-Jp.
m (2>15)

All the y. 's are stored into row T by using
1

h = (b - a)/N (2.i6)

and

row T = a + PEN x h, (2.17)

where PEN is an integer whose value is j in PE . Usually, (2.2) is
J

used to evaluate the sequence p. (A) because it requires less computation time,

on the ILLIAC IV. But if there is any subdiagonal element which is relatively

small with respect to the rest of the elements of A, then (2.12) is used.

The process is itself sequential, but all N V(y.)'s can be calculated simul-

taneously since each PE contains one y. and all the PEs are kept busy. Once

the V(y.)'s are computed, they are stored into row V (see Fig. 2).

The number of eigenvalues contained in the intervals

(y1$ y
2

), ..., (y-jt. l^g) can be found by

row M = (row V shift left one PE) - row V. (2.18)

V(b) - V(y
w ) gives the number of eigenvalues contained in the Nth interval

(y , b) where V(b) is known.
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PE 1 2 3 A 5 6 7 8 9 10 n 12 13 14 15

ROW T u
l

u
2

u
3

V
U

U
5

u
6

v
7

y
8

V
9

U
10

u
ll

y
12

P
13 UH W

15
p
16

ROW V v
l

V
2

V
3 \ V

5
V
6

V
7

V
8

V
9

V
10

v
ll

V
12

V
13

vu V
15

V
16

ROW M 1 1 1 1 1 1 3 1

ROW EL. <b
l

'MM
4b

6
4b

8
Wiwh

*bn m %
ROW EL

2
•

lb
2

lb
ic

•

•

ROW EL,

ROW EU Ubj w MM. ub
6

ub
8 W{

ubn H Jb
16

ROW EU ub. lb
io

•

•

ROW EU,
k

ROW L
x 1 *U

ROW L

•

•

ROW L

ROW U H UH
ROW U

•

•

•
ROW U

ROW T: LEFT TERMINAL POINT OF EACH INTERVAL

ROW V : // OF SIGN VARIATIONS IN STURM SEQUENCE AT POINT p

ROW EL
f
AND EU.: LOWER AND UPPER BOUNDS OF THE SUBINTERVAL WHICH CONTAINS EXACTLY

ONE EIGENVALUE

ROW E
t
AND U

i
: LOWER AND UPPER BOUNDS OF THE SUBINTERVAL WHICH CONTAINS MORE THAN

ONE EIGENVALUE

FIGURE 2. STORAGE ALLOCATION SCHEME AT THE END OF THE FIRST STAGE
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Once row M is obtained, its contents are examined. For these

PEs with M equal to 0, nothing is done. For those which have M equal to

1, the y.'s are stored into the proper position in row EL. (the value of j

may be different in different PE's) as the lower bounds of the intervals

that contain only one eigenvalue. The values of y. + h are stored into the

corresponding position in row EU . as the upper bounds (see Fig. 2). The
J

subintervals which contain more than one eigenvalue are treated similarly

where y. and y. + h are stored in row L. and U, respectively.

The process described above can be performed simultaneously for

each group of PE's with the same value of V.. The shaded area in the figure

means that some y. or y. + h are stored there.

We repeat the above mentioned process for each subinterval which

contains more than one eigenvalue (i.e., the subintervals stored in the

area between row L and row U in Fig. 2) until no more subintervals con-

tain more than one eigenvalue. This can be achieved, at least in principle,

since all the eigenvalues are distinct.

The storage allocation scheme for the implementation of the

second stage, namely the Zero-in algorithm (App. I), is shown in Fig. 3.

Since the diagonal and subdiagonal elements of the matrix A are referred

to very often in each PE during the process, they are duplicated into each

PE at the beginning of this stage (from rwo D to row E ). This is

feasible since we assume that the order of the matrix is equal to the

number of PE's and 6U<<20U8 which is the number of rows in the PE memory.

The lower bounds and upper bounds of the subintervals that contain only

one eigenvalue are stored in rows B and C respectively as initial contents.

The b. and c. are interchanged if necessary to satisfy the conditionii
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PE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

* ROW A
•l

a
2

a
3 •a

a
5

a
6

a
7

a
8

a
9

a
io

a
ll

a
12

a
13

a
14

a
15

a
16

* ROW B b
l

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

b
10

b
ll

b
12

b
13

bu b
l?

b
16

* ROW C C
l

c
2

c
3

c
4

c
5

c
6

c
7

c
8

C
9

C
10

c
ll

C
12

c
i3

c
14

C
15

C
16

* ROW D. d
l

dl dl d
l

d
l d

l dl d
i dl d

l
d
l

d
l

dl d
i

d
l

d
l

* ROW D
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

d
2

• • • • • • • • • • • • • • • • •

ROW D
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

d
n

ROW E e
l

e
l

e
l

C
l

C
l

e
l

C
l

e
l

e
l

e
l

e
l

6
1

6
1

C
l

C
l

e
l

ROW E e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

e
2

• • • • • • • • • • • • • • • • •

ROW E ,

n-1 ViVl Vl Vi Vl e
n-l Vi e

n-l Vi e
n-l

e
n-lVi e

n-lVi C
n-]Vi

* ROW PA pa
l

pa
2

pa
3

pa
4

pa
5

pa
6

pa
7
pa

g
Pa

9
pa

10
Pa

il
pa

12
Pa

l: P*14 Pa
l'

pa
16

* ROW PB pb
l

Pb
2

Pb
3

Pb
4

Pb
5

Pb
6

pb
7

pb
8

Pb
?

pb
io

pbu pb
12

pb
l;

Pb
14

Pb
l'

Pb
lf,

* ROW PC pc
l

pc
2

pc
3

pc
4

pc
5

PC
6

pc
7 P Cg pc

9
pc

10
PC

11
pc

12
PC

13
pc

14
PC 1( PC

16

* ROW INT p
l

p
2

p
3

P
4 p

5
P
6 p

7
P
8

P
9 p 10 Pll p 12 P13 P 14 p 15 P 16

* ROW MID m
l

m
2

m
3

m
A

m
5

m
6

m
7

m
8

m
9

m
io

mu m
12

m
13

m
i4

m
15

m
i6

(s),
ROW PA: VALUES OF p (a

v
'

) , DENOTED BY pa .

(s).
ROW PB: VALUES OF p (b ), DENOTED BY pb

ROW PC: VALUES OF p (c
(s)

), DENOTED BY pc,.
n 1

r
i

ROW INT: VALUES OF LINEAR INTERPOLATION BETWEEN a
(s)

AND b
(s)

.

ROW MID: VALUES OF MIDPOINT OF INTERVALS (b
(s)

, c
(s)

).

* ALL THE ENTRIES SHOWN IN THESE ROWS ARE THE VALUES AT sTH ITERATION, THE

SUPERSCRIPT "s" IS OMITTED.

FIGURE 3. STORAGE ALLOCATION SCHEME FOR THE SECOND
STAGE—ZERO- IN ALGORITHM
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|p (b.)| < |p (c.)|. The entries a.'s in row A are then chosen to be the
'*n 1 ' — ' n 1 ' i

same as c. The values of p (a.), p (b.) and p (c.) are computed simul-
i n i n l n l

taneously for i = 1, . .., N and stored into rows PA, PB and PC. The in-

terpolations p. of a. and b. are stored in row INT. The midpoints m. ofill r
i

b. and c. are stored in row MID. The new values of b. in row B are takenii l

to be p. or m. depending on whether p. is between m. and b.. This can beii l ii
done simply by using an IF statement. The new contents of row A and row C

are then changed as described in APPENDIX I. We then start the next iter-

ation. When the stopping criteria are satisfied in some PEs, these PEs

are disabled. But for those PEs which are still enabled, the process con-

tinues until the stopping criteria are satisfied in each PE.

If we have one interval that contains some very close eigenvalues

then the number of sturm sequence evaluations may be large, this coupled

with the time required for storing and fetching various subintervals for

the PE memory can prove to be a time consuming process.
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3. TIME ESTIMATES

The time required to find all the eigenvalues for various matrices

with different dimensions is discussed in this section. We will discuss

first the simple case n <_ N, where n is the dimension of the given matrix

and N is the number of PEs in the parallel computer.

Two classes of operations will he discussed, data manipulations

and arithmetic operations. The clock time taken "by each of the four basic

arithmetic operations in the ILLIAC IV is shown in TABLE I, part of

TABLE 6-2 in [15]. We assume that we use normalized floating-point numbers

rounded in 6i+-bit mode.

TABLE I. Clock Time for Each Arithmetic Operation on ILLIAC IV

Operations Clock Time*

+ (ADRN

)

(SBRN)

x (MLRN)

r (DVRN)

6

7

9

56

-9
* 1 clock time # 60 x 10 seconds

In what follows we will assume that one addition or subtraction is

equivalent to one multiplication, and a division is equivalent to 6 multi-

plications.

(l) Computation Time (CT)

The computation process in the multisection method can be divided

into four major parts:
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(a) calculate ll-A-ll^j

(b ) calculate the square of each subdiagonal element,

(c) evaluate the Sturm sequence (p.(A)} or {q.(A)}, and

(d) execute the zero-in algorithm.

The norm
|
|a|

| m is used in deciding upon the stopping criterion.

Besides, if all the eigenvalues are required, we can use (-||a| , ||a| )' ^' x * I I I I oo* II II oo

as the initial interval. To find the norm, (2.13) is used. This part

requires 2 additions and is executed only once.

For part (b), we use (2.lU). The square of e. (i = 1, ..., n - l)

is calculated once and for all, so only one multiplication is required.

For the evaluation of the Sturm sequence we assume that (2.2)

is used, this requires 2n multiplications and 2n additions. Besides, to

find the number of eigenvalues contained in each interval requires 1

subtraction.

The zero-in algorithm is an iterative process. Many iterations

may he required before we obtain an eigenvalue. During each iteration,

(2.2) is used to evaluate the value of the characteristic polynomial.

Then,

INT. = [b. p
n

(a.) - a. Pn (*>.)]/[Pn
(a

j
_) - Pn

(b.)] (2.19)

is used for interpolation, hence 2(n + l) multiplications, 2(n + l) sub-

tractions and 1 division are required.

Suppose p is the number of times we repeat part (c) to separate

all the eigenvalues and q is the number of required iterations in the Zero-

in algorithm. Then the total number of arithmetic operations used to obtain
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all the eigenvalues is approximately

6q + Un (p + q) (2.20)

equivalent multiplications, and the total time, in microseconds, for the

arithmetic operations is roughly

T
A

= ^ q + 2n (p + q). (2.2l)

If we assume that p and q remain constant as n varies, then (2.21

)

represents a linear relation between the total CT and the dimension of the

matrix, see Fig. h.

While for n > N where we assume here that n <_ 1021+ , part (a)

requires 2«[— ] additions, and part (b ) used [— ] multiplications, where [^-]

is the smallest integer no less than —
. The number of the required opera-

tions in parts (c) and (d) remains the same. Thus, from (2.21), the total

CT, in microseconds, for the general case is approximately

*A
=
I [

N
]

+
2 q + 2n (p + q) > (2 * 22)

see Fig. 5.

(2) Data Manipulation Time (DMT)

Most of the data manipulation occurs during the following processes

(a) Dividing the given interval into N subintervals and distributing

the left terminals into all PEs.

(b ) To evaluate the Sturm sequence in all PEs simultaneously, we have

2
to grab d. and e. one by one from the memory because we store them across

all PEs. This process takes 2n times of the function: GRABONE.
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2
q

1 Unit: ys

>

H
O |q + 2N(p+q)
rt

M
n
H

2(p+q)

^""

n: Dim. of Matrix

1 i

RELATION: T
A

= |- q + 2(p + q )n

p: # of times of Sturm sequence evaluations

q: # of required iterations in Zero-in algorithm

N: # of PEs in parallel computer

FIGURE U. TOTAL COMPUTATION TIME FOR n < N
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(c) As mentioned above, the Sturm sequence may "be evaluated more

than once to separate all the eigenvalues. Except for the first evaluation,

we have to pick up the interval which contains more than one eigenvalue from

the PE memory shown in Fig. 2. Since the intervals are stored at random,

i.e., not every PE contains such kind of interval, we must test all the

PEs and enable those PEs which contain such intervals, then pick up the

interval contained in the PE with maximum PEN. This requires one execution

of the MAX function.

(d) Before executing the zero-in algorithm, we must distribute the

diagonal elements and the squares of the subdiagonal elements into all PEs.

This requires 2n executions of GRABONE function.

Let p and q have the same meaning as before, then the data mani-

pulation requires roughly p calls of the function MAX and 2np calls of the

function GRABONE.

The execution time for the functions MAX and GRABONE can be

calculated according to GLYPNIR PROGRAMMING MANUAL and TABLES G-l , G-2 in

[15]. The function MAX requires 62 clocks while the function GRABONE

requires 15 clocks. Thus the time, in microseconds, required for data

manipulation is approximately

T
D

= t
D

= 2pn. (2.23)

By adding the t and t , we obtain the total execution time,

t
T =f [|] +|q+ 2n (q + 2p). (2.2*

Fig. 6 shows the total execution time for the multisection method to find
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all the eigenvalues with respect to the dimension of the given matrix for

some sets of values p and q.

Let n he the dimension of matrix A, (-AM , I |a| ) he the
» II II oo> II I I 00

initial interval which contains all the eigenvalues of A, and t he the
B

number of bisections on a serial machine to obtain an eigenvalue, then

2 I
A

!
< e. (2.25)

I 00 —

Using the multisection method on a parallel machine to separate

the same eigenvalue we require, say, t steps, then

t

2| | A I /N < e. (2.26)11 I I 00 —

Solving for t and t from (2.25) and (2.26), we find that the ratio

tjt.. is roughly equal to £n N/iln 2, i.e., £og.N. For ILLIAC IV, N = 61+,

the ration t /t is 6. This is not much of an improvement. However, when

we use the multisection method to separate all the eigenvalues we then use

either the Zero-in algorithm or the bisection method to compute 6k eigen-

values in those intervals simultaneously. Hence this method is at most

6'[n/6h] times as fast as the serial computer to find all the eigenvalues.

For a matrix with dimension n = U096, the multisection method is at most

28U times faster.
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h. ERROR ANALYSIS

The error bounds for the eigenvalues of a symmetric tri diagonal

matrix calculated by the bisection method are 6x2 | |a| , [7, 12], for

any reasonable round-off procedure in floating-point binary arithmetic if

a t-digit machine is used. Note that the bound is independent of n, the

dimension of the matrix.

In the first stage of the multisection method all the eigen-

values are separated by the Sturm sequence process which is substantially

the same as the bisection method except that the interval which contains

the eigenvalues is divided by N instead of 2. Thus the numerical accu-

racy in this stage should not be worse than that in the bisection method.

In fact, very few iterations of the Sturm sequence processes are required

to separate all the eigenvalues.

The Zero-in algorithm can be thought of as a bisection method

combined with linear interpolation. Usually, the interpolated point is

used as a new end point of the new interval. But if it is outside the

old interval, the midpoint of this interval is used as a new end point,

this is in fact a bisection process. Hence we have the same error bounds

for the computed eigenvalues, 6 x 2 ' x
|
|a|

|
. We see that the relative

error may be quite large for small eigenvalues.
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III. RESULTS AND DISCUSSION

Consider the matrix B,

" x 1

1 -x 1

lxl
1 -x 1

I

1 x

1 -x

(3.1)

nxn,

where x is real,

1. EIGENVALUES

The eigenvalues are computed by both the QL algorithm [3, tq£l]

and the multisection method. TABLE II gives some of the results computed

on ILLIAC IV simulator (B67OO). The tolerance e in both methods is set

to be 10~15
.

The exact eigenvalues of matrix (3.1 ) can be computed by the

following formulae;

r
2 , 2 , k ^1/2

x
k

= [x + k cos (^ry^

A
n+l-k " " V k = 1, ..., [n/2],

A n = if n is odd.
n+1

(3.2)

(3.3)

(3.U)
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TABLE III gives the values of X. of some matrices for the comparison

with TABLE II. The A.'s are computed by (3.2) (3.1+ ) on the IBM 360/75

in long precision.

TABLE II. Eigenvalues Computed on ILLIAC IV Simulator

For x = 1.0, N = h, the eigenvalues :

Multisection

-1.902113032590307

•1.17557050U58W7

I.17557050U58U9U7

1.902113032590300

QL

-1.902113032590^00 (0)**

-1.17557050^58 5025 (1)

1.17557050U58U961 (h)

1.902113032590350 (2)

For x = 1.0, n = 8, the eigenvalues :

Multisection

-2.128870331006081|

-I.829561793253738

-I.U1U213562363092

-1.058590930637600

1.058590930637600

1.U1U213562373092

1.829561793253738

2.128870331006098

QL

-2.128870331006297 (0)

-I.829561793253966 (l)

-1.1*11+21356237333^ (2)

-1.058590930637820 (h)

1.058590930637628 (1+)

l.UlU213562373106 (2)

1.829561793253809 (3)

2.128870331006169 (2)

(Continued on next page)

* The underline shows the digits which do not match with the values shown
in Table III.

** The numbers in parentheses indicate the number of iterations required
to obtain that eigenvalue by TQL1.
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TABLE II (continued)

For x = 10 , N = 12, the eigenvalues

Multisection

-1.9 1+i88363 1+8T78Ut

-1. 770912051 33U6U8

-I.U97021U963 75602

-I.l36l29 1+93506317

-0. 70920977^15 5 57^+7

-0. 21+1073360718051+6

0.2lH0733607l80522

0. 70920977^15557^

1. 136129^9350632^

l.U97021^96375602_

I.7709l205l331+655
p

1.9 1+18836 3I+8778I+7

QL

-1.91+1883631+878216 (0)

-1.770912051335017 (1)

-I.U97021U96375986 (2)

-1.136129^93506708 (2)

-0.70920977^1559833 (2)

-0.2U10733607183300 (2)

0.2U10733607178379 (2)

0.70920977^1555^99 (3)

1.136l29 1+9350632j+ (h)

1.1+97021 1+96375638 (3)

1. 770912051 33 1+69p_ (3)

1.9^188363^877868 (2)

For x = 10 , N = 2l+, the eigenvalues :

Multisection

-1.9 81+229^0265^165

-I.937166322283062

-I.859552971803382

-I.75261336OH6257

-I.618033988780788

-1. 1+5793725^877116

-I.27I+8I+7979536602

QL

-1.981+2291+02651+982 (0)

-I.9371663222838I+U (l)

-1.8595529 71 8Q1+177 (2)

-I.75261336OH 7OIO (2)

-1.6l803398878l669 (2)

-I.I+5793725I+87 805I+ (2)

-1. 27^81+7979537^55 (2)

(Continued on next page)



27

TABLE II (continued)

Multisection

-I.O7165359OOOU651

-0.8515585831888650

-0.6180339888307955.

-0. 37^762629301+8665

-0.125581039^567707

0.l2558l039 1+56776ci

0.37^762629301+8683

0.6180339888307955

0.851558583l88865£

1.07l653590OOi+651

1.2 Jk8k 79 79 5 36602

1. 1+5793725 1+87710£

1.618033988780795.

I.752613360116257

1.859552971803389

1.937166322283083.

1.981+229 1+0265 i+l 1+ )+

'

QL

-1.071653590005390 (2

-0. 8515585831

8

9561+9 (2

-0.6l 8033988831 1+172 (2

-0.371+762629305J+385 (2

-0.12 5 5 810 39^ 572610 (2

0.12558l039 1+565282 (2

0.371+ 762629 301+6693 (2

0.61803398883061+99 (2

0.8515585831888370 (3

1.071653590001+658 (5

1.271+81+7979536652 (3

l. I+5793725l+877l80 (3

1.618033988780873 (3

I.7526l3360ll6300 (3

1.859 5 52971 8031+21+ (3

1.937166322283091 (3

I.98I+229I+0265I+158 (1
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TABLE III. Eigenvalues Computed by (3.2) - (3.1*) on the IBM 360/75 in
Long Precision

For x = 1.0, N = k :

±1.90211 30325 9030?

±1.17557 050^5 8U9U6

For x = 1.0, N = 8 ;

±2.12887 03310 0608I+

±1.82956 17932 5371+5

±l.l+ll+21 35623 73095

±1.05859 09306 37601

For x = 10*"^, N = 12 :

±1.9^188 363^8 77852

±1.77091 20513 3^653

±1.1+9702 1U963 75601

±1.13612 9^935 06320

±0.70920 977^1 55572

±0.2^107 33607 18052

For x = 10~ 5
, N = 2k:

±1.981+22 91+026 51+15^

±1.93716 63222 83073

±1.85955 29718 03390

±1.7526l 33601 16255

±1.6l803 39887-80796

±1.1+5793 7251+8 77118

±1.271+81+ 79795 36599
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TABLE III (continued)

±1.07165 35900 OU650

±0.85155 85831 88861

±0.61803 39888 30797

±0.37^76 26293 OU867

±0.12558 1039^ 56776
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2. ACCURACY

Comparing the eigenvalues listed in the last section, we find

that the eigenvalues obtained by the multisection method agree to lk

decimal digits with those listed in TABLE III, a better agreement than

those of the QL algorithm [3, tq£l].

There are some cases where the multisection method may get

into trouble. Consider the matrix of order n such that

d = 2, i = 1, 2, ..., n,

(3.5)
e. = 1, i = 1, 2, ..., n - 1.

The eigenvalues of this matrix are

k Sin ^ 2(n+l) ] * k = 1
'

2
'

•'•' n * (3,6)

If n is large the smallest eigenvalues are much smaller than unity. In

computing the Sturm sequence for any value of y we have

P.(y) = (y - d.) P.(y) - e^ P^Cp) (3.1)

and the factor y - d. is y - 2« Suppose we were working in 15-digit

-9
decimal floating-point arithmetic, and y is of order 10 in magnitude,

then for y - 2, the last 9 digits of y are completely lost. In this

case we may not obtain many significant figures for the small eigen-

values .

Consider the following two graded matrices with diagonal elements

12
varying from 1 to 10 as example. Matrix X is defined by

d , d , . .
.

, d = 1, 2 , . . . , 12 ,12 12
(3.8)

e. = 1 for i = 1, 2, . . ., 11.
i
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Matrix Y is defined by

d , d , ..., d = 12 ,11 , ..., 1,
1 2 12

(3.9)
e. = 1 for i = 1, 2, . . ., 11.

Both matrices should have the same eigenvalues.

The eigenvalues of X and Y are computed by using Kahan and Varah's

recursection method [l*+] on IBM 360/75 with long precision. They are listed

in TABLE IV. The eigenvalues of X computed by both the multisection method

and the QL algorithm are shown in TABLE V. Those of matrix Y are listed

in TABLE VI.

For the QL algorithm, the eigenvalues of X computed by this method

have very high accuracy. But the eigenvalues, especially those with small

magnitude , of Y have larger relative errors. However, for the multisection

method, the eigenvalues of X and Y are almost the same and are very close to

those shown in TABLE IV.
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TABLE IV. Eigenvalues Computed "by Recursection Method

Eigenvalues of X Eigenvalues of Y

0.99902 2U838 11381 +

0.102U0 00960 28228 + k

0.590J+9 00001 622TT + 5

0.10U85 76000 00097
1Q

+ 7

0.97656 25000 00035 + 7

0.60^66 17600 00008 + 8

O.282U7 52U90 00017 + 9

0.10737 U182U 00008 + 10

0.3^86.7 8UU01 00013
1Q

+ 10

0.10000 00000 00006 +11

0.25937 U21+60 1001U + 11

0.61917 36U22 1+00^9 + 11

0.99902 2U838 11U02 +

0.1021+0 00960 28229 + k

0.590^9 00001 62275 + 5

0.10U85 76000 00095 + 7

0.97656 25000 000U8 + 7

O.60U66 17600 00029 + 8

0.282*+ 7 52^90 00005
1Q

+ 9

0.10737 1+182*+ 00002 + 10

0.3^867 8^1+01 00012 + 10

0.10000 00000 00005
10

+ 11

0.25937 U2U6O 10017
1Q

+ 11

0.61917 361+22 1+0033 + 11

TABLE V. Computed Eigenvalues of Matrix X

By Multisection

0.99902 21+838 11327 10
+

0.102>+0 00960 28223_ 1Q
+ h

0. 590^9 00001 62229_ 10
+ 5

0.10i+85 76000 0009p_ 1Q
+ 7

0.97656 25000 00011
1Q

+ 7

O.60I+66 17600 00000_ + 8

0.2821+7 52U90 00001 + 9- 10

0.10737 U182U 00000 + 10

By QL

0.99902 21+838 113^1 + (0)**
10

0.1021+0 OO96O 28221+

0.5901+9 00001 622U8

0.101+85 76000 00093

0.97656 25000 000U7

0.60U66 17600 00009

0.2821+7 521+90 00017

0.10737 U182U 00001+

10

10

- 10

- 10

- 10

—- 10

- 10

+ h (1)

+ 5 (1)

+ 7 (1)

+ 7 (1)

+ 8 (1)

+ 9 (1)

+ 10 (1)
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TABLE V (continued)

O.3U867 81+1+00 99998 + 10

0.10000 00000 00000 1_ + 11

0.25937 1*21+60 10001 2_10
+ 11

0.61917 361+22 1+0002 h + 11

O.3I+867 81+1+01 00016 8 +10 (1)

0.10000 00000 00007 9, +11 (l)

0.25937 1+21+60 10012_2
10

+ 11 (l)

0.61917 361+22 U0036_6 + 11 (1)

** This column gives the number of iterations required to isolate the
corresponding eigenvalue by TQL1

.

TABLE VI. Computed Eigenvalues of Matrix Y

By Multisection

0.99902 21+838 11316 +

0.1021+0 00960 28223. + 1+

0. 5901+9 00001 62229
10

+ 5

0.101+85 76000 00085 +— 10

0.97656 25000 00011 + 7— 10

0.601+66 17600 00002 + 8

0.2821+7 521+90 00001_ + 9

0.10737 1+1821+ 00000_ + 10

0.31+867 81+1+00 99998 + 10

0.10000 00000 00000 + 11- 10

0.25937 !+2l+60 10001 + 11

0.61917 361+22 i+oooo_ + 11

By QL

0.99902 25512 37^30
10

+ (2)

0.1021+0 00960 22381+
10

+ 1+ (1)

0.5901+9 00001 61379
10

+ 5 (1)

0.101+85 76000 00083
10

+ 7 (1)

0.97656 25000 00000
10

+ 7 (1)

0.601+66 17600 00000
10

+ 8 (1)

0.2821+7 521+90 00000_
10

+ 9 (1)

0.10737 1+1821+ 00000_
10

+ 10 (1)

0. 31+867 8I+1+01 00000
10

+ 10 (1)

0.10000 00000 ooooo_
10

+ 11 (1)

0.25937 1+21+60 10000_
10

+ 11 (1)

0.61917 361+22 1+0000 + 11 (1)
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3. EXECUTION TIME

(l) Complete Eigenvalue Problems

For the matrix B in (U.l), we test those with x = 1 and dimension

n = U, 6, 8, 12, 2U, 36. The execution time for finding all the eigenvalues

of each matrix by using both the multisection method and the QL algorithm

on ILLIAC IV simulator are listed in TABLE VII. The unit time is millisecond

(ms). For comparison, we plot the execution time versus the dimension of

matrix for both methods in Figure 7.

TABLE VII. Execution Time

Dimension of
Matrix A

Execution Time (in ms

)

Multisection QL

U 2.0 3.6

6 U.8 8.1+

8 2.9 i 13.0

12 6.8 28.0

2\ 13.0 99.0

36 1+1.0 220.0

For most of the test matrices except that with n = 36, all the

eigenvalues are separated in one execution of the Sturm sequence process,

It takes 7 executions of the Sturm sequence process (i.e., p = 7) to

separate the eigenvalues of the matrix with n = 36. The Sturm sequence

process actually doesn't consume much execution time, but the data fetch-

ing and manipulations during this process causes the execution time to

increase obviously as p increases. This explains the spike in the
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MULTTSEC curve at n = 36 in Fig. 7« If the p remains almost constant with

respect to n, we can expect the MULTISEC curve to hehave similarly for

n > N. The discrepancy between the execution times in Figs. 6 and 7 is

caused by the variation in the number of interpolations (i.e., q in Fig. 6)

used in the Zero-in algorithm.

With x = 10 in the matrix B, we test those with dimension

n = k, 6, 8, 12, 2k. The execution time for finding all the eigenvalues

of each matrix by using both the multisection method and the QL algorithm

are shown in Figure 8.
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FIGURE 8. COMPARISON ON THE EXECUTION TIME BETWEEN THE

MULTISECTION METHOD AND QL ALGORITHM FOR MATRIX B WITH x=10~ 5
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(2 ) Partial Eigenvalue Problems

For partial eigenvalue problems, we have the following results:

(1) Matrix B with x = 10~ 5
, n = 12:

(a) Multisection method:

3.h ms to compute 2 leading eigenvalues,

3.2 ms to compute 2 smallest eigenvalues.

(b) Conjugate Gradient method [l6]:

23 ms to compute min. eigenvalue with eigenvector,

16 ms to compute max. eigenvalue with eigenvector.

(2) Matrix B with x = 1.0, n = 2k:

(a) Multisection method:

5.7 ms to compute 5 leading eigenvalues,

U.8 ms to compute 5 eigenvalues in the interval (l.O, 1.5).

(b ) Conjugate Gradient method:

57 ms to compute min. eigenvalue with eigenvector,

k9 ms to compute max. eigenvalue with eigenvector.

(3) Matrix B with x = 1.0, n = 36:

(a) Multisection method:

lU ms to compute 7 leading eigenvalues,

7.1 ms to compute 7 eigenvalues in the interval (-1.5, -1.0).

If we use the QL algorithm for the cases (l), (2) and (3) we

still have to find all the eigenvalues and then select the required eigen-

values from them. The time consumed by the three methods is shown in

Figure 9. We didn't test the bisection method, but from the time estimate

in Section 2.5, the curve of the bisection method should be between the QL

algorithm and the multisection method.
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(3) Special Cases

The multisection method is not always superior to the QL algorithm

in execution time. For example, for the following symmetric tridiagonal

matrix,

subdiagonal

+7. 83768800581+

-8.10502269777

10
- 1

10 +

-2.97985867006 -11

-1.92U66782539
10

+

+8.6023252670U +

diagonal

+1+.1+0021275387
10

+

+3. 80 3U 76 81 6l 8 +

+1.0796 3101+ 30 3 + 1

+1+.25675675677
10

+

+6.7l+32l+32l+323
10

+

+8.00000000000 ++0.00000000000

the eigenvalues given "by Wilkinson [3] appear as very close pairs,

-l.59873l+29360
1Q

+ 0,

+l+.l+559896381+9
10

+ 0,

+l.6ll+27l+l+655l
10

+ l,

-1.59873l+293l+6
1Q

+

+1+.1+559896381+9
10

+

+1.6ll+27l+l+6553
10

+ l,

thus leading to a very slow process in separating them by the multisection

method. The time required to find all the eigenvalues is:

Multisection method: 10 ms

QL algorithm: 5.6 ms .
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IV. CONCLUSIONS

Generally, the QL algorithm is an efficient method for computing

the eigenvalues of a symmetric tridiagonal matrix on a serial computer.

The average number of iterations per eigenvalue is generally less

than 2. For example, for the graded matrix (3.8) only one iteration per

eigenvalue was required.

However, to implement this algorithm on a parallel machine, we

obtain very low efficiency because only two or three PEs are kept busy at

any moment during the process. Besides, we have no choice but to find

all the eigenvalues, this would be uneconomical for very large matrices.

Comparing the test results shown in the last chapter, we find that

the multisection method is much more favorable than the QL algorithm in

the following cases:

(1) When some selected eigenvalues are required, for example

the largest or smallest, or the eigenvalues in a given interval.

We have tried to find the largest eigenvalue of matrix B with x = 1.0 and

n = 2k by using the Conjugate Gradient method implemented in parallel on

the ILLIAC IV simulator, it required 1+9 milliseconds. But the multisection

method finds the two leading eigenvalues in only 1+.8 milliseconds.

(2) When we are interested only in the general distribution of the

eigenvalues rather than their accurate determination. In this case the

multisection method gives the result very fast.

(3) When all the eigenvalues are well separated, we may find that

we have isolated all the eigenvalues after one step of multisection.
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APPENDIX I. THE ZERO- IN ALGORITHM

Here we describe the zero-in algorithm which is due to Van

Wijngaarden, Zonneveld, Dijkstra and Dekker [ll, Appendix].

The zero-in algorithm is an extension of the secant method.

For a real continuous function f(x) and two given values a and b,

f(a)f(b) < 0, the secant method is defined by

x = a.
o

Xj_ = b, (Al)

x.._ = (x. f(x. ) - x. f(x.))/(f(x. ) - f(x. ))
1+1 1 1-1 1-1 1 1-1 1

(i = 1, 2, ...). (A2)

When this method converges to the simple zero x of f(x) we have

xi- x
t

- c(xi-i- x
t

)r
- (A3)

where r = (v5 + l)/2 [10 pp. 100-101 ] and hence the convergence rate is

better than the usual simple iteration method [10, p. 97].

However, the secant method may sometimes give a result which is

outside of the interval (a, b) so that it converges to another root or even

diverges. To avoid this, it is useful to combine the bisection method and

the secant rule, essentially this is the Zero-in algorithm.

It is described as follows: For the given interval (b , c) which

contains only the specified zero of f(x), we have f(b)f(c) < 0. Three

points a , b and c are chosen as follows:
o o o

If |f(b)| < |f(c)| then b = b, c = c, a =c. (Ak )
I

' — ' ' o o o o

If |f(b)| > |f(c)| then b = c, c = b, a = c . (A5)II
'

' o o ' o o

Then, at the beginning of the i-th stage, the three points a., b. and c.

are involved and such that
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f(b.)f(c.) < 0, |f(b.)| <_ |f(c.)|. (A6)

The process in this stage is then as follows:

(1 ) Interpolate between a. and b. by (A2) to get P..

(2) Determine the mid-point mJ of b. and c..ill
(3) If P. is between b. and m. , then it is accepted as b. ., . Other-

1 11 l+l

wise m. as accepted as b. ,_ .

1 l+l

( k ) Take a
.

,

n = b . and c
. ,

, = c .

.

l+l 1 l+l 1

(5) If b and c satisfy the conditions

f(b.+l)f(c.
+1 ) < and |f(b.

+1 )| < |f(c
±+;L

)|

then go back to (l) for the next stage, otherwise go to (6) to adjust the

values of a. , , b. , and c.
1+1' i+1 i+1

(6) If f(b. , )f(c. ) > then we take c = b. ; this will ensure

that f(b.
+1

)f(c
i+1

) < 0.

(7) If
I f (b. ,_ ) I > If (c. ,_ ) I then we interchange b. ,_ and c. ... and
1 1+1 ' ' 1+1 ' 1+1 1+1

take a. . to be the value of new c. ,_ . The right conditions now hold for
l+l l+l

the beginning of next stage. Of course, once we find b. in each stage, we

check to see whether to accept it as a reasonable root of the function f(x)

The stopping criterion for the zero-in algorithm seems to be a

bit involved. To use the criterion lb. - P. I < e is unreliable. For
I

1 1

'

example in the case of Fig. Al if |f(b )|«|f(c )| the quantity lb - Pr
' o '

. o ' ' o o

'

will be very small although neither b nor P is near the required zero.
o o

Since the required zero is between b. and c.. to use |b. - c. as theII ' 1 1

'

stopping criterion seems all right, but unfortunately it may never be

satisfied. See Fig. A2.
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To overcome the difficulty described above, Wijngaarden et. al.

[11, Appendix] suggests a simple stratagem. Suppose the stopping criterion

is lb. - c. I < toil. Then if |P. - b. I < toil, then P. is replaced by

P. + sign (c. - b. ) x toil, this will ensure that a b is finally beyond

the required zero and makes f (b... )f (c._, n ) > 0. Then c. in is switched as* l+l l+l l+l

mentioned in process (7) and this immediately gives a b.,_, and c. , con-
l+l l+l

taining the zero and with lb. ,_ - c. ,_ I < toi. The choice of toil is
1 l+l l+l

'

experiemental and depends on the machine used.
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APPENDIX II . GLYPNIR PROGRAMS

The ILLIAC IV GLYPNIR program, "MULTISEC" is listed below. It

contains two major subroutines: "STURMPROC" and "ZEROIN". "STURMPROC"

is used to obtain the intervals such that each of them contains exactly-

one of the eigenvalues of a symmetric tridiagonal matrix A in a given

interval. If all the eigenvalues are required the interval is

(-||A| ^j MaII^). The "ZEROIN" routine is used to compute the eigen-

values contained in the intervals given by "STURMPROC". Switch "CHOICE"

is given to provide the choice of using either one or both of "STURMPROC"

and "ZEROIN". If only "ZEROIN" is used, the used should give the upper

and lower bounds of each interval containing only one eigenvalue.
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SUBROUTINE MULTISEC (CINT N.CREAL EPS.PCPOINT OtPCPOINT E.PCPOINT EIGL»
PCPOINT EIGU.CINT ISW.CREAL HI.CREAL LO.CINT CHOICE.

CINT MITER)

t

BEGIN
CINT NM.MAXNU LABEL CH1.CH2I PREAL A.BI PE REAL VECTOR Pllll
* THIS SUBROUTINE CONSISTS OF TWO MAJOR SUBROUTINES: STURMPROC i ZEROIN
% STURMPROC FINDS ALL THE INTERVALS SUCH THAT EACH OF THEM CONTAINS
% EXACTLY ONE EIGENVALUE. ZEROIN FINDS ALL THE EIGENVALUES CONTAINED
* IN THE INTERVALS FOUND BY STURMPROC OR BY GIVEN. EITHER ONE OR BOTH
* OF THEM CAN BE CALLED BY USING SWITCH: CHOICE.
* CHOICE=l MEANS CALL STURMPROC ONLY.
* CHOICE=2 MEANS CALL ZEROIN ONLY.
% CHOICE=0 MEANS CALL BOTH.
* ISW=0 MEANS COMPLETE EIGENVALUE PROBLEM. OTHERWISE MEANS PARTIAL
* EIGENVALUE PROBLEM.
* MITER: THE MAX NUMBER OF ITERATIONS IN ZERO-IN ALGORITHM.

SUBROUTINE STURM»ROC»
BEGIN

CU REAL NORM,H.TMP»TMPl»
CU INTEGER I

.

JtKtL tVARUP.G.S:
CU REAL VECTOR MOOtNOMOU
PE REAL PEL.TE«P|
PE INTEGER AGR. VAR.NN.LLMT.KSW.FINISH.N1 :

PE REAL VECTOR JP.LWllOU
PE INTEGER VECTOR VUPI10H
LABFL GOUT.RPT.riNSJ
%
SUBPOUTINE STU3MI
* FIND THE AGREEMENT OF SIGNS IN STURM SEQUENCE
BEGIN

CU REAL OD.P 3
!

PE REAL oi.Ql.Rll
LABEL ENDS!
IF G=0 THEN
BEGIN

AGR:=0;
TEMP:=D(0J:
DD:=GRABONE (TEMP.O)

»

Rl :=DD-PELJ
Pi:=i: Oi:=Rl*
IF Ql GEO THEN AGR:=AGR*H
LOOP Lt=l.l»N-l DO
BEGIN
* GRAB DID AND ESQIL-l )

J:=L DIV 64:
TEMP:=Dt JH
0O:=GRAB3NE<TEMP,L) »

J:= (L-l) DIV 64:
TEMP:*P{ J):
pp:=GRAB3NE(TEMP»L-1) I

%

Ri:=<DD-°EL)*Ql-PP # Pl»
Pi: =01: Oi:=Ri:
If PI GEO EQV Ql GEO THEN AGR:=AGR*1

END! * END OF LOOP L
IF Q1=0 AND P1>0 THEN AGR:=AGR-1

END ELSE
BEGIN

00000100????
00000200????
00000300????
00000400????
00000500????
.00000600????
00000700????
00000800????
00000900????
00001000????
0000110077??
00001200????
00001300????
oooouoo????
00001500????
00001600????
00001700????
00001800????
00001900????
00002000????
00002100????
00002200????
00002300????
00002400????
00002500????
00002600????
00002700????
00002800????
00002900????
00003000????
00003100????
00003200????
00003300????
00003400????
00003500????
0P003600????
00003700????
00003800????
00003900????
00004000????
00004100????
00004200????
00004300????
00004400????
00004500????
00004600????
00004700????
00004800????
00004900????
00005000????
00005100????
00005200????
00005300????
00005400????
00005500????
00005600????
00005700????
00005800????
00005900????
00006000????
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iABS(TMP)/EPS;

TEMP: =01 0U
DO t =GRABONE ( TEMP .0)1
Qi:=DD-PEL» AGR:=OI
IF 01 GEO THEN AGR:*AGR*1»
LOOP L:»1»1»N-1 00
BEGIN
J:=L OIV 641
TEMPtxDf J)»
OD:=GRABONE(TEMP.L)

»

J:=(L-1) OIV 64»
TEMP:=P( J)l PP:=GRABONE(TEMPtL-l)

J

TEMP:=EIJ)» TMPtsGRABONE(TEMPtL-l)

«

IF Ql NEO THEN TEMP:=PP/Q1 ELSE TEMPI.
*
Qi:=DO-PEL-TEMP;
IF 01 GEO THEN AGR:=AGR*1
END J * END OF LOOP L
IF 01=0 THEN AGR:=AGR-1

FNDl
ENDS:
END; * ENO OF SUBROUTINE STURM
SUBROUTINE IDENTIFY!
BEGIN
mooe:=truej
m00e:=pen<63 and true*
var:=agr-rtl(1.»agr) ;

mode:=pen=63 anc true;
if isw=1 then begin isw :=isw-1 i var:=0 end else var : =agr-varupl
mode:=true»
for all var>1 do
BEGIN

NN:=NN*1

»

LW(NNl:=PEL?
up[nni:=pel*h;
VUP(NNl:=A3R-VAR{
FINISH:=0»

end;
for all var=1 do-

BFGIN
Nl :=Nl*lt
EIGLJN1 ]:=»EL;
EIGUf Nl J:==>EL*H»

fnD?
enoj * end df identify
*
* PREPARE FOR MAIN PROG
% FIND THE NORM OF MATRIX

K:= (N-l) DIV 641
IF K>0 THEN
LOOP I : =0 • 1 • <- 1 DO M0DU):=6<V;
M0D(K]:=N-K«64I
loop i :=0» 1 » < 00 begin

mode:=true;
m0de:=pen<m0d( ii and pen>0 and true*
r{ i i:=abs(dl i 1)+abs(e( 1 1 ) *abs (rtr ( 1 . .ei i )) ) end i

mooet=true» modf»=pen=0 and true*
PfOi:=ABS<D[0])*ABS(E[0)> 5

LOOP i:=l.l.< 00
P[ I ):=ABS(Dl I1)*ABS(EI I1)*ABS(RTR(1.»EII-1))) »

LOOP I:=0»1»K DO BEGIN

00006100????
00006300????
00006300????
00006400????
00006500????
00006600????
00006700????
00006800????
00006900????
00007000????
00007100????
00007200????
00007300????
00007400????
00007500????
00007600????
00007700????
00007800????
00007900????
00008000????
00008100????
00008200????
00008300????
00008400????
00008500????
00008600????
00008700????
00008800????
00008900????
00009000????
00009100????
00009200????
00009300????
00009400????
00009500????
00009600????
00009700????
00009800????
00009900????
00010000????
00010100????
00010200????
00010300????
00010400????
00010500????
00010600????
00010700????
00010800????
00010900????
00011000????
00011100????
00011200????
00011300????
00011400????
00011500????
00011600????
00011700????
00011800????
00011900????
00012000????
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AND TRUE!

NORM:=NOM[ I )t

IS". 1 WORD REAL: (NORM) )

;

* FIND B[I)=Em»EU] TO BE USED IN STURM
=TRUE5
i:=0.1.K DO

MODE:=TRUE» MOOE:=PEN<MODlKJ
NOMl

I

J:=MAX(PI II) ENOI
NORm:=NOM(0II
LOOP i:=l?l*<< DO

IF NOMl I )>NORM THEN
SIMWRITE (LI^E." NORM

*

* SEARCH FOR VERY SMALL EI I)

LOOP i:=0.1»K DO
BEGIN

mode:=truE; mode:=pen<mod( I l and true;
ksw:=o;
Temp:=EC II:
IF ARS (TEMP) /NORM < 1.0(i-6 THEN KSW:=ll
G:=MAX(KSW) I

IF 6=1 THEN 50 TO GOUT;
END:
GOUT
MODE
LOOP
BEGIN

IF Ell 1 = THEN P( I J:=EPS*NORM«NORM
ELSE P(I1:=E(I1*E[I1

END;
LO0D l:=0«lfK DO BEGIN

EI6L(Il:=O.OI EIGUfI]:=0.0 ENDS
LOOP It=0»ltlO DO BEGIN

Lwr I ) :=0.0 t UP(I):=0.0»
* BFGIN MAIN P30G
* DISTRUBUTE LAMBDA TO ALL
IF ISW = THEN 3EGIN
H:aN0PM/32; PEL:=-NORM*PEN«H|
ENO ELSE BEGIN H: = (HI-LO) /63I PEL :=LO*PEN«H END!
VARUP:=0» NN:=-ll Ni:=-i: LLMT:=-1» finISh:»0;
STURM; IDFNTIfY;

RPT: MODE:=TRUE«
IF LLMT GEO NN THEN F IN I SH : =- (PEN* 1 ) ELSE FINISH:=PEN;
S:-MAX (FINISH) j

ir S<0 THEN 30 TO FINS;
MO0F:=TRUE; MODE:=PEN=S AND TRUE;
LLMT:=LLMT*1 :

varup:=vupillmt j

;

tmp:=lw(LLMT )

;

H:=(UP[LLMT)-LW[LLMT l)/64?
IF h<E3S THEN BEGIN
TMP:=LW(LLMTH TMP1 :=UP t LLMT )»

SIMWRITE (LINE." SOME E-VALUES ARE
SIMWRITE <UNE."

1 WORD REAL:
GO TO RPT END;

mode:=TRUEi pel:=Tmp*pen«h;
sturm; identify;
GO TO rpt;
% PRINT all intervals which contain
fins: M0DE:=T9UE; k:=max<nim
SIMWRITE (LINE." INTERVALS CONTAIN

vup(ii:=o end;

PES

TOO CLOSE TO IDENTIFY");
THEY ARE IN THE INTERVAL:. LOWER".
<TMP)»" UPPER". 1 WORD REAL: (TMP1))I

SINGLE E-VALUE

1 E-VALUE ARE")

;

LOOP i:=o
SIMWRITE
LOOD i:=0
SIMWRITE

l.K DO
(LINE."
l.K DO
(LINE."

EIGL " .EIGLII I)

;

EIGU " .EIGUI II) ;

00012100????
00012200????
00012300????
00012400????
00012500????
00012600????
00012700????
00012800????
00012900????
00013000????
00013100????
00013200????
00013300????
00013400????
00013500????
00013600????
00013700????
00013800????
00013900????
00014000????
00014100????
00014200????
00014300????
00014400????
00014500????
00014600????
00014700????
00014800????
00014900????
00015000????
00015100????
00015200????
00015300????
00015400????
00015500????
00015600????
00015700????
00015800????
00015900????
00016000????
00016100????
00016200????
00016300????
00016400????
00016500????
00016600????
00016700????
00016800????
00016900????
00017000????
00017100????
00017200????
00017300????
00017400????
00017500????
00017600????
00017700????
00017800????
00017900????
00018000????
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MAXNl:=Kt
ENO« * END STURMPROC

SUBROUTINE ZEROntPREAL A» PREAL B) 1

BEGIN
CREAL RTOL;
CINT ItJtKt
CU REAL VECTOR MODI 31

t

PREAL C»FA.FB» rCtINTtMID»TOL»TEMP*
PINT ITRt
PE REAL VECTOR DD»PP(12}t
LABFL ROOTt
BOOLEAN SAVEMOOEl
%
SUBROUTINE FUM(PREAL X. PREAL OUT FX)

I

BEGIN
PPEAL «»SI CINT It

R:=i: S:=OD(0J-Xt
LOOP l:=l»l»M-l DO
BEGIN

Fx: = (nom-x)*s-ppti-ii«Rt
R:=St S:=fxt

ENDt
ENOt * END OF SUBR FUN
* MOVE THE MATRIX INTO EACH PE
K:=(N-1) DIV 6^t
IF too THEN
LOO" I:=0»1»K-1 DO M0D(I):=63t
MODf K ):=N-K»64-lt
MODE:=TRUEt
LOOP i:=0.1.K DO
BEGIN

TFMD:=Df I ) t

LOOP j:*0.1»*ODl I 1 DO
DO! J>64«I ] :=3RABONE (TEMPtJ) t

TEMP:=P( I]t
LOGO j:=0»l«MODl I 1 DO
PP( J*64*I j:=r5RABONE(TEMP,J) t

END; % END LOOP I

% BEGIN THE PROCESS OF ZEROIN
ITR:=0t
RTOL :=4*EPSt
MODE:=TRUES
MODE:=A NEQ OR B NEQ AND TRUEt
FUN(A.FA) ?

FUN(B»FB) «

C:=A» FC:=FAt
IF ABS(F8)=ABS(FC) THEN
BEGIN

A:=Bt FA:=F9t BS=Ct FB:=FCt
C:=At FC:=FA»

ENOt
MID:=(B*C)/2t
TOL:=RTOL«ABS(3)*EPSt
%
H(HILE ABS(MID-9)>TOL AND ITR<MITER DO
BEGIN
IF FA NEQ FB T^N INT : = ( A»FB-B»FA) / (FB-FA)

SAVEMODE:»MODEt

00018100????
00018200????
00018300????
00018400????
00018500????
00018600????
00018700????
00018800????
00018900????
00019000????
00019100????
00019200????
00019300????
00019400????
00019500????
00019600????
00019700????
00019800????
00019900????
00020000????
00020100????
00020200????
00020300????
00020400????
00020500????
00020600????
00020700????
00020800????
00020900????
00021000????
00021100????
00021200????
00021300????
00021400????
00021500????
00021600????
00021700????
00021800????
00021900????
00022000????
00022100????
00022200????
00022300????
00022400????
00022500????
00022600????
00022700????
00022800????
00022900????
00023000????
00023100????
00023200????
00023300????
00023400????
00023500????
00023600????
00023700????
00023800????
00023900????
00024000????
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IF A
A:=e
IF S

FUN<
MODE
FOR
BEGI
IF A

BFGI
a:

C:
end:
mid:
Tol:
ITR:
END:
*

ROOT.
5IMW
SIMW

end:
if
IF

CH2: M

CHi: s

end:

ELSE INT:=MID;
5SUNT-BXT0L THEN INT J=B*SI6N (C-B) *TOLI
; fa:=fbi
IGN(INT-MID)=SIGN<B-INT) THEN Bt=INT

ELSE B:=MIDI
9.FB) \

:=ABS(FB)>4*N«>EPS AND MODE!
ALL SIGN(FC)=SIGN(F9) DO
N C:=A; rC:=FA ENOI
BS(f"B)=ABS(FC> THEN
N
=H» fa:=f=u B:=Ct FB:=FC*
=a» fc:=Fa;

=<b*C>/2;
=RTOL»ABS<3>*EPSt
=ITR*i:

mode:=savemode;
RITE (LlNEt" EIGENVALUES ARE'SBM
RITE (LlNE^'ITERs'S ITR) I

* END Of ZEROIN
CHOICE=2 THEN GO TO CH21 STURMPROCI
CHOICE=l THEN GO TO CH1I

nDE:=TRUE: LOOP NM:=0»ltMAXNl DO
3EGIN A:=EIGLINM]J B:=EIGU(NMH ZEROINU.BM ENDl
IMWRITE (LINE. "THIS IS THE END OF PROGRAM")
% END OF ^JLTISEC ••*••»••**••••••••••••»*»••»•»*••••
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